91 research outputs found

    Processing and inferential methods to improve shaft-voltage-based condition monitoring of synchronous generators

    Get PDF
    This thesis focuses on improving shaft-voltage-based condition monitoring of synchronous generators. The work presents theory for describing and modelling shaft voltages using fundamental electromagnetic principles. A modern framework is adopted in developing an online, automated and intelligent fault-diagnosis system. Novel processing and inferential methods are used by the system to provide accurate and reliable incipient-fault detection and diagnosis. The literature shows that shaft-voltage analysis is recognised as a technique with potential for use in condition monitoring. However, deficiencies in the fundamental theory and the inadequacy of methods for extracting useful information has limited its widespread application. This work extends the knowledge of shaft voltages, validates the merits of its use for fault diagnosis, and provides methods for practical application. Validation of the model is completed using an experimental synchronous generator, and results indicate that simulated shaft voltages compare well with the measurements - i.e. total average error of the model combined with experimental uncertainty is below 16%. The fault detection and diagnosis components are tested separately and together as a complete shaft-voltage-based conditionmonitoring system in an experimental setting. Results indicate that the system can accurately diagnose faults and it represents a unique and valuable contribution to shaft-voltage-based condition monitoring. Additionally, techniques such as optimal measurement selection, multivariate model monitoring, and fault inference developed for the investigations and system presented in this thesis, will assist engineers and researchers working in the field of condition monitoring of electrical rotating machines

    Induction Machine Broken Bar and Stator Short-Circuit Fault Diagnostics Based on Three Phase Stator Current Envelopes

    Get PDF
    A new method for the fault diagnosis of a broken rotor bar and interturn short circuits in induction machines (IMs) is presented. The method is based on the analysis of the three-phase stator current envelopes of IMs using reconstructed phase space transforms. The signatures of each type of fault are created from the three-phase current envelope of each fault. The resulting fault signatures for the new so-called ldquounseen signalsrdquo are classified using Gaussian mixture models and a Bayesian maximum likelihood classifier. The presented method yields a high degree of accuracy in fault identification as evidenced by the given experimental results, which validate this method

    Fault detection by segment evaluation based on inferential statistics for asset monitoring

    Get PDF
    Detection of unexpected events (e.g. anomalies and faults) from monitoring data is very challenging in machine health assessment. Hence, abrupt or incipient fault detection from the monitoring data is very crucial to increase asset safety, availability and reliability. This paper presents a generic methodology for abrupt and incipient fault detection and feature fusion for health assessment of complex systems. Proposed methodology consists of feature extraction, feature fusion, segmentation and fault detection steps. First of all, different features are extracted using descriptive statistics. Secondly, based on linearly weighted data fusion algorithm, extracted features are combined to get the generic and representative feature. Afterward, combined feature is divided into homogeneous segments by sliding window segmentation algorithm. Finally, each segment is further evaluated by coefficient of variability which is used in inferential statistics, to evaluate health state changes that indicate asset faults. To illustrate its effectiveness, the methodology is implemented on point machine and Li-ion battery monitoring data to detect abrupt and incipient faults. The results show that proposed methodology can be effectively used in fault detection for asset monitoring

    Diagnosis of broken bars in wind turbine squirrel cage induction generator: Approach based on current signal and generative adversarial networks

    Get PDF
    Producción CientíficaTo ensure the profitability of the wind industry, one of the most important objectives is to minimize maintenance costs. For this reason, the components of wind turbines are continuously monitored to detect any type of failure by analyzing the signals measured by the sensors included in the condition monitoring system. Most of the proposals for the detection and diagnosis of faults based on signal processing and artificial intelligence models use a fault-free signal and a signal acquired on a system in which a fault has been provoked; however, when the failures are incipient, the frequency components associated with the failures are very close to the fundamental component and there are incomplete data, the detection and diagnosis of failures is difficult. Therefore, the purpose of this research is to detect and diagnose failures of the electric generator of wind turbines in operation, using the current signal and applying generative adversarial networks to obtain synthetic data that allow for counteracting the problem of an unbalanced dataset. The proposal is useful for the detection of broken bars in squirrel cage induction generators, which, according to the control system, were in a healthy state

    State of the art and trends in the monitoring, detection and diagnosis of failures in electric induction motors

    Get PDF
    Producción CientíficaDespite the complex mathematical models and physical phenomena on which it is based, the simplicity of its construction, its affordability, the versatility of its applications and the relative ease of its control have made the electric induction motor an essential element in a considerable number of processes at the industrial and domestic levels, in which it converts electrical energy into mechanical energy. The importance of this type of machine for the continuity of operation, mainly in industry, is such that, in addition to being an important part of the study programs of careers related to this branch of electrical engineering, a large number of investigations into monitoring, detecting and quickly diagnosing its incipient faults due to a variety of factors have been conducted. This bibliographic research aims to analyze the conceptual aspects of the first discoveries that served as the basis for the invention of the induction motor, ranging from the development of the Fourier series, the Fourier transform mathematical formula in its different forms and the measurement, treatment and analysis of signals to techniques based on artificial intelligence and soft computing. This research also includes topics of interest such as fault types and their classification according to the engine, software and hardware parts used and modern approaches or maintenance strategies

    Stray Flux Monitoring and Multi-Sensor Fusion Condition Monitoring for Squirrel Cage Induction Machines

    Get PDF
    This research work investigates the ability of external magnetic flux-based condition monitoring to detect rotor-related faults and incipient stage bearing faults in squirrel-cage induction machines (SCIMs). This work also discusses the multisensory synergy of the external magnetic flux measurement with other measurements. To investigate the stray flux-based monitoring technique, this dissertation presents a theoretical analysis of the characteristic components in the stray flux spectrum of SCIMs as well as experimental validations. A wavelet packet decomposition (WPD) denoising method is proposed for flux-based incipient bearing fault detection. Additionally, a sensor fusion method to efficiently utilize the information from heterogeneous sensor measurements (external magnetic flux and stator current) to achieve higher rotor-related fault detection sensitivity and a higher fault type recognition rate is presented. Instead of using all the characteristic components directly, the proposed fusion method groups the features of several rotor abnormalities and then draws a conclusion on machine health status based on the abnormalities that are present in the machine. Finally, a novel sensor fusion-based rotor vibration observer method is proposed for incipient bearing fault detection. The observer can reject the electrical disturbances from the supply side. Meanwhile, the proposed observer is less affected by the mechanical noise from lousy environment than using vibration-based monitoring.Ph.D

    Temporary short circuit detection in induction motor winding using combination of wavelet transform and neural network

    Get PDF
    Monitoring system for induction motor is widely developed to detect the incipient fault. Such system is desirable to detect the fault at the running condition to avoid the motor stop running suddenly. In this paper, a new method for detection system is proposed that emphasizes the fault occurrences as temporary short circuit in induction motor winding. The investigation of fault detection is focused on the transient phenomena during starting and ending points of temporary short circuit. The proposed system utilizes the wavelet transform for processing the motor current signal. Energy level of high frequency signal from wavelet transform is used as the input vriable of neural network which works as detection system. Three types of neural networks are developed and evaluated including feed forward neural network (FFNN), Elman neural network (ELMNN) and radial basis functions neural network (RBFNN). The results show that ELMNN is the most simply and accurate system that can recognize all of unseen data test. Laboratory based experimental setup is performed to provide real-time measurement data for this research

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Advanced signal processing methods for condition monitoring

    Get PDF
    Condition monitoring of induction motors (IM) among with the predictive maintenance concept are currently among the most promising research topics of manufacturing industry. Production efficiency is an important parameter of every manufacturing plant since it directly influences the final price of products. This research article presents a comprehensive overview of conditional monitoring techniques, along with classification techniques and advanced signal processing techniques. Compared methods are either based on measurement of electrical quantities or nonelectrical quantities that are processed by advanced signal processing techniques. This article briefly compares individual techniques and summarize results achieved by different research teams. Our own testbed is briefly introduced in the discussion section along with plans for future dataset creation. According to the comparison, Wavelet Transform (WT) along with Empirical Mode Decomposition (EMD), Principal Component Analysis (PCA) and Park's Vector Approach (PVA) provides the most interesting results for real deployment and could be used for future experiments.Web of Scienc

    Distributed power control for 5G millimeter wave dense small cell

    Get PDF
    The millimeter wave (mm-wave) is one of the key enabling elements in the fifth generation (5G) technology that uses highly directional beamforming to mitigate path loss by using antenna arrays. The mmwave for massive multiple-input-multiple-output (MIMO) is able to reduce the cross-tier interference between multiple antennas to assist the number of active users (UEs). The dense small cell is very important to increase the capacity and high coverage in cell edge. This paper focuses on achievable high data rate in a dense small cell based on the use of mm-wave. In order to perform the achievable high data rate, a novel distributed power allocation is proposed in this work that reduces the high path loss and suppresses cross-tier interference under constraint transmission power in mm-wave. The condition of the Nash Equilibrium is also applied to reduce the cross-interference by guiding every femtocell user equipment's to achieve the target signal-to-interference noise ratio (SINR). From the numerical results, reduction in the high path loss on the desired signal in the heterogeneous downlink networks can be achieved by spatially reducing the larger antenna arrays and occurred when the mm-wave for distributed transmit power is larger than the threshold power
    corecore