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ABSTRACT

Digital Imaging has had an enormous impact on industrial applications such as
the Internet and video-phone svsiems. However, demand for industrial
applications is growing enormously. In particular, internet application users are

growing al a near exponential rate

The sharp increase in applications using digital images has caused much
emphasis on the fields of image coding, storage,  processing and
communications. New techniques are continuously developed with the main
aim of increasing efficiency. Image coding is in particular a field of great
commercial interest. A digital image requires a large amount of data to be
created. This large amount of data causes many problems when storing,
transmitting or processing the image. Reducing the amount of data that can be

used to represent an image is the main objective of image coding,

Since the main objective is to reduce the amount of data that represents an
image, various techniques have been developed and are continuously
developed to increase efficiency. The JPEG image coding standard has enjoyed
widespread acceptance, and the industry continues to explore its various
implementation issues. However, recent research indicates multiresolution

based image coding is a far superior alternative.




A recent development in the ficld of image coding is the use of Embedded Zerotree
Wavelet (IZZW) as the technique to achieve image compression. One of The aims of
this theses is to explain how this technique is superior to other current coding
standards. It will be scen that an esscntial part of this method of tmage coding is the use
of multiresolution analysis, a subband system whereby the subbands are logarithmically
spaced in frequency and represent an octave band decomposition. The block structure
that implements this {unction is termed the two dimensional Discrete Wavelet

Transform (2D-DWT).

The 2D DWT is achieved by several architectures and these are analysed in order to
choose the best suitable architecture for the EZW coder. Finally, this architecture is
implemented and verified using the Synopsys Behavioural Compiler and

recommendations are made based on experimental findings.
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INTRODUCTION

Digital images are used in many applications such as the inteme!t and high definition TV
(HDTV). An image can be considered as a positive function on a plane. The value of
this function at each point specifies the luminance or brightness of the picture at that
point. Digital images are sampled versions of such functions where the value of the
tunction is specified only at discrete locations on the image plane, known as pixels. The
standard representation of a digital image is then that of samples (pixels) residing on a

rectangular lattice or matrix as shown in figure 1.0.
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Fig. 1.0 Image representation as a matrix of luminance values

If an image is made of pixeis of certain brightness placed in a rectangular matrix of size
MxN, then there would be M xN pixels. Furthermore each pixel has a certain level of
brightness which is represented to a pre-defined precision B (usually 8 bits), hence an
image is composed of MxNxB bits. If an image is composed of 512 pixels and each

pixel has a value of 0-255 for brightness which requires 8 bits, then the canonical
representation of this image requires 5122 x 8 = 2097152 bits.



The huge amount of data required to represent an image is further aggravated when we
consider that colour images requires even more data duc 1o the representation of colour
by a three dimensional vector function on a plane. Also most digital images have in
excess of 512x512 pixels and hence require much larger storage space. Image coding
consists of mapping images to strings of binary digits. The function of all image codcrs
is to produce a binary string whose length is smaller the original canonical

representation of the image by transforming the image.

In most cases, an image has 2 large amount of redundant data which is not required to
represent the image accurately. In other words this redundant data can be removed
without affecting the image quality significantly. Transform coding hence breaks the
pixel array representing the image into a statistically uncorrelated data set . In plain
language this means that the image is split into bands of different detail levels. When an
image transformer is used effectively with a quantitiser, good compression can be

achieved.

Quantizing a group of pixels together is known as vector quantization, or VQ. It has
been shown [1] that in principle this method can achieve the highest compression that
can be achieved by any coder. However it is also true that that the computational cost
and delays experienced by these coders grow with dimensionally, limiting the
practicality of VQ. For this reason and other difficulties, most practical coding

algorithms have turned to transform coding instead of high dimensional VQ.



Transform coding consists of scalar guantization in conjunction with a lincar transform
to capture much the benefits of VQ without many of the problems experienced by VO.
Transform coding is successful il the basis functions of the transform represent the
featurcs of the signal accurately. At present, one of the most successful representations

is the wavclet transform which can be viewed as a special case of a subband transform.

The theorvy underlying wavelets brings to bear a fundamentally different perspective
than the frequency-based subband framework. The temporal properties of the wavelet
transtorm have proved particularly useful in motivating some of the most recent coders.
The Development of Embedded Zerotree Wavelet coding {2] motivated a flurry of
activity in the area of zerotree wavelet algorithms. The inherent simplicity of the
zerotree data structure, its computational advantages, as well as the potential for

generating an embedded bitstream are all desirable qualities of good image coders.

This technique uses a two dimensional wavelet transform to break the data into low
frequencies containing most of the image details and high frequencies containing most
of the redundant data. It will be seen in this theses that the EZW algorithm achieves
very good rate distortion performance and have a successive refinement property

meaning that it generates an cmbedded code.



The purpose of this thests is focused on investigating the advantages of the EZW
algorithm over other existing compression techniques. A model of the EZW coder will
also be presented and this will be discussed in detail. An essential functional block of
the EZW coder is the 2-D Discrete Wavelet Transform and the aim of this theses is to
investigate current efficient architectures to implement this function. A suitable
architecture will be selected and then implemented and verified in VHDL using the

Synopsys Behavioural Compiler or Accolade Peak VHDL Tools.

The organisation of this thesis is as follows. Chapter 1 provides an overview of image
compression fundamentals and wavelets and provides a solid background to many
fundamental issues. Chapter 2 discusses the EZW coder and compares this to other
existing coders. Chapter 3 looks at the current EZW model and elaborates on the
building blocks of this model. Chapter 4 discusses current 2-D DWT architectures and
outlines a recommended architecture. Chapter 5 discussess VHDL modelling of the
proposed architecture. Chapter 6 investigates and evaluates results of the VHDL
simulations. Finally, Chapter 7 gives conclusions and further work for the overall

research.




CHAPTER |
WAVELETS AND IMAGE CODING
1.0 BASIC WAVELET THEORY

Wavelets are functions that can be used to filter other functions into low frequency
components and multiple levels of high frequency components. The low frequency
information is obtained from a scaling filter, and the high frequency information is
obtained from detail, or wavelet, filters. The wavelet transform has an advantage over
the Fourier transform in that it is able to deal with low frequency information over a
large time and high frequency information over a short time. This makes wavelets

desirable when dealing with functions containing a wide range of frequencies.

The Discrete Wavelet Transform (DWT) as shown in Eq.(1) is quite simple to compute
once the basis functions have been chosen.
Ci=%, };{:é b aj {1}

Where:

Ci = i" Transformed coefficient.
bij=j* value of i* normalised basis functions.

aj = value of datum.

N = number of taps in the basis functions.



Similarly, the inverse transform is shown in Lg.(2).

- L N-1
=% 0 bii C, (2)

Where:

Ci = j™ transformed coefficient.
bii = i” value of j* basis function.
ai = reconstructed datum value.

N = number of taps in the basis functions.

The DWT is a one dimensional transform. Multi-dimensional data can be transformed
by applying the transform to each dimension separately. Also, wavelets can be easily
applied to different block sizes of the data. The basic wavelet function called the mother

wavelet needs only to be translated and scaled to change the extend of the transform.

The Mallat algorithm for DWT [3] is a computationally efficient method of
implementing the wﬁvelet transform. The algorithm operates on a finite set of N input
data, where N is a power of two, The data is passed through two convolution functions,
each of which creates an output stream that is half the length of the original input. It

will be seen later that the convolution functions are a low pass and a high pass FIR
filters.



Furthermore the DWT s a convolution function. The property of convolution functions
is that the low pass filter output contains most of the "information content” of the
original input signal while the high pass filter output contains the difference between
the true input and the value of the reconstructed input if it were 1o be reconstructed from
only the information given in filter's output. In general, higher order wavelets tend to

put more information in the low pass filter output and less in the high pass filter output.

The property of putting more information in the low pass filter output is very significant
in image compression, if the average amplitude of the high pass filter is low enough,
then the high pass filter output may be discarded without greatly affecting the quality of
the reconstructed signal. An important objective of this thesis is to find wavelet

functions which cause the high pass output to be nearly zero.

1.1 CHOICE OF WAVELET BASIS

Deciding on the optimal wavelet basis to use for image coding is a difficult problem. A
number of design criteria, ncluding smoothness, accuracy of approximation, size

support, and filter selectivity are known to be important [4].

The simplest form of wavelet basis for images is a separable basis. This basis is formed
from translations and dilations of products of one dimensional wavelets. Using
separable transforms resolves the problem of cesigning efficient wavelets to a one
dimensional problem, hence almost all current coders employ separable transforms.
However recent work by Sweldens and Kovacevic [5] simplifies current difficulties
with non-separable bases, and such bases may prove more efficient than separable

transforms.



and y{xhy(y). Each step of the transform for such bases involves two frequency splits
tstead of ome. Suppose that a W x N inrage s applied to the process. First each of the W
rows in the image is split into a low pass half and a high pass half. The result is an N x
% low pass sub image and an N x %’ high pass sub image. Next each column of the sub

images is split into a low pass and a high pass half. The result is a four way partition of
the image into horizontal low pass/vertical low pass, horizontal high pass/vertical low
pass, horizontal low pass/vertical high pass and horizontal high pass/vertical high pass
sub images. The low/low pass sub image 1s subdivided in the same manner in the next
step. An N x N image exposed to this process is llustrated in figure 1.1. Also it will be
seen that the Mallat algorithm for the discrete wavelet transform involves this procedure

exactly.

Fig. 1.1 Wavelet transform of the image "Lena”



1.2 DILATION

Since most of the information exits in the low pass filter output, then it is possible to
transtorm this low pass filter output by filtering the cutput with another set of high pass
and low pass filters. The new output of this filters is a set of data each one quarter the
size of the originai input. Again the low pass filter output of the 2nd dilation can be

further transformed and so on.

If the number of input samples is N = 2° then a maximum of D dilations can be
perfarmed, the last dilation resulting in a single low pass valve and high pass value as

shown in figure 3.1. The decomposition is on a logarithmic frequency scale as opposed
to the linear scale of the Fourier transform and the lowest possible frequency which can
be represented by the decomposition is clearly limited by the number of samples in the
block. This differs from the Fourier treatment in which the decompositior. includes all

frequencies down to zero due to its infinite support..

Wavelet Transform Dilations

Inpust stream {block size = 16)
Low-Pass Odd }
HighFass x[x[x]x[xTxTxTx 1 Even

Low-Pass | . Odd
High-Pass T T Tx Een 2nd Dilation
Low-Pass Odd
High-Pass = x—l Even 3rd Dilation
Low-Pass x1 0dd
High-Pass = 4th Dilation

Fig. 1.2 Dilations of a sample block of data
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1.3 IMAGE COMPRESSION

Wavelet transformed images become sparse ideally. This means that a high proportion
of the matrix has zero entries or close to zero. The low pass filter output contains most
of the information and the high pass filter contains flavour or nuance information, which
can be discarded without aftecting greatly the quality of the image. Compression is
achieved when the zero elements in the sparse matrix are discarded. Ideally if the sparse
matrix contains many zero entries, then the size of the matrix can be reduced

considerably after removal of the zero entries. Furthermore, a non negative threshold

value ¢ can be defined for the compression system and any data whose magnitude is less
than or equal to £ will be reset to zero.

Lossy compression is achieved when £ > O since when the image is reconstructed it
results in an approximation of the original image. The reconstructed image may be an

approximation but the quality of the reconstructed image is visually acceptable. In some

cases it is difficult to tell the difference visually between original and reconstructed. The
second type of compression available is lossless compression, € =0. This type of
compresion has the property that the reconstructed image is an exact copy of the original

image without any errors. Obviously since more data can be discarded when lossy
compression is used, then higher compression rates can be expected for this method of
compression. Compression ratios of up to 100:1 and even greater are possible, however,
the increase in compression ratio is only at the expense of degraded image quality in the

reconstructed image.

10



1.4 SUBBAND TRANSFORMS

Linear transforms are the basis for many techniques used in image processing, image
analysis, and image coding. Subband transforms are a subclass of linear transforms
which ofter useful properties for these applications. In this chapter a variety of subband

decompositions will be examined and their use in image coding is iliustrated.

Traditionally, coders based on linear transforms are divided into two categorics:
Transform coders and subband coders. This distinction is due in part to the nature of the
computational methods used for the two types of representation. A subband transformer

ts a multi-rate digital signal processing systems. There are three elements to multi-rate
systems: Analysis filters (Hn) , interpolators T A. , decimators ¥ M, and Synthesis filters
(Gn). These elements are packed in a block termed the filter bank as seen in figure 4.1.

———— p——»
- -
] *
- ]

Fig.1.3 Filter bank
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Transform coding techniques are usually based on orthogonal linear transforms. The
Discrete Fourier Transform (DFT) is a typical transform which decomposes a signal into
sinusoidal frequency components. Also, the Discrete Cosine ‘Transform (DCT) and the
Karhunen-Loeve Transform (KLT) are typical transform coding techniques. The
transform is performed in most cases by taking the inner product of the finite-length
signal with a set of basis functions. This produces a set of coefficients, which are then

passed on to the quantization stage of the coder.

Subband transforms are generally computed by convoluting the input signal with a set of
bandpass filters and decimating the results [6]. Each decimated subband signal encodes
a particular portion of the frequency spectrum, corresponding to information occurring
at a particular spatial scale. To reconstruct the signal, the subband are upsampled,
filtered, and then combined additively.

1.5 TRANSFORM PROPERTIES

The criteria used in choosing a linear transformation for coding purposes should be

carefully developed. There is a set of properties which are relevant when considering the

problem of image coding. The properties of interest are;

« Scale and orientation

. Spatial Location

« Orthogonality

12




1.51 SCALE AND ORIENTATION

Images contain objects and features of many different sizes which may be viewed over a
large range of distances. Image transformation should analyse the image simultancously
and independently at difterent scales. Several authors [7,8] have argued that the correct
partition in terms of scale is one in which the scales are related by a fixed constant of
proportionality. In the frequency domain, this corresponds to a decomposition into

localised subbands with equal widths on a logarithmic scale.

For two-dimensional signals, a localised region in the frequency plane corresponds
spatially to a particular scale and orientation. Orientation specificity allows the
transform to extract higher order oriented structures typically found in images, such as
edges and lines. Thus, it is useful to reconstruct transformations which partition the

input signal into localised patches in the frequency domain.

1.52 SPATIAL LOCALISATION

Spatial localisation is useful where information about the location of features in the
image is critical. Spatial localisation should not occur abruptly since it leads to poor
localisation in the frequency domain but in most image coding systems it is

advantageous to have spatial localisation.

13



The concept of joint localisation in the spatial and spaual-frequency domains may be
contrasted with the two most common representations used for the analysis of linear

systems: the sampled or discrete signal, and its Fourier transform.

The standard basis for discrete signals consists of impulses located at cach sample
location. The basis functions are maximally localised in space, but convey no
information about scale. On the other hand, the Fourier basis set is composed of even
and odd phase sinusoidal sequences, whose usefulness is primarily due to the fact that
they are the eigenfunctions of the class of linear shift-invariant systems. Although they
are maximally localised in the frequency domain, each one covers the entire spatial

extent of the signal.

1.53 ORTHOGONALITY

Decorrelation is the main reason for orthogonality as a property of an image coding
system. Given a signal with prescribed second order statistics, there is an orthogonal
transform which will decorrelate the signal. This means that the second order
correlation of the transform coefficients will be zero. Orthogonality is usually not
discussed in the context of subband transform, although many such transforms are
crthogonal. Hence orthogonality is not strictly necessary but in most image coders it is

advantageous to have the property of orthogonality.

14



1.6 SOME TRANSFORMS

For a transform to be useful it should be well {ocalised in the spatial and frequency
domains. Furthermore, Criteria has been provided [10] for choosing a linear
transformation for image coding purposes. An explicit representation of scale is widely
accepted as being important for effective image representation {3]. In addition to
localisation in frequency, it is advantageous for the basis function to be spatially

localised. Finally, the basis should be orthogonal for proper decorrelation of the image.

In this section several transforms will be examined by considering the criteria of scale,
localisation and orthogonallity. Each transform will be then evaluated for its

advantageous and disadvantageous properties.

1.61 THE GABOR TRANSFORM

A solution to the problem of spatial localised subband decomposition is proposed by
Dennis Gabor [9]. Gabor introduced a one dimensional transform in which the basis
functions are sinusoids weighted by Gaussian windows. The Gabor transform can be
considered to perform a localised frequency decomposition in a set of overlapping
windows. The resulting basis functions are localised in both space and spatial frequency.
In two dimensions, the Gabor basis functions are directional sinusoids weighted by
gaussian windows. Daugman [11] has used two dimensional Gabor transforms for image

compression successfully.

15



The problem with this transtorm is that the sampling tunctions are drastically different
from the basis functions, hence the basis function is non orthogonal. In a coding
application, errors introduced by quantization of the coefficients will be distributed
throughout the spatial and frequency domains, even though the coefficient vaiues arc

computed based on the information in localised spatial and frequency regions.

An interesting feature of the Gabor Transform is that localisation can be improved if an
overcomplete Gabor basis set is used by spacing the Gaussian windows more closely
than 1s required, or by dividing each window into more frequency bands. The use of
overcomplete Gabor basis is an active area of research and several authors [12,13] have

used this to compress image data.

1.62 THE DCT TRANSFORM

The DCT is the cornerstone of the JPEG image compression standard. In the baseline
version of this standard, the image is divided into a number of 8 x 8 pixel blocks, and
the block DCT is applied to each block. The resulting block DCT basis functions
constitute a subband transform. The DCT has the property of packing signal energy into
a small number of coefficients and is a desirable feature in most transform coders.
Furthermore, the transform is orthogonal hence many of the problems of the Gabor

transform are eliminated.

The problem with this transform is that although the resulting block DCT basis
functions constitute a subband transforms, the subbands are not well localised. The
subsampled subband images will contain severe amounts of aliasing. This aliasing is
removed in the synthesis stage, however, if the transform coefficients are quantized or
discarded then the aliasing is not removed and the errors appear as block edge artefacts

in the reconstructed image.

16



Jager [14], has proposed techniques tor reducing the aliasing of the block DCT by using
lapping techniques. However the amount of aliasing removed is limited to equal-sized
subbands. Also it is advantageous 1o subdivide the spectrum into equal log-width

subbands in order to reduce the amount of aliasing [14].

1.63 THE LAPLACIAN PYRAMID

This is one of the first techniques used for octave subband decomposition as developed
by Burt [17]. An octave subband transform may be constructed by cascading a two band
analysis/synthesis (A/S) system in a non uniform manner as shown in figure 5.1. This
system is suitable for data compression, since the multi-scale nature of the pyramid
makes it particularly useful for the task of progressive transmission. In the case of a
pyramid, this is easily accomplished by seading the transform coefficients in order from

lowest to highest resolution.

The Laplacian pyramid suffers from similar problems to the Gabor Transform since this
transform is also non orthogonal. The most serious problem with this transform is that
quantization errors from highpass subbands do not remain in these subbands. Instead,
they appear in the reconstructed image as broadband noise. Furthermore, the basis set is
overcomplete, requiring an increase of the number of sample points over the original
image. Finally, the two-dimensional basis functions are not oriented, and thus will not

extract the oriented structural redundancy typically found in natural images.

Despite all the difficulties experienced by this transform, it is still considered very
efficient in progressive image coding. The Laplacian pyramid has been effectively used
for motion-compensated video coding, where its overcompleteness makes it robust in to

motion-compensation errors [18].

17
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Fig. 1.4 A one level of the Laplacian pyramid. B(W) is a low pass filter and A(W) is a
high pass filter

1.64 QUADRATURE MIRROR FILTERS

A useful two-band subband transform was developed by Croiser et. al. {19,20] and is
commonly used for speech coding. This transform is based on banks of Quadrature
Mirror Filters (QMF). The filters used by Croiser were a class of non-ideal FIR bandpass
filters that could be used in an A/S system while stil! avoid aliasing in the overall system
output. Aldelson et al. [21] and Mallat [3] found that these filters form an orthogonal
subband transform. Mallat related QMF to the mathematical theory of wavelets and
Vetterli [22] suggested the used of these filters for image coding of two dimensional

images.

Transforms using QMF captures the advantages of previous mentioned transform coding
techniques, while avoiding the disadvantages. It satisfies the properties of useful
transform coding being: it is multi-scale and oriented, it is spatially localised, and is an

orthogonal transform, and so constrains quantization errors to remain within subbands.

18



The QMF transtorm has an unfortunate aspect, the orientation decomposition 18
incomplete and hence the two diagonal orientations  lump together in a single subband.
This causes the reconstructed image to look 'blocky'. 1o address this problem authors

like Adelson [21] have proposed using non-separable or non oricnted filters [22].

1.65 ASYMMETRICAL QMF FILTERS

For a QMF transform, the computational complexity 1s directly proportional to the size
of the filters employed. Separable QMF filters can sometimes ignore the issue of
computational efficiency due to the steady increase in the speed of signal processing
hardware, However, when considering the encoding and decoding of images using

general purpose hardware, issues such as computational speed are very important.

In this situation, it is advantageous to develop asymmetric coding techniques in which
simplicity is emphasised at one end at the expense of complexity most of the time. In
QMF bank filters this requires designing the filters to be less orthogonal. In a A/S
system the computational efficiency can be increased by using a very compact filter pair

in the synthesis stage as demonstrated by Mallat and Adelson {3,21].

1.66 NON-SEPARABLE QMF TRANSFORMS

Most two dimensional work with QMFs employs separable or non oriented filters to
achieve the transform. As discussed before, separable application of one dimensional
QMFs produces a representation in which one of the subbands contains a mixture of two
orientations and is a major drawback of separable QMFs. Splitting the frequencies at
this subband requires very large filters. In general, the high-frequency diagonal regions
of the spectra of the natural images are relatively insignificant. But if the filter bank is
cascaded to form a pyramid, then the fower frequency diagonals ( where there is
significant power) will also be mixed.
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The non-separable QMF transform has been investigated by Adelson [21] and uses
hexagonal symmctric filters to achicve non scparable QMF transforms. However
aithough improving the situation ol mixed orientations, the nature of the function is

blocked like the DCT, hence unlikely to offer efficient image compression.
1.7 MULTIRESOLUTION ANALYSES

Most linear transforms have been motivated by probabilistic considerations and assume
that the image can be reasonably well-approximated by Gaussian random vectors with a
particular covariance structure. The use of the wavelet transform in image coding is
motivated by a rather different perspective, that of approximation theory. Wavelet
transforms assume that images are locally smooth functions and can be well-modelled
as piecewise polynomials. This new perspective provides some valuable insights into the

coding process and has motivated some significant advances.

To illustrate the usefulness of multiresoltuion analyses and how wavelets are motivated
by this perspective consider a continuous-valued square-intergrable function f{x) using a
discrete set of values. A natural set of values to approximate f(x) is a set of regularly
spaced, weighted local averages of f(x) such as might be obtained from the sensors in a
digital camera. A simple approximation of f{x) based on local averages is a step

function approximation it has the form
Af(x) = );. fad(x-n)

where fn is the height of the step in [n,n+1] and ¢(x) = 1 for x € [0,1) and O elsewhere.
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A more generalised approximation will have the form
AHX)Z(8(x — ), Ax)dx — n)

Where 8(x) is a weight function and ¢(x} is an interpolating function. The restriction on
d(x) ensures that the approximation is exact when f{x) is a linear combination of the
nnctions G{x-n),

The resolution of the approximation of f{x) can be varied hy dilating and contracting the
functions ¢(x) and 6(x). The approximation of Af(x) can then be formed by projecting
f{x) onto the span of the functions (¢/ (x-27k))ke Z. If V] is the space spanned by this
functions then the reselution § approxiraation A/f is simply a projection (not necessary
an orthogonal one) of f{(x) onto the span of the functions ¢/ (x-27k).

The approximation A/ f{(x) corresponds fo an orthogonal projection of f(x) onto the
space of step functions with step width 27, Figure 6.1 shows the difference between the
coarse approximation A'f(x) on the left and the hisher resolution approximation A fix)

on the right.

Amplitude

1 al 0z o4 a4 a5 08 (g o8 29 1 “a (3} 62 03 G4 as oA 7 [J:1 93 3

Time

Fig. 1.5 A continnos function f{x) (plotted as a dotted line) and the Af(x)
approximation. Right diagram is A f(x) , a higher resolution approximation of f{x).
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1.8 WAVELET TRANSFORMS VS SUBBAND DECOMPOSITION

The wavelet transform is a special case of a subband transform, as the derivation of the
fast wavelet transform reveals. Wavelets involve the analysis of continuous functions
whereas analysis of subband decompositions is more focused on discrete time signals.
Hence, the main contribution of wavelets transform is one of perspective. The theory of
wavelets has a strong spatial component whereas subbands are more focused in the

frequency domain.

The subband and wavelet perspectives represent two extreme points in the analysis of
the iterated filtering and down sampling process. The filters used in subband
decompositions are typically designed to optimise the frequency domain behaviour of a
single filtering and subsampling. Theoretically, the wavelet basis functions can be
obtained by iterating the filtering and performing a down sampling procedure an infinite
number of times. However in typical applications, the number of iterations is limited to
the sample size. Examination of the properties of the basis functions provide

considerable insight into the effects of iterated filtering.

The wavelet framework explicitly specifies an underlying continuous-valued function
from which the original coefficients are derived. The use of continous-valued functions
allows the use of powerful analytical tools, and it leads to a number of insights that can
be used to guide the filter design process. Within the continuous-valued framework the
types of functions that can be represented exactly with a limited number of wavelet
coefficients are characterised. Examination of these issues have led to important new

design criteria for both wavelet filters [4] and subband decompositions.
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The second important différence is that wavelets involves spatial as well as frequency
considerations whereas subband transform is typically more focused on the frequency
domain. Also Cocflicients in the wavelet transform correspond to features in the
underlying function in specific, well-defined locations. The explicit use of spatial
information has proven quite valuable in motivating some of the most effective wavelet

coders.

1.2 WAVELET PROPERTIES

Whereas in subband transform the properties of scale, orthogonality and localisation are
of significance, in wavelets the properties of particular interest for image coding are
accuracy of approximation, the smoothness, and the support of the wavelet bases [23].
When coding natural images which tend to contain locally smooth regions, it is
important that the building blocks be reasonably smooth. If the wavelets possess
discontinuities or strong singularities, coefficient quantization errors will cause these
discontinuities and singularities to appear in decoded images. Such artefacts are highly

visually objectionable, particularly in smooth regions of images.

Procedures for estimating the smoothness of wavelet bases has been developed by Rioul
[24] who has pointed that in certain conditions the smoothness of scaling functions is
more important criterion than standard frequency selectivity criterion used in subband

coding.

Accuracy of approximation is another important property to consider in wavelet based
coders. Wavelets can construct smooth, compactly supported bases that can exactly
reproduce any polynomial up to a given degree. If a continuous valued function f{x) is
locally equal to a polynomial, then the portion of f(x) which is equal can be reproduced

with just a few wavelet coefficients.
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The degree of the polynomials that can be reproduced exactly is determined by the
number of vanishing moments of the dual wavelet w(x). This wavelet has N vanishing
moments provided that | x* y(x)dx = 0 for k =0,......,N. Compactly supported bases for
L2 for which w(x) has N vanishing moments can locally reproduce polynomials of

depree N-1.

The number of vanishing moments also determines the rate of convergence of the

approximations A/f to the original function f as the resolution goes to infinity. It hag
been shown [23] that ff- 44 < C27Y /™| where N is the number of vanishing
moments of w(x) and {V is the N derivative of £

The size of support of the wavelet basis is another important wavelet property. Suppose
that the function f{x) is equal to a polynomial of degree N-1. If w has N vanishing
moments, then any basis function for which the corresponding dual function lies entirely

in the region in which f(x) is a polynomial will have a zero coefficient. The smaller the

support of y is, the more zero coefficients that can be achieved. More importantly,
edges produce large wavelet coefficients, The larger y is, the more likely it is to overlap

an edge hence it is important that wavelets have reasonably small support.

There is a problem with limited support in wavelets as specified by Simoncelli [21].
Wavelets with short support have strong constraints on their regularity and accuracy of
approximation, but as the support is increased they can be made to have arbitrary
degrees of smoothness and number of vanishing moments. This limitation on support is

equivalent to keeping the analysis filters short.

Limiting filter length is also an important consideration in the subband coding literature,
because long filters lead to ringing artefacts around the edges of the image. Unser [26]
shows that spline wavelets are attractive for coding applications based on approximation
theoretic considerations. Experiments by Riou! [24] for orthogonal bases indicate that
smoothness is an important consideration for compression. Antonini at al [25] find that
both vanishing moments and smoothness are important, and for the filters tested they
found that smoothness appeared to be slightly more important than the number of
vanishing moments.
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Nonetheless, Vetterly and Herley [38] state that "the importance of regularity for signal
processing applications is still an open question®. The bases most commonly used in
practice have between one and two continuous derivatives, Additional smoothness does

not appear to yield significant improvements in coding resuits.

Villasenor et al [4] have systematically examined all minimum order biorthogonal filter

banks with lengths < 36 as well as the additional mentioned criteria, the oscillatory
behaviour and sensitivity of the coarse-scale approximations A/ f(x) to translations of the

function f{x) have been examined by experiments. The best filter found in these
experiments was a 7/9 tap spline variant with less dissimilar lengths from {25]. This

filter is one of the most common wavelet coding filters currently used..

For biorthogonal transforms, the squared error in the transform domain is not the same
as the square error in the original image. As a result, the problem of minimising image
error is considerably more difficult than in the orthogonal case. A number of other filters
yield performance comparable to that of the 7/9 filter of [25] provided that bit allocation
with a weighted error measure is performed. One such basis is the Daslauriers-Dubuc
interpolating wavelet of order 4 [27], which has the advantage of having filter taps that

are dyadic rationals.

A new set of filters have been developed by Balasingham and Ramstad [28). Their
design combines classical filter design techniques from ideas from wavelet
constructions. This filters yields performance significantly better than the popular 7/9
filter set from [25].
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1.10 ENTROPY

The entropy of the signal plays an important part in image coding and compression with
respect to the possibie effectiveness in the storage and transfer of the signal [16]. In
many cases a transformation of the signal leads to a representation of the signal which
lowers entropy of the signal. Now, the influence of the used wavelet filter to the entropy
of the wavelet coetlicients depends on the specific distribution and is defined as

follows.

H= - E[Ln Py(y)] (3)

With respect to the estimation of the distribution function one has to differ between the
approximation and the set of the detail signals. The approximation has a strong
correlation, while the coefficients of the detail signals are decorrelated extensively. For
the set of detail signals one can assume a Laplace distribution of the coefficients with
respect to experimental investigations [17]. In analogy to the detail signals one can fit
them to the same distribution of the approximation coefficients with a predictive coding.

After the predictive coding, the entropy is calculated as;

Hi=2[ e (In% - dlx ~ xl)dx (4)



CHAPTER 2

IMAGE CODERS

2.1 BASIC IMAGE CODERS

Most wavelet based coders are derived from the transform coder paradigm. There are
three basic components that underlay current wavelet coders: a decorrelating transform,
a quantization procedure, and an entropy coding procedure as seen in figure 2.1.

Considerable research is being performed on all three of these component and the

function that each component has in the image coder.

Transformed representation

J _
=[x‘1put s Teansform Quantisation Coding Corn.pressed
rignal - . (entropy) signal

(Quantised transformed representation

Fig. 2.1 A basic image coder
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2.2 ENTROPY CODING AND ARITHMETIC CODING

Arithmetic Coding provides a near-optimal entropy coding for the quantized cocfficicnt
values. The coder requires an estimate of the distribution of quantized coefficients, this
estimate can be approximately specified by providing parameters for a generalised
Gaussian or a Laplacian density. Alternatively, the probabilities can be estimated
on-ling. On-line adaptive estimation has the advantage of allowing coders to exploit
tocal changes in image statistics. Efficient adaptive estimation procedures are discussed
in {29].

Because images are not jointly Gaussian random processes, the transform coefficients,
although decorrelated, still contain considerable structure. The entropy coder can take
advantage of some of this structure by conditioning the encodings on previously
encoded values. Chen [29] presents a coder which obtains modest performance

improvements using such a technique.

2.3 TRANSFORM CODING

Chapter 1 indicated that there are generally two types of transform coders, subband
based coders, and transform based coders. Moreover subband coding has been discussed
in detail in this chapter. Transform coding is used in image coders to reduce spectral

redundancy by condensing the energy of an image into a small area.

Typically coders split the image into smatler blocks and a unitary transform is applied to
each of the blocks resulting in the formation of a block of transform coefficients which
represent the image. The transform coefficients produced by the application of a unitary
transform is simply the significance of the frequency information in the image.
Therefore low-frequency information will correspond to transform coefTicients that are
large in value, and high frequency information will correspond to coefficients that are
small in value.
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2.4 RUN LENGTH CODING

This coding method uses the statistical properties of an image to reduce redundancy but
instead of generating variable length codewords, the codewords generated are of a fixed

length.

2.5 ZEROTREE CODING

The knowledge that images of interest are formed mainly from flat area, textures, and
edges allows to make advantage of the resulting cross-band structure. Zerotree coders
combine the idea of cross-band correlation with the notion of coding zeros jointly to

generate very powerful compression algorithms.

The first instance of the implementation of zerotrees is due to Lewis and Knowles [30].
In their algorithm, the image 1s represented by a tree structured data . This data structure
is implied by a dyadic discrete wavelet transform in two dimensions. The zerotree
quantization model used by Lewis and Knowles was arrived at by observing that often
when a wavelet coefficients are small, its children on the wavelet tree are also small.
This phenomenon happens because significant coefficients arise from edges and
textures, which are local. It is not difficult to see that this is a form of conditioning,
Lewis and Knowles took this conditioning to the limit, and assumed that insignificant
parent nodes always imply insignificant child nodes. A tree or sub-tree that contains

only significant coefficients is known as zerotree.
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The most signilicant contribution of the work by Lewis and Knowles was to realise that
wavcelet domain data provide an excellent context for run-length coding: not only arc a
large run lengths of zeros generated, but also there is no need to transmit the length of
zero runs, because they are assumed to automatically terminate at the leaf nodes of the
tree. Much the same as in JPEG, this is a form of joint vector/scalar quantization. Each
individual coefficient is quantized separately, but the symbols corresponding to small
coefficients in fact are representing a vector consisting of that element and the zero run

that tollows it to the bottom of the tree.

Lewis and Knowles assumed that small parents always have small descendants.
However, this assumption causes large distortions in image reconstruction if the small
parents don't have small children. This has led many authors like Shapiro[2] to develop
a much more powerful algorithm called, Embedded Zerotree Wavelet Algorithm, which

overcomes many of the difficulties of the Lewis and Knowles coder.
2.6 THE EMBEDDED ZEROTREE WAVELET ALGORITHM
The Lewis and Knowles algorithm, while capturing the basic ideas inherent in many of
the later coders, was incomplete. It had all the intuition that lies at the heart of more

advanced zerotree coders, but did not efficiently specify significance maps, which is

crucial to the performance of wavelet coders.
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The first algorithm to employ both the non zero data and significance map was produced
by Shapiro [2] and was 1o revolutionise the way more advanced coders operate. The bits
needed to specify a significance map can easily dominate the coder output, espectally at
lower bitrates. However, there is a great deal of redundancy in a general significance
map for visual data. Therefore the bitrates for its representation can be kept in check by
conditioning the map values at each node of the tree on the corresponding value at the
parent node. Whenever an insignificant parent is observed, it is highly likely that the
descendants are also insignificant. Therefore, most of the time a "zerotree significance”
map symbol is generated. But because p, the probability of this event, is close to 1, its
information content, -p log p, is very smali. So most of the time, a very small amount of
information is transmuted and this keeps the average bitrate needed for the significance

map relatively small.

Once in a while, one or more of the children of an insignificant node will be significant.
In that case, a symbol for "isolated zero" is transmitted. The likelihood of this event is
lower, and thus the bitrate for conveying this information is higher. But it is essential to
pay this price to avoid losing significant information down the tree and therefore

generating large distortions.

In summary, Shapiro's algorithm uses three symbols for significance maps: zerotree,
isolated zero, or significant value. By using this structure, and by conditionally entropy
coding these symbols, the coder achieves very good rate distortion performance. In
addition, Shapiro’s coder also generates an embedded code. Coders that generate
embedded codes are said to have the progressive transmission or successive refinement
property. Successive refinement consists of first approximating the image with a few
bits of data, and then improving the approximation as more and more information is
supplied. An embedded code has the property that for two given rates RI1>R2, the rate
R2 code 1s a prefix to the rate R1 code.
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The EZW encoder can easily achiove a precise bitrate becauge it continues 1o output bitg
when it reaches the desire rate. Furthermore, it can cease decoding at any point,
generating an image that is the best representation possible with the decoded number of
bits. This is of practical interest for broadcast applications where multiple decoders with
varying computational, display and bandwidth capabilities attempt to receive the same
bitstream. With an embedded code, each receiver can decode the passing bitstream
according to its particular needs and capabilities. Also the EZW coding system is useful
in indexing and browsing applications, where only a rough approximation is sufficient

for deciding whether the image needs to be decoded or received in full.

Shapiro generated an embedded code by using a bit-slice approach. In the bit-slice
approach wavelet coefficients are indexed into a one dimensional array and ordered
according to their significance. This places the lower frequency contents of the image
before the high frequency bands. When wavelet coefficients are encoded using their

order of importance, it is sometimes referred to as a raster scan order.

The bit-slice code is generated by scanning the one dimensional array and comparing
each coefficient to a threshold T. This initial scan provides the decoder with sufficient
information to recover the most significant bit slice. In the next pass, information about
each coefficient is refined to a resolution of T/2, and the pass generates another bit slice

of information. This process is repeated until there are no more slices to code..

The upper bit slice contains a great number of zeros because coefficients at this level are
either zero or bellow the threshold level T. The role of zerotree coding is to avoid
transmitting all these zeros. Once a zerotree symbol is transmitted, it is known that atl
the descendants will also be zero coefficients, so no information is transmitted for them.
In effect, zerotrees are a clever form of run-length coding, where the coefficients are
ordered in a way to generate longer run lengths as well as making the runs self

terminating so the length of the runs need not be transmitted.
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The zerotree symbols with high probability and small code length can be transmitted
again and again for a given coeflicient until it rises above the sinking threshold, at
which point it will be tagged as a significant coefficient, After this point, no more

zerotree information will be transmitted for this coefficient.

Shapiro used a clever method of encoding the sign of the wavelet coefticient with the
significance information. Further details of the priority of wavelet coefficients, the
bit-slice coding, and adaptive arithmetic coding of quantized values, i.e. entropy coding

can be read in Harder's thesis {21]
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CHAPTER 3
SEARCH STRATEGIES AND EZW COMPONENTS
3.1 TREE SEARCH STRATEGIES

The EZW algorithm establishes an ancestor-decendant relationship between the wavelet

cocfficients in the image subbands . Figure 4.1 shows the image subbands obtained

after the 2D-DWT and an ancestor-decendant tree hierarchy between the wavelet
coefficients in the image subbands has been applied to an image. The scanning of the
coefficients is done in a particular manner so that no child node is scanned before its
parent is scanned. In essence, all the coefficients in a subband are encoded before
encoding the coefficients in another subband. The order of encoding begins from the

lowest frequency subband and ends at the highest frequency subband as indicated.
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Fig. 3.1

Raster Scanning of coefficients
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3.2 DEPTH FIRST SEARCH AND BREADTH FIRST SEARCH

The original EZW aigorithma uses a raster scan to encode the wavelet coefficients as
seen in figure 4.1. Two other tree searching strategies to encode the wavelet coefficients
are possible: the Depth First Search (DFS), and the Breadth First Search (BF S). These

strategies provide alternative ways to encode the wavelet coefficients.

The BFS coding strategy operates very similar to the raster scan strategy. Coefficients
are also scanned at the same level from all tree hierarchies before the coefficients from
another level are encoded. The main difference is the way or the order in which the

coefficients are scanned in the same level of the tree hierarchy.

The DFS coding strategy encodes all the coefficients in a tree hierarchy before encoding
another tree hierarchy. This simplifies and diversifies the implementation of the EZW
algorithm [32]. However, this simplification comes at the cost of a decrease in coding
efficiency but provides a dataflow oriented approach which is highly suitable for
parallel architectures. The main reason for the parallel suitability is that the DFS
performs a natural partitioming of the tree hierarchies into independent tree hierarchies
which can then be processed in parallel by individual EZW processors as seen in figure

32
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Fig. 3.2

Parallel Bitstream Processing by individual EZW Processors
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3.3 EZW COMPONENTS

The EZW algorithm is a powerful image coding technique. It has been shown [2] that

the algorithm consists of four fundamental operations;

1. A discrete Wavelet Transform or hierarchical subband decomposition.

2. Prediction of the absence of significant information across scales by
exploiting the self-similarity inherent in images.

3. Entropy-coded successive approximation quantization.

4. Adaptive arithmetic coding,

Furthermore, prediction of significant information and entropy coding are commonly

combined in a single structure termed Quantization zerotree as seen in figure 3.3.

Transformed representation
Input Wavelet Y Analysis/ Inverse Wavelet Resalt
Signal Transformn Modification N Transform Signal
Modified transformed representation
Fig. 3.3

EZW coding system block structures
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3.31 DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT) is one of the most useful and efficient tools
used to analyse digital signals in various signal processing areas. One major concern, in
signal and image processing as well as the communication communities is the effective
implementation of the wavelet transform and advanced tools for designing wavelet
systems. When there are limitations in  processing time and/or system size,
implementation of the DWT becomes an engineering issue. The purpose of this thesis is
hence to provide an engineering selution to the implementation of the discrete wavelet
transform. Furthermore, it will be seen how the proposed solution fits well in the

proposed DFS EZW coding system seen in figure 3.3,

The Discrete Wavelet transfer represents an arbitrary square integral function as
superposition of a family of basis functions called wavelets, A family of wavelet basis
functions can be generated by translating and dilating the mother wavelet corresponding
to the family. The DWT coefficients can be obtained by taking the inner product
between the input signal and the wavelet functions. Since the basis functions are
translated and dilated versions of each other, a simpler algorithm, known as Mallat's tree

algorithm or pyramid algorithm, has been proposed [3].
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3.32 MALLAT'S TREE ALGORITHM

In this algorithm, the DWT coefficients of one stage can be calculated from the DWT

coefficients of the previous stage, which can be expressed as follows:

Wi (nj)=2 Wi (m,j-1)h{m-2n) (5a)
Wh () = § Wh(m,j-1)g(m-2n) (5b)

Where:
| Wi(n,j) and Wi(3) are the n-th scaling coefficient at the j-th stage.
. h(n) are the Low Pass Filter (LPF) dilating coefficients.
. g(n) are the High Pass Filter (HPF) dilating coefficients.

For computing the DWT coefficients of the discrete-time data, it is assumed that the
- input represents the DWT coefficients of a high resolution stage. Equation 5 can then be
“used for obtaining DWT coefficients of subsequent stages. In practice, this
decomposition is performed only for a few stages. Hence, DWT extracts information
from the signal at different scales. The first level of the wavelet decomposition extracts
the details of the signal ( high frequency components) while the second and all
subsequent decompositions extract progressively coarser information, lower frequency

components, as shown in figure 3.4

¥ Signal ===l
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LP¥ HPF
Figure 3.4
Mallat Algorithm For DWT
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3.4 TWO DIMENSIONAL DISCRETE WAVELET TRANSFORM (2D-DW'T)

The 2D-DWT can be calculated by several different methods. Most commonly, it is
calculated by using a separable approach [3]. First, the One Dimensional Discrete
Wavelet Transform (1D-DWT) is performed on each row of the image proceeded by a
matrix transposition operation [33]. The transposition memory works on rows of the
image to invert the image, hence rows become columns and vice versa. Finally, a one
dimensional DWT is performed on the transposed data to achieve two dimensional data.
Hence, a 2D-DWT can be implemented by inserting a matrix transposer between two
ID-DWT modules.

In order to reconstruct the original data, the DWT coeflicients are upsampled and passed

through another set of lowpass and highpass filters which is expressed as:

Wi(nj)= %l Wt (k,j+1Dha (n—2k)+§ Wh (1j+1)ge (n-21) (6)

where ho(n) and go(n) are the lowpass and highpass synthesis filter corresponding to the
mother wavelet. It is observed in equation 6 that the j-th level DWT coefficients can be

obtained from the (j+1)-th level coefficients.
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3.5 QUANTIZATION ZEROTREE

The quantization step in the EZW algorithm involves transforming the coefficients array
into a quantization zerotree structure. From this zerotree representation, a compressed
data stream called a significance map representing the image is obtained using
Successive-Approximation entropy-coded Quantisation (SAQ). The output of this block
consists of significance maps (MAP) and Successively Approximated values of
significant coefficients SAQ. SAQ applies a sequence of threshold successively to

determine the significance of the coefficients to obtain a MAP.

3.6 ARITHMETIC CODING

The underlying reason for the choice of successive approximation to encode the
significance maps for the EZW algorithm is considered directly from the goal of
producing an embedded code comparable to the binary-representation of approximating
a real number [2]. In achieving a reasonable coding efficiency with Huffan coding, the
sequence that is generated by the source is generally divided up into blocks. Each of the
blocks then get assigned a variable-length codeword. When decoded, the received
codeword is parsed into variable-length blocks which correspond to the individual
codewords. This causes a one-to-one correspondence between the codeword blocks and
the source sequence blocks. Arithmetic coding on the other hand generates non-block

codes, The entire sequence of source symbols is assigned a single arithmetic codeword.

An interval of real numbers between the values of 0 to 1 is defined by the codeword
itself. As the number of symbols increases, the interval used to represent it becomes
smaller and the number of bits required to represent the interval becomes larger. Each
symbol of the message reduces the size of the interval in accordance with its probability

of occurrence.
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CHAPTER 4

4.1 TWO DIMENSIONAL DWT ARCHITECTURES

Multiresolution analysis is an essential part of the EZW coding system. The output of
this block consists of coefficients which are mapped in some way by the EZW quantizer.
In developing a suitable 2D-DWT architecture, it is important to consider how this
architecture fits with the EZW coding system. Moreover, it has been shown that the DFS
searching strategy for the coefficients provides a dataflow oriented property which is

highly suitable for parallel EZW processors {32].

The purpose of this thesis is to provide an efficient design for implementing the wavelet
transform. Furthermore, to fit with the DFS EZW system the proposed architecture
operates in a parallel manner which increases the speed of the architecture. Ideally, the
factor of speed up achieved by parallelism should not cost more than a similar factor in
area. In order to achieve an optimum design several current architectures are discussed

in detail before the proposed architecture is considered.
The design employed in this thesis is aimed at special purpose custom single chip

design. Hence, the issue of chip area and processing time is very important. Many other

important design issues will also be considered .
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4.2 COMPUTATIONAL COMPLEXITY OF THE DWT

As observed in equation 5, the complexity of each stage of wavelet decomposition is
linear in the number of input samples where the constant factor depends on the length of
the filter. For a dyadic wavelet decomposition, the number of input samplcs decreases
by 50 % at subsequent stages of decomposition [35]. For a wavelet of order L, with
number of decomposition stages j, the computational complexity for an one dimensional
N elements sequence is.

Cayadic = (N +& + &+ _+ =5)x 2L FLOPS

= 4(1-2~)NL FLOP %

Where FLOP corresponds floating point operations and usually refers to multiplications
and additions. It can be pointed out that the complexity can be further be reduced using
sophisticated algorithms, such as First Running FIR Filtering (FFT) [34]. However, these

algorithms need complex control circuitry for hardware implementation.

In many applications, a regular tree, instead of a dyadic tree might be more appropriate.
The computational complexity at each stage of a regular tree is 2NL FLOP. Hence, the
total complexity for a j level decomposition is:

Crcgular =2 JNL FLOP (8)

The complexity of an irregular tree, or a wavelet packet algorithm is upper bounded by

Crcgu]nr.
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4.3 DATA DEPENDENCIES WITHIN DW'T

The Mallat tree decomposition is one of the most common methods used to implement
the DWT since it is computationally efficient and can be implemented easily. The
wavelet decomposition of a 1D signal for three stages as shown in figure 4.1 hints that
there is a dependency of data as data flows from lower levels to higher levels. In order to
implement a design, it is important to consider the data dependencies invoived in the

tree decomposition..

The low pass, H(Z), and high pass, L{Z), transfer functions for an n-th order filter can be

expressed according to:

H(Z)= g(0) + gDz + g(R)z2 + ........gm)z™" (9)
L(Zy= g0)+g(Dz™'+ g(2)z™* +........gn)z™" (10

It is not hard to define the data dependencies by considering equations 9 and 10. Letting
a, b, ¢, d, e, f, g represent the intermediate and final DWT coefficients (assuming a six

tap filter) as seen in figure 4.11 below we have:

High v > N/2 b samples 2
Hl
, N/2 d samples
a
SampLef < pemem High N/8 £
™ '2 N/2 ¢ samples i3 ™ 72 samples
Low
L2 -— *2 M/4 e samples
1 ?2 Eamples

Figure 1
Data dependencies in filter bank
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1st OCTAVE

b(0) = g(0)a(0) + g(Da(-1) + p(2)a(-2) +....... g(5)a(-5) (11a)
b(2) = g(0)a(2) + g(Da(1) + g(2)al0) +....... g(5)a(-3) (11h)
b(4) = g(O)a(4) + g(1)a(3) 1+ g(2)a(2) +.......... g(5)a(-1) (1ic)
b(6) = 2(0)a(6) + p(1)a(5) + g(2)a(4) + .......... g(5)a(l) (11d)
c(0) = h(0)a(0) + h(a(-1) + h(2)a(-2) +......... h(5)a(-5} (11e)
¢(2)=h(0)a(2) + h{1)a(1}+ h(2)a(0}+........... h(5)a(-3) (11f)
c(4) =h(0)a(4) + h(1)a(3) + h(2)a(2) +........... h(5)a(-1) (11g)
c(6) = h(0)a(6) + h(1)a(5) + h(2)a(4) +........... h(S5)a(1) (1Th)
2nd OCTAVE
d(0) = g(0)c(0)+ g(De(-2) + g(2)c(-4) +......... g(S)e(-10) (11e)
d(4) = g(0)c(4) + g(1)c(2) + g(2)c{0) + .......... g(5)c(-6) (1)
e(0) =h(0)c(0) + h{1)c(-2) + h(2)e(-4) +........ h(5)c(-10) (11g)
e(4) =h(0)c(4) + h(1)c(2) + h(2)c(0) + .......... h{5)c(-6) (I11h)
3rd OCTAVE
f{0) = g(0)e(0) + g(e(-4) + g(2)e(-8) + ......... 8(5)e(-20) (111)
g(0) = h{0)e(0) + h(1)e(-4) + h(2)e(-8) + ......... h(5)e(-20) (11})

As seen in the above equations, several intermediate results (c,e) are first computed, and
then these are used to calculate multiple output samples. The intermediate results must
be available for further processing at a specific time instant, implying a memory

requirement in the proposed architecture design.
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4.4 FINITE PRECISION EFFECT

The accuracy of the DWT coefTicients is determined by both the precision of the input
data, and the wavelet filter coefficients. Reconstructed Image quality measurements
results depend proportionally on finite precision effects. Moreover data and coefficient
precision are important parameters in the design of DWT architectures. High accuracy 1s
required to achieve suitable image quality, but hardware constraints only permit a
certain level of accuracy and thesis paper intends to investigate how accuracy of filter

and data coefficients affect image quality in order to produce an optimal design.

In terms of hardware requirements, the DWT coefficients are recursively calculated
using equation 5, where W represents wavelet coefficients of a certain stage and h, ¢
represent the corresponding filter coefficients. If The precision of W and h are assumed
to be j and m bits respectively, then to execute equation 5, a j x m bits multiplier and

accumulator is required.

A useful measure of accuracy of DWT coefficients is the Signal to Noise Ratio (SNR).
Here, the signal is the floating point DWT coefficient and noise is the difference
between the floating point and finite precision coefficients. In a particular design the
performance variation for 1D signal with respect to the precision of filter coefficients
with fixed 12 bits DWT coefficients and data was observed to be 50-70 dB SNR {15].
Furthermore, it was also observed that when 2D data was involved a decrease in the
SNR results.
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4.6 IMAGE QUALITY

Signal To Noise Ration (SNR) was bricfly described as a useful measure of the accuracy
of DWT coefticients. In practice this is not the only available method to measure image
quality. Other image quality measurcments are available to access quality of
reconstructed image. These measurements provide powerfu! tools for accessing

performance of DWT architectures.

4.61 SUBJECTIVE AND OBJECTIVE IMAGE QUALITY

Objective measuring employs formulas that represent certain information about the
image so that a comparison can be made. In other words these formulas relate the
original image to the reconstructed image in some way. In particular, the
Root-Mean-Square-Error (RMSE), and the Peak Signal-to-Noise Ratio (PSNR) are very
common formula applied to reconstructed images. Given an image represented by f and

the reconstructed image represented by g, the RMSE is given by:

-1
RMSE = = (12)

"z j.f] [i)-gUN)

This value is measured in dB and is the standard deviation of the error of the
reconstructed image from the original image. Also, PSNR is a parameter denved from
the RMSE as follows:

i

PSNR =20 log 10 (775) (13)

Where [ is the maximum tmage intensity, i.e. for a 8 bit pixel it would be 28.1 =255,
Also a further parameter is termed Mean Square Error (MSE) and is simply found by

squaring the RMSE value.
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Typical PSNR values have been found [31] for different compression technigues, These
values are typical of good performing architectures. It is desirable that the proposed

architecture produces similar results to the ones seen in table 4.1 bellow.

Building Block Compression Bit Rate PSNR(dB)

Technique Bits/Pixel
Predictive coding 2D Differential 1 27.74
Vector Quantization | Level 0 mean residual 0.5 26.9

tree structured VQ

Transform Coding | JPEG 0.5 34.69
DCT

Subband Coding Subband Coding with 0.56 32.71
vQ

Subband Coding Subband Coding with
EZwW 0.50 36.28

Table 4.1
PSNR for different compression techniques

Generally, the higher the PSNR the better the results obtained. Table 4.1 suggests that
the EZW coding technique is one of the best techniques to achieve a high PSNR. A
PSNR of 30 dB or higher is considered sufficient for most good quality image coding

systems.

Subjective image quality measurements use the most crucial test, the human eye. The
eye is very sensitive to poorly reconstructed images, many artefacts can be distinguished

very quickly, hence it can be a valid tool to measure image quality.
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CHAPTERS
DWT ARCHITECTURES

5.0 ARCHITECTURE CONSIDERATIONS

The aim of this thesis is the implementation of discrete wavelet transforms through an
efficient architecture. Several designs are researched, these share a common criteria or
have the same objectives; increasing throughput, decreasing arca and attempt to make

better use of computational components within the system.

Five important arquitectures will be discussed before a proposed architecture is
presented. The existing architectures have unique featurcs which makes them suitable
for research. It is hoped to extract these beneficial features from the existing

architectures in order to produce the recommended model.

5.1 SYSTOLIC ARCHITECTURE

Kung defines a systolic systemn as a network of processors which rhythmically compute
and pass data through the system [35]. In other words, the data within the system is
'pumped’ through the processors, which perform simple, local computations on the data.
Furthermore, although the operations being performed may not be equal in all
processors for a particular time-step, the data-movement and computations throughout
the complete system are in synchronisation. The connections in the network are simple
and local, and there is at least a single time-step required to move data from one

processor to the next. The major benefits of this architecture as reported in {35] are:

. Simple and regular connectivity
. Concurrency.
. Local communication operations
. Balanced 1/0 and computation
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Furthermore. Systolic designs are typically highly pipelined, providing a high throughput
for image coding applications. The architecture shown in figure 5.1 implements the 1D
DWT and requires a transposition memory to fully implement the 21D DWT. In other
words, to implement the 21D DWT transform, two modules (onc for row transform and
another for column transform) are used along a transposition memory {33]. Much
scheduling is required if the 2D DWT is to be achieved by this architecture, hence most

systolic designs are employed in one dimensional architectures.

Systolic designs require O(nz) area (dominated by the storage bank) and O(nz) time
where n is the number of pixels in the image. Vishwanath [35] has produced some of the

most interesting implementations of the systolic based architectures including the 2D
DWT Direct Implementation Architecture, and also the popular Systollic-Parallel

Architecture.

The effects of block filtering are also discussed by Vishwanath. Blocking allows the
selection of the required data-word storage ( by adjusting the block size), but requires
some considerable attention to the edges of the blocks to ensure that blocking artifacts
are not introduced. The hierarchical nature of the 2D DWT complicates the edges
considerations, and Vishwanah also noted that the required blocked input to the system

is not convenient or typical of an image processing system.
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Intermediate forwarding
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——= Qutput

Fig. 5.1

Systolic type architecture
S2LATTICE FILTER TYPE ARCHITECTURE

A very simplistic architecture based on lattice filters, as shown in figure 5.2, is
employed in [36]. This architecture is based on properties that the four ( in this case)
coefficients Daubechies wavelet coefficients yields. The parallel pipeline is typically
used in lattice type filters in order to get a high throughput. Furthermore, the pipelines
are balanced, which means the parallel pipelines have almost the same number of

process stages thus the pipeline latency and the registers in the circuits can be saved.

-
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A definite advantage of this type of architecture is that multiplying operations, typical of
other systems, are replaced by shifting and adding operations and no shift register are
used. Shifting in this case is realised by the direct connections of the filter due to the

constant shifting bits.

The architecture has a problem with overflow which in order to avoid, it is required that
suitable word length of the address are further reduced. A further disadvantage is that
the architecture is highly non medular and a complete new design is usually required to
achieve higher filter lengths.

The architecture shown in figure 5.2, and reported in {36] has a high throughput of 2

outputs per clock and 5 clocks pipeline latency. The synthesised architecture contains
5058 gates and can reach 110 M pixels/s when LSI-10k CMOS technology is used.

x(2n)

x(2n-1)

Fig. 5.2
Lattice type architecture
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5.3 PARALLEL ARCHITECTURES

While the systolic architecture is very simple and follows a dataflow oriented approach,
it lacks the high speed benefits which can be expecied when data is processed in
parallel. Bae and Prasanna [37] have described a two dimensional architecture aimed at
paraltlel /O and is highly suitable for high frame rates. For a block size of'b <<n where
n is the number of pixels in the image, this design uses b filters in parallel as a row
filter, and a similar ( but slightly larger) sized column filter. Double buffering
techniques are used to allow new results of the row filtering to be stored while the

previous results are being column-filtered in paraliel.

A typical parallel architecture is shown in figure 5.3. This model consists of three
parallel filters and a storage unit. The parallel filter structure is similar to other parallel
architectures presented by other authors. First, the horizontal filter HF is used to
generate a highpass filtering output (H) at a positive clock cycle. During the negative
clock edge, the HF filter generates the lowpass filtering output These two resultant
filtering outputs will then be stored in the corresponding lowpass (LR) and High Pass
(HR) register banks. Then, the two horizontal filtering outputs {(H and L) stored in the
above register banks can be further decomposed by the vertical filters VF1 and VF2

generate the four vertical filtering outputs to achieve the dimensional transform.

The operation of the vertical filter is exactly the same as the horizontal filter, the
highpass and lowpass filtering output of data from the horizontal filter is processed at
the respective clock cycle. Finally, all the resolution levels of the DWT's can be
iteratively generated by the filters HF, VF1 and VF2, where a current level of filtering

data is computed in the exact idie cycles of the previous level.
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The storage unit is typically composed of several registers banks. Each register bank is
used to temporarily store the filtering data that have been output from the horizontal
filter. Input for the vertical filtering computations is therefore coefficients from the

. horizontal filter stage.

In summary 2D-DWT Parallel architectures work very similar to systolic type
architectures, many of the systollic model benefits apply to parallel models. Again this
means filtering data and then recursively feeding the low part component to the filter
network. In the parallel filter case, the most valuable feature is that data can be
processed in parallel, hence increasing the throughput of the system. But the increase in
speed 1s only at the cost of extra hardware which may be important when considering

single chip designs.

Storage Unit

H L LLH LLL, ...
IN 2 Parallel Fiter (HF) >

Ist Shift Register Bank (#R) |(LR)

LL,LLLL, ...

:;LH, LLLH, ... Paralle! Filter (VF1) 4(———-— :

HL, LLHL, ... H.LLH, LLLLH .. | | pth Shift Register B (LR)

HYL, LLHH, .. : M Parallel Filter (7F2) | egister Bank (£R)
Fig. 5.3

Typical parallel filter architecture.
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Typical parallel architectures need around NZ clock cycles to compute all the resolution

levels of a DWT where N is the number of pixels in the image. Furthermore, low cost
can be expected in terms of components required to implement the architecture; a
programmable paralle! filter, a storage unit, and a control unit, being the only few
components required. However, as seen in figure 5.3, this architecture has a large
number of adders, multipliers, and registers. It has been shown that the number of
elements in the architecture is highly dependent on the size of the filters employed [37].

For large filter lengths this architecture may not be suitable for single chip designs.
5.4 2D-DWT PROCESSOR TYPE ARCHITECTURES

Processor type architectures are becoming more predominant in the field of image
coding [38]. Previously, processor designed architectures suffered from the very high
access times caused by memory components. Also, expensive high speed processors
were required in order to achieve the computational power required to perform the 2D
DWT. More important, the cost of these systems was impractical for any worthwhile
commercial program. However, as technology has progressed, the cost and speed of
processors have significantly changed. Today, typical processor architectures can
achieve significant speed at a very low cost. A processor designed by Chen Xuyun and
others [38] can reach a computation speed of 4 M pixels/s with 7140 gates fitted on a
single Field Programmable Field Array (FPGA). LSI 10K CMOS technology was used
in this design, higher packing densities are assured as technology progresses, ensuring

higher future computational speeds..

Processor designs are very simple, as seem in figure 5.4, a frame memory to store the
image data and a 2D-DWT processor are the only elements. The processor generates,
amongst other things, control signals, and row/column addresses to process the image
data stored in frame memory. The 2D-DWT processor is typically divided intq two
parts, as seen in figure 5.4. The first part is a 2D controller, and the second part is a
1D-DWT processor.
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Processor type designs rely heavily on data shifling from frame memory to the right
processor for computation of the DWT cocfficients. Correct scheduling of data from
memory to the processor ts important to produce correct results. The control unit which
takes care of the correct scheduling and effectively controls of the data path of the
system, consists of' a 1D controller and a 2D controller. The 11D controller controls the
data path unit to process 1D-DWT coefticients, the 2D controller controls the 1D-DWT

processor to process the 2D DWT coefficients accordingly.

In order to improve the computational speed of processor designs architectures, many
methods such as pipelining, and other clever techniques are employed. Typically, the
timing relation between read/write operation and data calculation can be arranged
delicately. This means that while the data is being calculated in the Data Path Unit, the
controller can be reading the data which will be calculated in the next time and write the
result data which has been obtained from the last calculation. Obviously this
'muititasking' of operations requires very careful consideration and planning to the

overall control and data path unit of the system.

The processor type design architecture is ideal in producing systems that require a
Digital Processing (DP) type architecture. This means that the architecture can easily be
programmed to account for different situations, for instance the way data is taken
through the data path, the DWT coefficients calculations, and even how the overall
operation is performed can easily be accomplished. This gives indication that this
architecture is highly suitable for researching 2D-DWT architectures. Because the
architecture is highly portable, the best DWT filter coefficients could be easily
evaluated. Also, due to its Digital Processing nature, it is likely that it can be easily
adapted for producing coefficients in a given way, such as required by the DFS-EZW

algorithm.
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The best example of a commercial implementation for the wavelet transform on a
processor type architecture is Aware's Wavelet transform processor (WTP) [38]. This is
a single chip that is capable of 2, 4 or 6 tap wavelet transforms and is cascable for larger
 filter widths. However, Control is required for any further stages, ie. handshaking
between the blocks. The processing is performed by a 16 bit, 4-stage filtering pipeline,
and the control of the chip is largely software based. Daubechies coefficients are built
on to the WTP, or the user can pre-load. their own sclection of analysis or synthesis
wavelet coefficients. On the other hand the designer: of this architecture make no

attempt to mention the high latency involved when the WTP is used to process 2D-DWT

coefficients.
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Fig. 54

Processor designed architecture
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5.5 RECURSIVE ARCHITECTURE

A very popular architecture has been described as a Recwrsive type architecture [39).
Some of its most useful features are cost effectiveness, optimised data-bus utilisation,

scheduling control overhead reduction, and storage size reduction.

The Architecture behaves closely with the way Mallat's pyramid algorithm performs the
2D-DWT. Furthermore, the operation 1s similar to the systolic filter architecture in

which data 'flows' through the system as it is transformed, Fittle memory is used to hold

the DWT coefficients and the only Latency experienced by such a system is caused by

the transposition memory as shown mn figure 5.5.

The architecture shown here uses the Daubechies four tap DWT filter to perform the
I1D-DWT transform. This transform is followed by a further 1D-DWT block to achieve
two dimensional coefficients. The main problem experienced by this architecture is that

outing

omplex ronting and incomplete data bus utilisation are experienced. Complex routing

results from the fact that the low pass DWT coefficients are fed back to the same
memory as the original input data (the transposition memory), and requires careful
consideration. Also, if data 1s fed back from lower octaves, it is most likely to have a
higher resolution than input data, hence requiring a wider data bus. However, since this
data bus is the input data bus then extra bits located here will be unused for part of the

time. In other words hardware utilisation is not effective when this architecture is used.
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‘A%-« HPF -
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first 1D DWT filter module second 1D DWT filtter module
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uopsodsues

Ll HPF o

Fig5.5
Recursive Architecture
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5.6 RECOMMENDED ARCHITECTURE

Several Authors [40-43] have identificd the Multiply-Accumulate (MAC) operation as
the kernel of various digital signal processing algorithms. All the architectures discussed
have usecd a MAC (or more) in some way. Furthermore, it can be shown that a Finite
Impulse Filter (FIR} is nothing more than a collection of MAC cells connected in some
way {42]. When using the recursive approach, the 2D-DWT transform can be reduced
to a combination of 1D-DWT transform along the row data of the image. The resulting

data is then transformed column wise along a further ID-DWT.

The ID-DWT transform can be loosely treated as a filtering operation in which data 1s
passed through a high pass filter then low pass filter network. The low pass filter output
is then further pass through a high pass, low pass filter network. In terms of data
handling, the transition from row processing to column processing, can be realised by
use of a transposition memory or by scheduling methods in which data path control is

used to achieve the transposition of rows to columns,

Finally, it is important to prepare a specifications list for the proposed architecture. The
recommended architecture will atiempt to satisfy the specifications in the best possible
way. However, previous research indicates that a 'win-loose' situation is likely to be the

most common outcome.

Proposed Architecture specifications list
1. Modular.
2. Simple.
3. Yields good reconstructed image quality (compared to original).
4. Fast computation time, may be used in real life applications .
5. Must fit overall DFS-EZW coding system..

6. Must have small die size.
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A suitable architecture block diagram for the proposed model is shown in figure 5.6.

The architecture looks very similar to Vishwanath Systolic-Parallel architecture [3). The

systollic-parallel architecture has the main property of dispersing higher level

computations amongst the lowest level computation.

Vishwanath employs two 1D systolic modules to process the row data as it enters the

architecture in a serial fashion. This results in 1D-DWT coefficients which are stored in

a memory bank, the size of this memory bank is dependent on the filter width. From this

memory bank, parallel filters perform filter steps of the column operations, the results of

which are connected to the routing network in the 1D systolic modules to interleave the

higher level computations onto the filtering arrays. Finally, results are available on a

serial form at the output. Vishwanaths's systoilic-parallel architecture is shown in figure

5.6a for comparison purposes.
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Fig. 5.6
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Systollic-Parallel architecture
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The proposed architecture is an improvement over the systollic-array architecture. First,
the architecturc employs a single systolic filter and single parallel filter to perform the
2D-DWT. This is due to the lact that filters are designed so that low as well as high
pass coefficients arc calculated in the same clock cycle. This may requirc higher

scheduling but the savings on cost, which also relate to die size, are far more significant.

Next, the filters are designed using a modular approach.. This means that for instance if
the target device, i.e. FPGA, capacity increases then the filter length can easily be
increased without redesigning the whole system from scratch. The systollic-pararell
architecture uses a filter size dependent memory storage area. In this design, memory
dependency on either, image size, and/or filter length is also an unfortunate

disadvantage.

The proposed architecture is also designed to fit the DFS EZW system, unlike the
systollic-parallel model which fits a general 2D-DWT architecture. 2D-DWT data is
generated according to the Depth First Search strategy. DFS Bitstream Results are
available in parallel to individual paraliel EZW processors which can then increase

computational speed of the whole system,
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5.7 XILINK XC4(MK1)

The MAC unit presented in this paper consist of a modular (see VHDIL, design) type
MAC cell. In order to be consistent with the small dic size, the word sizes must be
caretully chosen to balance the size of the implementation, which is limited by the target

device density.

In order to consider design issues, The Xilink XC4000-series FPGA is assume to be the
target device to implement the DWT architecture. The importance of chip size can be
measured in terms of gates. Typically 2D-DWT achitectures employing 4-tap filters use
less than 10000 gates on a target device. A Xilink XC4000 consists of an array of
Configurable Logic Blocks (CLBs), each of which has several inputs (F1-F4, G1-G4)
and outputs (X<Y and XQ,YQ). Each CLB also contains both random logic, and

synchronous elements in addition to the special-purpose logic functions.

The XC4000 series contains both local and global routing resources. The local resources
allow extremely low delay interconnection of CLBs within the same neighbourhood, as
well as more extended connection through the use of switching matrices. The global
resources provide for the low-delay distribution of signals that are used at widely-spaced
points in the array. The speed of a particular application is highly dependent on routing
in the Xilink FPGAs. The XC4000 family includes parts ranging from 8x8 CLB arrays to
24 by 24 CLB arrays. All of these devices are in-system programmable. Low power

versions of many of these parts are aiso available.
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5.8 MAC IMPLEMENTATION

The basic elements in the MAC unit can be defined as a multiplier, and adder and
register or delay unit. Furthermore, since the multiplier most of the time consists of
adders and gates performing AND Boolean functions, it can be said that the MAC unit

consists entirely of adders and registers.

The multiplier employed in most designs uses a combinational array of adders to
achieve multiplication as seen in figure 5.7. Where a combinational array multiplier is
used, the width of the multiptier is dependent on the precision of the data and filter
coefficients to be multiplied. An eight bit data representation is typical. If the filter
coefficients are also 8 bit precision, then in this case a 64 element device, requiring 64
CLBs on a FPGA is required. Furthermore Since some filter coefficients are negative,
then the multiplier must be configured for signed two's complement notation by
geperalising the adders in the combinational array multiplier as discussed in [43].

Generalised adder configurations can be seen in figure 5.7b bellow.
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The MAC also contains adders to summate the result of the multipliers. Multiplication
of an 8 bit precision data with 8 bit filter cocfficients, results in data of 16 bit wide.
Careful consideration must be given to the precision of multiplication data, which can
be very wide. Again research indicates that much higher precision is used, specially in
the filter coeflicients which can be very wide, needing many bits to be represented
accurately. This results in very wide adders which may not suit single IC
implementation. Further considerations to data and filter coefficients precision are given

later in VHDL design.

The performance of the MAC unit with an 8-bit by 8-bit multiply and 16 bit
accumulator is determined by the speed of the multiplier. The Combinational multiplier
seen in figure 5.7 has a reported delay of 100 Ns [9]. Also the MAC employed in [9]
can support a clock speed better than 10 MHz. With the use of the horizontal longlines
to distribute the critical path signals, the speed can also be further improved, although
this may restrict the use of the MAC unit in various system configurations. The single
stage of a four tap MAC unit took 73 CLBs to implement on the XLINK XC40000.

5.9 FIR FILTER IMPLEMENTATION

The purpose of the MAC unit is to form the structure of the Finite Impulse Response

(FIR) filters used in the coding system. The transfer function of such a filter is given by:

HZ)= Qo+ A1Z7 + . +8eaz D (14)

The structure of the filter can be realised in many ways as seen in figure 5.8. The most
common structure used is the canonical structure or inverted structure. This structure
provides a simple design , data flow approach, and is suitable for achieving high

sampling rate even for higher order filters.
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{4} Canonic Form

Xk
]

{b) Pipelined Form

F}- g 5 . 8 ) {c) Inverted Form
FIR Filter Structures

5.10 MEMORY BANK

The memory bank is the area where intermediate coefficient values are temporary stored
as they are processed from individual 1D-DWT modules. Current non-separable designs,
which includes the proposed architecture, employ image' or filter length dependent
memory banks, However, the use of memory banks is a major disadvantage of
non-separable architectures because of the latency involved with data shifting between

the memory and the computational units.
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Many designs use shift registers as the memory storage arca. Designs using this
methology usc efficient methods like Forward Register Allocation (FRA) or
Forward-Backward Registration Allocation (FBRA) 10 have very small storage areas.
The main advantage of these systems is that the cost associated with memory is very
small, also memory can be an internal part of the whole architecture. However, this
architecture can only perform the ID-DWT, to perform the 2D-DWT requires a

transposition memory to be used between individual 1D DWT units.

Using a transposition memory between ID-DWT modules to achieve the 2D-DWT is a
valid solution but does bring some problems to the performance of the architecture.
First, the transposition memory will cause an increase latency. Also, the transposition
memory is highly dependant on the size of the image that needs to be transformed and

thus is not suitable for transforming images of an arbitrary size.

The proposed architecture also uses a memory as a storage area where intermediate
coefficients are located. To attempt to produce an architecture that can process an
arbitrary image size, then a large external SRAM memory is proposed. The static ram
has low cost and can have a large storage area. Access to read and write to this memory

is also very fast and so latency is reduced.

The process to perform the 2D-DWT transform can now loosely be defined as that of
MAC units performing one dimensional wavelet coefficients These Coefficients are first
processed row by row by the systolic filter and fed to the memory bank by the control
unit. Next, the coefficients are process column by column by the parallel filter.
2D-DWT data from the parallel filter is finally stoved in the memory bank by the control
unit. Finally, lower frequency transformed data can be fed back for lower level

decomposition as required.
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511 CONTROL UNIT

The proposed architecture have chosen systolic filters because thesc filter require no
control, hence simplify the operation of the architecture. However, the use of a memory
storage area between the systolic filters requires that scheduling is carefully devised so
that no errors are produced in the wavelet coefficients. The purpose of the Control unit
is therefore to control the data path of the architecture. Furthermore, the control unit
receives signals (see VHDL design) which aliows it to set the memory storage area
accordingly and hence process images of fairly arbitrary size. Also, the control unit
redirects data according to the decomposition level applied or desired. Finally, data

streams following the DFS strategy are made available in parallel by the control unit,
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CHAPTER 6
VHDL IMPLEMENTATION

6.0 VHDL FOR HARDWARE DESIGN

VHDL stands for Very High Speed Hard Ware Description Language and is a powerful
tool for functional verification and commercially available logic synthesis tool for
synthesis verification[44]. A suitable architecture has been proposed for implementing
the 2D-DWT, it is desired to verify operation of the proposed architecture and to access
real time applications performance. Similar architectures have been synthesised in
VHDL [3], these show performance capable of real time applications where fast
computational time is required. The proposed architecture employs only two systolic
filters and a memory storage area, which in conjunction with a control unit can achieve

the 2D transform.

The objective of VHDL implementation is to verify operation of the proposed
architecture. Since functionality is the main concern, the structures that employ the
architecture are described, in VHDL, at more of a behavioural level than a structural
one. However, structural models are also given consideration as these ultimately
comprise the synthesisable model. Further research opportunities are then provided to

finalise the structural model which requires much timing issues to be resolved.

The basic unit for a VHDL description is the design entity. An entity in VHDL may
describe a system at different levels. For example, it may model some combinational
logic with a set of Boolean equations, or contain an abstract description of a whole
system. Entities can then be connected together allowing complex designs to be broken

down into simpler blocks.
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A VHDIL, entity, as seen in figure 6.1, can be described in two parts, The first part is an
entity declaration that describes the inputs and output of the entity. The second part is an

architecture body that describes what goes on between the input and output ports..

a )
Enlity
declaration
\_ J
- N
Architecture
bady
- W,

Fig.6.1
VHDL Design entity

VHDL is a powerful development software and allows designs to be described at
different levels. In practice, RTL code or synthesisable code can be produced even from
the most abstract or at the highest level of development. However, structural written
VHDL code matches more accurately the final circuit operation. Timing operations and

data path control are the most important aspects occurring at structural written code.
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Code writien at the top level 1s written in a very abstract way and includes the system
description in terms of what it does. Typical entities written at this stage may include a
Microprocessor and the inputs and outputs to this system, Usually, no consideration is
given at this level to the form of input and output, hence it can be real or integer

numbers.

6.1 HARDWARE FOR IMPLEMENTATION

The hardware chosen to implement the DWT transform is the Field Programmable Gate
Array (FPGA) which has a widespread use in the development of Application Specific
Integrated Circuits (ASICs). FPGAs are used in what is called 'semi-custom' hardware
design. The main advantage of the use of FPGAs in ASIC logic circuit design is that
they make circuit fabrication much quicker because all the necessary hardware is
already fabricated in silicon. FPGAs are prefabricated integrated circuits containing sets
of logic blocks, which contain gates, flip-flops, multiplexers and RAM, etc. This
ready-made hardware is then 'wired together' by the designer to create the desired digital

logic circuit.

The integrated circuit making the FPGA contains Configurable Logic Blocks (CLBs)
and input/output (I/O) blocks. Each configurable logic block contains flip-flops and
logic gates. The configurable Logic Blocks are then connected to form desired logic
which is then connected o the I/O pins. Connections are made by programming the
connections into the FPGA's own internal memory that then controls the switching

matrices.

69



6.2 CONTROL

All scheduling of the proposed architecture is performed by a control unit which takes
care of the data path and scheduling required by the DWT process. Since the proposed
architecture uses systolic filters (see filter design), then no control requirement is
required for the filters. It is for this reason that systolic filters are commonly used for

implementation of the 2D-DWT.

The main job of the control unit is then simplified to the task of delivering the correct
data which could be either mput data, intermediate DWT data or output data to the nght
location for processing. In order to simplify design of the control unit an image of size N

x N is considered as it is exposed to the proposed architecture,

First, it is assumed that this image is to be decomposed by the 2D-DW'T transform and
that the image is square, i.e. it has the same number of rows as columns. The image is

'Clocked' through the first systolic filter, again this requires no control as the filter
produces a result for every clock cycle . After N2cycles, the image has heen through the
first systolic filter and a 1D-DWT transform of the image is placed in the memory bank

by the control unit. Control lines are available, row and column, in the control unit that
determine the memory address space required. The image located in memory after being
through the systolic filter and place in the memory bank consists of low and high pass
coefficient data as seen in figure 6.2.
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Fig.6.2,
Systolic filter output to the memory bank
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According to the waveletting process, rows of the image are first passed through a low
and high pass filter. This has been just achieved by passing the rows of the image
through the systolic filter in the architecture. The image in the memory bank now
consist of low and high pass coefficients. [t is now required that the low pass and high
pass fllter coeflicients are applied column wise 1o the systolic filter to achieve the first

level 2D-DWT transform.

Consider how the image 1s stored in memory after the first row transformation took
place, since the image is size N x N then memory addresses N to N would contain the
transtormed image. if memory was to be mapped at this stage, the following contents

will be revealed.

2K+1 for K=0,,1,2,3. K-1 contains all the high pass coefficients
2K for K=0,1,2,34,5... K-1 contains all the low pass coefficients.

From this observation, the first level control algorithm can be derived;

While not done ( A bit sent after N x N Clock cycles, hence image transfer)

{

Let K=0 (initialise memory pointer)

On positive clock cycle ( Low pass filter of systolic filter takes place at this stage)
Memory write to location 2K

increment K

On negative clock cycle( High pass filter of systolic filter takes place at this stage)

Memory write to location 2K+1

increment K
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Secondly, columns of the transposed row image need. to be process for the 2D-DWT
transform. This takes place m parallel by the second parallel filter which is also a
systolic filter. The control unit has to ensure the correct transformed columns are send to
the parallel filter for processing and store the intermediate result back to memory. The
result of this operation is the first level 2D-DWT. The parallel filter processes the high
and low pass filter components of the row transformed coefficients in. a column fashion
and the control unit writes the results of this back to memory. The resultant image in
memory now consists of two dimensional low pass and high pass coefficient data as

seen in figure 6.3.
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Fig. 6.3.

First level, two dimensional coefficient data in memory.

More importantly, the original row transformed image located in memory space N x N
is replaced by the first level 2D-DWT coefficient data generated by the parallel filter.
This scheduling control is very important as otherwise very large memory is required

for higher level decompositions.

72




The task of the control unit is hence to send both the high pass and low pass row filter
coetficients to the parallel filter. Concurrently executing processes arc possible in

VHDL making this an ideal too] in development of parallel circuits.

Low and High pass row transformed coeflicients can be then transformed by the paraliel
tilter to achieve 2D-DWT as already discussed. A suitable algorithm can also be
developed by examining the location of the low and high pass coefficients in the

memory bank;

For all elements in row transformed image { N x N)
On positive clock cycle (required to synchronise process)
When done ( image was transformed and placed in memory)
for m=0 to Columns -1 increment 2 ( for all columns containing low pass
coefficients)
for n=0 to Row-1 increment 1 ( for all elements in odd columns)
meinory read n + Column x m
On negative edge ( parallel filter can process one 2D-DWT coefficient per cycle)

memory write 2D-DWT coefficient ( and repeat for loop for other elements)

Resuming the process so far, a N x N image is row transformed by a systolic filter and
the resultant row coefficients are written to memory. The row coefficients are then
column transformed by a parallel fitter and the first level 2D-DWT is written to
memory. Further level decomposition, involves exposing the low pass 2D-DWT

coefficients to the same procedure.
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It has been seen that Mallat's implementation of the 2D-DWT involves a recursive
pyramid where the low pass DWT cocfficients are [urther broken down by lurther
decomposing them. In this design Mallat's recursive pyramid to implement the 2D-DWT
is also followed. The reason lor this is that Mallat's recursive pyramid is a computational

eltective way to implement the dimensional transform.,

The function of the control unit for higher level decompositions is to control the data
path so that the low pass 2D-DWT coefTicients are again send to the transform process.
This is equivalent to the recursive processing of the low pass components in Mallat's
algorithm. Again, with reference to figure 6.3, the location of the low pass coefficients

in the image in memory can be used to develop a suitable algorithm;

For all elements stored in memory N x N space
when done
For m=0 to row-1 increment m by 2 (for all even rows)
{
for n=0 to column - 1 increment n by 2 ( for all even columns)
memory read address = n + column x m ( send data to row filer )

}

Write result of row transformed 2D-DWT to memory.

Not all coefficient elements are transformed by this algorithms. At the second level of
decomposition, only odd rows and columns of the transformed image are required to be
processed since these contain the low pass coefficient data required. In other words,
only the iow pass coefficients of the first level decomposition are send to the row filter
for further decomposition, Also, because not all first level coefficients are affected by
the above algorithm ( only odd columns and rows) then some coefficients of the original
first level transformed image remain unaffected by the above algorithm. The resulting
image located in memory consists of a row transformed 2D-DWT coefficient data as
seen in figure 6.4.
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Low pass coefficients resulting from the first level 2D-DWT are row transformed by the

systolic filter.

The above process has performed the ID-DWT to level one 2D-DWT coefficients by
filtering the low pass two dimensional coefficients. In order to achieve 2D-DWT
coefficients at the-second level of decomposition, columns of the row transformed
2D-DWT coefficients need to be processed accordingly. Again, the low and high pass
coefficients of the row transformed data at the first level of decomposition is processed
column wise by the parallel filter. This results in level 2 2D-DWT coefficient data
produced. The control unit 1s again responsible to control the data path so that the nght

coefficients are delivered to the parallel filter. Finally, results are written to the proper

location in memory by the control unit.
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The same process of low and high pass filtering can he applied to existing octave
coefficients. Fach level breaks down the low pass filter cocfficicnts by applying Mallat's
pyramid algorithm. Again, ligurc 6.4 can be used as a base to develop a suitable

algorithm;

For all 2D-DWT first level elements
when done
{
for m=0 to column - | increment m by 4
for n=0 to row - | increment n by 2
memory read address = m + column x J ( low pass coefficient)
on negative clock cycle
}

write result of column transformed (2 level) to memory

For all 2D-DWT coefficients first level elements
{
For m=2 to column -1 increment m by 4
For n=2 to row -1 increment n by 2
memory read address = m + column x J (LLH elements to parallel
filter)
}
write result to memory ( these results, together with the LLL results are the

2D-DWT coefTicients at the second level of decomposition )
The decomposed image now contains second octave 2D-DWT coefficients as seen in

Figure 6.5. Further decompositions are possible, each decomposed image containing

fewer and fewer bits representing the low pass wavelet coefficients.
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2D DWT coefficients when a second level decomposition is involved.

The process of iterating the low pass filter coefficient for further octave breakdown is
termed dilation [6]. Theoretically, the process can be iterated infinitely with each level

producing low pass coefficients which can be further decomposed. However, if N data
elements are available and N = 2 then a maximum of D dilations or decomposition
levels can be applied to the image.

6.3 VADL ARCHITECTURE IMPLEMENTATION

In this section the proposed architecture is implemented in VHDL using Synopsis and
PeakVIIDL software. During the design process, the top-down design method is
followed . In doing this, two models of the system are created and simulated using
VHDL. The first model as seen in figure 6.5, is an abstract behavioural model. This
model is intended as an operational model more than a synthesis model. An operational
model is referred to as the model where the architecture is considered as a black box or
a single operational entity. Several inputs such as data, filter coefficients, control lines,
etc. are used without much consideration to their format. These inputs work with the
entity to produce wavelet coefficients which are then fed to further stages of the coding

system.
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Fig. 6.5
Behavioural 2D DWT VHDL code block diagram.

As indicated previously VHDL is a very powerful language, even code at this abstract
behavioural level can be transiated to synthesis type RTL code. Providing that the right
libraries and translation tools, such as VHDL to Behaviour Block Intermediate Format
(VHDL2BBIF) are”available, synthesis is possible from behavioural code. However,
These transiation tools can be very expensive, even Synopsys, one of the most powerful
VHDL compilers, does not have this translating tool as a basic option and requires a
very expensive upgrade to be able to use it. When we consider the basic Synopsys
options are already expensive by themseives, then this option could be out of economic
reach. Appendix a, has a guide showing how these tools could be used to translate
VHDL behavioural code to RTL synthesisable code. The tool guide could be handy

when the price of translating tools decreases and these become more predominant.
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The purpose of the behavioural code model is mainly to define the second structural
model parameters. Data precision, which determines width of multipliers, adders, and
memory storage capacity, optimal filter length, and optimal data path control are some
of the useful parameters that can be obtained from the behavioural model. Structural
VDHL code can be quite casily translated to Register Transfer level code which is then
synthesised into the target device. Hopefully, the structural model will aiready be

optimised with the most effictent parameters found in the behavioural model.

6.4 BEHAVIOURAL VHDL CODE

The first behavioural model as seen in figure 6.5 consists of a single entity. In reality
this entity can be seen to consist of several working functions. Each function
theoretically could be separated into an individual entity. Indeed, the splitting of
individual functions into modular entities is the purpose of the structural model. The
behavioural model consists of a Test bench used to test the architecture, a 2D-
DWT/IDWT block and a global block. VHDL listings are included in the appendix a as

indicated bellow;

1. IDWT/DWT.VHD The VHDL 2D IDWT/DWT Behavioural code.
2. TB_ DWT/IDWT.VHD  The Test bench used to test the behavioural code.
3. GLOBAL.VHD The package containing global parameters,

The above blocks are linked together, as indicated by figure 6.6., to form the

behavioural test system.
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Fig. 6.6
First VHDL behavioural model.

Moreover, the behavioural model is used to determine structural parameters such as data
precision and filter length. To determine these parameters, each individual block in the

behavioural architecture is considered separately.
GLOBAL.VHD

A package that contains amongst other things global variables. This variables determine
properties such as the size of the memory bank and other temporary variables used
intermediate result storage. Al this stage precision of filter coefficients and data

precision has not been considered. Instead, the Real VHDL type is used for precision of
data. However, the Real VHDL type has a precision of 27 where n is the CPU register
width 1.e. a 16 bit machine has n = 16 . The precision available when using Real data

types is always unrealistic for many single chip designs. The results of multiplications,
in particular, can be twice the value of the CPU register. Large multipliers may cause
the design to be deployed in multi-chip environment, complicating the design because of

the additional handshaking and scheduling required.
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On the other hand implementing the first behavioural model using real data types
simplifies the design process, results can be easily interpreted and evaluated. An
interesting feature of VHDL is that it allows precision of real data types to be adjusted
accordingly. This is done exactly in the same way as formatting a real type in C or
C++. The width of precision of a real type can be adjusted by inctuding the %n.n
parameter after variable declaration. This gives a very powerful concept, being able to
work with easy to interpret real variables, and adjusting the precision of the data type
accordingly. Results can be then obtained from experiments which will give indication
as to how precision of data affects image quality. Also an optimal precision parameter

for the structural model will be determined from experimental results.

TB_ DWTADWT.VHD

A standard test bench is created to test the behavioural 2D-DWT architecture. The
problem with testing image coding architectures is that it must be applied to an image.
Most standard images have huge amounts of data, testing for all data in the image
becomes a long, tedious process. The standard test bench, as seen in figure 6.7, applies
stimuli data to the Unit Under Test (UUT). Responses to these stimuli can then be
accessed for evaluation purposes. However, as already stated, a standard image contains
a huge amount of stimuli. Evaluation of every possible stimuli for responses would then

take a huge amount of time, which is not practical.
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Fig. 6.7
Standard Testing of stimuli

Clearly a more practical approach is required to test architectures which werk on huge
amount of data. A second model of testing nses VHDL ability to handle files. Also, this
model involves usage of Matlab to evaluate PSNR, a image quality measurement for
reconstructed images. The second test model is an invaluable tool for testing
architectures which handle huge amount of data. It is simplistic and results are casily

evaluated for errors using the Matlab software.

The second test model, as seen in figure 6.8, is very simple. A file consisting of the
1mage data is applied to the UUT. Other stimuli applied includes analysis/synthesis filter
type coefficients, level of decomposition to be applied, and a synthesis or analysis mode
Output of the test system is a text file which is the n level decomposition of the image,
where n is the level applied in the stimuli. Matlab could be used at this stage to examine
the decomposed image, this would give early indication that the decomposition stage of

the DWT transform works effectively.
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A better solution is fo apply the n level decamposed image back ta the DWT/DWT
architecture. The synthesis stimuli can be then selected for synthesis mode, indicating
image reconstruction. The resultant Image file can be examined with Matlab, image
quality measurements for the reconstructed image can be easily determined.. Using this
approach a more efficient testing method is achieved, the full decomposition /

reconstruction functionality of the whole architecture is tested for functionality.
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Fig.6.8

Testing environment

DWT/IDWT.VHD

The main functional component of the behavioural model s the DWT/IDWT block,
This block is capable of implementing the 2D-DWT and its inverse to an image of
arbitrary size and to a given level of decomposition and reconstruction. Although this is
implemented by a single entity three functional blocks are evident; A computational
unit, A memory unit, and a control unit as seen in figure 6.9.
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Fig. 6.9
DWT/IDWT Functional Blocks.

The Computational unit is responsible to achieve the Multipliy and Accumulate
functionality for the architecture. Furthermore, the function of the Low and High pass
filters has been shown to consist of MAC operations . Control of the data path as well
as memory scheduling control are achieved by the control unit. The memory unit 1s a
generic, simple storage area. Intermediate coefficients are stored in this area in a two
dimensional array. The length of the array is determined by parameters defined in the
global package. Using a generic memory 1s advantageous since it allows processing of

arbitrary image sizes.
6.5 FILTER VARIATIONS

It has been seen how imporiant filier coefficients are in determining the accuracy of the
wavelet coefficients. It is advantageous to have an architccture that permits several
filters to be employed in the same design and hence change quality of wavelet
coefficients accordingly. For instance, certain filter coefficients produce less aliasing

than others on images.

The first behavioural model is design to produce an architecture that is capable of
selecting between different filter coefficient selections. Experiments can be done on
images to see the 'best performing' filter. Several of the most common filter coefficients,
including the HARR wavelet filter coefficients, and some of the most common
Daubechies wavelet filter coefficients are included in the first proposed architecture. It
is hoped that selection of an optimal filter for the structural model can be done by
experiments on test images.
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6.6 STRUCTURAL ARCHITECTURE

The Structural model is closer 1o the synthesisable model or RTL model. In this model,
the system is thought in terms of registers and how the data flows between them. Factors
considered at this level were how the data flows between the processes, how the input
data should be fed to the system, and how the results should be outputted. More
importantly this model will take into account some of the constraints given by the target

hardware and time becomes an essential parameter.

The system functions can be summarised as a Multiply Accumulate operation or
computation stage, and a recursive feeding back of low pass coefficient data to the
process as seen in figure 6.9. In the first behavioural model, these system functions are
not well defined as individual entities. On the other hand in the structural model the

entities are well defined and interaction between them is critical for the operation.

The most critical parameter of consideration when designing at the structural level is
time. It is required to know exactly what happens at every clock cycle. This is typical of
a structural type design, we have considered WHAT is the system to do at the
behavioural design and now consider HOW , which indicates a time element, this is

going to be achieved.
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6.7 MODULARITY

Many designers of 2D-DWT architectures [36-39] have failed to implement modularity
into their designs. In the proposed architecture, modularity is an essential issuc.
Technology is a dynamic area were many changes take place. The number of transistors
integrated on a single chip is growing very fast [42], from 256 thousand back in 1985 to
around 2 million in 1997 and is set to continue growing. This means that density in

target devices (FPGAs), grows significantly with time.

It is known that when implementing the 2D-DWT and its inverse, the reconstructed
image quality is highly related to the filter length {23]. The objective is to produce an
architecture which can easily be adopted to current technology and also addresses the
filter length constraints. To achieve this results, the structural computational unit is
designed using modular functional ceils which can easily be linked together to increase

filter length,

6.7 STRUCTURAL COMPUTATIONAL UNIT

A parallel and systolic filter are the main components of the computational unit as seen
before. The structural computational unit has functional cells which implements the
filter functions. These functional cells can be linked together to form longer structures,
increasing the number of filter taps accordingly. Three elements are evident in each
functional cell. Futhermore, beacuse both filters are systolic, each cell consists of the

same elements, being;

. A muitiplier.
. An adder.
. A multiplexer.
. Delay unit (D-Flip Flop)
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6.71 STRUCTURAL MULTIPLIER

Listed as MULT.VHD in appendix ¢, the multiplier takes input data and multiplies it
with the correct low or high pass coefficient. Data input to the muitiplier can be either
unsigned input data coming from the image data, or signed filter coefficient data.
Multiplying a signed number with an unsigned number produces a signed result. To
prevent possible errors tmage data is converted to a signed form and all operations are
done using 2's complements form. VHDL allows standard arithmetic operations on
signed numbers and produces signed results. Also, signed to unsigned conversion
functions are avatlable in VHDL. These functions can be used to make output data

compatible with input image data.

Input data of n bits precision muitiplied by x bits precision coetficients can produce
(n+x) wide products. Some products are required to feed back to the multiplier. fed back
data now has a precision of (nt+x) bits, this data is multiplied by x bit tilter coefficients
to now have (n+x)tx bits wide precision or n + 2x. Clearly at each level of
decomposition the precision of results grows bigger. Obviously because of hardware
limitations, a limiting factor needs to be determined and this is where the first

behavioural mode! is useful.
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Another valid method to determine the optimal bit precision of results is to consider the
worst case situation for the inputs to the multiplier in order to determine the result
precision. Worst case methods highlight the maximum / minimum precision that needs

to be resolved by the system. Consider the following worst case scenario:

. Input data has a range of 0-255 requiring 16 bits to be represented.
. Wavelet coefficients can have a maximum / minimum va:ue of %£1.00. To represent
this using two's compiement numbers requires | bit for sign, | bit for integer part,

and n bits for fraction part

Clearly, the multiplier can have a worst case situation of 16+(2+n). It ts the purpose of
the first behavioural model to find the value of n for optimal performance. This is
achieved by performing different fractional coefficient precision ransformations on test
images. The PSRN image quality measurement can be evaluated for the different filter
wavelet fraction precision,

/
6.72 THE ADDER

Listed as ADD.VHD in appendix c, the adder is capable of adding two 2's complement
numbers and producing a result also in 2s complement form. A standard test image has
been applied to the wavelet transform in the first behavioural model. Results of this
simulations can be used to determine precision of the adder. The maximum output of
the row and paraliel filters determines the maximum precision data to be processed by
the filter adders. Again, experimental data can be used to determine maximum adder

precision.
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6.73 THE MULTIPLEXER

Listed as MULT.VHD in appendix ¢ , the muitiplexer is a standard device used to direct
flow of filter coetticients or data according to a control line. In practice, the muitiplexer
is not necessary as the contro! unit discussed previously can also achieve the same
result. However, in order to simplify the design simple control is required. Also
multiplexers used in this architecture require no control as they operate using the system

clock.
6.74 THE DELAY UNIT

Listed as DFF.VHD in appendix c, the standard D type flip flop is used to achieve delavs
in data transfer. Delays are common structures used when Mallat's pyramid for the

wavelet transform is used as the method of waveletting.
6.75 THE MEMORY

Listed as RAM.VHD in appendix ¢, the memory block is a genenc memory structure.
Four lines implement the memory operation, as seen in figure 6.10 bellow. Address,
data and control lines determine behaviour of the memory which can be simplified to

the following procedure:;

. When the read line is active, data in the data bus is copied to the memory
address specified by the address bus.

. When the write line is active, data in the specified address is copied to the data
bus.

. An enable / disable line is included to prevent read and write operations

occurring at the same time,
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Fig.6.10
Generic RAM block

6.76 STRUCTURAL CONTROL

The purpose of the structural control is to provide the data path for the architecture as

well as memory scheduling as explained section 6.2. Several timing issues need to be

resolved before producing VHDIL, structural code.
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CHAPTER 7
RESULTS

7.0 INTRODUCTION

A behavioural model architecture has been implemented and verified in VHDL. The
standard image "Lena" is a moderate complex image that has become a standard test
image for image compression techniques. It is important to note that the 2D-DWT
subband decomposition docs not achieve compression by itself, it merely decomposes
the image into octave bands according to the level of decomposition applied. Since no
image coding is achieved by the subband decomposition, the only results that can be
measured are directly related to the decomposed image. In tenns of results there are

three areas of consideration given to this design:

. What filter gave the best performance in terms of image quality.
. What level of precision (coefficients and data) is required to achieve
acceptable image quality.

. What is the throughput of the tested architecture.

image quality can easily be evaluated by using the proposed behaviour architecture to
decomposed a standard image. The inverse transform is then used to reconstruct the
image. Matlab can then be used to determine statistical image quality data and results

can be evaluated for performance of the proposed architecture.
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7.1 RESULTS AND OBSERVATIONS

The behavioural VHDL model has the ability of selecting between different filter types.
The "Lena" image has been decomposed to level three octaves by the wavelet transform.
Furthermore, the octaves are inverse transformed to obtain the reconstructed original
image. Because the model is a loosy system, there will be differences between the
original image and the reconstructed image. Matlab can easily evaluate for differences
between the original and reconstructed images by calculating the Mean Standard Error,

an efficient statistical image quality parameter.

Filter |10-18 [13-11 6-10 |9-7 |53 2-6 9-3 2-2

MSEdB}; 263 261 291 289 414 456 331 58.6

Table 7.1
MSE for different wavelet filter coefficients

Table 7.1 results indicate the higher tap filter 13-11 produces the best results in terms of
MSE. However, this requires 13 multipliers, 13 registers, 13 multiplexers, and 10 adders
to be implemented in a parallel filter. The same amount of components are also required

in the systolic filter. Clearly in terms of cost and die size, it is impractical to have a
13-11 tap filter. Shapiro's EZW algorithm originally used Antonnini's 9-7 tap filter [25].
Results from this filter yields similar results to the 13-11 tap filter but use less

components in the filter.
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Also, it is desired to know the affects data precision have in reconstructed image quality.
Higher precision will yield better results but since theré is a hardware limit to the size of
the multipliers and adders which can be implemented into a single chip, an optimal
value needs to be established for the structural model. In this simulation, as seen in table

2, precision of wavelet and filter coefficients for the fraction part is assumed to be the

same.
Number of bits {10-18 {13-11 [6-10 |9-7 |5-3  [26 93 |22
used
3l 82.01] 79.95| 54.83] 71.57| 3.38 13| 16.4] 028
4l 794 7431 558/ 6912 28| 061] 1407 0.11]
s| 781 73.01] 54.78| 68.87| 2.62| 027] 12.89] 0.03]
6| 7747 72.39{ 5429| 67.31] 2.57]  0.12| 12.34| 0.01
71 77.16] 71.02] 54.06] 67.02] 255  0.06] 12.08] 0.01
Table 7.2

Filter and data precision MSE dB results

Table 7.2 indicates, as expected, that higher precision results in higher quality
reconstructed images. Filter length also determines how this precision affects
reconstructed image quality. It is observed that for low tap filters, precision of wavelet
and filter coefficients is irrelevant. The last observation is very useful, if singte chip
designs imply lower tap filter structures, then precision of wavelet and filter coefficients

can be discarded in the design.
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7.2 OUTCOMES
The lirst behavioural model serves as an cxperimental model. Simulation results can
lead to optimal parameter definition for the second structural model. Based on

simulation results, the following outcomes can be specified;

Row systolic filter:

Inputs:

. Input to the filter can either be data for the image or intermediate coefficient
data. Since intermediate data has more precision than image data, input to the
row filter should be a 16 bit, two's complement number with | bit sign, 8 bits
integer part and 7 bits for fractional part . To achieve this unsigned image data is
converted to the right format before being applied to the row filter.

. Filter coefficients can be represented by a 10 bit twos complement number

consisting of 1 bit sign, 1 bit integer, and 8 bits fraction part.

Muitiplier:

The structural multiplier takes a 10 bit coefficient and 16 bit data input giving a

precision of 26 bits for results. However, the maximum data input and coefficient input
is ( £1 x 255) = #255. Hence, a 17 bit twos complemeni number is sufficient to
represent maximum or minimum condition. Thus, results are rounded of to 17 bit

precision number. Rounding off has an insignificant affect on reconstructed image

quality because filter lengths are kept relatively small.
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Adder:

Signed 17 bit results of the multiplier can be added from previous stages which are also
17 bit signed. A 20 bit adder should be sufficient to account for addition of two 17 bits

signed data,

Parallel filter:

This filter is very similar to the systolic filter since it uses the same components.
However, because it operates on lower octave data, higher precision input is expected.
On the other hand, data output from the row systolic filter is rounded off before being
placed in memory. Due to the rounding operation taking place at the row systolic filter,
input data to the parallel filter has the same precision as input data to the row systolic
filter. Again, due to the low filter length employed, no significant image quality
degradation occurs due to this rounding of data, but the design is greatly simplified by

using the same data precision through the architecture.

Finally, a further outcome from the behavioural model is the optimal filter length
required for the structural model, sometimes referred to as the number of filter taps. It is
desired to use longer filter taps because they yield better performance. On the other
hand, very long filters may not suit a single chip design. Furthermore, despite having
poor reconstructed image quality, low tap filters are independent on coefficient and
filter precision to produce good results. The 44 tap filter configuration is an efficient,
single chip, data precision independent design used successfully in wavelet architectures
[39].
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7.3 THROUGHPUT

The proposed architecture has been accessed in terms of size and quality requirements.
A very important measurable quantity is the throughput of the proposed architecture.
This quantity indicates how long it takes to decompose and reconstruct an image and is
an useful indication of the architecture performance because real time applications such

as digital video decoding / encoding require high throughput.

Throughput can easily be measured once the time to decompose or reconstruct an image
is measured. Consider an image with N number of elements, to calculate the

architecture's throughput for this image the following applies;
Throughput = } (15)

Where N is the total number of pixels for the proposed architecture and T is the time it

took to perform the simulation.

When the "Lena" image was 2D-DWT wavelet transformed to level 3 octaves, the
simulation took 17212400 nanoseconds. Throughput is found by applying formula 15,
with N=256 x 256 and T = 17212400 ns. The DWT part of the architecture can process
around 38 MP/s or 38 million pixels per second. The decomposed image was then
applied to the inverse transform and once again a throughput of around 38 MP/s was
obtained. Hence the throughput of the DWT/IDWT is 38 MP/s. Real time video signal
processing requires throughput higher than 30 MP/s . Clearly, the proposed architecture

is suitable for real time applications.
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7.4 LATENCY

The separable approach makes use of ID-DWT modules and memory storage to
implement the 2D-DWT. This approach is a simple, straightforward solution which is
adopted by many 2D-DWT architectures. Furthermore, The separable approach based
architectures have the advantage of simple design and produce coefficients which are
well localised in time and frequency. On the other hand it is recognised [37] that latency
for this systems is too long and the needed memory space used between row and column

DWT processes is large causing problems for single chip designs.

Clearly, as the level of decomposition increases the overall latency increases due to the
recursive nature of the separate approach. It is for this reason that the separable
approach has sometimes being defined as non suitable for real time signal processing
[17]. .

To prevent the latency-memory problems of the separable approach some authors have
proposed using non separable architectures {37]. These architectures are highly suitable
for real time signal processing applications. However, the non separable approach yields
wavelet coefficients which are not well localised in frequency and time. Coefficients
resulting from this non separable approach appear as blocky artifacts when the image is
reconstructed much like the DCT transform produces blocky artifacis for low bit rates.
Current research is taking place for removing deficiencies in non separable as well as

separable methods for subband transformation.

97



7.5 COMPARISON TO OTHER ARCHITECTURES

Wavelet transform architectures form part of larger image coding systems. In terms of
results, the 2D DWT/IDWT architecture is rarely tested for performance on its own. The
approach taken all the time is to test the whole coding system rather than individual
entities within the system. Several wavelet architectures [36-39] have been proposed and

verified for performance. Performance of all architectures is measured with the same

- objectives; high-speed, small size and efficient designs . Some designs cover certain

areas better than others. The proposed model also has its own benefits and

disadvantages as seen in bellow.

Archicteture | Folded Digit Systolic  [Direct [11] | systollic-{ Parallel | Shen Propo-

[2] 2] [3] f(processor) | parallel [([13] [4] -sed
[ .
Multipliers 164 14 241- 4L 4L 16 8
Adders 14 12 241- 4L 4L-1) 16 6
Registers 164 258 48|N 2NLAAN| 2NLAN 108 8

Scheduling | Complex |Simple |Simple |Complex Simplef(} Simple | Simple | Simple/

omplex complex

Period na na na 4N N+N N+N na N+N

Here ,L is the filter length, N is size of image, and na means not applicable
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7.6 INPUT OUTPUT CONSIDERATIONS

Although no consideration has been given to input and output ol data from the proposed
behavioural model architecture, in the structural model these are very important if the
system is to function properly. Input to the architecture consists of image data stored in a
file. This data is send through a serial input in a row major form. Handshaking is
essential for proper timing between input of image data and recursive feeding of higher

octave data.

The raster scan method indicates the order in which subbands or wavelet coefficients
flow from the wavelet architecture. These subbands are the output of the architecture to
the EZW quantiser which operates on the coefficient bitstream received from the
wavelet transform. The Depth First Search (DFS) approach is an alternative way to
encode wavelet coefticients from the 2D-DWT architecture. From the point of view of
the quantizer, the only difference is the way in which the coefficient bitstreams arrive at

the quantiser.

In this design, the programming ability of the processor design architecture is employed.
The reason for this is that output is easily controlied to achieve desired results. In this
case, the output is a parallel bitstream of DFS coefficients. Again, there is a requirement
for handshaking to occur. The wavelet transform sends coefficient bitstreams which
follows the hierarchy of the tree from the root to the children in the DFS strategy.
Further bitstreams should not be processed until the quantiser has finish encoding /

decoding the current bitstream.
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CHAPTER S8

8.0 CONCLUSION

In the last decade, there has been an enormous increase in the applications ol wavelets
in various scientific and industrial applications . The major contribution of wavelet
theory is to relate the discrete time filterbank with the theory of continuous time space.
Furthermore, wavelets can been shown to have far superior features for image

processing applications such as,;

. Adaptive time-frequency windows

. Lower aliasing distortion for signal processing applications

. Computational complexity of O(N), where N is the number of data samples.
. Inherent scalability

. Efficient VLSI or VHDL implementation.

Since DWT requires intensive computations, in particular the 2D-DWT, several
architectures have been proposed to efficiently implement this function. However, while
some architectures have tried to address some issues such as speed, complexity, or cost.
It is always a 'win-loose' situation. For instance, the parallel filter architectures [35]
addresses computation speed but fails to address die size and cost. Other efficient
architectures, such as the systolic architecture [35], achieve the 2D-DWT with very
simple designs and achieve high computational speeds but fail to address latency and

have large memory storage requirements.

There is a clear need for designing and implementing a DWT chipset that explores the
potential of DWT particularly in the area of high computational speed and suitability
for the EZW based coder. In order to achieve the requirement of high computational
speed and suitability for the EZW coder the following architectures have been
considered

100



. The Paralle] architecture for its high computational speed.

. The Systolic architecture for its simplistic design features.

. The direct (processor based) architecture for its ability to adapt to multiple
applications.

. The recursive architecture

The sytoilic-parallel architecture [35] has been implemented and verified in VLSI In
this architecture the 2D-DWT is implemented by dispersing higher level computations
amongst the lower level computations. Two one dimensional systolic modules are used
to process the rows as the data enters the architecture in a serial fashion. Results of this
processing are stored in a memory bank that is dependent on the filter width. From this
memory bank, parallel filters perform filter steps of the column operations, the resuits of
which are connected to the routing network in the one dimensional systolic modules to
interleave the higher level computations onto the filtering array. The routing within the

block memory prevents any blocking affects being introduced in the transform.

The proposed architecture looks and operates very similar to the systolic-parallel
architecture. However, there are some key differences which makes it uniquely

different;

. Modular filter design enables easy future filter expansion
. The proposed architecture is designed to suit the EZW based coder

. Digit type control enables output of coefficients in a raster type format or DFS

format.

. Output is made available in paraliel to suit DFS EZW coding system.
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A suitable architecture for the EZW based coder has been presented. ‘The architecture
employs systolic-pararell filter 1o implement the non-scparable 2D-DWT. Simulation
results indicate a high throughput for the employed systolic filters. However, it was also
observed that a high latency resulted {rom the usc of a memory storage arca. This
latency was further aggravated by the recursive nature of the non-separable approach

taken.

Results obtained in simulation experiments show a throughput of 38 MP/s for the
behavioural model. However, when compared with the throughput of 100 MP/s for the
lattice based architecture and separable transform type architectures, it is clear that early
results indicate an unsuitable or marginal system results if the recommended
architecture is used. To improve this latency situation many authors [37] have proposed
using different scheduling approaches and methods such as pipelining to increase

throughput.

The proposed architecture was verified by implementing a behavioural model in VHDL.
The purpose of implementing an architecture in VHDL 1s to verify that it operates
properly. After verification the architecture can be synthesised into a target device such
as a FPGA.

When implementing the architecture in VHDL, the Top Level approach was followed.

First, an abstract behavioural model was developed. The purpose of this model was;

. Stmulate the behavioural architecture
. Define parameters and specifications for second structural architecture.

. Obtain experimental data such as optimal synthesis/analysis filter and data pregision
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A structural arctitecture model is also considered . This second model will be written in
a structural form and will be closer to the synthesisable VIIDL code. ‘The main issue in
the second structural model is time, it is required to know preciscly what data

movements and calculations occur, at every clock cycle.

In designing the final architecture a first behavioral model was created and certain
assumptions about how the overall architecture will operate were made. The first
behavioural model verified these assumptions through the use of simulation
experiments. For instance, the minimum binary word lengths that can be used, which
allows for some optimisation in the second structural model, are determined. Also, the
first behavioural model can be used to determine the effects on image quality by using

different data precision, filter type, and rounding off .

The second model is used to define the registers that will be contained within the final
implementation of the system. This model will take into account how the data is taken
in the system and also outputted. Optimal data precision found in the first behavioural

model can then be implemented at this second model.

Results of the first behavioural model have been examined. These results indicate that
the behavioural model design does implement the 2D-DWT to an arbitrary level of
decomposition. Also requirements have been placed on the second structural design by
analysing experimental simulation results. Furthermore, these results indicate that the
architecture can be considered efficient, in terms of computation speed, image quality,
and suitability for the EZW based coder. Real time applications such as digital image
encoding/decoding will require that attention is paid to the high latency of the proposed

system.

103



8.1 FURTHER WORK

A suilable behavioural architecture has been verified by the VHDL Synopsis tools.
Results obtained from simulations indicate proper functionality of the proposed
architecture. Furthermore, specifications have been obtained from the first behavioural

model that will be implemented in a second structural model.

Work has been undertaken towards second structural model, basic structural functional
units have been implemented and verified. Simulation results indicate that these basic
structural cells operate properly. However when these cells are placed together to form a
working system, much consideration must be given to time which requires to know
precisely what data movements exist in the architecture at every clock cycle.
Development of the control unit which schedules the data path for the architecture has
not being achieve at this stage. Further work is required to complete the control unit and
develop the structural model. Finally, a working structural model can be synthesised in

a target device.

8.2 CONCLUDING STATEMENT

A suitable 2D-DWT for the EZW coder has been presented and verified in VHDL. The
opportunities for further research are excellent, a structural design is to be finalised and
optimal data path control can be developed to reduce latency. Image coding applications
are growing sharply, the need for a more efficient and powerful image coder provides

sufficient motivation for future research.
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Users' Guide : VHDL Behavior to FPGA
Implementation

Who should use this Manual:

This Manual is intended to serve as a Users' Guide for synthesizing
a Behavioral VHDL description onto the Xilinx FPGA Hardware. The
use of the tools described in the Guide requires the basic
knowledge of the various steps involved in the synthesis of a
behavioral description into a hardware implementation. Aiso, it is
assumed that the user has the basic knowledge of VHDL syntax
and semantics and the use of Synopsys tools for simulation. At
every step, we have included an illustrative example (tlc_example),
showing the inputs and results of that step.

Set-up:

The following steps should be performed for any design to be
synthesized using the tools described in this manual:

+ Uncomment the following fines in your '.cshrc' file :
set _use synopsys tools
set _use_xilinx tools
- Include the following command in your ".cshre.local” file, in
order to set up the use of Xilinx M1 tools
source /packages/Xilinx/setup
« Copy the following two files to your home directory (or make
necessary changes to them if you already have them)
- SYNOopsys vss.setup
.Synopsys dc.setup
- Create a directory called 'synopsys_work’ in your home
directory
+ Include the following command in your ".cshrc.local” file in
order to set up the use of all the other required tools
set path = ($path
/home/ddel/public html/projects/asserta/bin)

Design Flow

The following are the tasks that ought to be followed in order to
synthesize a behavior VHDL description onto an FPGA device. The
names within parenthesis denote the tools that are used to
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accomplish the corresponding task.

Behavioral Description in VHDL and RTL Correspondence
- Simulation at Behavior Level (Synopsys tools)
- Translation - Behavioral VHDL to Intermediate Format
(vhdI2bbif)
- Simuiation after Trznslation {Synopsys tools)
» The Component Library Specification
- High Leve! Synthesis (asserta)
- Transiation - KT Intermediate Format to VHDL {rti2vhdl)
« Simuiation at RT Level (Synopsys tools)
- Logic and Layout Synthesis (rtivhdi2fpga)

Given below is a figure depicting the entire design flow.

(FBehavioral VHDL]

N 1 Specification
Simulate Behavior
Success? -
Y - Translation
o (vhd12bbif)
Component Library
[ Specific:}ttion ] Simulate
. ]
High~Level Synthesis
g (asserta)
]
> Translation
{rtl2vhdl)

Simulate RTL

Logic/Layout Synthesis
{rtivhd12£fpga)

|

FPGA Bitmap

Figure 1. Design Flow
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Behavior Description in VHDL and RTL
Correspondence

VHDL is a language designed to describe hardware components for
simulation. As such, it permits virtually unlimited number of data
types and other features to model hardware behavior. The whole
gamut of such features however creates problem when one thinks
of synthesis. The mapping from VHDL descriptions into hardware is
often confusing, when ail VHDL constructs are taken into account.
Moreover, some constructs in VHDL are purely for simulation.

We synthesize a VHDL (subset) behavioral description into a RTL
design based on the Glushkovian model (see figure below),
consisting of a data path and a controller. The datapath consists of
a netlist of components picked from the component library and the
controller is a finite state machine.

1/0 CLOCK RESET START FINISH
DESIGN
FLAGS
+
DATAPATH CONTROLLER
(Netlist of camponents) (Finite State Machime)
gl
CONTROLS
Figure 2: Glushkovian
Model

The components in the datapath inyplement the operations specified
in the behavior. The controlier provides control signals that
sequence these components, thereby executing the behavior
specified. Note that the RTL design in addition to the design /O
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ports (as specified in the behavior), also consists of four special
signals: Clock (in), Reset (in), Start (in) and Finish (out). The way
the RTL design comminicates to the environment is as follows. The
Reset has to be made high for one clock, foliowing which the design
inputs can be placed and the Start signal is made high for one clock,
indicating to the hardware that the inputs have been placed. The
design then executes for several clocks and makes Finish high,
inidicating to the environment that the outputs have been produced.

In the following section, we will give an overview of the VHDL subset
that we propose for synthesis.

Behavior VHDL Subset

This section provides a quick reference to the behavior vhdl subset
that is supported for synthesis. It is assumed that the reader has
prior knowiedge about VHDL syntax and semantics. Interested
readers may refer to the document "Appropriate Usage of VHDL
The Synthesis Point of View ", for a comprehensive discussion of
the VHDL subset for generat purpose synthesis. The following fist
describes the behavior VHDL subset that is supported:

- The VHDL file : Shouid consist of a single entity and
architecture pair describing the design to be synthesized.

+ Entity interfagce : Port declarations of mode IN and OUT are
supported. Array of ports is not supported.

- Architecture declarative part : Signal and Constant
declarations are supported. Signal initilalization is supported.

- Architecture description : Should consist of a single process
describing the behavior of the design. In general the notion of a
behavior can be defined to be an algorithmic specification of
the functionality of the design. For example, if you need
synthesize a sorter, you could write the bubble-sort algorithm.

+ Process declarative part . Variable and Constant declarations
are supported. Variable initialization is supported.

- Process description :

. Simple Signal assignment of the form "signal_name
<= expression" is supported.

« Simple Variable assignment of the form
"variable_name := expression" is supported.

« Note : it is highly recommended for correct synthesis
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that design ports be read into variables at the
beginning of the process, and design ports be written
to at the very end of the process.
- The Control statements that are supported are .
IF-statement, CASE-statement and the WHILE-loop.
« Sensitivity list, Wait statements and after clauses are
ignored.

- Data Types : The following data types are supported: "bit",
"bit_vector”, "std_logic", "std_logic_vector" and "integer”. Note
that for the integer data type, the user can provide a synthesis
pragma "--$width" in order for specify an implementation width.
If the pragma is not provided, a default of 16 bits is assumed
for any integer. For example, the declaration

"variable X : integer; --$width = 4"
indicates that X should be implemented as a four bit register.

- Arithmetic Operators . The following two's complement
operators are supported: "+", "-", "*" and "/". Note that for
division the component library currently has a power of two
divider. The user may use a synopsys divider to perform
generic division as long as he provides it in the component

library,
» Relational Operators : The following operators are supported:
I|=ll It>ll' I!<l!.

1

- Logical Operdtors : The following operators are suprorted:
Iiandll’ llc)rlll |lnotll.

Example behavior VHDL Specification : Traffic Light Controller
{tic.vhd)

Simulation of the Behavioral VHDL specification using
Synopsys tools

In order to very that the design written in behavior VHDL is correct, it
needs to be simulated. The next step is to write a design testbench
in VHDL, for simulation. The Synopsys vhd! analyzer and vhdi
simulator can be used as shown below, to simulate the behavioral
description:

vhidlan <design.vhd>
<testbench.vhd>
vhdlsim
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<testbench configuration>

Note : |[EEE synopsys library currently has a bug related to
assignment statements (for example A := B + C, ). It expects the
width of the output (A) to be equal to the inputs’ width (B or C) in the
case of + and - operators. Whereas the output width shouid actuaily
be one more than the input width. Therefore for the purpose of
simulation, the specification has to be remodeled using {EEE
package functions, CONV_INTEGER and
CONV_STD_LOGIC_VECTOR. However, for transiation into the
intermediate format (bbif) these inputs must be in their original form.

Illustrative Example: TLC
TestBench Specification

tlc-th.vhd
Commands used : vhdlan
tlc.vhd tlc tb.vhd

vhdlsim
E
Qutput of Simulation process : beh.out

Translation - Behavior VHDL to Behavior
Block Intermediate Format (bbif)

Command:

vhdl2bbif {options]
<deslign vhdl filename>
-b <filename> :
Publish BBIF.
~pbv <filename> :
Publish BBIF in VHDL.
If <filename> not provided,
standard output is used.

The next step is to translate the behavior description into an
intermediate format suited for high-level synthesis. The vhdI2bbif
translator takes the behavior vhdl description and produces an
internal representation of the design. in the Behavior Block
Intemediate Format (bbif) that can later be provided to the
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high-level synthesis tool (asserta). The vhdizbbif transiator can be

invoked as follows:
vhdl2bbif -b design.bbif -bv

design bbif.vhd design.vhd

+ Input : design.vhd - vhdl file containing the behavioral
specification of the design.
« Qutputs :
- design.bbif - BBIF (ascii file) containing the internal
representation of the design.
- design_bbif.vhd - BBIF (vhdl file) that containing the
internal representation of the design.

The BBIF ascii file along with a Component Library file serve as
input to the Synthesis Too! asserta. The BB vhdl file contains the
same internal representation of the design, except in a simuiateabie
form. With proper insertion of wait statements at appropriate places
in the BBIF vhdl file, it can be simulated along with the original
testbench that was written along with the behavior vhdl file.

The BBIF although being an intermediate representation, isin a
high readable and understandable form. Designers may edit the file
in order to make any meaningful last-minute changes before going
through high-level synthesis. Aiso if the user wishes to specify newly
designed RTL components (other than the ones that we have
provided) then a knowledge of the correspondence between the bbif
and component libary is necessary. We provide here a brief
description of the Behavior Block Intermediate Format (bbif). For a
more detailed description, interested readers may download a
postscript version of the BBIF document.

The Behavior Block Intermediate Format has only one data type,
which we call a carrier. A carrier is represented in the file as a tuple
"(X 16)", denoting that the carrier X is 16 bits wide. The bbif file
consists of the following sections:

- Name of the design specification, denoted by "(SPEC
- A list of carriers denoted by "(INPORT .....)" that
represent the design input ports.

- A list of carriers denoted by "(OUTPORT .....)" that
represent the design output ports.
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+ A collection of Behavior Blocks, each block beginning
with a "(BB Block_name.....".

Each Behavior Block (BB) can be viewed as a procedure in a
conventional programming language. A BB consists of the following
sections:

+ The name of the block. For example “(BB Blk_5...."

+ A list of carriers that a formal inputs to the block. For example
"(BB Blk_5( (X 16) (Y 17) )", denotes that X and Y are formal
inputs to Bik_5.

- A list of carriers that are locals to that block. For example,
"(LOCAL (P 5) (Q 8))".

« A list of carriers that are constants. For example, "(CONSTANT

(C 4 0101))". Constants have an extra field that denote that

actual vaiue of the constant. in this case, C represents the

four-bit contant value "0101".

A list of function statements, each statement of the form:
stmt_number (function_name (input carrier names) (output
carrier names))

Each operation in the input VHDL file is converted into a
corresponding bbif function inside a BB. For example, if the VHDL
file contains an equation of the form:

g a=>b * ¢
It is translated into a bbif function of the form:

bb mult (b c) (a)

NOTE : For each function name used in the bbif file, the component
library must contain a component that can implement it. In other
words, the function name must appear in the MODE field (see the
following section that described the component library) of atleast
one compenent in the component library.

Illustrative Example : TLC

Command used : vhdlz2bbif
~bv tlc_bbif.vhd -b tlc.bbif tlc.vhd
Translated BBIF VHDL file : tlc-bbif.vhd
Translated BBIF file : tlc.bbif

Simulation after translation(optional)
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After the behavior VHDL file has been transiated into the BBIF (acii
and vhdl) files, the BBIF vhdi file must be simulated to ensure
correct translation into bbif. With proper insertion of wait statements
at appropriate places in the BBIF vhdl file, it can be simulated along
with the original testbench that was written along with the behavior
vhdl file. The translator modifies all data types and converts them to
"STD_LOGIC_VECTOR" data type. So, in order to successfuily
simulate the design at this stage, the test bench has to be suitabiy
modified so that any data type other than "STD_LOGIC_VECTOR"
is converted into "STD_LOGIC_VECTOR". For exampie, if the
original behavior VHDL specification had a port declaration " Ain : in
bit ", the translator converts this into the following port declaration "
Ain : in std_logic_vector(1 downto 1) ". Therefore the testbench has
to be modified to reflect this change as you will be simulating the
transiated bbif VHDL file.

The file"bbif_library.vhd" must be analyzed before analyzing any
other files. This file contains a collection of functions that are
required to simulate the bbif vhd| file. Again the synopsys simulation
tools can be used:

vhdlan <bbif library.vhd>
<design bbif.vhd> <testbench.vhd>

vhdlsim <configuration>
Illustrative Example : TLC

TestBench Specification : tlc-tb.vhd
Commands used : vhdlan
bbif library.vhd tlc bbif.vhd tlc tbk.vhd
vhdlsim E
Output of Simulation : beh.out

Specifying the component library

For the purposes of synthesis, we have provided a standard
component library "hls_components.lib" that can implement any of
the basic operations specified in the behavioral VHDL subset
described earlier. Each of these components also have a
corresponding pre-synthesized counterpart that will be used by the
synepsys logic synthesis tool. However, if the user wishes to use
other component that he has pre-synthesized, then he can instruct
the high-level synthesis tool recognize those compoents by
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including them in the component library.

In this section we will briefly describe the component library
specification and its correspondence to the bbif file. The Component
Library file consists of a list of component declarations. For each
component declared in the component library there should aiso be a
pre-synthesized synopsys component, that the synopsys tool can
later use during logic synthesis. An example component declaration
is given below:
(COMP multiplier (input_width output_width)

(CLASS ALU)

(MODE bb_muit)

(INPORT (1 input_width))

(OUTPORT (1 output_width))

(CONTROL)

)

The declaration denotes that there is a pre-synthesized component
called "multiplier”. Note that the mode field denotes that component
is capable of implementing the bbif function "bb_mult". Therefore
the BBIF file and Component Library file have a direct
correspondence. Every function in the BBIF file (example "bb_mult")
must have a corresponding component in the Component Library
file that can implement it, i.e whose MODE fieid contains the
function name.

If the user wishes t6 provide newly designed components, or
change the components specified in the library that we have
provided, he may do so adhering to the syntax specified in the
Component Library Document. Note that the component library must
contain some pre-defined components essential for high-level
synthesis.

The component library given as the lllustrative exampie may be
used as the component library of any design that the user wishes to
synthesize.

Illustrative Example : TLC
Use the Standard Component Library
Specification : hls components.lib

High Level Synthesis using asserta
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Once the bbif file is obtained and the component library has been
created, then next step involves performing High Level Synthesis.
The following command should be used:

asserta <bbif file> <component library file>

The Synthesis process prompts the user to select a specific
Resource Set (collection of components to be synthesized into the
RTL datapath). The following query appears on the screen:

Enter ranges for Resource Sets

(y/n)
The user can either answer 'n' wherein the largest possibie (fastest
design) combination is synthesized. If the user answers 'y’ and then
he can explicitly specify the number of resources for each Resource
that should be used. If the answer is 'y, then the user will be asked
to enter the ranges for each Resource (the total number of
resources of each resource type). For example,

Enter Count for Resource R1(1-4):
The query shows that for resource R1, the maximum possible
instances is four and the minimum is one. The user can choose a
count of three instances to be synthesized, by entering 3 as the
answer.

The Synthesis process terminates with the following query
Vs

Enter name of the rtl file:

Enter a file name where the output of asserta has to be stored. A
good practice is to provide the design_name here.

Illustrative Example : TLC
Command: asserta tlc.bbif tlc.comp
Enter ranges for Resource Sets

(y/n) : n
Enter name of rtl file : tic

Synthesized RTL Output: tlc.rtl

Translation - asserta RTL to VHDL using
rti2vihdl|

The output of the high-level synthesis tool asserta is also an




index.html at www.ececs.uc.edu Page 12 of [4

intermediate representation. This representation has to be
converted into the corresponding VHDL RTL representation. To
achieve this purpose, execute the following command.

rtl2vhdl <component library file>
<rtl file> <design name>

The component library file is the same file that was input to the
high-level synthesis tool. This will produce 3 files containing the
VHDL representations of the datapath, the controller and the overall
design : design_name_dp.vhd design_name_con.vhd
design_name_des.vhd.

Illustrative example : TLC

Command used : rtl2vhdl
tlc.comp tlc.rtl tlc
Outputs of rtlZvhdl : tlc dp.vhd

tlc con.vhd
tlc des.vhd

Simulation at RTL

The next step is to simulate the design at the rt vhd! level. In order
to do this, madify your " synopsys_vss.setup" file so that lib_fpga
now points to the sjmulation library. That is, the following line should
be uncommented

lib fpga :
/home/ddel/public_html/projects/asserta/rtl components/.
and the following line should be commented out

lib_fpga :
/home/ddel/public_html/projects/asserta/rtl_components/.

Once this has been done, the following commands are invoked:
vhdlan <design name dp.vhd>
<design name con.vhd>
<design name des.vhd>
<testbenchZ.vhd>
vhdlsim <config name>

Ensure that the files are analyzed in the same order as specified
above.
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Illustrative example : TLC
Testbench Spec : tlc tbh.vhd tlc configs.wvhd
Commands used : vhdlan tlc dp.vhd
tlc_con.vhd tlc _des.vhd tlc_tb.vhd
tlc configs.vhd
vhdlsim tlc config
Output of sim : rtl.out

Logic and Layout Synthesis using
rtivhdl2fpga

The resuiting RTL design (consisting of the three vhdi files along
with the pre-synthesized RTL. component library) must now be taken
through the Synopsys Logic Synthesis tool (fpga_compiler) targeted
for the Xilinx 4000 family. The fpga_compiler will then produce an
"xnf" file that must then be taken through Xilinx M1 Layout Synthesis
tools to obtain a bitmap file for the foga devide. We have provided a
script "rtivhdi2fpga” that invokes the Synopsy fpga_compiler
followed by the Xilinx M1 tools, to synthesize an RT level VHDL
specification, onto any Xilinx FPGA device.

Before running the "rtivhdI2fpga” script, modify your
" .synopsys_vss.setup file so that lib_fpga now points to the
synthesis library. That is, the following line should be uncommented

lib fpga :
/home/ddel/public _html/projects/asserta/rtl components/:
and the following line should be commented out

lib fpga :
/home/ddel/public html/projects/asserta/rtl components/!

The "rtivhdi2fpga" script usage is as follows:
Usage: rtlvhdl2fpga <arguments>
The following arguments must be

provided:

<design entity name>
(eg. tlc behavior)

<device-speedgrade>
(eg. 4013e-3)
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<package>
(eg. hg240)
<rtl*filemname>

(eg. tic)
Note: The following three files
should be present in the
current directory:
tlc dp.vhd tlc con.vhd
tlc des.vhd
Some useful outputs:
xilinx/5 trace/tlc.twr -
design performance data
xilinx/6 bit/tlc.ncd -
placed design, viewable using EPIC
xilinx/6 bit/tlc.bit -
design bit map file
xilinx/7 ba/tlc.xnf - back
annotated xnf file

For example, if your design name (entity name in the original
behavior vhd| specfication) was "tic_behavior’ and the ril file name
that you provided for the high-level synthesis tool (asserta) was "tic”
and you want the implementation on a Xilinx 4013e chip, 240 pin
package, with speed grade -3, then the following command should
do it:
rtlvhdl2fpga tlc behavior 4013e-3

hg240 tlc
This command will create two directories "synopsys" and "xilinx",
wherein the respective logic/layout synthesis tools will be run. The
resulting bitmap file in the directory "xilinx/6_bit" can then be
downloaded on the corresponding FPGA device. Also a back
annotated xnf file in the directory "xilinx/7_ba" is produced. This file
can be converted to a "wir" file (using the tool xnf2wir), and the "wir"
file can be simulated using the Viewlogic "powerview" tool set
(viewsim).
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library ieee;

use ieee.std_logic_l1164.all;
use work.all:

use std.textio.all;

entity th_dwt is
end th_dwt;

architecture testbench of tb_dwt is

component dwt
port{clk,reset: in std_logic;
datain: in real;
dataout: ocut real;
filter: in integer};
end component;
signal clk: std_logic;
signal reset: std_logic:='l";
signal datain: real;
signal datacut: real;
signal filter: integer;
begin

UUT: dwt port map
(clk=»clk, reset=3>raset, datain=>datain, datacut=>datacut, filter=>filter);

-~Set up 100ns clock cycle {arbitrary!)
clock:process
variable clktmp: std_logic:=‘0‘;

begin
clktmp:=not clktmp;
clk<=clktmp;
wait for 50 ns;
end process;

—-—Stimulus required Ey unit under test
stimulus:process

begin
--Reset signal asserted to initialite unit
reset<=‘1";

-—Then after 2Z5ns {arbitrary)
wait for 295 ns;

--Reset taken low starts process
reset<='0";

--Filter type signal sent to unit
filter<=0;

~=-Data to unit is supplied by file not stimulus

-—while not{endfile{cfile}} loop
~—readline{cfile, inline);

--read (inline, inputdata);

——wait until clk'‘event and clk='1‘;
~-datain<=125.0;

wait for 50 ns;

-~datain<=125.0;

——end loop;
—~file_close{cfile};
wait; '



end process;
end testbench;

configuration build of tb dwt i+
for testbhench
for uut: dwt

end for;
end for;
end;



library ieee;

use ieee,std_logic_ll64.all;
use leee.std_logic_arith.all;
use work.global.all;

use std.textio.all:

entity dwt is

port( clk: in std_logic;
reset: in std_logic;
datain: in real:
dataout: out real;
filter: in integer);

end dwt;

architecture behavior of dwt is

signal h0: coef;

signal hl: coef;

signal siso: cold:={others=>0):
begin

-~8 Different anlysis filters supplied, correct one is chosen by filter signal
coeff:process (filter)

begin

case filter is

when 0 =>

h0 (0)<=0.000000;h1 (0) <=0.000000;
hOo(1)«=0,000000;h1{1l)<=0.000675;
h0{2)<=0.000000;h1 (2) <=0.000002;

ho (3} <=0,000000;h1{3)<=~0.006684;
h0{4)<=0.000000;h1 (4)<=0.001788;

h0 (5) <=0.020401;h1({5)<=0.021802;
n0(6)<=0.000058;h1 (§)<=0.009733;
h0(7)<=-0.111388;h1 {7} <=-0.060571;
h0(8)<=0.054299;h1 (8} <==0.115515;
h0 (9)<=0,536628;h1{9)<=0.440781;
h0{10}<=0.536628;h1 (10} <=~0.440781;
h0(11)<=0.054299;h1(11)<=0.175519;
h0(12)<=—-0.111388;hl{12}<=0.060571;
n0 (13} <=0.000058;h1 (13)<=-0.009733;
h0{14)<=0.020401;h1 (14} <=-0.021802;
n0 (15} <=0.000000;h1(15)<=-0.001788;
hO (16)<=0,000000:h1{16)<=0.006684;
h0(17)<=0.000000;hl(17)<=-0.000002;
n0 (18) <=0.000000; k1l (18)<=~0.000675;
h0{19}<=0.000000;h1({19}<=0.000000;

when 1 =>
ho(Q)<=0.000000;h1(0)<=0.000000;
h0(1}<=0.000000;h1(1)<=0,000000;
h0(2)<=0.000000;h1(2}<=0.000000;
ho{3)<=0.000000;01({3)<=0.000000;
h0(4)<=-0,005991;h1(4)<=0.010028;
h0{(5}<=0.002658;h1(5)<=~0.004449;
h0{6)<=0.033433;h1{6}<=-0.076889;
hOo(7)<=-0.023670;h1{7)<=0.048906;
hO(8)<=-0,048704:h1(8)<=0.316861;
h0o(9}«=0.271012;n1{9)<=-0.588912;
ho(10)<=0.542524;h1{10}<=0.316861;
hO(11)«=0.271012;h1(11)<=0.048906;
h0o{12)<=-0.048704;h1(12)<=-0.076885;
h0{13)<=-0.023670;h1({13)<=-0.004443;
h0(14)<=0.033433;h1(14)<=0.020028;
h0(15)<=0.002658;hl1 (15} <=-0.000000;
h3{16)<=-0.0058991;h1(16)<=0.000000;
h0o{17)<=0.000000;h1(17)<=-0.000000;



h0(18)<=0.000000:;h1{18)<=-0.000000C;
h0(19}<=0.000000;hr1(19%)<=0.000000:

when 2 =>
h0(0}<=0.000000;nh1(0)<=0.000000;
hO{1)<=0.000000;h1{1)<=0.000000;
hQ(2)<=0.000000;h1({2)<=0.000000;
h0{3}<=0.000000;h1{3}<=0.000000;
ho({4)<=0.000000;hl(4)<=0.000000;
hQ{5)<=0.000000;h1({5)<=0.000000;
h0(68)<=0.000000;h1({6)<=0,000000;
hQ(7)<=0.000000;:h1(7}<=-0.062500;
h0{8)<=0.000000;:h1(8)<=-0.062500;
h0{9)<=0.500000;h1{9)<=0.500000;
h0{10}<=0.500000;h1{10}<=-0.500000;
RO{11)<=0.000000;h1{11)<=0.062500:
h0{12)<=0,000000;h1{12)<=0.062500;
h0{13)<=0.000000;h1{13}<=0.00Q0000;
h0({14)<=0.000000;h1(14)<=0.000000;
h0{15)<=0.000000;h1{15)<=0.000000;
hQ(16}<=0,000000;h1(16)<=0.000000;
hQ(17)<=0.000000;h1(17}<=0.000000;
h0(18)<=0.000000;hl1{18)<=0.000000;
h0(19)<=0.000000;h1(19}<=0.000000;

when 1=>
h0{(0)<=0.000000;hl1{0)<=0.000000;
h0({1)<=0.000000;h1(1)<=0.000000;
h0(2)<=0.000000;:h1{2)<=0.000000;
hO(3}<=0.000000;h1(3)<=0.000000;
h0{4)<=0.000000;hl(4)<=0.000000;
h0(5)<=0.000000;h1(5)<=0.000000C;
hO{6)<=0.000000;h1 (6)<=0.000000;
h0({7}<=0.000000;h1{7}<=0.000000;
h0(8)<=-0.125000;h1(8)<=0.250000;
h0{9)<=0.250000;h1(9)<=-0.500000;
h0{10)<=0.750000;h1{10)<=0.250000;
h0(11)<=0.250000;h1{11}<=0,000000;
h0{12)<=-0.125000;h1(12)<=0.000000;
h0(13)<=0.000000;h1(13)<=0.000000;
h0 (14} <=0.000000;h1(14)<=0.000000;
h0{15)<=0.000000;h1(15})<=0.000000;
h0(16)<=0.000000;h1(16)<=0.000000;
hQ{17)<=0.000000;h1({17)<=0.000000;
h0(18)<=0.000000;h1(18}<=0.000000;
h0{19)<=0.000000;h1(19}<=0.000000;

when 4 =»>
h0{0)«<=0.000000;h1(0)<=0.000000;
h0{1)<=0.000000;h1(1)<=0.000000;
h0{2}<=0.000000;h1(2}<=0.000000;
h0{3)<=0.000000;h1(3)<=0.000000;
h0({4)<=0.000000;hi(4)<=0.000000;
h0O({5)<=0.000000;01{5)<=0.013374;
h0{6}<=0.000000;hl{6)<=~0.004942;
hO{7)<=-0.091272;hl(7}<=-0.047544;
h(8)<=0.033722;:h1{8)<=-0.094320;
h0({2)<=0.557544;h1{9)<=0.434307;
h0{10)<=0.557544;h1(10)<=-0.434907;
h(11l)<=0.033722;h1{11})<=0,094320;
hO(12)«=-0.091272;h1(12)<=0.047544;
hO{13)<=0.000000;h1(13)«=0.0049432;
h0{14)<=0.000000;h1(14)<=-0.013374;
h0(15)<=0.0000Q0;h1{15})<=0.00Q000;
h0{16)<=0.000000;h1(16}<=0.000000;
hO{17)<=0.000000:%1(17)<=0.000000;



h0{18)<=0.000000;h1{18)<=0.000000;
h0({19)<=0.000000;h1({19)<=0,000000;

when 5 =»
hO(0)<=0.000000;h1(0}<=0.000000;
ho(1}<=0.000000;h1{1)<=0.000000;
h0{2)<=0.000000;h1{2)<=0,000000;
hO(3}<=0.000000;h1(3)<=0.000000;
hO(4)<=0.000000;h1(4)<=0.000000;
hO(5)<=0.000000;h1({5}<=0.000000;
hO{6)<=0.023437;h1(6)<=0.000000;
h0(7})<=-0.046875;h1{7)<=0.000600;
h0(8)<=-0.125000;hl(8}<=0.250000;
h0({9)<=0.296875;hl1(9)<=-0.500000;
hO{(10}<=0.703125;hl1{10} -=0.250000;
h0(11)<=0.296875;h1(11)<=0.000000;
hO(12)«=-0.,125000;h1{12)<=0.000000;
h0{13)<=-~0.046875;h1{13)<=0.000000;
h0(14)<=0.023437;01({14)<=0.000000;
hQ(15)<=0.000000;:h1(15)<=0.000000;
h0(16)<=0.000000;h1({16)}<=0.000000;
hC(17)<=0.000000;h1(17)<=0.000000;
h0(18)<=0.000000;h1(18)<=0,000000;
h0{19)<=0.000000;h1(19)<=0.000000;

when 6 =>»
h0(0)<=0.000000;h1(0)<=0.000000;
hO(1)<=0.000000:h1{1)<=0.000000;
h0{2)<=0.000000;h1 (2)<=0.000000;
h0{3)<=0,000000;h1{3)<=0.,000000;
hO (4)<=0.000000;h1(4)<=0.000000;
hO {5)<=0,000000;hl(5)<=0,000000;
h0(6)<=0.026748;hl (6)<=~0.045636;
hQ (7)<=~0.016864;h1(7)<=0.028771;
h0(8)«=-0.078223;h1(8)<=0.295636;
h0{9)<=0.266864;hl (9)<=-0.557544;
hQ (10} <=0.602949;h1(10)<=0.295636;
h0(11)<=0.266864;h1(11)<=0,048771;
hO(12)<=-0.078223;h1(12)<=-0,045636;
h0{13)<=-0.016864;h1(13)<=0.000000;
ho{14}<=0.026748;h1{14}<=0.000000;
h0(15)<=0.000000;h1(15)<=0.000000;
hO{16}<=0.000000;h1{16)<=0.000000;
h0(17)<=0.000000;h1(17)<=0.000000;
ho(18)<=0.000000;h1{18}<=0.000000;
h0(19)<=0.000000;h1(19)<=0.000000;

when 7 =>
h0{0}<=0.000000;h1(0)<=0,000000;
no(1)<=0.000000;h1(1)<=0.000000;
h0(2)<=0.000000;h1(2)<=0.000000;
h0o(3)<=0.000000;h1l(3)<=0.000000;
h0{4)<=0.000000;h1(4)<=0.000000;
h0(S)<=0.000000;h1({5}<=0.000000;
ho(6)<=0.000000;h1l(6)<=0.000000;
h0(7}<=0.000000;h1(7}<=0.000000;
h0(8)<=0.000000;h1(8)<=0.000000;
h0{9})<=0.500000;h1l(9}«=0.500000;
h0{10)<=0.500000;h1(10)<=-0,500000;
hO(11)<=0.000000;h1{11)<=0,0000C0;
h0(12}<=0.000000;h1 (12)<=0.000000;
ho(13)<=0.000000;:h1{13}<=0.000000;
h0o(14)<=0.000000;hl1(14)<=0.000000;
h0{15)<=0.000000;:h1{15)<=0.000000;
h0{16)<=0.000000;hl1(16)<=0.000000;
h0{17)<=0.000000;h1{17}<=0.000000;



h0(18)«=0.000000;h1(18)<=0.000000;
hO{19)<=0.0C0000;h1(19}<=0.000000;
when others =»

null;

end case;

end process;

dwt:process (clk, reset)

--Variables for control, temp storage, etc.
variable outline: line;
variable b: integer:=0;
variable o: integer:=0;

variable a,in_r,in_w: integer;
variable j,d_1_1: integer;
variable d_l:integer:=1;
variable k,z: integer;
variable kl: integer;

variable jl,ino, jno: integer;

--Process finished signal {handy for large images!)
variable flag out:integer:=0;

—--Level of decomposition to be applied
variable 1iv: integer;

variable cont,contw: integer;
variable livtemp: integer;
variable flag,go_flag: integer;
variable op: operation;

~-Temp storage for intermediate results
variable nwx: new_x;

variable xx: x:=(others=>0.0);

variable yyl: y1;

variable yyh: vh;

——Image data is ava¥lable at this file
file input_file :text is in "tst_data_in";

~-~-Decomposed image is here, subbands not ordered in any way
file output_file:text is out “tst_data_out";

--Rastar scan applied to subbands for multilevel type decomposition
file out_file:text is out "tst_o_data out":

~~Variables to do with file application issues
variable inline: LINE;

variable outl,outle: LINE;

variable inputdata: integer;

variable temp, tempo: real;

--Storage area

variable ima:image _matrix;

variable imac:image_o_matrix;

--Control of storage area

variable control: integer;

variable clock: integer:=0;
begin

if reset ='1'then

--Initialite unit
contw:=0;



kl:=1;
cont:=11;
op := frow;
liv:=1;
flag:=1;
go_£flag:=1;

-=Fill memory from data file
if o=0 then
for i in 0 to {row*column-1) loop
readline({input_file,inline};
read{inline, inputdata) ;
temp:= real (inputdata):
ima{i):=temp;
end loop;
0:=0+1;
end if;

elsif clk’event and clk=‘1' then

--Image decomposition control
if liv<=level and op=frow then
if cont /= 0 then
cont:=cont-1;
else
cont:=0;
end 1f;

if a<row then
if bxcolumn then

k:=h;
else
k:=0;
J vka;
end if;
elge
if b<column then
k:=b;
else
k:=0;
J:=0;
op:=frowt;
livtemp:=9;
ki:=ki*2;
flag:=0;
end if;
end 1if;

elsif liv <=level and op=frowt then
if livtemp>0 then
livtemp:=livtemp-1;
else
op:=feolumn;
cont:=10;
flag:=1;
for i in 0 to 19 lecop
xx{i):=0.0;
end loop:
end if;

elsif live=level and op=fcolumn then
if cont /=0 then
cont :=cont-1;



else

end if;

cont:=0;

if b<column then

else

end if;

if a<row then

ji=a;
else

j:=0:

k:=h;
end 1iE;

1f a<row then
j:=a;

else
j:=0;
k:=31;
op:=fcolumnt;
livtemp:=9;
flag:=0;

end if;

elsif liv<=level and op=fcolumnt then
if livtemp>0 then

elge

end if;

livtemp:=livtemp-1;

op:=fch;
cont:=10;
flag:=1;

for 1 in 0 to 1% loop
xx(i}:=0.0;
end loop;

elsif liv<=level and op=fch then

if cent
else

end if;

/=0 then
cont:=cont-1;

caont:=0; /

if b<column then

else

end if;

if a<row then

ji=a;
else

J:=0;

k:=b;
end if;

if a<row then

Ji=a;

else

k:=0;

j:=0;
op:=fcht;
livtemp:=9;
Jjl:=j1*2;
flag:=0;

end if;

elgif live=level and op=fcht then
if livtemp>0 then

elsae

livtemp:=livtemp-1;

op:=fxrow;
cont:=10;
flag:=1;

for i in 0 to 19 loop



end if;
else

xx(i):=0.0;
end loop:
liv:i=liv+l;

--Write decomposed image {(no ordering of subkands)

if contw=0 then

for i in 0 to {(row*column-1) loop
write{outl,real (ima(i))):
writeline{output_file,ocutl);

end loop;

—-Raster scan subbands process
for i in 1 to level loop

for n in 0 to 0 loop
d_l:=2*d_1;

end loop;
d_l_1l:=d_1/2;

for i in 0 to

{{row/{d_1}}-1) loop

for j in ({column/d_l} to ((column/(d_1_1))-1) loop

ing:=1i*d_1;

jno:={j-column/d_1)*d_1+d_1_1;

if row*column> {jno+column*inc) then
tempo:=ima (jno+column*ino) ;
imac{j+column*i) :=tempo;

end if;

end loop:;

end loop;

for i in

(row/d_1)

te ({(row/(d_1_1-0})-1) loop

foer j in {column/d_1l) to ((column/{d_1_1}}-1} loop
ino:={i~-row/d_ly*d_1+d_1_1;
jno:=(j-column/d_1)*d_l+d_1_1;
if row*column> (jno+column*ine) then
tempé:=ima {jno+column*ino) ;
imao (j+column*i) ;=tempo;

end if:

end loop:

end loop;

for i in (row/d_1)

te ((row/{d_1_1)}~1) 1loop

for 3 in 0 to ((column/{d_l}}-1) loocp
inoi={i-row/d_1)*d_l+d_1_1;
ino:=j*d_1;
if row*column> (jno+column*ine) then
tempo:=ima (jno+column*ino] ;
imao (j+columm*i) :=tempo;

end if;

end loop;

end loop:

if i=level then
for i in 0 te ({row/(d4_l}}-1} loop
for j in 0 to {{column/{(d_l-1})-1) loop

end if;

ino:=1*d_1;

jno:=j*d_1;

if row*column>{jno+column*ino) then
tempo:=ima(jno+column*inog);

imao (j+column*i) :=tempo;

end if;

end loop;

end loop;



end leoop;

~-Write raster scan subband image
for 1 in 0 to {(row*column-l} loop
write{cutlo,real{(imac{i)});
writeline{out_file,outlo);

end loop;

—-—-Done
flag_out:=1;
contw;: =contw+l;
end if;

end if;

——Memory address control
a:=j+3jl;

b:=k+kl;
in_r:=k+column*j;

——Decimate every other wvalue
for 1 in 9 downto 1 loop
siso{i)<=sisol{i-1);

end loop:

sisol(0)<=in_r;
in_w:=sisc(9};

—--nwx holds target element in image to be applied to transform
if flag=1l then
nwx:=ima{in_x);
else
nwx:=0.0;
end if;

-~Decimate every other value
for i in 1% downto 1 loop

xx (i) i=xx(i~1};

end loop;

xx(0) :=nwx; /

—-Target element is multiplied by filter coefficients
if go_£lag=1 then
if clock med 2=0 then
yvl:=0.0;
for n in 0 to 19 loop
yyli=yyl+h0(n) *xx{(n);
end lcop;

if cont=0 then
~=Write low pass DWT coefficient
ima(in_w) :=vyvl;

end if;
else
yyh:=0.0;
for n in 0 to 19 loop
yyh:=yvh+hl (n) *xx(n+l};
end loop:
if cont=0 then
~-Write high pass DWT coefficient
ima{in_w) :=yvh:
end if;
end if;
end if;

clock:=clock+]l;

end 1if;



end process;
end behavior;



library ieee;

use ieee.std_logic_1164.all;
use work.all;

use std.textic.all;

enticy tb_idwt is
end th_idwt:

architecture testbench of tbh_idwt is

component idwt
port{clk,reset: in std_logic;
datain: in real;
dataout: out real;
Eilter: in integer);
end component:
signal clk: std_logic:
signal reset: std_logic:='1l‘;
signal datain: real;
signal dataout: real;
signal filter: integer;
begin

UUT: idwt port map
(clk=>clk, reset=>reset, datain=>datain, dataout=>datacut ,filter=>Ffilter):

—--Set up a 1l00ns clock cycle
clock:process
variable clktmp: std_logic:='0";

begin
clktmp:=not clktmp;
clk<=clktmp;
wait for 50 ns;
end process;

~~Stimulus required by unit under test
stimulus:process /!

begin .
--reset pulse is sent to initialite unit
reset<=’'1l"’;

—~Then after 25 ns {arbitrary !)
wait for 25 ns;

-—Reset is taken low 50 process starts
raeset<='0";

~~Filter type sent to unit
filter<=0;

—-—-Data to unit jis supplied from file

~—while not({endfile({cfile}) loop
~~readline (cfile, inline);

—~read (inline, inputdata) ;

——walt until clk’event and clk='1’:;
—-datain<=125.0;

wait for 50 ns;

~-—-datain<=125.0;

—-—end loop;
--file_close{cfile);
wait;

end process;



end testbench;

configuration buildZ of th_idwt is
for testbench
for uut: idwt

end for:
end for;
end;



library ieee;

use ieee.std_logic_1164.all:
use leee.std_legic_arith.all;
use work.global .all;

use std.textio,all;

entity idwt is

port | clk: in std_legic;
reset: in std_logic:
datain: in real;
dataout: out real;
filter: in integer);

end idwt;

architecture behavicr of idwt is
signal g0: coef;
signal gl: coef;
signal siso: cold:={others=>0};
begin

coeff:process(filter)
begin

—-7 Different filters supplied in filter storage
-~filter signal is used to select right one

case filter is

when 0 =»>

gd{0)<= G.000000; gl{0)<= 0.000000;
gl(l)<= 0.001349; glil)<= 0.000000;
g0{2)<= =0.000004; gl{2)<= 0.000000;
g0{3)<= -0.013367; gl{3}<= 0.000000;
gli{d)<= =0.003375; agl(d)<= £.0000690;
g0(5)<= 0.043604; gl{5)<= -0.040803;
gl(6)}<= -0.019467; gl(6)<= 0.000116;
g0{7T)<= -0,121143; gl{7)<= 0.222775;
gQ{B)<«= 0.231037; gl{8)«= 0.108597;
gl(9}<= 0.881563; gl(9)<= -1.073257;
gl{lD0)=<= 0.881563; gl(l0)«= 1.073257;
g0(1ll)<= 0.231037; gl{li}«= -0.108597;
g0{l2)<= -0.121143; gl{i2)<= -0,222775;
g0{13}<= -0,019467; gl(l3)<= -0.000116;
g0{ld)<= 0.043604; gl{ld4}<= 0,040803;
g0(15)<= -0.003375; gl(l5)<= 0.000000;
gl0{l6}<= -0.013367; gl{l6}<= {.0000Q0;
g0(17)<= -0.000004; gl{l7}<= 0.000000;
gl(l8)<= 0.001349; gl(18)<= 0.000000;
gd{l9)<= 0.000000; gl{l18)<= 0.000000;
when 1 =>
g0{0) <= 0.000000; gl(0)<= 0.000000;
gO(l)<= 0.000000; gl{l)«<= 0.000000;
gl{2) <= C.000000; gl(2)<= 0.000000;
g0(3)=<= 0.000000; gl(3)<= 0.000000;
gl{d)=<= 0.000000; gl{4d)<= 0.000000;
gl{5)<= 0.020056; gl (5) <= 0.011983;
gl(8) <= 0.008898; gl{a)<= 0.005316;
gl(7)<= -0,153777; gl{7}e<= =~0.066867;
gl{8y<= =0,097811; gl(8)<= -0,047341;
gl(9}<= 0.633722; gl(9)«= 0.097408;
gl{lo)j<= 1.177825; gl(1l0)<= 0.542024;
g0{ll)<= 0.633722; gl(lly== -1.085048;
gl{l2}<= -0.097811; gl(lid)<= 0.542024;
gl(li)<= =0.153777; gl{l3)<= 0.097408;
gO({ld)<= 0.008898; gl{id}i~«= ~0.047341;
gl{l5)<= 0.020056; gl(15)<= ~0_066867;

gl(le}<= 0.000000; gl{l6)<= 0.00531¢;



when 3

when 4

gl{17)<=
g0 (lB8)<=
g0 ({19)<=

when 2 =»

g0({0)<=
gl{l)<=
g0 (2)«<=
gl{3)<=
gl(d)<=
g0 (5)<=
90[6]<=
gO (7}€=
g0{8)<«=
g0(9}<=
gl(l0}<=
gl({1ll)<=
g0(12)<=
g0 (l3)<=
gl{ld)<=
g0 (15) <=
gl{lE6)<=
gl {i7)<=
g0{l8)=<=
gl (19})<=
=>
gQ(0)<=
gl{l}<=
g0(2)<=
gl{3)<=
g {4)<=
gld(5)<=
go(6)<=
gl (7) <=
gl(8)<=
gl (9) <=
g0{10}<=
g0(1lli<=
gl{l1l2)<=
g0 (13)<=
gl{ld)<=
g0 ({1l5) <=
g0(16)<=
g0(17)<=
gl (l8)<=
g0{19})<=
=>
gl0{0)<=
gl(l)<=
g0(2)<=
gl(3)<=
gl{d})<=
gd(5) <=
g0(6}<=
gl (7)<=
gl (8)<=
gl{9) <=
g0 (L0} <=
gl0{ll}<=
g0(12)<=
g0{13) «=
gd{ld)«=
gl{l5)<=
g0{lo)<=
g0{17) <=
g0{18)<=
gl{l9} <=
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.goo000¢C;
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.000000;

.Q00000;
.000000;
.000000;

.000000;
.000000;
.000000;
.125Q00;
.125000;
.000000;
.000000;
.125000;
.125000;
.000Q000;
.000000;
.000000;
.000000;
.00Q000;
.000000;
.000000;

0000040,
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
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0.500000;

1.000000;
0.500000;
0.000000;
0.000000;
0.000000;
0.000000;
G.000000;
0.000000;
¢.000000;
0.000000;

0.000000;
0.000000;
0.000000;
0.0000400;
0.000000;
0.026748;
0.009884;

-0.0985087;

.188641;
.869813;
.869813;
.188641;
.095087;
.009884;
.026748;
.000000;
.000000;
.000000;
.000000;
0.000000;
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.000000;

.00000G;

gl(17)<=
gl{lg)<=
gl(l9)<=

gl(0}<=
gl{l)<=
gl(2)<=
gl{3)<=
gl{4}<=
gl{5)<=
gl(6)<=
gl(?)(:‘.
gl{B8)<=
gl{9)<=
gl (10) <=
gl{ll) <=
gl(l2)<=
gl{id}<=
gl{l4)<=
gl{1s) <
gl(lé) <=
gl{l7) <=
gl(18)<=
gl{l9)«=

gl(0)<=
gl{l)<=
gl(2}<=
gl{l)<=
gl{d)<=
gli{%) <=
gl(6)<=
gl{7)«=
gl(8)<=
gl{9)<=
gl(10}<=
gl{ll) <=
gl{i2}<=
gl{13) <=
gl{ld)==
gl{l5)<=
gi{le) <=
gl(i7} <=
gl{l8) <=
gl {19} <=

gl{0)<=
gl{l)<=
gl{2)<=
gl(3)<=
gl{d}«=
gl(5)<=
gl{a}<=
gl(7)<=
gl{8)=<=
gl(9)<=
gl{lQ)<=
gl({11)<=
gl{i2}=<=
gl(l3)=<=
gl(ld) <=
gl{l5) <=
gl(16)<=
gl{l7) <=
gl{l8)=<=
gl{i9)<=

OO o QMM PoOOOoOo00O0OoOo0

a.
Q.
a.

0
0
0
0

[

011983;
00000G;
000800

.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000Q;
.000000;
.000000;
.000000;
.000600;
.000000;
.000000;
.0G0009;
.000000;
0.000G00;
.000000;
.000000;
.000000;
.000000;

.000000;

0.0000000G;
0.0000000;

OO CoCOoO0ODOoO OO OO OOOOoOOOO

1
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|

.000000C;
.000000;
,000000;
.000000;
.000000;
L.000000;
.250000;
.500000;
.500000;
.500Q00C;
.250000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000C;

.000000C;
.000000;
.000000;
.000000G;
.003000;
.000000;
.0G0000;
.182544;
.067457;
.115088;
.115088;
.067457;
.182544;
.000000;
.000000;
.000000;
.000000;
.000006G;
.000000;
.000000;



when 5 =»

g0{D)<=
gl{l)<=
gl{2) <=
g0 (3)<=
gl(d}<=
g0{5) <=
gl{6)<=
g0 (7} <=
gd(8)<=
g0(9) <=
g0(l0}<=
gl{lll<=
gl(l12)<=
g0(13) <=
gd{ld) <=
g0({15)<=
gD(1l6) <=
gl{l7)<=
gl{l8)<=
g0(19)<«=

when 6 =»>

g0{0)<=
g0(1)<=
gl{2)<=
g0(3)<=
g0(4) <=
gl{S)<=
90(6)<=
gb({7)<=
g0(8) <=
g0(9) <=
gl{1l0) <=
g0{ll)<=
gl(12)<=
g0{13) <=
gl{l4)«<=
gl {l5)<=
g0(1l6) <=
g0 (17)<=
g0{18)<=
g0(19)«=

when 7 =>

gQ{0)<=0.
g0(1)<=
g0{2)<=
gl(3) <=
g0{d) <=
g(5)<=
gl{e}<=
g0(7)<=
g0(8)<=
gl{9)<=
g0 (10} <=
g (11l) <=
g0{l2)<=
g0({13} <=
g0{l4)<=
gl{l15) <=
g0(1l6) <=
gd(17)<=
g0{18)<=
g0({19}<«=

when others
null;
end casea;

. 000000
.000000;
.000000;
.000Q0C00;
.00000G;
.0Q0000;
.Q00000;
. 000000,
.000000;
.500Q00;
.000000;
.500Q000;
.00Q000;
.00000¢;
.000000;
.000000;
.0000Q0;
.000000;
.000000;
.000000;
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.000000;
.ooo000;
.000000;
.000000;
.000000;
.00C000;
.000000;
.091272;
.057543;
.591271;
.115088;
.591271;
.057543;
.091272;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;

H

|
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000000;

.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.000000;
.0000090;
.000000;
.000000;
.000000;
.000000;
.000000;
,000000;
.000000;
.0G0000;
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gl{0}<=
gli{l)=<=
gl{2)<=
gl{3)<=
gl(d)<=
gl{5}<=
gl{6) <=
gl[?}<u
gl{Bl)<=
gl(9)<=
gl(ld)<=
gl(ll)<=
gl{l2)=<=
gl(l3d)«<=
gl(l4}c=
gl({l5}<=
gl(l6)<=
gl{i7)<=
gl{l8}<=
gl{19)<=

gl{D)<=
gl{l)<=
gl(2})<=
gl{3)<«=
glid)<=
gl{5}<=
gl{g)<=
gl(7)<=
gl(8}<=
gl{9)<=
gl{1l0}<s=
gl(1l)<s=
gl(l2)«=
gl{ld)<=
gl{ld)<=
AL{15) <=
gl{lE) <=
gl{17)<=
gl(l8)<=
gl{l9)«=

gl (0}<=0.

gl{l)=<=
gl{2)<=
gl(3)<=
gli4)<=
gl(5)<=
gl{g)<=
gl({7}=<=
gl(8)<=
gl{g)<=
gi(10)<=
gl{ll}<=
gl(l2)<«=
gi{lld)«=
gl{ld)<=
gl {15} <=
gl{lg)<=
gl{l7)<=
gl{18}) <=
gl(l9})<=

OO0 QO OO QO PO OO aOodOoo oo

OO oOOOCOO MR OO CO0 OO OO0

.000000;
.000000;
.000000;
.000000;
. 000009,
.000000;
.000000;
.046874;
.Q093750;
.250000;
,593750;
.406250;
.593750;
.250000;
.Q83750;
.046874;
.000000;
.000000;
.000000;
.000000;

.000000;
.000000;
.000000;
.00004Q0;
.000000;
.000000;
.000000;
.053497;
.033728;
.156446;
.533727%;
.205898;
.533727;
.156446;
.033728;
.053497;
.000000;
.000000;
.000000;
.000000;

00000G;

a.

0.
c.
0.
0.
0.
0.
Q.
-1.
1.
c.
0.
0.
0.
0.
0.
0.
0.
c.

000000;
000000;
¢op000;
000000;
000000;
000000;
000000;
000000;
000000;
000000;
000000;
0000Q00;
000000;
G00000;
000000;
000000;
000000;
000000;
000000;



and process;
dwt :process{clk, reset)

~-Variables for control, temp storage, etc.
variable outline: line;
variable b: integer:=0;
variable o: integer:=0;
variable a,in_r,in_w: integer;
variable j.,d_1_1: integer;
variable d_l:integer:=1;
variable k,z: integer;
variable kl: integer;
variable jl,ino,jno: integer;

~~This variable inicates process ig finished (Very handy for large images)
variable flag_out:integer:=0;

variable liv: integer;
variable cont,contw: integer:
variable livtemp: integer;
variable flag,go_flag: integer;
variable op: operation;
variable nwy: new_x;

variable x_x:real;

variable v_1l: x:=(others=>0.0);
variable y_h: x:={others=>0.0};
variable yyl: vl;

variable yyh: vh;

--Decomposed image data is tored in this file!
file input_file :text is in "tst_data_out”;

—-—Transformed image will be stored in this file!
file output_file:text is out "idwt_data_out";

-~ This variables have to do with file application issues
variabkle inline: LINE;

variable outl,cutlo: LINE;

variable inputdata: real:;

variable temp, tempo: real;

variable ima:image_matrix;

variable contrel: integer;

--Important control variahles
variable clock,f _rit,ceco: integer:=0;

begin

if reset =‘1l'then
~=Initialite all
contw:=0;
j:=0;

kl:=8;

op := fcolumn;
liv:=level;
flag:=1;
go_flag:=1;

if o=0 then
-=Fill memory from file



for 1 in 0 to (row*column-l) loop
readline(input_file,inline);
read{inline, inpuctdata) ;
temp:= real {inputdata) ;
ima (i) :=temp;

end loop;

o:=0+1;

end if:

elsif clk’event and clk='1‘ then
if cco=0 then
--Appropiate count control depends on filter chosen
if filter=0 or filter=2 or filter=4 then

f rit:=1;
cont:=11;
cco:=cco+l;

end if;
end if;

--Decomposed image data reconstruction concrol
if liv>0 and op=fcolumn then
if eont /= 0 then
cont:=cont-1;
alse
cont:=0;
end 1f;

if b<column then
if a<row then

ji=a;
else
J:=0;
k:=h;
end if;
else
if a<row then
Jj:=a;
alse
j:=0; .
k:=§1;
op:=£fcolumnt;
livtemp:=9;
flag:=0;
end if;

end if;
elsif 1iv>0 and op=fcolumnt then
if livtemp>0 then
livtemp:=livtemp-1;
else
op:=£fch;
cont:=10;
flag:=1;
clock:=clock+l;
if £ _rit=1 then
clock:=clock+1;
end if;
for i in 0 to 19 loop
v_1(i):=0.0;
v_hi{i):=0.0;
end loop:
end if;

elsif liv»>0 and op=fch then
if cont /=0 then
cant:=cont-1;



alse
cont :=0;
end if;
if b<ceolumn then
i1f a<row then

jr=a;
else
j:=0;
k:=h;
end if;
else
if a<row then
Jr=a;
else
J:=0;
k=0
op:=fcht;
livtemp:=9;
kl:=kl/2:
flag:=0;
end if;
end if;

elsif liv>0 and op=fcht then
if livtemp>0 then
livtemp:=livtemp-1;

else
op:=frow;
cont:=10;
flag:=1;
clock:=clock+1;
if f_rit=1 then
clock:=¢lock+l;
end if;
for i 1in 0 to 19 loop
yvo1(i):=0.0;
y_hi{i}):=0.0;
end loop; /!
end if;

elsif liv>0 and op=frow then
if cont /=0 then
cont:=cont-1;
else
cont:=0;
end if;
if a<row then
if be<column then
k:=b;
else
k:=0;
Ji=a;
end if;
else
if b<column then
k:=b;
alse
k:=0;
3:=0;
op:=frowt;
livtemp:=9;
jl:=j1/2;
flag:=0;
end if;
end if;
elsif liv»>0 and op=frowt then
if livtemps0 then



livtemp:=livtemp-1;
else

op:=fcolumn;

cont:=10;

flag:=1;

clock:=clock+l;

if £ rit=1 then
clock:=clock+l;

end if;

live=liv-1;

for i in 0 to 19 loop
yv_1(i):=0.0;
y_h{i):=0.0;

end loop:

end if;
else

——When all is done write results in output file
if contw=0 then
for 1 in 0 to (row*column—-1) loop
write{outl,real (ima(i)}};
writeline{output_£file,outl);
end loop;
-~ Done flag is active
flag_out:=1l;
contw:=contw+l;
end if;
end if;

—--Memoxry address control
a:=j+jl;

b:=k+kl;
in_r:=k+column*j;

—-Adds zeros between decomposed image samples
for i in 12 downto 1 loop p
siso(i)<=siso(i-1); ’
end loop;
siso{0)<=in_r;
in_w:=siso(9);

-~nwy holds decomposed image element according to in_x
if flag=l then
nwy:=ima{in_x};
else
nwy:=0,0;
end if;

~~Write the low pass resuts
if clock med 2=0 then
for 1 in 19 downto 1 loop
vy 1(i):=y_1(i-1);
end loop;
y_ 1(0}:=nwy;
else
--0r high pass results
for 1 in 19 downtec 1 loop
y_h{i):=y_h{i-1});

end loop;
y.h{Q) :=nwy;
end if;

~— Low/High pass coefficients produced here {will produced recomposed data)
if go_£flag=l then
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TINACC-EDRAS\EMAMPLES TR MU, VHD

Lipbrary IFEER;
1se IEEE STD LOGIC lied.all;
use [CEE . 3TD LOCGIC ARITUH.31l;

-~ Tast bench *2 rtest MUX

archirtecrture MUN ARCH orf T2 MUUX is
JY e = T e o= lonmi et
h-d-ﬁ\:n“-‘-ﬁ — u\..—‘-.l_—A\.r'\-:-—b..- ) ’
Pl ikl - - i o .
signal NR,3EL: std icglilcs;
D wma’ m7 it B or T mrml = srmmt A v 1N n-In1.,,n1.—»- Mt .
\_’A.L-‘lal_l_ LJ_’ et W et N o -\.p-,:*\-.' Pt Mt N LI Vol N WW 4D, - P
Signal meour: std logic vecter {20 downto 0O}):
Compenent MUX
cort { CLK,SEL, NMR: in std logics
Dl: in std lecgic vector!20 deowntc 0}

20 downtce 0);
tori{20 dewnte 01}

end Component;
begin
UU0T: MUX port map (CLK, SEL,NR,D1,D2,Mout);

D1<="011111111000000000000" after 100 ns;-- 255.0000 in
D2<="011111111000011111111" after 100 ns; -- 255.0000
-~-Data<="1111111110000" after 250 ns; -- neg 255 in
-—-coeff<="0010100000000" after 250 ns; -- 0.5 coeff
--Data<="01111111100000000000" after 370 ns; -— 285 i:
-—Coeff<="1010100000000" after 420 ns; -- neg 0.5 coe

[ Y ..)

F
a

NR <= 'Q' after 0 ns,
'1' after 2 ns;
-= '0' after 150 ns,
~—'1'" after 200 ns,
-—*'Q' after 350 ns,
-="'1" after 400 ns:;

SEL<= '1' after 20 ns,
'G' after 350 ns:
CLK <= not CLK after 5 ns;

end MUX ARCH:

in
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CNACC-EDAS\DFE./HD

Librarv [EEE:;
use TEEE.STD LOGIC 1led.all;
~--Design of a d type flip flop cell structure

entity DFF is

port{ CLK,NR:in std_iogicy
D: in std_legic wecrtor (20 downuc 1;;
Q: out std_loqgic_wector (20 downto 1))

end DFF;

-—- To get structure several ¢f these .»lls ca
-—- togerther

Architecture Sequential of DFF is
begin
process (CLK,NR)
begin
if (NR = '0'}) then
-- resa2t output to prevent errors
Q<=(others=> '0');

-—on clock event shift data out
elsif (CLK'event and CLK ='1') then

Q <= D;
end 1iI;

end process;
end Sequential;

/



C:\ACC-EDAS\TB DFF./HD
Liprary IEEE;
1se LEEE.STD LOGIC_ll64.all;
-- Test bench Lo test DFF

entity TB _DFF is
end TB_DrF;

architecture DFF ARCH of TB _DFF is

Signal CLK:

Signael NR: s
Signal D: st
Signal Q: st

std logic:='0"';

td _logics

d _logic_vector (20 downto 1}i
d_logic_wvector (20 downto 1};

component DFF
port ( CLK, NR: in std lcgic;
D: in std_logic _vector{20 downto 1l);
Q: out std_logic_vector {20 downto 1});
end component;
begin
UuT: DFF port map (CLK,NR, D, Q):
D<="00000000000000000011" after 100 ns;

NR <= 'Q' after 0 ns,
'1' after % ns:

CLK <= not CLK after % ns:

end DFF_ARCH;






(2:\ACC-EDAS\MULT. /HD

Library IEEE;
use IEEE.STD LOGIC _lled.all;
use IEEE.STD LOGIC _ARITH.all:;

Hd ayy
--Design of a generic signed mu%eééi%er celi structure

enticy ADD is
Generic {N: integer:=16}:
porc{ CLK,NR:in std logic;
Data: 1n stcd legic vecter
Coeff: in std logic_vector |
f
1

logic wecto

Result:out std lcogl

12 dewneco 0):
12 downto Q) ;
12 downte 0V):

L1

end ADD;

-—- To get structure several of these cells can be joined

~- tcgether

Architecture Sequential of ADD is

begin
process (CLK,NR}

variable mult_result: signed(12 downto 0):={others=>'0"};
begin
if (NR = '0') then
~-RESET ALL 7

Result <= (others=>'0")};
--on clock event multiply data by high pass coeffient

algif (CLK'event and CLK ='1'} then

result<=unsigned{coeff)+unsigned(data};

end if;
end process;
end Sequential;



TINACC-EZDASATE ADD./HD

Library IEEE;
use IEEE.STD LOGIC iled.alli;
use IEEE.STD LOGIC ARITH.all;

-- Test bench to test MeRTATD

entity TB_ADD is
end 7B ADD;

architecture ADD ARCH of TB _ADD is

3ignel CLK: std logic:='0';

Signal NR: std locglc;

Signal Data: std logic vector (12 downto 0);
Signal Ccefi: std_ lo ic_vecter (12 downtc 9}
gic_vector (12 downto 03};

T
fod
J""\
\_r

Signal Result: st

Component ADD

pert ( CLK, NR: in std leglic:
Data: in std lo glc vec tor(lz downtc 0);
coeff: cut std 1 oglc vector(l2 downto 0};

Result: out std lo glc_vector (12 downto 0));
end component;

begin
UuT: ADD port map (CLK,NR, Data,Coeff,result):
Data<="0111111110000" after 100 ns;-- 255.0000 in

Coeff<="0111111170000" after 100 ns; -- 255.0000 in
--Data<="1111111110000" after 250 ns; -- neqg 255 in

~—coeff<="0010100000000" after 250 ns; -- 0.5 coefsf
-=-Data<="01111111100000000000" after 370 ns; -~ 255 in
-=-Coeff<="1010100000000" after 420 ns:; -- neqg 0.5 ceoeff

NR <= '0' after 0 ns,
'l1' after 2 ns;
-- '0' after 150 ns,
--'1"'" after 200 ns,
--'0'" after 350 ns,
-='1l'" after 400 ns;

CLK <= not CLK after 5 ns;

end ADD ARCH;
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C:\ACC-EDAS\TE MULT.VHD

Library IEEE;
use IEEE.STD LOGIC 1led.ail;
use IEEE.STD LOGIC ARITH.all;

-- Test bench to test MULT

entity TB_MULT is
and TR MULT:;

architecture MULT ARCH of TB MULT is

CLK: std legic:='0";

NR: std icglcs

Data: std logic vector (12 a>wnto 0};
Coeff: std logic wvectcor (12 downto 0}
Result: std_logic wvector (25 downto 0};

=

o R |

O oY Ot Lo

Tl el

GO GO U g
3

VTR VIR TR T

o
p— = —

pte

-

Component Mult
port { CLK, NR: in std logic;
Data: in std_logic_vector(lZ downto 0);
coeff: out std_lecgic_vector(l2 downto 0};
Result: out std_logic_vector (25 downto 0));
end component;

begin
uuT: MULT port map (CLK,NR, Data,Coeff,result);

Datax="0111111110000" after 100 ns;-- 255.0000 in

Coeff<="0010100040000" after 100 ns; -- 0.5 coeff
--Data<="1111111110000" after 250 ns; -- neg 255 in
--coeff<="0010100000000" after 250 ns; -- 0.5 coeff

--Data<="01111111100000000000" after 370 ns; =-- 255 in
-—Coeff<="1010100000000" after 420 ns; -- neg 0.5 ceeff

NR <= 'Q' after 0 ns,
'1!'" after 2 ns;
-- '0" after 150 ns,
~-~'1'" after 200 ns,
--'0' after 350 ns,
-='1l'" after 400 ns;

CLK <= not CLK after 5 ns;

end MULT_ARCH;



Z:NACC-EDASAMULT . /HD

Library [EEE;
uge TEEELSTD LOGIC lled.s!ll;

use [EEE.S3TD LOGIC ARITH.all;
--Design of a generic signed multiplier cell structure

enticy MULT is

Ganeris ‘N: integar:=l6i;

porty CLK,NR:in std logicy
Dara: in sud logic vector (12 zownwo )
Coeff: in std logic vector {12 downto Q);
Resuln:iout 3:d logic wector!2S downns 001

end MULT:;
——-PRECISION QF DATA IS (DETERMINED FROM EXPERIMENTS IN FIRST
-=23EHAVIOURAL MODEL} DATA IM IS 140 RIT TWOS COMPILEMENT, 1 2IT

--5IGN, 8 BIT INTEGER PART AND 10 BIT FRACTION PART.
-—-FILTER COEFFICIENT IS AN 13 BIT TWOS COMPLEMENT NUMBER,
--1 BIT SIGN, 1 BIT INTEGER, 16 BIT ¥RACTION PART.
~--RESULY IS A 20 BIT TWOS COMPLEMENT NUMBER, 1 BIT
--8 BIT INTEGER, 11 BIT FRACTION PART.

€]

T

-

{,

b
=

-~ To get structure several of these cells can be joined
-- together

Architecture Sequential of MULT is
begin ,
process (CLK,NR) ’

variable mult_result: signed(12 downto 0):=(others=>'0"});
begin
if (NR = '0'} then

--RESET ALL

Result <= {others=>'0");

--on clock event multiply data by high pass coeffient
elsif {(CLK'event and CLK ='1') then

result<=unsigned(coeff) *unsigned{data);
end if;
end process;
end Sequential;
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Ziprarv IEEE;
1ge TEER.3TD Z0GIT livd.ally
use IEEE.STD LOGIF ARITH.aLl

antity TB_RAM is
end TH RAM;

srchitecture RAM_ARCH ©f TB_RAM is

I.i
H

Signal AE: s

=

1o
ignal RW: std lo
Signal address: std lOGlC _vector {20 cowntc 0);
blgnal data: std_loglb_fpctor(20 downto 0} ;

4

1ot

L Q
WO
e
(J

1(

J

component RAM

Porct{ AS,RW: in std_logic;
address: in std loglc vecter(20 adowntc 0}
data: inout std_logic_vector (20 downto 0}};
end compenent;

begin
UUT: RAM port map (AE,RW,ADDRESS,DATA);

AE<='0"' after 50 ns:

AE<='1' after 100 ns;
ADDRESS<="000006000000000000001" after 150ns;
RW<='0Q"' after 100 ns:
DATA<="000000000000000000101" after 120ns;
AE<='0' after 200 ns;

AE<='1' after 250 ns:

RW<='1' after 300 ns:
ADDRESS<="000000000000000000001" after 280ns;

end RAM ARCH;



S AT DA BaM 0D

Library IEZEE;
uyse IEEE . STD TOGIC k4. oAbl
-=Dagign °f 3 RAM ool
—- N — N
:.nt-_t\_.’ AAM 13

Generizin: integer:-256!;

Fort Az,aW: in scd loagig;

AJQres|s: In ST LUGLT wecTordzU o aswnto Loy
Jdata: incut 3td loagils vectoriZl Jdownno

end RAM;

Architectures Sequential of RAM is

T

type rmoit is array {0 to n) of std _logic vector{20

pegin
Process (AE,RW,Address,data)
variable dram: rmbit;:
begin
if {AE ='0'} then

data <= "000000000000000000000";
elsif (AE'event and AE='1") then
if (RW = '1'} then
data<=dram(address);
end if;

if (RW = '0'} then
dram(address) :=data;
end 1if;

end if;

end process;
end sequential;

[
-

downro 0};
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