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Abstract

Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip.
Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is
proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-
tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for
demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an
efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but
incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring
approaches.
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Introduction

There is a large scientific and industrial interest in color filter

array (CFA) interpolation of Bayer arrays [1] (i.e. demosaicing).

The Bayer array is a monochrome capture system of light sent

through a periodic system of color filters as shown in Figure 1.

Converting this data to a color image is called demosaicing, it is is

often performed within the limited computational capabilities of

digital cameras, so computationally and memory efficiency is an

important requirement for a practical demosaicing algorithm. A

first class of techniques are those that use interpolation, the most

simple examples are nearest neighbor or bilinear interpolation, but

these techniques suffer from significant artifacts due to frequency

crosstalk. More advanced techniques greatly reduce these artifacts,

at the cost of a higher computational complexity. The method of

Zhang and Wu [2] does this by fusing directional minimum mean

squared error (MMSE) estimates according to an edge adaptive

criterion. In [3,4], alternating projections are used to enforce

natural image prior models, such as inter-channel spectral

correlations. Paliy et al. [5,6] present a method which carefully

uses a combination of local polynomial approximation (LPA)

interpolation with intersections of confidence intervals (ICI) to

adapt the length of the interpolation kernels to the data in order to

avoid artifacts. Other examples are [7], where Menon et al. fuse

horizontal and vertical interpolations according to local estima-

tions of the image gradient or [8], where Buades et al. propose a

version of the non-local means algorithm for self-similarity

enforcing demosaicing post processing. Some techniques explicitly

view the demosaicing problem as an application of linear filters.

Demosaicing with linear filters in the frequency domain was

explored in [9–11]. Wavelet filter banks are essentially computa-

tionally efficient arrays of linear filters, so it should not surprise

that several CFA interpolation techniques exist that use wavelet

filter banks, e.g. [12–15] or steerable pyramid approaches such as

in [12]. Menon and Calvagno [15] propose a hybrid technique,

performing analysis in the wavelet domain, in order to do adaptive

demosaicing in the pixel domain. All these methods have in

common that they estimate dominant edge directions by looking at

preliminary low-pass interpolated luminance, lowering overall

reconstruction bandwidth. Because demosaicing is often per-

formed on low-cost, battery-powered devices, there is an ever

present need for computationally efficient demosaicing which

delivers high visual quality.

In this paper, we present a method that distinguishes itself by

doing demosaicing in a computationally efficient way, by directly

performing demosaicing in a multi-resolution sense, without

preliminary interpolation, while incorporating the necessary

features of a high quality demosaicing algorithm: The algorithm

is designed to achieve a higher reconstructed signal bandwidth

then many existing methods, combined with locally adaptive

measures to avoid reconstruction artifacts. The proposed multi-

resolution approach is also notable for its potential to be efficiently

extended to wavelet-based denoising and deblurring, which could

result in a very efficient joint demosaicing and denoising

algorithm.

This paper is structured as follows: in Section 1, we explain the

frequency domain view of the demosaicing problem, as well as

background on state-of-the-art demosaicing algorithm principles.

Section 1.3 details the wavelet interpretation of the demosaicing
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problem, as this is closely related to the proposed dual-tree

complex wavelet implementation. An overview of the proposed

algorithm is given in Section 3. Section 2 explains the details of the

proposed algorithm, in particular we focus on novelties to the

wavelet demosaicing scheme: implementation and filter design

issues with respect to the dual-tree complex wavelet transform in

Section 2.1, details of the local adaptivity of the proposed

algorithm, in Section 2.2, and an approach to extend the

reconstructed luminance bandwidth, in Section. Section 3

discusses the performance of several aspects of the proposed

technique and compares with state-of-the-art algorithms. Finally,

Section 3 concludes the paper.

Materials and Methods

1 Prior art: a Background on Demosaicing
1.1 What is mosaicing?. Consider an image which consists

of three color channels in an RGB color model. A red channel

R : Z2?R, green channel G : Z2?R and blue B : Z2?R.

Assuming the Bayer mosaic grid, seen in Figure 1, the mosaic

image M : Z2?R is defined as a superposition of subsampled red,

green and blue channels. We use the Bayer grid in this paper, as it

remains the most commonly known one, but the principles used in

the proposed algorithm can be applied to many different grid

layouts, albeit in a heavily modified algorithm: A different

sampling grid leads to a different conceptual partitioning of the

mosaic spectrum into signal and aliasing. This means that the

wavelet analysis and synthesis of color components has to be

performed using different equations than the one presented here,

perhaps even using more wavelet scales, in order to separate the

different parts. However, is still possible to derive a demosaicing

algorithm according to the same principles presented in this paper.

The mosaicing operation can be interpreted as a subsampling

operation. For the Bayer mosaic grid in Figure 1, the image is a

sum of three subsampled images,

M pð Þ~Rm pð ÞzGm pð ÞzBm pð Þ, with:

Rm pð Þ~R pð Þ 1z {1ð Þp1{ {1ð Þp2{ {1ð Þp1zp2

4

Gm pð Þ~G pð Þ 1z {1ð Þp1zp2

2

Bm pð Þ~B pð Þ 1{ {1ð Þp1z {1ð Þp2{ {1ð Þp1zp2

4

ð1Þ

and p~ p1,p2ð Þ the spatial position. The mosaiced signals discrete

time Fourier spectra rm wð Þ, gm wð Þ and bm wð Þ of respectively

Rm pð Þ, Gm pð Þ and Bm pð Þ are in fact the spectra r wð Þ, g wð Þ and

b wð Þ of R pð Þ,G pð Þ and B pð Þ after being subjected to a

convolution, which introduces aliasing copies:

rm wð Þ~r wð Þzr wz
p

0

" # !
{r wz

0

p

" # !
{r wz

p

p

" # !

gm wð Þ~g wð Þzg wz
p

p

" # !

bm wð Þ~b wð Þ{b wz
p

0

" # !
zb wz

0

p

" # !
{b wz

p

p

" # !
ð2Þ

where d vð Þ is the Dirac delta function. For visualization and

understanding why demosaicing works so well, let us start from a

traditional model for natural images: The power spectrum of

natural images is decaying with a 1= wk k2
relationship [16,17]. As

such, the power spectrum of the fully sampled respectively, red,

green and blue image bands (top row of Figure 2) is visualized as

having most of its energy concentrated in the low frequency part.

A mosaicing subsampling operation results in interleaved bands

which constitute the single band mosaic image. Subsampling

introduces aliasing, in accordance with (2), which is visible

schematically (by the overlapping circles of equal signal power)

in the power spectra of the interleaved color bands (bottom row of

Figure 2). Note that the 1= wk k2
behaviour only holds for

ensembles of images, any particular natural image will deviate

from this behaviour, significantly so because of sharp lines in the

image. Sharp image structures are the cause of demosaicing

artifacts in images, will be discussed in detail in the Section 2.2.

1.2 What is demosaicing? The answer using linear

filters. The goal of demosaicing is to reverse the mosaicing

operation implemented by the CFA. The most straightforward

(linear) demosaicing algorithms demultiplex and filter the different

color channels in pixel domain, resulting in a low-pass filtered

result. For bilinear interpolation, the corresponding low-pass filters

are shown in Figure 3. Note the lower bandwidth for the red/blue

filter (right) than for the green filter (left). Also note how the

mosaic-related aliases (bottom row of Figure 2) are nicely

suppressed by the low-pass filters. The aliasing, related to

overlapping power spectra problem has been largely avoided

because these low-pass filters have a fairly low bandwidth and

essentially serve as aliasing suppression filters. The low bandwidth

is a disadvantage, as it reduces image sharpness. The most

Figure 1. Interpretation of the mosaic image as the sum of three subsampled bands or as the sum of fully sampled green and two
subsampled color difference bands (left) and the corresponding power spectral densities of the color difference interpretation
(right). The mixed cyan and magenta signifies a superposition of red and blue color difference spectral energy.
doi:10.1371/journal.pone.0061846.g001

Local Adaptive Complex Wavelet Packet Demosaicing
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important way in which more advanced demosaicing techniques,

such as the ones mentioned in the introduction, distinguish

themselves is by increasing reconstruction bandwidth, while

avoiding aliasing/demosaicing artifacts by (simple) non-linear

operations. This is also the case for the method presented in this

paper. Note that roughly, the bandwidth for green is 75% of the

total bandwidth, while the bandwidth for red and blue signals in

the reconstructed image is 25% of the total bandwidth.

Many approaches exploit the fact that the human visual system

is far more sensitive to luminance, than to chrominance. The

Bayer grid was created after this idea and classic color television

standards such as PAL exploit this in the modulation scheme [18].

It is possible to exploit this behavior of the human visual system, to

increase the potential reconstructed signal bandwidth by making

strict bandlimiting assumptions on the chrominance. Where RGB

demosaicing assumes low-pass signal behavior on the color

channels (as evidenced by the low-pass filters in Figure 3),

luminance/chrominance demosaicing uses the assumption of high

correlation between the different color channel’s high frequencies.

Many demosaicing techniques [2,3,5,10,14,19] nowadays

incorporate these color correlation assumptions, in one example

this is called the smooth hue transition assumption [20]. Another

way to achieve similar results, is to approximate luminance as the

green value, motivated by the large contribution of the green value

to image luma, which is in turn motivated by the human eye’s

superior sensitivity to greens. The chrominance information is

then subsequently considered as the differences red-green and

blue-green. This results in a different interpretation of the

mosaicing problem:

M pð Þ~Rlc pð ÞzG pð ÞzBlc pð Þ ð3Þ

For the Bayer mosaic grid in Figure 1, one can write:

Figure 2. Effects of mosaicing on the signal power spectral density: Three color bands (top row) are subsampled to form one
interleaved mosaic image, which is a superposition of the three subsampled color bands (bottom row).
doi:10.1371/journal.pone.0061846.g002

Figure 3. Power spectra of the filters from a bilinear demosai-
cing filter implementation (black means high power spectral
density).
doi:10.1371/journal.pone.0061846.g003

Local Adaptive Complex Wavelet Packet Demosaicing
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Rlc pð Þ~ R pð Þ{G pð Þð Þ 1z {1ð Þp1{ {1ð Þp2{ {1ð Þp1zp2

4

Blc pð Þ~ B pð Þ{G pð Þð Þ 1{ {1ð Þp1z {1ð Þp2{ {1ð Þp1zp2

4

ð4Þ

Figure 1 shows how it is now possible to consider the mosaic image

as the superposition of a fully sampled green and two subsampled

color difference channels. We will call this the luminance/

chrominance interpretation from now. As in Section 1.1, it is

possible to translate this demosaicing problem to the Fourier

domain interpretation. Note that, when using the luminance/

chrominance interpretation, it is no longer possible to perform

demosaicing of the three color bands by deinterleaving the

subsampled values in the image domain, as the green (luminance)

band is not actually fully known at this point, as seen in Figure 1. It

could be estimated using a preliminary interpolation step, as is

done in many state-of-the-art demosaicing algorithms

[2,6,12,13,15], but we choose not to do so as it increases

computational cost. The power spectral density of the mosaic

image is shown on the right of Figure 1. Because the bandwidth of

the aliased signals (the chrominances or color differences) is

assumed smaller for the luminance/chrominance interpretation

than for the red/green/blue interpretation from Figure 2, less

signal energy is corrupted by aliasing. Hence, it becomes easier to

use linear filters to isolate the color bands from their aliases. This

explains the power of luminance/chrominance demosaicing: it

becomes possible to reconstruct a larger portion of the

uncorrupted signal bandwidth than in the RGB demosaicing

scenario. If the correlation assumption is correct, it is possible to

reconstruct roughly 75% of the total bandwidth for the green as

well as the red and blue channels, which is significantly better than

in Section sub:Linear-Demosaicing. The difficulty with the

luminance/chrominance interpretation is in the demultiplexing

of the data. Assuming the combined green signal bandwidth

combined with the color differences bandwidth is less than the

Nyquist bandwidth, ideal filters (called Hl
:ð Þ and Hh

:ð Þ for

respectively the low-pass and complementary high-pass filter) can

be used to separate the signals from their aliases:

Hl ?Hh ? Mð Þ pð Þ&Blc pð Þ{Rlc pð Þ

Hh ?Hh ? Mð Þ pð Þ&Blc pð ÞzRlc pð Þ

Hl ?Hl ?Mð Þ pð Þ&G pð ÞzBlc pð ÞzRlc pð Þ

ð5Þ

where the signs depend on origin of the Bayer grid. The linear

system in (5) can be used to solve for the three color bands Rlc pð Þ,
G pð Þ and Blc pð Þ, which constitutes the actual demosaicing.

Natural images still have other characteristics that can be

exploited in order to improve demosaicing results. One important

characteristic is locality. A natural scene is often composed of

different objects so the spectral content of the image normally

changes locally across the image. Calculating the global Discrete

Fourier Transform (DFT) disallows any local interpretation by

averaging any local change in spectral content. As an illustration,

we show the result of bilinear demosaicing of the Barbara image in

Figure 4. The Barbara image is a public domain test image that is

well suited for showing high spectral bandwidth content in images

due to the striped cloth and texture. Note the significant

demosaicing artifacts on the stripes. The reason is that locally,

i.e. if one would only look at the patch of stripes, the power

spectral density of these stripes has a very high bandwidth. In light

of this, a global set of low-pass demosaicing filters, such as the ones

for the bilinear demosaicing in Section 1.1, is a bad choice.

Because this significant drawback to global processing, state-of-

the-art demosaicing algorithms perform locally adaptive process-

ing in one way or another (such as [2,5,7,19]). Pixel-domain

algorithms typically calculate an (sometimes elaborate) edge

indicator function, which is then used to fuse multiple directional

filter outputs. Several edge indicator functions are used, they are

called e
g
i in [19], s2

~xxw=h
in [2], dVvdH in [7] and~ssh in [5]. In many

algorithms, these indicators are used to create convex combina-

tions of different directional estimates [2,5,19]. Sometimes, the

edge indicators are given a statistical interpretation such as

standard deviation for~ssh and s2
~xxw=h

in [5] and [2]. When these are

subsequently used in a convex combination, the resulting

algorithm implies a Gaussian MMSE estimator of unknown pixel

values (in fact, this was formally shown in [2]). In order to keep

computational complexity down, we will not use a convex

combination to combine directional estimates in our proposed

method, but we will rather switch between directional estimates

using a statistics-based decision mechanism (explained in Section

2.2). Such decision mechanisms are also used in [7]. For a more

thorough explanation of the aforementioned algorithms, we refer

to their respective papers. In this paper, we will incorporate the

idea of local adaptivity into the wavelet demosaicing framework,

which will turn out to be very elegant. For this, we first establish

that wavelets can indeed be used for demosaicing.

1.3 What is wavelet demosaicing?. Section 1.1 suggests

that demosaicing is in fact an exercise in linear filtering and

sampling theory. This approach was taken literally in [11], where

Wiener demosaicing filters were designed in the Fourier domain.

Section 1.2 suggests that, for natural images, some sort of local

adaptivity improves demosaicing results further. Hence, the ideal

demosaicing strategy is one that, be that explicitly or implicitly,

performs locally adaptive (because of Section 1.2) and frequency

selective (because of section 1.2) filtering. Locality is a defining

characteristic when comparing the Fourier transform to the

wavelet transform. We therefore consider the wavelet transform an

excellent choice for demosaicing algorithms. Notably, in [14], such

wavelet-based demosaicing scheme is proposed. Demosaicing is

achieved through fine tuning of wavelet filters, we will demonstrate

this now by modeling the output signal from a single scale wavelet

decomposition. We will first explain this concept in 1D, consider

therefore the spectrum of a mosaiced, i.e. in this case subsampled,

1D signal:

cm vð Þ~ 1

2
c vð Þ{c vzpð Þð Þ: ð6Þ

Figure 4. Demonstration of demosaicing artifacts due to local
high bandwidth. Bilinear Demosaicing (right) on the Barbara image
(original version on the left). note how the local high bandwidth
content of the stripes introduces discolorations in the black/white veil,
indicated by the highlighted regions.
doi:10.1371/journal.pone.0061846.g004
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with c vð Þ the original signal and c vzpð Þ the aliasing copy. Now,

assume hH (v) is the frequency response of a wavelet filter. The

mosaic signal is filtered and decimated, as in a single scale wavelet

transform. The spectrum of the resulting signal is then:

cH,m vð Þ~ 1

4
hH(v)c vð ÞzhH(vzp)c vzpð Þð Þ{

1

4
hH(vzp)c vð ÞzhH(v)c vzpð Þð Þ:

The first term in this equation is the spectrum cH vð Þ of the

wavelet transform of the original signal c vð Þ. Assuming (approx-

imate) low-pass bandlimitedness of the original signal and the

wavelet filter, cH vð Þ&0. The second term can be rewritten as

cH,m vð Þ~{
1

4
exp (jh({vzp))hL({v)c(v)zð

exp (jh({v))hL(p{v)c(vzp)Þ
ð7Þ

where we assume that the wavelet filters are quadrature mirror

filters (QMF), i.e. they satisfy the relationship

hH(v)~ exp (jh({v))hL p{vð Þ, where h(v) is a phase function,

this follows from the definition of a QMF [21]. If the phase

function h(v) is linear, the phase factor denotes a translation of the

signal. Note that hL({v) corresponds to a time reversed filter. As

such, using a time reversed filter h ~HH(v)~hH({v) leads to:

c ~HH,m vð Þ~{
1

4
exp(jh(v))hL(v)c(v)zexp(jh(vzp))hLð

(vzp)c(vzp)Þ&{
1

2
cL vð Þ:

ð8Þ

This way, it becomes apparent that the scaling coefficients of a

signal can be obtained through filtering the mosaic signal using the

time-reversed wavelet filter, but only when the following

requirement is fulfilled:

exp(jh(v))~1, ð9Þ

which means that the high pass filter should not be translated with

respect to the modulated and time reversed low pass filter. This is

an important but not impossible requirement, especially with

respect to the design of complex wavelet filters in Section 1.2. Note

that it is necessary in order for this technique to work, to use the

decimated (i.e. non-redundant) wavelet transform. If the redun-

dant wavelet transform were used, there would be no aliasing term

in (7) and as such (8) would not hold. This reduces reconstruction

quality as usually the redundant wavelet transform is preferred for

restoration purposes because of its translation invariance and

associated performance increase with respect to the decimated

wavelet transform. This is exactly the problem that we propose to

handle using the dual-tree complex wavelet transform.

We now show the concept in two dimensions. Using the

relationship (8), one can prove that (for the grid orientation of

Figure 4) the following relations hold between the wavelet

coefficients mdd of M pð Þ and the wavelet coefficients gdd, rdd

and bdd of the target signals G pð Þ, R pð Þ and B pð Þ, where the

subscript d signifies the filter used and we drop the spatial index

pð Þ for notational simplicity:

mLL~gLLz
1

4
rlc,LL{rlc, ~HHLzrlc,L ~HH{rlc, ~HH ~HH

� �
z

1

4
blc,LLzblc, ~HHL{blc,L ~HH{blc, ~HH ~HH

� �
mL ~HH~gL ~HHz

1

4
rlc,LL{rlc, ~HHLzrlc,L ~HH{rlc, ~HH ~HH

� �
z

1

4
{blc,LL{blc, ~HHLzblc,L ~HHzblc, ~HH ~HH

� �
m ~HHL~g ~HHLz

1

4
{rlc,LLzrlc, ~HHL{rlc,L ~HHzrlc, ~HH ~HH

� �
z

1

4
blc,LLzblc, ~HHL{blc,L ~HH{blc, ~HH ~HH

� �
m ~HH ~HH~g ~HH ~HHz

1

4
{rlc,LLzrlc, ~HHL{rlc,L ~HHzrlc, ~HH ~HH

� �
z

1

4
{blc,LL{blc, ~HHLzblc,L ~HHzblc, ~HH ~HH

� �

ð10Þ

with the subscript lc again denoting color differences as in (1). As

explained in Section 1.2 and visible in Figure 2, more convenient

bandwidth assumptions on the aliased signals can be made by

rewriting the signals in a ‘luminance-chrominance’ interpretation.

As the color difference signals Blc pð Þ and Rlc pð Þ have very small

bandwidth, it is reasonable to assume that only their scaling (low-

pass) coefficients from a two stage wavelet decomposition will

represent significant color difference energy:

rlc,d~0

blc,d~0
d~LH or LH or HH ð11Þ

Also in analogy to Section 1.2, the total signal bandwidth, the

luminance/green bandwidth added to the chrominance band-

width, should not exceed the total Nyquist bandwidth. Assuming

perfect wavelet filters, this imposes the following assumption on the

luminance/green wavelet coefficients:

gd~0 d~LH or LH or HH ð12Þ

Using (12), (11) and (8), the mosaic wavelet coefficients md1,d2 can

be expressed as a linear system of equations in the wavelet

coefficients of the luminance and chrominance signals gd1d2,

rlc,d1d2 and blc,d1d2;

mLL~
1

4
rlc,LLzgLLz

1

4
blc,LL

mL ~HH~
1

4
blc,LL{

1

4
rlc,LL~{m ~HHL

m ~HH ~HH~{
1

4
blc,LL{

1

4
rlc,LL

ð13Þ

Note that, under the aforementioned assumptions, some coeffi-

cients contain the same information

mL ~HH~{m ~HHL ð14Þ

in (13), we will exploit this in the proposed algorithm to perform

locally adaptive demosaicing. Resolving this linear system for

rlc,LL, glc,LL, blc,LL is now well-posed and this solves the hard part

of the demosaicing problem: Demultiplexing the three low pass

Local Adaptive Complex Wavelet Packet Demosaicing

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e61846



spectral energy components (as seen in Figure 1). This summarizes

into the demosaicing rules of Table 1. Using a two level wavelet

packet transform, more realistic bandwidth assumptions can be

applied to the signal. When attributing 3=4 of the bandwidth to

green signal and 1=4 to the color differences, the demosaicing rules

in Table 2 are derived. The final demosaiced image can be

recovered by using the inverse wavelet packet transform on the

demosaiced wavelet subbands of the respective color bands. This

demosaicing approach was first proposed in [14]. Note that the

demosaicing rules in (2) are only valid for the lattice configuration

of Figure 5. Other lattice configurations can easily be handled by

using boundary extensions of the mosaic image, or by deriving the

analogous demosaicing equations.

2 The Proposed Method
The aim of this paper is now to incorporate the ideas explained

in Section 1, such as locally adaptive processing, into the wavelet-

based demosaicing framework explained in Section 1.3. We will

show that this leads to a novel algorithm that combines the

computational simplicity of the wavelet demosaicing framework

with the high demosaicing quality characteristics of more complex

pixel-domain techniques. We call the wavelet demosaicing

framework computationally simple, because the resulting equa-

tions, such as (2), are computationally simple. A drawback

however, is that in order to obtain alias-free demosaicing, one

needs the undecimated wavelet (packet) transforms, which increase

redundancy, and with it the computational cost. Another

drawback, as described at the end of Section 1.3, is that the

derivation of the simple demosaicing equations actually relies on

aliasing (2) being present. Instead, we propose the complex wavelet

transform as a way to reduce redundancy while maintaining the

alias-free processing.

2.1 Dual-tree Complex Wavelet Transform. The dual-

tree complex wavelet transform (DT-CWT), originally conceived

by Kingsbury [22], introduces several important advantages over

the discrete wavelet transform. One advantage is that it allows for

shift invariant processing of wavelet coefficients at a lower

redundancy than the undecimated discrete wavelet transform.

Shift invariance has been long known to be of great benefit for

image restoration purposes and in the end demosaicing is image

restoration. At the same time, it allows for aliasing in the

coefficients, which is necessary for the elegant wavelet domain

demosaicing equations in Section 1.3. Because of these character-

istics, we find it an excellent choice for wavelet demosaicing.

For a two level wavelet packet transform, the redundancy of the

DT-CWT is 4, while for the undecimated discrete wavelet packet

transform it would be 16. The aim in dual-tree complex wavelet

filter design is to have complex wavelet filters with (approximately)

analytic filter responses. To achieve this, the filters and their

respective Hilbert transforms are used. The details can be found in

[23]. Analytical filter responses are the reason for shift invariance,

because shift invariance implies the absence of aliasing in the

reconstruction. When using the decimated wavelet transform, shift

invariance is lost when processing wavelet coefficients, as the

unaltered wavelet coefficients are needed to prevent aliasing,

which is present in the scaling coefficients, from propagating into

the result. Since the intention of wavelet image processing is to

process wavelet coefficients, a different approach to cancel aliasing

is often desired. The Hilbert transformed filter bank is one

solution. This can easily be seen in 1D, if a signal c vð Þ is filtered

with a wavelet filter h(v) and subsequently decimated, the

spectrum of the resulting wavelet band ch vð Þ is then:

ch vð Þ~ 1

2
h(v)c vð Þzh(vzp)c vzpð Þð Þ, ð15Þ

Table 1. Single scale wavelet subband demosaicing: the three color bands r, g, b’s wavelet subbands in terms of wavelet
subbands of the mosaic data y.

r̂rd ĝgd b̂bd

if d~LL mLL{m ~HH ~HHzmL ~HH{m ~HHL mLLzm ~HH ~HH mLL{m ~HH ~HH{mL ~HHzm ~HHL

else 0 0 0

doi:10.1371/journal.pone.0061846.t001

Table 2. Two scale wavelet packet subband demosaicing: the three color bands r, g, b’s wavelet subbands in terms of wavelet
subbands of the mosaic data y.

r̂rd1,d2 ĝgd1,d2 b̂bd1,d2

if d1~d2~LL mLL,LL{m ~HH ~HH,LL mLL,LLzm ~HH ~HH,LL mLL,LL{m ~HH ~HH,LL

zmL ~HH,LL{m ~HHL,LL {mL ~HH,LLzm ~HHL,LL

if d2=LL md1,d2 md1,d2 md1,d2

else 0 0 0

doi:10.1371/journal.pone.0061846.t002

Figure 5. Lattice configuration for the demosaicing procedure.
doi:10.1371/journal.pone.0061846.g005

Local Adaptive Complex Wavelet Packet Demosaicing

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e61846



which consists of a correct filter response term and an aliasing

term. When doing the same with a Hilbert transformed filter

g(v)~jsign vð Þh(v), with j the imaginary unit, the spectrum of

the resulting wavelet band cg vð Þ is:

cg vð Þ~ j

2
sign vð Þ h(v)c vð Þ{h(vzp)c vzpð Þð Þ: ð16Þ

Aliasing, i.e. the h(vzp)c vzpð Þ term, can now be demultiplexed

by combining (15) and (16), instead of relying on the balance

between scaling and wavelet coefficients, as long as the coefficients

in the different complex wavelet trees are handled in a way that

does not alter the relation between (15) and (16) (e.g. dissimilar

scaling or shrinking). This use of the dual-tree complex wavelet

transform reduces the redundancy factor of 16 (for a two level

undecimated discrete wavelet packet transform) to 4, while

maintaining shift invariance and allowing demosaicing. In this

work, the mosaic image (3) will be analyzed using a two scale 2D

dual-tree complex wavelet packet transform, which has four filter

trees. As such, we will denote the mosaic image wavelet coefficients

as md1,d2,n, with d1 denoting the horizontal and vertical filter pair

for the first scale, d2 denoting the horizontal and vertical filter pair

for the second scale and n indicating the dual-tree complex

wavelet tree, the order of this numbering is of no consequence for

this technique. We drop the spatial location index of the wavelet

coefficient as our proposed method is fully parallellizable with

respect to the spatial location of the wavelet coefficients.

It turns out that analyticity and compact support are

incompatible goals. This is why practical implementations settle

for nearly analytical wavelet filter pairs. In [23,24], it was proven

that, in order to achieve this (near) analyticity in a filter bank

scheme, the first scale wavelet filter h1(v) should be shifted

approximately one sample with respect to the corresponding filter

in the other filter tree:

g1(v)&h1(v)exp {jvð Þ or g1(v)&h1(v)exp jvð Þ ð17Þ

The second and subsequent scales should then use filters h2(v)
and g2(v) that involve an approximate half sample shift between

trees [23,24]:

g2(v)&h2(v)exp {j0:5vð Þ

or g2(v)&h2(v)exp j0:5vð Þ
ð18Þ

For our demosaicing application, we propose a multiscale (i.e.

more than one) complex wavelet packet decomposition, in order to

have a sufficiently accurate frequency selectivity as in Section 1.3.

Here, we notice a hazard when comparing this with the

demosaicing requirements (9): for demosaicing, no shift is allowed

between the low pass filter and the time-reversed and (modulated)

high pass filter. More formally: if for the filter h1(v) requirement

(9) is fulfilled then:

h1,H(v)~h1,L p{vð Þ: ð19Þ

The problem is that (17) actually requires a one sample shift

between between the first scale first tree filters h1(v) and their

corresponding second tree filters g1(v) such that:

g1,H(v)~h1,H(v)exp {jvð Þ~h1,L p{vð Þexp {jvð Þ ð20Þ

In order to reconcile the requirement that there should be no shift

between the low pass filter and the time-reversed high pass filter

with the requirement that there should be a one sample shift

between the first scale filters in the filter trees, we propose to define

the low pass filter for the second tree as:

g1,L(v)~h1,L vð Þexp jvð Þ ð21Þ

i.e. a shift for the low pass second tree filter in the opposite

direction as the high pass second tree filter. Plugging this definition

in eq:shifteq, results in:

g1,H(v)~h1,L p{vð Þexp {jvð Þ~{g1,L(p{v): ð22Þ

This result shows that the (near) analyticity properties of the dual-

tree complex wavelet transform can be coupled with the

demosaicing requirement (9). However, a new problem arises:

there is now a sign change in the first tree with respect to the

second tree, as the filters are designed such that:

h1,H(v)~h1,L p{vð Þ and on the other hand

g1,H(v)~{g1,L(p{v). It is very important to account for the

sign change in the demosaicing equations, as this will lead to a

similar sign change in the wavelet coefficients. It can be

compensated for, by changing the signs of the wavelet coefficients

with an appropriate factor for every subband in every tree,

subsequently applying the demosaicing rules, and then undoing

this operation before reconstruction. To avoid confusion with

respect to the sign choice, in this paper, we will integrate the sign

change into the demosaicing rules, which results in the proposed

algorithm having different demosaicing rules for the different filter

trees, which we will explain further.

2.2 Locally adaptive demosaicing using (complex)

wavelets. As described in Section 1.2, spatially invariant

demosaicing algorithms, such as bilinear demosaicing algorithm,

fail in regions with high spatial frequency content (e.g. the shroud

of Barbara in figure 4). One could say that the implicit bandwidth

assumption, i.e. that the signal is bandlimited to a low-pass

behavior, is locally invalid. As a spatially invariant algorithm, the

wavelet demosaicing approach described in Section 1.3 suffers

from similar problems. We will focus on the following artifacts:

N Only 3=4 of the maximum luminance bandwidth is recon-

structed. This means that the remaining 1=4 of the luminance

bandwidth is not reconstructed. This lack of bandwidth leads

to blurring with respect to the reference image. This can be

seen in Figure 6.

N Luminance energy beyond the 3=4 bandwidth point is

confused for chrominance energy, which results in severe

discoloration artifacts in the result. This can be seen in Figure 6

(second from right).

N Incorrect detection and processing of a local feature leads to

incorrect new edges, which we call the zipper artifact. This can

be seen in Figure 6 (right).

Other artifacts relate to the low bandwidth reconstruction of

chroma, 1=4 of the total bandwidth. As these artifacts are psycho-

visually not disturbing, which is strongly related to the efficacy of

chroma subsampling in compression schemes [25], we will not

take special measures to correct them. Eliminating the aforemen-

tioned artifacts consists of two steps: detecting demosaicing

artifacts (Section 2.2) and correcting them (Section 2.2 and

Section 2.2). The strategy to correct these artifacts is based on the

redundant information in the demosaicing equations (14), which is

in turn related to the existence of multiple aliasing copies of the
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chrominance signals, as they are subsampled both vertically and

horizontally in the mosaicing process. If two uncorrupted aliasing

copies of the chrominance signals can be found in the spectral

content of any of the mosaic (complex) wavelet coefficients,

artifact-free reconstruction is possible. Consider an image patch

with some vertical stripes, i.e. large horizontal bandwidth (e.g. the

picture in Figure 6). Now the luminance bandwidth assumption

(12) is no longer correct. For our two level wavelet packet

transformation we can express this as:

gHL,LL,n=0 ð23Þ

As a result, the simplified equations from which the demosaicing

rules are derived (13) are also incorrect, and instead become, for

the first of the four trees of our two level 2D wavelet packet

transformation:

mLL,LL,1~
1

4
rlc,LL,LL,1zgLL,LL,1z

1

4
blc,LL,LL,1

mL ~HH,LL,1~
1

4
blc,LL,LL,1{

1

4
rlc,LL,LL,1

m ~HHL,LL,1~{mL ~HH,LL,1zg ~HHL,LL,1

m ~HH ~HH,LL,1~{
1

4
blc,LL,LL,1{

1

4
rlc,LL,LL,1

ð24Þ

The wavelet coefficient m ~HHL,LL,1, which should only contain

chrominance alias, now contains excess luminance energy and is

considered corrupted. In a demosaicing algorithm that is oblivious

to these artifacts, such as when applying the algorithm in Table 2

separately to the different complex wavelet trees, the result would

show a discoloration artifact. The red, as well as the blue, low-pass

signal is corrupted:

r̂rLL,LL,1~rLL,LL,1{g ~HHL,LL,1 and

b̂bLL,LL,1~bLL,LL,1zg ~HHL,LL,1:

It is equally possible that the artifact was caused by horizontal

stripes, i.e. large vertical bandwidth. Before an attempt can be

made to suppress the artifact, it should be known whether the

artifact is caused by excess luminance bandwidth in the horizontal

direction (gHL,LL,n=0, graphically in Figure 7, left) or by excess

luminance bandwidth in the vertical direction (gLH,LL,n=0,

graphically in Figure 7, right). In theory, it could happen that

the diagonal wavelet coefficient is corrupted (gHH,LL,n=0), but

since this represents a higher bandwidth than the vertical and the

horizontal wavelet coefficient, we do not consider this here.

We will now look at detecting demosaicing artifacts. In the

previous section, it was remarked that, when there are no artifacts,

mL ~HH,LL,n~m ~HHL,LL,n. When artifacts occur, these coefficients are

corrupted with an extra luminance term, such as in (24). The aim

now is to detect which of these coefficients is the least corrupted.

Since the visual quality of locally adaptive processing is sensitive to

incorrect detections (see the zipper artifact in Figure 6), we will

develop a Bayesian multihypothesis technique to decide which one of

both coefficients is corrupted. There are two hypotheses: Hv,

which means that there is a dominant local horizontal feature (i.e.

locally larger vertical luminance bandwidth) and Hh, which means

a local vertical feature. Based on those two starting hypotheses,

there are three possible decisions: ĤHh, which means a vertical

feature is detected; ĤHv, which means a horizontal feature is

detected and ĤHu, which means either of the previous decisions is

too dangerous with respect to the cost function (this is the

‘‘unsure’’ decision). By introducing this third hypothesis, we can

avoid visual artifacts (Figure 6) that would otherwise originate

from incorrect detection of ĤHh or ĤHv. The Bayesian risk that is to

be minimized by the decision is:

Ro~CmP ĤHh,HvDm
� �

zCmP ĤHv,HhDm
� �

zCuP ĤHu,HhDm
� �

zCuP ĤHu,HvDm
� �

zCcP ĤHh,HhDm
� �

zCcP ĤHv,HvDm
� �

,
ð25Þ

where Cm is the cost of an incorrect decision (a ‘‘miss’’), Cu is the

cost of an ‘‘unsure’’ decision and Cc~0, the cost of a ‘‘correct’’

decision. Instead of basing the decision on the vector m of all

wavelet coefficients associated with a given spatial location, we

base the decision on a corruption measure. In order to distinguish

the (luminance) corruption from the chrominance in the analysis,

we propose the use of a third level in the wavelet packet

Figure 6. Demosaicing artifacts examples.
doi:10.1371/journal.pone.0061846.g006

Figure 7. Color corruption can be caused either by excess
luminance bandwidth in the vertical or horizontal direction.
doi:10.1371/journal.pone.0061846.g007
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decomposition, which can be performed at no extra memory cost

using the dual-tree complex wavelet transform. We apply

m ~HHL,LL,LL,n~mL ~HH,LL,LL,n~0. Reconstruction of this filtered third

scale will lead to a approximate chroma-free coefficients, which we

define as m’L ~HH,LL,n and m’ ~HHL,LL,n. Note how this zero setting

operation acts as a simple band reject filter, where the dual-tree

complex wavelet transform provides an efficient way to implement

it. These coefficients are subsequently used as the corruption

measure, i.e. an estimate for high frequency luminance. In this

framework, the decision is made that minimizes the risk (26), given

the corruption measure:

R~CmP ĤHh,HvDm0
� �

zCmP ĤHv,HhDm0
� �

zCuP ĤHu,HhDm0
� �

zCuP ĤHu,HvDm0
� �

,

ð26Þ

with m0~½m’L ~HH,LL,1, m’L ~HH,LL,2, m’L ~HH,LL,3, m’L ~HH,LL,4, m’ ~HHL,LL,1,

m’ ~HHL,LL,2,m’ ~HHL,LL,3,m’ ~HHL,LL,4�
T

the observed vector of filtered

coefficients at a given spatial location in the four complex

wavelet trees. The hypotheses and associated cost for a ‘‘miss’’

decision Cm or an ‘‘unsure’’ decision Cu are visualized in

Figure 8. Assuming P Hhð Þ~P Hvð Þ~ 1
2
, which means that

horizontal edges and vertical edges are equally probable, (26)

can be expanded into

R~

Cm p m0,ĤHh DHv

� �
zp m0,ĤHv DHh

� �� �
zCu p m0,ĤHu DHv

� �
zp m0,ĤHu DHh

� �� �
p m0DHvð Þzp m0 DHhð Þ ,

which can be further simplified into

R~

Cm p ĤHh Dm0
� �

p m0 D,Hvð Þzp ĤHv Dm0
� �

p m0 D,Hhð Þ
� �

zCu p m0,ĤHu DHv

� �
zp m0 ,ĤHu DHh

� �� �
p m0 DHvð Þzp m0 DHhð Þ ,

where we make use of the fact that the decision only depends on

the measurement vector such that

p m0,ĤHdDHd

� �
~p ĤHdDm0,Hd

� �
p m0DHdð Þ~p ĤHdDm0

� �
p m0DHdð Þ,

with d~fh,u,vg. Now, we note that the decision is deterministic

such that the functions p ĤHdDm0
� �

are binary. The minimizer of

this risk in this setting is shown in (27).

ĤHu if p m0DHvð Þzp m0DHhð Þv Cm

Cu
min p m0DHvð Þ,p m0DHhð Þ½ �

ĤHv if p m0DHvð Þwp m0DHhð Þ and ĤHu

ĤHh otherwise

0
BBB@ ð27Þ

Figure 8. From the filtered wavelet coefficients ~mm, whose support is indicated by the colored area on the left, and two initial
hypotheses: either high horizontal luminance bandwidth (Hv) or high vertical luminance bandwidth (Hh) is dominant, the costs of
making an ‘‘incorrect’’ decision Cm or an ‘‘unsure’’ decision Cu is indicated. The cost for a ‘‘correct’’ decision Cc~0 is not indicated.
doi:10.1371/journal.pone.0061846.g008
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We now propose a Laplacian model for the statistics of filtered

wavelet coefficients m0
L ~HH,LL,n

and m0~HHL,LL,n
:

p m0DHvð Þ~ 1

4bmaxbminð Þ4
exp {

P4
n~1

Dm’
L ~HH,LL,n

D

bmax
{

�
P4
n~1

Dm’ ~HHL,LL,n
D

bmin

�
,

p m0DHhð Þ~ 1

4bmaxbminð Þ4
exp {

P4
n~1

Dm’
L ~HH,LL,n

D

bmin
{

�
P4
n~1

Dm’ ~HHL,LL,n
D

bmax

�
:

The motivation for a Laplacian model lies in the highly leptokurtic

statistics of bandpass filter output when dealing with natural

images. This is well known in image restoration [26–30]. For the

specific case here, on a filtered dual-tree complex wavelet packet

transform band, we illustrate the validity of this using statistics

extracted from the goldhill image, shown in Figure 9. The figure

shows a logarithmically plot histogram of coefficients m’L ~HH,LL,1

from a natural image, along with a Laplacian fit, and a Gaussian

fit. It can be seen that the Laplacian fit is indeed very accurate.

The parameters bmax and bmin, which are related to the variance

in respectively the dominant and the subordinate direction remain

to be estimated. Since we have ~mm0 available, and our initial

hypothesis model assumes a dominant direction in all scenarios,

we estimate these from the sample coefficients in both the

horizontal and vertical direction in an maximum likelihood sense.

The largest of these two estimates is then used as a maximum

likelihood estimate for the parameter bmax, the smallest for the

parameter bmin:

bmax~

max
P4
n~1

m
0
L ~HH,LL,n

��� ���, P4
n~1

m
0

~HHL,LL,n

��� ���� �
4

and

bmin~

min
P4

n~1

m
0
L ~HH,LL,n

��� ���, P4
n~1

m
0

~HHL,LL,n

��� ���� �
4

:

For computational simplicity we assume that the four coefficients

m
0
L ~HH,LL,n

, as well as the four coefficients m
0
~HHL,LL,n

, are condition-

ally independent on the initial hypothesis. This is an effective

simplification: the choice for a single bmax, respectively bmin

parameter for the coefficients in a single filter direction reflects the

filters in the four complex wavelet trees having nearly the same

magnitude response. The choice for a model without correlations

between the coefficients is motivated by the significant phase shift

between coefficients in the different trees and computational

simplicity. Using this Laplacian model, this decision rule can be

effectively simplified:

ĤHu

if D
P4
n~1

Dm’L ~HH,LL,nD{
P4
n~1

Dm’ ~HHL,LL,nDDv

bmaxbmin

bmax{bmin

� �
log

Cm{Cu

Cu

ĤHv if
P4

n~1

Dm’L ~HH,LL,nDv
P4

n~1

Dm’ ~HHL,LL,nD and ĤHu

ĤHh otherwise

0
BBBBBBBBBB@

ð28Þ

The costs Cu and Cm are chosen to minimize reconstruction error,

which is explained in the Section.

Now that we now know how to detect demosaicing hazards,

artifact-free reconstruction is easy. Locally, it is now possible to

detect which of the chrominance coefficients m ~HHL,LL,n or mL ~HH,LL,n

are uncorrupted by luminance and then subsequently use these in

the reconstruction, as in Figure 10. Using the (complex dual-tree)

wavelet packet transform, this local demosaicing can be imple-

mented, precisely because of the aforementioned ambiguity in the

demosaicing rules presented in Section 2: under the assumptions of

small chrominance bandwidth (12) and small luminance band-

width (11), it follows from (10) that m ~HHL~mL ~HH. Realizing this, the

first line in 2 can be rewritten as in Table 3. Note that these

equations are only valid for the first complex wavelet filter tree, as

the sign change (22) results in switched signs for some coefficients

in these equations, the derivation of these formulas for the other

complex wavelet trees is not mentioned here to conserve space, but

is completely analogous. Alternatively, the signs could be changed

as a preprocessing step. From Figure 10, it is seen that there is only

one situation where only uncorrupted bands are used, i.e. only one

demosaicing rule will lead to correct colours in the demosaicing

result. The consequence of using the different demosaicing rules is

depicted by the comparison in Figure 11. Figure 11(left) suffers

from the worst colour distortions, which is explained through the

use of only corrupted chrominance aliases (Figure 10(left)).

Conversely, Figure 11(middle) suffers from the least colour

distortions. Figure 11(right) represents a kind of middle ground.

Here the corrupted chrominance information of the mL ~HH,LL,1

subband is mixed with the uncorrupted information of the

m ~HHL,LL,1 band. The global wavelet-based demosaicing approach,

the one originally used in [14], corresponds to the middle ground

Figure 9. Demonstration of the suitability of a Laplacian model on the high pass band m’L ~HH,LL,n. Original image (middle) and its high pass
band m’L ~HH,LL,1 (right) and its logarithmic histogram of these coefficients (left), along with a Laplacian distribution fit (green) and Gaussian fit (red).

doi:10.1371/journal.pone.0061846.g009
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concerning demosaicing artifacts (Figure 11c) by averaging the

uncorrupted with the corrupted coefficient. In our proposed

locally adaptive complex wavelet-based demosaicing, we switch

locally between the demosaicing rules in Table 2 and Table 3,

depending on the detection result explained in Section 2.2. On top

of that, this approach maintains the translation invariance so far as

possible, as the detection result (28) is constant across the different

complex wavelet trees. Using (28), the cost of making a ‘‘miss’’

decision Cm can be weighed against the cost of making an

‘‘unsure’’ decision Cu. Let e be the erroneous contribution due to

luminance in one of the chrominance coefficients. The accumu-

lated errors in the reconstructed coefficients can easily be

calculated using (5), they are shown in Table 4.

The reconstruction rules in Table 5 allow for a reconstruction of

the luminance bandwidth that is limited to the regions indicated in

green in Figure 12(a). We now investigate the possibility of

extending the reconstruction bandwidth for the luminance to the

one shown in Figure 12(b). We take a look at the wavelet

coefficients mL ~HH,LL,1 and mL ~HH,LL,2 under hypothesis Hh, which

means a dominant horizontal local feature. In this scenario, we

may write:

mL ~HH,LL,1 ~ 1
4

blc,LL,LL,1{
1
4

rlc,LL,LL,1zgL ~HH,LL,1

m ~HHL,LL,1 ~ 1
4

blc,LL,LL,1{
1
4

rlc,LL,LL,1

ð29Þ

This opens the possibility of reconstructing the high frequency

Figure 10. The detection framework choses one hypothesis, from left to right ĤHh, ĤHv or ĤHu, and uses a corresponding
reconstruction rule (the checkered chrominance alias). Only one hypothesis uses exclusively uncorrupted chrominance.
doi:10.1371/journal.pone.0061846.g010

Table 3. Alternatives for the low pass wavelet demosaicing rules when compared to Table 2.

rd1,d2,1 gd1,d2,1 bd1,d2,1

if d1~d2~LL mLL,LL,1{m ~HH ~HH ,LL,1 mLL,LL,1zm ~HH ~HH,LL,1 mLL,LL,1{m ~HH ~HH,LL,1

z2mL ~HH,LL,1 {2mL ~HH,LL,1

rd1,d2,1 gd1,d2,1 bd1,d2,1

if d1~d2~LL mLL,LL,1{m ~HH ~HH ,LL,1 mLL,LLzm ~HH ~HH,LL,1 mLL,LL,1{m ~HH ~HH,LL,1

{2m ~HHL,LL,1 z2m ~HHL,LL,1

doi:10.1371/journal.pone.0061846.t003

Figure 11. Demosaicing of Barbara image for the three
demosaicing rules in figure 10. The incorrect rules (left and right),
which use corrupted aliases to reconstruct chrominance, lead to local
discolorations near high frequency regions, whereas the correct rule
(center) results in no discolorations.
doi:10.1371/journal.pone.0061846.g011

Table 4. Comparison between the errors accumulated in the
low pass coefficient, due to either a ‘‘miss’’ decision and an
‘‘unsure’’ decision.

rLL,LL,n gLL,LL,n bLL,LL,n

‘‘miss’’ decision 2e 0 2e

‘‘unsure’’ decision e 0 e

doi:10.1371/journal.pone.0061846.t004
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luminance as gL ~HH,LL,1 = mL ~HH,LL,1{m ~HHL,LL,1. Similarly, for hy-

pothesis Hv, it is possible to reconstruct

g ~HHL,LL,1 = m ~HHL,LL,1{mL ~HH,LL,1. Reconstructing these high lumi-

nance frequency coefficients this way is undesirable, as requires

compensating for the time inverted wavelet filter

h1, ~HH(v)~h1,H({v) in the reconstruction, increasing the com-

plexity, however we note that this can not be avoided: Consider

filtering the mosaic with non time inverted first scale wavelet

filters, then exploiting that (9) holds such that

h1,H(v)~h1,L(p{v):

mLH,LL,1 ~ 1
4

blc,L~LL,LL,1{
1
4

rlc,L~LL,LL,1zgLH,LL,1

mHL,LL,1 ~ 1
4

blc,~LLL,LL,1{
1
4

rlc,~LLL,LL,1

:

In this case, gLH,LL,1 = mLH,LL,1{mHL,LL,1 only holds when

h1,L(v)~h1,L({v),

i.e. when the lowpass filter is a perfectly symmetric filter, which is

usually not the case. Still, symmetric filters can be implemented for

the first complex wavelet tree, but it becomes problematic when

looking at different trees of our dual-tree complex wavelet packet

decomposition. This is because of the one sample shift require-

ment for complex wavelet filter trees (21), as now:

g1,L(v)~h1,L vð Þexp jvð Þ=h1,L {vð Þexp {jvð Þ~g1,L({v),

i.e. in anything but the most trivial case (h1,L(v)~0), is impossible

for both the filters g1,L(v) and h1,L(v) to be perfectly symmetric.

This makes it impossible to use the normal reconstruction filter

bank when reconstructing these high frequency luminance

coefficients. We therefore revert to the first idea, to use the

reconstruction rules in Table 6, which in contrast with the rules in

Table 5 make use of time reversed wavelet reconstruction filters,

which increases the implementation complexity. Again, we take a

look at the errors accumulating when the wrong hypothesis is

chosen, these are shown in Table 7. Since the dual-tree complex

wavelet transform is a Parseval frame, the influence of the

coefficients in Table 4 and Table 7 can be directly related to mean

square error (MSE) in the image domain. The MSE due to a

‘‘miss’’ decision is, which we will use as the cost in (28) is

Table 5. Locally adaptive complex wavelet subband demosaicing for the first tree: the three color bands r, g, b’s wavelet subbands
in terms of wavelet subbands of the mosaic data m.

rd1,d2,1 gd1,d2,1 bd1,d2,1

if d1~d2~LL mLL,LL,1{m ~HH ~HH ,LL,1 mLL,LL,1zm ~HH ~HH,LL,1 mLL,LL,1{m ~HH ~HH,LL,1

and ĤHh
z2mL ~HH,LL,1 {2mL ~HH,LL,1

elseif d1~d2~LL mLL,LL,1{m ~HH ~HH ,LL,1 mLL,LL,1zm ~HH ~HH,LL,1 mLL,LL,1{m ~HH ~HH,LL,1

and ĤHv
{2m ~HHL,LL,1 z2m ~HHL,LL,1

elseif d1~d2~LL mLL,LL,1{m ~HH ~HH ,LL,1 mLL,LL,1zm ~HH ~HH,LL,1 mLL,LL,1{m ~HH ~HH,LL,1

and ĤHu
zmL ~HH,LL,1{m ~HHL,LL,1 {mL ~HH,LL,1zm ~HHL,LL,1

if d2=LL md1,d2,1 md1,d2,1 md1,d2,1

else 0 0 0

doi:10.1371/journal.pone.0061846.t005

Table 6. Demosaicing rules for the extended luminance
bandwidth coefficients beyond the ones in table 5, for the
first tree.

r ~HHL,LL,1,g ~HHL,LL,1,b ~HHL,LL,1 rL ~HH,LL,1,gL ~HH,LL,1,bL ~HH,LL,1

ĤHh
0 mL ~HH,LL,1zm ~HHL,LL,1

ĤHv
m ~HHL,LL,1zmL ~HH,LL,1 0

ĤHu
0 0

Note that the inverted reconstruction filters need to be used here.
doi:10.1371/journal.pone.0061846.t006

Table 7. Comparison between the errors accumulated in the
high pass coefficient, due to either a ‘‘miss’’ decision and an
‘‘unsure’’ decision.

r ~HHL,LL,1, g ~HHL,LL,1, b ~HHL,LL,1 rL ~HH ,LL,1, gL ~HH ,LL,1, bL ~HH ,LL,1

Hh Hv Hh Hv

‘‘miss’’ decision e e e e

‘‘unsure’’ decision 0 e e 0

doi:10.1371/journal.pone.0061846.t007

Figure 12. Comparison of reconstruction bandwidths when
extended demosaicing rules are used. Reconstructed luminance
bandwidth (indicated by the spectral support in green) of (a) the
reconstruction rules in Table 5 and (b) the reconstruction rules in Table 5
combined with the rules in Table 6.
doi:10.1371/journal.pone.0061846.g012
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Cm~ 4z4z3z3ð Þe2, while the cost for an ‘‘unsure’’ decision is

Cu~ 1z1z3ð Þe2. This leads to a ratio Cm
Cu

~ 14
5
: The significance

of this result is that it pays off to include the ‘‘unsure’’ decision in

our decision framework as it can be seen from (28) that the

decision ĤHu will only improve MSE and be used when Cuv
Cm

2
,

which is true in this case.

3 Overview of the proposed algorithm
A complete flowchart of the algorithm is shown in Figure 13.

Without loss of generality, the assumed top left of the input Bayer

mosaic is oriented as in Figure 5. Conceptually, there two

concurrent dual-tree complex wavelet packet transformations

needed for a basic implementation, such as the one implemented

for this paper. However, computational complexity can be

reduced due to the large number of zero, unused wavelet bands.

Memory complexity can be halved as the non-zero complex

wavelet bands in both transforms are mutually exclusive (compare

the bands set to zero in Table 5 with Table 6). The first scale filters

need to be designed according to requirement (9), i.e.

h1,H(v)~h1,L p{vð Þ

The first scale filter for the second complex wavelet tree should

then be chosen according to requirement (21) and (20):

g1,L(v)~h1,L vð Þexp jvð Þ
g1,H(v)~h1,H vð Þexp {jvð Þ

For the second scale of the complex wavelet filters there are no

further special requirements concerning this demosaicing applica-

tion. The need for a different demosaicing procedure for every

complex wavelet tree has its origin in the sign change which is

introduced into the demosaicing equation by the Hilbert transform

first scale filter (22). The flowchart for the DT-CWT transforms is

shown in Figure 14. For a 2D DT-CWT, it is necessary to perform

a linear transformation of the output of the four separate filter

trees, because only then the coefficients have an interpretation as

coefficients of a complex 2D wavelet (see section ‘‘2-D dual-tree

CWT’’ in [23]) and only then (diagonal) directional analysis is

possible. We call this a recombination step. For example, from

[23] we get that the real part of a 2D complex wavelet can be

obtained as:

< Y x,yð Þ½ �~Yh xð ÞYh yð ÞYg xð ÞYg yð Þ:

Figure 13. Flowchart of the demosaicing algorithm. The greyed area shows which part of the R,G,B spectrum is recovered in each step, for
each tree. The relevant sections for each block are mentioned.
doi:10.1371/journal.pone.0061846.g013
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Figure 14. Flowchart for the two scale dual-tree complex wavelet transform as used in this paper. Note that the analyticity
recombination, see text, is not performed for in this paper.
doi:10.1371/journal.pone.0061846.g014

Figure 15. Effect of postprocessing on the proposed demosaicing algorithm. Note the negligible visual difference, but the large difference
in PSNR due to the data fidelity property.
doi:10.1371/journal.pone.0061846.g015
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Table 8. Quantitative demosaicing result (in dB PSNR) for the different demosaicing algorithms on the Kodak data set.

Bilinear Proposed Proposed w/o
Proposed
w/o DLMMSE [2] Linear [10] POCS [3] LPA-ICI [5]

Wavelet
[14] Hybrid [15]

Post Processing
[31]

complex
wavelets

Facade 25.7498 37.3104 35.6445 35.9515 38.4469 35.4060 36.267 40.4238 31.5523 36.5619

Gate 31.509 38.8959 38.2277 37.8592 38.7158 32.6866 37.6156 41.0878 34.2818 38.6346

Caps 32.4473 41.7574 41.3494 40.8284 42.6786 36.2425 39.2148 43.6412 36.1925 42.1746

Red hat 32.1083 40.4016 39.8044 39.7036 37.4983 35.8707 38.8279 40.7697 35.9086 40.2272

Bike 26.0905 37.4384 36.8965 36.6425 38.1296 34.7838 36.4263 37.692 33.4215 36.9755

Fishing 27.1191 39.5872 38.2944 38.0588 39.9935 36.0580 36.7864 40.9305 32.1537 38.538

Window 31.7773 41.8522 41.3997 41.2000 42.0996 37.4609 39.8638 42.9574 36.9009 41.586

Germany 23.2694 34.5788 33.0633 33.0704 36.0738 32.5891 34.5044 37.2342 28.2375 34.9295

Sailboats 31.2055 41.7682 40.7458 40.6497 43.0223 38.8378 40.7782 43.7148 35.9168 41.8173

Sailer 31.1346 41.8023 41.1088 41.0656 41.7161 39.5903 40.3125 42.7598 36.6893 41.8274

Pier 28.6073 39.0873 37.9661 37.8722 40.0244 36.9387 38.5813 40.6892 33.8641 38.3315

Beach 31.6833 43.0056 42.0707 42.1897 43.3411 38.4593 40.4788 44.0251 36.6774 42.8781

Stream 23.73 34.9704 33.5320 33.9208 34.8468 34.2587 33.922 36.2111 30.2308 32.4985

Rafting 28.3803 35.7872 35.2753 34.7022 37.1610 32.6017 34.9244 37.2314 32.4193 36.3718

Face 30.3255 39.3933 38.8815 38.4069 39.5213 35.1821 36.8699 39.7966 33.9731 38.8252

Island 30.1768 43.6206 42.4339 42.0262 43.7698 38.8093 38.7347 44.2015 33.9848 42.5647

Statue 31.7369 41.1726 40.6479 40.4973 41.7746 39.6519 40.04 42.0487 38.2696 40.1238

Art 27.5573 37.1242 36.2833 36.1670 35.5056 34.9067 36.3068 36.893 33.7693 34.8548

Lighthouse1 27.6706 39.7766 38.6658 38.4546 38.4396 36.1558 39.3274 41.3186 33.1143 38.7573

Mustang 29.976 40.4603 39.6348 39.5010 39.8170 37.0458 38.3877 40.7999 35.4269 39.7219

Lighthouse2 27.8809 38.5705 37.3375 37.5056 37.8893 36.1858 38.0689 39.6381 33.2052 37.2376

Barn 29.2773 37.3323 36.8923 36.5303 37.3210 35.4731 37.7111 38.4365 33.2663 37.9025

Parrots 32.9867 42.0001 41.9058 41.1679 39.1794 35.0402 41.2111 42.3329 36.6359 41.6941

Arthouse 26.2003 34.5223 34.5107 33.7442 34.9229 34.0578 34.2513 35.18 31.2927 33.7151

AVERAGE 29.1612 39.2590 38.4404 38.2381 39.2453 36.0122 37.8922 40.4172 34.0577 38.6979

doi:10.1371/journal.pone.0061846.t008

Figure 16. Demonstration of the artifacts occuring with high chrominance bandwidths. Top: Ground truth image, Middle: LPA-ICI
(PSNR = 41 dB), Bottom: Proposed Algorithm (PSNR = 39 dB).
doi:10.1371/journal.pone.0061846.g016
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For this work, this means subtracting wavelet bands such that:

mL ~HH,LL,1{mL ~HH,LL,4~
1

4
blc,LL,LL,1{

1

4
rlc,LL,LL,1

z
1

4
blc,LL,LL,4{

1

4
rlc,LL,LL,4

m ~HH ~HH,LL,1{m ~HH ~HH,LL,4~{
1

4
blc,LL,LL,1{

1

4
rlc,LL,LL,1

z
1

4
blc,LL,LL,4z

1

4
rlc,LL,LL,4

8>>>>>>>>>>><
>>>>>>>>>>>:

We forgo this recombination step in this paper, as this step

complicates derivation of the demosaicing rules and in the

proposed method no diagonal analysis is used. However for future

work, we remark that diagonal directional analysis could open up

the possibility of reconstructing even more of the original

luminance bandwidth in the diagonal direction, at the cost of

added implementation complexity.

Results and Discussion

In this section, we compare the demosaicing performance of the

proposed algorithm with several other algorithms. In our

comparison we will use the non-adaptive wavelet demosaicing

algorithm from [14], the DLMMSE method from [2], the POCS

method from [3] (set to a fixed number of 5 iterations), the hybrid

[15] (wavelet detection and pixel based reconstruction), the linear

filter scheme from [10] and [5], which is the qualitative state-of-

the-art at the moment of writing, to the knowledge of the author.

The implementations used here are publicly available from http://

www.csee.wvu.edu/xinl/source.html, except for [10] which we

implemented based on the suggested filters in [10]. While the

proposed approach for demosaicing has significant advantages,

there is a drawback when it comes to objective comparison. The

algorithm makes hard assumptions on the chrominance band-

width, any small error thus introduced in a wavelet coefficient will

cause a hue shift across all pixels in the wavelet’s support. Upon

visual inspection, these small errors are hardly noticeable, but they

can result in a significant MSE. In order to decrease the MSE, we

could simply insert the measured pixel intensities from the mosaic

into the reconstructed image, however, this gives rise to very

noticeable zipper artifacts (see for an example Figure 6). This

indicates that MSE or PSNR have severe drawbacks as a measure

for visual quality. We still choose to use it here, as it remains the

most popular choice of comparison in literature. In order to have a

fairer comparison with respect to visual quality, we apply the

demosaicing post-processing technique from [31]. This algorithm

exploits the spectral correlations between the color components

and the luminance bandwidth (i.e. sharpness) that was introduced

in the proposed demosaicing algorithm to estimate only the

missing pixel intensities, starting from the measured pixel

intensities and preliminary interpolations. Hence, it retains the

artifact-reducing power and high luminance bandwidth advan-

tages of the proposed algorithm, as we will use this as preliminary

interpolation, but it increases PSNR. The visual quality is related

to the artifact-reduction and, as a result, is not improved. This

effect is demonstrated in Figure 15: even though there is an

increase of more than 1 dB in PSNR, there is hardly any visual

difference, even in these difficult demosaicing experiments. In the

remainder of this paper, we will compare PSNR results of the

proposed algorithm with post-processing enabled. It is important

to note that other demosaicing algorithms (such as [2,5]) already

have data fidelity: They do not modify measured pixel values from

the input grid. For these algorithms, as they already have data

fidelity, it makes no sense to apply this post-processing and we

repeatedly found it only reduces their respective performance. The

proposed algorithm was tested on the 24 5126768 images of the

classic Kodak test image data set (http://r0k.us/graphics/kodak/).

Table 8 shows PSNR comparison for the different algorithms,

compared with the proposed algorithm. We also list the results for

the proposed algorithm when the dual-tree complex wavelet

transform is not used. This demonstrates that the use of complex

wavelets has a significant impact on the result with respect to

aliasing reduction in the result, on average it means an increase of

1 dB in PSNR. The PSNR comparison shows that the proposed

algorithm holds itself quite well, with respect to the state of the art

in demosaicing algorithms. It shows how the wavelet-based

methods, due to the crude assumptions made on the transition

bandwidths, are outperformed by the pure linear filter scheme

from [10], which has finer control over the transition bandwidth,

Figure 17. Demonstration of the high luminance bandwidth
reconstruction properties, note the blue and orange artifacts
due to excess luminance bandwidth.
doi:10.1371/journal.pone.0061846.g017
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when the local adaptivity of wavelets is not exploited. The local

adaptivity however, is shown to be a significant improvement over

non-adaptive wavelet schemes (e.g. from [14]) as well as the purely

linear scheme in [10]. While some of the pixel-based demosaicing

algorithms achieve a significantly higher PSNR in some

experiments, this is mainly due to chroma shifts in the proposed

algorithm. These small shifts are not as visually disturbing as

structural demosaicing artifacts, which manifest more often in

other algorithms, as large high frequency luminance+chroma

errors. To demonstrate this point, we also include a qualitative

comparison. Figure 16 shows the chrominance bandwidth

problem in the most problematic image, i.e. the one with the

highest PSNR difference between LPA-ICI and the proposed

algorithm. Here we see a lot of high frequency edges between

black areas (low chrominance) and red areas (very high

chrominance), hence we have high chrominance bandwidth

locally. Here, the low chrominance bandwidth assumption fails,

and artifacts are introduced. However, we remark that these

artifacts are not as visually disturbing as other demosaicing

artifacts, which the proposed algorithm handles very well. One

example is the classic lighthouse1 image from the same Kodak

dataset. A comparison is shown in Figure 17. All demosaicing

algorithms have difficulties reconstructing the white fence and the

rocky river bank, because of its very high luminance bandwidth.

The proposed algorithm is capable of reconstructing the

luminance to the original Nyquist bandwidth, as discussed in

Section 2.2, which leads to better reconstruction performance in

comparison with other demosaicing algorithms in areas where the

luminance exhibits a high bandwidth. A comparison of local

PSNR, for these artifact-sensitive regions is shown in Table 9.

Another big advantage of the proposed method lies in its

computational simplicity. We compared the available Matlab

implementations of the different demosaicing algorithms with

respect to their average execution times on the 24 images of the

Kodak set. The result is shown in Table 10, the proposed

algorithm, in its naively implemented state, is significantly faster

than the existing state of the art in demosaicing, while achieving a

roughly equivalent qualitative, and in some respects (luminance

bandwidth) better, demosaicing result. For POCS, we also

mention the estimate that takes the speedup (factor 8.5) into

account of the accelerated version of the POCS algorithm

presented in [4]. The addition in between brackets expresses the

time it takes to perform the wavelet transform, we make a

distinction here as the wavelet transform can immediately be made

use of to perform other restoration tasks than demosaicing, such as

denoising, sharpening, etc. Combining wavelet based demosaicing

with more general restoration has already been demonstrated in

[32], which highlights the relevance of the proposed technique.

Conclusion

A novel demosaicing method was proposed. The algorithm

distinguishes itself by being computationally very efficient, which is

made possible through performing demosaicing in the dual-tree

complex wavelet packet domain. On the other hand, the

demosaicing quality is shown to be on par with existing, but

slower demosaicing methods. Through carefully chosen restric-

tions on the complex wavelet filters, the algorithm performs locally

adaptive demosaicing, in a decimated wavelet scheme, using a

multi-hypothesis decision scheme to improve performance and

avoid artifacts. Finally, we remark that the proposed algorithm can

readily, and at almost no extra computational cost, be extended to

accomodate state-of-the-art joint wavelet-based denoising +
deblurring + demosaicing schemes. This has the potential of

allowing for very efficient, but high-quality, processing, perhaps

even on mobile devices.
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