458 research outputs found

    In situ interactive teaching of trustworthy robotic assistants

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2007 IEEE International Conference on Systems, Man and Cybernetics, October 7-10, 2007, Montréal.DOI: 10.1109/ICSMC.2007.4414025In this paper we discuss a method for transferring human knowledge to a robotic platform via teleoperation. The method combines unsupervised clustering and classification with interactive instruction to enable behavior capture in a transferable form. We discuss the approach in both simulation and robotic hardware platform to show the capability of the learning system. In this work we also present a definition and associated metric for trustworthiness, and relate this quantity to system performance. Improved performance and trustworthiness are motivations for our application of interactive learning, and we present results that indicate that these were indeed attained

    "The fridge door is open" : temporal verification of a robotic assistant's behaviours

    Get PDF
    Robotic assistants are being designed to help, or work with, humans in a variety of situations from assistance within domestic situations, through medical care, to industrial settings. Whilst robots have been used in industry for some time they are often limited in terms of their range of movement or range of tasks. A new generation of robotic assistants have more freedom to move, and are able to autonomously make decisions and decide between alternatives. For people to adopt such robots they will have to be shown to be both safe and trustworthy. In this paper we focus on formal verification of a set of rules that have been developed to control the Care-O-bot, a robotic assistant located in a typical domestic environment. In particular, we apply model-checking, an automated and exhaustive algorithmic technique, to check whether formal temporal properties are satisfied on all the possible behaviours of the system. We prove a number of properties relating to robot behaviours, their priority and interruptibility, helping to support both safety and trustworthiness of robot behaviours

    Socially assistive robots : the specific case of the NAO

    Get PDF
    Numerous researches have studied the development of robotics, especially socially assistive robots (SAR), including the NAO robot. This small humanoid robot has a great potential in social assistance. The NAO robot’s features and capabilities, such as motricity, functionality, and affective capacities, have been studied in various contexts. The principal aim of this study is to gather every research that has been done using this robot to see how the NAO can be used and what could be its potential as a SAR. Articles using the NAO in any situation were found searching PSYCHINFO, Computer and Applied Sciences Complete and ACM Digital Library databases. The main inclusion criterion was that studies had to use the NAO robot. Studies comparing it with other robots or intervention programs were also included. Articles about technical improvements were excluded since they did not involve concrete utilisation of the NAO. Also, duplicates and articles with an important lack of information on sample were excluded. A total of 51 publications (1895 participants) were included in the review. Six categories were defined: social interactions, affectivity, intervention, assisted teaching, mild cognitive impairment/dementia, and autism/intellectual disability. A great majority of the findings are positive concerning the NAO robot. Its multimodality makes it a SAR with potential

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Trust in Robots

    Get PDF
    Robots are increasingly becoming prevalent in our daily lives within our living or working spaces. We hope that robots will take up tedious, mundane or dirty chores and make our lives more comfortable, easy and enjoyable by providing companionship and care. However, robots may pose a threat to human privacy, safety and autonomy; therefore, it is necessary to have constant control over the developing technology to ensure the benevolent intentions and safety of autonomous systems. Building trust in (autonomous) robotic systems is thus necessary. The title of this book highlights this challenge: “Trust in robots—Trusting robots”. Herein, various notions and research areas associated with robots are unified. The theme “Trust in robots” addresses the development of technology that is trustworthy for users; “Trusting robots” focuses on building a trusting relationship with robots, furthering previous research. These themes and topics are at the core of the PhD program “Trust Robots” at TU Wien, Austria

    "Mango Mango, How to Let The Lettuce Dry Without A Spinner?'': Exploring User Perceptions of Using An LLM-Based Conversational Assistant Toward Cooking Partner

    Full text link
    The rapid advancement of the Large Language Model (LLM) has created numerous potentials for integration with conversational assistants (CAs) assisting people in their daily tasks, particularly due to their extensive flexibility. However, users' real-world experiences interacting with these assistants remain unexplored. In this research, we chose cooking, a complex daily task, as a scenario to investigate people's successful and unsatisfactory experiences while receiving assistance from an LLM-based CA, Mango Mango. We discovered that participants value the system's ability to provide extensive information beyond the recipe, offer customized instructions based on context, and assist them in dynamically planning the task. However, they expect the system to be more adaptive to oral conversation and provide more suggestive responses to keep users actively involved. Recognizing that users began treating our LLM-CA as a personal assistant or even a partner rather than just a recipe-reading tool, we propose several design considerations for future development.Comment: Under submission to CHI202

    Generative AI

    Get PDF

    Generative AI

    Get PDF

    User Experience Design and Evaluation of Persuasive Social Robot As Language Tutor At University : Design And Learning Experiences From Design Research

    Get PDF
    Human Robot Interaction (HRI) is a developing field where research and innovation are progressing. One domain where Human Robot Interaction has focused is in the educational sector. Various research has been conducted in education field to design social robots with appropriate design guidelines derived from user preferences, context, and technology to help students and teachers to foster their learning and teaching experience. Language learning has become popular in education due to students receiving opportunities to study and learn any interested subjects in any language in their preferred universities around the world. Thus, being the reason behind the research of using social robots in language learning and teaching in education field. To this context this thesis explored the design of language tutoring robot for students learning Finnish language at university. In language learning, motivation, the learning experience, context, and user preferences are important to be considered. This thesis focuses on the Finnish language learning students through language tutoring social robot at Tampere University. The design research methodology is used to design the persuasive language tutoring social robot teaching Finnish language to the international students at Tampere University. The design guidelines and the future language tutoring robot design with their benefits are formed using Design Research methodology. Elias Robot, a language tutoring application designed by Curious Technologies, Finnish EdTech company was used in the explorative user study. The user study involved Pepper, Social robot along with the Elias robot application using Mobile device technology. The user study was conducted in university, the students include three male participants and four female participants. The aim of the study was to gather the design requirements based on learning experiences from social robot tutor. Based on this study findings and the design research findings, the future language tutoring social robot was co-created through co design workshop. Based on the findings from Field study, user study, technology acceptance model findings, design research findings, student interviews, the persuasive social robot language tutor was designed. The findings revealed all the multi modalities are required for the efficient tutoring of persuasive social robots and the social robots persuade motivation with students to learn the language. The design implications were discussed, and the design of social robot tutor are created through design scenarios
    • …
    corecore