65 research outputs found

    Discovering multiple resource holders in query-incentive networks

    Get PDF
    Session - Content Distribution and Peer-to-Peer NetworksIn this paper, we study the problem of discovering multiple resource holders and how to evaluate a node's satisfaction in query incentive networks. Utilizing an acyclic tree, we show that query propagation has a nature of exponential start, polynomial growth, and eventually becoming a constant. We model the query propagation as an extensive game, obtain nodes' greedy behaviors from Nash equilibrium analysis, and show the impairment of greedy behaviors via a repeated Prisoner's Dilemma. We demonstrate that cooperation enforcement is required to achieve the optimal state of resource discovery. © 2011 IEEE.published_or_final_versionThe 8th IEEE Consumer Communications and Networking Conference (CCNC 2011), Las Vegas, NV., 9-12 January 2011. In Proceedings of the 8th CCNC, 2011, p. 1000-100

    Influence of incentive networks on landscape changes: A simple agent-based simulation approach

    Get PDF
    International audienceThe aim of this paper is to implement a simple model for exploring the influence of different multi-scale incentive networks affecting farmer decision on landscape changes. Three scales of networks are considered: a global ‘policy’ network promoting specific land uses, an intermediate ‘social’ network where land use practices are shared and promoted collectively and a local ‘neighborhood’ network where land use practices are influenced by those of their neighbors. We assess the respective and combined influence of these networks on landscape pattern (fragmentation and heterogeneity) and dynamics, taking into account agronomic constraints (assimilated to crop successions). Simulations show that combination of incentive networks does not have linear and/or cumulative influence on landscape changes. Comparison of simulated scenarios highlights that a combination of two networks tends to improve landscape heterogeneity and fragmentation; scenarios combining all networks could lead to two opposite landscape configuration illustrating emergence of landscape dynamics. Finally, this study emphasizes that landscape complexity has also to be understood through the multiplicity of pathways of landscape changes rather than the assessment of the resulting landscape patterns

    Information Gathering in Networks via Active Exploration

    Full text link
    How should we gather information in a network, where each node's visibility is limited to its local neighborhood? This problem arises in numerous real-world applications, such as surveying and task routing in social networks, team formation in collaborative networks and experimental design with dependency constraints. Often the informativeness of a set of nodes can be quantified via a submodular utility function. Existing approaches for submodular optimization, however, require that the set of all nodes that can be selected is known ahead of time, which is often unrealistic. In contrast, we propose a novel model where we start our exploration from an initial node, and new nodes become visible and available for selection only once one of their neighbors has been chosen. We then present a general algorithm NetExp for this problem, and provide theoretical bounds on its performance dependent on structural properties of the underlying network. We evaluate our methodology on various simulated problem instances as well as on data collected from social question answering system deployed within a large enterprise.Comment: Longer version of IJCAI'15 pape

    Transaction Propagation on Permissionless Blockchains: Incentive and Routing Mechanisms

    Full text link
    Existing permissionless blockchain solutions rely on peer-to-peer propagation mechanisms, where nodes in a network transfer transaction they received to their neighbors. Unfortunately, there is no explicit incentive for such transaction propagation. Therefore, existing propagation mechanisms will not be sustainable in a fully decentralized blockchain with rational nodes. In this work, we formally define the problem of incentivizing nodes for transaction propagation. We propose an incentive mechanism where each node involved in the propagation of a transaction receives a share of the transaction fee. We also show that our proposal is Sybil-proof. Furthermore, we combine the incentive mechanism with smart routing to reduce the communication and storage costs at the same time. The proposed routing mechanism reduces the redundant transaction propagation from the size of the network to a factor of average shortest path length. The routing mechanism is built upon a specific type of consensus protocol where the round leader who creates the transaction block is known in advance. Note that our routing mechanism is a generic one and can be adopted independently from the incentive mechanism.Comment: 2018 Crypto Valley Conference on Blockchain Technolog

    Sharing information in web communities

    Get PDF
    The paper investigates information sharing communities. The environment is characterized by the anonymity of the contributors and users, as on the Web. It is argued that a community may be worth forming because it facilitates the interpretation and understanding of the posted information. The admission within a community and the stability of multiple communities are examined when individuals differ in their tastes.value of information ; communities ; anonymity ; preference diversity
    • 

    corecore