7,949 research outputs found

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Categorisation of activities of daily living of lower limb amputees during short-term use of a portable kinetic recording system: a preliminary study

    Get PDF
    The purpose of this preliminary study was to determine the relevance of the categorisation of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives were (A) to introduce a categorisation of load regime, (B) to present some descriptors of each activity and (C) to report the results for a case. The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for five hours. The periods of directional locomotion, localised locomotion and stationary loading occurred 44%, 34% and 22% of recording time and each accounted for 51%, 38% and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localised locomotion and stationary loading was 19%, 15% and 8% of the BW on the antero-posterior axis, 20%, 19% and 12% on the medio-lateral axis as well as 121%, 106% and 99% on the long axis. A total of 2,783 gait cycles were recorded. Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorisation and apparatus have the potential to complement conventional instruments, particularly for difficult cases

    Pressure-Based posture classification methods and algorithms: A Systematic Review

    Get PDF
    There are many uses for machine learning in everyday life and there is a steady increase in the field of medicine; the use of such technologies facilitates the tiresome work of health professionals by either automating repetitive tasks or making them simpler. Bed-related disorders are a great example where tedious tasks could be facilitated by machine learning algorithms, as suggested by many authors, by providing information on the posture of a particular bedded patient to health professionals. To assess the already existing studies in this field, this study provides a systematic review where the literature is analyzed to find correlations between the various factors involved in the making of such a system and how they perform. The overall findings suggest that there is only a significant relationship between the postures considered for classification and the resulting accuracy, despite some other factors such as the amount of data available providing some differences according to the type of algorithm used, with neural networks needing larger datasets. This study aims to increase awareness in this field and give future researchers information based on previous works’ strengths and limitations while giving some suggestions based on the literature review.info:eu-repo/semantics/publishedVersio

    Non-Intrusive Gait Recognition Employing Ultra Wideband Signal Detection

    Get PDF
    A self-regulating and non-contact impulse radio ultra wideband (IR-UWB) based 3D human gait analysis prototype has been modeled and developed with the help of supervised machine learning (SML) for this application for the first time. The work intends to provide a rewarding assistive biomedical application which would help doctors and clinicians monitor human gait trait and abnormalities with less human intervention in the fields of physiological examinations, physiotherapy, home assistance, rehabilitation success determination and health diagnostics, etc. The research comprises IR-UWB data gathered from a number of male and female participants in both anechoic chamber and multi-path environments. In total twenty four individuals have been recruited, where twenty individuals were said to have normal gait and four persons complained of knee pain that resulted in compensated spastic walking patterns. A 3D postural model of human movements has been created from the backscattering property of the radar pulses employing understanding of spherical trigonometry and vector fields. This subjective data (height of the body areas from the ground) of an individual have been recorded and implemented to extract the gait trait from associated biomechanical activity and differentiates the lower limb movement patterns from other body areas. Initially, a 2D postural model of human gait is presented from IR-UWB sensing phenomena employing spherical co-ordinate and trigonometry where only two dimensions such as, distance from radar and height of reflection have been determined. There are five pivotal gait parameters; step frequency, cadence, step length, walking speed, total covered distance, and body orientation which have all been measured employing radar principles and short term Fourier transformation (STFT). Subsequently, the proposed gait identification and parameter characterization has been analysed, tested and validated against popularly accepted smartphone applications with resulting variations of less than 5%. Subsequently, the spherical trigonometric model has been elevated to a 3D postural model where the prototype can determine width of motion, distance from radar, and height of reflection. Vector algebra has been incorporated with this 3D model to measure knee angles and hip angles from the extension and flexion of lower limbs to understand the gait behavior throughout the entire range of bipedal locomotion. Simultaneously, the Microsoft Kinect Xbox One has been employed during the experiment to assist in the validation process. The same vector mathematics have been implemented to the skeleton data obtained from Kinect to determine both the hip and knee angles. The outcomes have been compared by statistical graphical approach Bland and Altman (B&A) analysis. Further, the changes of knee angles obtained from the normal gaits have been used to train popular SMLs such as, k-nearest neighbour (kNN) and support vector machines (SVM). The trained model has subsequently been tested with the new data (knee angles extracted from both normal and abnormal gait) to assess the prediction ability of gait abnormality recognition. The outcomes have been validated through standard and wellknown statistical performance metrics with promising results found. The outcomes prove the acceptability of the proposed non-contact IR-UWB gait recognition to detect gait

    A lightweight sensing platform for monitoring sleep quality and posture: a simulated validation study

    Get PDF
    Background The prevalence of self-reported shoulder pain in the UK has been estimated at 16%. This has been linked with significant sleep disturbance. It is possible that this relationship is bidirectional, with both symptoms capable of causing the other. Within the field of sleep monitoring, there is a requirement for a mobile and unobtrusive device capable of monitoring sleep posture and quality. This study investigates the feasibility of a wearable sleep system (WSS) in accurately detecting sleeping posture and physical activity. Methods Sixteen healthy subjects were recruited and fitted with three wearable inertial sensors on the trunk and forearms. Ten participants were entered into a ‘Posture’ protocol; assuming a series of common sleeping postures in a simulated bedroom. Five participants completed an ‘Activity’ protocol, in which a triphasic simulated sleep was performed including awake, sleep and REM phases. A combined sleep posture and activity protocol was then conducted as a ‘Proof of Concept’ model. Data were used to train a posture detection algorithm, and added to activity to predict sleep phase. Classification accuracy of the WSS was measured during the simulations. Results The WSS was found to have an overall accuracy of 99.5% in detection of four major postures, and 92.5% in the detection of eight minor postures. Prediction of sleep phase using activity measurements was accurate in 97.3% of the simulations. The ability of the system to accurately detect both posture and activity enabled the design of a conceptual layout for a user-friendly tablet application. Conclusions The study presents a pervasive wearable sensor platform, which can accurately detect both sleeping posture and activity in non-specialised environments. The extent and accuracy of sleep metrics available advances the current state-of-the-art technology. This has potential diagnostic implications in musculoskeletal pathology and with the addition of alerts may provide therapeutic value in a range of areas including the prevention of pressure sores

    3D Human Pose Estimation on a Configurable Bed from a Pressure Image

    Get PDF
    Robots have the potential to assist people in bed, such as in healthcare settings, yet bedding materials like sheets and blankets can make observation of the human body difficult for robots. A pressure-sensing mat on a bed can provide pressure images that are relatively insensitive to bedding materials. However, prior work on estimating human pose from pressure images has been restricted to 2D pose estimates and flat beds. In this work, we present two convolutional neural networks to estimate the 3D joint positions of a person in a configurable bed from a single pressure image. The first network directly outputs 3D joint positions, while the second outputs a kinematic model that includes estimated joint angles and limb lengths. We evaluated our networks on data from 17 human participants with two bed configurations: supine and seated. Our networks achieved a mean joint position error of 77 mm when tested with data from people outside the training set, outperforming several baselines. We also present a simple mechanical model that provides insight into ambiguity associated with limbs raised off of the pressure mat, and demonstrate that Monte Carlo dropout can be used to estimate pose confidence in these situations. Finally, we provide a demonstration in which a mobile manipulator uses our network's estimated kinematic model to reach a location on a person's body in spite of the person being seated in a bed and covered by a blanket.Comment: 8 pages, 10 figure
    • 

    corecore