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Abstract: 
A new method for the fault diagnosis of a broken rotor bar and interturn short circuits in induction machines 

(IMs) is presented. The method is based on the analysis of the three-phase stator current envelopes of IMs using 

reconstructed phase space transforms. The signatures of each type of fault are created from the three-phase 

current envelope of each fault. The resulting fault signatures for the new so-called ldquounseen signalsrdquo 

are classified using Gaussian mixture models and a Bayesian maximum likelihood classifier. The presented 

method yields a high degree of accuracy in fault identification as evidenced by the given experimental results, 

which validate this method. 

SECTION I. Introduction 
Induction machines (IMs) are complex electromechanical devices that are utilized in most industrial applications 

for the conversion of power from electrical to mechanical form. The IMs can be energized from constant-

frequency sinusoidal power supplies or from adjustable-speed ac drives. However, IMs are susceptible to many 

types of fault, especially when supplied by the ac drives. This is due to the extra voltage stresses on the stator 

windings, the resulting induced bearing currents, and the high-frequency stator current components caused by 

such drives. In addition, motor overvoltages can occur because of the length of cable connections between a 

motor and an ac drive. This last effect is caused by the reflected wave transient voltages [1]. For industrial 

processes, the IM fault monitoring and diagnosis is important to identify motor failures before they become 

catastrophic and to prevent severe damage to induction motors. Undetected minor motor faults may cascade 

into motor failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost 

production time, maintenance costs, and wasted raw materials. According to published surveys, IM failures 

include bearing failures (which are responsible for 40%–50% of all faults), interturn short circuits in stator 

windings (which represent 30%–40% of the reported faults), and broken rotor bars and end ring faults (which 

represent 5%–10% of the IM faults) [2]. This paper is centered on electrically detectable faults that occur in the 

stator windings and rotor cage, namely interturn stator shorts and broken rotor bars. 

Significant efforts have been dedicated to the IM fault diagnosis during the last two decades, and many 

techniques have been proposed [3]–

[4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24]. Several of these fault detection 

and identification techniques are based on the stator current fast Fourier transform spectral signature analysis, 

which uses the power spectrum of the stator current [7], [8], [22], [25]. Other techniques include vibration 

analysis, acoustic noise measurement, torque profile analysis, temperature analysis, and magnetic field 

analysis [9]–[10][11], [23]. Recently, new techniques based on artificial intelligence (AI) approaches have been 

introduced using concepts such as fuzzy logic [12]–[13][14], [20], [21], [24], genetic algorithms [11], [15], neural 

network [16], [17], and Bayesian classifiers [18], [26]. Additionally, a method that uses the motor internal 

physical condition based on a so-called pendulous oscillation of the rotor magnetic field space vector orientation 

has been introduced for motor fault classification [5], [19]. 

This paper presents a method that is based on the analysis of the envelope of the three-phase stator current for 

broken rotor bars and interturn stator shorts. It was found in this investigation that the three-phase current 

envelope is a powerful feature for motor fault classification. The envelope signal is extracted from the 

experimentally acquired stator current signals and is used in conjunction with AI techniques based on Gaussian 

mixture models (GMMs) and reconstructed phase space (RPSs) to identify motor faults. This method creates 

signatures for each type of fault based on the three-phase stator current envelope. A signature for each newly 

acquired input set of three-phase stator currents, which are called “unseen signals,” must be generated and 

compared with all the signatures that represent each type of fault learned from the previously acquired 

database. The conditional likelihoods between this new signature and the previously learned signatures for each 



type of fault are calculated. Thus, a classifier identifies the previously learned signatures with a maximum 

likelihood, which now classifies the fault of the so-called “unseen signal” undergoing the process of 

classification. In this paper, the classification process yielded high accuracy using just a half second of the 

current signal for a three-phase 460-V 60-Hz six-pole 5-hp squirrel-cage induction motor, which is roughly the 

time equivalent of a third of a slip cycle under normal loads. This will be shown and supported by the 

experimental results presented in Section III. Again, the presented method is focused on two types of motor 

faults. Specifically, the first type is the broken rotor bar, and the second one is the interturn short circuit in 

stator windings. 

In addition, the presented method not only classifies an IM as healthy or faulty but also identifies the severity of 

the fault through the identification of the number of broken rotor bars or the number (or percentage) of short-

circuited turns in the stator windings. This constitutes a powerful means of monitoring motor fault severities, 

which could possibly predict the time of onset of the complete failure of a motor and thus could help prevent 

unexpected shutdowns of industrial processes. 

The remainder of this paper is organized as follows: Section II details the method, as well as analyzes and 

discusses the procedure to obtain the current envelope, and discuses the organization of the data 

sets. Section III presents the experimental results and analysis for broken bars and interturn short circuits in 

stator windings. This is followed by an overall discussion of results and conclusions. 

SECTION II. Background 
This section presents the induction motor fault diagnosis method and explains the procedure to obtain the 

three-phase stator current envelope signals for broken rotor bars and interturn short-circuit cases. Additionally, 

a presentation of the approach taken in organizing the data set is given. 

A. Methodology 
The fault classification method is based on machine learning techniques [27]. The general concept consists of 

training the classification algorithm using data sampled from the experimentally acquired three-phase stator 

currents. These data include different motor operating conditions, including faulty and healthy motor 

operations. Thus, from each motor operating condition, a signature is generated during the training stage of this 

method. Additionally, the resulting trained algorithm is tested on the so-called “unseen signals,” which 

constitute the testing set. The accuracy of the motor fault classifier is defined in proportionality to the 

correctness of the classification of each faulty and healthy case to be identified in the testing set. The training 

signatures must properly represent the features of each motor operating condition to result in maximum fault 

diagnosis accuracy. 

The process of algorithm training and motor fault classification is based on a previous work detailed in [26], in 

which one can also find the pseudocode of the approach. In the interest of continuity, essentially, the process 

consists of constructing a GMM [26] from an RPS [26], [28], [29], where the resulting models are the signatures 

of the motor operating condition. This RPS-based approach allows for the reconstruction of an IM's state 

structure [30], [31]. The resulting fault signatures for the “unseen signals” are classified using a Bayesian 

maximum likelihood classifier [27]. This process has three steps. The first step is data analysis, where the input 

signals from the training set are normalized to zero mean and then scaled to unit standard deviation. Moreover, 

two parameters are calculated to construct the RPS, i.e., the time lag and the dimension. The time lag is 

calculated using the first minimum of the automutual information function, and the dimension is defined using 

the global false nearest-neighbor technique [26], [28], [29]. The second step is to learn the GMM of the RPS. The 

time lag and the dimension are used to build the RPS for each class of motor operating conditions. The GMM is 

learned with M mixtures for each class of motor operating conditions. The number of mixtures is related to the 



complexity of the models. A higher number of mixtures implies a more complex model. Ideally, a more complex 

model provides a higher accuracy in signal classification. However, practically, there is an optimal number of 

mixtures for maximum accuracy, and past that number, the accuracy tends to be lower. Moreover, the 

parameters of the GMM (centers and covariances) are estimated by an Expectation Maximization 

algorithm [26], [32]. A GMM of the RPS with dimension of 2, time lag of 9, and eight mixtures is shown in Fig. 1. 

Moreover, two parameters of the GMM (centers and covariances) are also shown in Fig. 1. The last step is that 

of motor fault classification. The signature for an “unseen signal” is classified using the previously trained 

GMMs. The RPS of the “unseen signal” is constructed with the same dimension and time lag of the previously 

learned signatures. The Bayesian maximum likelihood classifier [27] computes the conditional likelihood of the 

signatures for this “unseen signal” under each signature (GMM) previously learned using the training set. The 

learned signature with maximum likelihood defines the particular class of motor operating condition (faulty or 

healthy). The algorithm of this overall method is depicted in the functional flow chart of Fig. 2. In this figure, the 

results obtained in the training stage (a) are followed by the fault classification stage (b) of the algorithm. 

 
Fig. 1. GMM of the three-phase stator current envelope of a faulty IM RPS with eight mixtures, dimension of 2, 

and time lag of 9. 

 
Fig. 2. Algorithm of the presented method. (a) Training stage. (b) Testing or classification stage. 
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The training and testing sets are generated from the envelopes of the three-phase stator current of an induction 

motor for cases involving healthy and faulty operating conditions, such as broken rotor bars and interturn short 

circuits in the stator windings. The training and testing sets are further discussed in the next sections. 

B. Three-Phase Stator Current Envelope 
The objective of this section is to explain the effect of broken rotor bars and interturn short circuits on the 

three-phase stator currents of IMs. The broken bars produce a phenomenon called envelope that is cyclically 

repeated at a rate equal to twice the slip frequency (2𝑠𝑓), and the interturn short circuits cause a profile 

modification on the three-phase stator current leading to an envelope cyclically repeated at a rate equal to the 

power frequency (𝑓). The procedure to obtain the three-phase stator current envelope is discussed next. 

A healthy rotor has a rotating magnetic field nature that possesses a perfect periodic profile over a two-pole 

pitch, which leads to a circular trace of the magnetic field's space vector. However, once a rotor develops a 

single broken bar, the aforementioned periodical profile is lost over the two pole pitches of the rotor containing 

the broken bar due to the fact that no induced current can flow in the broken bar [5], [19]. Consequently, the 

magnetic field's neutral plane orientation deviates from the position for the healthy case, which results in an 

angular shifting in the rotor magnetomotive force waveform. This angular shifting is a function of the number of 

broken bars and the geometric distribution of the broken bars around the rotor, and varies with time in a cyclical 

manner, as explained in [5] and [19]. The distortion of the rotor's magnetic field orientation and the resulting 

local saturation in the rotor laminations around the region of the broken bars lead to a quasi-elliptical trace of 

the magnetic field's space vector and consequently modulate in a sequential manner the three-phase stator 

current. The modulation of the three-phase stator current is the so-called envelope. In this paper, this envelope 

is the feature used for induction motor fault diagnosis. The envelope resulting from the modulation of the three-

phase stator current for a period equivalent to one slip cycle for a faulty 5-hp IM with four broken bars is shown 

in the experimentally obtained results plotted in Fig. 3. The laboratory test setup used to obtain these data is 

shown in Fig. 4. 

 
Fig. 3. One slip cycle of the three-phase stator current envelope for a three-phase 460-V 60-Hz six-pole 5-hp 

squirrel-cage induction motor with four broken bars under rated load. 
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Fig. 4. Laboratory test setup for the 5-hp induction motor and data acquisition. 

On the other hand, an interturn short circuit principally affects only the stator current of the faulty phase in both 

profile and peak value. The other stator phase currents suffer smaller interferences. Thus, the stator current 

profile of each phase is not equally affected by the fault. This three-phase stator current profile modulation is 

also referred to here as the so-called envelope. Again, the frequency of repetition of this envelope is the power 

frequency 𝑓 and not a function of the slip frequency 𝑠𝑓, which is associated with broken bar faults. The resulting 

envelope of the three-phase stator current for the same 5-hp IM with four interturn short circuits without 

broken bars experimentally obtained under rated load is shown in Fig. 5. 

 
Fig. 5. Three-phase stator current envelope for a three-phase 460-V 60-Hz six-pole 5-hp squirrel-cage induction 

motor with four interturn short circuits under rated load. 

The procedures to obtain the three-phase stator current envelopes for the broken bar and interturn short-circuit 

cases for learning and classification are identical. This procedure can be summarized in the following steps: 1) 

low-pass filter (LPF); 2) envelope identification; 3) interpolation; and 4) normalization, see the functional block 

diagram in Fig. 6. The first step is an LPF, which is essential for the IMs supplied by the ac drives. The stator 

current of an IM supplied by an ac drive has a high-frequency component due to the carrier frequency 

responsible for the pulse width modulation (PWM) of the ac drive. Typically, the stator current frequency is 

variable from 0 to 60 Hz, and the carrier frequency is a fixed value in the range from 4 to 16 kHz. This PWM 

component is eliminated from the ac current signal by a sixth-order low-pass elliptic digital filter with a cutoff 

frequency of 2 kHz, a passband of 3 dB, and a stopband of 50 dB [33]. The cutoff frequency was chosen to be 2 

kHz because the carrier frequency of the ac drive is at least 4 kHz. Accordingly, the envelope is isolated from the 

three-phase stator currents without any significant PWM component. The second step, which is envelope 

identification, consists of extracting from the three-phase currents only the positive peak of each period in each 

phase. Thus, in 1 s of 60 Hz, the three-phase current signal has 180 positive peaks. In the third step, these few 
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points are interpolated to smoothly represent the dynamic behavior of the three-phase stator current envelope. 

The fourth and last step is the z-score normalization that centers the signal at zero mean and scales it to unit 

standard deviation [34]. After accomplishing these four steps, the identified envelope is used to generate the 

training set to learn the GMMs or the testing set to classify these unseen input signals with a maximum 

likelihood Bayes classifier [27]. Again, these steps to isolate the envelope of the three-phase stator currents of a 

given IM supplied by an ac drive can best be visualized by inspection of Fig. 6. The procedure that utilizes only 

three current sensors is easily available and implementable in most industrial applications. In most drives, this 

current information is readily available, and hence, no extra current sensors are needed to implement this 

procedure (algorithm). 

 
Fig. 6. Procedure to isolate the envelope of the three-phase stator current from an IM supplied by an ac drive for 

further motor fault classification. 

C. Time Series Data Sets 
A case-study three-phase 460-V 60-Hz six-pole 5-hp squirrel-cage induction motor supplied by an ac drive 

operating under scalar (open-loop) constant volts-per-hertz control was tested in the laboratory. This motor has 

a cage with 45 bars (i.e., 7 1/2 bars per pole pitch), and it has 240 stator winding turns per phase housed in a 

stator with 36 slots (i.e., six slots per pole and hence two slots per pole per phase). This motor was tested under 

healthy and one to four broken bars of rotor faulty conditions, as well as one to four interturn shorts in one 

phase of the stator windings. Thus, this set of tests yielded nine classes of IM operating conditions. An external 

resistor 𝑟𝑓 of 1 Ω was used to emulate a developing or “incipient” interturn short circuit in the stator windings, 

as depicted in Fig. 7. This resistor also restricts the circulating currents in the shorted portion of the stator 

winding to a safe level to avoid permanent motor winding damages. In these tests, the loop current in the 

shorted turn was not allowed to exceed (in root mean square magnitude) three times the rated line current of 

the motor. 
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Fig. 7. Schematic of the tapped induction motor windings. 

The three-phase stator current was sampled for each class at a 50-kHz sampling frequency using the data 

acquisition board shown in the functional schematic of Fig. 6. Each class has 5 s of signal, which results in 

250 000 data points each. This 5 s of signal was equally divided into ten samples, where each sample is a time 

series. The definition of time series is explained in [26]. Thus, the procedure depicted in Fig. 6 was carried out, 

and the resulting totality of ten time series of each class yielded the training set as well as the testing set using a 

cross-validation technique [27], [35]. Cross validation is a well-known technique used when the data set is not 

large enough to obtain totally independent training and testing sets. The cross validation splits the same data set 

to generate different training and testing sets. The training and test sets were generated by 𝐾-fold cross 

validation with 𝐾 = 10 (see [27] and [35]). 

The experiment carried out for broken bars has five classes (one to four broken bars and the healthy case), and 

for the interturn short circuits, it also has five classes (one to four interturn short circuits and the healthy case). 

However, the last experiment combines all faults plus the healthy case, thus resulting in nine classes. 

Accordingly, the number of samples of the testing set generated using 𝐾-fold cross validation is defined by the 

number of time series per class times the number of classes. These samples of the testing set are distributed 

in 𝐾 -folds. Thus, an experiment with five classes (𝐾 = 10) and ten time series per class has a testing set with 50 

samples distributed in ten folds that are to be classified. 

SECTION III. Experimental Verification of the Presented Method 
The motor current envelopes obtained from the experimentally acquired motor current data represent two 

types of motor faults, i.e., broken rotor bars and interturn short circuits in stator windings. The experiment for 

broken bars was carried out for three different motor loads and for two different ac drive output frequencies, 

which yields two different motor speeds. On the other hand, the experiment for the interturn short circuits in 

stator windings was carried out for three values of motor loads at one ac drive output frequency. Finally, the last 

experiment for broken bars and interturn short circuits yielding nine classes of motor operating conditions was 

carried out for three levels of motor loads also at one ac drive output frequency. All the experimental results 

presented below validate the efficacy of this method. 

The aforementioned case study of the three-phase 5-hp squirrel-cage induction motor with one to four broken 

rotor bar faults was tested in the laboratory. The fault classification results for broken bars with the motor 

running at 60 Hz and three different levels of loads are shown in Table I. The results for each combination of 

mixtures of the fault signatures and levels of load torque shown in Table I were generated using a testing set 

with 50 samples obtained by 10-fold cross-validation. Here, each sample has a duration of 0.5 s of the three-

phase stator current envelopes. Accordingly, the one to four broken rotor bars and the healthy motor case yield 

five classes of motor operating conditions. Again, the motor was tested with three different magnitudes of load 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/4459824/4401123/4401123-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/4459824/4401123/4401123-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/4459824/4401123/4401123-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/41/4459824/4401123/4401123-fig-7-source-large.gif


that correspond to 50%, 75%, and 100% of the rated torque. It should be pointed out that the rated torque is 30 

N⋅m. As given in Table I, the accuracy of the resulting fault classification for a motor load of 50% and 100% of the 

rated torque was 100%, i.e., all 50 unseen input samples of the testing set were correctly classified independent 

of the number of mixtures of the fault signatures. The same level of accuracy was obtained for a motor load of 

75% of the rated torque with 4, 16, and 32 fault signature mixtures. However, a slightly lower fault classification 

accuracy of 98% was obtained and is shown in Table I for the 75% of the rated torque case with eight fault 

signature mixtures, which means that only one of the 50 samples of the testing set was misclassified. 

Additionally, the presented fault classification method not only monitors the faults (thus distinguishing a faulty 

motor from a healthy motor) but also diagnoses the degree of fault severity (thus identifying the number of 

broken bars). Here, the degree of fault severity is proportional to the number of broken bars. Furthermore, the 

presented results were carried out for motor loads over 50% of the rated torque. However, the accuracy of the 

fault classification for motor loads below 50% of the rated torque is slightly lower compared to the accuracies 

obtained for motor loads above 50% of the rated torque. Below 50% of the rated torque, the amplitude and 

profile of the envelopes for any number of broken bars become very similar to the healthy case in which the 

amplitude of the envelope is ideally zero. Thus, when signals with similar envelopes are obtained for a given 

operating condition under healthy and faulty operations, the implication is that there will be difficulties building 

sets of signatures that efficiently represent the motor fault operating conditions for accurate motor fault 

classification. In general, this confirms the well-known fact that it is harder to diagnose a fault when a motor is 

lightly loaded [36]–[37][38]. This is an aspect that is further elucidated in Section IV. 

Table I Accuracy of Fault Classification for an Induction Motor With One to Four Broken Bars at 60 Hz and Three 

Different Motor Loads Based on a Testing Set With 50 Samples 

 Accuracy (%)  
(mean ± standard deviation) 

  

Mixtures Motor load as % of Rated Torque   

 50% 75% 100% 

4 100±0 100±0 100±0 

8 100±0 98±6 100±0 

16 100±0 100±0 100±0 

32 100±0 100±0 100±0 

 

Here, Table II presents the accuracy of the broken bar fault classification for the 5-hp motor at rated torque and 

for two different ac drive output frequencies of 40 and 60 Hz, respectively. The results for 60 Hz are the same as 

previously shown in Table I. The testing set for the results at 40 Hz contains 30 samples instead of 50 samples 

because the original 5 s of the current signals for each class is divided into six samples instead of ten samples, 

which thus yields the three-phase stator current envelope for each sample with a duration of 0.83 s (5 s/six time 

series per class). This higher time sample for the 40-Hz data compared to the 60-Hz data is necessary to have 

samples with approximately the same number of envelope periods for both cases. This time sample of each 

input signal that is to be classified can be associated with the operating motor frequency in order to 

automatically adjust the length of the time sample to be used in the classification. One must bear in mind that 

both the motor frequency and the length of time sample are inversely proportional to each other. An accuracy 

of 97% was obtained and is shown in Table II at 40 Hz for four and eight fault signature mixtures, which means 

that this method resulted in only one misclassification out of 30. Table II includes the results with 90% 

classification accuracy for the 16 fault signature mixtures, which means that this method resulted in three 

misclassifications out of 30. Meanwhile, an accuracy of 77% for 32 fault signature mixtures was achieved, which 

means that this method resulted in seven misclassifications for the testing set with 30 samples. 



Table II Accuracy of Fault Classification for an Induction Motor With One to Four Broken Bars at 40 and 60 Hz 

Based on a Testing Set With 30 Samples. The Test was Carried Out at Rated Load 

 Accuracy (%)  
(mean ± standard deviation) 

 

Mixtures Motor frequency  

 40 Hz 60 Hz 

4 97±10 100±0 

8 97±10 100±0 

16 90±16 100±0 

32 77±16 100±0 

 

The interturn short circuit is the second type of motor fault investigated in this paper. This type of fault has five 

classes, i.e., one to four interturn short circuits and a healthy case. The results of accuracy for the classification 

of the interturn short circuits in the 5-hp motor at 60 Hz and motor loads of 50%, 75%, and 100% of the rated 

torque are shown in Table III. The motor fault classification is highly accurate with a low standard deviation in all 

the cases shown in this table. These results were based on a testing set with 50 samples. Thus, a 98% accuracy of 

classification was achieved, which means that only one misclassification took place. Meanwhile, the case with 

96% classification accuracy represents two misclassifications, and so forth. The different levels of load torque did 

not result in any loss of accuracy for the classification of interturn short circuits. This lack of effect of load level 

on the classification results of the shorted turn faults in comparison to the opposite for the cases with broken 

bars is physically explained in the next section. From Table III, it can be concluded that signatures with 16 

mixtures are sufficient to achieve a reasonably high degree of accuracy. However, models with eight mixtures 

can speed up the learning and classification processes without significant losses in the fault classification 

accuracy. These fault classification results and associated method constitute a significant contribution for motor 

fault classification techniques considering that the interturn short circuits represent 30%–40% of the commonly 

occurring motor faults, with the knowledge that in this method at hand, only the envelopes of the three-phase 

stator currents are needed. 

Table III Accuracy of Fault Classification for an Induction Motor With One to Four Interturn Short Circuits in the 

Stator Windings at 60 Hz and Motor Loads of 50%, 75%, and 100% of the Rated Torque Based on a Testing Set 

With 50 Samples 

 Accuracy (%)  
(mean ± standard deviation) 

  

Mixtures Motor load as % of Rated Torque   

 50% 75% 100% 

4 94±10 94±10 92±14 

8 98±6 96±8 98±6 

16 100±0 96±8 98±6 

32 100±0 96±8 98±6 

 

The last experiment was carried out for one to four broken bars, one to four interturn short circuits, and the 

healthy motor case, which yield nine classes of operating conditions. Thus, these nine classes yielded a testing 

set with 90 samples generated by a 10-fold cross-validation method. The results of the accuracy of classification 

for the nine different motor operating conditions for the aforementioned 5-hp motor at 60 Hz and motor loads 

of 50%, 75%, and 100% of the rated torque are shown in Table IV. The data in this table also show that a more 

accurate classification result was obtained for fault signatures with 32 mixtures for any level of motor load over 



50% of the rated torque, in which case only one of the 90 samples of the testing set was misclassified, which 

yields a 99% classification accuracy. These results for 32 fault signature mixtures can be better observed in the 

so-called “confusion matrix” [35] shown in Table V. The confusion matrix reports the performance of a classifier. 

It is a square matrix with the dimension defined by the number of classes. The sum of components of each row 

must contain the same number of samples of the testing set. Each combination of row 𝑖 and column 𝑗 contains 

the number of samples of the testing set classified as the class of the respective column 𝑗. A confusion matrix 

that represents a perfect classifier is a diagonal matrix. Additionally, Table V demonstrates that only one fault 

was classified as a broken bar fault when it should have been classified as an interturn short circuit. For 

clarification, it should be pointed out that the headings for the confusion matrix in Table V are defined as 

follows: 1B ≡ one broken bar, 2B ≡ two broken bars, 3B ≡ three broken bars, 4B ≡ four broken bars, H ≡

healthy, S1 ≡ one turn short circuited, S2 ≡ two turns short circuited, S3 ≡ three turns short circuited, 

and S4 ≡ four turns short circuited. These results demonstrate the relatively high degree of accuracy of fault 

classification that is associated with the use of the method subject of this paper. 

Table IV Accuracy of Fault Classification for an Induction Motor With One to Four Broken Bars or One to Four 

Interturn Short Circuits in Stator Windings at 60 Hz and Motor Loads of 50%, 75%, and 100% of the Rated Torque 

Based on a Testing Set With 90 Samples 

 Accuracy (%)  
(mean ± standard deviation) 

  

Mixtures Motor load as % of Rated Torque   

 50% 75% 100% 

4 91±7 98±5 98±5 

8 97±5 98±5 99±4 

16 97±5 99±4 99±4 

32 99±4 99±4 99±4 

 

Table V Confusion Matrix for the 99% Classification Accuracy of the Induction Motor With One to Four Broken 

Bars or One to Four Interturn Short Circuits in Stator Windings at 60 Hz and Motor Loads of 50%, 75%, and 100% 

of the Rated Torque Based on a Testing Set of 90 Samples and With 32 Fault Signature Mixtures 

 Classified Faults         

Real Faults 1B 2B 3B 4B H S1 S2 S3 S4 

1B 10 0 0 0 0 0 0 0 0 

2B 0 10 0 0 0 0 0 0 0 

3B 0 0 10 0 0 0 0 0 0 

4B 0 0 0 10 0 0 0 0 0 

H 0 0 0 0 10 0 0 0 0 

S1 1 0 0 0 0 9 0 0 0 

S2 0 0 0 0 0 0 10 0 0 

S3 0 0 0 0 0 0 0 10 0 

S4 0 0 0 0 0 0 0 0 10 

 

SECTION IV. Discussion of Results 
In this paper, a 5-hp induction motor was investigated for the monitoring and diagnosis of broken rotor bars and 

interturn short circuits in stator windings with three different magnitudes of motor loads. The three-phase 

stator current envelope was found here to be a powerful feature of the induction motor for fault classification. 



Each healthy and faulty motor operating condition yielded a signature generated from the three-phase stator 

current envelope using the GMMs of RPS. The conditional probability of a fault signature for any “unseen signal” 

was computed for each given signature previously generated during the training stage. Thus, this “unseen 

signal” was classified using the Bayesian maximum likelihood classifier. 

The three-phase stator current envelope for broken bar faults depends on the number and geometric 

distribution of the broken bars. Two motors with identical ratings and with the same number of broken bars but 

with different geometrical distributions of the broken rotor bars may yield a misclassification of this fault, 

because the signatures are learned for a specific number and distribution of broken bars. Different distributions 

for the same number of broken bars may yield different signatures. Thus, a signature learned for a specific 

number and distribution of broken bars cannot guarantee a correct classification of the same number of broken 

bars for different geometrical distributions. This is an open problem not only for the method presented in this 

paper but also for other techniques that analyze the stator currents [5], [7]. 

The presented method is exclusively based on the analysis of the three-phase stator current envelopes. The 

inputs of the presented method are only the training and testing sets composed from experimentally obtained 

samples of the three-phase stator current envelopes for different motor operating conditions. Thus, there is no 

need for any other information about the induction motor or its various parameters during the training and 

testing stages. Moreover, mathematical models of the IMs, ac drives, or any other mathematical formulation or 

knowledge about the IM are not required. This simplifies the motor fault classification problem because complex 

calculations related to IMs as well as any specific design information about each individual motor for the 

purposes of fault diagnostics are not involved. However, the presented method at this point needs signatures 

built for each different fault at different speeds and torques. This yields many signatures to represent the range 

of all the possible motor operating conditions. Therefore, the number of signatures may be reduced if the 

signatures built for a specific operating condition, for example, rated speed and torque, are scaled for any other 

different operating condition. In this case, the signature generated for the rated conditions must be associated 

with speed and torque in order to scale it for use in any other motor operating condition. The speed can be 

directly obtained from either the ac drive, a speed sensor, or a sensorless speed estimator. The torque can be 

either measured by a torque transducer or calculated through a sensorless torque estimator. Thus, the 

signatures can be automatically redefined for any value of speed and torque of an IM. 

The presented method yielded a high degree of accuracy of motor fault classification even with the IM running 

at different levels of load torque. This statement is best validated in Table IV, which presents the accuracies of 

fault classification for nine different healthy and faulty cases of the 5-hp IM. Moreover, Table IV shows the 

accuracy of motor fault classification for three different levels of load torque and four different numbers of fault 

signature mixtures. Here, the number of mixtures is manually defined through the analysis of the classification 

results. From an investigation of Table IV, it can be concluded that the best number of fault signature mixtures is 

32 because the accuracy remains high at 99% for any level of motor load. However, the speed of the training 

and testing stages of the presented method is directly related to the number of fault signature mixtures. Thus, 

the presented method can always be speeded up (hastened) in real time by using less fault signature mixtures. 

From further examination of Table IV, it can be concluded that an accuracy of over 97% was obtained with the 

eight fault signature mixtures for any level of motor load over 50% of the rated load, which is deemed 

reasonable for general industrial applications. In this case, eight mixtures satisfy the requirement for both a 

reasonable level of fault classification accuracy and required time of the training and testing processes. 

The well-known difficulties normally associated with diagnosing motor faults at light loads [36]–[37][38] were 

also encountered here. It is observed that the accuracy of this diagnostic method deteriorated for motor loads 

under 50% of the rated load values. This is not a new difficulty, and other methods documented in the literature 

suffer from similar difficulties [36]–[37][38]. This can be physically attributed to the fact that under light load, 



the rotor electric circuit approaches the high-impedance no-load condition, in which the effect of any change in 

the cage impedance can be masked due to its weak impact at the stator terminals. Furthermore, from a 

magnetic field point of view, at rated or near rated load, the currents in the bars of a squirrel cage act as a 

magnetic shield to the bulk of the rotor iron core, and hence that core remains relatively unsaturated or lightly 

saturated with a good degree of magnetic circular symmetry (no saliency effects). When bar breakages do occur 

at rated or near rated load conditions, the magnetic shielding effect of the bars is lost at the location of such bar 

breakage with a resulting higher degree of local magnetic saturation appearing at that spot. Hence, the rotor's 

circular magnetic symmetry is lost, and an “apparent magnetic saliency or asymmetry” appears in the rotor. This 

asymmetry rotates at slip speed with respect to the synchronously rotating magnetic field, and this interturn 

gives rise to the envelope appearing to enclose the three-phase current waveforms. Hence, it is easier to 

diagnose such a fault using such an envelope under such substantial motor loads. The phenomenon exploited 

here in this method is muted or weak at light loads and hence arises the difficulty in diagnosis below 50% of 

rated load for the 5-hp case study of this paper. 

Although a short circuit between turns of two phases and a short circuit in turns of all the phases due to 

overload or blocked rotor are possible, an interturn short circuit generally first occurs in just one phase. In this 

case, the stator current envelope of each single phase is not equally modulated. The stator current envelope of 

the healthy phases is slightly affected by the faulty phase, while the envelope of the faulty phase is highly 

modulated. Here, an analysis of the stator current envelope of only one phase instead of the three phases 

cannot be sufficient to correctly diagnose a faulty condition, particularly if this analyzed phase is not the faulty 

phase. This addresses the reason for the use of a three-phase stator current envelope instead of a single-phase 

stator current envelope. Independent of the phase in which turns are short circuited, the three-phase stator 

current envelope associated with the method presented in this paper is sufficient to classify interturn short-

circuit faults. It should be pointed out that difficulties were not encountered in the diagnosis of shorted stator 

turns at light loads because the fault is exclusively a stator circuit phenomenon, which is detectable independent 

of the level of load that as mentioned above largely affects the circuit of the rotor. 

Additionally, the three-phase stator current envelope constitutes an IM feature that is associated with the 

method subject of this paper and not only helps monitor a healthy and faulty condition but also diagnoses the 

number of interturn short circuits in stator windings or the number of broken rotor bars. This diagnostic method 

yields further important information about the motor operating condition, namely the fault severity. Here, the 

fault severity is directly related to the number of broken bars or the number of turns involved in an interturn 

short circuit. 

SECTION V. Conclusion and Future Work 
This paper has presented a motor fault diagnosis method for IMs based on three-phase stator current envelopes 

for broken rotor bars and interturn short circuits in stator windings. Motor fault signatures were generated using 

GMMs of the RPS transforms. The maximum likelihood of the signature generated for an unseen acquired signal 

under the previously learned signatures defines the fault class using the Bayesian maximum likelihood classifier. 

The high degree of accuracy evidenced through the results suggests that the proposed method can constitute a 

powerful tool for induction motor fault diagnosis. Moreover, this method not only monitors the IM identifying 

whether the motor is healthy or faulty but also diagnoses the severity of the fault, i.e., identifying the number of 

broken bars or the number of turns involved in one interturn short circuit. This characteristic is very import to 

prevent irreversible motor damages and unexpected shutdown of industrial processes, and to reduce the 

downtime and cost of production processes. 



Future works will use independent training and testing sets. The training set, in addition to containing actual 

experimentally obtained results, may be augmented by healthy and faulty motor performance data generated 

by commercial finite-elements software (Magsoft) based on finite-element methods, while the testing set would 

be exclusively acquired from an experimental setup or field-acquired data. This would allow the enlargement of 

the nature of classes of faults to be analyzed and diagnosed. 
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