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Abstract
Condition monitoring of induction motors (IM) among with the predictive maintenance concept are currently among the most 
promising research topics of manufacturing industry. Production efficiency is an important parameter of every manufacturing 
plant since it directly influences the final price of products. This research article presents a comprehensive overview of con-
ditional monitoring techniques, along with classification techniques and advanced signal processing techniques. Compared 
methods are either based on measurement of electrical quantities or nonelectrical quantities that are processed by advanced 
signal processing techniques. This article briefly compares individual techniques and summarize results achieved by differ-
ent research teams. Our own testbed is briefly introduced in the discussion section along with plans for future dataset crea-
tion. According to the comparison, Wavelet Transform (WT) along with Empirical Mode Decomposition (EMD), Principal 
Component Analysis (PCA) and Park’s Vector Approach (PVA) provides the most interesting results for real deployment 
and could be used for future experiments.

Keywords Advanced signal processing techniques · Condition monitoring · Induction motors · Predictive maintenance · 
Vibration measurement

1 Introduction

Fault diagnosis and predictive maintenance of Induction 
Motors (IM) has been a frequently addressed topic of many 
research teams around the world [14, 79]. IM are crucial 
part of production processes of today’s industry. They are 
used mainly due to their robust construction, low price, ver-
satility and suitable dimensions. IM in industrial areas are 
mainly influenced by environmental phenomena (high ambi-
ent temperature, humidity), electrical influences or mechani-
cal influences [113]. These effects, together with variable 
production quali, have a negative effect on the lifespan of 
the IM and can directly lead to their failure. Subsequent 
IM failures can lead to high financial losses not only due 
to pricier repairs, but also due to downtime of the engines. 
It is therefore very important to ensure reliable monitoring 
and protection to prevent any damage to the motors. Early 
fault diagnosis leads to scheduler engine maintenance and 
short-term downtime compared to a situation with major 
damage. An appropriate predictive IM maintenance pro-
cedure is based on the necessary measurement directly on 
the engine and appropriate diagnosis of early failure detec-
tions [44, 65, 79].
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The main problem of large motors in comparison to 
smaller ones is that their shaft is smaller due to the size 
of the motor and they also tend to be less durable. Larger 
motors generally have a longer rise time with a high input 
current, which leads into thermal and electrical stress on the 
stator winding as well as on the rotor itself. These problems 
most often cause a stator failure which leads into a breaking 
or short circuiting of the phase winding, a sudden failures 
of the rotor cage, appearance of irregular air gaps and/or a 
failure or bearings or gearboxes [44, 65, 113].

Although the IM stator windows are equipped with more 
advanced insulation and often with temperature sensors as 
well, faults on stators are still most often caused by ther-
mal and electrical stresses. The rotors of large IMs are in 
additional exposed to mechanical stress, which makes them 
very vulnerable (especially compared to small IMs). Large 
motors usually use bearings with bushings instead of bear-
ings with rolling elements, so their failure rate is much 
lower [44, 65, 113].

IMs are symmetrical electrical machines—any induced 
failure leads to introduction of asymmetrical properties. It 
is possible to monitor the characteristic fault frequencies 
caused by various types of faults. Non-invasive monitor-
ing can be achieved by measuring electrical and mechani-
cal quantities (current, voltage, magnetic flux, torque and 
speed). The main problem with predictive maintenance is 
that there is no single ideal diagnostic procedure to identify 
any IM failures [14].

Early fault detection is crucial for a proper engine mainte-
nance. It is difficult to optimally plan downtime and mainte-
nance windows without important engine condition informa-
tion. Many teams are therefore focusing on implementing 
effective methods of measured signals processing, which can 
then be used for IM conditions monitoring. Appropriately 
chosen signal processing methods can detect a malfunction 
or irregularity of the machine’s functionality already in the 
initial phase of the problem. In practice, the most important 
thing is the correct, and especially early, diagnosis of a rotor 
failure, as it can have a direct effect on many secondary 
faults, which can lead into serious engine damage. However, 
determining the rotor failure is a very difficult task, so the 
selection of a suitable signal processing method has its limi-
tations [24, 44, 65, 79]. Nowadays, the industrial companies 
that make extensive use of IM strive to minimize operating 
and maintenance costs. Great emphasis is therefore placed 
on predictive maintenance. Early detection of faults, which 
is highly dependent on the measured quantities and their 
processing is directly related to this effort [24, 44, 65, 79].

Predictive maintenance and precise fault detection are a 
major topic of Industrial Internet of Things (IIoT). Manu-
facturing plants require a centralized solution, that will 
monitor a wide array of machines, logging their current sta-
tus and potential alarms triggered by slowly failing parts. 

Precise estimation of parts state can be either estimated on 
site (directly on machine) or at centralized center, which 
analyze information gathered by sensors. Certain methods 
can be very computationaly demanding and require special-
ized hardware or powerful industrial PC. The ideal solution 
must balance both precision and hardware requirements, so 
that the data for monitoring are either minimal or process-
able by on site PC. The backbone networks in manufactur-
ing plants also have a certain capacity that must be shared 
across machinery. On-site sensors that are powered by bat-
teries have estimated lifetime that is highly dependent on 
the frequency of transmitted data. The centralized node that 
gathers data can be both passive (only receiving data) or 
active (forcing sensors to send required data). Active mode 
or higher number of transmissions in shorter time windows 
will influence the battery life of IIoT sensors, which must 
be accounted for.

The presented publication focusses on description of indi-
vidual defects, predictive maintenance techniques and vari-
ous methods for early detection of faults. These methods are 
described, and the estimated computational requirements are 
briefly mentioned. Many predictive methods are nowadays 
used to minimize the number of unplanned IM outages. The 
most common fault detection techniques include vibration 
and acoustic analysis, speed changes, transient response, 
analysis of electrical quantities or IM frequency tracks and 
similar. In addition, the number of built-in devices dedi-
cated to the issue of predictive maintenance is slowly rising. 
IM manufacturers even offer their own solutions for their 
engines [60]. These methods have different advantages/dis-
advantages, and some might not be ideal for centralized IIoT 
deployment, due to their strict requirements.

This article provides a general overview of current sci-
entific knowledge in the field of condition monitoring of 
3-phase IM. The publication thus presents a list of the most 
common faults and their detection systems, including a 
description of the analytical and statistical methods for pro-
cessing the obtained data.

The obtained information will be further used in applica-
tion research on custom modified 1.5 kW motors and their 
digital twins. The main goal is to assess which methods are 
the most effective for individual faults and which resources 
are required with respect to the computational capacity of 
the usual Edge Computing platform.

Main contributions:

• Overview of IM faults with actual examples of their 
detection.

• An overview of the most common analytical and statis-
tical methods used for fault detection (including early 
detection).

• Comparison of the properties of the different methods, 
including their advantages and disadvantages.
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• General overview of the future objectives of the follow-
up application research.

This review article focused on condition monitoring is 
divided into seven sections. The Sect. 1 provides an intro-
duction to condition monitoring and motivation. The Sect. 2 
describes the possible IM faults. Condition monitoring tech-
niques are introduced in Sect. 3. Very important classifica-
tion techniques are then presented in Sect. 4. Section 5 pro-
vides the main state-of-the art of advanced signal processing 
techniques. Section 6 is about further research topics (future 
improvements, experiments, dataset etc.). The last Sect. 7 
contains the conclusion.

2  Induction Motors Faults

In case of IMs, the main problem is to properly identify any 
failure in the early stages, so that the downtime is reduced to 
necessary minimum. In addition, worn IM parts can be also 
replaced at specific scheduled maintenance times. Faults on 
IM can be primarily divided into mechanical and electrical 
faults. Electrical faults can then be divided into rotor and 
stator faults. Rotor failures include damage to the rotor cage, 
broken bar or cracked end ring. Stator faults are defined by 
damage to the stator windings and drive. Mechanical fail-
ures include bearing damage, eccentricity, shaft bending and 
gearbox damage. In Fig. 1 represents a block diagram of 
the basic division of mechanical and electrical faults of the 
IM [14, 40, 79].

2.1  Rotor Faults

Rotor faults account for between 5 and 10% of the total list 
of faults that occur in IMs due to the high voltage [14, 19, 
80]. They are usually related to the occurrence of asym-
metries in the rotor cage or rotor winding [79]. In the 

rotor cage, the bar or end ring mainly breaks, but the rotor 
core can also be damaged. These faults are more common 
in IMs designed for high voltage, due to higher thermal 
stresses, especially on the rotor. Due to their origin, rotor 
faults can be caused by thermal, magnetic (caused by elec-
tromagnetic forces), dynamic (caused by shaft torque), 
environmental or mechanical stress [71]. The high tem-
perature and the consecutive overheating of the rotor cage 
can cause expansion, which leads to mechanical stress. 
Environmental stress is mainly caused by contamination 
or abrasion of the rotor material [113].

Large motors are started with reduced voltage due to 
high starting current and torque. Since the motor has a 
longer start and during start the stator and rotor currents 
are much higher than the rated current, the thermal stress 
on the motor is also very high. Thus, for large engines, 
the peak temperature occurs mainly during start-up, rather 
than during overload, as is the case for smaller engines. 
In case of some types of motors, the temperature of the 
rotor cage can reach up to 600 ◦C—the subsequent thermal 
expansion leads to a reduction of mechanical performance 
of the cage and consequently to a complete failure of the 
cage. For this reason, i tis not possible or even recom-
mended to start high-voltage motors as many times as low-
voltage motors [113].

The rotor bars are most often damaged by high tempera-
tures. If the rotor bar breaks, the rotor cage cannot usually 
be repaired. A cage failure leads to the formation of shaft 
vibrations, bearing damage and the creation of an air gap. 
Thus, the early detection of a broken bar not only protects 
the rotor, but prevents many other possibilities of engine 
damage [74, 113].

In some cases, the rotor bar breaks in the connection 
point where the bar itself is connected to the end ring. The 
adjacent bars then transmit higher currents than the values 
they are designed for. This entails their faster degradation 
over time and, if a bar failure is not detected in time, dam-
age to the engine core itself [18].

Fig. 1  Block diagram of various mechanical and electrical faults of IMs
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2.2  Stator Faults

Although the stator winding is usually well protected by 
more advanced insulation materials, monitoring the stator 
insulation is very important and necessary due to possible 
fatal motor damage. Winding insulation is one of the most 
vulnerable IM systems and is often damaged. Between 21 
and 40% of all IM faults are related to winding insulation 
fault [79]. Winding faults are usually associated with slow 
but continuous aging of the winding insulation. The older 
winding can then fail due to, for example, short overheating, 
vibrations or short-term higher voltage [14, 79].

In recent decades, the importance of monitoring tem-
perature conditions has increased. The temperature effects 
have been identified as a root cause of the majority of stator 
insulation failures. For this reason, a large number of relays 
have been developed to protect the motor against thermal 
overloads. Temperature sensors are nowadays a part of large 
motors, but there are certain application areas, where it is 
undesirable or even impossible to use them [14, 113].

An electrical short circuit is often the result of the 
winding insulation failure. It leads to a current peak at the 
incriminated points, that are caused by the different poten-
tials between two adjacent windings. The large current thus 
generates extraordinary heat that is the cause of ignition of 
the adjacent wiring insulation. Eventually the insulation 
fault spreads to the stator core. The propagation of the fault 
happens in 20–60 s, so the quick intervention is necessary 
or the damage to the stator can be fatal [113].

2.3  Mechanical Failures

Bearing failures are also very common and require the 
deployment of special sensors to monitor their conditions. 
Bearing failures account for approximately 40% (high-
voltage IM) to 90% (low-voltage IM) of all failures [79]. 
Thermal, electrical and mechanical stresses have the greatest 
influence on the condition of bearings. The heat conducted 
from the shaft as well as shaft tension cause the bearing 

lubrication to dry out, which then leads to friction and bear-
ing damage. Even vibrations of the rotor shaft can lead to 
bearing failure, especially on larger machines that have high 
output torque [113]. The mechanical failures of bearings 
are often based on vibration monitoring. Bearing errors are 
also measured using stator current, for easier installation and 
maintenance [94].

Eccentricity of air gaps of IMs indicates a situation, 
where there is an uneven air gap between the rotor and the 
stator. A certain level of eccentricity is common in every IM 
and can be encountered directly during production [79]. The 
resulting air gap may increase during operation due to the 
wear of various IM parts. The increased eccentricity leads 
to unbalanced magnetic traction, vibrations, loosening of 
the frame and windings or friction between stator and rotor, 
which can eventually result in damage to the stator and rotor 
core. There are three basic types of eccentricity, as you can 
see Fig. 2 [14]. In case of static eccentricity, the center of 
rotation is shifted from its original position. Meanwhile, in 
case of dynamic eccentricity, the center of rotation is at its 
origin, but the cylinder is displaced. Finally, in case of mixed 
eccentricity, both the cylinder and the center of rotation are 
shifted from their origin. The eccentricity threshold that 
can lead to damage or failure of IM is currently not clearly 
defined [79, 113].

3  Condition Monitoring Techniques

Acquisition of data for subsequent predictive maintenance 
or detection of IM faults is a key part of the whole process. 
Depending on the data acquisition method, faults can be 
diagnosed with varying degrees of success. A vast number 
of various quantities are gathered today, often measured in 
different ways. These data are often combined to increase 
the accuracy of the chosen analytical method.

When a fault occurs during the IM operation, it will 
inevitably affect its operating parameters. The extent of its 
manifestation is directly linked to the degree of damage. 

Fig. 2  Demonstration of basic types of eccentricity. a without eccentricity, b static eccentricity, c dynamic eccentricity and d mixed eccentricity
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For example, an IM with a short armature with any rotor 
asymmetry causes an imbalance in the rotor currents [33].

The methods of non-invasive acquisition of the neces-
sary data for the analysis of the motor condition include 
multiple easily measurable electrical mechanical quanti-
ties, such as stator current, external magnetic field, speed 
or vibrations. Other derived quantities, such as individual 
voltages and torque are estimated (or calculated) within 
the control loops of the drives. Furthermore, quantities 
such as acoustic noise or temperature can be seldom taken 
into account as well [38]. Invasive methods of data acqui-
sition are then highly dependent on the level of modifica-
tion of the IM.

Reliable fault identification has been the subject of practi-
cal and theoretical research for many years and so far there is 
basically no ideal method usable for every fault type. If we 
consider the reliability of the identification method, there are 
still some unresolved and open problems— including [38, 
63]:

• Insensitivity to operating conditions.
• Fault detection in time-varying conditions.
• Evaluation of the severity of the failure.
• Fault tolerant strategies for drives.
• Processing and classification of all types of IM faults.
• Distributed bearing faults, such as roughness and wavi-

ness, are insufficiently studied.
• Most fault detection researches are focused only on ball-

type bearings.
• Not enough research dealing with the change of failure 

indicators due to temperature and structural changes.
• Lack of studies dealing with detection of multiple simul-

taneous faults of IM with different combinations and 
severity.

• Most of the fault detection studies are targeting single 
motor systems.

In general, the reliability of the chosen condition monitoring 
technique is directly connected to the best possible under-
standing of the electrical and mechanical characteristics of 
the motors in a fault-free state. Subsequently, the informa-
tion of the fault-free state is obtained and then compared 
to the scenario with any defect or fault Almost all so far 
developed methods are based on one or more techniques 
from these categories [65]:

• Measurement of stator currents.
  Stator current measurement is the basic method of 

obtaining information for the methods of the Electri-
cal Signature Analysis (ESA) group. Measurements are 
taken at the motor terminal using various current sensors, 
which can be either invasive or non-invasive.

• Electromagnetic field monitoring.

  An electromagnetic field that is emitted into the engine 
surroundings can be detected by inductive sensors or hall 
effect sensors. This measurement can be influenced by 
the surrounding environment and therefore signal filter-
ing must be considered.

• Measurement of acoustic emissions.
  The operation of the engine is associated with the 

generation of an acoustic signal that can be measured 
by microphone sensors and then further processed. This 
measurement is very sensitive to ambient interference 
from other devices.

• Vibration measurement.
  Vibrations are mainly measured by accelerometers 

attached to the body of the motors at predetermined loca-
tions and with the appropriate orientation relative to the 
monitored location. This is the main method for detecting 
mechanical failures.

• Temperature measurement.
  The temperature can be measured directly on the motor 

body and internally on the stator winding using tempera-
ture sensors. In addition, the heat radiated from the motor 
can be measured using IR sensors.

• Voltage measurement.
  Voltage can be measured at the motor terminals 

to detect power supply faults. The voltage difference 
between the motor neutral and the power supply neutral 
can also be measured to detect asymmetries.

• Overvoltage and load testing.
  The motor can be measured under certain specific con-

ditions such as starting, loading, or overvoltage. These 
measurements can lead to earlier detection of upcoming 
problems, but often requires the technician to disconnect 
the motor from manufacturing line.

An important condition for choosing the ideal technique 
for IM condition monitoring is whether it is necessary to 
shut down the monitored device or not. All techniques can 
be therefore divided into online and offline. Offline tech-
niques require the engine to be stopped or complete shut 
down, while online techniques allow the IM diagnostics to 
be running during operation. However, offline, unlike online 
methods, have the advantage of repeatability of measure-
ments and offer a significant reduction of noise contamina-
tion [110]. On the other hand, online methods are currently 
on the rise, since they offer adequate warnings of impend-
ing failures and can be used to plan a thorough service 
schedule. Service schedules can then be used to order spare 
parts in advance, ultimately reducing the costs of mainte-
nance. Online techniques are an important part of the fourth 
industrial revolution, as they offer interesting economic 
advantages. Each electrical or mechanical quantity is a car-
rier of valuable information about the condition of the IM, 
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depending on the fault. Fig. 3. shows the basic and accom-
panying fault indicators for each important part of IM. The 
distribution is based on the value of the information about 
the given IM fault.

3.1  Measurement of Electrical Quantities

Voltage and current variables are usually among the first 
options for obtaining relevant input data for IM diagnostics. 
The currents in the IM themselves are one of the most ver-
satile variables, which contain information about the state of 
the motor and the possible future occurrence of faults [23, 
94]. They are also the most frequently measured quantities 
for the purpose of motor conditions monitoring. In prac-
tice, the measurements of stator currents, more precisely 
the supply current of IMs, are the most usual ones. Currents 
from the rotor are induced on the stator windings of the 
motor and these current signals subsequently carry infor-
mation not only about the stator, but also about the state of 
the rotor [36].

Current measurement for the purpose of IM state diag-
nosing has a significant advantage in the simplicity of the 
measuring system implementation [52, 94]. To acquire a 
basic overview, it is sufficient to use current probes and 
appropriate hardware and software for signal processing. 
These measurements also do not require invasive interven-
tions into the measured motor, which allows online condition 
monitoring [57]. The basic measured circuit quantities are 
shown in the Fig. 4. Two IM connections are used, a star 
and a triangle. Among the most important circuit quantities 
used for condition monitoring are stator currents I1 to I3 and 
phase voltages Uf1 to Uf3.

The term Motor Current Signature Analysis (MCSA) 
includes methods based on the measurement of currents 
and their processing, where the subsequent results are used 
to identify or predict the IM failure. MCSA family methods 
belong to the group of methods based on ESA. MCSA are 
basically techniques, that can be used to identify problems 
inside the engine itself—especially defects related to their 
operation, such as Breaking of Rotor Bars (BRB) or bearing 
defects. These MCSA detected faults can only reach small 

Fig. 3  The information carriers used for detection of various failures [60]

Fig. 4  The information carriers used for detection of various failures [60]
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amplitude levels and are therefore difficult to detect without 
further signal processing [30].

Motor Voltage Signature Analysis (MVSA) includes 
methods that are based on voltage measurements, which are 
used for subsequent IM status monitoring. MVSA methods, 
along with MCSA methods, are used to generate real-time 
engine trends and analyzes. They are aimed in particular at 
early detection of problems with the stator winding, prob-
lems with rotor, wiring or bound loads and even efficiency, 
system loads, bearing defects and many others. These faults 
can be detected due to the fact that individual faults are often 
reflected in their mechanical work and current or voltage 
signals then carry this information in their signals. In other 
cases, voltage measurement can be used only as an addi-
tional source of relevant information [54].

3.1.1  Steady‑State and Transient Currents

Current measurements on a three-phase IM can be only per-
formed at given times. The usual approach is to measure 
current during motor operation. This approach is used by 
the vast majority of condition monitoring methods, as the 
measurement is the easiest in terms of complexity and also 
provides sufficiently quality input data. Measurements dur-
ing engine operation can be divided into measurements with 
and without load.

Another convenient moment for current signal monitor-
ing is within the start-up window. Mehrjouetal et al. [65] 
described the use of data measured within start-up period, 
which can be used for more accurate fault detection results. 
Measuring inrush currents has the potential to provide bet-
ter options for motor condition analysis—transient currents 
are measured at higher motor slip and there is also a higher 
signal-to-noise ratio. It is therefore much easier to detect and 
evaluate the spectral components of the signal. However, the 
main obstacle to this specific type of measurement is the 
short time window of the motor start-up, since its necessary 
to have a sufficiently accurate spectrum that can be used for 
evaluating the state of the analyzed motor. This analysis can 
be only performed on a sufficiently powerful engine, since 
it is significantly bigger and has a longer start-up period.

Ideal 3-phase motor does not have any other spectral parts 
in supply current then power supply base frequency. How-
ever, in any case of mechanical or magnetic field asymmetry 
there are other frequency components present in stator cur-
rent spectrum according to the specific type of fault. Thus, 
if the motor is damaged, whether it is damage to the winding 
or, for example, the rotor bars, then there are no apparent 
currents, which naturally cause the formation of a magnetic 
field in the surrounding environment. This leads to asym-
metry in the rotor’s magnetic field that cause a non-zero 
oppositely oriented magnetic field that rotates with the fre-
quency of the motor slip relative to the rotor. Other harmonic 

components in the stator currents are then superimposed—
they are usually used for detection of damaged or cracked 
rotor bars [36, 51, 65, 113].

3.1.2  Voltage Measurement (Stator, Neutral Line)

The voltage measurement on the three-phase IM is mainly 
executed on individual phases to monitor the current sup-
plied voltage. This approach can be used to detect unbalance 
of supply branches, which can cause uneven loading of indi-
vidual phases of IM. Furthermore, even the measurement of 
the voltage between the phase and the center of the stator 
can be used—the measured voltage can be more sensitive to 
specific failures of IMs. Based on the publication by Khezzar 
et al. [49], it is possible to employ this approach to detect bar 
failures. Kyusung Kim et al. [58], introduced the method, 
which use voltage measurement as an input of neuropredic-
tors, which can somewhat reliably predict IM failures.

3.1.3  Power Measurement

Motor Power Signature Analysis (MPSA) can be also used 
to determine the current IM status. The most used variant is 
called Instateneous Motor Signature Analysis (IPSA). The 
measured instantaneous voltage and current data represent 
the instantaneous apparent power. The distribution of appar-
ent instantaneous power to the active component is called 
Instantaneous Active Power Signature Analysis (IAPSA), 
while for the reactive component we talk about Instantane-
ous Reactive Power Signature Analysis (IRPSA).

M’hamed Drif et al.  [34] described an experiment in 
which the active and reactive components of instantaneous 
power were used to analyze the state of the motor stator. The 
result of this experiment was to demonstrate the possibility 
of employment of these two quantities for the detection of 
IM failures, while also directly distinguishing this particular 
failure from other abnormal conditions.

3.2  Electromagnetic Field Measurement

The IM failure is also reflected in its electromagnetic field. 
Each type of failure introduces its own characteristic fre-
quencies into the electromagnetic field [44]. Based on the 
earlier knowledge of these frequencies and the appropriate 
procedures, valuable information regarding the condition of 
the motor can be obtained or extracted. The monitoring of 
the electromagnetic field can thus yield a significant amount 
of information for eventual failure identification or predic-
tion. This is caused by electromagnetic forces, noise and 
vibration, which influence the correct functionality of the 
rotor, leading to its damage [44, 81].

The measurement of the external magnetic field is usu-
ally performed in two axes—radial and axial, where the 
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axial axis is in the plane of the motor. The magnetic field in 
the axial axis around the IM is generated by the stator end 
winding or rotor cage end rings. The radial field occurs in 
a plane perpendicular to the motor axis and is an image of 
the air gap flux density, which is attenuated by the stator 
magnetic circuit and by the external motor frame [44, 81]. 
Both magnetic fields can be measured almost independently 
by suitably deployed sensors.

Fig. 5 shows different positions of a stray flux sensor 
according to premised direction of magnetic flux. Sensor in 
Pos. 2 can measure both axial fields and in Pos. 3 radial field. 
Pos. 1 allows to measure the radial and a part of the axial 
field. Measurement of only the axial fields can be performed 
in Pos. 2. Sensor in Pos. 3 is parallel with the longitudinal 
plane of the motor so there is no effect of the axial field on 
a stray flux sensor [44, 81].

By measuring the magnetic field of IM, it is possible to 
detect, for example, an inter-thread short circuit, which is 
often manifested by an asymmetry in the magnetic flux and 
thus also in the external magnetic field of IM. Furthermore, 
faults related to the failure of rotor bars can be success-
fully detected as well—they have a negative effect on the 
sequence of magnetic fluxes, which can be subsequently 
monitored on the size of the spectral lines in the frequency 
domain. Specifically, only the measurements from an axial 
electromagnetic field are used, as this failure is only mani-
fested on the radial axis [81].

3.3  Measurement of Acoustic Emissions

The employment of acoustic pressure for IM diagnostics 
has recently become a very attractive approach which is 
usable especially for detection of defective bearing or other 
faults associated with the engine rotor. Prainetr et al. [76] 
used acoustic emissions to detect rotor eccentricity—a fre-
quency analysis was used to confirm changes in the signal 

at different eccentricities. In 2018 Gloowacz [42] introduced 
the diagnosis of three-phase IM based on the measurement 
of acoustic emissions. He tested a total of four IM states with 
a failure detection rate of 88.19%. The used data processing 
tools were not expensive, and the presented system did not 
used any special industrial grade microphones.

The possibilities of using acoustic signals depend on 
many criteria. Among them are IM components, size, shape 
and IM mounting type, occurrence of electromagnetic noise 
or microphone type and their number. The system is also 
highly dependent on the environment, where acoustic emis-
sions are recorded (background noise). Furthermore, as with 
other methods, it is necessary to take other parameters into 
account, including number of motor bars, stator windings 
and other parameters [65].

3.4  Vibration Measurement

The ideal IM creates minimal vibration during its opera-
tion. Any subsequent failure that occurs in the IM leads into 
vibration anomalies. Based on this prerequisite, it is possible 
to obtain information about the current of IM using the cor-
rect analytical method. Vibration measurement techniques 
in most cases focus on bearing failures, gearboxes, rotor 
eccentricities [108], or overall imbalances [65].

In practice, the measurement of acceleration based on 
accelerometers is most often used. Vibrations can be also 
measured by measuring the deflection or speed, both abso-
lutely and relatively. Furthermore, the measurement can be 
divided into non-contact (vibration sensing by a laser appa-
ratus) or contact (vibration sensing using eg. piezoelectric 
accelerometers).

In case of contact accelerometers, it is necessary to con-
sider their attachment to the measured object. The frequency 
range is highly dependent on the way the sensor is mounted 
on the measured object. The least effect on the frequency 

Fig. 5  Location of magnetic field sensors with the indicated direction of magnetic [81]
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range can be achieved by attaching the accelerometer to the 
measured object by screws. A suitable frequency range can 
be also achieved by attaching the accelerometer with special 
adhesive or beeswax. It is also important to attach the accel-
erometer in such a way, that the amplitude or frequency band 
of the measured vibrations is not affected. Usually, vibra-
tions are measured using several accelerometers at once—
one is placed in the axial axis and the other with respect to 
the rotor axis (see Fig. 6) [65].

Contactless measurement is not widely used due to its 
financial and technological complexity. The development of 
cheaper non-contact vibration measurement technologies is 
still under way [65].

Yang et al. [109] explored the possibilities of non-inva-
sive vibration measurement using RFID technology. Their 
method is based on analysis of changes in the reflection 
of electromagnetic radiation from the monitored object. 
However, the presented system has its limitation, since the 
authors reached a maximum sampling frequency of 400 Hz. 
The measurement accuracy is also significantly reduced, 
when the system is deployed in an environment with mul-
tiple objects.

3.5  Temperature Measurement

The occurrence of IM failure leads to its suboptimal opera-
tion and changes in operating characteristics—these are 
caused by higher consumption due to overcurrent. The 
overcurrent subsequently raises the temperature of the motor 
stator, which naturally affects the infrared radiation of the 
motor as a whole [89]. Problems caused by higher engine 
temperatures can be diagnosed by periodical measurements. 
The temperature can be either measured directly (by sen-
sors) or contactless based on Infrared Thermography (IRT). 

The contactless approach is most often used in real world 
scenarios. This type of measurement is already commonly 
used in inspections of switchboards or transformers [89]. 
The temperature measurement is usually performed to diag-
nose failures of stator winding. A change in temperature 
subsequently changes the engine power. By measuring the 
temperature, it is also possible to diagnose a short circuit in 
the winding or a shaft failure.

4  Classification Techniques

After the signal processing itself, methods such as Sup-
port Vector Machine (SVM), Self Organizing Map (SOM), 
Bayesian Network (BN), Random Forrest (RF), K-Nearest 
Neighbor (KNN), Fuzzy Logic (FL), Adaptive Neuro-Fuzzy 
Inference System (ANFIS), Deep Neural Network (DNN), 
and Artificial Neural Network (ANN) are very often used for 
classification, analysis, and development of automatic diag-
nostic systems. These methods are crucial for the accuracy 
of IM failure detection. The most frequently used classifica-
tion methods, based on artificial intelligence are described 
below. These methods will be used further to describe vari-
ous signal processing methods themselves.

•  Support Vector Machine is basically the most widely 
used method of classifying large amounts of data in an 
industrial environment. This method was developed as 
a binary linear classifier, that uses supervised machine 
learning models, statistical methods, and predictive 
methods. It is an architecture designed for artificial 
neural networks, which works on the basis of learning 
with teacher. The advantage of SVM is that it does 
not require the assumption of normal data distribution, 

Fig. 6  Placement of 1D accelerometers in relation to their axes
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has low memory requirements and a high classification 
speed and accuracy. The main disadvantage of SVM is, 
that in the case of lineary inseparable tasks requires the 
determination of parameters or the choice of certain 
core type. This method is not effective for larger data-
sets and tends to be sensitive to noise [46, 67, 82, 96].

• Self organizing map is a very often used neural net-
work, that is also called Kohonen map, after its famous 
discoverer [47, 84, 91]. It is an architecture designed 
for artificial neural networks that works on the basis 
of learning without a teacher. Thus, signals that have 
a certain degree of similar properties or, conversely, 
significant differences are sufficient to train this neu-
ral network. The feature of SOM is that it effectively 
creates spatially organized internal representations of 
various functions from input signals and their abstrac-
tions. One result is that the process of self-organization 
is able to discover semantic relationships between input 
signals [53, 69, 111].

• Bayesian network is based on probability theory and is 
often used in decision-making processes of classifica-
tion. It is a probabilistic model used to determine the 
probability of a specific phenomenon. To determine the 
phenomenon, it uses a graphical representation based 
on an acyclically oriented graph that shows the rela-
tionships between the sought phenomena. The advan-
tage of BN is that it has a high classification speed, 
requires little memory and is effective if the correct 
prior knowledge is available. The disadvantage of BN 
is that it is computationally expensive algorithm, that 
is heavily dependent on prior knowledge. Many recent 
authors have dealt with the deployment of this clas-
sification method [9, 39, 59].

• Random forest is a classification model formed by a com-
bination of several decision trees. Each tree assigns a 
class to the value of the vector. The output of the method 
is the class mode (the most common value), which is 
returned by individual trees. The advantage of RF is 
that it requires a small number of training samples, has 
low computational demands and has good performance, 
while it processes a high-dimensional data [32, 72, 100].

• K-nearest neighbor is a machine learning algorithm. It 
is a method of learning with a teacher, that divides ele-
ments represented by multidimensional vectors into two 
or more classes. In the preprocessing phase, the analyzed 
data is adjusted to have a zero mean and unit variance. 
The nearest neighbors of each element are found and 
the element is then classified into a specific class that 
contains the highest number of similar neighbors. The 
advantage of KNN is that it is a very simple algorithm, 
that is easy to use. The main disadvantage of KNN is that 
it has a low classification speed, high memory require-
ments and the algorithm is sensitive to noise [73, 86, 95].

• Fuzzy logic is another frequently used way of classifying 
IM failures. The difference between traditional logic and 
fuzzy logic is that traditional logic works with unambigu-
ous Boolean logic expressions (logical 1 and 0), while 
the fuzzy logic uses a large number of propositional 
uncertainties from completely false to completely true. 
When working with Fuzzy logic, the theory of fuzzy sets 
is used, where a certain described element or phenom-
enon can belong to a fuzzy set with a certain degree of 
membership from a closed interval < 0, 1 > [6, 75, 87].

• Neural-fuzzy methods combine fuzzy interference sys-
tems and neural networks. These methods include well-
known Adaptive neuro-fuzzy inference system. It is one 
of the soft computing classification methods, which are 
based on analytical methods, Boolean logic, sharp classi-
fication and deterministic searching. The ANFIS method 
can often be referred to as a hybrid adaptive method, 
since it combines a Takagi-Sugeno-type fuzzy inference 
system (fuzzy logic) and a forward neural network learn-
ing method. The advantage of ANFIS is its high perfor-
mance, when it uses the benefits of fuzzy expert systems 
(when working with inaccurate data) and neural net-
works (its learning from the environment). In addition, 
the ANFIS method can work with a learning algorithm 
consisting only of the backpropagation method or a com-
bination of the backpropagation method and the LMS 
algorithm. The disadvantage of ANFIS is its very high 
computational complexity and the requirements of cor-
rectly chosen form of membership functions, the number 
of membership functions and the number of epochs [3, 
12, 29, 68].

• Artificial neural network receive a lot of attention in 
industrial areas such as IM failure detections. Among the 
commonly used ANN methods are Genetic Algorithm 
(GA), Nearest Neighbor (NN) and Multilayer Percep-
tron (MLP). The advantage of ANN methods is that they 
have a good fault tolerance, high classification speed and 
effectivity for large datasets. The disadvantage of ANN 
methods is that they are computationally expensive, 
black box-like behavior [4, 35, 77].

• Deep neural networks have been lately attracting a lot of 
interest. These methods are widely used to solve complex 
problems, so they are often used to classify IM failures. 
Deep neural networks belong into machine learning, 
which is focused on the deployment of algorithms with 
a larger number of layers (tens of more layers). These 
layers are arranged so that the output of one layer is the 
input of the next one. Estimation of network parameters 
is usually performed by a backpropagation method. The 
advantage of DNN methods is that they have a good 
classification speed, they are suitable for automatic clas-
sification, have a good accuracy and are effective on a 
larger dataset. The disadvantage of DNN methods is that 



Advanced Signal Processing Methods for Condition Monitoring  

1 3

they have a complex and deep architecture, are computa-
tionally intensive and require a large number of training 
samples [21, 25, 61].

• Multiple Signal Classification (MUSIC) generates a 
pseudo-spectrum of square of the current signal, which 
allows the detection of half broken rotor bar of IM. The 
method is based on the decomposition of eigenvector of 
the processed signal (usually the current signal) into two 
orthogonal subspaces (actual signal and noise subspace). 
The MUSIC method has a finite resolution because of the 
perturbation of the signal autocorrelation matrix. Fur-
thermore, it is strongly dependent on the sampling fre-
quency of the signal, the supply frequency and the size of 
the autocorrelation matrix, as a wrong setting leads to a 
significant increase of computational complexity. For this 
reason, is the MUSIC method based on decimation of the 
current signal by a low pass filter and subsequent down-
sampling to a lower sampling frequency. The method is 
very effective in detecting closely spaced sinusoids in a 
noisy signal. In addition, it is efficient in processing non-
stationary signals and requires only a short time window. 
Furthermore, it is preferably used to detect low amplitude 
components in signals that have a low signal-to-noise 
ratio [88, 102, 112].

5  Advanced Signal Processing Techniques

Advanced signal processing methods are of great importance 
for predictive engine maintenance. In recent years, there 
has been a demonstrable shift in the development of digital 
technology, which currently allows the use of cost-effective 
hardware platforms with data processing capabilities. These 
hardware platforms can be used not only to detect IM fail-
ures, but also to improve the functionality of real-time diag-
nostic systems [14]. Effective signal processing methods for 
predictive IM maintenance have a direct impact on reduction 
of IM repair costs and downtime. Research teams around the 
world are currently exploring different approaches. The most 
commonly used methods, that are described in this work 
are Fourier Transform (FT), Short-Time Fourier Transform 
(STFT), Hilbert Transform (HT), Wigner-Ville Distribu-
tion (WVD), Wavelet Transform (WT), Empirical Mode 
Decomposition (EMD), Singular Value Decomposition 
(SVD), Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), Spectral Kurtosis (SK), Park’s 
Vector Approach (PVA), and Kalman Filter (KF). In addi-
tion to these mentioned methods, there are other methods for 
extraction of critical information. Among them are Wiener 
filter [103], Kolmogorov-Smirnov test [48, 70]., Poincare 
mapping [90] and artificial adaptive linear element neural 
network [15]. These methods are nowadays scarcely used 
and are considered by some as obsolete. Many methods are 

limited, as they can be only used for stationary signals, while 
the vibration signals are non-stationary [111]. At the end of 
the description of each method, there are parameters that can 
be set to influence the functionality. This section provides 
a comprehensive overview and analysis of digital signal 
processing techniques suitable for early diagnosis of initial 
IM failures. Table 1 (at the end of this section) shows com-
parison of signal processing techniques and Table 2 shows 
state-of-the art summary [51, 79].

5.1  Fast Fourier Transform

The Fourier transform is used to convert signals from the 
time domain to the frequency domain. The FFT algorithm 
is essentially the most commonly used technique for analyz-
ing signals in the frequency domain. It is a computationally 
efficient algorithm used to calculate a discrete Fourier trans-
form and then perform an inverse Fourier transform. Prior 
to performing the IFT, some type of thresholding is usually 
applied to adjust the signal. When performing the condition 
monitoring, this method normalizes the signal according to 
the amplitude of the first harmonic after performing the FFT, 
which reduces the effect of motor load conditions. The FFT 
algorithm is strongly dependent on small frequency changes 
in the processing of vibration signals, as in case of larger 
changes, the FFT brings the error to the actual value of the 
signal [16, 17, 20, 83, 93]. This mathematical apparatus is 
also the basis for condition monitoring methods from the 
IFSA (Instantaneous Frequency Signature Analysis) group.

Configurable parameter:

• Spectral window is used to limit the distortion in the fre-
quency domain (Bartlett-Hann window, Bartlett window, 
Blackman window, Blackman-Harris window, Bohman 
window, Chebyshev window, Flat Top window, Gauss-
ian window, Hamming window, Hann window, Kaiser 
window, Nuttall’s Blackman-Harris window, Parzen win-
dow, Rectangular window, Tapered cosine window and 
Triangular window).

Bessous et al. [16] dealt with the processing of signals 
obtained by the MCSA technique in order to determine the 
eccentricity fault in the IM. They used FFT to process the 
stator current signals. They used IM of 3 phases, 50 Hz, 
28 rotor bars, 3 kW and 2 pole pairs. In their work, they 
compared experimental results and the theoretical back-
ground. They achieved promising results, but discussed 
that fault information is overlapping, when the spectra 
of two motor states are compared. A year later, Bessous 
et al. [17] dealt with the processing of signals obtained 
by MVSA techniques for fault detection of broken rotor 
bars in squirrel cage of IM. To process the vibration sig-
nals, the FFT was deployed again. Their work deals with 
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Table 1  Comparison of advanced signal processing techniques in condition monitoring of IMs

Method Advantages Disadvantages

FFT Simple to implement with low computation time Analysis of stationary signals
Single phase measurement is enough Spectral leakage

Requires small frequency change in vibration signals
Does not provide information about the time dependence

STFT Analysis of non-stationary signals Cannot achieve finest time location and the best frequency reso-
lution at the same time

Single phase measurement is enough Strongly dependent on the selected window size
Works in time-frequency domain

Spectral leakage.
HT Simple to implement Difficult to estimate a defect other than a broken rotor bar

Analysis of non-stationary signals
Works in time-frequency domain
Can be used to find the signal envelope for demodulation or ampli-

tude modulation of the signal
Single phase measurement is enough

WVD Analysis of non-stationary signals May assume large negative values
Works in time-frequency domain Induces cross-terms interference
WVD method has a significant change in the energy distribution at 

the location where the vibration signal amplitude decreases
Cannot work effectively with multi-component signals

Allows an accurate description of spectral events associated with 
rapid changes

The length of the window limits the accuracy of the frequency 
information extraction

WT Analysis of non-stationary signals Necessary to choose the right type of wavelet and decomposition 
level

Works in time-frequency domain
Single phase measurement is enough

EMD Does not require a priori information of the target signal Computationally intensive
Slow
Self-adaptive method Necessary to choose the IMF, which will be used for further 

incorporation
Analysis of nonlinear and non-stationary signals
Single phase measurement is enough

SVD Effective in processing a mixture of signals containing multiple 
source signals

Requires more than one input signal

Computationally intensive
Less effective in comparison to PCA and ICA methods

PCA Loses minimal information during signal processing Requires more than one input signal
Effective in processing a mixture of signals containing multiple 

source signals
Less effective in comparison to ICA method

Feature extraction and data reduction from original features
ICA Effective in processing a mixture of signals containing multiple 

source signals
Requires more than one input signal

Feature extraction and data reduction from original features In recent years, less often used for the needs of condition moni-
toring of IM

SK Can create a dominant feature set from input signals. Dependency on the window length
Single phase measurement is enough

PVA Simple and reliable method Measurement of minimum two phases is required
Energy invariant
Allows falout detection without performing frequency analysis

KF Filtration does not require conversion to the frequency domain 
Computationally acceptable

Analysis of stationary signals

Ability to estimate state variables of a dynamic system Accuracy decreases during near bearing failure



Advanced Signal Processing Methods for Condition Monitoring  

1 3

the fact that vibration signals are widely used in industry 
due to their simplicity and efficiency. Their experiment 
focused mainly on understanding and finding specific indi-
cators that would point to broken rotor bars. They again 
employed the same engine type, as in the work from 2017. 
In conclusion, they confirmed that the analysis of the spec-
trum allows to diagnose the current state of IM. The bro-
ken rotor bars can be therefore monitored by analyzing 
the amplitude of a certain area of interest. However, their 
discussion encourages the deployment of a more advanced 
method of vibration signal processing in order to extract 
more crucial information.

Sudhakar et al. [93] addressed the topic of proper and 
timely predictive maintenance in order to minimize the cost 
of future repairs. In their work, they dealt with the process-
ing and analysis of vibration signals using FFT algorithm. 
The results obtained by FFT analysis showed that there was a 
deviation between the tested bearings. The higher harmonics 

of the FFT showed cracks on the race of the bearings at both 
ends.

5.2  Short Time Fourier Transform

This method is based on time-frequency analysis of the 
signal, which is performed gradually in shorter sections. A 
fixed window is used to select the individual sections and a 
Fourier transform is applied to them. The choice of window 
size or function has a major influence on the STFT result. 
Basically, the wider the window, the better the frequency 
resolution but the time resolution gets worse (works also 
vice versa). The most commonly used are Hamming, Gauss-
ian and Kaiser windows [10, 22, 50].

Configurable parameters:

• Spectral window is used to limit the distortion in the fre-
quency domain (Bartlett-Hann window, Bartlett window, 

Table 2  State-of-the art summary

Authors Method Fault Signal

Abd-el-Malek et al. [1] HT Broken rotor bar Current signals
Abullateef et al. [3] PCA Stator fault Vibration signals
Arabaci and Mohamed [7] PCA Broken rotor bar Current signals
Asad et al. [8] HT Broken rotor bar Current signals
Bagheri et al. [11] KF Eccentricity fault Current and voltage signals
Belkacemi et al. [13] WT Bearing fault Vibration signals
Bessous et al. [16] FFT Eccentricity fault Current signals
Bessous et al. [17] FFT Broken rotor bar Vibration signals
Carvalho et al. [22] STFT Under voltage unbalance Current signals
Climente-Alarcon et al. [26] WVD Rotor asymmetry and eccentricity fault Current signals
Cui et al. [28] KF Bearing fault Vibration signals
Garcia-Bracamonte et al. [41] ICA Broken rotor bar Current signals
Irfan et al. [45] PVA Bearing fault Current signals
Islam et al. [46] SVD Multiple IM faults Vibration signals
Khodja et al. [50] STFT Bearing fault Current signals
Kumar and Raj [56] WT Broken rotor bar Current signals
Li et al [62] SK Gearbox fault Vibration signals
Mohamed et al. [69] SK Gearbox fault Current signals
Mohamed et al. [68] WT Broken rotor bar Current signals
Sharma et al. [85] PVA Inter-turn short fault Current signals
Singru et al. [90] WVD Bearing fault Vibration signals
Stief et al. [92] PCA Electrical and Current, voltage, vibration,

Mechanical faults microflown and Microphone signals
Sudhakar et al. [93] FFT Bearing fault Vibration signals
Valtierra-Rodriguez et al. [99] EMD Broken rotor bar Current signals
Widodo et al. [104] ICA Broken rotor bar, air gaps, bearing Stator current and

fault, rotor unbalance, eccentricity Vibration signals
fault and phase unbalance

Xing et al. [107] SVD Gearbox fault Vibration signals
Zair et al. [111] EMD Bearing fault Vibration signals
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Blackman window, Blackman-Harris window, Bohman 
window, Chebyshev window, Flat Top window, Gauss-
ian window, Hamming window, Hann window, Kaiser 
window, Nuttall’s Blackman-Harris window, Parzen win-
dow, Rectangular window, Tapered cosine window and 
Triangular window).

• Window length determines the size of the window that 
moves along the length of the input signal.

• Number of overlapped samples for a window that moves 
along the signal (it must not be larger than the window).

Khodja et al. [50] focused on improving the signal process-
ing of stator currents obtained by the MCSA technique. 
Since the FFT does not offers the analysis of non-stationary 
signals, they instead decided to use the STFT. In addition, 
they increased the efficiency of the method by using max-
ima’s location algorithm, which guaranteed the display of 
harmonic components containing critical information about 
the failure. The experiment focused on the diagnosis of bear-
ing faults. In conclusion, they confirm the effectiveness of 
the proposed approach.

Carvalho et al. [22] dealt with IM wear caused under 
voltage unbalance conditions, where long-term operation in 
these conditions leads to higher degradation of IM parts and 
therefore shorter lifespan due to electrical and mechanical 
wear. The main reason is the imbalance of stator currents, 
which abnormally increase the winding temperature. In this 
study, the team focused on economically, efficient and reli-
able piezoelectric sensors. The STFT was used to analyze 
the obtained data in order to detect the mentioned under 
voltage unbalance conditions. The STFT method is capa-
ble of time-frequency analysis of acoustic emission signals. 
The experimental part was based around two sensors con-
nected to the sides of the IM frame and simulation of stand-
ard balanced voltages and under voltage unbalance condi-
tions. The combination of sensors together with the STFT 
method have proven to be a satisfactory low-cost solution 
and can be used as an alternative to industrial applications. 
The presented analysis demonstrated the reliable deployment 
of STFT analysis at various levels of under voltage unbal-
ance. In conclusion, the authors mentioned that by using a 
suitable advanced signal processing method, it is possible 
to determine not only under voltage unbalance, but also its 
level and affected phase.

5.3  Hilbert Transform

Hilbert transform is used to convert a signal into complex 
analytical signal. It is used for processing and analysis of 
non-stationary and nonlinear signals. The main advantage 
of HT is its ability to obtain a signal envelope, which can be 
used for subsequent demodulation or amplitude modulation 
of the processed signal. It is basically a signal convolution 

of a non-integrable function. This method acts as a filter that 
shifts the frequency components of the analyzed signal by-�

2
 

radians [1, 2, 8, 105].
Configurable parameters:

• Frequency limits to compute Hilbert spectrum.
• Frequency resolution to discretize frequency limits.
• Threshold serves as a minimum value for thresholding.

Abd-el-Malek et al. [1] addressed the timely identification of 
broken rotor bars in order to minimize maintenance, repair 
and downtime costs. The aim of the study was to detect the 
position of the broken rotor bar by using the analysis of 
the current envelope determined by the HT method. The 
experiment was focused on the start-up stator current dur-
ing various IM simulations with different fault severity by 
employing the multi-loop method. The estimated HT enve-
lope was then statistically analyzed and the standard devia-
tion between the IM and IM heaths was determined with 
a certain degree of broken motor bars. In conclusion, the 
team described the proposed approach as a non-invasive, 
computationally fast and accurate solution, that is capable 
to accurately determine the position of broken rotor bars.

Asad et al. [8] performed an experiment, comparing FFT 
HT and PVA for broken rotor bar fault diagnostics. The 
22 kW inverter fed IM powered by three phases was used 
for the experiments—100 s long current signals with a sam-
pling frequency of 1 kHz were recorded. Since the HT and 
PVA use FFT for frequency analysis, their computational 
time was significantly higher. The results showed a good effi-
ciency of the HT method, since it was able to attenuate the 
fundamental components. However, the PVA method was 
more informative and allowed fault detection even without 
frequency analysis.

5.4  Wigner‑Ville Distribution

From the mathematical point of view, the WVD method is 
basically a Fourier transform of the instantaneous autocor-
relation function. The WVD method can be also described as 
a three-dimensional graph of function, time and frequency. 
It offers an accurate description of spectral events associ-
ated with rapid changes. It is very interesting that the WVD 
method has a significant change in the energy distribution at 
the location, where the vibration signal amplitude decreases 
(displayed by the lighter shades of the WVD image). The 
main disadvantages of WVD are that it cannot be effectively 
used in scenarios with multi-component signals and it also 
induces cross-terms interference, that must be suppressed 
before further signal processing [26, 43, 64, 90, 106].

Configurable parameters:

• Time window used for smoothing.
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• Frequency window used for smoothing.
• Threshold serves as a minimum value for thresholding.

Climente-Alarcon et al. [26] focused on the removal of 
the limitations of the WVD method in the processing of 
current signals (during IM startups). The authors used an 
advanced notch FIR filter and HT before performing the 
WVD itself. The chosen approach was verified by experi-
ment on two different IMs, where the rotor was previously 
diagnosed with asymmetry and eccentricity. The authors 
states that their approach is capable of detecting rotor 
asymmetry and eccentricity of IMs in basic or even more 
difficult cases. In conclusion, the authors noted that their 
approach allows accurate monitoring of the IM failure 
state and its ongoing development.

Singru et al. [90] compared FFT, WVD and Poincare 
mapping for vibration signal processing to diagnose 
the condition of IM bearings. A test device containing 
a SKF 6205-2Z bearing was constructed for the experi-
mental part. Accelerometers were used to record vibra-
tions caused by engine operating at 1490 rpm. A set of 
six bearings was tested. According to presented results, 
the FFT is only able to identify severe forms of bearing 
disorders. WVD and Poincare mapping methods achieved 
significantly better results, and according to authors, these 
methods can be used in combination with neural networks 
to predict the exact failure time of IM bearings.

5.5  Wavelet Transform

WT is a classic method that provides a very valuable infor-
mation in both the time and frequency domains. It is sim-
ply a convolution between a signal and a wavelet function. 
It is highly dependent on the type of signal and selected 
waveform (Haar, Daubechies, Biorthogonal, Coiflet, Sym-
lets, Morlet, Mexican Hat or Meyer) and the degree of 
signal decomposition. It is an efficient method for process-
ing non-stationary signals and signals containing multiple 
signal components. In the first stage of decomposition, the 
signal is decomposed by Discrete WT (DWT) into one 
approximation component and one detailed component. 
In the second stage of decomposition, the approxima-
tion component of the signal is decomposed into another 
approximation component and another detailed compo-
nent. The same approach is applied until the final selected 
degree of decomposition is achieved. The decomposed 
signal then consists of the last approximation component 
and all the detailed components. By thresholding the sig-
nal, the signal is adjusted before the reconstruction [13, 
31, 37, 56, 95].

Configurable parameters:

• Maternal wavelet determines the type and width of used 
wavelet (Biorthogonal, Coiflets, Daubechies, Fejer-
Korovkin, Haar, Morlet, Symlets).

• Decomposition level determines how much the signal 
will be decomposed before thresholding, and which com-
ponent of the signal will be reconstructed.

• Threshold serves as a minimum value for thresholding.

Mohamed et al. [68] focused on the prediction of broken 
rotor bars in three-phase IMs. The authors used ANFIS as 
the main part of their diagnostic system. First, the WT was 
applied, which was used for signal feature extraction. Then 
the ANFIS was used to identify the broken rotor bars. The 
team performed the experiments on data created using ele-
ment vectors, which are also used in the training and iden-
tification process of the ANFIS method. The results of their 
experiment showed that this approach of predictive IM diag-
nosis is very effective.

Kumar and Raj [56] focused on the detection of broken 
rotor bars by using DWT. The DWT was used for signal 
decomposition and then the energy eigen value was used to 
determine the severity of the fault on the signal, which was 
obtained by MCSA technique. The experiment was carried 
out in MATLAB software and the authors concluded that 
their approach achieved excellent performance.

Belkacemi et al. [13] used DWT to investigate healthy 
and improper bearing lubrication signals. Bearing fault 
analysis is a very difficult task, since the vibration signals 
are non-stationary. Therefore, the DWT was used to analyze 
non-stationary signals in both frequency and time domain to 
pinpoint a bearing with improper lubrication. The 0.78 kW 
three-phase IM in combination with both poorly lubricated 
and correctly lubricated bearing rotating at 1500 revolutions 
per minute was used during the experiment. The results 
obtained by MATLAB software showed that the vibration 
signals of a healthy bearing with sufficient lubrication have 
peaks with smaller amplitude in comparison to the incor-
rectly lubricated bearings. It was also observed that periodic 
peaks were present in the incorrectly lubricated bearing.

5.6  Empirical Mode Decomposition

The EMD method is used to process nonlinear and non-
stationary signals. It is used to extract important engine 
failure information by distributing the signal into intrinsic 
mode functions (IMF). The high frequency components are 
IMF, while the low frequency components are called resi-
dues. The EMD method ranks the IMF by frequency from 
highest to lowest. In order for this method to work properly, 
two prerequisites must be met. The first is that the number 
of extremes and the number of zero passes must be equal to 
or different by one value in the whole recording. The sec-
ond is that the diameter between the envelope, defined by 
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the maximum and minimum, is almost zero. The process of 
decomposing a signal into an IMF function is called sifting. 
The disadvantage of this method is the need to choose IMF, 
which will be used for further incorporation, which might 
be challenging [99, 105, 111].

Configurable parameters:

• Number of sifting iterations determines how many itera-
tions of the algorithm will be executed.

• Number of IMFs determines how many IMF will be 
extracted.

• Number of extrema in the residual signal
• Signal to residual energy ratio indicates the maximum 

energy ratio.

Zair et al. [111] focused on monitoring the state of IM (espe-
cially on the detection of rolling bearing failures) using the 
fuzzy entropy (combination of fuzzy function and sample 
entropy to obtaion fuzzy entropy) of empirical mode decom-
position (EMD). The team used PCA to improve the classifi-
cation and reduce the dimensions. Finally, the authors used 
the SOM neural network for automatic diagnostics. EMD 
managed to isolate the input vibration signal into several 
IMFs, which were analyzed, and the engine failure informa-
tion was obtained from each. In addition, fuzzy entropy was 
used to find irregularities in each IMF and to create vectors 
that then enter the PCA. The PCA method aims to reduce 
the number of vector dimensions. Vectors with reduced 
dimension finally enter the SOM, where automatic diagnosis 
based on classification is performed. The research was based 
around data obtained from the Bearing Data Center of Case 
Western Reserve University. The results showed that the pro-
posed predictive maintenance approach allows to determine 
the degradation of rolling bearing and to estimate different 
types of bearing failures with very high sensitivity.

Valtierra-Rodriguez et  al. in 2019  [99] compared an 
improved version of the EMD method called Complete 
Ensemble EMD (CEEMD) with EMD and Ensemble EMD 
(EEMD). The authors implemented EMD, EEMD and 
CEEMD on FPHA in order to create a complete online 
monitoring system. 80 real current records were used for 
testing. CEEMD accuracy achieved the best results with an 
overall average efficiency of 96%.

5.7  Singular Value Decomposition

The SVD method belongs to a group of methods collec-
tively called Blind Source Separation (BSS) methods, which 
are based on the search for unknown source signals from 
a mixture of statistically independent signals. In addition 
to the useful signal, the source signals also include noise. 
The SVD method is based on second-order statistics. It is 
a spatial filtration technique and decomposition method. 

The SVD method is controlled by data creating the required 
basic functions from the data itself by maximizing several 
statistical quantities of the signal distribution. This method 
is based on the matrix transformation of one vector space 
into another and is computationally intensive [46, 66, 107].

There are no configurable parameters for this method. 
SVD calculates the U, S and V matrices from the input 
signal.

Xing et al.  [107] focused on condition monitoring of 
gearbox using intrinsic time-scale decomposition, SVD and 
SVM. The team used the intrinsic time-scale decomposi-
tion method to decompose the nonlinear and non-stationary 
vibration signal into several proper rotation components. 
The SVD method was subsequently used to estimate the 
singular value vectors of the proper rotation components, in 
order to improve the extraction of elements under changing 
conditions. SVM was used to subsequent fault classifica-
tion. The gear vibration data obtained by rotating machinery 
vibration analysis was used for the experiments. The pre-
sented results showed that the proposed approach is accurate 
and effective. In addition, the research proved that the com-
bination of intrinsic time-scale decomposition and SVD is 
much more accurate than the EMD or DWT. The team also 
confirmed that the SVM classifier was chosen appropriately 
since it achieves better results than the K-nearest neighbors 
and Back propagation classifier. The authors discussed that 
their proposed approach makes it possible to, under spe-
cific conditions, accurately identify different types of IM 
disorders.

Islam et al. [46] used the Gabor filter and SVD to deter-
mine IM failure. The team used one-dimensional vibration 
signals, which were converted into two-dimensional ones. 
Subsequently, a Gabor filter was used to extract the fil-
tered image with distinctive texture information. The SVD 
method was used to decompose the obtained filtered image 
to select information about the most prominent properties by 
eliminating trivial singular values. The result was subjected 
to SVM classification. A test rig developed at Pukyong 
National University was used for experiments. The team 
prepared seven different fault signals and one completely 
healthy IM signals. The determination of true positive values 
and the subsequent calculation of accuracy was used as an 
evaluation parameter. The proposed approach achieved an 
average accuracy of 99.86%, thus surpassing other conven-
tional approaches of IM disorder detection.

5.8  Principal Component Analysis

Principal component analysis also belongs into the BSS 
group and is based on the second-order statistics. The PCA 
method is derived from the equation of the SVD method and 
is used to reduce the number of dimensions. The advantage 
of this method is that it loses an insignificant amount of 
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information during the solution of the presented statistical 
problem. The PCA method can be used to search for a linear 
combination to separate signals from sources that are sta-
tistically independent. This is done by specifying the data 
using a new coordinate system. This operation is bidirec-
tional and no information is lost during transmissions from 
one state to the other one [5, 7, 92, 105].

Configurable parameter:

• Number of components to be extracted from the input 
signals (more output components than input signals can-
not be extracted).

Stief et al. [92] used the PCA method to extract critical infor-
mation needed to determine the electrical and mechanical 
faults in IM. The authors discuss that it is very advantageous 
to use data from multiple sensors, since they can be used to 
diagnose a larger number of faults. The team managed to 
improve detection of PCA method by using the two-stage 
Bayesian method together with PCA. For the experiments, 
they used 4 microflown signals, 3 microphone signals, 2 cur-
rent signals, 4 vibration signals, and 3 voltage signals. The 
results were compared to the single-stage and feature-based 
Bayesian methods. The proposed approach provided better 
functionality and results.

Arabaci and Mohamed [7] used PCA method for detec-
tion and classification of broken rotor bars. The team 
focused on the removal of high-frequency components and 
the subsequent amplification of the measured single-phase 
current. First, the FFT was used and then the PCA method 
was applied to extract the desired signal. The estimated sig-
nal was eventually classified by SVM. The experimental 
part reached an accuracy of 97.9%. In addition, not a single 
falsely detected disorder was encountered. The team dis-
cussed that the PCA method did not achieve a better results, 
when it used higher number of major components to deter-
mine the IM state.

Abullateef et al. [3] used the ANFIS together with the 
PCA to extract the necessary information from vibration 
signals. The PCA method was used for data feature extrac-
tion. Then the ANFIS was applied to identify the disorder. 
The study focused on testing of different types of member-
ship functions and number of epochs. Based on the pre-
sented results, the triangular function in combination with 
10 epochs reached the best results, with accuracy over 99%. 
The presented approach was useful to diagnose faults and 
classify stator faults of IMs.

5.9  Independent Component Analysis

Independent component analysis is another method from 
BSS group. Unlike the SVD and PCA, the ICA is a fre-
quently used method based on higher order statistics. It is 

especially used in the field of biological signal processing. 
However, in case of IM condition monitoring, it appeared 
very scarcely in publications. The ICA method includes its 
own preprocessing based on data centering and whitening. 
There are a large number of algorithms based on the ICA 
method—the fastICA is the most prominent representa-
tive [41, 104].

Configurable parameters:

• Type of ICA determines which modification of the ICA 
algorithm is used (algorithm for multiple unknown sig-
nals extraction, equivariant robust ICA algorithm, Fas-
tICA algorithm, flexible ICA algorithm, logistic info-
max ICA algorithm, joint approximate diagonalization 
of eigenmatrices, kernel ICA algorithm, robust accurate 
direct ICA algorithm, robust ICA algorithm, simultane-
ous blind signal extraction using cumulants, second-
order blind identification, etc.).

• Number of components to be extracted from the input 
signals (more output components than input signals can-
not be extracted).

• Number of iterations determines how many iterations of 
the algorithm will be executed.

• Convergence criterion is used to stop calculation of ICA 
algorithm when lower value then criterion is reached.

Widodo et al. [104] presented a solution based on the use of 
fastICA for signal processing and subsequent deployment 
of SVM for detection and diagnosis of IM failures. Differ-
ent scenarios were used during experiments, with various 
vibration signals and stator current signals. Six 0.5 kW IM 
were used (one was healthy and used as a benchmark for 
comparison of faulty conditions) to create a dataset. The 
experiment consisted of the following faults: broken rotor 
bars, air gaps, bearing failure, rotor unbalance, eccentric-
ity and phase unbalance. In addition, the PCA was used as 
well and based on the comparison with fastICA, the fastICA 
algorithm worked more efficiently. The authors concluded 
that the combination of fastICA and SVM can be used as a 
promising alternative for the diagnosis of future intelligent 
failures.

Garcia-Bracamonte et al. [41] used the fastICA algo-
rithm to detect broken rotor bar in the input current signals 
in one of the three IM phases. Prior to the fastICA applica-
tion, the FFT was applied to the input signals. Based on 
the presented research, the standard deviation of the sig-
nals obtained by the fastICA method shows significant dif-
ferences between damaged and healthy motors. When the 
region of interest was divided into 1D, 2D and 3D vectors, 
the feature vector extraction was significantly improved. 
The team performed 100 measurements (50 for damaged 
and 50 for healthy motors) and the evaluation was based on 
the determination of false positive rate, true positive rate, 
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classification-precision and classification-accuracy. The 
authors concluded that increase of dimensionality of the cor-
responding feature vectors leads into major improvements in 
the classification rate.

5.10  Spectral Kurtosis

The biggest advantage of the SK method, when compared to 
conventional approaches is that it can distinguish between 
crack and pitting fault. Furthermore, this method is often 
used to predict initial gearbox failures. SK is based on 
fourth-order spectral analysis, which is focused on the detec-
tion and characterization of transients in the signal. The SK 
method focuses on a transient created as a result of a tooth 
crack fault. Furthermore, this method is based on maximiz-
ing the spectral sharpness, which is higher the greater the 
severity of the fault. This method is often widely used as a 
preprocessing solution for other methods based on artificial 
intelligence, as it can locate the dominant feature set from 
the input signals [55, 62, 69, 97, 98, 101].

Configurable parameter:

• Window length determines the size of the window.
• Maximum kurtogram level drives number of cases to 

compute.

Mohamed et al.  [69] focused on the detection of initial 
gear tooth defects using a new technique based on MCSA. 
The presented approach is based on the SK method and is 
referred to as a fast-currogram. It also uses the SOM neu-
ral network. The main advantage is that it can distinguish 
between pitting and a crack of gear tooth. This feature is 
not offered by conventional methods. Presented claims were 
backed up by simulations on a dynamic model of an elec-
tromechanical system, that worked in three modes: healthy 
mode, gear crack tooth mode and gear pitting tooth mode. 
Experimental part used simulated signals, which were ana-
lyzed by fast-currogram and SOM. In the end, an automatic 
diagnostic system was designed. According to the team, the 
presented method achieved good results and is able to auto-
matically predict pitting and a crack of gear tooth.

Li et al. [62] used the SK method to detect the initial 
errors and gearbox failures. The team modified this method 
by using hidden Markov models and local mean decom-
position. First, the signal was preprocessed by local mean 
decomposition, achieving the decomposition of multicompo-
nent signals into one-component ones. Then, the SK method 
was used to identify the component with highest value of 
kurtosis. This component already contains certain charac-
teristics of the initial failures of the gearboxes. Finally, the 
hidden Markov models were used for training and fault diag-
nosis. Experimental part was tested on the MFD310 gear-
box, and the preliminary results showed that the presented 

approach effectively identifies the initial failure characteris-
tics of gearboxes and is even capable of distinguishing dif-
ferent degrees of failure.

5.11  Park’s Vector Approach

Park’s vector approach is a very simple and reliable method 
that transforms a three-phase stator current into two orthogo-
nal phases. This leads to a reduction in the number of equa-
tions and mutual inductances. Park’s vector forms a cen-
tered circle in which any disturbance or abnormality is easily 
detected, since the deviations of the current Park’s vectors 
can be easily observed. Any significant changes leads into 
change of the shape of Park’s current vector, giving it an 
elliptical shape. This method is energy invariant, which 
means that the electrical energy calculated using the original 
and transformed values will be the same. Furthermore, the 
PVA method highlights the amplitude of components that 
shows a certain defect [8, 27, 45, 85].

There are no configurable parameters for this method.
Sharma et al. [85] state that the MCSA method is the 

most reliable and at the same time the most used technique 
for condition monitoring. For the signal processing, the team 
used an innovative PVA method for detection of inter-turn 
short faults in a squirrel cage IM, due to the sensing of cur-
rent on all three individual phases. The experiments backed 
up the claimed conclusions and showed that the approach 
can be used for both prediction and detection of IM failures. 
In addition, the PVA was able to measure the severity of 
the failure.

Irfan et al. [45] focused on a development of a system for 
non-invasive monitoring and diagnostics of bearing faults. 
Their main goal was to enable the segregation of localized 
and distributed faults in the bearings. A test device consist-
ing of available components, three-phase IM, tachometer, 
Hall effect-type current transducer and measuring card from 
National Instruments was developed for experimental part. 
The PVA method achieved excellent results and managed to 
analyze the bearing localized and distributed defects in IM 
at different loads. In conclusion, the authors mentioned that 
the proposed PVA method could lead to increased reliability 
and accuracy of methods used nowadays for online detection 
and diagnostics, thus improving the predictive maintenance 
capabilities.

5.12  Kalman Filter

KF is a robust method with a good ability to estimate state 
variables of a dynamic system. KF based filtration is only 
carried out in the time domain and it does not require a con-
version to the frequency domain. It is a prediction algorithm 
that tries to predict the course of the signal from previously 
obtained data. It uses one or more state variables to estimate 
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its own non-measurable variables. When the system state-
space equations are functions of the system parameters, it is 
possible to directly estimate them using KF. The estimation 
process is performed by input and output signals and a state 
model of the system. The elements of covariance matrices 
serve as parameters to influence the convergence of the KF 
algorithm. There are many modified versions of KF such as 
extended KF, unscented KF, switching KF and others [11, 
28, 78].

Configurable parameter:

• Filter length or also the filter order.

Cui et al. [28] introduced a new KF-based algorithm called 
switching unscented KF. The team used the proposed 
method for conditional monitoring of IM, especially to esti-
mate the remaining service life of the bearing. The bearing 
data from intelligent system maintenance center of Univer-
sity of Cincinnati was used for experiments (vibration sig-
nals), while the root mean square calculation was used for 
evaluation. The team compared the proposed approach with 
switching KF. Based on their research, the proposed method 
is suitable for predicting the remaining service life of the 
bearing, while also achieving better results than switch-
ing KF. Interestingly, the presented approach shows a huge 
decrease in relative accuracy at near failure moments, which 
were caused by strong bearings vibrations during approach-
ing failure states.

Bagheri et al. [11] used KF to detect degrees of the static, 
dynamic and mixed eccentricity faults of IMs. Different lev-
els of eccentricities simulated using an 11 kW three-phase 
IM were used for experiments (stator current and voltage 
signals). The results clearly showed that the KF has a high 
ability to estimate the severity of fault components and 
shows effective performance for all mentioned types of 
eccentricities.

6  Discussion

An important diagnostic goal is to identify the cycle of 
causes and their consequences, which cannot be estimated 
by real-time engine monitoring. Research should move 
towards the creation of an online diagnostic system, which 
is capable to shut down IM in early phase of a detected fault, 
therefore avoiding complete engine failures [14]. However, 
engine shutdown should only be triggered if the detected 
fault leads to immediate damage. If the fault detected at an 
early stage is not critical, it is more appropriate to notify 
the operator (e.g. by an alarm). In case of larger IMs (e.g., 
high voltage IMs), the thermal protection of the rotor, and 
especially the early diagnosis of rotor-related faults, requires 

special monitoring. It is very important to monitor the tem-
perature conditions during the start-up sequences of these 
IMs.

A testbed for measuring electrical and non-electrical 
quantities of three-phase IMs with squirrel-cage was devel-
oped at Technical University of Ostrava, see Fig. 7. Selected 
fault detection methods presented by this article will be fur-
ther tested on this developed system. This study is directly 
related to the testbed, since it serves as an overview of meth-
ods used to detect various electrical and mechanical fail-
ures of IMs. These methods will be still used for predictive 
engine maintenance. In order to measure the parameters of 
the motor even under load, the testbed contains an electro-
magnetic brake in the form of a DC motor, which serve as 
a generator. Using the current drawn from the DC motor 
connected as a generator, it is possible to change the load 
of the three-phase IM. It is therefore possible to detect the 
manifestations of faults at different motor loads. A set of 
damaged bearings is also available— further test of dam-
aged IMs up to 3 kW is planned in cooperation with local 
industrial partner. Testbed is currently capable of measuring 
vibration, stator currents (for MCSA techniques), stator volt-
ages and stator coil temperatures.

The testbed was designed primarily for the measurement, 
processing, and analysis of vibration signals. Vibration sig-
nals are currently becoming frequently studied as the MCSA 
techniques have been shown to be less effective in estimating 
the low-energy spectrum especially in the case of the noisy 
environment [45]. For this reason, the testbed is designed for 
the environment with vibration signals and to test the ideal 
advanced signal processing method for the analysis of low-
energy vibrations, which are for example caused by surface 
roughness defects of bearings.

Based on the presented research articles from other 
teams, several tests of various importance were designed 
for further testing of developed methods. Among them are:

Fig. 7  Testbed developed at Technical University of Ostrava
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• During a stator fault, the current fluctuates by a few 
percent relative to the original stator current, and 
operation is limited to a few seconds. Conversely, in 
the event of a rotor failure, the current in the adjacent 
rods increases by up to 50% of the rated current, but 
the operation of the motor rotor is not limited. This 
means that accurate detection of rotor faults can lead 
to a complete diagnostic process, but accurate detection 
of stator faults can only lead to an intelligent protection 
system [14].

• It also seems very important to monitor under voltage 
unbalance conditions. Long term operation in such con-
ditions can accelerate the degradation of IM parts and 
in general its lifespan due to electrical and mechanical 
wear. The main reason is the imbalance of stator cur-
rents, which abnormally increase the winding tempera-
ture. Nowadays, many research teams are focused on 
deployment of cheap, efficient and reliable piezoelectric 
sensors, used to acquire acoustic emission signals. Sub-
sequently, it is possible to simulate balanced voltages 
and under voltage unbalance conditions and examine the 
effectiveness of the proposed methods. The main goal 
of this sub-area is to find a suitable low-cost solution 
as an alternative to industrial applications, since when a 
suitable advanced signal processing method is used, it is 
possible to determine not only under voltage unbalance 
but also its level and affected phase [22].

• It is also possible to use the designed testbed to analyze 
the degree of bearing lubrication. It seems advantageous 
to perform an experiment with a properly lubricated 
bearing with a certain RPM speed. Subsequently, the 
same experiment would be carried out with improper 
bearing lubrication. Certain advanced signal processing 
methods should be able to analyze the recorded signals. 
FFT, STFT or DWT can be all used to examine the sig-
nals in frequency domain. Studies show that signals with 
improper bearing lubrication have peaks in the frequency 
domain, that are periodic and have a larger amplitude 
in comparison to healthy and properly lubricated bear-
ings. It would be very interesting to focus on the effect 
of wavelet type and signal decomposition levels using 
DWT. In case of STFT, it would be desirable to try wider 
windows sizes [13].

• The testbed can be also used to repeatedly measure 
starting currents, which can be used for motor condition 
analysis. Starting currents are measured at higher motor 
slip and have higher signal-to-noise ratio, which offers 
better input data for the desired method. However, there 
is also a problem with the engine start-up time, which 
tends to be a short interval. This can make it difficult to 
apply condition monitoring methods. Another obstacle 
may be the power limitation of the tested engine, since 
the testbed offers only a 3 kW IM [65].

• Another possibility of experimenting with the developed 
testbed is to focus on two broken rotor bars, which are 
adjacent to each other, and which are in different oppo-
site positions. According to Zamudio-Ramirez et al. in 
2020 [112] it is much more difficult to determine the fail-
ure of an IM, when the damaged bars were not adjacent 
to each other.

In order to create datasets that serve as references for healthy 
motors, long-term measurements of electrical and non-elec-
trical variables are carried out on a sample of motors before 
they are damaged. It will then be possible to compare these 
datasets and detect inconsistencies in the mechanical parts of 
the testbed. If any significant differences are not detected at 
an early stage of the measurements, additional non-relevant 
error signals could be introduced which might influence the 
detection of the intended faults. However, these error signals 
can also be considered as their own form of fault and can be 
included in the datasets. Their manifestations will be quite 
specific due to the used configuration. The shape itself, but 
also the angle of rotation (when connecting the shaft) of the 
flexible couplings will be affected by axial misalignment. 
The connected electromagnetic brake (DC motor) will also 
manifest itself in the measured datasets by its specific fre-
quency spectrum given by its design. For this reason it will 
be advantageous to create multiple datasets:

• a separate unloaded engine,
• a motor with an unloaded DC motor connected,
• a motor with a DC motor connected to different load 

levels.

It will be therefore possible to observe the effects on the 
measured signals caused by the braking system itself and 
eliminate its manifestations in the measured datasets. The 
next step of dataset creation will focus on measurements on 
engines that have some form of the proposed failure types.

7  Conclusion

The presented article summarized a number of condi-
tional monitoring techniques, classification techniques and 
advanced signal processing techniques, along with their 
advantages and disadvantages. These methods will be veri-
fied on our own testbed that is described in the Discussion 
section of the article. Our future research will be primarily 
focused on real measurements from the designed testbed 
and developed sensors. Subsequent signal processing will 
be performed using selected methods, that are appropriate 
for the desired use case. The use of WT, EMD, PCA and 
PVA seems to be the most promising. The classification of 
extracted signals and critical IM status information will then 
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be performed using various classifiers—mainly by the SVM 
and SOM. DNN-based classifiers are also a very interesting 
topic, since they often outperform conventional classifica-
tion methods, when working with larger data sets.
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