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Non-Intrusive Gait Recognition Employing Ultra

Wideband Signal Detection

Abstract

A self-regulating and non-contact impulse radio ultra wideband (IR-UWB) based 3D

human gait analysis prototype has been modeled and developed with the help of super-

vised machine learning (SML) for this application for the first time. The work intends

to provide a rewarding assistive biomedical application which would help doctors and

clinicians monitor human gait trait and abnormalities with less human intervention in

the fields of physiological examinations, physiotherapy, home assistance, rehabilitation

success determination and health diagnostics, etc.

The research comprises IR-UWB data gathered from a number of male and female

participants in both anechoic chamber and multi-path environments. In total twenty

four individuals have been recruited, where twenty individuals were said to have normal

gait and four persons complained of knee pain that resulted in compensated spastic

walking patterns. A 3D postural model of human movements has been created from

the backscattering property of the radar pulses employing understanding of spherical

trigonometry and vector fields. This subjective data (height of the body areas from

the ground) of an individual have been recorded and implemented to extract the gait

trait from associated biomechanical activity and differentiates the lower limb movement

patterns from other body areas.

Initially, a 2D postural model of human gait is presented from IR-UWB sensing phe-

nomena employing spherical co-ordinate and trigonometry where only two dimensions

such as, distance from radar and height of reflection have been determined. There are

five pivotal gait parameters; step frequency, cadence, step length, walking speed, total

covered distance, and body orientation which have all been measured employing radar

principles and short term Fourier transformation (STFT). Subsequently, the proposed

gait identification and parameter characterization has been analysed, tested and vali-

dated against popularly accepted smartphone applications with resulting variations of

less than 5%. Subsequently, the spherical trigonometric model has been elevated to a

3D postural model where the prototype can determine width of motion, distance from
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radar, and height of reflection. Vector algebra has been incorporated with this 3D model

to measure knee angles and hip angles from the extension and flexion of lower limbs to

understand the gait behavior throughout the entire range of bipedal locomotion. Simul-

taneously, the Microsoft Kinect Xbox One has been employed during the experiment to

assist in the validation process. The same vector mathematics have been implemented

to the skeleton data obtained from Kinect to determine both the hip and knee angles.

The outcomes have been compared by statistical graphical approach Bland and Altman

(B&A) analysis.

Further, the changes of knee angles obtained from the normal gaits have been used to

train popular SMLs such as, k-nearest neighbour (kNN) and support vector machines

(SVM). The trained model has subsequently been tested with the new data (knee angles

extracted from both normal and abnormal gait) to assess the prediction ability of gait

abnormality recognition. The outcomes have been validated through standard and well-

known statistical performance metrics with promising results found. The outcomes prove

the acceptability of the proposed non-contact IR-UWB gait recognition to detect gait.
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Chapter 1

Introduction

Human motion is an association of several voluntary movements resulting from complex

processes where the brain, spinal chord, muscles, nervous system, bones, and joints are

involved [1]. The human walk is one of these complex physiological process, which is

the bipedal, sinusoidal, forward propulsive movement of the human body. Both the

upper and lower limbs coordinate together simultaneously in this translatory process

[2]. Physically each and every bone participates in the process, but empirically the

bones of the pelvis and lower limbs are usually considered to realise this repetitive

locomotion. The rudiments of three different disciplines such as, anatomy, physiology,

and biomechanics are obligatory to appreciate movement. Thus, this chapter provides a

background understanding of human walk or gait in terms of anatomical reference planes,

associated physiological processes and their biomechanical interpretation, followed by

different phases and cycle of walk, types and causes of abnormalities, and outlined the

thesis at the end.

1.1 Normal Walk & Gait

The words walking and gait are used interchangeably in the gait analysis literature.

Thus, these two words have been used synonymously throughout the thesis. However,

the word ‘walking’ explains the method of supporting and propulsing of the human

body by two legs alternatively, whereas the manner or style of walking is ‘gait’ (where

characterisation and types are involved) [3]. So, it is important to appreciate and explore

3



4 Chapter 1 Introduction

the normal walking process before discussing the characterisation of gait or clinical gait

analysis, which provides a reference to analyse unusual gaits. It is a familiar and complex

physiological movement and difficult to narrowly define. Normal walk has evolved to

move the body forward, and comprises different phases, and cycles, using the minimum

energy, pressure on foot, shock for dispersing the force of the body on the ground [4][5].

This is repeated with at least one leg in contact with the ground at all the times. A

normal walk includes the following steps [6]:

1. One leg is lifted off of the ground.

2. With the leg in contact with the ground, the body is pushed forward.

3. The lifted leg is swung forward until it is in front of the body.

4. The walker falls forward to allow the lifted leg to contact the ground.

5. Steps 1–4 are repeated for the other leg.

6. Steps 1–5 are repeated to walk continuously.

These six steps are further classified into phases and cycles, and discussed in Section

1.3. Though, the objective of walking is always same, but they are distinguished based

on the conditions of leg muscles used during a gait.

1.2 Anatomy, Physiology, and Biomechanics of Gait

Different disciplines have their own way and terminologies to define gait. However, the

rudiments from all these disciplines are essential to analyse or characterise gait. Anatomy

of gait explains the relationships between different body parts involved in walking based

on their anatomical positions. There are three reference planes in the anatomy; sagittal,

frontal, and transverse all used to describe human motion [2]. These planes are shown in

Figure 1.1, where (a) sagittal plane divides a human body into its left and right halves,

(b) frontal plane divides the body into back and front, (c) transverse plane divides the

body in upper and lower parts. The joints and their muscles of human skeleton can

only move to one or two directions in the reference planes and they are classified further

based on the direction of movements from the body. The movements related to gait
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in reference planes are flexion, extension, abduction, adduction, internal and external

rotation [7]. Flexion describes a bending movement that decreases the angle between the

lower limb and center of the body. Extension is the opposite of flexion, which describes

a straightening movement that increases the angles. Flexion and extension take place in

the sagittal plane. Abduction is the motion of the lower limb away from the midline while

adduction refers to motion towards the center of the body. Abduction and adduction

take place in the frontal plane. Internal rotation (or medial rotation) indicates rotation

of lower limb towards the axis of the body. External rotation (or lateral rotation) states

rotation of leg away from the center of the body. Internal and external rotation take

place in the transverse plane [8].

Figure 1.1: The anatomical positions of human body parts with respect to three reference
planes [2].

Gait physiology involves different nervous systems and signals transmitted or received

from the relevant motor system, where this communication transforms into a motion.

The motor neurons receive nerve impulses from both the brain and other neurosystems

through the spinal chord. Later, a complex and coordinated pattern of nerve signals are

sent to muscles which moves joints, limbs, and the remainder of the body [2]. There are

three types of muscle; smooth, skeletal, and cardiac in the human body where skeletal

muscles are primarily responsible for walking or gait.

Biomechanics studies these biological movements of human walk with the help of me-

chanical engineering. Descriptors such as, time, angle, mass, force, center of gravity,
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moments of force, linear and angular motion [9] from the domain are employed for hu-

man gait description, identification, analysis, and recognition. These descriptors are

known as gait parameters and used for different clinical or pathological gait analysis.

Gait parameters are predominantly used to measure lower limb movement practically,

where the quality of movements are analysed by anatomy and physiology. The gait

parameters have been discussed in detail on Chapter 2.

1.3 Cycle & Phases of Gait

Human locomotion is typically studied through its cycle information. A single gait cycle

is the period between two consecutive events i.e., the period from when one foot contacts

the ground to when that same foot makes contact again. This results in the propulsion of

the human body to the direction of motion. The distance covered by one cycle is known

as the stride length and distance covered by two successive and alternative legs is known

as the step length. The cycle is further divided into more events and phases. Figure

1.2 shows the phases and events related to one cycle, which begins with the movement

of the right foot meeting contact with the ground and the left foot also goes through

exactly same event and phases as the right, but displaced in time by half of a cycle

[10]. Predominantly, a cycle is divided into two phases; stance and swing phases. Stance

phase is the interval when the foot is in contact with the ground and stance phase is

the interval when a foot is in the air during propulsion on the body. Also, if the body

is supported by two legs at the beginning or end of a cycle this is considered as double

support.

Figure 1.2: Timing of single and double support during a little more than one gait cycle,
starting with right initial contact [11].
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These two phases are further subdivided into seven major events such as, initial contact,

opposite toe off, heel rise, opposite initial contact, toe off, feet adjacent, and tibia verti-

cal, which help to realise a cycle in detail. Thus, there are two periods of double support

and single support in each gait cycle. The stance, swing, and each period of double

support lasts approximately 60%, 40%, 10% respectively in each gait cycle. However,

these spans vary with the speed of walking, where the swing phase becomes proportion-

ately longer, the stance phase and double support phases become shorter with increasing

speed [11].

1.4 Pathological Gait

Pathological or abnormal gait is the walking pattern when a person is unable to walk

in the ‘usual’ way. This manifests because of a defect of any interactive system, which

causes additional pains or aches associated to the walk. There are four goals to be

accomplished during normal gait [12]; (a) support the body weight without collapsing,

(b) the body must be balanced in single stance leg condition, (c) swing leg must be in

an advance position to take over the body support, and (d) sufficient power must be in

the body to move limbs and the trunk. If any one of those goals is not achieved the

result is an abnormal gait pattern.

1.5 Causes & Types of Gait Abnormalities

Medically, the common causes of unusual gait are, injuries to the legs or feet, arthritis,

infections in the soft tissue of the legs, broken bones in feet and legs, birth defects,

infections in the inner ear, cerebral palsy, stroke, tendonitis, conversion disorder or

other psychological disorders, shin splints, etc. where people need to put extra effort

to walk and experience complicacy during walk. Abnormalities are categorised into five

types based on the symptoms such as, spastic gait, scissors gait, steppage gait, waddling

gait, and propulsive gait [13]. The types abnormal gaits have been shown in Figure 1.3.

For example, when a person drags his/her feet while walking is known as spastic gait.

A person whose legs bend inward suffers from a scissors gait, legs cross and may hit

each other while walking in this case. Propulsive gait is when a person walks with
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(a) Spastic (b) Scissor (c) Propulsive (d) Steppage (e) Waddling

Figure 1.3: Types of abnormal gaits and reflections on individual’s walk [14].

his/her head and neck pushed forward. The propulsive abnormality is often seen among

older people. Steppage gait occurs when a person’s toes point towards the ground while

walking. Generally, the toes scrape against the ground when the person steps forward.

A person with a waddling gait moves from side to side when walking that involves

taking steps as well as swinging the body. This type of abnormality is often seen among

children.

1.6 Diagnosis of Gait in the Modern Era

There are two types of evaluation to characterise a person’s lower limb movement; sub-

jective evaluation which is carried out by observing the gait pattern in a clinical en-

vironment, and objective evaluation which is carried out by modern techniques and

devices. Objective evaluation is more accurate and reduces the error in gait parameter

measurements which can occur with subjective observation. The most commonly used

technologies for human gait analysis are ultrasound, infrared video, video, floor sensors,

wearable sensors, etc. [15]. These technologies involve the measurement, description,

and assessment of kinetic and kinematic parameters that define human gait [16]. Gait

events and musculoskeletal functions are quantitatively determined and applied in sports,

physiotherapy, home assistance, rehabilitation, health diagnostics, and biometric recog-

nition fields [17, 18]. Additionally, in some areas, human gait analysis is employed to

improve athlete performance [19], monitor patient healing progress [20], assist in cases

of Parkinson’s disease [21, 22], and recognize individuals through their unique walking

pattern [23]. The types of technologies are explored further in Chapter 2.
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1.7 Scope of Gait Quantification Employing IR-UWB

Remote sensing of gait is particularly useful in case of gait patients where direct con-

tact with the subject and use of camera are either impossible or unwanted and can be

applied in local environment such as home. Avoidance of problems such as skin irrita-

tion, antenna, and sensor contacts is desirable in a number of health-care applications,

including gait monitoring of patients with compromised skin [24]. Development of re-

liable noninvasive physiological monitoring is an important goal in modern health-care

research. Knowledge of routinely monitored gait patterns are clinically useful in many

situations where patients often suffer skin damage from adhesive tape, electrode markers

with some lesions leaving scars [25]. A non-contact gait monitoring system could fill the

needs for the patients in this case. The Doppler radar has been demonstrated potential

for human gait monitoring [26]. A Doppler radar based approach for gait monitoring and

fall detection was proposed, with good accuracy in distinguishing common fall events

from normal movements [27]. Such a system could be potentially linked to medical

monitoring personnel to provide better human gait monitoring facility. Thus, the study

intends to establish a new gait identification and analysis technique through non-contact

and non-invasive methods. The healthcare research has interest to measure and develop

non-ionising RF based communication or measurements. Impulse radio ultra wideband

(IR-UWB) technology is a wide electromagnetic spectrum band which allows health

care research under federal communications commission (FCC) report and order, where

radio frequencies (RFs) must be operated within the range of 3.1 GHz to 10.1 GHz.

with very low equivalent isotropically radiated power (EIRP). RF transmission within

this specification doesn’t harm biological cell or human skin i.e., non-ionizing radiation.

IR is a type of RF communication of UWB technology where radio sources typically

use pulse modulation technique to transmit short RF pulse, which doesn’t penetrate

human body and back-scatter to device receiver end. The received pulses convey the

information regarding the presence and movement of any biological section of human

body.
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1.8 Thesis Objectives

The associated physiological processes and body areas associated with movement need

to be investigated to characterise gait mechanics, causes and types of abnormalities,

advanced diagnosis, and field of application have been discussed. Unnatural settings,

intrusiveness, compulsory lab requirements, discomfort, and privacy issue have been

found as major prohibitions in todays gait diagnosis methods. Thus, the state of the

art for gait assessment and characterisation methods are studied to appreciate strong

alternative methods to address those issues with high precision outcomes. The study

has found impulse radio ultra wideband (IR-UWB) technology is the one which can

address all of these issues. Thus, IR-UWB has been employed in this research work

to identify and analyse human gait. A new IR-UWB based mathematical method has

been developed to identify and analyse human gait. The prototype has been tested in

anechoic chamber and normal environment to check the robustness, efficiency, and cost

effectiveness of the model. The multipath reflections are relevant part of the experiment

in normal environment and have been tried to handle and mirror results like anechoic

chamber environment. The work is supported by mathematical modeling and rigorous

simulation results. The promising results indicates the potentiality of prototype for

human gait identification in future.

1.9 Thesis Outline

The thesis began with an overview of human gait, interpretation of walking from dif-

ferent scientific fields, phases of walking, causes and types of gait abnormalities, gait

diagnosis in Chapter 1. The parameters to characterise gait and the existing method-

ologies are reviewed in Chapter 2 and areas for improvement have been depicted with

the problem definition. The data collection protocol has been explained with detailed

subject profiles in Chapter 3. Additionally the employed measurement systems with

configuration has been demonstrated here. A 2D model of gait identification has been

developed with the help of radar principles and trigonometric ratios to characterise gait

in Chapter 4. The study has been supported by rigorous simulation results and valida-

tion process. The 2D model has been improved into a 3D model to capture the human

locomotion and measure more gait parameters in Chapter 5. The obtained results have
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been compared with the results of Kinect sensor system to establish the correctness of

the findings. In Chapter 6 demonstrates an intelligent IR-UWB protocol where proposed

3D model has been aided with supervised machine learning (SML) system to identify

gait abnormalities automatically. Statistical measurements have been implemented to

validate the performance of the developed gait analysis model. Finally, a conclusion of

the thesis has been drawn in Chapter 7 with future research directions.
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Chapter 2

Literature Review

Traditionally, an individual’s gait is measured by subjective or objective methods. The

physiological expert or medical personnel observes a person’s gait followed by a question

and answer session in order to pursue the subjective evaluation of gait patterns. This

is known as qualitative analysis of gait. The objective evaluation of gait includes the

measurement of biomechanical parameters (or gait parameters) through advanced tech-

nical instruments, known as quantitative analysis of gait, with qualitative measurements

parameters are implied by their visual appearance to the clinicians [28]. Quantitative

gait analysis methods are more reliable for clinicians and medical practitioners, because

the instruments provide a number of high precision gait parameters, which can not be

achieved through subjective evaluation. However, these approaches have pros and cons,

thus alternative gait analysis methods can offer advantages to these limitations. The

chapter presents advanced instruments employed for gait analysis and it’s classification,

most commonly used gait parameters by the field experts, thorough review of existing

works performed by the researchers, which leads to find out the issues in existing tech-

niques and construct the problem definition, and make a prototype towards creating a

novel gait analysis method for resolving the issues.

2.1 Gait Parameters of Interest

Clinical experts rely more on quantitative measurements than qualitative measurements

because of the accuracy and precision of instruments. Thus, quantitative methods gain

15
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more attention. This study comprises several biomechanical gait parameters are used

to characterise gait behaviour and it depends upon the field of research. For instance,

in the security field where gait is considered one of the significant physiological trait is

always focused on the silhouette of lower limbs during locomotion [29] whereas, sports

and rehabilitation fields are concerned about the force exerted by lower limb muscles

during movement [30]. The most significant and frequently used gait parameters are

used in real life gait analysis are summarised in Table 2.1. Table 2.1 includes the name

of gait parameters, their definitions, and the associated research processes employed

to characterise gait. It provides an overview of different gait parameters and state-of-

the-art schemes used in the gait analysis field. Parameters measured by different gait

identification and recognition methods are discussed in the following sections.

2.2 Retrospective Research

Figure 2.1 presents a taxonomy of advanced instruments which are used for quantitative

gait analysis. Technological devices employed to study human gait can be classified

into two different groups: non-wearable sensor (NWS) and wearable sensor (WS) based

technologies. NWS systems require the access of controlled research facilities where

the sensors are located and capture gait data while individuals walk on clearly marked

walkway (testbed). In contrast, WS systems make it possible to analyse human motion

data outside the laboratory and capture information about the human gait during the

person’s everyday activities. There is also a third group of hybrid systems that uses the

combination of both methods.

NWS systems are further classified into three subgroups: (a) those based on image pro-

cessing (IP), (b) those based on floor sensors (FS), and (c) ultra wideband (UWB) radar

technology. IP systems capture data on the subject’s gait through one or more optic sen-

sors and take objective measurements of the different parameters through digital image

processing. Analog or digital cameras are the most commonly used devices in this con-

text. Other types of optic sensors such as, laser range scanners (LRS), infrared sensors

and time of flight (TOF) cameras are also popular for human gait analysis. There are

two systems within this category, with and without markers. The FS systems are based

on sensors located along the floor on the force platforms, where the gait information
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Table 2.1: Overview of gait parameters and descriptions

Gait parameters Description Related Works

Velocity Speed of walk in a given direction [31, 32]

Short step length
Linear distance between two successive
placements of the same foot

[33, 34]

Long step or stride length
Linear distance between the placements
of both feet

[33, 34]

Cadence Number of steps completed per time unit [35, 36]

Step width
Linear distance between two equivalent
points of both feet

[35, 36]

Step angle Direction of the foot during the step [37, 38]

Short step time
Time between heel strike of one foot
to subsequent heel strike of contralateral foot

[37, 38]

Swing time for each foot
Time from the moment the foot lifts from the
floor until it touches it again, for each foot

[39, 40]

Support time
Time from the moment the heel touches the
floor until the toes are lifted, for each foot

[39, 40]

Distances traveled
Distance covered within a given observation
time

[41, 42]

Gait autonomy
Maximum time a person can walk, taking into
account the number and duration of the stops

[43, 44]

Duration of the stop
Time takes by patients while stopping in
between walk due to pain and aches

[45, 46]

Existence of tremors
Rhythmic, muscle contraction, and relaxation
involving oscillations or twitching movements
of legs

[47, 48]

Record of falls
Number of times the patient move from higher
level to lower level, typically rapidly, and
without control during observation

[49, 50]

Uneven terrain covered Difference of height between drops and rises [51, 52]

Routes taken
Sketch of path contributed in floor due to gait,
abrupt changes are found in case gait disorders

[53, 54]

Gait phases
Deviation caused by gait disorders in stance
and swing phase, where primarily stance is
affected by a prolonged stance phase

[55, 56]

Direction of leg segments
The legs are bent in some disorders, where feet,
hips, and knees are internally or externally
rotated during walk

[57, 58]

Ground Reaction Forces
Measurement which is equal in magnitude and
opposite in direction to the force that body
exerts on supporting surface through foot

[55, 56]

Angles of the different joints Specifically in ankle, knee, and hip [59, 60, 61]

Electrical activity
Electromyography (EMG) is used to describe
muscle’s electric activity through simultaneous
signal analysis to identify phases of gait cycle

[62, 63, 64]

Momentum and forces
Moments of force are produced across joints
during walking cycle

[59, 60, 61]

Body posture
Provides information about body posture and
capability of musculoskeletal system to adjust
physical stressors

[62, 63, 64]
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Hybrid systemsNon-wearable sensors Wearable sensors

Ultra wideband
radars

Force platforms/pressure
sensors, ground reaction

force sensors

Analog or digital, laser
range scanners, infrared

sensors, time of flight
cameras

Accelerometers, gyroscopic,
magnetometers, force

sensors, active markers,
extensometers

Ultra wideband  sensors

Combinations of
Non-wearable and
wearable sensors

Gait analysis methods

Figure 2.1: Taxonomy of existing gait analysis methods.

are measured through pressure sensors (PS) and ground reaction force (GRF) sensors,

which measure the force exerted by the subject’s feet on floor at the time of walking.

The WS systems use sensors located on several parts of the body such as, feet, knees,

thighs and waist to capture the various signals that further characterise the human gait.

The popular sensors of this group include accelerometers, gyroscopic sensors, magne-

tometers, force sensors, extensometers, goniometers, active markers, electromyography,

etc.

2.2.1 Non-Wearable Sensor (NWS) Gait Analysis Methods

NWS systems include image processing employing fixed sensors placed on the ground

surrounded by cameras for data collection. Subsequently, the gait parameters are ex-

tracted from image or video frames using filtering or segmentation methods. Ugbolue

et. al., proposed an augmented video based portable system (AVPS) for clinical gait

analysis. The data are collected using light indicator and video cameras to extract the

kinematic event and tibia inclination angle of gait. The experiment was supported with

gold standard 3D motion analysis data and validated by statistical evaluation [65]. Pfis-

ter et. al., captured 3D gait characteristics in sagittal plane through Microsoft Kinect
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sensor. The authors analysed hip and knee angular displacement during flexion and

extension of muscles. The Vicon Nexus model is used in parallel to compare the ob-

tained results and estimated the performance of the prototype. The authors pointed

out and anlysed the error needs to be addressed for employing Kinect in clinical gait

analysis [66]. Other forms of NWS gait analysis are conducted with motion capture

sensors. Corazza et. al., developed a markerless motion capture (MMC) system where

ten joint centers and body shape are learned through linear regression (LR) to recognise

gait kinematic and human body morphology. Performance of the study is evaluated by

comparing the outcomes of laser scan and visual hull. The work indicates that perfor-

mance can be improved using more training data and handling skin artefact problem [67].

Postalache et. al., presented a practical gait assessment approach through microwave

Doppler radar for rehabilitation. Radar responses are further transformed employing

short term fourier transformation (STFT), wavelet transformation, and moving average

filtering (MAF) to obtain gait velocity and stride length of individuals. Though, STFT

is effective to extract gait parameters by local convolution it needs to manually set the

length of the convolution window which is highly disadvantageous [68]. Force platforms

are also well known for gait assessment in controlled laboratory and observation settings.

Lim et. al., prototyped a model to measure step phases through GRFs acquired from

sensors employed to inspect lower limb exoskeleton [55]. These systems are effective

to determine foot pressure, but unable to measure the horizontal and vertical vector

components of that pressure [69], which require a large amount of pressure to be applied

for activation. Thus it may be unsuitable for elderly or weaker patients. Also, another

measurement alike GRF is free vertical moment (FVM) that does not receive much at-

tention for gait analysis hitherto. Begue et. al., considered FVM as a gait behaviour

indicator which provides information about torsional stress and lower limb movements.

It measures internal foot rotation, adduction, gait speed from stance phase and their

correlation during the movement of foot and pelvis [56]. Some of the researchers used

continuous wave (CW) Doppler radars to characterise human gait. Ahtiainen et. al.,

employed CW radars to identify human gait from Doppler spectogram which is limited

to detection of human movement while walking and does not provide enough parameters

to realise the gait [70]. Seo et. al., proposed a model employing pulsed Doppler radar

to detect human walking and associated physiological movements. But, the work only

provides range information, which implies the location of occurrence but not the nature

of movement [71]. Seifert et. al., modeled gait recognition prototype from frequency
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modulated continuous wave (FMCW) Doppler radar to classify different types of gait

such as, normal, assisted, and abnormal for rehabilitation and assisted living. The radar

responses are interpreted into time-frequency representation by wavelet transformation

(WT) to analyse micro-Doppler (µD) signatures of human walk which are classified

further using machine learning techniques. The work only identifies the type of gait

from µD signature. The work can not locate abnormalities in the lower limb making

it difficult to use for rehabilitation [72]. Mokhtari et. al. prototyped a UWB model

to identify signatures generated by different person’s gait augmenting region of interest

(ROI) method. Further, the back-scattered energy reflected from human body is used

as features to categorise different human subjects employing support vector machine

(SVM), random forest (RF), logistic regression (LR), k-nearest neighbour (kNN) and

neural network (NN) models [73]. Wang et. al., modelled a WiFi based gait identi-

fication framework for human authentication from Channel State Information (CSI).

The short term fourier transformation (STFT) is performed to generate spectrograms

from CSI measurements to obtain unique human walking signatures which are denoised

employing principal component analysis (PCA). The features are extracted from the sig-

natures such as, gait cycle time, torso speed, footstep size, leg speed which are then fed

into a radial basis function (RBF) based support vector machine (RBF-SVM) algorithm

for human classification [74]. Zeng et. al. and Zhang et. al. both proposed device free

WiFi based human classification from CSI based on walking signature. These methods

are able to identify a person from small indoor group of people with the accuracy of

92%-93% [75, 76]. Fathy et. al., employed UWB radar for human motion monitoring

from µD signatures where the location of movement is identifiable but no detailed study

is provided to understand the participant’s gait [77]. Ren et. al., developed a gait as-

sessment model from IR-UWB Doppler radar based on STFT and state space method

(SSM). The work developed a new short term SSM model to analyse back scattered

pulses from human body to identify right foot, left foot, and torso trajectories even in a

low signal to noise ratio (SNR) environment. But, the UWB device employed here had

low pulse repetition frequency (PRF) of 75 Hz, hence the work suffers from weak back

scattering and restricted to obtain the expected result [78].
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2.2.2 Wearable Sensor (WS) Gait Analysis Methods

Widely used WSs are FSs, accelerometers, gyroscope, extensometers, goniometers, elec-

tromyography, and active markers etc. placed at the hips, feet, etc. to assess gait

characteristics [79]. Recently, few works have been published where wearable UWB sen-

sor networks are employed. Bruening and Ridge reviewed the existing algorithms which

deal with gait event, velocity, and acceleration of foot/heel strike, toe off. The data are

collected through foot and sacrum marker initially to form the ground truth information

and perform the simulation for obtaining gait parameters. The work claims that the

existing study carried out by Ghoussayni et. al. [80] to measure sagittal velocity is reli-

able for clinical gait application while a single algorithm is not useful to measure all gait

events. The authors proposed an event detection algorithm which is useful for different

gait event detection purposes [81]. Greene et. al., developed an adaptive algorithm to

measure gait parameters via gyroscopes. The work is focused on measurement of initial

contact (IC) and terminal contact (TC) timing of foot. Additionally, it calculates an-

gular velocity, stride length, swing time, stance time, step times from human gait. The

study includes force measurement plates and optical motion capture system to compare

obtained results with the proposed algorithm. The algorithm contains high errors in

case of stride, swing, stance, and step time calculation [82]. Bugane et. al., investigated

state of art methods and prototyped an accelerometer based gait characterisation model.

It measures single and double support interval from gait events. Also, it determines spa-

tial and temporal parameters, such as stride length and duration, cadence, and speed.

Popular gait analysis methods, stereophotogrametry and dynamometry are employed

for validation. Significant errors are found to use the algorithm for gait cycle, single and

double support measurement [83]. Some studies rely on wearable and BAN based UWB

technologies. Renzo et. al., proposed an UWB based body area network (BAN) for

human motion and gait analysis. The work contributed towards the reduction of com-

plexity where TOF is employed for measurements. The study focused on improvement

of channel impulse response and existing TOF based ranging algorithms. It considered

gait parameters obtained from male and female participants; parallel arm, perpendicular

arm, inline leg, perpendicular leg, thigh, torso motion at different angles i.e., 45◦, par-

allel, perpendicular to evaluate and validate the performance of the study [84]. Shaban

et. al., investigated the impulse radio ultra wideband (IR-UWB) technology in wireless

wearable body area network (WWBAN) for gait assessment applications. The work
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ensures the accuracy of IR-UWB is 1 mm at 18 dB signal to noise ratio (SNR) in dense

multipath environment, which is ten times better than any existing system. The experi-

ment further studied bit error rate (BER) and time of arrival (TOA) and concluded, that

an ignorable performance degradation is found the required power consumption of the

UWB device. Also, the power consumption could be further optimised by two orders of

magnitude [85]. Shaban et. al., presented further work with an extended experiment by

adding white noise in realistic channel scenario. The work proves 1.1 mm accuracy can

be practically achieved at SNR 20 dB. This work would help the measurement of gait

patients affected by unstable mobility disease [86]. El-Nasr et. al., improved Shaban et.

al.’s [85] work for low power gait analysis by wearable UWB solution. The study proved

measurement accuracy of angular displacement of knee flexion angle is 1◦. Additionally,

the model is integrated with FS for accurate measurement of tele-rehabilitation [87].

Cao et. al., assembled wireless BAN with UWB sensor, gyroscope, and acceleration

sensor based on TOA technology to assess the human gait in 3D space. It defines local

and global coordinates to explore lower limb kinematics of human gait [88]. Ashhar et.

al., employed UWB technology to make wearable wireless sensor network to determine

3D foot trajectories. The system employs high resolution and pulse repetition frequency

(PRF), low power spectral density (PSD) which increases the appropriate detection of

trajectory. Also, a camera sensor is used to benchmark the data. The work achieved

superior performance for spatial and temporal gait parameter measurement from foot

movement which might be a good candidate for clinical gait analysis [89].

2.2.3 Hybrid Gait Analysis Methods

Industry is also working in parallel with academics towards creating robust and efficient

gait analysis tools. CONTEMPLASTM produced a professional motion analysis soft-

ware platform TEMPLO® for clinical gait analysis [90]. This is a hybrid approach for

gait measurement comprises both NWS and WS systems in the diagnosis framework.

It provides a complete overview of patient’s gait through high quality image and video

recording. Additionally, it uses force and pressure sensor platforms, Electromyography

(EMG) and force vector to generate synchronous information for comprehensive anal-

ysis. EMG sensors record the activity of the muscles under consideration. With the

help of force plates, horizontal and vertical forces in three dimensions (Fx, Fy and Fz)

are measured synchronously to TEMPLO video analysis. The measurements provide
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doctors, therapists and scientists meaningful information about the forces acting on the

body during movement. For one-dimensional measurements (Fz) CONTEMPLAS offers

a force plate developed for use in professional sports and rehabilitation, which provides

high accuracy, robustness and portability. Tekscan is a company who makes pressure

mapping, force measurement, and tactile sensors for clinical gait assessment [91]. They

primarily focus on force platforms but use additional instruments such as, video scan and

EMG analysis to construct a hybrid tools for gait characterisation. Tekscan’s comput-

erised gait analysis systems are used by clinicians and researchers to detect and correct

pathomechanical dysfunctions of the foot, assess to improve athletic performance, and

measure the changes after treatment. Modular gait analysis system (MGAS) is used

to scan and capture accurate force, pressure and spatial-temporal parameters, compare

left and right sides with symmetry tables, gait cycle tables provide insights into stride

length, time, velocity and more. There are other companies such as, Zebris [92], Sensor

Medica [93], Mediologic [94] who fabricate devices to analyse gait. Predominantly, they

focus on force platforms, and are integrated with computerised software to visualise

walking patterns.

2.3 Problem Definition

The potential to monitor physiological events remotely is more useful in situations where

direct contact with the subject is either impossible or unwanted. The WS systems (es-

pecially the marker based systems) are considered as gold standard in gait analysis

hitherto. However, marker based systems can cause skin irritation, scaring, restriction

of breathing during spirometry and reversibility testing, and all current gold standard

systems are considered ‘invasive gait analysis methods’. To avoid these problems, devel-

opment of reliable non-invasive, non-contact physiological monitoring is an important

goal in modern healthcare research where, patients could be assessed remotely e.g. at

home by NWSs preferably without any image or video recording. Also, clothing af-

fects gait parameters extracted from NWS and WS systems, restricting their success.

Image processing based works are limited by participants clothing, which can affects

gait parameters detection, and force researchers to work on image segmentation method

rather than significant gait parameters. It adds to the overhead complexity and reduces

real-time reading opportunities.
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Physiological measurements performed by researchers using continuous wave (CW) radar

are limited by functional restrictions. Conventional CW radar operates electromagnetic

radiation all the time at a constant interval thus there is no intermediate basis to cal-

culate propagation time delay as well the range of an object. Measurement of Doppler

frequency shift and the derivation of rate-of-change of range are viable. Therefore, CW

radar is only used to estimate the frequency of a moving body section and limited to

be utilised for further physiological information extraction. On the contrary, IR-UWB

radar has been successfully implemented for human gait and vital sign identification

but, the potentiality of IR-UWB radar has been overlooked by the state-of-art research.

A number of works have been accomplished for gait and other physiological parameters

but furthermore physiological factors could have been explored have not been done yet.

Mostly, the researchers have used back-scattered energy received by the radar to identify

the gait related parameters such as, step frequency, range, and speed only. However,

more quantitative gait parameters are required for gait analysis which are also used

(through observation) by doctors to diagnose the group of people who run the risk of

walking disorder. The gait parameters such as, length of each steps, change of these

lengths during stance and swing phase, knee angle (for each leg) i.e., the angle between

thigh and shank, change of knee angle during stance and swing phase, angle between

thighs and variation during stance and swing phase etc.

2.4 Contribution

IR-UWB technology has several advantages over typical narrowband communication

systems such as large bandwidth, short pulse width, RF levels that are safe to use, and

enables high resolution, making it suitable for biomechanical applications [73]. IR-UWB

is a technology which operates for communication and measurements systems over the

frequency band of 3.1 GHz to 10.1 GHz with -10 dB bandwidth according to FCC [95].

IR-UWB measurements employ RF with very low effective radiated power (ERP) typ-

ically in the sub-milliwat range. The ERP used in IR-UWB is a non-ionizing measure-

ment method. Communication is based on a transmitter and receiver frequency band

and power levels that do not penetrate because of permeability and dielectric constant of

living cell material restricts the spread of pulse’s electromagnetic field inside biological
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matter with low ERP (allocated for UWB application). Radio frequencies (RFs) of IR-

UWB back-scatter from living body and provide location information based on Doppler

frequency change with high data transmission rate. Thus, IR-UWB pulsed radar has

been chosen for the study. Short duration IR-UWB pulsed radar is time modulated

and can be individualized. These short duration pulses are less sensitive to multiple

reflections making the system robust and resistive within multipath environments [96,

97]. The superior penetration properties of UWB signals limit the effect of clothing and

other obstacles e.g. walls. It has the capacity to work with low SNR enabling it to

detect moving objects in hostile environments. The work describes the first time use of

pulsed UWB to identify and filter gait patterns from other simultaneous biomechanical

activities such as, heartrate, breathing, and arm movements.

The contributions of thesis are as follows: the first reported three-dimensional (3D)

spherical trigonometric based theory has been developed and implemented to identify

parameters which can define a person’s gait trait. The resulting gait parameters (walk-

ing speed, leg orientation, and traversed distance) have been corroborated via popular

smartphone applications to prove the correctness of the outcomes. The prototype has

been further improved to capture human motion in three-dimensional plane modeled by

spherical trigonometry. Here, motion is interpreted through anatomical planes frontal,

sagittal, and transverse plane. Further, the height has been used heuristically to dis-

tinguish the movements of upper limbs from lower limbs. The mathematical model has

been formulated by employing vector algebra based on IR-UWB sensing phenomena to

calculate step frequency, walking speed, step length, angle between thighs, knee angle.

Simultaneously, the model has been corroborated with Kinect Xbox One sensor. Kinect

system is a well-known, camera based, and popular sensor for body posture measurement

and had been employed for gait analysis by several researchers as discussed previously.

Bland and Altman (B&A) statistics has been measured between proposed IR-UWB pro-

totype and Kinect sensor results to verify the agreement of results by proposed work

and Kinect sensor. Proposed models have been further experimented and realized in

both ideal (anechoic chamber) and normal/multi-path environment to demonstrate its

efficiency and robustness.
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Chapter 3

Experimental Framework

Gait analysis methods have been presented and the research problem explained in Chap-

ter 2. The aptness of impulse radio ultra wideband (IR-UWB) technology to develop

a human gait characterisation method and details of the experimental setup are out-

lined in this chapter. As mentioned, the human walk is a complex physiological process,

where human participants must be involved during the research and data collection is

a first salient step of the work. An existing UWB radar module has been employed to

collect the RF responses of human motion, which have been transformed through the

development of a novel mathematical model to capture the movements of the upper and

lower limbs. The proposed model captures motion in three dimensions by considering

three anatomical planes i.e., the sagittal, frontal, and transverse. The model has been

tested in an anechoic chamber at LSBU and a multipath environment (normal environ-

ment) to investigate the robustness of the proposed prototype. This chapter describes

the framework of the experiment performed for model testing and evaluation. Addition-

ally, the obtained results have been corroborated via smart phone sensor and Microsoft

Kinect sensor to inspect error margins of gait parameter measurement. The chapter

presents the architecture of experimental setup, details of instruments used, and profiles

of participants recruited. A schematic of the proposed study is included in this chap-

ter, where the components of the experiment of both ideal (anechoic chamber) and real

(multi-path) environments have been presented. Initially, the radar is configured and

the raw radar scan data acquired through a radar application program interface (RAPI).

The radar module is also configured to retrieve detection information from the different

environmental conditions.

33
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3.1 IR-UWB and Human Gait Measurement

The work intended to model a non-invassive, non-contact, smart human gait monitoring

system that can identify and record important musculoskeletal-related parameters. Also,

the system needs to be flexible to mobility and infrustructure, easily installable, and low

cost. Such requirements would have attained employing IR-UWB radar technology. The

IR-UWB antennas don’t need to wear for movement measurement. This employs two

way time of flight (TW-TOF) measurements and multilateration technique with RF

electromagnetic spectrum of 3.1 GHz to 10.6 GHz (shown in Figure 3.1) and now 21

GHz to 140 GHz [98].
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Figure 3.1: UWB spectrum

The employed IR-UWB (with frequency range of 3.1 GHz to 5.3 GHz) provides the

resolution of approximately 10 mm and less which allows to measure very small changes

in musculoskeletal movement. Thus, IR-UWB has been chosen for gait analysis to make

a viable gait monitoring system can be developed by combining miniaturized, durable,

low-cost and compact sensors with the advanced communication technologies and data

processing techniques. Also, the pulses provide UWB system better immuneing to mul-

tipath making it suitable for gait analysis in normal environments without expensive

laboratory support. Subsequently, it operates with high speed and data rate that allow

the systems to be efficient and accurate for real time gait detection with high spatial

resolution (10 mm). Also, IR-UWB system has the ability to effectively reduce fading

and interference in different wireless propagation channel environments because of the

limited transmitted power of UWB systems with high signal to noise ratio (SNR).
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3.2 Participant Recruitment & Data Acquisition Protocol

Human gait identification and analysis from electromagnetic UWB responses presented

in this thesis is three fold; 2D gait identification from IR-UWB, where the concept of

frontal and transverse reference planes are incorporated involved (discussed in Chapter

4), 3D gait identification where all three reference planes (sagittal, frontal, and transverse

planes) have been involved (discussed in Chapter 5), classification of gaits based on the

characteristics obtained from proposed model (discussed in Chapter 6). Twenty four

participants have been recruited hitherto, where twenty persons have normal or healthy

gait and four persons with spasticity in this research. The first fifteen participants have

been involved in the 2D gait experiment, then as the number of participants increased,

all were involved in the 3D gait experiment and classification work. Full ethical approval

(Reference Number: Eng 01Dec2017) was gained from London South Bank University,

where the research code of practice and ethical guidelines are governed by the university

ethics panel (UEP).

Length of thigh

Length of shank

Length of leg

Height

Figure 3.2: The measured body parts for subjective knowledge collection.

All procedures performed in this study were done so in accordance with the ethical stan-

dards of the institutional and/or national research committee and with the 1964 Helsinki

declaration and it’s later amendments or comparable ethical standards [99]. Initially,

gender and anatomical information (height, length of the limbs) were recorded for each

individual as shown in Figure 3.2. The measured body proportions have been listed in

Table 3.1. Measurements, such as, leg lengths have been heuristically employed later

to identify the movements that normally occur in lower limb of the human body and

includes the essence of walking. Shank movements have been distinguished from thigh

movement using these measurements and the detailed procedure has been discussed in
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Chapter 4 and 5. So far ideal (in anechoic chamber) and multi-path/normal (in labora-

tory) environments have been used for the data collection. These two environments are

shown in Figure 3.4b and 3.4c.

Table 3.1: Subjective data related to fifteen individuals.

No Gender
Height

(Meters)
Length of Leg

(Meters)
Length of Thigh

(Meters)
Length of Shank including

heel height (Meters)

1 Female 1.58 0.85 0.43 0.42
2 Female 1.54 0.83 0.42 0.41
3 Female 1.64 0.88 0.45 0.43
4 Female 1.73 0.93 0.47 0.46
5 Female 1.62 0.87 0.44 0.43
6 Female 1.71 0.91 0.46 0.45
7 Female 1.69 0.91 0.46 0.44
8 Male 1.67 0.88 0.45 0.43
9 Male 1.76 0.91 0.46 0.45
10 Male 1.71 0.88 0.45 0.43
11 Male 1.72 0.88 0.45 0.43
12 Male 1.64 0.84 0.42 0.42
13 Male 1.78 0.92 0.47 0.45
14 Male 1.79 0.92 0.46 0.46
15 Male 1.78 0.92 0.47 0.45
16 Male 1.78 1.00 0.52 0.48
17 Male 1.75 1.02 0.52 0.50
18 Male 1.72 1.00 0.51 0.49
19 Female 1.55 0.95 0.50 0.45
20 Female 1.53 0.94 0.50 0.44

21 Male 1.76 1.03 0.54 0.49
22 Male 1.78 1.01 0.53 0.48
23 Female 1.65 0.97 0.50 0.47
24 Female 1.58 0.95 0.49 0.46

3.3 Setup & Data Post Processing

A schematic of the experimental architecture is shown in Figure 3.3. The first step of

the experimental work is to configure the radar Time Domain PulsON 410 ranging and

communications module (P410 RCM) and P410 monostatic radar module (P410 MRM)

which are used to collect all the physiological sensing phenomenon reported here, shown

in Figure 3.4a. The module has been used in all publications [100, 101, 102, 103] from

this thesis work. The anechoic chamber and multipath environment both have been

considered here to gather the gait data using following settings of Table 3.2. Photos of
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the experimental environments of anechoic chamber and lab environment are shown in

Figures 3.4b and 3.4c respectively.

Testbed

St
an

d

Radar

Configuration Settings

Data Request

Module
Service

Raw Scan Data

Filter
Configuration

Detection Info

Radar API
&

Signal Processing

Ideal & Real Time
 Environment

Tx

Rx

Figure 3.3: Schematic diagram of the proposed system setup.

The module box is connected to the PC/laptop with USB 2.0 through micro-B USB.

Once, the radar module is configured then the participants are requested to walk in

front of radar and raw data from the motion scans are accumulated through the RAPI.

Also, the module service of the radar is configured to obtain detection information

applying finite impulse response (FIR) filter of the moving participants. A four tap FIR

filter has been configured for the experimental purpose where the taps are computed on

the 3rd order bandpass filtered data. A detection is reported when the output (=FIR

filtered data × threshold) is greater than the average of previous 100 scans in each

bin. The received raw scan data along with the detection information have been post-

processed further to extract relevant gait parameters. The post-processing of UWB gait

is discussed thoroughly in discussed in Chapter 4 and Chapter 5.

(a) UWB P410 radar module. (b) Anechoic chamber.
(c) Normal environ-
ment.

Figure 3.4: The UWB module and both tested environments during data collection.



38 Chapter 3 Experimental Framework

3.4 Device & Device Configuration: PulsON P410

The device is a UWB monostatic pulsed Doppler radio transceiver. The module utilizes

TW-TOF omni-directional range measurement techniques have been employed here as

hybrid ranging radio and a radar sensor device to non-intrusively measure the human

gait. The device has been configured before data collection and the same configuration

has been maintained for both the chosen (tested) environments. The device configura-

tion has been detailed in Table 3.2. To avail of the large bandwidth of UWB it employs

base band signal of nanosecond duration pulses and appropriate choice of UWB pulse

shape has ability to adapt the multipath effect. Thus, the PulsON P410 module gen-

erates Gaussian pulses (shown in Figure 3.5) and transmits first order derivative of

Gaussian pulse which provides high power efficiency by delivering extremely low power

spectral density (PSD) to mitigate the influence of multipath environment. In addi-

tion, the nanosecond duration Gaussian pulses have low duty cycle that results high

pulse repetition rate (PRR) of 10 MHz and enables vastly improved detection of human

movements.
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Figure 3.5: Transmitted UWB pulse waveform.

It transmits radio frequency (RF) from a lower limit frequency fL=3.1 GHz to the

upper frequency limit fU=5.3 GHz, with the centre frequency at fC=4.3 GHz, and a

bandwidth of (fU − fL)=2.2 GHz. According to the definition of UWB systems [104],

the fractional bandwidth of a device should be more than 50%, in case of P410 device,

fU−fL
fC

= 5.3−3.1
4.3 = 51.16%, which follows FCC restrictions [98] for power. Transmission

power to the antenna port is specified as -12.64 dBm for safe RF transmission, which

abides with FCC regulations [98]. The scan time window for this experiment is 87.84

nanoseconds (ns) long, but the first 5 ns of the waveform contains noise because of the
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direct path interference between transmitter and receiver antenna, thus the waveform

during the first 5 ns is filtered from subsequent analysis.

Physiological movements

Pulse = 46.87ns

Jitter = 5 ns

Listening time( ns)

Figure 3.6: A received IR-UWB pulse and associated characteristics.

The pulse integration index (PII) has been set to 15 which allows the module to integrate

215 = 32768 pulses to cover 360◦ orientation, maximizing the usable signal to noise ratio

(SNR). A typical received pulse is shown in Figure 3.6 to demonstrate the characteristics

of received signal where, the x-axis indicates pulse propagation delay (or, pulse width)

of 46.87 ns and a pulse repetition interval (PRI) of approximately 100 ns. The y-axis

represents normalised amplitude of the received waves. The waveforms are sampled in

61 picoseconds (ps) frames, which results in a sampling frequency fs=16.39 GHz and

ensures PRR of 10 MHz. The pulse width in the current settings is 46.87 ns where, first

5 ns of the waveform contains noise because of the direct path interference between the

transmitter and receiver antenna, and then physiological movements (potential targets)

occur with higher amplitude or reflectivity. The scan interval is set to 25000 µs.

3.5 Corroboration of Results

The results obtained from the proposed model have been corroborated by measuring the

same gait parameters with the existing device and algorithms. Each instrument contains

it’s own error by its varying nature besides the algorithms used. Thus, smartphone

sensor applications have been used to support the outcomes of 2D gait identification

(discussed in Chapter 4) and Microsoft Kinect Xbox sensor module has been used to

support the results of 3D gait identification (discussed in Chapter 5). Differences has
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Table 3.2: Parameter setting of the experiment.

Parameter Values

Center frequency 4.3 GHz
Frequency range 3.1 GHz to 5.3 GHz
PII 15
SNR 75 dB
Scan interval 25 milliseconds
Sampling frequency 16.39 GHz
Pulse Repetition Interval (PRI) 100 nanoseconds (approx)
Transmit power -12.64 dBm
Radar area coverage upto 10 meter
Number of antennas one Tx and one Rx
Ambient operating temperature between 0◦C to 70◦C [105]

been determined between the outcomes of the proposed work and smartphone sensors in

2D gait identification, whereas Bland and Altman (B&A) statistics has been employed

in the case of 3D gait detection. Theoretical backgrounds of the proposed work, error

calculation, and B&A analysis have been demonstrated in the respective chapters. The

overview and configuration settings of the existing methods for gait identification have

been discussed in the following sections.

3.5.1 Smartphone Sensors

Three obtained parameters have been corroborated via popular smartphone applica-

tions. The parameters, walking speed, traversed distance during the observation period,

and lower limb orientation have been compared with the outputs of accelerometer sen-

sor, Samsung health application, and a gyroscope sensor. Each participant was asked to

walk, carrying two smartphones and turning these applications on during their walking

phase in both the ideal and normal environment, while the UWB system is also on. The

accelerometer provided linear acceleration, with the Samsung health application deliv-

ering covered distance within a fixed time frame, and the gyroscope providing azimuth,

pitch, and roll information. The average velocity of an individual has been determined

from the average acceleration found the accelerometer and used for validation purpose

against our UWB method. The distance covered within 30 seconds of the observation

by an individual was compared with the distance determined by the Samsung health

application. This work currently does not distinguish the left and right side information
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thus, the absolute of azimuth (positive or negative) provided by gyroscope sensor has

been employed for the validation purpose of azimuths measured by the proposed work.

3.5.2 Microsoft Kinect Xbox One

The outcomes of the proposed 3D model have been supported by employing the Microsoft

Kinect Xbox One. It includes 3D imaging and employs time of flight (TOF) technology

to deliver high resolution, low latency, light independent 3D image sensing [106, 107].

Kinect captures 3D human motion and track skeleton of human body using color and

depth sensors. The proposed work aims to characterize human gait in a non-intrusive

manner so, the device has been calibrated to obtain color and skeleton only from the

video. Frames per second (FPS) has been fixed at 30 for color and depth sensor for video

acquisition. The camera has the field view of 70◦ horizontal and 60◦ vertical operates

at range from 0.8 to 4.2 meters from the device. It tracks the skeleton from the moving

body posture (as shown in Figure 3.7) and provides 3D joint coordinates. Figure 3.7a

shows the hardware device of Kinect module, Figure 3.7b displays the way it has been

used during experiment, Figure 3.7c and Figure 3.7d demonstrates the tracked human

skeleton and joints respectively. The Kinect sensor delivers 20 skeletal data (3D joint

coordinates) at standing and 10 skeletal data at sitting condition from body posture.

This skeletonization process is similar to the proposed prototype which supports the

work through the Kinect sensor. Figure 3.7d shows the 20 joints (white markers) from

a human body where the validation process has used only four joints from lower limb

of a human body such as the hip left, knee left, hip right, and knee right. Then vector

algebra has been employed on these joints to determine angles between the thighs to

validate the proposed outcomes.

3.6 Conclusion

All the experiments have been conducted by considering the standard ethical guidelines

in a controlled environment via non-intrusive, non-contact method. The chapter pro-

vides information on the participant profiles, configuration of instruments, and the data

collection processes. Although some researchers have already used this technology but

the measurements are limited to few gait parameters, which are unable to explore the
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(a) Microsoft Kinect sensor
.

(b) Simultaneous setup with
IR-UWB anetenna and Kinect.

(c) Video frame from color sensor
.

(d) Video frame from depth
sensor (i.e., skeleton).

Figure 3.7: Microsoft Kinect and sample video frame of human gait tracked through
Kinect color and depth sensor.

actual essence of human walk. Thus, the potentiality of UWB in gait identification is

underexplored in literature, which is the main focus of this research. Processing of data

with detailed theoretical background and algorithms have been demonstrated later in

the respective chapters, where the biomechanical gait parameters have been explained.

Though, the experiment performed in the anechoic chamber are not affected by multi-

path reflection, the challenges such as those are faced in the normal environment. The

transformation of data through developed model appears efficient and effective for both

the environments. The results have been corroborated through existing measurement

systems. Expensive gait and performance analysis laboratories and chambers are not

always possible to setup. Thus the performance of the developed model in normal en-

vironment may be an efficient and robust gait identification for clinical/domestic use in

future.
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Chapter 4

2D Gait Identification Employing

IR-UWB

The chapter demonstrates human gait detection and parameter extraction from impulse

radio ultra wideband (IR-UWB) technology using the device configuration presented in

Chapter 3. Thus, the work aims to characterise gait biomechanics through the signal

processing IR-UWB pulsed responses. Radar principles permit the determination of

the range of a human while walking in front of the radar. Though, each pulse has

its own range, azimuth, and elevation in a 3D plane, understanding and interpreting

this coordinate system is a challenging task. Thus, a mathematical model has been

prototyped and presented in this chapter which calculates the height where the pulse

back-scatters from human motion. The height has been determined from the change

of range over time and employing spherical trigonometry. The height information has

further been augmented with subjective information recorded during data collection

process to identify lower limb motion. This is a 2D gait identification approach since

the work only involves range and height to realise gait where no other dimensions (e.g.,

a dimension that indicates width of motion) are involved. The approach filters gait

patterns from other simultaneous biomechanical activities such as heartrate, breathing,

and arm movements. The proposed work has been realized in both ideal (anechoic

chamber) and normal environment to demonstrate its efficiency and robustness. The

resulting gait parameters (walking speed, leg orientation, and traversed distance) have

been corroborated via popular smartphone applications to enhance the outcomes. The

relevant theories and results are detailed in the following sections.

45
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4.1 Method

An approach to perform and analyse the non-stationary and multi-component radar

signals back-scattered from human motions, specifically the lower limb are explained in

this chapter. The received signals from physiological movements have been processed

using spherical trigonometric model, radar principles and short term fourier transforma-

tion (STFT). A flow chart of the data processing procedure is provided in Figure 4.1.

Here, the height of a physiological action has been determined and used to differentiate

between lower and upper body sections. The orientation of the lower limb has also

been calculated by azimuth or angle of arrival (AOA) measurement. Radar principles

have been further employed to the pulsed waves back-scattered from human gait (in-

cludes both the thigh and shank motion) to calculate parameters such as, walking speed,

step length, and total traversed distance. Subsequently, STFT has been performed to

derive parameters such as, step frequency and step phase of human gait from radar

time-frequency response. The theoretical background of the methods used has been

established and presented in the following subsections.

4.1.1 Azimuth and Elevation Angles

To assist in the differentiation of body areas, azimuth and elevation angles are con-

sidered. Figure 4.2a and 4.2b show the elevation angle at a particular time, where

∆OAB, ∆OAB′, ∆OCB, and ∆OCB′ are drawn from the received pulsed radar wave-

form. Here, O is considered the radar receiver, which is fixed at a point of height OP ′

from the ground. Therefore, BC and CB′ represent the height of a moving object

from the radar line of sight (LOS) OA. The moving body section is elevated from the

radar LOS at an angle θ and below the LOS at an angle θ′. The point O represents

the radar transceiver so the area OBAB’ of Figure 4.2a and area OBCB′ demonstrate

an antenna section of the beamwidth of an omnidirectional radiation pattern where,

the lines OA and OC divides the beam into two equal segments of radiation pattern.

Hence, geometrically the OP and OP ′ are equal in length. Thus, ∆OAB ∼= ∆OAB′ and

∆OCB ∼= ∆OCB′, therefore the height BC and CB′ can be determined from trigono-

metric relationships. Only the calculation of BC from ∆OAB is explained. Let, the

angle between BC and OB be α. The travelled distances are OA, OB, and OB′ in

propagation delays t1, t2 and t′2 by the pulses, where t1 > t2, t1 > t′2 and OA > OB,
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Ethical approval
received

Discard

Employ spherical
trigonometry & radar

principles

Configure UWB radar
& collect human
movement scans

Recruit human
participants & record
subjective knowledge

Is the scan
back-scattered from
height of lower limb?

Is the scan
back-scattered from

height of thigh?

No

Yes

No
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Scan back-scattered
from shank and foot

Scan back-scattered
from thigh

Execute STFT &
determine gait

parameters

Repeat this process
all for scans

Is the detection
info present for
the raw scan ?

Discard
No

Yes

Figure 4.1: The flowchart of processing UWB data and extracting gait information.

OA > OB′. Thus, the change of distance is (OA − OB) = ∆d, the change of time is

(t1− t2) = ∆t, and speed of light or pulse is c. Therefore, a pulse can travel the distance

in ∆t is BC = ∆× c. From the trigonometric ratio in right triangle ∆OCB,

cosα =
BC

OB
⇒ BC = OB × cosα

⇒ α = cos−1
[

∆t× c
OB

] (4.1)

If the height of a moving object from the ground at a particular time is h then,
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h = |OP −OB × cosα| (4.2)

This calculation has same outcome when t1 < t2, t1 < t′2 and OA < OB, OA < OB′.

(a) Gait towards radar (b) Gait away from radar

(c) Azimuth during the Gait

Figure 4.2: Elevation and azimuth angle during the gait.

Figure 4.2c displays the calculation of azimuth angle to determine the position, or orien-

tation of moving limbs towards the radar. The spherical system measures the azimuth

angle in a counter clockwise direction from the exact north of the receiver and is denoted

by φ. Let the moving limb be deviated at an angle φ, where the travelled distances are

XY andXW in propagation delay t1, t2. So, the change of distance is (XY −XW ) = Y Z

at the time interval (t1 − t2) = ∆t. The object as deviated from the exact north of the

receiver. Now, Y Z is approximately equivalent to the arc YW created by the object

at angle φ. Therefore, φ is calculated from the radian measure, and equivalent degree

conversion being,

φ =
Y Z × 360◦

XY × 2× π
(4.3)

4.1.2 Range and Velocity

The height of movement has been identified by the developed trigonometric calculations

(Eq. 4.2) when the leg length of an individual is known. The trigonometric calculations

evolve from the change of range, where the target range R is determined by the round-

trip time of the received radar signal. Therefore, the range of the moving body section

is evaluated via R = c4T
2 where, c = 3 × 108 meter/ seconds is the speed of light

or radio pulse, and 4T is the propagation delay(s). Walking velocity is obtained by

measuring the Doppler frequency shift, with the help of track information found from

the radar measurements of the subject’s location over time period. Thus, the velocity
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of an object is determined by fd =
2vp
λ where, fd is the difference between the frequency

of transmitted and received wave or Doppler shift, vp is the radial component of the

velocity, and λ is the wavelength of the transmitted wave. The range R decreases when

the person comes closer to the radar and fd increases and vice versa [108]. Therefore,

if the range at t1 and t2 time are R1 and R2 respectively then, the change in distance

or range is (R1 − R2) which, describes the distance covered by the shank in (t1 − t2)

time, and maximum change of distance by the shanks is the step length of a stride. The

change in range (R1 − R2) has been summed up each time for shanks to get the total

distance covered by an individual.

4.1.3 Short term fourier transformation (STFT)

As the spectral content of the UWB radar generated waveforms are non-stationary,

applying the discrete Fourier transform (DFT) over a long window does not reveal

transitions in the movement behaviour. To solve this issue, we can apply the DFT over

short periods of time for which the radar signals can be considered stationary. This can

be observed as a time-frequency trade-off. The DFT of the windowed radar waveform

is defined as:

S(m, k) = S(m,ω) |ω= 2π
N
k

=
∑∞

n=−∞ s(n)w(n−m)e−jωn |ω= 2π
N
k

=
∑∞

n=−∞ s(n)w(n−m)e−j
2π
N
kn (4.4)

Where the continuous spectrum of length N having k real cosine time sequence cy-

cles, s(n) is the received sequence obtained from the corresponding environment of the

experiment sampled at fs, w(n − m) is the window function starting at discrete time

m,ω = 2πf is the angular frequency with discrete values of ω = 2π
N k. Here, we are using

the Hamming window [109] length of 40 (experimentally fixed) which is characterised

by the following equation:

w(n) = 0.54− 0.46 cos(
2πn

N − 1
) (4.5)
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The discrete STFT [110] is used to create a collection of sequences, each corresponding

to the frequency components of s(n) falling within a particular frequency band which

corresponds to a certain activity or physiological signal.

4.1.4 Signal to Noise Ratio

The radar takes a scan period or scan training period (STP) to determine the background

noise before any detection occurs. The background noise strength Pnoi is measured from

the received waveforms during STP. The received signal strength Psig is determined

while radar detects the physiological movements. The signal to noise ratio (SNR) [108]

is defined as the ratio of the power of a received signal and the power of background

noise using SNR =
Psig
Pnoi

.

4.1.5 Algorithm Analysis

A high level description of the proposed study has been provided through the pseudo

code presented in Algorithm 1. The relevant theoretical information has been outlined

in Section 4.1.1 to 4.1.4. The configuration setting of the radar module and desired

UWB gait parameters are listed in lines 1 to 9. Then, the pulses have been handled

by employing radar detection information to obtain the raw signal amplitude and prop-

agation delay and is described by line numbers 11 to 14. The propagation delay has

been used further to determine the range of the physical action taking place around the

radar module and this is executed via line numbers 15 to 22. Subsequently, the range

of an action with respect to propagation delay has been further utilised to calculate the

height and azimuth of that physical movement, outlined in line numbers 23 to 24. The

obtained height of the back-scattered pulses have then been applied to distinguish the

lower limb movement from other body sections and associated amplitudes have been

transformed by STFT to determine the frequency of that movement, narrated in line

number 26 to 28. Finally, the gait parameters have been identified and used for further

analysis. Here, execution time of implementation is proportional to the square of scan

number (or, number of received pulses). Thus, the study requires quadratic time which

costs O(n2) running time.
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Algorithm 1 Pseudo code of proposed method

Require: Configure radar module (using Table 3.2)
Require: Scan data from RCM & MRM module

1: Total number of scans = NoS
2: Number of datapoints per scan = DPS

3: Array of raw amplitudes = Ramp
4: Detection flag = Dflag

5: Array of detection index = Dinfo

6: Speed of light c = 3× 108 meters/second
7: Length of leg of a person = LoL
8: Length of thigh of a person = LoT
9: Length of shank of a person = LoS

10: for all Scan = 1 to NoS do
11: if Dflag == TRUE then
12: Take Ramp & Dinfo

13: Two way time of flight for first detection t1 = 0
14: Two way time of flight for next detection t2 = 0
15: for all Dinfo = 1 to Length of Dinfo do
16: if Dinfo == 1 then
17: t1 = Dinfo × 61 picoseconds
18: else
19: t2 = Dinfo × 61 picoseconds
20: end if
21: Initial range R1 = c×t1

2 ⇐ Section 4.1.2
22: Range for t2 delay R2 = c×t2

2 ⇐ Section 4.1.2
23: Determine height h⇐ Equation 4.2
24: Determine Azimuth φ⇐ Equation 4.3
25: end for
26: if (hmin ≥ 0)&&(hmax ≤ LoS) then
27: Scan backscattered from Shank
28: do STFT on Ramp to get frequency ⇐ Section 4.1.3
29: end if
30: end if
31: end for
32: Tabulate average of gait parameters
33: Plot gait route from Doppler effect

4.1.6 Result Corroboration

To establish and understand boundary conditions, the obtained results have been cor-

roborated via popular smartphone applications. The gait parameters such as, walking

speed, total traversed distance, and lower limb orientation have been determined using

accelerometer sensor, Samsung health application, and gyroscope sensor respectively

and to compare the outcomes with proposed work. Each participant has been requested

to walk, carrying two smartphones and turning these applications on during the exper-

iments (in ideal and normal environment) while the proposed UWB system was also
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on. The accelerometer provides linear acceleration, Samsung health application delivers

total covered distance within the observation time frame, and the gyroscope provides az-

imuth, pitch, and roll information. The average velocity of a subject has been calculated

from the average acceleration obtained from the accelerometer and used for comparison

purpose against the proposed UWB prototype. The distance covered within 30 seconds

of observation time by an individual has been compared with the distance determined

by the Samsung health application. The prototype does not distinguish between left

and right side thus, the absolute of azimuth (positive or negative) provided by gyro-

scope sensor has been employed for the validation purpose of azimuths measured by the

proposed work.

4.2 Result Analysis

Radar responses for physiological movements have been gathered and studied through

the proposed spherical trigonometric system (described in Section 4.1.1) and radar prin-

ciples (described in Section 4.1.2). Further, the height of the reflected pulses has been

determined and subsequently, the recorded anatomical measurements (of Table 3.1) have

been used to identify pulsed waveforms back-scattered from different areas of the body

e.g., pulse reflections from the upper body includes breathing, heartbeat (chest move-

ment), and arm swinging whereas, the pulse reflections from the lower body movement

includes palm of hand, thigh, shank, and ankle movements. As the focus of this chapter

is on gait parameter identification the pulses reflected within the height of shank and

thigh have been considered for each participant. However, arm swinging and walking

are two interrelated physiological events where, arms can cover some portion of the legs

below the waist creating some redundancy in distinguishing the arm and thigh. Also,

the shank reflects standard osteometrics better than the thigh, therefore shank move-

ment has solely been considered to characterize an individual’s gait pattern. The pulsed

waveforms back-scattered from the shank has been transformed using STFT to deter-

mine the frequency of an event that occurs for the movement of shank. The waveforms

reflected above the shank and thigh obviously include other physiological actions such

as, arm movement, heart rate and breathing patterns which have been filtered out for

this work. Thus, the height of body section has been considered to discriminate the gait

from other bio-mechanical activities. The participants were asked to walk at different
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paces (i.e., slow, medium, and fast) in both the ideal and normal environment to validate

the proposed work. Corresponding results have been presented in the following sections.
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(a) Female walking at fast pace.
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(b) Male walking at fast pace.

0 0.6 1.3 2

Observation Time (Seconds)

0

1

2

3

F
re

q
u

en
cy

 (
H

z)

(c) Female walking at medium
pace.
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(d) Male walking at medium pace.
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(e) Female walking at slow pace.
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(f) Male walking at slow pace.

Figure 4.3: Shank movement frequency of participants walking at different pace obtained
through UWB radar in ideal environment.

4.2.1 Results from Anechoic Chamber

Pulses backscatter from the human body when individuals walk back and forth in front

of the radar. These pulsed waveforms have been processed in the following manner

shown in Figure 4.1. If a pulsed wave or signal has been identified as reflecting from

the shank then it is considered for further processing, otherwise it’s discarded. The

first pulse of each signal reflecting from the shank has been transformed by STFT,
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characterizing the step movement of human gait. Figure 4.3 shows the frequency of lower

leg movement obtained from the proposed STFT for an observation time of 2 seconds

when the walking speed of participants are fast, medium and slow. The results for both

female and male participants have been included here. The figure shows the repetitive

shank movement demonstrating the step frequency (number of steps per second) of

human gait. Figures 4.3a and 4.3b show the step frequency at a fast walking pace,

which reaches 3.9 Hz for females and 4 Hz for male participants. Figure 4.3c and 4.3d

displays the shank movement at a medium walking pace which results approximately

3 Hz for both female and male participants. Figure 4.3e and 4.3e demonstrates step

frequency of approximately 2 Hz at slow walking pace for the participants. The variation

of step frequency occurs when the participants reach one end of test bed and walk slowly

to turnaround. For example, Figure 4.3a shows approximately 3.9 Hz initially but it

decreases to 3.2 Hz when the person reached one end of the test bed and needed to slow

down their walking speed. The step phase or the swing phase also has been determined

(1/step frequency) from step frequency and detailed in Table 4.1 for all participants.

Table 4.1: Results of gait analysis from ideal environment.

No
Sf

(Hz)
Ws

(m/s)
Ca

(c/min)
Sl

(m)
Td

(m)
Lo
(0)

1 3.033 1.527 181.892 0.501 45.603 ±1.833
2 3.050 1.522 182.783 0.498 45.608 ±1.714
3 3.003 1.500 180.030 0.499 45.000 ±1.888
4 3.144 1.564 187.759 0.521 46.910 ±1.876
5 2.954 1.469 176.398 0.489 44.072 ±1.762
6 3.271 1.629 195.532 0.542 48.852 ±1.954
7 2.815 1.400 168.026 0.466 41.980 ±1.679
8 3.018 1.499 179.986 0.499 44.968 ±1.798
9 2.990 1.489 178.790 0.496 44.669 ±1.786
10 3.181 1.584 190.151 0.527 47.508 ±1.900
11 3.193 1.589 190.749 0.529 47.657 ±1.906
12 2.898 1.440 172.810 0.479 43.175 ±1.727
13 3.040 1.514 181.779 0.504 45.416 ±1.816
14 3.025 1.504 180.583 0.501 45.117 ±1.804
15 3.122 1.554 186.563 0.517 46.611 ±1.864

The relation between SNR and range is plotted in Figure 4.4 for two female and two male

participants. The noise figure is evaluated from the STP and SNR is measured from the

scans with the help of detection information and logarithmic relation is found between

SNR and range. Here, the length of test bed in anechoic chamber is 3 meters. The

module employs coherent pulse integration, as expected the system provides improved
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SNR with number of pulses integrated to accommodate itself with background noise and

achieve a certain range with logarithmically decreased SNR.

(a) 1st female participant. (b) 2nd female participant.

(c) 1st male participant. (d) 2nd male participant.

Figure 4.4: SNR and range relationship in the ideal environment during movement.

The route of participant’s gait has been determined from the Doppler effect. The Doppler

shift fd (described in Section 4.1.2) has been calculated during the observation time and

plotted to check the gait route of a person. The identified signals from shanks have been

processed through STFT and plotted in Figure 4.5 as received over time, where the

higher average movement in anechoic environment results prominent yellow color. The

upside and downside of Figure 4.5a, 4.5b, 4.5c, and 4.5d specify the nearest and furthest

point from radar during a walk two female and two male participants. Therefore, x-axis

represents the increment of time with received signals. The total distance traversed by an

individual has been obtained from summing up the changes in range during locomotion

in front of the radar.

Table 4.1 includes the average gait parameters obtained from the experiment for human

participants in an anechoic chamber/ideal environment. Seven parameters have been

calculated from the proposed experimental data to define the human gait. The parame-

ters such as, step length (Sl), cadence (Ca), stride length (STl), walking speed (Ws), and

lower limb orientation (Lo) have been determined along with step frequency (Sf ), and

total traversed distance (Td). The maximum change in distance by the shanks describe
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(a) 1st female participant.
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(b) 2nd female participant.
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(c) 1st male participant.
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(d) 2nd male participant.

Figure 4.5: Radar movement patterns on test bed in anechoic chamber.

the step length. Cadence is the number of revolutions per minute (RPM) i.e., the num-

ber of steps per minute has been estimated from the gait frequency (i.e., cadence= step

frequency×60). Walking speed has been obtained from the frequency shift (described in

Section 4.1.2) for each human subject. The angle of arrival (AOA) or azimuths of pulses

are calculated from the range and propagation delay (Eq.5.2) in spherical polar coordi-

nates, providing a clear indication of the orientation of the moving lower limb (shank)

with respect to the radar. The azimuth measurement provides the torso section orien-

tation over 360◦ spherical plane where, 0◦ to 180◦ represent left hand side of antenna

radiation pattern and 181◦ to 360◦ represents the right hand side of antenna radiation

pattern. If the azimuth or AoA is more than 180◦ has been scaled to the supplementary

angle for the interval 181◦ to 360◦ and denoted by negative angle sign (-ve) to signify

the orientation of right side from the radar transmitter-receiver. Table 4.1 includes the

average orientation of the shank.

4.2.1.1 Result Corroboration for Anechoic Chamber

Figure 4.6 displays the comparison of proposed research with outcomes from the smart-

phone sensors and applications used. Figure 4.6a illustrates the individual’s velocity
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comparisons obtained from the anechoic chamber. The result variation has been found

to be approximately 3%. Lower limb orientation is also a important characteristic for

human locomotion which has been compared in Figure 4.6b for the anechoic environ-

ment. The differences found here is negligible. The traversed distance by an individual

in this environment has been shown in Figure 4.6c. The overall variation of results are

approximately within 5%.
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Figure 4.6: Commercial and UWB method comparison of gait parameters identified by
proposed method and obtained from smartphone applications in ideal environment.

4.2.2 Results from Multipath Environment

This section describes the results obtained from the real or normal environment, i.e.

the laboratory room environment. To remain consistent, the same participants who

participated in the anechoic chamber scenario have been involved again. The wave-

forms back-scattered from the shanks have been distinguished from other bio-mechanics

activity in the same way as before. Figure 4.7 shows the frequency of lower leg move-

ment attained from the proposed STFT for the observation time of 2 seconds when

the walking speed of participants was in fast, medium and of a slow pace. The figure

illustrates the repetition of shank movement when the persons walk along the test bed.

Figure 4.7a, 4.7c, and 4.7e show the step frequency of female participants at different

walking paces. Figures 4.7b, 4.7d, and 4.7f demonstrate the shank movement of males at
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different walking paces. The step frequency and walking speed are interrelated processes

thus, fast walking results in a greater number of steps and vice versa.
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(a) Female walking at fast pace.
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(b) Male walking at fast pace.
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(c) Female walking at medium
pace.
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(d) Male walking at medium pace.
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(e) Female walking at slow pace.
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(f) Male walking at slow pace.

Figure 4.7: Shank movement frequency of participants walking at different pace obtained
through UWB radar in multi-path environment.

The step frequency, or the number of steps in one minute reaches up to 4 Hz (240

steps/minute) during fast walking and approximately 2 Hz (120 steps/minute) during

the slow walk for both female and male participants. The discrepancy of step frequency

for a person has been found when the participant reaches one end of the test bed and

walks slowly at that part to take a turn to continue their walk. The step phase has

been calculated (1/step frequency) from step frequency and detailed in Table 4.2 for all

participants.
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Table 4.2: Results of gait analysis from multipath environment.

No
Sf

(Hz)
Ws

(m/s)
Ca

(c/min)
Sl

(m)
Td

(m)
Lo
(0)

1 2.881 1.444 172.636 0.500 43.162 ±1.926
2 3.033 1.520 181.898 0.497 45.447 ±2.933
3 2.831 1.413 169.545 0.500 42.393 ±2.771
4 3.176 1.582 190.268 0.561 47.572 ±3.108
5 3.200 1.594 191.706 0.565 47.932 ±3.132
6 2.946 1.467 176.507 0.521 44.132 ±2.883
7 3.160 1.574 189.321 0.558 47.336 ±3.093
8 3.147 1.568 188.542 0.556 47.141 ±3.080
9 2.886 1.438 172.906 0.510 43.231 ±2.825
10 2.863 1.426 171.523 0.506 42.885 ±2.802
11 3.064 1.526 183.564 0.541 45.896 ±2.999
12 3.308 1.648 198.218 0.585 49.560 ±3.238
13 2.980 1.484 178.550 0.527 44.642 ±2.917
14 3.110 1.54 186.326 0.550 46.587 ±3.044
15 2.918 1.454 174.847 0.516 43.717 ±2.856

The relationship between SNR and range in the real environment is plotted in Figure 4.8

for two female and two male participants. The noise figure evaluated from the STP and

SNR is measured from the scans with the help of detection information. Here, the

length of test bed in anechoic chamber is 6 meters. The module follows coherent pulse

integration, the system provides improved SNR with number of pulses integrated to

accommodate itself with background noise (collected during STP) and cover the said

range with logarithmically decreased SNR.

The route of participant’s gait has been determined from Doppler effect like that per-

formed in the experiment carried out in the anechoic chamber. The Doppler shift fd has

been measured during the observation time and plotted to check the path of a human

walk in the normal environment. Thus, the identified scans from the shank have been

plotted as received in time in Figure 4.9, where the lower average movement in noisy

environment results blurred yellow color. The top and bottom of Figure 4.9a, 4.9b, 4.9c,

and 4.9d specify the nearest and furthest point from the radar respectively. These fig-

ures illustrate the repetitive route of a participants walk. Table 4.2 includes the average

of parameters obtained from the experiment in normal or laboratory environment. The

parameters of gait have been determined by following the same way in case of ideal

environment.
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(a) 1st female participant.
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(b) 2nd female participant.
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(c) 1st male participant.
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(d) 2nd male participant.

Figure 4.8: Relationship between SNR and range in multi-path environment during gait.
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(a) 1st female participant.
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(b) 2nd female participant.
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(c) 1st male participant.
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(d) 2nd male participant.

Figure 4.9: Movement patterns on test bed in normal environment.

4.2.2.1 Result Corroboration for multipath environment

Figure 4.10 shows the comparison of proposed outcomes with the outcomes of smart-

phone sensors and applications. Figure 4.10a demonstrate comparison of individual’s



Chapter 4 2D Gait Identification Employing IR-UWB 61

velocity obtained from and normal environment respectively where the result variation

has been found less than 3%. Orientation of lower limb has been compared in Fig-

ure 4.10b. The traversed distance by an individual in normal environment has been

presented in Figure 4.10c where the result variation is again within 5%.
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Figure 4.10: Commercial and UWB method comparison of gait parameters identified by
proposed method and obtained from smartphone applications in multi-path environment
for the same experiments.

4.2.3 Result Comparison & Discussion

As expected, minor variations have been observed in gait parameter measurements be-

tween the outcomes of Table 4.1 and 4.2 in the cases of Sf , Ws, Sl, and Td as defined in

Section 4.2.1. The proposed model has been experimented in two different environments.

The anechoic environment was dark with a narrow testbed (3 m), the participants were

more cautious when asked to walk and turn during the requested sessions. However,

the length of laboratory testbed was 6 m in bright conditions and participants walked

with more confidence. This had an effect on walking pattern in with same participants.

Gait is an interrelated and coordinated outcome of all lower limb sections, thus a change

of behaviour provides reasons for dissimilar gait as well as different step length (Sl),

step frequency (Sf ), walking speed (Ws), etc. for the same person. Also, the reflecting

elements of the real environment cause small-scale multipath effects which are a more

realistic to test the model and account for the usual obstructions present in real life
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scenarios. In the real environment, the receiver antenna sustains back-scattered pulses

from the human body and reflected pulses from walls, book selves, tables, metals, etc.

This creates off beam azimuth and range measurement for a leg movement which reflects

in the average gait parameters presented in Table 4.2. Thus, gait parameters measured

for each person in the anechoic chamber are more accurate than the laboratory environ-

ment. They are not realistic, importantly the model and subsequent tests have shown

that gait could be measured in both settings accurately and can be realised from the

validation procedure.

The work aims to propose an efficient, locally based radar system that can be used in

home environment without any complex setup for gait monitoring, totally non-contact

and non-intrusive based UWB gait identification technique comprising the heuristic un-

derstanding of spherical trigonometry and radar principles. In this study a comprehen-

sive framework has been developed to identify different walking pattern types without

hampering a person’s privacy and comfort (no wearables). A number of healthy human

walking patterns were involved for data accumulation in the two types of environments

chosen (ideal and real). Due to the complexity of human gait processing radar signals, a

new theory to calculate the height of a movement and employ them heuristically to dif-

ferentiate upper and lower body movement has been developed. Further, all the different

walking style (male and female) towards and away from the radar has been evaluated.

The rigorous analysis made this gait identification system robust and precise. Addition-

ally, the obtained outcomes of this investigation have been tested and validated to prove

this method can create a powerful and productive human gait detection method that

could be employed in work at home in harsh environments, opening up door to clinical

studies, security, health monitoring and many more perspectives.

4.3 Conclusion

This chapter presents the first ever description and experimental demonstration of a

non-contact pulsed UWB sensor system to identify and estimate human gait from other

simultaneous bio-mechanic actions such as, arm swing, breathing and heart rates. A

UWB radar sensor with in-house developed algorithms is used for data collection and

processing. These signals are processed by STFT with fundamental radar principles

employed to extract gait parameters including walking speed, step length, step phase,
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that define the quality and type of locomotion of a person. Also, important parameter

such as distance travelled is evaluated which is effective for long term gait and mobil-

ity quality monitoring. The results show the unique effectiveness and advantages of

pulsed UWB radar to analyse the quality of movement in an autonomous way. The

proposed prototype has some limitations. The radar threshold value for physiological

movement detection (a numeric multiple to the transmitted power) plays a pivotal role

in the experiment and has been decided experimentally by a trial-error approach. An

inappropriate threshold results in unwanted movement detection, a too high threshold

may miss slow joint and torso motion, whereas too low threshold detects more limb mo-

tion due to multipath reflection especially in normal environment. Thus, the threshold

needs to be decided carefully to employ in normal environment for the experiment. The

work shows potential to measure human gait even in normal environments when mul-

tipath reflections are accommodated. Further research is underway to - (i) incorporate

multipath reflections and mirror the normal environments so that behaviour changes

can be eliminated, (ii) calculate stance (posture), joint angles, and duration of stops,

(iii) recruit more participants with normal and abnormal walking patterns and improve

the model towards handling the greater multipath situations, (iv) determine leg/arm

swing and stance times to understand/recognise abnormal gait patterns e.g., scissors,

steppage, waddling, and propulsive gait, (v) the creation of a database of human gait

patterns from IR-UWB.
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Chapter 5

3D Gait Identification Employing

IR-UWB: ITERATOR

Gait or human locomotion is bipedal and a forward propulsive movement of the human

body. The locomotion has been charaterised through a 2D approach presented in Chap-

ter 4, where range and height are both involved. That work is limited to only a few

gait parameters such as, step frequency, step count, distance covered, etc. and are not

sufficient to provide the potential of gait pattern diagnosis. Other gait parameters such

as angles of hip and knees during flexion and extension respectively are commonly used

to measure the quality of gait. Thus, this work has been extended to a 3D impulse radio

ultra wideband (IR-UWB) gait identification method presented in this chapter. The

prototype is 3D human motion model for gait disorder identification from impulse radio

ultra wideband (ITERATOR) with the understanding of spherical trigonometry and vec-

tor algebra. Here, range, height, and width (gait motion width) have been determined

from radio responses enabling the model to detect gait in 3D. Subsequently, normal and

abnormal walking subjects were involved in this study. Abnormal gait subjects belong

to the spastic gait category only in the initial study. The prototype has been tested in

both the anechoic and multipath environments. The outcomes have been corroborated

with simultaneous Kinect Xbox sensor and supported by statistical graphical approach

Bland and Altman (B&A) analysis.

65
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5.1 Method

The prototype has been described in this chapter only focuses on thigh or hip angles of

human gait during flexion and extension of leg muscles. The work is divided into five

parts; participants and their subjective data, IR-UWB radar module and device settings,

proposed mathematical model from UWB and Kinect sensor data, corroboration of

results, result analysis, and a case study with spastic gait patterns. Here, four new

participants were involved with spastic gait along with the twenty participants have

introduced in Chapter 3. The device settings have remained the same for UWB radar

module and Kinect described in Chapter 3. All other relevant parts have been detailed

here in the following sections.

5.1.1 Azimuth and Elevation Angles

To differentiate the lower limb, upper limb, and body sections, height has been calculated

and used here. Azimuth and elevation angles are significant to define 3D space and

calculate the height, range, and arc from radar beam angle. Thus, a 3D scenario has

been considered in Figure 5.1 to obtain elevation and azimuth angle at different time

and all the ranges have been denoted here by vector notation as they have a particular

direction at a time.

B

B'

A

C
O

P

P'

D

Figure 5.1: Elevation and azimuth angle during the gait.

Here, O is considered as the radar receiver fixed at a point of height
−−→
OP ′ from the

ground. Triangles ∆OAB, ∆OAB′, ∆OCB, and ∆OCB′ have been drawn from the

received radar pulses. Therefore,
−−→
BC and

−−→
CB′ represent the height of a moving object

from the radar line of sight (LOS)
−→
OA. The moving body section is elevated from the
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radar LOS at an angle θ and below the LOS at an angle θ′. The point O represents

the radar transceiver so the area OBAB’ of Figure 5.1 and area OBCB′ demonstrate

an antenna section of the beamwidth of an omnidirectional radiation pattern where,

the lines OA and OC divides the beam into two equal segments of radiation pattern.

Hence, geometrically the OP and OP ′ are equal in length. Here, ∆OAB ∼= ∆OAB′

and ∆OCB ∼= ∆OCB′, therefore the height
−−→
BC and

−−→
CB′ can be determined from the

trigonometric understanding. Let, the angle between
−−→
BC and

−−→
OB be α from ∆OAB.

The ranges are
−→
OA,

−−→
OB, and

−−→
OB′ for the propagation delays of t1, t2 and t′2 by the

pulses, where t1 > t2, t1 > t′2 and
−→
OA >

−−→
OB,

−→
OA >

−−→
OB′. Therefore, the change in

range is (
−→
OA−

−−→
OB) = ∆d, the change in propagation delay is (t1− t2) = ∆t, and speed

of light or pulse is c. Therefore, pulse can travel the distance in ∆t is
−−→
BC = ∆t × c.

From the right triangle ∆OCB,
−−→
BC =

−−→
OB × cosα. Thus, the height of the moving

body section from the radar receiver is
−−→
OB × cosα. The UWB radar has been fixed to

a certain height of
−−→
OP ′, thus the actual height of that moving object from the ground

h would be defined by,

h = |
−−→
OB × cosα−

−−→
OP ′| (5.1)

Now, the azimuth angle has been determined to measure orientation of a moving body

section from the radar beam angle (shown in Figure 5.1). The spherical system measures

the azimuth angle in a counter clockwise direction from the north beam angle of the

radar receiver. Let, the moving limb is deviated at an angle φ, where the ranges are
−→
OA

and
−−→
OC in propagation delay t1, t2. So, the change in range is (

−→
OA−

−−→
OC) =

−−→
DA at the

time interval (t1− t2) = ∆t. The object is deviated from the exact north of the receiver.

Now,
−−→
DA is approximately equivalent to the arc AC created by the object at angle φ.

Therefore, φ is calculated from the radian measure, and equivalent degree conversion is,

φ =

−−→
DA× 360◦

−→
OA× 2× π

(5.2)

Therefore, the coordinate of a pulse reflecting from a human body has been determined

with the help of range, elevation, and azimuth calculation. Let, a pulse back-scattered

from human body have its motion width, distance, height be a, r, h respectively. Thus,

each pulse has it’s coordinate and direction when back-scattered from any physiological
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movement permitting the points to be considered as vectors such as, aî+ rĵ+hk̂ where,

î, ĵ, and k̂ are unit vectors of three planes in a 3D space. The subscripts of a, r, and h

have been used through out the thesis to denote motion width, distance, and height of

a back-scattered pulse. The height of a back-scattered pulse has been considered here

with the a priori knowledge of body sections to differentiate the lower limb from upper

limb. The back-scattered pulses within the height of lower limb has been considered here

to determine angles between alternative thighs and detailed in the following sections.

5.1.2 Hip Angle Measurement from IR-UWB

The angles between two alternative thighs or hip angles are pivotal parameters for

gait characterization [111]. Thighs are connected through the pelvis via the ball-socket

and femoral head, bearing human body weight and the force of the strong muscles of

the hips and legs. Therefore, the angle between thighs changes during extension and

flexion movements. Here, two random points on the thigh
−→
LT = a1î+ r1ĵ + h1k̂,

−→
RT =

a2î+ r2ĵ + h2k̂ ∈ R3 Euclidean space at time t has been assumed on the left and right

thighs respectively (shown in Figure 5.2) where, the extension of these two vectors

towards infinity intersect at human pelvis joint.

Le
ng

th
 o

f l
eg



Le
ng

th
 o

f s
ha

nk


Figure 5.2: Consideration of vector while a person is walking.

Consequently, the extension of any two vectors (that represent the reflection position

of a pulse on both thighs) from the left and right leg respectively, create and indicate

the hip angle of human walk. The acute angle between any two vectors (for left and

right thigh) denotes the hip angles which is determined by employing the dot or scalar
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product operation. The acute angle is denoted by δ here and the measurement of δ

shown in Eq. 5.3.

−→
LT .
−→
RT = |

−→
LT ||
−→
RT | cos δ

⇒ cos δ =

−→
LT .
−→
RT

|
−→
LT ||
−→
RT |

⇒ cos δ =
(a1î+ r1ĵ + h1k̂).(a2î+ r2ĵ + h2k̂)

|a1î+ r1ĵ + h1k̂||a2î+ r2ĵ + h2k̂|

⇒ cos δ =
(a1a2 + r1r2 + h1h2)√

a21 + r21 + h21
√
a22 + r22 + h22

⇒ δ = cos−1
(

(a1a2 + r1r2 + h1h2)√
a21 + r21 + h21

√
a22 + r22 + h22

)
(5.3)

5.2 Result Corroboration via Kinect Xbox One

The outcomes of the proposed work have been validated with the Microsoft Kinect Xbox

One. It includes 3D imaging and employs time of flight (TOF) technology to deliver

high resolution, low latency, light independent 3D image sensing [112]. Kinect captures

3D human motion and tracks skeleton of human body using color and depth sensor. The

proposed work aims to characterize human gait in a non-intrusive manner so the device

has been calibrated to obtain color and skeleton only from the video. Frames per second

(FPS) has been fixed at 30 for color and depth sensor for video acquisition. The camera

has the field view of 70◦ horizontal and 60◦ vertical operates at range from 0.8 to 4.2

meters from the device. It tracks the skeleton from moving body posture (as shown in

Figure 5.3) and provides 3D joint coordinates.

The Kinect sensor delivers 20 skeletal data (3D joint coordinates) at standing and 10

skeletal data at sitting condition from body posture. This skeletonization process is

similar to the proposed prototype permitting the validation of the work through Kinect

sensor. Figure 5.3b shows the 20 joints (white markers) from a human body where, the

validation process has used only four joints from lower limb of a human body such as,

hip left (
−−→
HL), knee left (

−−→
KL), hip right (

−−→
HR), knee right (

−−→
KR). Then the vector algebra

has been employed on these joints to determine angles between thighs and validate the

proposed outcomes.
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(a) Video frame from color sensor
.

(b) Video frame from depth
sensor (i.e., skeleton).

Figure 5.3: Sample video frame of human gait tracked through Kinect color and depth
sensor.

Let, the vectors
−−→
HL,

−−→
KL,

−−→
HR,

−−→
KR ∈ R3. The component form of these vectors have

been denoted as,
−−→
HL = a3î+ r3ĵ + h3k̂,

−−→
KL = a4î+ r4ĵ + h4k̂,

−−→
HR = a5î+ r5ĵ + h5k̂,

−−→
KR = a6î + r6ĵ + h6k̂ where, subscripts with a, r, h represents the distance from î, ĵ,

k̂ planes respectively. These vectors have been further used to determine angle between

alternative thighs for gait characterization in the following sections.

5.2.1 Hip Angle Measurement from Kinect

The angle between thighs or hip angle has been defined and calculated by the proposed

prototype earlier. Now, the angle between thighs has been measured using the hip joints
−−→
HL,

−−→
HR,

−−→
KL, and

−−→
KR obtained from Kinect skeletal data. Therefore, the two lines are

required to calculate the acute angle or the angle of thighs between left and right thigh.

Thus, the connecting line between two vectors
−−→
HL and

−−→
KL would be spanned by a vector

−−→
LT k = (a3−a4)̂i+(r3−r4)ĵ+(h3−h4)k̂ which represents the space of left thigh. Similarly,

the position vector of right thigh
−−→
RT k = (a5 − a6)̂i+ (r5 − r6)ĵ + (h5 − h6)k̂. The acute

angle between
−−→
LT k and

−−→
RT k has been determined by their dot product and denoted by δ ′

(detailed in Eq. 5.4) where, (a3−a4) = a34, (r3−r4) = r34, (h3−h4) = h34, (a5−a6) =

a56, (r5 − r6) = r56, (h5 − h6) = h56 have been considered for simplification of the

calculations.
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−−→
LT k.

−−→
RT k = |

−−→
LT k||

−−→
RT k| cos δ ′

⇒ cos δ ′ =

−−→
LT k.

−−→
RT k

|
−−→
LT k||

−−→
RT k|

⇒ cos δ ′ =
(a34î+ r34ĵ + h34k̂).(a56î+ r56ĵ + h56k̂)

|a34î+ r34ĵ + h34k̂||a56î+ r56ĵ + h56k̂|

⇒ cos δ ′ =
a34a56 + r34r56 + h34h56√

a234 + r234 + h234
√
a256 + r256 + h256

(5.4)

5.3 Bland and Altman (B&A) Plot Analysis

There two different models: the proposed ITERATOR prototype and the Kinect module

have been used here to measure same gait parameter where, some amount of variation in

outcomes have been found. Thus, the outcomes have been compared using B&A anal-

ysis [113, 114] based on the quantification of the agreement between two quantitative

measurements proposed ITERATOR and Kinect system by studying mean difference

and constructing limits assessing comparability between these two methods. The sta-

tistical limits are calculated by using the mean, standard deviation of the differences

between the two measurements, and a hypothetical graphical approach to indicate the

agreement. Hip or thigh angle has been measured through proposed ITERATOR and

Kinect system for gait analysis. Let, the measured hip or thigh angles from the proposed

and the Kinect systems be hp and hk respectively, the mean of the hip or thigh angles

is mh, differences between paired hip angles be dh, standard deviation of the differences

obtained for hip angles is sh. The graphical approach is used to check the assumptions

of normality of differences and other characteristics, where the x-axis represents the

measurements average and y-axis shows the difference between the two measurements.

The two systems would agree when most of the consequences lie within dh ± 1.96sh

for the measurement of hip angles. More precisely, 95% of differences must be within

dh ± 1.96sh for measuring hip angles according to B&A analysis. Thus, null hypothesis

states here there is no significant difference between populations (measurements) taken

ITERATOR and Kinect for determining hip angles of participants where probability

value p < 0.05 indicates acceptance of null hypothesis and correctness of assumption.
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5.4 Result Analysis

As explained the experiment has been conducted in two different environments: anechoic

and multipath environment to investigate robustness, cost effectiveness, and suitability.

In addition to this, the preciseness and acceptance of the work for gait characterisation

has been supported through B&A plot analysis in each environment. The results and

B&A plot analysis have been analysed in the following sections.

5.4.1 Result Analysis from Anechoic Chamber

The comparative analysis of the obtained results from the proposed prototype and Kinect

sensor are demonstrated in this section. The processing of IR-UWB data and interpre-

tation has been discussed in Section 5.1.1, which explains the positions of back-scattered

pulses from a human body and defines motion through the IR-UWB. Figure 5.4 shows

one of the twenty normal walking patterns through the IR-UWB response in 3D over an

observation period, where Figure 5.4a and 5.4b lay out front and side views of walking

motion captured through proposed model.

(a) The front view of IR-UWB 3D re-
sponse from a normal walk.

(b) The side view of IR-UWB 3D re-
sponse from a normal walk.

Figure 5.4: The front and side views of IR-UWB 3D response from a normal walk.

The x, y, and z axis signify gait motion width, distance from radar, and height of

movement respectively. The motion appears like the letter ‘W’, showing the symmetry

of the human body and there are three areas labeled with P1, P2, and P3. Here, the

area P1 reflects hip joint of that person, P1 to P2 and P1 to P3 denotes the change

of position of human body due to gait motion when one leg is lifted off of the ground

and another leg is contacted the ground to push forward the body during walking. The
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person walked back and forth in front of the radar (within the 3 m testbed) during

the observation times that creates separate areas (P1, P2, and P3) in 3D for change of

position. Also, the distance between the bottom of P2 and P3 areas represent the step

base width i.e., the perpendicular distance between two steps during gait. In addition,

two areas detected above leg height are the hand movements (both right and left legs).

Figure 5.5a displays the front view of walking pattern captured through the IR-UWB

response and 5.5b demonstrates the skeletonization of that gait pattern acquired from

the Kinect in the anechoic chamber.

(a) 3D human motion from IR-UWB. (b) 3D human skeleton from
Kinect.

(c) Changes of thigh angles deter-
mined from proposed model.

(d) Changes of thigh angles deter-
mined from Kinect skeleton.

Figure 5.5: The human motion and thigh angles obtained from proposed model and
Kinect respectively for a person having normal walking pattern.

Figure 5.5a shows a 3D structure resembles the letter ‘W’ which, includes the flexion and

extension of skeletal muscle’s (i.e., arm and legs) motion over time. The skeletal muscles

move faster than the other body sections which implies the transmission of higher energy

by the bio-mechanical process that allows UWB radar to capture motion. The extension

of lower limbs (left and right) creates a separate motion area, whereas the flexion (right

and leg) of the lower limb and upper limbs creates a linear region from the shoulders

that explains the human motion. The person depicted in 5.5a and 5.5b has an actual

height of 1.55 m whereas the estimated height of the shape is 1.35 m. This is because the
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model has captured all movements by UWB upto the shoulder height from the ground

level. The leg length of that participant is 0.95 m and knee height is 0.45 m from the

ground level that have been used to separate each lower limb sections to determine the

angles between alternative thighs. Figure 5.5c and 5.5d demonstrates the estimation of

thigh angles from the proposed study and Kinect respectively using the method of Eq.

5.3 and Eq. 5.4. The x-axis denotes the single gait cycle (in percentage) of a person by

considering two consecutive steps and the process has been repeated for 30 seconds then

plotted in y-axis and z-axis which represents the angles between the thighs during the

observation time. The outcomes have been detailed here for 30 s for each participant.

This participant has walked at a speed of 1.33 m/s (obtained from Doppler effect) and

the thigh angles obtained the from proposed prototype is approximately 24◦ whereas,

the angles obtained from Kinect results approximately 26◦. The troughs here represent

the angles during flexion and crest signifies the angles at the time of leg extension.

(a) The front view of IR-UWB 3D re-
sponse from a abnormal walk.

(b) The side view of IR-UWB 3D re-
sponse from a abnormal walk.

Figure 5.6: The front and side views of IR-UWB 3D response from an abnormal walk.

Figure 5.6 shows one of the abnormal walking patterns through the IR-UWB response

in 3D over an observation period as before, where Figure 5.6a and 5.6b lay out the front

and side views of the walking motion captured through the proposed model. The x, y,

and z axis signify gait motion width, distance from the radar, and height of movement

respectively. The motion again appears like the letter ‘W’, shows symmetry of the human

body and again there are three areas are labeled with P1, P2, and P3. But, Figure 5.6

has differences from Figure 5.4. There the abnormality creates two extra regions for the

abnormal leg movement (spasticity). Similarly, the area P1 reflects the hip joint of that

person, P1 to P2 and P1 to P3 denotes the change of position of human body due to gait

motion when one leg is lifted off of the ground and another leg is contacted to the ground



Chapter 5 3D Gait Identification Employing IR-UWB: ITERATOR 75

to push the body forward during walking. As before the person walked back and forth

in front of radar (within 3 m of testbed) during observation time that creates separate

areas (P1, P2, and P3) in 3D for change of position. Overall the person’s movement is

effected by their condition in particular one leg is affected by their spasticity, hence the

‘normal’ and ‘abnormal’ leg creates two separate areas in P2 and P3. This shows the

person needs to stretch and drag one leg more than a regular walker and is reflected in

the proposed IR-UWB model outcomes. Also, the distance between the bottom of P2

and P3 areas represents step base width which is also different from normal walk. In

addition, two areas detected above leg height are the hand movements (both right and

left legs).

Figure 5.7 displays the gait analysis of that person through IR-UWB and Kinect. Figure

5.7b displays the motion of that said participant and stiffness of the left leg muscle forces

the person to stretch the leg more during walking, increasing the angles between the two

thighs. Figure 5.7a shows that the leg deviates more from the center of the body during

walking, which resulting the unusual thigh angle of approximately 40◦, determined from

the proposed prototype. The angle between alternative thighs obtained from Kinect is

approximately 38◦.

5.4.2 B&A Plot: Results Obtained in Anechoic Chamber

This section includes statistical analysis of hip or thigh angle measurements taken in

the anechoic chamber environment using the proposed ITERATOR and Kinect systems.

The analysis has been performed to check the relation between these two techniques and

discover agreement between their measurements. Figure 5.8 shows B&A plots have been

constructed on the hip or thigh angle measurements from the ITERATOR and Kinect

sensor data, where Figure 5.8a demonstrates B&A plots of hip angle measurements

taken for twenty normal gait persons using ITERATOR and Kinect and Figure 5.8b

demonstrates B&A plots of hip angle measurements taken for four abnormal gait persons

again from ITERATOR and Kinect. The x and y axis represents the mean of the two hip

angle measurements and the difference between their paired measurements respectively.

Figure 5.8a shows bias or mean of difference is -0.215 which signifies that Kinect always

produces 0.215 degree units more than the proposed ITERATOR where p value is 1.902×

10−4 (i.e., p < 0.05). In addition, Figure 5.8b displays the bias at +0.165 when measuring
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(a) 3D human motion captured by IR-
UWB from spastic gait.

(b) 3D human skeleton cap-
tured by Kinect from spastic
gait.

(c) Changes of thigh angles de-
termined from proposed model for
spastic gait.

(d) Changes of thigh angles deter-
mined from Kinect skeleton for spas-
tic gait.

Figure 5.7: Human motion and thigh angles obtained from proposed model and Kinect
respectively for a person with spasticity.

hip angles of abnormal gait persons, this indicates Kinect always delivers 0.165 degree

units less than proposed ITERATOR for measurement of hip or thigh angles where p

is 0.0058 (i.e., p < 0.05). Thus, the null hypothesis has been found to be true in both

cases (normal and abnormal gaits), so 95% differences are within dh ± 1.96sh and there

is no significant difference between ITERATOR and Kinect system’s magnitude while

measuring hip or thigh angles in the anechoic chamber.

5.4.3 Result Analysis from Multipath Environment

Figure 5.9a and 5.9b illustrate the 3D motion captured from a person’s gait by proposed

prototype and Kinect respectively in the multipath environment (laboratory and corri-

door environment). Figure 5.9c and 5.9d demonstrate obtained hip or thigh angles from

proposed and Kinect system respectively. The x-axis of the Figures 5.9c and 5.9d indi-

cate the fractions of gait cycles covered by hip angles during the observation time where,

each gait cycle contains two consecutive steps (stance ≈ 60% and swing ≈ 40% phase)
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(a) B&A plot of measured hip angles
from ITERATOR and Kinect for nor-
mal gait persons.

(b) B&A plot of measured hip angles
from ITERATOR and Kinect for ab-
normal gait persons.

Figure 5.8: B&A plot of hip angle measurements in anechoic environment.

with respect to the reference leg (left leg in this case) involved in the walking. The hip

angle decreases and knee angle increases nearly at the same time till the reference leg

leaves the ground, shown in Figure 5.9c and 5.9d. Then, the reference leg leaves the

ground and stays in the air during the swing phase when the hip angle start increasing

and knee angle start decreasing. The variation of hip angles have been captured in the

same way from proposed IR-UWB and Kinect system (in Figure 5.9c and 5.9d). The

hip angle varies between 0◦ to 24◦ and 0◦ to 22◦ while using proposed prototype and

Kinect system respectively.

5.4.4 B&A Plot: Results Obtained in Multipath Environment

Here, the measurements taken in the multipath environment (laboratory environment)

has been supported through B&A plot analysis as for anechoic chamber experiment.

Figure 5.10 shows the B&A plots constructed on hip or thigh angle measurements from

ITERATOR and Kinect sensor, where Figure 5.10a demonstrates B&A plots of hip angle

measurements taken for twenty normal gait persons from the ITERATOR and Kinect

with Figure 5.10b demonstrating the B&A plots of the hip angle measurements taken for

four abnormal gait persons via the ITERATOR and Kinect in the normal or multipath

environment. The x and y axis represent the mean of two hip angle measurements and

the differences between their paired measurements respectively. Figure 5.10a shows the

bias or mean of difference is -0.266 which signifies that Kinect always produces 0.266

degree units more than the proposed ITERATOR to determine hip angles of normal

gait persons where p value is 2.2744 × 10−6 (i.e., p < 0.05). In addition, Figure 5.10b

displays the bias at -0.187 when measuring hip angles of abnormal gait persons, this
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(a) 3D human motion obtained from
IR-UWB in multipath environment.

(b) 3D human skeleton ob-
tained from Kinect in multi-
path environment.

(c) Changes of thigh angles de-
termined from proposed model
in multipath environment.

(d) Changes of thigh angles de-
termined from Kinect skeleton in
multipath environment.

Figure 5.9: The human motion and thigh angles obtained from proposed model and
Kinect respectively for a person having normal walking pattern in multipath environ-
ment.

indicates Kinect always delivers 0.187 degree units more than proposed ITERATOR for

measurement of the hip or thigh angles where p is 0.0015 (i.e., p < 0.05). Thus, the

null hypothesis have been found to be true in both cases (normal and abnormal gaits) in

normal environment, so 95% differences are within dh±1.96sh and there is no significant

difference between ITERATOR and Kinect system’s magnitude while measuring hip or

thigh angles in normal environment.

(a) BAA-Multipath-Normal-Thigh.
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Figure 5.10: B&A plot of hip angle measurements in normal environment.
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5.5 Conclusion

The proposed ITERATOR model intends to demonstrate a non-intrusive, non-contact,

wireless system for gait analysis and an identification system capable and recognizing

disorders related to human walking patterns. In this work, for the first time a proposed

3D model of human motion has been generated from IR-UWB sensing by employing

trigonometry and vector algebra where, subjective knowledge enabled the study to fur-

ther characterize human gait. This work is currently limited to identifying the angles

between thighs, the extended research has been performed to determine knee angles and

is presented in Chapter 6. Additionally, a greater number of participants, including

those with conditions such as, propulsive, waddling, steppage, etc. would be considered

for future experiments. The Kinect sensor has been considered as a reference system

and employed to evaluate the performance of proposed model. The experiment has been

conducted in anechoic chamber and normal environments where the proposed prototype

and Kinect sensor have an accuracy of approximately 9 mm and 18 mm [115] respec-

tively, whereas the performance of both systems are influenced by multipath effect in a

non-anechoic environment. The Kinect system principle depends upon the viewing angle

to identify joint angles. Thus, when a person turns 360◦ in front of the camera half of the

body is occluded by the other half which is known as the self-occlusion problem [116].

The proposed model doesn’t rely solely on joint angles but also the reflected pulses from

other body parts mitigating the chances of self occlusion. The maximum range of the

Kinect is 4 meters in one room whereas, the IR-UWB radar module can be calibrated for

longer range if required. In addition to this, the proposed radar module is able to track

small changes than Kinect system because of higher resolution and across walls. Over-

all, the proposed model would be cutting edge solution for addressing health issues by

non-contact IR-UWB technology. Further, this study would be extended by employing

supervised machine learning (SML) techniques to automatically recognise changes and

identify the human walking disorders in the next chapter. This would provide a cutting-

edge solution in health and medical perspective to assist in clinical and pathological gait

diagnosis.
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Chapter 6

3D Gait Recognition Employing

IR-UWB: Intelligent ITERATOR

Biomedical engineering can integrate innovations from areas such as health informatics

and computing to develop cutting-edge solutions for abnormal gait or lower limb disor-

der recognition and effect how patients are diagnosis, monitored, and treated, lowering

the cost of care and improving individual outcomes. Thus, further research has been

conducted to improve the gait disorder identification from impulse radio ultra wideband

(ITERATOR) model to an automated impulse radio ultra wideband (IR-UWB) based

3D human gait analysis prototype with the help of supervised machine learning and

is presented in this chapter. The work is divided into two main phases; knee angle

extraction employing the proposed trigonometric and vector algebra, and applying the

knee angle variation of a person’s gait to the machine learning (ML) system. Hence, the

enhanced ITERATOR can recognise ‘normal’ and ‘abnormal’ gait automatically based

on person’s knee angle variation. It can to identify gait pattern objectively (quanti-

tatively) and automatically rather than subjectively (observation only), which could

enable a greater level of flexibility creating easier adaption of such a sensor system in

many locally based environments. The work intends to provide a rewarding assistive

biomedical application assisting doctors and clinicians to monitor human gait trait and

abnormalities with less human intervention in the fields of physiological examinations,

physiotherapy, home assistance, rehabilitation success determination and health diag-

nostics, etc. The work comprises IR-UWB gait data gathered from a number of male

81
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and female participants involved and introduced in previous chapters. The 3D postu-

ral model discussed in Chapter 5 has been improved here to measure the knee angles

(both right and left) of the individuals. Simultaneously, Kinect sensor and Blant Altman

(B&A) plot have been employed to support the fidelity of the work. The work for this

comprises data from the anechoic chamber only. Further, the knee angles have been

employed to train popular supervised machine learning (SML) techniques and perform

an initial test towards automation of the prototype. The outcomes have been validated

through statistical metrics. Results are promising and indicate the capability to predict/

recognise gait abnormalities in an intelligent way.

6.1 Method

The knee angles have been considered and determined here from leg extension and

flexion of the twenty four individuals in the study. Relevant settings of the IR-UWB

and Kinect sensor have been outlined in Chapter 3. The 3D model stated in Chapter 4

has been improved to measure knee angle and make an autonomous IR-UWB prototype

for gait recognition in this chapter. The workflow to automatically recognise normal and

abnormal gaits from the proposed ITERATOR employing SML is presented in Figure

6.1.

The same steps discussed hitherto in Section 3.2 of Chapter 3 to collect UWB gait

data have been followed under ethical approval. Chapter 5 includes measurement of hip

or thigh angles of gait from proposed prototype that needs back-scattered pulses from

thigh of lower limb. This chapter proposes a method to calculate another significant gait

parameter i.e., knee angles. Since the ITERATOR relies on 3D interpretation of human

motion from UWB pulses, the calculation of knee angle through vectorisation require

pulses reflected from both the thigh and knee. The intersection of lines obtained from

those 3D coordinates form knee angles which has been determined through the proposed

work. Further, the trend of knee angles of normal and abnormal gait has been classified

employing SML. Hence, the prototype is able to understand the difference between

normal and abnormal gait, and would support health professionals to take decisions for

gait problem diagnosis. The related theories and results are presented in the following

sections.
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Ethical approval
received

Discard

Employ spherical
trigonometry & radar

principles

Configure UWB radar
& collect human
movement scans

Recruit human
participants & record
subjective knowledge

Is the pulse
back-scattered from
height of lower limb?

No

Yes

Yes
Employ proposed vector

algebra to measure
knee angles

Feed knee angles to ML
for recognising  normal

and abnormal gait patterns

Repeat this process
all for scans

Is the detection
info present for
the raw scan ?

Discard
No

Yes

Identify pulses
back-scattered from
thighs and shanks

Figure 6.1: Flowchart of proposed intelligent ITERATOR prototype.

6.1.1 Knee Angles Calculations from IR-UWB Sensing

The knee joint has two sections, the thigh and shank. Thus, human gait creates angles

between these two muscles during the walking phases. The angle increases during mus-

cles extension (i.e., straightening of legs) and decreases during the flexion of muscles (i.e.,

articulation of legs). The change of knee joint angle is significant to characterize human

gait [117]. Figure 5.2 shows a human walking posture where, two points
−→
LT ,

−→
LS ∈ R3

Euclidean space at time t have been assumed on thigh and shank of left leg respectively.
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The dot product of these two points provides the acute angle γL between them whereas,

the measurement of obtuse angle (βL) is anatomically more significant. The detailed

calculations of γ and β have been included in Eq. 6.1 and Eq. 6.2.

−→
LT .
−→
LS = |

−→
LT ||
−→
LS | cos γ

⇒ cos γL =

−→
LT .
−→
LS

|
−→
LT ||
−→
LS |

⇒ cos γL =
(a1î+ r1ĵ + h1k̂).(a2î+ r2ĵ + h2k̂)

|a1î+ r1ĵ + h1k̂||a2î+ r2ĵ + h2k̂|

⇒ cos γL =
(a1a2 + r1r2 + h1h2)√

a21 + r21 + h21
√
a22 + r22 + h22

⇒ γL = cos−1
(

(a1a2 + r1r2 + h1h2)√
a21 + r21 + h21

√
a22 + r22 + h22

)
(6.1)

Therefore, the obtuse knee angle (βL) for the left leg,

βL = 180◦ − γL (6.2)

Similarly, the acute knee angle γR between
−→
RT and

−→
RS for right leg has been determined

in Eq. 6.3.

⇒ γR = cos−1
(

(a3a4 + r3r4 + h3h4)√
a23 + r23 + h23

√
a24 + r24 + h24

)
(6.3)

Therefore, the obtuse knee angle for right leg has been included in Eq. 6.4,

βR = 180◦ − γR (6.4)

6.1.2 Knee Angles from Kinect Xbox Sensing

The knee angles (left and right) have been measured in a similar way to hip joint

calculation by using dot products of vectors. The knee and ankle joints (shown in

Figure 3.7d) from skeletal data of both legs have been used two calculate knee angles
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of human gait. In case of left leg, the connecting line between vectors
−−→
HL and

−−→
KL

would be spanned through the vector
−−→
LT k = (a5 − a6)̂i + (r5 − r6)ĵ + (h5 − h6)k̂ and

the straight line between points
−−→
KL and

−→
AL would spanned through the vector

−−→
LSk =

(a6− a7)̂i+ (r6− r7)ĵ+ (h6−h7)k̂. The dot product of
−−→
LT k and

−−→
LSk provides the acute

angle between these two whereas, inner knee angle would be the obtuse angle between

them. The acute angle has been denoted by γ ′L and detailed in Eq. 6.5.

−−→
LT k.

−−→
LSk = |

−−→
LT k||

−−→
LSk| cos γ ′

⇒ cos γ ′L =

−−→
LT k.

−−→
LSk

|
−−→
LT k||

−−→
LSk|

⇒ cos γ ′L =
((a5 − a6)̂i+ (r5 − r6)ĵ + (h5 − h6)k̂).((a6 − a7)̂i+ (r6 − r7)ĵ + (h6 − h7)k̂)

|(a5 − a6)̂i+ (r5 − r6)ĵ + (h5 − h6)k̂||(a6 − a7)̂i+ (r6 − r7)ĵ + (h6 − h7)k̂|

⇒ cos γ ′L =
(a5 − a6)(a6 − a7) + (r5 − r6)(r6 − r7) + (h5 − h6)(h6 − h7)√

(a5 − a6)2 + (r5 − r6)2 + (h5 − h6)2
√

(a6 − a7)2 + (r6 − r7)2 + (h6 − h7)2

⇒ γ ′L = cos−1
(

(a5 − a6)(a6 − a7) + (r5 − r6)(r6 − r7) + (h5 − h6)(h6 − h7)√
(a5 − a6)2 + (r5 − r6)2 + (h5 − h6)2

√
(a6 − a7)2 + (r6 − r7)2 + (h6 − h7)2

)
(6.5)

Therefore, the inner knee angle or obtuse knee angle for the left leg,

β′L = 180◦ − γ ′L (6.6)

Similarly, the acute knee angle γR
′ between

−−→
RT k and

−−→
RSk for right leg has been deter-

mined in Eq. 6.7.

⇒ γR
′ = cos−1

(
(a8 − a9)(a9 − a10) + (r8 − r9)(r9 − r10) + (h8 − h9)(h9 − h10)√

(a8 − a9)2 + (r8 − r9)2 + (h8 − h9)2
√

(a9 − a10)2 + (r9 − r10)2 + (h9 − h10)2

)
(6.7)

Therefore, the obtuse angle or inner knee angle for right leg would be,

β′R = 180◦ − γR′ (6.8)
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6.2 Bland Altman (B&A) Plot Analysis

Two different models are presented: the proposed IR-UWB prototype and Kinect have

been used here to measure the same gait parameter i.e., knee angle. Differences were

found, so the outcomes have been compared using B&A plot analysis [118, 119] based on

the quantification of the agreement between two quantitative measurements by studying

the mean difference and constructing limits of agreement for assessing the comparability

between methods. The statistical limits are calculated by using the mean, standard

deviation of the differences between two the measurements, and a hypothetical graphi-

cal approach to indicate the agreement. Knee angle of participants has been measured

through proposed and kinect system for gait analysis. Let, the measured knee angles

from the proposed and Kinect system be kp and kk respectively, mean of knee angle

is mk, differences between paired knee angle is dk, standard deviation of the differ-

ences obtained for knee angle is sk. The graphical approach is employed to observe

the assumptions of normality of differences and other characteristics where, the x-axis

represents the average of measurements and y-axis shows the difference between the two

measurements. The two systems would agree when most of the consequences lie within

dk ± 1.96sk for the measurement of knee angle. More precisely, 95% of differences must

lie within dk± 1.96sk for measuring the knee angle according to Bland Altman analysis.

Thus, the null hypothesis states here there is no significant difference between popu-

lations (measurements) taken the ITERATOR and Kinect for determining knee angles

of participants where probability value p < 0.05 indicates acceptance of null hypothesis

and correctness of assumption.

6.3 Knee Angles as Features

The settings of UWB radar module used for the experiment have been detailed in Section

3.4 of Chapter 3. Subsequently, the length of testbeds used were 3 meters and 6 meters

for the anechoic chamber and multipath environment respectively. The experimental

work presented in this chapter comprises data from the anechoic chamber only, where the

radar module requires a scan window or propagation delay of 23.436 nanoseconds to cover

3 meters range of anechoic chamber testbed. The amplitude of each pulse is represented

by a sequence of 288 samples. UWB pulses back-scatter from left and right legs during
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gait motion where left and right legs have been considered separately to calculate knee

angles. Hence, the proposed work employs 288 data points to represent left knee angles

and 288 data points to represent right knee angles. Thus, the prototype generates (288

× 2) = 576 knee angles from each pulse response. Further these 576 data points (i.e.,

knee angles) have been considered as feature to represent human gaits from IR-UWB

technology and solve two class (normal and abnormal gait) classification problem. The

knee angle’s feature vector has been visualised as {βL1 , βL2 , ...βL288 , βR1 , βR1 , ...βR288},

where βL and βR indicate the left and right knee angles respectively.

6.4 IR-UWB Gait Recognition Employing Supervise Ma-

chine Learning (SML)

Selection of appropriate SML technique for classification of UWB gait is intuitive and

depends upon feature distribution in Euclidean hyperspace. The feature distribution has

been observed and it was found that the data are non-linearly separable in hyperspace.

Hence, the leading non-linear classifiers such as, k-nearest neighbour (kNN) and support

vector machine (SVM) have been implemented to recognise UWB gait patterns and

investigate feasibility for applying SML in this context. The kNN [120] classifier has

been incorporated by fine, medium, and coarse neighbourhoods that signifies 1, 3, and

5 numbers of neighbourhood respectively. kNNs with fine, medium, and coarse nearest

neighbourhoods have been signified with kNNF , kNNM , and kNNC respectively in the

rest of the chapter. Two effective distance metrics, Euclidean and Mahalanobis perform

well with kNN, but Mahalanobis distance requires the inversion of covariance matrix

which could increase the computational overhead. Therefore, the Euclidean distance is

considered here to measure the distance of a feature vector from its nearest neighbor.

The k is chosen as odd for this two-class problem that one pattern could not predict under

the same class label by the classifier. Further, SVM has been also enforced with both

linear and non-linear (quadratic) kernels [121, 122] because, linear kernel of SVM has

reputation for separating non-linear data in high dimension by linear decision boundary.

The linear and quadratic kernel based SVMs have been denoted by SVML and SVMQ

respectively in rest of the chapter. The ground truth information of UWB gait data

has been created during data collection phase by observing simultaneous skeletons of

participants visualised from Kinect interface.
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6.5 Cross Validation & Performance Evaluation

A cross validation technique has been employed to better use the data prepared for

classification and know the amount of training data required for the model to make good

predictions. In addition, it prevents the prototype from the overfitting or underfitting

problems and selects the data model for developing efficient SML prototype here. Model

selection by cross-validation has been implemented by repeated random sub-sampling

of the data, which is also known as Monte Carlo cross-validation [123]. The dataset has

been randomly partitioned to select the training and validation dataset, where training

and validation sets have been used to train and evaluate performance of a selected SML

model. The ratio of training and testing data has been specified during each round e.g.,

training has been started with 10% randomly selected data when rest of the 90% data

have been considered as validation/testing data. The amount of training data has been

increased by 10% while amount of validation dataset decreased by 10% in each round

and this process has been repeated till the model has not overfitted. Each model has

been run 10 rounds to select the appropriate ratio of training and testing and found

40% of training and 60% of testing data is necessary to prevent the SML algorithms

from overfitting. The results (statistical metrics) have been aggregated and averaged

over all the rounds. A number of statistical metrics [124] such as, accuracy, sensitivity,

and specificity have been used to investigate performance of implemented classifiers.

Subsequently, Matthews correlation coefficient (MCC) [125] and Youden’s index [126]

have been implemented to investigate the classification outcomes, where, MCC and

Youden’s index estimate quality of classification and probability of the informed decision

respectively. The outcomes and it’s analysis have been described in following section

and metrics have been defined as follows:

Ac =
TP + TN

TP + TN + FP + FN
(6.9)

Se =
TP

TP + FN
(6.10)

Sp =
TN

TN + FP
(6.11)
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(6.12)

Yi = Se + Sp − 1 (6.13)

Here, Ac, Se, Sp, MCC, and Yi denotes accuracy, sensitivity, specificity, Matthews

correlation coefficient, and Youden’s index respectively. In addition, true positive, true

negative, false positive, and false negative have been denoted by TP, TN, FP, and FN

respectively. Accuracy measures the fraction of normal and abnormal gait predictions

that the proposed model correctly observed, sensitivity determines proportion of actual

positives (i.e., abnormal gaits) that are correctly identified, specificity measures the

proportion of actual negatives (i.e., normal gaits) that are correctly identified, MCC

provides essence through correlation coefficient between actual and predicted outcomes

of gait conditions. Youden’s index is a statistic, which expresses the overall quality of

the performance of the proposed experiment.

6.6 Result Analysis

The obtained knee angles from proposed 3D prototype has been compared with the

outcomes obtained from Kinect sensor. The experiments has been conducted only in

anechoic chamber at this stage. Further, the gait behaviour of a person has been char-

acterised and recognised in this section. The results are discussed in following sections.

6.6.1 Results from Proposed Work & Kinect Sensor

The processing and transformation of IR-UWB response from human motion have been

demonstrated in Chapter 5. The motion has been captured and interpreted into a 3D

shape similar to the letter ‘W’, shown in Figure 6.2a. It has three dimensions, x-axis

as motion width, y-axis as distance from radar, and z-axis as height. This includes

flexion and extension of body muscles, where the lower limb has been divided into thigh

and shank sections, using a priori subjective data collected previously. Simultaneously,

Kinect sensor shows the skeleton data of the human subject in Figure 6.2b. Figure 6.2c
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and 6.2d present only the left knee angle of that person obtained from IR-UWB and

Kinect sensor respectively. The x and y axis of Figure 6.2c and 6.2d represent the

proportion of gait cycle associated with measured knee angle variation from proposed

prototype and Kincet sensor respectively, where each gait cycle consists of 60% of stance

time and 40% of swing time. It has been found that knee angle changes from 120o to

180o and 122o to 175o while using proposed prototype and Kinect respectively.

(a) 3D human motion obtained from IR-
UWB in anechoic chamber.

(b) 3D human skeleton obtained
from Kinect in anechoic chamber.

(c) Variation of knee angles deter-
mined from proposed model in ane-
choic chamber.

(d) Variation of knee angles deter-
mined from Kinect skeleton in ane-
choic chamber.

Figure 6.2: The human motion and knee angles obtained from proposed model and
Kinect for a person having normal walking pattern.

6.6.2 Bland Altman (B&A) Plot Outcomes

The results obtained from the proposed ITERATOR and Kinect system have been cor-

roborated through a B&A plot analysis. Theoretical details of B&A plot has been

demonstrated in 6.2 to support the measurement of knee angle done utilising proposed

ITERATOR model. Figure 6.3 shows B&A plots have been constructed on knee angle

measurements from ITERATOR and Kinect sensor, where Figure 6.3a demonstrates
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B&A plots of knee angle measurements taken for twenty normal gait persons from IT-

ERATOR and Kinect respectively and Figure 6.3b demonstrates B&A plots of knee

angle measurements taken for four abnormal gait persons from ITERATOR and Kinect.

The x and y axis represents mean of two measurements and difference between two

paired measurements respectively. Both the ITERATOR and Kinect methods imply

some degree of error but B&A plot indicates relationship and agreement between these

two methods for gait analysis. Figure 6.3a shows the bias or mean of difference is -0.653

which signifies the second method here Kinect always produces 0.653 degree units more

than proposed ITERATOR and 95% differences are within dk ± 1.96sk while measur-

ing knee angles. In addition, Figure 6.3b displays the bias at -2.277 when measuring

abnormal gait persons, this indicates Kinect always delivers 2.277 degree units more

than proposed ITERATOR for measurement knee angles and 95% differences are within

dk ± 1.96sk. Thus, both the cases suggest null hypothesis (there is no significant differ-

ence between ITERATOR and Kinect system’s magnitude while measuring knee angles)

is true and ITERATOR would be an alternative gait analysis method in future.
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(a) B&A plot of knee angles from normal
gaits.

(b) B&A plot of knee angles from abnormal
gaits.

Figure 6.3: B&A plot of obtained knee angles experimented in anechoic chamber.

6.6.3 Machine Learning Outcomes

Initially, the investigation began by employing the kNN classifier [120]. This classifier is

particularly simple, measuring the proximity of features in the hyperspace without any

assumption of the underlying data distribution to predict a category making it flexible

for decision making. Table 6.1 displays the classification outcomes and results. Classi-

fication outcomes would improve with increasing amount of training data, though the

proposed experiment intends to achieve optimal performance with fewer training data.
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Thus, models have been trained maximum 40% of total labeled data. In case of kNN,

where k is varied from 1 to 5 and 10%, 20%, 30%, and 40% data are randomly selected

for the training phase. Here, k = 1, produces highest accuracy Ac among other NNs

with 40% of training data volume. It attained the testing accuracy Ac =0.944 (≡94.4%).

The kNNM has produced highest sensitivity Se among all implemented classifiers with

40% training data. Sensitivity Se measures ability of the prototype to identify abnormal

walks which is 0.978 (≡97.8%) in case of k = 3. It produces fewer false predictions FPs

close to the decision boundary bringing improved sensitivity Se over kNNF and kNNC ;

also, truly positive prediction TPs for having abnormality and vice versa. But, MCC

measurements over prediction results are not cogent for kNNF , kNNM , and kNNC and

decreases towards 0 with the increment of k. This trend states that the addition of

random predictions with greater number of NN. The average proportions obtained from

Youden’s index Yi are also not very significant, 0.856, 0.810, and 0.589 for kNNF , kNNM ,

and kNNC respectively and decreases with higher k. This trend further indicating the

probability to classify is random and unreliable. Therefore, the overall performance of

kNNM is better than the other NNs because of data compactness, where three nearest

neighbor results good prediction if a greater number of neighbors have been chosen, the

misclassification increases.

Table 6.1: Results obtained from nearest neighbor algorithm.

KNN’s Training Data Accuracy Sensitivity Specificity MCC Youden

kNNF

10 0.934 0.954 0.887 0.841 0.84
20 0.939 0.957 0.899 0.855 0.856
30 0.941 0.955 0.905 0.858 0.861
40 0.944 0.959 0.910 0.867 0.869

kNNM

10 0.922 0.970 0.809 0.810 0.779
20 0.935 0.975 0.838 0.840 0.813
30 0.935 0.973 0.846 0.842 0.819
40 0.941 0.978 0.851 0.855 0.829

kNNC

10 0.827 0.960 0.507 0.558 0.467
20 0.844 0.952 0.588 0.608 0.540
30 0.866 0.937 0.698 0.669 0.635
40 0.897 0.953 0.762 0.746 0.715

Subsequently, the SVM is investigated with two different kernel functions to acquire

the hyperplane that can separate participants with normal and abnormal gait pattern

from proposed UWB gait prototype. Table 6.2 shows the results for classification of

the 2 subject types where, SVML and SVMQ represents the SVMs using the linear

and quadratic kernel functions [121, 122] for prediction. SVML uses the optimization

method, c =
∑
i
wik(si, x) + b where, UWB gait pattern vector x has been targeted to
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classify, si is the support vector, wi is weight, and b is the bias. Here, the linear kernel

function is k. The vector x is considered as a member of normal gait group when, c ≥ 0 or

abnormal gait group otherwise. This creates a hyperplane that achieved lowest accuracy

Ac than the other classifiers used here but produced highest sensitivity Se among all.

SVML has been trained using 10% to 40% data and associated testing results are shown

in the Table 6.2. It produces the highest testing accuracy Ac among implemented SVMs

with 30% training data which is 0.810 (≡81.00%). It achieved sensitivity Se of 0.990

(≡99.00%) in that case, which indicates a best performance to identify persons with

abnormal gaits among both KNNs and SVMs. But, specificity Sp (0.346 ≡ 34.6%) shows

a weak performance in identifying persons with normal gait. Though the probability in

identifying abnormal gaits is better than the subjects who have normal gait patterns.

This creates a number of FPs which result low average MCC and Youden’s index Yi of

0.498 and 0.339 respectively. It can be understood from Eq. 6.12 for calculating MCC

that denominator increases with increment of FP which results no better than random

prediction outcomes. Youden’s index Yi gets higher when sensitivity Se and specificity

Sp both achieve high score signifies requirement of lower FNs and FPs and this can

also be understood from Eq. 6.13. Since, SVML produces more FPs that results low

specificity Sp as well as low Youden’s index Yi.

Table 6.2: Results obtained from SVM using different kernel.

SVM’s Training Data Accuracy Sensitivity Specificity MCC Youden

SVML

10 0.795 0.992 0.325 0.479 0.317
20 0.797 0.992 0.337 0.489 0.329
30 0.810 0.990 0.382 0.523 0.372
40 0.802 0.994 0.346 0.502 0.340

SVMQ

10 0.894 0.948 0.765 0.740 0.714
20 0.899 0.960 0.752 0.750 0.712
30 0.906 0.955 0.789 0.769 0.744
40 0.907 0.963 0.773 0.770 0.736

Subsequently, SVMQ have been employed to obtain an improved testing accuracy to

differentiate normal and abnormal gaits by minimising the gap between two groups. The

considered quadratic function is minx
1
2x

THx + cTx, where Ax ≤ b, c is a real valued

vector, H is real symmetric matrix, A is real matrix, b is a real vector, and the notation

Ax ≤ b means that every entry of the vector Ax is less than or equal to the corresponding

entry of the vector b. The quadratic programming aims to find the vector x which could

minimize that function. The cross validation has also been implemented for experiment

with SVMQ. The model creates a hyperplane to classify gait subjects and achieved
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maximum testing accuracy Ac of 0.907 (≡90.7%) with 40% training data to identify

normal and abnormal subjects where sensitivity Se is 0.963 ≡ 96.3% and specificity Sp

is 0.773 ≡ 77.3%. The fraction of sensitivity Se represents few number of abnormal

gaits misclassified but fraction of specificity Sp represents many normal gait patterns

predicted as abnormal gaits by the SVMQ i.e., presence of TN. Thus, low fraction of

specificity Sp diminishes the performance of SVMQ that directly affects MCC and Yi.
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(b) kNNM classifier.
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(c) kNNC classifier.
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(d) SVML classifier.
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(e) SVMQ classifier.

Figure 6.4: Comparison of performance metrics obtained from kNN and SVM classifiers.

Finally, the classification results have been compared to conclude the investigation. Fig-

ure 6.4 shows the visual comparison of average accuracy Ac, sensitivity Se, specificity

Sp, Mathews correlation coefficient MCC, and Youden’s index Yi to make the con-

trast over performance, where x and y-axis represent different classifiers and Ac, Se,

Sp, MCC, and Yi respectively. It can be understood, the performance of kNNF is bet-

ter than other classifiers attempted here in terms of average Ac=93.95%, Se=95.62%,

Sp=90.02%, MCC=85.52%, and Yi=85.65% which illustrates robust and efficient ability

to detect gait abnormality based on their thigh and shank movement from new UWB

based intelligent ITERATOR prototype.



REFERENCES 95

6.7 Conclusion

The chapter comprises study on normal and abnormal gait classification from the pro-

posed non-contact, non-invasive intelligent ITERATOR model. Chapter 5 and Chapter

6 demonstrate the measurement of thigh and knee angle from IR-UWB gait data. How-

ever, obtained knee angles from IR-UWB (left and right) have been employed as features

to train and test constructed model. This is an initial study to check feasibility of em-

ploying SMLs to classify gait patterns which does not include type of gait abnormality.

Persons participated in experiment only belongs to spastic gait group. Thus, experiment

intends to classify normal and spastic gait patterns (abnormal gait group) based on knee

angles where empirically KNNF delivers optimal performance with respect to statistical

performance metrics. Once more participants are involved to make generalised decisions

about gait abnormality, this work will be extended further to identify type of abnor-

mality such as, spastic, scissors, propulsive, waddling, steppage gait automatically using

SML. The performance may differ from present outcomes when types of abnormal gaits

will be classified. The performance analysis directs focus on hyperplane created by near-

est neighbour classifier function, thus the fine tuning of mechanisms such as, correlation

of features within feature vector, distance metrics, and number of nearest neighbours

would be observed subsequently.

References

[117] Jos Meuleman et al. “LOPES II—Design and Evaluation of an Admittance Con-

trolled Gait Training Robot With Shadow-Leg Approach”. In: IEEE Transactions

on Neural Systems and Rehabilitation Engineering 24.3 (2016), pp. 352–363.

[118] John M Bland and Douglas G Altman. “Statistical methods for assessing agree-

ment between two methods of clinical measurement”. In: The lancet 327.8476

(1986), pp. 307–310.

[119] Davide Giavarina. “Understanding bland altman analysis”. In: Biochemia medica:

Biochemia medica 25.2 (2015), pp. 141–151.

[120] Thomas M Cover, Peter Hart, et al. “Nearest neighbor pattern classification”.

In: IEEE transactions on information theory 13.1 (1967), pp. 21–27.



96 Chapter 6 3D Gait Recognition Employing IR-UWB: Intelligent ITERATOR

[121] Shigeo Abe. Support vector machines for pattern classification. Vol. 2. Springer,

2005.

[122] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2001.

[123] Richard R Picard and Ralph D Cook. “Cross-validation of regression models”.

In: Journal of the American Statistical Association 79.387 (1984), pp. 575–583.

[124] David M Powers. “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation”. In: (2011).

[125] Brian W Matthews. “Comparison of the predicted and observed secondary struc-

ture of T4 phage lysozyme”. In: Biochimica et Biophysica Acta (BBA)-Protein

Structure 405.2 (1975), pp. 442–451.

[126] William J Youden. “Index for rating diagnostic tests”. In: Cancer 3.1 (1950),

pp. 32–35.



Chapter 7

Discussion & Conclusion

Biomedical research and innovation is the fastest growing field in modern era. The ob-

jective of that research is to discover engineering solutions to efficiently diagnose and

help patients from recover critical health problems through precise and intelligent engi-

neering tools, making health care improvements across healthcare sector. Gait disorder

is one area where human perception and observation are more involved for diagnosis.

Gait dysfunction or walking abnormality is when a person is unable to walk in ‘a nor-

mal’ way. It can be caused through injury, underlying conditions, or other problems

with the legs and feet. Subjective and objective approaches are used to diagnose gait re-

lated problems. Predominantly, subjective gait evaluation includes only observation and

question-answer rounds related to health conditions. Objective gait evaluation includes

technological devices to measure bio-mechanical gait parameters. Popular technologies

for gait diagnosis are dedicated camera and wearable sensor based solutions, however

they are limited by security and skin irritation issues. Thus, the thesis work has con-

centrated on with intention of creating a non-contact and non-intrusive gait recognition

method from impulse radio utlra-wide band (IR-UWB) sensing phenomenon, where a

standalone IR-UWB system would be able to detect and recognise gait problems with less

human intervention. The work has been supported through theoretical and experimental

analysis. The background knowledge, literature of gait analysis (subjective or objective)

to construct problem statement and find scope to contribute gait understanding using

IR-UWB, and experimental set-up have been discussed in Chapter 1, Chapter 2, and

Chapter 3 respectively. The proposed work has been divided in three main parts such

as, 2D gait identification (i.e., gait detection through range and height of physiological

97



98 Chapter 7 Discussion & Conclusion

action estimation from IR-UWB), 3D gait identification or gait disorder identification

from impulse radio ultra-wide band (ITERATOR) (i.e., gait detection through gait mo-

tion width, range and height of physiological action estimation from IR-UWB), and

3D gait recognition or intelligent ITERATOR (i.e., gait recognition through learning

IR-UWB gait parameter) have been discussed in Chapter 4, Chapter 5, and Chapter 6

respectively. The explanation of work done to relate findings, limitations, and future

works of proposed work has been discussed in following sections.

7.1 Discussion

A IR-UWB radar module with single transmitter and receiver has been employed to ac-

quire human gait. A new spherical trigonometric model has been developed to interpret

IR-UWB gait response and calculate gait motion, distance, and height to represent x,

y, and z axis of coordinate system. Subsequently, experiments have been performed in

both; anechoic and multipath environments. There are a number of gait parameters used

for evaluation discussed in Chapter 2. Here, only few of them have been considered such

as, step frequency, walking speed, cadence, step length, distance covered, hip or thigh

angle, and knee angle. In total, twenty four participants including normal and abnormal

gait persons were involved in the study. Initially, gait parameters such as, step frequency,

walking speed, cadence, step length, and distance covered have been calculated employ-

ing developed distance and height theory, and short term Fourier transform (STFT) to

measure gait in 2D. However, these parameters alone are insufficient to define human

gait and unable to provide structural information about gait. The parameters such as,

step frequency, walking speed, cadence, step length, and distance covered may vary for

a person’s walk even in normal condition. Also, the experiment performed in multipath

or normal environment is effected by mutlipath problem which causes time dispersion,

angular dispersion, and frequency dispersion that lead to errors in calculation of gait

parameters. Thus, the spherical model has been improved to calculate gait motion width

along with distance and height from change of range to incorporate realistic settings.

The proposed 3D model is then capable to measure hip and knee angles which represent

structural gait information more than previous model. In addition, detection threshold

of radar has been tuned to mitigate multipath problem. A simultaneous Kinect sensor

system and statistical Bland-Altman (B&A) plot analysis also have been employed to
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justify gait measurements from the proposed model. The B&A plot analysis indicates

potentiality of the proposed work to measure human gait in 3D where multipath prob-

lem is still there. Subsequently, popular supervised machine learning (SML) algorithms

have been applied to inspect the feasibility of automation of the work. Statistical met-

rics have been calculated to understand performance of automatic gait recognition where

promising results obtained. The result analysis shows the strong potential of the work

for creating an IR-UWB sensing based intelligent gait diagnosis tool in future. The work

hitherto is limited to calculate the hip and knee angles where the obtained knee angles

have been used to be learned by SML algorithms. The future research aspects have been

discussed in the following section.

7.2 Future Research Directions

The study indicates potentiality of a non-contact, non-invasive gait identification and

recognition through IR-UWB. There are some limitations and scope to improve the work

would be addressed in future:

1. Mathematical Model for Wireless Channel: Wireless channel implications

have not been studied deeply in proposed work. But, a mathematical model will

be developed in future to handle multi-path reflections and mirror the results of

normal environment in better way. It would lower signal attenuation and mitigate

delay, angular, and frequency dispersion occur due to mutlipath problem.

2. Employ Directional UWB Antenna: Single omni-directional UWB transmit-

ter and receiver have been used to collect data and construct 3D model. Directional

UWB antenna will be investigated in future to gather UWB gait data for better

gait identification experiment through improved SNR and directionality employ-

ment.

3. More Bio-mechanical Gait Parameter Extraction: The current is only able

to measure gait parameters such as, step frequency, walking speed, cadence, step

length, distance covered, hip angle, and knee angle. The model will be improved

further to measure angles of ankles (both left and right), stance (posture), and

duration of stops for representing human gait better.
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4. Enhance IR-UWB Gait Database: Twenty four participants involved till date

in proposed experiment where twenty persons having normal walking pattern and

four persons having spastic gait abnormality. More participants will be recruited

for experimenting gait and making a bigger IR-UWB gait database.

5. Involve Medical Professional & Sports Laboratory: Smart phone applica-

tions and Microsoft Kinect sensor have been employed to corroborate results. In

addition, statistically agreement of gait measurement using proposed work has

been proved. However, none of them reference and comply minimum error. Thus,

medical professionals and LSBU sports laboratory will be involved in this study

to perform gold standard test comparison.

6. Analysis of Different Gait Disorder: The normal and abnormal specifically

spastic patterns have been experimented and classified through SML. More par-

ticipants with spastic, scissors, propulsive, steppage, and waddling gait (as shown

in Figure 1.3) including normal gait persons will be experimented. So, SML can

be used to classify gait disorders and take decisions for identify specific gait ab-

normality.

7. Improve Machine Learning Application: The performance may differ when

more participants with different gait are involved. So, fine tuning of SML algo-

rithm’s parameters will be explored and modified to achieve better performance

in IR-UWB gait classification.

7.3 Concluding Remarks

This is first work which is able to address bio-mechanical gait parameters from IR-UWB

in 3D and employ them for classifying gait disorders. The model would be a strong

alternative for objective gait analysis such as, supporting doctor to help in gait diag-

nosis, making smart and intelligent gait care, supporting in physiotherapy, improving

performance of athlete, and even in detecting intruders through IR-UWB gait pattern.
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Appendix

Matlab Code 1

1 function stft_ = STFT(signal)

2

3 [row_signal ,col_signal ]=size(signal);

4 fs =16390000000; %fs =16.39 GHz

5 L=30; % window length

6 w = hamming(L,’periodic ’); % type of window

7 window_index =0;

8 % R=2;

9 R=1;

10

11 if(mod(col_signal ,R)~=0)

12 rem=mod(col_signal ,R);

13 signal=signal(row_signal ,1:( col_signal -rem));

14 end

15

16 [row_signal ,col_signal ]=size(signal);

17

18 stft_=zeros(row_signal ,( col_signal)/R);

19 signal = padarray(signal ,[0 L],0,’post’);

20 summation =0;

21

22 for j=1:R:col_signal

23 for k=j:j+L-1

24 window_index=window_index +1;

25 summation=summation +( signal(row_signal ,k)*w(window_index ,1)*( complex(cos

(2*pi*fs*k),sin(2*pi*fs*k))));

26 end

27 window_index =0;

28 stft_(row_signal ,j)=summation;

29 summation =0;

30 end

31

32 end
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Matlab Code 2

1

2 clc;

3 clear all;

4 close all;

5

6 tic

7 c = 300000000; % speed of light

8 LegLength = input(’Please enter the length of leg in meters : ’);

9 ShankLength = input(’Please enter the shank length in meters : ’);

10 ThighLength = LegLength -ShankLength;

11 StandHeight =1.02;

12 ObservationTime = input(’Please enter the observation time in seconds : ’);

13

14 Files=dir(’*.csv’);

15 %%

16 for k=1: length(Files)

17

18 fileID = fopen(’exp.txt’,’w’);

19 FileNames=Files(k).name;

20 [num , txt , raw]= xlsread(Files(k).name);

21 [row_raw , col_raw ]=size(raw);

22 RawData=zeros(row_raw , col_raw);

23 DetectionData=zeros(row_raw , col_raw);

24 config_counter =0;

25 mrm_counter =0;

26 Azimuth = 0;

27 mrm_string =" MrmFullScanInfo ";

28 configuration_string =" Config ";

29 detection_string =" MrmDetectionListInfo ";

30 InitialRange =0;

31 FinalRange =0;

32

33 for i=1: row_raw -4

34 X = sprintf(’Scan No = %d’,i); disp(X)

35 X = sprintf(’

-------------------------------------------------------------------------’);

disp(X)

36 if(string(raw{i,2})== configuration_string)

37 config_counter=config_counter +1;

38 if(config_counter ==2)

39 ScanStart=num(i-1,4); % in Nanoseconds

40 ScanStop=num(i-1,5); % in Nanoseconds

41 ScanResolutionBins=num(i-1,6);

42 PII=num(i-1,7);

43 ACP =360/(2^ PII);

44 TransmitGain=num(i-1,17);
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45 end

46 end

47 if(string(raw{i,2})== mrm_string)&&( string(raw{i ,13})== string (1))

48 mrm_counter=mrm_counter +1;

49 msgid=string(raw{i,3});

50 if(rem(mrm_counter ,2^PII)==0)

51 Azimuth = 0;

52 else

53 Azimuth = Azimuth + ACP;

54 end

55 if(string(raw{i+1,2})== detection_string)&&( string(raw{i,3})==msgid)

56 RawData(i,:)=num(i-1,:);

57 RawData(i,6)=num(i-1+1 ,4);

58 RawData(i,7)=num(i-1+1 ,5);

59 DetectionData(i,:)=num(i-1+1 ,:);

60 end

61

62 if(string(raw{i+2,2})== detection_string)&&( string(raw{i,3})==msgid)

63 NoOfSamples=num(i-1,16);

64 RawData(i,:)=num(i-1,:);

65 RawData(i,6)=num(i-1+2 ,4);

66 RawData(i,7)=num(i-1+2 ,5);

67 DetectionData(i,:)=num(i-1+2 ,:);

68 end

69

70 if(string(raw{i+3,2})== detection_string)&&( string(raw{i,3})==msgid)

71 NoOfSamples=num(i-1,16);

72 RawData(i,:)=num(i-1,:);

73 RawData(i,6)=num(i-1+3 ,4);

74 RawData(i,7)=num(i-1+3 ,5);

75 DetectionData(i,:)=num(i-1+3 ,:);

76 end

77

78 if(mrm_counter ==2) ||( mrm_counter ==3)

79 NoOfSamples=num(i-1,16); % number of samples in each radar signal

80 PropagationDelay=round (( NoOfSamples *61) /1000);

81 NoOfInsigCol=round (( NoOfSamples *5)/PropagationDelay);

82 end

83 counter =1;

84 for inRowCounter =1:2: length(DetectionData(i,:))

85 if(isnumeric(DetectionData(i,inRowCounter))==1) &&( counter ==1) &&(

DetectionData(i,inRowCounter)-DetectionData(i,inRowCounter -2) ==1)

86 InitialRange=abs(DetectionData(i,inRowCounter)

*61*0.000000000001) *(c/2);

87 counter=counter +1;

88 elseif(isnumeric(DetectionData(i,inRowCounter))==1) &&( counter >1)&&(

DetectionData(i,inRowCounter)-DetectionData(i,inRowCounter -2) ==1)
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89 FinalRange=abs(DetectionData(i,inRowCounter)*61*0.000000000001)

*(c/2);

90 counter=counter +1;

91 end

92 Height=sqrt(abs(( InitialRange*InitialRange)-(FinalRange*FinalRange))

);

93 if(Height >StandHeight)

94 Height =(Height -StandHeight);

95 elseif(Height <StandHeight)

96 Height=StandHeight -Height;

97 end

98

99 if(Azimuth <180)

100 Arc=( InitialRange *(atand(abs(InitialRange -FinalRange)/

InitialRange)));

101 elseif(Azimuth >180)

102 Arc=-( InitialRange *(atand(abs(InitialRange -FinalRange)/

InitialRange)));

103 end

104 if(isnan(Height)==1)

105 Height =0;

106 end

107 if(isnan(FinalRange)==1)

108 FinalRange =0;

109 end

110 if(isnan(InitialRange)==1)

111 InitialRange =0;

112 end

113 fprintf(fileID ,’%.2f %.2f %.2f\n’, Arc , FinalRange , Height);

114 end

115 end

116 end

117 end
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