4,505 research outputs found

    Implementing the 2-D Wavelet Transform on SIMD-Enhanced General-Purpose Processors

    Full text link

    Parallel 3D Fast Wavelet Transform comparison on CPUs and GPUs

    Get PDF
    We present in this paper several implementations of the 3D Fast Wavelet Transform (3D-FWT) on multicore CPUs and manycore GPUs. On the GPU side, we focus on CUDA and OpenCL programming to develop methods for an efficient mapping on manycores. On multicore CPUs, OpenMP and Pthreads are used as counterparts to maximize parallelism, and renowned techniques like tiling and blocking are exploited to optimize the use of memory. We evaluate these proposals and make a comparison between a new Fermi Tesla C2050 and an Intel Core 2 QuadQ6700. Speedups of the CUDA version are the best results, improving the execution times on CPU, ranging from 5.3x to 7.4x for different image sizes, and up to 81 times faster when communications are neglected. Meanwhile, OpenCL obtains solid gains which range from 2x factors on small frame sizes to 3x factors on larger ones

    A 2D DWT architecture suitable for the Embedded Zerotree Wavelet Algorithm

    Get PDF
    Digital Imaging has had an enormous impact on industrial applications such as the Internet and video-phone systems. However, demand for industrial applications is growing enormously. In particular, internet application users are, growing at a near exponential rate. The sharp increase in applications using digital images has caused much emphasis on the fields of image coding, storage, processing and communications. New techniques are continuously developed with the main aim of increasing efficiency. Image coding is in particular a field of great commercial interest. A digital image requires a large amount of data to be created. This large amount of data causes many problems when storing, transmitting or processing the image. Reducing the amount of data that can be used to represent an image is the main objective of image coding. Since the main objective is to reduce the amount of data that represents an image, various techniques have been developed and are continuously developed to increase efficiency. The JPEG image coding standard has enjoyed widespread acceptance, and the industry continues to explore its various implementation issues. However, recent research indicates multiresolution based image coding is a far superior alternative. A recent development in the field of image coding is the use of Embedded Zerotree Wavelet (EZW) as the technique to achieve image compression. One of The aims of this theses is to explain how this technique is superior to other current coding standards. It will be seen that an essential part orthis method of image coding is the use of multi resolution analysis, a subband system whereby the subbands arc logarithmically spaced in frequency and represent an octave band decomposition. The block structure that implements this function is termed the two dimensional Discrete Wavelet Transform (2D-DWT). The 20 DWT is achieved by several architectures and these are analysed in order to choose the best suitable architecture for the EZW coder. Finally, this architecture is implemented and verified using the Synopsys Behavioural Compiler and recommendations are made based on experimental findings

    Medical image enhancement

    Get PDF
    Each image acquired from a medical imaging system is often part of a two-dimensional (2-D) image set whose total presents a three-dimensional (3-D) object for diagnosis. Unfortunately, sometimes these images are of poor quality. These distortions cause an inadequate object-of-interest presentation, which can result in inaccurate image analysis. Blurring is considered a serious problem. Therefore, “deblurring” an image to obtain better quality is an important issue in medical image processing. In our research, the image is initially decomposed. Contrast improvement is achieved by modifying the coefficients obtained from the decomposed image. Small coefficient values represent subtle details and are amplified to improve the visibility of the corresponding details. The stronger image density variations make a major contribution to the overall dynamic range, and have large coefficient values. These values can be reduced without much information loss

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    High speed VLSI architectures for DWT in biometric image compression: A study

    Get PDF
    AbstractBiometrics is a field that navigates through a vast database and extracts only the qualifying data to accelerate the processes of biometric authentication/recognition. Image compression is a vital part of the process. Various Very Large Scale Integration (VLSI) architectures have emerged to satisfy the real time requirements of the online processing of the applications. This paper studies various techniques that help in realizing the fast operation of the transform stage of the image compression processes. Various parameters that may involve in optimizations for high speed like computing time, silicon area, memory size etc are considered in the survey

    Computationally efficient locally adaptive demosaicing of color filter array images using the dual-tree complex wavelet packet transform

    Get PDF
    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation
    • …
    corecore