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ABSTRACT 

Di~ital Imaging has had an enormous impact on industrial applications such as 

the Internet and video-phone svstcms. However. demand fOr industrial 

applications is growing enonnously. In particular, internet application users arc 

,b'Towing at a near exponential rate 

The sharp increase m applications using digital images has caused much 

emphasis on the fields of image coding, storage, processing and 

communications. New techniques are continuously developed with the main 

aim of increasing efficiency. Image coding is in particular a field of great 

commercial interest. A digital image requires a large amount of data to be 

created. This large amount of data causes many problems when storing, 

transmitting or processing the image. Reducing the amount of data that can be 

used to represent an image is the main objective of image coding. 

Since the main objective is to reduce the amount of data that represents an 

image, various techniques have been developed and are continuously 

developed to increase efficiency. The JPEG image coding standard has enjoyed 

widespread acceptance, and the industry continues to explore its various 

implementation issues. However, recent research indicates multiresolution 

based image coding is a far superior alternative. 
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A recent development in the licld of image coding is the usc of l~mbcddcd Zcrotrce 

Wavelet (EZW) as the technique to achieve image compression. One of The aims of 

this theses is to explain how this technique is superior to other current coding 

standards. It will be seen that an essential part orthis method of image coding is the usc 

of multi resolution analysis, a subband system whereby the subbands arc logarithmically 

spaced in frequency and represent an octave band decomposition. The block structure 

that implements this function is termed the two dimensional Discrete Wavelet 

Transform (2D-DWT). 

The 20 DWT is achieved by several architectures and these are analysed in order to 

choose the best suitable architecture for the EZW coder. Finally, this architecture is 

implemented and verified usmg the Synopsys Behavioural Compiler and 

recommendations are made based on experimental findings. 
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INTRODUCTION 

Digital images are used in many applications such as the internet and high definition TV 

(HDTV). An image can be considered as a positive function on a plane. The value or 

this function at each point specifies the luminance or brightness of the picture at that 

point. Digital images are sampled versions of such functions where the value of the 

fUnction is specified only at discrete locations on the image plane, known as pixels. The 

standard representation of a digital image is then that of samples (pixels) residing on a 

rectangular lattice or matrix as shown in figure 1.0. 

I 
2 
3 
4 

~~~-
1 2 3 4 

4 

1 

-1 2 3 4 

• (2,3) 

Fig. 1.0 Image representation as a matrix of luminance values 

If an image is made of pixels of certain brightness placed in a rectangular matrix of size 

MxN, then there would be M xN pixels. Furthennore each pixel has a certain level of 

brightness which is represented to a pre-defined precision B (usually 8 bits), hence an 

image is composed of MxNxB bits. If an image is composed of 512 pixels and each 

pixel has a value of 0-255 for brightness which requires 8 bits, then the canonical 

representation ofthis image requires 512 2 x 8 ~ 2097152 bits. 
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The huge amount of data required to rcpre~ent an image is rurthcr aggravated when we 

consider that colour images requires even more data due to the representation or colour 

by a three dimensional vector function on a plane. Also most digital images have in 

excess of 512x512 pixels and hence require much larger storage space. Image coding 

cons1sts of mapping images to strings of hi nary digits. The function of all image coders 

is to produce a binary string whose Jcnhrth is smaller the original canonical 

representation of the image by transfOrming the image. 

In most cases, an image has a large amount of redundant data which is not required to 

represent the image accurately. In other words this redundant data can be removed 

without affecting the image quality significantly. Transform coding hence breaks the 

pixel array representing the image into a statistically uncorrelated data set . In plain 

language this means that the image is split into bands of different detail levels. When an 

image transfonner is used effectively with a quantitiser, good compression can be 

achieved. 

Quantizing a group of pixels together is known as vector quantization, or VQ. It has 

been shown [I] that in principle this method can achieve the highest compression that 

can be achieved by any coder. However it is also true that that the computational cost 

and delays experienced by these coders grow with dimensionally, limiting the 

practicality of VQ. For this reason and other difficulties, most practical coding 

algorithms have turned to transform coding instead of high dimensional VQ. 
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Transform coding consists of scalar quantization in con_iunction with a linear transfonn 

to capture much the benelits of VQ without many of the problems experienced by VO. 

Transform coding is successful if the basis fUnctions of the transfC>rm represent the 

features of the signal accurately. At present, one of' the most successful representations 

is the wavelet transfonn which can be viewed as a special case of a subband transform. 

The theory underlying wavelets brings to bear a fUndamentally diffCrent perspective 

than the frequency-based sub band framework. The temporal properties of the wavelet 

transform have proved particularly useful in motivating some of the most recent coders. 

The Development of Embedded Zerotree Wavelet coding [21 motivated a flurry of 

activity in the area of zerotree wavelet algorithms. The inherent simplicity of the 

zerotree data structure, its computational advantages, as well as the potential for 

generating an embedded bitstream are all desirable qualities of good image coders. 

Thi,s technique uses a two dimensional wavelet transform to break the data into low 

frequencies containing most of the image details and high frequencies containing most 

of the redundant data. It will be seen in this theses that the EZW algorithm achieves 

very good rate distortion performance and have a successive refinement property 

meaning that it generates an embedded code. 
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The purpose or this thesis is focused on investigating the advantages of the EZW 

algorithm over other existing compression techniques. A model of the EZW coder will 

also be presented and this will be discussed in detail. An essential functional block of 

the EZW coder is the 2-D Discrete Wavelet Transform and the aim of this theses is to 

investigate current cflicient architectures to implement this function. A suitable 

architecture will be selected and then implemented and verified in VHDL using the 

Synopsys Behavioural Compiler or Accolade PeakVHDL Tools. 

The organisation of this thesis is as tbllows. Chapter 1 provides an overview of image 

compression fundamentals and wavelets and provides a solid background to many 

!imdamental issues. Chapter 2 discusses the EZW coder and compares this to other 

existing coders. Chapter 3 looks at the current EZW model and elaborates on the 

building blocks of this model. Chapter 4 discusses current 2-D DWT architectures and 

outlines a recommended architecture. Chapter 5 discussess VI-!DL modelling of the 

proposed architecture. Chapter 6 investigates and evaluates results of the VHDL 

simulations. Finally, Chapter 7 gives conclusions and further work for the overall 

research. 
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CHAPTER I 

WAVELETS AND IMAGE CODING 

I.OBASIC WAVELETTIIEORV 

Wavelets are functions that can be used to filter other functions into low frequency 

components and multiple levels of high frequency components. The low frequency 

information is obtained from a scaling filter, and the high frequency information is 

obtained from detail, or wavelet, filters. The wavelet transform has an advantage over 

the Fourier transform in that it is able to deal with low frequency information over a 

large time and high frequency information over a short time. This makes wavelets 

desirable when dealing with functions containing a wide range of frequencies. 

The Discrete Wavelet Transform (DWT) as shown in Eq.( I) is quite simple to compute 

once the basis functions have been chosen. 

Where: 

N-1 
C; ~~ .! ~ 

0 
bij aj 

Ci = i'11 Transformed coefficient. 
bij = j 111 value of i1h normalised basis functions. 

aj = value of datum. 

N ~number of taps in the basis functions. 
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Similarly, the inverse transflnm is shown in Eq.(2). 

Where: 

C.1 =jIll transformed COefficient. 
b.ii = i rh value of j 111 basis function. 
a!= reconstructed datum value. 
N =number of taps in the basis functions. 

(2) 

The DWT is a one dimensional transtbnn. Multi-dimensional data can be transfonned 

by applying the transform to each dimension separately. Also, wavelets can be easily 

applied to different block sizes of the data. The basic wavelet function called the mother 

wavelet needs only to be translated and scaled to change the extend of the transform. 

The Mallat algorithm for DWT [3] is a computationally etlicient method of 

implementing the wavelet transfonn. The algorithm operates on a finite set of N input 

data, where N is a power of two. The data is passed through two convolution functions, 

each of which creates an output stream that is half the length of the original input. It 

will be seen later that the convolution functions are a low pass and a high pass FIR 

filters. 
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Furthermore the DWT i5 a convolution function. The property of convoluti.:m functions 

is that the low pass liltcr output contains most of the "inf<1rmation conteni" of the 

original input signal while the high pass filter output contains the dillCrcnce hctwccn 

the true input and the value of the reconstructed input if it were to be reconstructed from 

only the information given in tiller's output. In general, higher order wavelets tend to 

put more information in the low pass filter output and Jess in the high pass filter output. 

The property of putting more information in the low pass filter output is very significant 

in image compression, if the average amplitude of the high pass filter is low enough, 

then the high pass filter output may be discarded without greatly affecting the quality of 

the reconstructed signal. An important objective of this thesis is to find wavelet 

functions which cause the high pass output to be nearly zero. 

1.1 CHOICE OF WAVELET BASIS 

Deciding on the optimal wavelet basis to use for image coding is a difficult problem. A 

nwnber of design criteria, Including smoothness, accuracy of approximation, size 

support, and filter selectivity are known to be important [4]. 

The simplest fonn of wavelet basis for images is a separable basis. This basis is fonned 

from translations and dilations of products of one dimensional wavelets. Using 

separable transforms resolves the problem of C'~signing efficient wavelets to a one 

dimensional problem, hence almost all current coders employ separable transfonns. 

However recent work by Sweldens and Kovacevic [5] simplifies current difficulties 

with non-separable bases, and such bases may prove more efficient than separable 

transfonns. 
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The prototype basis functions for separable transforms are $(x)$(y), $(x)1j!(Y), lj!(x)<!J(y), 
and 1j!(X)1j!(y). Each step of the transform for such bases involves two frequency splits 

instead of one. Suppose that aN x N image is applied to the pluct-ss. First e<tch of theN 

rows in the image is split into a low pass half and a high pass half. The result is an N x 

~ low pass sub image and anN x ~ high pass sub image. Next each column of the sub 

images is split into a low pass and a high pass half. The result is a four way partition of 

the image into horizontal low pass/vertical low pass, horizontal high pass/vertical low 

pass, horizontal low pass/vertical high pass and horizontal high pass/vertical high pass 

sub images. The low/low pass sub image is subdivided in the same manner in the next 

step. AnN x N image exposed to this process is illustrated in figure 1.1. Also it will be 

seen that the Mallat algorithm for the discrete wavelet transform involves this procedure 

exactly. 

Fig. 1.1 Wavelet transform of the image "Lena" 
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1.2 Dll.ATION 

Since most of the intbnnation exits in the low pass filter output, then it is possible to 

transform this low pass litter output by filtering the output with another set of high pass 

and low pass filters. The new output of this filters is a set of data each one quarter tbc 

size of the original input. Again the low pass filter output of the 2nd dilation can be 

further transformed and so on. 

If the number of input samples is N = 2D then a maximum of D dilations can be 
perfonned, the last dilation resulting in a single low pass value and high pass value as 

shown in figure 3.1. The decomposition is on a logarithmic frequency scale as opposed 

to the linear scale of the Fourier transform and the lowest possible frequency which can 

be represented by the decomposition is clearly limited by the number of samples in the 

block. This differs from the Fourier treatment in which the decomposition includes all 

frequencies down to zero due to its infinite support .. 

Wavelet Transform Dilations 
lnpLrt stream (block size= 1 6) 

lh I 
Low-Pass 

I I .I I I I I 1- Odd 
High-Pass >Jx!x!x!x!x!xlx!xl 1st Dilati on 

Even 

Low-Pass 

Jl J f- Odd 

High-Pass 2nd Dilation 
XIXIXIXI Even 

Low-Pass 

JJ- Odd 
3rd Dilation 

High-Pass 
XIX I Even 

Low-Pass X Odd 
High-Pass 

4th Dilation 
X Even 

Fig. 1.2 Dilations of a sample block of data 
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1.3 IMAGE COMPRESSION 

Wavelet transformed images hccomc sparse ideally. This means that a high proportion 

of the matrix has zero entries or close to zero. The low pass filter output contains most 

of the information and the high pass filter contains flavour or nuance infOrmation, which 

can be discarded without atlCcting greatly the quality of the image. Compression is 

achieved when the zero elements in the sparse matrix are discarded. Ideally if the sparse 

matrix contains many zero entries, then the St/.C of the matrix can be reduced 

considerably after removal of the zero entries. Furthermore, a non negative threshold 

value € can be defined for the compression system and any data whose magnitude is less 
than or equal to E will be reset to zero. 

Lossy compression is achieved when E > 0 since when the image is reconstructed it 

results in an approximation of the original image. The reconstructed image may be an 

approximation but the quality of the reconstructed image is visually acceptable. In some 

cases it is difficult to tell the difference visually between original and reconstructed. The 

second type of compression available is lossless compression, E ~o. This type of 

compresion has the property that the reconstructed image is an exact copy of the original 

image without any errors. Obviously since more data can be discarded when lossy 

compression is used, then higher compression rates can be expected for this method of 

compression. Compression ratios of up to I 00:1 and even greater are possible, however, 

the increase in compression ratio is only at the expense of degraded image quality in the 

reconstructed image. 
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1.4 SUBBAND TRANSFORMS 

Linear transforms are the basis for many techniques used in image processing, image 

analysis, and image coding. Suhband transfOrms are a subclass of linear transforms 

which otTer useful properties tor these applications. In this chapter a variety of subband 

decompositions will be examined and their usc in image coding is illustrated. 

Traditionally, coders based on linear transforms are divided into two categories: 

Transfonn coders and subband coders. This distinction is due in part to the nature of the 

computational methods used for the two types of representation. A subband transfonner 

is a multi-rate digital signal processing systems. There are three elements to multi-rate 

systems: Analysis filters (Hn), interpolators t N. , decimators ,J, M, and Synthesis filters 

(Gn). These elements are packed in a block termed the filter baok as seen in figure 4.1. 

Ho Go 

H, o, 

• • 
• • 
• • 

1\,.J tM GM·l 

Fig.1.3 Filter baok 
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Transnmn cmling techniques arc usually based on orthogonal linear transti.>rms. The 

Discrete Fourier Transform ( DFT) is a typical transform which decomposes a signal into 

sinusoidal tfequcncy components. Also, the Discrete Cosine TransfOrm (DCT) and the 

Karhunen-Locvc TrdnsiOrm (KLT) arc typical transl(>rrn coding techniques. The 

transfonn is periOnned in most cases by taking the inner product of the finite-length 

signal with a set of basis functions. This produces a set of coefficients, which arc then 

passed on to the quantization stage of the coder. 

Subband transforms are generally computed by convoluting the input signal with a set of 

bandpass filters and decimating the results (6). Each decimated subband signal encodes 

a particular portion of the frequency spectrum, corresponding to information occurring 

at a particular spatial scale. To reconstruct the sib'llal, the subband are upsampled, 

filtered, and then combined additively. 

1.5 TRANSFORM PROPERTIJiS 

The criteria used in choosing a linear transformation for coding purposes should be 

carefully developed. There is a set of properties which are relevant when considering the 

problem of image coding. The properties of interest are; 

• Scale and orientation 

• Spatial Location 

• Orthogonality 

12 



1.51 SCALE ANIJ ORIENTATION 

Lmages contain objects and fCatures of many different sizes which may be viewed over a 

large range of distances. Image transfOnnation should analyse the image simultaneously 

and independently at ditlerent scales. Several authors [7,8] have argued that the correct 

partition in tenns of scale is one in which the scales are related by a fixed constant of 

proportionality. In the frequency domain, this corresponds to a decomposition into 

localised subbands with equal widths on a logarithmic scale. 

For two-dimensional signals, a localised region in the frequency plane corresponds 

spatially to a particular scale and orientation. Orientation specificity allows the 

transform to extract higher order oriented structures typically found in images, such as 

edges and lines. Thus, it is useful to reconstruct transformations which partition the 

input signal into localised patches in the frequency domain. 

1.52 SPATIAL LOCALISATION 

Spatial localisation is useful where information about the location of features in t':e 

image is critical. Spatial localisation should not occur abruptly since it leads to poor 

localisation in the frequency domain but in most image coding systems it is 

advantageous to have spatial localisation. 

13 



The concept of joint localisation in the spatial and spatial-frequency domains may he 

contrasted with the two most common representations used for the analysis of linear 

systems: the sampled or discrete signal, and its fourier transfOrm. 

The standard basis tOr discrete signals consists of impulses located at each sample 

location. The basis functions are maximally localised in space, but convey no 

information about scale. On the other hand, the Fourier basis set is composed of even 

and odd phase sinusoidal sequences, whose usefulness is primarily due to the fact that 

they are the eigenfunctions of the class of linear shift-invariant systems. Although they 

are maximally localised in the frequency domain, each one covers the entire spatial 

extent of the signal. 

1.53 ORTHOGONALITY 

Decorrelation is the main reason for orthogonality as a property of an image coding 

system. Given a signal with prescribed second order statistics, there is an orthogonal 

transform which will decorrelate the signal. This means that the second order 

correlation of the transform coefficients will be zero. Orthogonality is usually not 

discussed in the context of subband transform, although many such transforms are 

orthogonal. Hence orthogonality is not strictly necessary but in most image coders it is 

advantageous to have the property of orthogonality. 
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1.6 SOME TRANSFORMS 

For a transtOnn to be useful it should be well localised in the spatial and frequency 

domains. Furthermore, Criteria has been provided f. I 0 J for choosing a linear 

transfonnation for image coding purposes. An explicit representation of scale is widely 

accepted as being important for effective image representation [3]. In addition to 

localisation in frequency, it is advantageous for the basis function to be spatially 

localised. Finally, the basis should be orthogonal for proper decorrelation of the image. 

In this section several transforms will be examined by considering the criteria of scale, 

localisation and orthogonallity. Each transform will be then evaluated for its 

advantageous and disadvantageous properties. 

1.61 THE GABOR TRANSFORM 

A solution to the problem of spatial localised subband decomposition is proposed by 

Dennis Gabor [9]. Gabor introduced a one dimensional transform in which the basis 

functions are sinusoids weighted by Gaussian windows. The Gabor transform can be 

considered to perform a localised frequency decomposition in a set of overlapping 

windows. The resulting basis functions are localised in both space and spatial frequency. 

In two dimensions, the Gabor basis functions are directional sinusoids weighted by 

gaussian windows. Daugman [II] has used two dimensional Gabor transforms for image 

compression successfully. 
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The problem with this transfOrm is that the sampling functions arc drastically diflCrent 

from the basis functions, hence the basis function is non orthogonal. In a coding 

application, errors introduced by quantization of the coellicicnts will he distributed 

throughout the spatial and frequency domains, even though the cocflicient values arc 

computed based on the information in localised spatial and frequency regions. 

An interesting feature of the Gabor Transform is that localisation can be improved if an 

overcomplete Gabor basis set is used by spacing the Gaussian windows more closely 

than is required, or by dividing each window into more frequency bands. The use of 

overcomplete Gabor basis is an active area of research and several authors [12,13 j have 

used this to compress image data. 

1.62 THE DCT TRANSFORM 

The DCT is the cornerstone of the JPEG image compression standard. In the baseline 

version of this standard, the image is divided into a number of 8 x 8 pixel blocks, and 

the block DCT is applied to each block. The resulting block DCT basis functions 

constitute a subband transform. The DCT has the property of packing signal energy into 

a small number of coefficients and is a desirable feature in most transfonn coders. 

Furthermore, the transform is orthogonal hence many of the problems of the Gabor 

transform are eliminated. 

The problem with this transform is that although the resulting block DCT basis 

functions constitute a subband transforms, the subbands are not well localised. The 

subsampled subband images will contain severe amounts of aliasing. This aliasing is 

removed in the synthesis stage, however, if the transform coefficients are quantized or 

discarded then the aliasing is not removed and the errors appear as block edge artefacts 

in the reconstructed image. 
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Jager 1141. has proposed techniques lor reducing the aliasing of the block DCT by using 

lapping techniques. However the amount of aliasing removed is limited to cqual~sizcd 

subbands. Also it is advantageous to subdivide the spectrum into equal log-width 

suhbands in order to reduce the amount of aliasing I 14]. 

1.63 THE LAPLACIAN PYRAMID 

This is one of the first techniques used for octave subband decomposition as developed 

by Burt (17]. An octave subband transform may be constructed by cascading a two band 

analysis/synthesis (A/S) system in a non unifonn manner as shown in figure 5.1. This 

system is suitable for data compression, since the multi-scale nature of the pyramid 

makes it particularly useful for the task of progressive transmission. In the case of a 

pyramid, this is easily accomplished by sending the transform coefficients in order from 

lowest to highest resolution. 

The Laplacian pyramid suffers from similar problems to the Gabor Transform since this 

transform is also non orthogonal. The most serious problem with this transform is that 

quantization errors from highpass subbands do not remain in these subbands. Instead, 

they appear in the reconstructed image as broadband noise. Furthermore, the basis set is 

overcomplete, requiring an increase of the number of sample points over the original 

image. Finally, the two-dimensional basis functions are not oriented, and thus will not 

extract the oriented structural redundancy typically found in natural images. 

Despite all the difficulties experienced by this transform, it is still considered very 

efficient in progressive image coding. The Laplacian pyramid has been effectively used 

for motion-compensated video coding, where its overcompleteness makes it robust in to 

motion-compensation errors [18]. 
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Fig. 1.4 A one level of the Laplacian pyramid. B(W) is a low pass tiller and A(W) is a 

high pass filter 

1.64 QUADRA TIJRE MIRROR FILTERS 

A useful two-band subband transform was developed by Croiser et. al. [19,20] and is 

commonly used for speech coding. This transform is based on banks of Quadrature 

Mirror Filters (QMF). The filters used by Croiser were a class of non-ideal FIR bandpass 

filters that could be used in an NS system while still avoid aliasing in the overall system 

output. Aldelson et al. [21] and Mallat [3] found that these filters form an orthogonal 

subband transform. Mallat related QMF to the mathematical theory of wavelets and 

Vetterli (22] suggested the used of these filters for image coding of two dimensional 

Images. 

Transforms using QMF captures the advantages of previous mentioned transform coding 

techniques, while avoiding the disadvantages. It satisfies the properties of useful 

transform coding being: it is multi-scale and oriented, it is spatially localised, and is an 

orthogonal transform, and so constrains quantization errors to remain within subbands. 
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The QMF transform has an unfortunate aspect, the orientation decomposition is 

incomplete and hence the two diagonal orientations lump together in a single subband. 

This causes the reconstructed image to look 'blocky'. To address this problem authors 

like Adelson PII have proposed using non-separable or non oriented filters !22]. 

1.65 ASYMMETRICAL QMF FILTERS 

For a QMF transform, the computational complexity is directly proportional to the size 

of the filters employed. Separable QMF filters can sometimes ignore the issue of 

computational efficiency due to the steady increase in the speed of sibmal processing 

hardware. However, \Vhen considering the encoding and decoding of images usmg 

general purpose hardware. issues such as computational speed are very important. 

In this situation, it is advantageous to develop asymmetric coding techniques in which 

simplicity is emphasised at one end at the expense of complexity most of the time. In 

QMF bank filters this requires designing the filters to be less orthogonal. In a A/S 

system the computational efficiency can be increased by using a very compact filter pair 

in the synthesis stage as demonstrated by Mallat and Adelson [3,21]. 

1,66 NON-SEPARABLE QMF TRANSFORMS 

Most two dimensional work with QMFs employs separable or non oriented filters to 

achieve the transform. As discussed before, separable application of one dimensional 

QMFs produces a representation in which one of the subbands contains a mixture of two 

orientations and is a major drawback of separable QMFs. Splitting the frequencies at 

this subband requires very large filters. In general, the high-frequency diagonal regions 

of the spectra of the natural images are relatively insignificant. But if the filter bank is 

cascaded to form a pyramid, then the lower frequency diagonals ( where there is 

significant power) will also be mixed. 
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The non-separable QMF transform has been investigated by Adelson [21/ and uses 

hexagonal symmetric filters to achieve non separable QMF transfOrms. I fowever 

although improving the situation of mixed orientations, the nature of the function IS 

blocked like the OCT, hence unlikely to offer efficient image compression. 

1.7 MULTIRESOLUTION ANALYSES 

Most linear transfonns have been motivated by probabilistic considerations and assume 

that the image can be reasonably well-approximated by Gaussian random vectors with a 

particular covariance structure. The use of the wavelet transform in image coding is 

motivated by a rather different perspective, that of approximation theory. Wavelet 

transfonns assume that images are locally smooth functions and can be well-modelled 

as piecewise polynomials. This new perspective provides some valuable insights into the 

coding process and has motivated some significant advances. 

To illustrate the usefulness ofmultiresoltuion analyses and how wavelets are motivated 

by this perspective consider a continuous-valued square-intergrable function f(x) using a 

discrete set of values. A natural set of values to approximate f(x) is a set of regularly 

spaced, weighted local averages of f(x) such as might be obtained from the sensors in a 

digital camera. A simple approximation of f(x) based on local averages is a step 

function approximation it has the fonn 

Af(x) ~ L f,~(x-n) 
" 

where f, is the height of the step in [n,n+ I] and ~(x) ~ I for x E [0, I) and 0 elsewhere. 
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A more generalised approximation will have the form 

Where o(x) is a weight function and ljl(x) is an interpolating function_ The restriction on 
~(x) ensures that the approximation is exact when f(x) is a linear combination of the 
funciiom ~( x-n). 

The resolution of the approximation off( x} can be varied by dilating and contracting the 

functions ~(x) and o(x). The approximation of Af(x) can then be formed by projecting 
f(x) onto the span of the functions (~i (x-2-ik))kE Z. If Vi is the space spanned by this 
func.tions then the resolution j approxi.-qmtion ~~/ f is simply a pro-jection (not necessary 
an ort.hogonal one) off(x) onto the span of the functions ~(x-2-ik). 

The approximation A! f(x) corresponds to an orthogonal projection of f(x) onto the 
space of step functions with step width 2-1. Figure 6.1 shows the difference between the 
coarse ap-p-ro-y:jmatinn i\. 0 f(x) on the left and t.'-le hig..~er reso-lution a.ppro-xi1~~-tinn A 1 f( x) 

on the right. 

.. 

Amplitude 

Time 

Fig. 1.5 A continuos function f(x) (plotted as a dotted line) and the Nf(x) 
approximation. Right diagram is A 1 f(x) , a higher resolution approximation of f(x). 
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1.8 WAVELET TRANSFORMS VS SIIBBAND llECOMPOSITlON 

The wavelet transform is a special case of a subband transform, as the derivation of the 

ti:lst wavelet transform reveals. Wavelets involve the analysis of continuous functions 

whereas analysis of subband decompositions is more focused on discrete time signals. 

Hence, the main contribution of wavelets transform is one of perspective. The theory of 

wavelets has a strong spatial component whereas subbands are more focused in the 

frequency domain. 

The subband and wavelet perspectives represent two extreme points in the analysis of 

the iterated filtering and down sampling process. The filters used in subband 

decompositions are typically designed to optimise the frequency domain behaviour of a 

single filtering and subsampling. Theoretically, the wavelet basis functions can be 

obtained by iterating the filtering and performing a down sampling procedure an infinite 

number of times. However in typical applications. the number of iterations is limited to 

the sample size. Examination of the properties of the basis functions provide 

considerable insight into the effects of iterated filtering. 

The wavelet framework explicitly specifies an underlying continuous-valued function 

from which the original coefficients are derived. The use of continous-valued functions 

allows the use of powerful analytical tools, and it leads to a number of insights that can 

be used to guide the filter design process. Within the continuous-valued framework the 

types of functions that can be represented exactly with a limited number of wavelet 

coefficients are characterised. Examination of these issues have led to important new 

design criteria for both wavelet filters [4] and subband decompositions. 
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The second important ditlCrcncc is that wavelets involves spatial as well as frequency 

considerations whereas subband transform is typically more focused on the frequency 

domain. Also Coctlicients in the wavelet transfOrm correspond to features in the 

underlying function in specific, well-defined locations. The explicit usc of spatial 

intOnnation has proven quite valuable in motivating some of the most eflective wavelet 

coders. 

1.9 WAVELET PROPERTIES 

Whereas in subband transfonn the properties of scale, orthogonality and localisation are 

of significance, in wavelets the properties of particular interest for image coding are 

accuracy of approximation, the smoothness, and the support of the wavelet bases (23]. 

When coding natural images which tend to contain locally smooth regions, it is 

important that the building blocks be reasonably smooth. If the wavelets possess 

discontinuities or strong singularities, coefficient quantization errors will cause these 

discontinuities and singularities to appear in decoded images. Such artefacts are highly 

visually objectionable, particularly in smooth regions of images. 

Procedures for estimating the smoothness of wavelet bases has been developed by Rioul 

[24] who has pointed that in certain conditions the smoothness of scaling functions is 

more important criterion than standard frequency selectivity criterion used in subband 

coding. 

Accuracy of approximation is another important property to consider in wavelet based 

coders. Wavelets can construct smooth, compactly supported bases that can exactly 

reproduce any polynomial up to a given degree. If a continuous valued function f\x) is 

locally equal to a polynomial, then the portion off(x) which is equal can be reproduced 

with just a few wavelet coefficients. 
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The degree of the polynomials that can be reproduced exactly is determined by the 

number of vanishing moments of the dual wavelet 'l'(x). This wavelet has N vanishing 
moments provided that f x' <JI(x)dx ~ 0 li>r k ~ O, ...... ,N. Compactly supported bases for 
L 2 for which 111(x) has N vanishing moments can locally reproduce polynomials of 

degree N-1. 

The number of vanishing moments also determines the rate of convergence of the 

approximations Aif to the original function f as the resolution goes to infinity. It has 
been shown [23] that IV-AUJI ,; C2-iX ~·''II where N is the number of vanishing 
moments of \j/(.t) and f'' is the N<h derivative off 

The size of support of the wavelet basis is another important wavelet property. Suppose 

that the function f\x) is equal to a polynomial of degree N-1. If \jl has N vanishing 

moments, then any basis function for which the corresponding dual function lies entirely 

in the region in which f(x) is a polynomial will have a zero coefficient. The smaller the 

support of \jl is, the more zero coefficients that can be achieved. More importantly, 
edges produce large wavelet coefficients. The larger \jl is, the more likely it is to overlap 

an edge hence it is important that wavelets have reasonably small support. 

There is a problem with limited support in wavelets as specified by Simoncelli [21]. 

Wavelets with short support have strong constraints on their regularity and accuracy of 

approximation, but as the support is increased they can be made to have arbitrary 

degrees of smoothness and number of vanishing moments. This limitation on support is 

equivalent to keeping the analysis filters short. 

Limiting filter length is also an important consideration in the subband coding literature, 

because long filters lead to ringing artefacts around the edges of the image. Unser [26] 

shows that spline wavelets are attractive for coding applications based on approximation 

theoretic considerations. Experiments by Rioul [24] for orthogonal bases indicate that 

smoothness is an important consideration for compression. Antonini at a! [25] find that 

both vanishing moments and smoothness are important, and for the filters tested they 

found that smoothness appeared to be slightly more important than th<' number of 

vanishing moments. 

24 



Nonetheless, V etterl y and Herlcy [38] state that "the importance of regularity f(>r signal 

processing applications is still an open qucstion11
• The bases most commonly used in 

practice have between one and two continuous derivatives. Additional smoothness does 

not appear to yield significant improvements in coding results. 

Villasenor et al f4J have systematically examined all minimum order biorthogonal filter 

banks with lenb1hs ,; 36 as well as the additional mentioned criteria, the oscillatory 
behaviour and sensitivity of the coarse-scale approximations AI f(x) to translations of the 

timction f(x) have been examined by experiments. The best filter found in these 

experiments was a 7/9 tap spline variant with less dissimilar lenb1hs from [25]. This 

filter is one of the most common wavelet coding filters currently used .. 

For biorthogonal transforms, the squared error in the transform domain is not the same 

as the square error in the original image. As a result, the problem of minimising image 

error is considerably more difficult than in the orthogonal case. A number of other filters 

yield performance comparable to that of the 7/9 filter of(25] provided that bit allocation 

with a weighted error measure is performed. One such basis is the Daslauriers-Dubuc 

interpolating wavelet of order 4 [27], which has the advantage of having filter taps that 

are dyadic rationals. 

A new set of filters have been developed by Balasingham and Ramstad [28]. Their 

design combines classical filter design techniques from ideas from wavelet 

constructions. This filters yields performance sih>nificantly better than the popular 7/9 

filter set from (25]. 
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1.10 ENTROI'Y 

The entropy of the signal plays an important part in image coding and compression with 

respect to the possible etlcctiveness in the storage and transfer of the signal [16 j. In 

many cases a transfonnation of the signal leads to a representation of the signal which 

lowers entropy of the si[;,'llal. Now, the influence of the used wavelet filter to the entropy 

of the wavelet coetlicients depends on the specific distribution and is defined as 

follows. 

H~- E[Ln P,(y)] (3) 

With respect to the estimation of the distribution function one has to differ between the 

approximation and the set of the detail signals. The approximation has a strong 

correlation, while the coefficients of the detail si,6'11als are decorrelated extensively. For 

the set of detail signals one can assume a Laplace distribution of the coefficients with 

respect to experimental investigations [17]. In analogy to the detail sib'Tlals one can fit 

them to the same distribution of the approximation coefficients with a predictive coding. 

After the predictive coding, the entropy is calculated as; 

(4) 
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CHAPTER2 

IMAGE CODERS 

2.1 BASIC IMAGE CODERS 

Most wavelet based coders are derived from the transform coder paradigm. There are 

three basic components that underlay current wavelet coders: a decorrelating transform, 

a quantization procedure, and an entropy coding procedure as seen in figure 2.1. 

Considerable research is being peiformed on all three of these component and the 

function that each component has in the image coder. 

nput 
ignal 

Transform . 

Transformed representation 

I 
Quantisation 

Coding 

'. 
(entropy) 

\ 

Quantised transformed representation 

Fig. 2.1 A basic image coder 

27 

Compressed 
signal 



2.2 ENTROI'Y COI)[NG AND ARITHMETIC CODING 

Arithmetic Coding provides a near-optimal entropy coding for the quantized cocflicicnt 

values. The coder requires an estimate of the distribution of quantized coeflicients, this 

estimate can be approximately specified by providing parameters for a generalised 

Gaussian or a Laplacian density. Alternatively, the probabilities can be estimated 

on-line. On-line adaptive estimation has the advantage of allowing coders to exploit 

local changes in image statistics. Efficient adaptive estimation procedures are discussed 

in (29]. 

Because images are not jointly Gaussian random processes, the transform coefficients, 

although decorrelated, still contain considerable structure. The entropy coder can take 

advantage of some of this structure by conditioning the encodings on previously 

encoded values. Chen (29] presents a coder which obtains modest performance 

improvements using such a technique. 

2.3 TRANSFORM CODING 

Chapter I indicated that there are generally two types of transform coders, subband 

based coders, and transform based coders. Moreover subband coding has been discussed 

in detail in this chapter. Transform coding is used in image coders to reduce spectral 

redundancy by condensing the ene'gy of an image into a small area. 

Typically coders split the image into smaller blocks and a unitary transform is applied to 

each of the blocks resulting in the formation of a block of transform coefficients which 

represent the image. The transform coefficients produced by the application of a unitary 

transform is simply the significance of the frequency information in the image. 

Therefore low-frequency infonnation will correspond to transfonn coefficients that are 

large in value, and high frequency information will correspond to coefficients that are 

small in value. 
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2.4 RliN LENGTH CODING 

This coding method uses the statistical properties of an image to reduce redundancy but 

instead of generating variable length codewords, the codcwords generated arc of a fixed 

length. 

2.5 ZEROTREE CODlNG 

The knowledge that images of interest are formed mainly from flat area, textures, and 

edges allows to make advantage of the resulting cross-band structure. Zcrotree coders 

combine the idea of cross-band correlation with the notion of coding zeros jointly to 

generate very powerful compression algorithms. 

The first instance of the implementation ofzerotrees is due to Lewis and Knowles [30]. 

In their algorithm, the image is represented by a tree structured data . This data structure 

is implied by a dyadic discrete wavelet transform in two dimensions. The zerotree 

quantization model used by Lewis and Knowles was arrived at by observing that often 

when a wavelet coefficients are small, its children on the wavelet tree are also small. 

This phenomenon happens because significant coefticients arise from edges and 

textures, which are local. It is not difficult to see that this is a form of conditioning. 

Lewis and Knowles took this conditioning to the limit, and assumed that insignificant 

parent nodes always imply insignificant child nodes. A tree or sub-tree that contains 

only significant coefficients is known as zerotree. 
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The most signilicant contribution of the work by Lewis and Knowles was to realise that 

wavelet domain data provide an excellent context for run~lcn!:,Jth coding: not only arc a 

large run lengths of zeros generated, but also there is no need to transmit the length of 

zero runs, because they are assumed to automatically terminate at the leaf nodes of the 

tree. Much the same as in JPEG, this is a fonn of joint vector/scalar quantization. Each 

individual coefficient is quantized separately, but the symbols corresponding to small 

coetlicients in fact are representing a vector consisting of that element and the zero run 

that follows it to the bottom of the tree. 

Lewis and Knowles assumed that small parents always have small descendants. 

However, this assumption causes large distortions in image reconstruction if the small 

parents don't have small children. This has led many authors like Shapiro[2] to develop 

a much more powerful algorithm called, Embedded Zerotree Wavelet Algorithm, which 

overcomes many ofthe difficulties of the Lewis and Knowles coder. 

2.6 THE EMBEDDED ZEROTREE WAVELET ALGORITHM 

The Lewis and Knowles algorithm, while capturing the basic ideas inherent in many of 

the later coders, was incomplete. It had all the intuition that lies at the heart of more 

advanced zerotree coders, but did not efficiently specifY significance maps, which is 

crucial to the performance of wavelet coders. 
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The lirst algorithm to employ both the non zero data and significance map was produced 

by Shapiro [2 j and was to revolutionise the way more advanced coders operate. The bits 

needed to specilY a signilicance map can easily dominate the coder output, especially at 

lower hitrates. However, there is a great deal of redundancy in a general significance 

map for visual data. Theretbre the bitrates tbr its representation can be kept in check by 

conditioning the map values at each node of the tree on the corresponding value at the 

parent node. Whenever an insignificant parent is observed, it is highly likely that the 

descendants are also insignificant. Therefore, most of the time a "zerotree significance" 

map symbol is generated. But because p, the probability of this event, is close to 1, its 

information content, -p log p, is very small. So most of the time, a very small amount of 

infonnation is transmuted and this keeps the average bitrate needed for the significance 

map relatively small. 

Once in a while, one or more ofthe children of an insibJOificant node will be siblflificant. 

In that case, a symbol for "isolated zero" is transmitted. The likelihood of this event is 

lower, and thus the bitrate for conveying this infonnation is higher. But it is essential to 

pay this price to avoid losing significant information down the tree and therefore 

generating large distortions. 

In summary, Shapiro's algorithm uses three symbols for significance maps: zerotree, 

isolated zero, or significant value. By using this structure, and by conditionally entropy 

coding these symbols, the coder achieves very good rate distortion performance. In 

addition, Shapiro's coder also generates an embedded code. Coders that generate 

embedded codes are said to have the progressive transmission or successive refinement 

property. Successive refinement consists of first approximating the image with a few 

bits of data, and then improving the approximation as more and more infonnation is 

supplied. An embedded code has the property that for two given rates R I >R2, the rate 

R2 code is a prefix to the rate R I code. 
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The EZW encoder can easily nchit.:ve a precise bitmte because it t,;ontinw.•s to output bits 

when it reaches the desire rate. Furthennorc, it can cease decoding at any point, 

generating an image that is the best representation possible with the decoded number of 

bits. This is of practical interest lOr broadcast applkatiom where multiple decoder~ with 

varying computational, display and bandwidth capabilities attempt to receive the same 

bitstream. With an embedded code, each receiver can decode the passing bitstream 

according to its particular needs and capabilities. Also the EZW coding system is useful 

in indexing and browsing applications, where only a rough approximation is sufficient 

for deciding whether the image needs to be decoded or received in full. 

Shapiro generated an embedded code by using a bit-slice approach. In the bit-slice 

approach wavelet coefficients are indexed into a one dimensional array and ordered 

according to their sibrnificance. This places the lower frequency contents of the image 

before the high frequency bands. When wavelet coefficients are encoded using their 

order of importance, it is sometimes referred to as a raster scan order. 

The bit-slice code is generated by scanning the one dimensional array and comparing 

each coefficient to a threshold T. This initial scan provides the decoder with sufficient 

infonnation to recover the most significant bit slice. In the next pass, infonnation about 

each coefficient is refined to a resolution of T/2, and the pass generates another bit slic-e 

ofinfonnation. This process is repeated until there are no more slices to code .. 

The upper bit slice contains a great number of zeros because coefficients at this level are 

either zero or bellow the threshold level T. The role of zerotree coding is to avoid 

transmitting all these zeros. Once a zerotree symbol is transmitted, it is known that all 

the descendants will also be zero coefficients, so no information is transmitted for them. 

In effect, zerotrees are a clever fonn of run~ length coding, where the coefficients are 

ordered in a way to generate longer run lengths as well as making the runs self 

terminating so the length of the runs need not be transmitted. 
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The zerotrcc symbols with high probability and small code lcnh~h can be transmitted 

again and again for a given coctlicicnt until it rises above the sinking threshold, at 

which point it will be tagged as a significant coeflicient. After this point, no more 

zerotree infonnation will be transmitted for this coefficient. 

Shapiro used a clever method of encoding the sign of the wavelet coefticient with the 

significanc.e information. Further details of the priority of wavelet coefficients, the 

bit-slice coding, and adaptive arithmetic coding of quantized values, i.e. entropy coding 

can be read in Harder's thesis (21] 
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CHAPTER3 

SEARCH STRATEGIES AND EZW COMPONENTS 

3.1 TREE SEARCH STRATEGIES 

The EZW algorithm establishes an ancestor-decendani relationship between the wavelet 

coefficients in the image subbands . Figure 4.1 shows the image subbands obtained 

after the 2D-DWT and an ancestor-decendant tree hierarchy between the wavelet 

coefficients in the image subbands has been applied to an image. The scanning of the 

coefficients is done in a particular manner so that no child node is scanned before its 

parent is scanned. In essence, all the coefficients in a subband are encoded before 

encoding the coefficients in another subband. The order of encoding begins from the 

lowest frequency subband and ends at the highest frequency subband as indicated. 
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Fig. 3.1 

Raster Scanning of coefficients 
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3.2 DEPTH FIRST SEARCH AND BREADTH FIRST SEARCH 

The original EZW algoritlnn uses a raster scan to encode the wavelet coefficients as 

seen in figure 4.1. Two other tree searching strategies to encode the wavelet coefficients 

are possible: the Depth First Search (DFS), and the Breadth First Search (BFS). These 

strategies provide alternative ways to encode the wavelet coefficients. 

The BFS coding strategy operates very similar to the raster scan strategy. Coefficients 

are also scanned at the same level from all tree hierarchies before the coefficients from 

another level are encoded. The main difference is the way or the order in which the 

coefficients are scanned in the same level of the tree hierarchy. 

The DFS coding strategy encodes all the coefficients in a tree hierarchy before encoding 

another tree hierarchy. This simplifies and diversifies the implementation of the EZW 

algoritlnn [32]. However, this simplification comes at the cost of a decrease in coding 

efficiency but provides a dataflow oriented approach which is highly suitable for 

parallel architectures. The main reason for the parallel suitability is that the DFS 

performs a natural partitioning of the tree hierarchies into independent tree hierarchies 

which can then be processed in parallel by individual EZW processors as seen in figure 

3.2. 

Transmit 

Fig. 3.2 

Parallel Bitstream Processing by individual EZW Processors 
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3.3 EZW COMPONENTS 

The EZW algorithm is a powerful image coding technique. It has been shown [2] that 

the algorithm consists of four fundamental operations; 

1. A discrete Wavelet Transform or hierarchical subband decomposition. 

2. Prediction of the absence of significant information across scales by 

exploiting the self-similarity inherent in images. 

3. Entropy-coded successive approximation quantization. 

4. Adaptive arithmetic coding. 

Furthermore, prediction of significant information and entropy coding are commonly 

combined in a single structure termed Quantization zerotree as seen in figure 3.3. 
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Fig. 3.3 

EZW coding system block structures 
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3.31 DISCRETE WAVELET TRANSFORM 

The Discrete Wavelet Transform (DWT) is one of the most useful and efficient tools 

used to analyse digital signals in various signal processing areas. One major concern, in 

signal and image processing as well as the communication communities is the effective 

implementation of the wavelet transfOrm and advanced tools for designing wavelet 

systems. When there are limitations in processing time and/or system size, 

implementation of the DWT becomes an engineering issue. The purpose of this thesis is 

hence to provide an engineering solution to the implementation of the discrete wavelet 

transform. Furthermore, it will be seen how the proposed solution fits well in the 

proposed DFS EZW coding system seen in figure 3.3. 

The Discrete Wavelet transfer represents an arbitrary square integral function as 

superposition of a family of basis functions called wavelets. A family of wavelet basis 

functions can be generated by translating and dilating the mother wavelet corresponding 

to the family. The DWT coefficients can be obtained by taking the inner product 

between the input signal and the wavelet functions. Since the basis functions are 

translated and dilated versions of each other, a simpler algorithm, known as Mallat's tree 

algorithm or pyramid algorithm, has been proposed [3]. 
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3.32 MALLAT'S TREE ALGORITHM 

In this algorithm, the DWT coefficients of one stage can be calculated from the DWT 

coefficients of the previous stage, which can be expressed as follows: 

Where: 

W1 (n,j) = 2: W1 (m,j-l)h(m-2n) 
111 

Wh (n.j) = 2: Wh(m,j-l)g(m-2n) 
m 

.W1(n,j) and Wh(j) are the n-th scaling coefficient at the j-th stage . 

. h(n) are the Low Pass Filter (LPF) dilating coefficients . 

. g(n) are the High Pass Filter (HPF) dilating coefficients. 

(Sa) 

(5b) 

For computing the DWT coefficients of the discrete-time data, it is assumed that the 

input represents the DWf coefficients of a high resolution stage. Equation 5 can then be 

used for obtaining DWI coefficients of subsequent stages. In practice, this 

decomposition is performed only for a few stages. Hence, DWI extracts information 

from the signal at different scales. The first level of the wavelet decomposition extracts 

the details of the signal ( high frequency components) while the second and all 

subsequent decompositions extract progressively coarser information, lower frequency 

components, as shown in figure 3.4 

Figure 3.4 

Mallat Algorithm For DWT 
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3.4 TWO IJIMENSIONAL DISCRETE WAVELKI' TRANSFORM (21)-I)WT) 

The 2D-DWT can be calculated by several different methods. Most commonly, it is 

calculated by using a separable approach f3]. First, the One Dimensional Discrete 

Wavelet Transform ( ID-DWT) is performed on each row of the image proceeded by a 

matrix transposition operation [33}. The transposition memory works on rows of the 

image to invert the image, hence rows become columns and vice versa. Finally, a one 

dimensional DWT is performed on the transposed data to achieve two dimensional data. 

Hence, a 2D-DWT can be implemented by inserting a matrix transposer between two 

I D-DWT modules. 

In order to reconstruct the original data, the DWT coefficients are upsampled and passed 

through another set oflowpass and highpass filters which is expressed as: 

W1 (nj) ~ L W1 (kj+ I )h, (n-2k)+L Wh (lj+ I )go (n-21) 
k I 

(6) 

where ho(n) and go(n) are the lowpass and highpass synthesis filter corresponding to the 

mother wavelet. It is observed in equation 6 that the j-th level DWT coefficients can be 

obtained from the (j+ I )-th level coefficients. 
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3.5 QUANTIZATION ZEROTR.:E 

The quantization step in the EZW algorithm involves transforming the coefficients array 

into a quantization zerotree structure. From this zerotrcc representation, a compressed 

data stream called a significance map representing the image is obtained using 

Successive-Approximation entropy-coded Quantisation (SAQ). The output of this block 

consists of significance maps (MAP) and Successively Approximated values of 

significant coefficients SAQ. SAQ applies a sequence of threshold successively to 

determine the significance of the coefficients to obtain a MAP. 

3.6 ARITHMETIC CODING 

The underlying reason for the choice of successive approximation to encode the 

significance maps for the EZW algorithm is considered directly from the goal of 

producing an embedded code comparable to the binary-representation of approximating 

a real number [2]. In achieving a reasonable coding efficiency with Huffman coding, the 

sequence that is generated by the source is generally divided up into blocks. Each of the 

blocks then get assigned a variable-length codeword. When decoded, the received 

codeword is parsed into variable-length blocks which correspond to the individual 

codewords. This causes a one-to-one correspondence between the codeword blocks and 

the source sequence blocks. Arithmetic coding on the other hand generates non-block 

codes. The entire sequence of source symbols is assigned a single arithmetic codeword. 

An interval of real numbers between the values of 0 to I is defined by the codeword 

itself. As the number of symbols increases, the interval used to represent it becomes 

smaller and the number of bits required to represent the interval becomes larger. Each 

symbol of the message reduces the size of the interval in accordance with its probability 

of occurrence. 
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CHAPTER 4 

4.1 TWO DIMENSIONAL DWT ARCIIITEC111Rf;S 

Multiresolution analysis is an essential part of the EZW coding system. The output of 

this block consists of coefficients which are mapped in some way by the EZW quantizer. 

In developing a suitable 2D-DWT architecture, it is important to consider how this 

architecture fits with the EZW coding system. Moreover, it has been shown that the DFS 

searching strategy for the coefficients provides a dataflow oriented property which is 

highly suitable for parallel EZW processors [32]. 

The purpose of this thesis is to provide an efficient design for implementing the wavelet 

transform. Furthermore, to fit with the DFS EZW system the proposed architecture 

operates in a parallel manner which increases the speed of the architecture. Ideally, the 

factor of speed up achieved by parallelism should not cost more than a similar factor in 

area. In order to achieve an optimum design several current architectures are discussed 

in detail before the proposed architecture is considered. 

The design employed in this thesis is aimed at special purpose custom single chip 

design. Hence, the issue of chip area and processing time is very important. Many other 

important design issues will also be considered . 
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4.2 COMPUTATIONAL COMPLEXITY OF Tllll OWT 

As observed in equation 5, the complexity of each stage of wavelet decomposition is 

linear in the number of input samples where the constant factor depends on the lcnt,l"f.h of 

the tilter. For a dyadic wavelet decomposition, the number of input samples decreases 

by 50 % at subsequent stages of decomposition (35]. For a wavelet of order L, with 

number of decomposition stages j, the computational complexity for an one dimensional 

N elements sequence is. 

Cdyndic = (N +f + f + ...... + '-~--~ )x 2L FLOPS 

~ 4(1-2-,~)NL FLOP (7) 

Where FLOP corresponds floating point operations and usually refers to multiplications 

and additions. It can be pointed out that the complexity can be further be reduced using 

sophisticated algorithms, such as First Running FIR Filtering (FFT) [34]. However, these 

algorithms need complex control circuitry for hardware implementation. 

In many applications, a regular tree, instead of a dyadic tree might be more appropriate. 

The computational complexity at each stage of a regular tree is 2NL FLOP. Hence, the 

total complexity for a j level decomposition is: 

Crcgulnr = 2 JNL FLOP (8) 

The complexity of an irregular tree, or a wavelet packet algorithm is upper bounded by 

Cregular. 
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4.3 DATA DEPENDENClES WITHIN DWT 

The Ma11at tree decomposition is one of the most common methods used to implement 

the DWT since it is computationally ellicient and can be implemented easily. The 

wavelet decomposition of a 1 D signal for three stages as shown in figure 4.1 hints that 

there is a dependency of data as data tlows from lower levels to higher levels. In order to 

implement a design, it is important to consider the data dependencies involved in the 

tree decomposition .. 

The low pass, H(Z), and high pass, L(Z), transfer functions for an n-th order filter can be 

expressed according to: 

H(Z)~ g(O) + g(l )z-1 + g(2)z·2 + ......... g(n)z·• 
L(Z)~ g(O) + g(l)z-1 + g(2)z·2 + ......... g(n)z·• 

(9) 
( 10) 

It is not hard to define the data dependencies by considering equations 9 and I 0. Letting 

a, b, c, d, e, f, g represent the intermediate and final DWT coefficients (assuming a six 

tap filter) as seen in fignre 4.11 below we have: 

~ 
High .2 Hl 

N 
sa.mpl a 

• Low .2 Ll 

N/2 b samples 

r- High f2 N/2 d samples 

H2 

~ 
High .2 1- N/2 c samples H3 

... Low f2 f-L2 N/4 e am les 

• Low t2 L3 

Figure I 

Data dependencies in filter bank 
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1st OCTAVE 

b(O) ~ g(O )u(O) + g( I )u( -I) + g(2)a( -2) + ....... g(5)a( -5) (II a) 

b(2) ~ g(O)a(2) + g( I )a( I) + g(2)a(O) + ......... g(5)a(-3) (lib) 

b(4) ~ g(O)a(4) + g(l )a(3) + g(2)a(2) + .......... g(5)a(-1) (lie) 

b(6) ~ g(O)a(6) + g( I )a(5) + g(2)a( 4) + .......... g(5 )a{ I) (II d) 

c(O) ~ h(O)a(O) + h( I )a( -I)+ h(2)a( -2) + ......... h(5 )a( -5) (II e) 

c(2) ~ h(O)a(2) + h( I )a( I)+ h(2)a(0) + .......... h(5)a(-3) (II f) 

c(4) ~ h(O)a( 4) + h( I )a(3) + h(2)a(2) + ......... h(5)a( -I) (II g) 

c(6) ~ h(O)a(6) + h(l )a(5) + h(2)a(4) + ........... h{5)a(l) (llh) 

2nd OCTAVE 

d(O) ~ g(O)c{O)+ g{l)c{-2) + g(2)c(-4) + ......... g(5)c(-10) (lie) 

d(4) ~ g(O)c(4) + g(l)c(2) + g(2)c(O) + .......... g(5)c(-6) (lit) 

e(O) ~ h(O)c(O) + h( I )c( -2) + h(2)c( -4) + ........ h(5)c( -I 0) (II g) 

e(4) ~ h(O)c(4) + h(l )c(2) + h(2)c(O) + .......... h(5)c(-6) (II h) 

3rd0CTAVE 

f\0) ~ g(O)e(O) + g(l)e(-4) + g(2)e(-8) + ......... g(S)e(-20) (IIi) 

g(O) ~ h(O)e(O) + h(l)e(-4) + h(2)e(-8) + ......... h(5)e(-20) (llj) 

As seen in the above equations, several intermediate results (c,e) are first computed, and 

then these are used to calculate multiple output samples. The intermediate results must 

be available for further processing at a specific time instant, implying a memory 

requirement in the proposed architecture design. 
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4.4 FINITE PRECISION •:FFECT 

The accuracy of the DWT coefficients is detennined by both the precision of the input 

data, and the wavelet filter coellicients. Reconstructed Image quality measurements 

results depend proportionally on finite precision effects. Moreover data and coefficient 

precision are important parameters in the design of DWT architectures. High accuracy is 

required to achieve suitable image quality, but hardware constraints only permit a 

certain level of accuracy and thesis paper intends to investigate how accuracy of filter 

and data coefficients affect image quality in order to produce an optimal design. 

In terms of hardware requirements, the DWT coefficients are recursively calculated 

using equation 5, where W represents wavelet coefficients of a certain stage and h, g 

represent the corresponding filter coefficients. If The precision of Wand hare assumed 

to be j and m bits respectively, then to execute equation 5, a j x m bits multiplier and 

accumulator is required. 

A useful measure of accuracy of DWT coefficients is the Sib'llal to Noise Ratio (SNR). 

Here, the signal is the floating point DWT coefficient and noise is the difference 

between the floating point and finite precision coefficients. In a particular design the 

perfonnance variation for 1 D signal with respect to the precision of filter coefficients 

with fixed 12 bits DWT coefficients and data was observed to be 50-70 dB SNR (15]. 

Furthennore, it was also observed that when 20 data was involved a decrease in the 

SNR results. 
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4.6 IMAGE QUALITY 

Signal To Noise Ration (SNR) was briclly described as a useful measure of' the accuracy 

of DWT coetlicients. In practice this is not the only available method to measure image 

quality. Other image quality measurements are available to access quality of 

reconstructed image. These measurements provide powerful tools for accessing 

pertimnance of DWT architectures. 

4.61 SUBJECTIVE AND OBJECTIVE IMAGE QUALITY 

Objective measuring employs formulas that represent certain information about the 

image so that a comparison can be made. In other words these formulas relate the 

original image to the reconstructed image in some way. In particular, the 

Root-Mean-Square-Error (RMSE), and the Peak Signal-to-Noise Ratio (PSNR) are very 

common formula applied to reconstructed images. Given an image represented by f and 

the reconstructed image represented by g, the RMSE is given by: 

RMSE~ 

L n L n [f{iJ)-g(iJ)J' 
i-1 j-1 

N' 
( 12) 

This value is measured in dB and is the standard deviation of the error of the 

reconstructed image from the original image. Also, PSNR is a parameter derived from 

the RMSE as follows: 

PSNR ~ 20 log 10 ( 1/:,Sfi) ( 13) 

Wbere I is the maximum image intensity, i.e. for a 8 bit pixel it would be 28 -I ~ 255. 

Also a further parameter is termed Mean Square Error (MSE) and is simply lbund by 

squaring the RMSE value. 
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Typical PSNR values have been tilund (311 for different compression techniques. These 

values are typical of good performing architectures. It is desirable that the proposed 

architecture produces similar results to the ones seen in table 4.1 bellow. 

Building Block Compression Bit Rate PSNR(dB) 

Technique Bits/Pixel 

Predictive coding 20 Differential I 27.74 

Vector Quantization Level 0 mean residual 0.5 26.9 

tree structured VQ 

Transform Coding JPEG 0.5 34.69 

OCT 

Subband Coding Subband Coding with 0.56 32.71 

VQ 

Subband Coding Subband Coding with 

FZW 0.50 36.28 

Table 4. I 

PSNR for different compression techniques 

Generally, tbe higher the PSNR the better tbe results obtained. Table 4. I suggests that 

the FZW coding technique is one of the best techniques to achieve a high PSNR. A 

PSNR of 30 dB or higher is considered sufficient for most good quality image coding 

systems. 

Subjective image quality measurements use the most crucial test, the human eye. The 

eye is very sensitive to poorly reconstructed images, many artefacts can be distinguished 

very quickly, hence it can be a valid tool to measure image quality. 
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CHAPTER 5 

DWT ARCIIITECTIIRES 

5.0 ARCHn'ECTURE CONSJD~:RATIONS 

The aim of this thesis is the implementation of discrete wavelet transforms through an 

etlicient architecture. Several designs are researched, these share a common criteria or 

have the same objectives; increasing throughput, decreasing area and attempt to make 

better use of computational components within the system. 

Five important arquitectures will be discussed before a proposed architecture is 

presented. The existing architectures have unique features which makes them suitable 

for research. It is hoped to extract these beneficial features from the existing 

architectures in order to produce the recommended model. 

5.1 SYSTOLIC ARCHITECTURE 

Kung defines a systolic system as a network of processors which rhythmically compute 

and pass data through the system [35]. In other words, the data within the system is 

'pumped' through the processors, which perform simple, local computations on the data. 

Furthermore, although the operations being performed may not be equal in all 

processors for a particular time-step, the data-movement and computations throughout 

the complete system are in synchronisation. The connections in the network are simple 

and local, and there is at least a single time-step required to move data from one 

processor to the next. The major benefits ofthis architecture as reported in [35] are: 

, Simple and regular connectivity 

. Concurrency . 

. Local communication operations 

. Balanced 1/0 and computation 
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Furthcnnore. Systolic designs arc typically highly pipclined, providing a high throughput 

for image coding applications. The architecture shown in figure 5.1 implements the I D 

DWT and requires a transposition memory to fully implement the 2D DWT. In other 

words. to implement the 2D DWT transfOrm, two modules (one for row transfOrm and 

another tbr column translbnn) are used along a transposition memory [331. Much 

scheduling is required if the 2D DWT is to be achieved by this architecture, hence most 

systolic designs are employed in one dimensional architectures. 

Systolic desib'llS require 0(n 2 ) area (dominated by the storage bank) and 0(n 2 ) time 

where n is the number of pixels in the image. Vishwanath [35] has produced some ofthe 

most interesting implementations of the systolic based architectures including the 20 

DWT Direct Implementation Architecture, and also the popular Systollic-Parallel 

Architecture. 

The effects of block filtering are also discussed by Vishwanath. Blocking allows the 

selection of the required data-word storage ( by adjusting the block size), but requires 

some considerable attention to the edges of the blocks to ensure that blocking artifacts 

are not introduced. The hierarchical nature of the 2D DWT complicates the edges 

considerations, and Vishwanah also noted that the required blocked input to the system 

is not convenient or typical of an image processing system. 
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Intennediate fonv.arding 

Fig. 5.1 

Systolic type architecture 

Memory 

Storage 

5.2. LI\.TTICE FILTER TYPE ARCHITECTURE 

Output 

A very simplistic architecture based on lattice filters, as shown in figure 5 .2, is 

employed in [36}. This architecture is based on properties that the four ( in this case) 

coefficients Daubechies wavelet coefficients yields. The parallel pipeline is typically 

used in lattice type filters in order to get a high throughput Furthermore, the pipelines 

are balanced, which means the parallel pipelines have almost the same number of 

process stages thus the pipeline latency and the registers in the circuits can be saved. 
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A definite advantage of this type of architecture is that multiplying operations, typical of 

other systems, are replaced by shifting and adding operations and no shift register are 

used. Shifting in this case is realised by the direct connections of the filter due to the 

constant shifting bits. 

The architecture has a problem with overflow which in order to avoid, it is required that 

suitable word length of the address are further reduced. A further disadvantage is that 

the architecture is highly non modular and a complete new design is usually required to 

achieve higher filter lengths. 

The architecture shown in figure 5.2, and reported in [36J has a high throughput of 2 

outputs per clock and 5 clocks pipeline latency. The synthesised architecture contains 

5058 gates and can reach II 0 M pixels/s when LSI-I Ok CMOS technology is used. 

Fig. 5.2 

Lattice type architecture 
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5.3 PARALLEL ARCIIITECTIIRES 

While the systolic architecture is very simple and follows a datanow oriented approach, 

it lacks the high speed benelits which can be expected when data is processed in 

parallel. Bae and Prasanna [371 have described a two dimensional architecture aimed at 

parallel J/0 and is highly suitable for high ti·ame rates. For a block size of b « n where 

n is the number of pixels in the image, this design uses b filters in parallel as a row 

tilter. and a similar ( but slightly larger) sized column filter. Double butTering 

techniques are used to allow new results of the row filtering to be stored while the 

previous results are being column-filtered in parallel. 

A typical parallel architecture is shown in figure 5.3. This model consists of three 

parallel filters and a storage unit. The parallel filter structure is similar to other parallel 

architectures presented by other authors. First, the horizontal filter HF is used to 

generate a highpass filtering output (H) at a positive clock cycle. During the negative 

clock edge, the HF filter generates the Jowpass filtering output These two resultant 

filtering outputs will then be stored in the corresponding Jowpass (LR) and High Pass 

(HR) register banks. Then, the two horizontal filtering outputs (H and L) stored in the 

above register banks can be further decomposed by the vertical filters VFI and VF2 

generate the four vertical filtering outputs to achieve the dimensional transform. 

The operation of the vertical filter is exactly the same as the horizontal filter, the 

highpass and Jowpass filtering output of data from the horizontal filter is processed at 

the respective clock cycle. Finally, all the resolution levels of the DWT's can be 

iteratively generated by the filters HF, VFl and VF2, where a current level of filtering 

data is computed in the exact idle cycles of the previous level. 
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The storage unit is typically composed of several registers banks. Each register bank is 

used to temporarily store the filtering data that have been output from the horizontal 

filter. Input for the vertical filtering computations is therefore coefficients from the 

horizontal filter stage. 

In summary 2D-DWT Parallel architectures work very similar to systolic type 

architectures, many of the sys:tollic model benefits apply to parallel models. Again this 

means filtering data and then recursively feeding the low part component to the filter 

network In the parallel filter case,. the most valuable feature is that data can be 

processed in parallel, hence increasing the. throughput of the system. But t_he increase in 

speed is only at the cost of extra hardware which may be important when considering 

single chip designs. 

Storage Unit 
IN " HI L. LUV LLL, ... 

Parallel Filter (HF) I " II st Shift Register Bank (HR) I (LR) I ~ 
~ 

.. I 2nd Shift Register Bank (HR) I (LR) I 4- .:· LLL. LLLLL ... 
.:" Parallel Filter (VFl) . ....- . 

LL,LLLL, .. . 
LH, LLLH, .. . . 

4- I mth Shift Register Bank (HR) §1 ;; LLH, LLLLH ... .. Parallel Filter (VF2) .. ' ....... 

HL, LLHL, .. . 
HH, LLHH, .. . 

Fig. 5.3 

Typical parallel filter architecture. 
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Typical parallel architectures need around N2 clock cycles to compute all the resolution 

levels of a DWT where N is the number of pixels in the image. Furthermore, low cost 

can be expected in tenns of components required to implement the architecture; a 

programmable parallel lilter, a storage unit, and a control unit, being the only few 

components required. However, as seen in figure 5.3, this architecture has a large 

number of adders, multipliers, and registers. It has been shown that th~; number of 

elements in the architecture is highly dependent on the size of the filters employed 1371. 

For large filter lengths this architecture may not be suitable for single chip designs. 

5.4 2D-DWT PROCESSOR TYPE ARCHITECTURES 

Processor type architectures are becoming more predominant in the field of image 

coding [38]. Previously, processor designed architectures suffered from the very high 

access times caused by memory components. Also, expensive high speed processors 

were required in order to achieve the computational power required to perfonn the 20 

DWT. More important, the cost of these systems was impractical for any worthwhile 

commercial program. However, as technoiOb'Y has progressed, the cost and speed of 

processors have significantly changed. Today, typical processor architectures can 

achieve significant speed at a very low cost. A processor designed by Chen Xuyun and 

others [38] can reach a computation speed of 4 M pixels/s with 7140 gates fitted on a 

single Field Programmable Field Array (FPGA). LSI_IOK CMOS technology was used 

in this design, higher packing densities are assured as technology progresses, ensuring 

higher future computational speeds .. 

Processor designs are very simple, as seem in figure 5.4, a frame memory to store the 

image data and a 2D-DWT processor are the only elements. The processor generates, 

amongst other things, control signals, and row/column addresses to process the image 

data stored in frame memory. The 2D-DWT processor is typically divided intQ. two 

parts, as seen in figure 5.4. The first part is a 2D controller, and the second part i~ a 

ID-DWT processor. 
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Processor type designs rely heavily on data shilling from frame memory to the right 

processor tbr computation of the DWT cocfiicicnts. Correct scheduling of data from 

memory to the processor is important to produce correct results. The control unit which 

takes care of the correct scheduling and eiTcctivcly controls of the data path of the 

system, consists of a I D controller and a 2D controller. The 1 D controller controls the 

data path unit to process I D-DWT coellicients, the 2D controller controls the I D-DWT 

processor to process the 20 DWT coetlicients accordingly. 

In order to improve the computational speed of processor designs architectures, many 

methods such as pipelining, and other clever techniques are employed. Typically, the 

timing relation between read/write operation and data calculation can be arranged 

delicately. This means that while the data is being calculated in the Data Path Unit, the 

controller can be reading the data which will be calculated in the next time and write the 

result data which has been obtained from the last calculation. Obviously this 
1multitasking' of operations requires very careful consideration and planning to the 

overall control and data path unit of the system. 

The processor type design architecture is ideal in producing systems that require a 

Digital Processing (DP) type architecture. This means that the architecture can easily be 

programmed to account for different situations, for instance the way data is taken 

through the data path, the DWT coellicients calculations, and even how the overall 

operation is performed can easily be accomplished. This gives indication that this 

architecture is highly suitable for researching 20-DWT architectures. Because the 

architecture is highly portable, the best DWT filter coefficients could be easily 

evaluated. Also, due to its Digital Processing nature, it is likely that it can be easily 

adapted for producing coefficients in a given way, such as required by the DFS-EZW 

algorithm. 
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The best example of a commercial implementation for the wavelet transform on a 

processor 1ype architecture is Aware's Wavelet transform processor (WTP) [38]. This is 

a single chip that is capable of 2, 4 or 6 tap wavelet transforms and is cascable for larger 

filter widths. However, Control is required for any further stage~ i.e. handshaking 

between the blocks. The processing is performed by a 16 bit, 4-stage filtering pipeline, 

and the control of the chip is largely software based. Daubechies coefficients are built 

on to the WTP, or the user can pre-load their own sele.ction of a.naly~is or synthesis 

wavelet coefficients. OR the other hand the designer of this architecture make no 

attempt to mention the high latency involved when the WTP is used to process 2D-DWT 

coefficients. 

2-D Controller 
Control Bus 

~ 
Row Address Y 

' Frame 

,. 

I 
·~ 1-D Conlroller I 

Column Address X .Memory 
DPU : lA 

Data.Bus 
1-DDWT ' . 

2-DDWT . 

Fig. 5.4 

Processor designed architecture 
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5.5 RECURSIVE ARCmTECTURE 

A very popular architecture has been described as a Recursive type architecture [39]. 

Some of its most useful features are cost effectiveness, optimised data-bus utilisation, 

scheduling control overhead reduction, and storage size reduction. 

The Architecture behaves closely with the way Mallat's pyramid algorithm performs the 

2D-DWT Furthermore, the operatiou is similar to the systolic filter architecture in 

which data 'flows' through the system as it is transformed. Little memory is \L~ed. to hotd. 

the DWT coefficients and the only Latency experienced by such a system is caused by 

the transposition memory as shown in figure 5.5. 

The architecture shown here uses the Daubechies four tap DWT filter to perform the 

lD-DWT transform. This transform is followed by a further ID-DWT block to achieve 

two dimensional coeffi_cients. The main_ problem experienced by this architecture is that 

complex routing. and incomplete rlHta. bus. utilisation are. experienced. Complex routing 

results from the fact that the low pass DWT coefficients are fed back to the same 

memory as the original input data (the transposition memory), and requires careful 

consideration. Also, if data is fed back from lower octaves, it is most likely to have a 

higher resolution than input data, hence requiring a wider data bus. However, since this 

data bus is the in,_nut data. bus then extra bits located here will be unused for part of the 

time. In other words hardware utilisation is not effective when this. architectw:e is used. 

L--···-·--··-.l 
first 1 D DWT filter module second 1 D DWT filter module 

Fig 5.5 

Recursive Architecture 
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5.6 RECOMMENIH:() ARCIIITECTIIRE 

Several Authors 140431 have identilicd the Multiply-Accumulate (MAC) operation as 

the kemel of various digital signal processing algorithms. All the architectures discussed 

have used a MAC (or more) in some way. Furthermore, it can be shown that a Finite 

Impulse Filter (FIR) is nothing more than a collection of MAC cells connected in some 

way [42]. When using the recursive approach, the 20-DWT transform can be reduced 

to a combination of I D-DWT transfonn along the row data of the image. The resulting 

data is then transformed column wise along a further I D-DWT. 

The I D-DWT transform can be loosely treated as a filtering operation in which data is 

passed through a high pass tilter then low pass filter network. The low pass filter output 

is then further pass through a high pass, low pass filter network. In terms of data 

handling, the transition from row processing to column processing, can be realised by 

use of a transposition memory or by scheduling methods in which data path control is 

used to achieve the transposition of rows to columns. 

Finally, it is important to prepare a specifications list for the proposed architecture. The 

recommended architecture will attempt to satisfy the specifications in the best possible 

way. However, previous research indicates that a 'win-loose' situation is likely to be the 

most common outcome. 

Proposed Architecture specifications list 

1. Modular. 

2. Simple. 

3. Yields good reconstructed image quality (compared to original). 

4. Fast computation time, may be used in real life applications . 

5. Must fit overall DFS-EZW coding system .. 

6. Must have small die size. 
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A suitable architecture block diagram for the proposed model is shown in figure 5.6. 

The architecture looks very similar to Vishwanath Systolic-Parallel architecture [3]. The 

systollic-parallel architecture has the main property of dispersing higher level 

computations amongst the lowest level computation. 

Vishwanath employs two ID systolic modules to process the row data as it enters the 

architecture in a serial fashion. 1bis results in ID-DWT coefficients which are stored in 

a memory bank, the size of this memory bank is dependent on the filter width. From this 

memory bank, parallel filters perform filter steps of the column operations, the results of 

which are connected to the routing network in the ID systolic modules to interleave the 

higher level computations onto the filtering arrays. Finally, results are available on a 

serial form at the output. Vishwanaths's systollic-parallel architecture is shown in figure 

5.6a for comparison purposes. 

"'-... 
Imagemput 

Fig. 5.6 
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The proposed architecture is an improvement over the 5ystollic-army architecture. First, 

the architecture employs a single systolic filter and single parallel filter to perform the 

2D-DWT. This is due to the lact that lilters arc designed so that low as well as high 

pass coetlicients arc calculated in the same clock cycle. This may require higher 

scheduling but the savings on cost, which also relate to die size, are t3r more significant. 

Next, the filters are desi!:,7Jled using a modular approach .. This means that for instance if 

the target device, i.e. FPGA, capacity increases then the lilter le"b1h can easily be 

increased without redesigning the whole system from scratch. The systollic-pararell 

architecture uses a filter size dependent memory storage area. In this desi!:,rn, memory 

dependency on either, image size, and/or filter len&'1h is also an unfortunate 

disadvantage. 

The proposed architecture is also designed to fit the DFS EZW system, unlike the 

systollic-parallel model which fits a general 2D-DWT architecture. 2D-DWT data is 

generated according to the Depth First Search strateb>y. DFS Bitstream Results are 

available in parallel to individual parallel EZW processors which can then increase 

computational speed of the whole system. 

60 



5.7 XI LINK XC4(HHHI 

The MAC unit presented in this paper consist of a modular (sec VIIDL design) type 

MAC cell. In order to be consistent with the small die size, the word sizes must be 

carefully chosen to balance the size of the implementation, which is limited by the target 

device density. 

In order to consider design issues, The Xilink XC4000-series FPOA is assume to be the 

target device to implement the DWT architecture. The importance of chip size can be 

measured in terms of gates. Typically 20-DWT achitectures employing 4-tap filters use 

less than 10000 gates on a target device. A Xilink XC4000 consists of an array of 

Configurable Logic Blocks (CLBs), each of which has several inputs (FI-F4, 01-04) 

and outputs (X <Y and XQ, YQ). Each CLB also contains both random logic, and 

synchronous elements in addition to the speciat.purpose logic functions. 

The XC4000 series contains both local and global routing resources. The local resources 

allow extremely low delay interconnection of CLBs within the same neighbourhood, as 

well as more extended connection through the use of switching matrices. The global 

resources provide for the low-delay distribution of sib'llals that are used at widely-spaced 

points in the array. The speed of a particular application is highly dependent on routing 

in the Xilink FPOAs. The XC4000 family includes parts ranging from 8x8 CLB arrays to 

24 by 24 CLB arrays. Ail of these devices are in-system programmahle. Low power 

versions of many of these parts are also available. 
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5.8 MAC IMPLEMENTA11:0N 

The basic elements in the MAC unit can be defmed as a multiplier, and adder and 

register or delay unit- Furthermore, since the multiplier most of the time consists of 

adders and gates performing A-ND Boolean functions, it can be said that the MAC unit 

consists entirely of adders and registers. 

The multiplier employed in most designs uses a combinational array of adders to 

achieve multiplication as seen in figure 5.7. Where a combinational array multiplier is 

used. the width of the multiplier is dependent on the precision of the data and filter 

coefficients to be multiplied. An eight bit data representation is typicaL If the filter 

coefficients are also 8 bit precision, then in this case a 64 element device, requiring 64 

CLBs on a FPGA is required. Furthermore Since some filter coefficients are negative, 

then the multiplier must be configured for signed two's complement notation by 

generalising the adders in the combinational array multiplier as discussed in [43]. 

Generalised adder configurations can be seen in figure 5.7b bellow. 

Type Logic Symbol Operation 

r-1--f>r-lH->!---,-+>r--c-+>r-r-1->r<-t>r-r-~ p., 
r,4 

Type A Cell x~s (-X)·Y=(·S) 

y 

z 

X~; 
X 

Type 0 Full Adder y 

+~ 
cs 

y 

z 

r, 
X~; 

X 

Type 1 Full Adder y 

+~ 
C(-8) 

y 

z xq; . X 

T ypa 2 Full Adder . y 

~ 
(-C)S 

y 

z 

X~; 
. X 

Type 3 Full Adder y 

+~ 
(-C)(-S) 

y 

Fig.5.7 Fig. 5.7b 

Combinational Array Multiplier Generalised full adder cells 
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The MAC also contains adders to summate the result of the multipliers. Multiplication 

of an 8 bit precision data with 8 bit filter coeflicicnts, results in data of 16 hit wide. 

Careful consideration must be given to the precision of multiplication data, which can 

be very wide. Again research indicates that much higher precision is used, specially in 

the filter coefl'icicnts which can be very wide, needing many bits to be represented 

accurately. This results in very wide adders which may not suit single IC 

implementation. Further considerations to data and filter coefficients precision are given 

later in VHDL desib'll. 

The performance of the MAC unit with an 8-bit by 8-bit multiply and 16 bit 

accumulator is determined by the speed of the multiplier. The Combinational multiplier 

seen in figure 5.7 has a reported delay of 100 Ns [9]. Also the MAC employed in [9] 

can support a clock speed better than 10 MHz. With the use of the horizontal longlines 

to distribute the critical path signals, the speed can also be further improved, although 

this may restrict the use of the MAC unit in various system configurations. The single 

stage of a four tap MAC unit took 73 CLBs to implement on the XLINK XC40000. 

5.9 FIR FILTER IMPLEMENTATION 

The purpose of the MAC unit is to form the sttucture of the Finite Impulse Response 

(FIR) filters used in the coding system. The transfer function of such a filter is given by: 

( 14) 

The sttucture of the filter can be realised in many ways as seen in figure 5.8. The most 

common structure used is the canonical structure or inverted structure. This structure 

provides a simple design , data flow approach, and is suitable for achieving high 

sampling rate even for higher order filters. 
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FIR Filter Structures 

5.10 MEMORY BANK 

(a) Canonic florm 

+ ------

(h) Pipeline.d Form 

+ ------

(c) Inverted Form 

The memory bank is the area where intermediate coefficient values are temporary stored 

as they are processed from individual lD-DWT modules. Current non-separable designs, 

which includes the proposed architecture, employ image or filter length dependent 

memory banks. However, the use of memory banks is a major disadvantage of 

non-separable architectures because of the latency involved with data shifting between 

the memory and the computational units. 
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Many designs use shill registers as the memory storage area. Designs usmg this 

rnetholob'Y usc efficient methods like Forward Register Allocation (mA) or 

Forward-Backward Registration Allocation (FBRA) to have very small storage areas. 

The main advantage of these systems is that the cost associated with memory is very 

small, also memory can be an internal part of the whole architecture. However, this 

architecture can only perform the I 0-0WT, to perform the 20-0WT requires a 

transposition memory to be used between individual 1D DWT units. 

Using a transposition memory between 10-0WT modules to achieve the 20-0WT is a 

valid solution but does bring some problems to the performance of the architecture. 

First, the transposition memory will cause an increase latency. Also, the transposition 

memory is highly dependant on the size of the image that needs to be transformed and 

thus is not suitable for transforming images of an arbitrary size. 

The proposed architecture also uses a memory as a storage area where intermediate 

coefficients are located. To attempt to produce an architecture that can process an 

arbitrary image size, then a large external SRAM memory is proposed. The static ram 

has low cost and can have a large storage area. Access to read and write to this memory 

is also very fast and so latency is reduced. 

The process to perform the 20-0WT transform can now loosely be defined as that of 

MAC units perfonning one dimensional wavelet coefficients These Coefficients are first 

processed row by row by the systolic filter and fed to the memory bank by the control 

unit. Next, the coefficients are process column by column by the parallel filter. 

20-0WT data from the parallel filter is finally sto.-ed in the memory bank by the control 

unit. Finally, lower frequency transformed data can be fed back for lower level 

decomposition as required. 
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5.11 CONTROL UNIT 

The proposed architecture have chosen systolic filters because these filter require no 

control, hence simplify the operation of the architecture. However, the use of a memory 

storage area between the systolic filters requires that scheduling is carefully devised so 

that no errors are produced in the wavelet coefficients. The purpose of the Control unit 

is therefOre to control the data path of the architecture. Furthermore, the control unit 

receives signals (see VHDL design) which allows it to set the memory storage area 

accordingly and hence process images of fairly arbitrary size. Also, the control unit 

redirects data according to the decomposition level applied or desired. Finally, data 

streams following the DFS strategy are made available in parallel by the control unit. 
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CHAPTER 6 

VHI>L IMPLEMENTATION 

6.0 VHI>L FOR HARDWARE DESIGN 

VHDL stands for Very High Speed Hard Ware Description Language and is a powerful 

tool for functional verification and commercially available logic synthesis tool fOr 

synthesis verification[44]. A suitable architecture has been proposed for implementing 

the 20-DWT, it is desired to verifY operation of the proposed architecture and to access 

real time applications performance. Similar architectures have been synthesised in 

VHDL [3], these show performance capable of real time applications where fast 

computational time is required. The proposed architecture employs only two systolic 

filters and a memory storage area, which in con.iunction with a control unit can achieve 

the 2D transform. 

The objective of VHDL implementation is to verify operation of the proposed 

architecture. Since functionality is the main concern, the structures that employ the 

architecture are described, in VHDL, at more of a behavioural level than a structural 

one. However, structural models are also given consideration as these ultimately 

comprise the synthesisable model. Further research opportunities are then provided to 

finalise the structural model which requires much timing issues to be resolved. 

The basic unit for a VHDL description is the design entity. An entity in VHDL may 

describe a system at different levels. For example, it may model some combinational 

logic with a set of Boolean equations, or contain an abstract description of a whole 

system. Entities can then be connected together allowing complex desih>nS to be broken 

down into simpler blocks. 
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A VHDL entity, as seen in figure 6.1, can be described in two parts. The first part is an 

entity declaration that describes the inputs and output of the entity. The second part is an 

architecture body that describes what goes on between the input and output ports .. 

Fig.6.1 

VHDL Design entity 

Enlity 
declaralion 

Architecture 

body 

VHDL is a powerful development software and allows designs to be described at 

different levels. In practice, RTL code or synthesisable code can be produced even from 

the most abstract or at the highest level of development. However, structural written 

VHDL code matches more accurately the final circuit operation. Timing operations and 

data path control are the most important aspects occurring at structural written code. 
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Code written at the top level is written in a very abstract way and includes the system 

description in terms of what it docs. Typical entities written at this stage may include a 

Microprocessor and the inputs and outputs to this system. Usually, no consideration is 

given at this level to the form of input and output, hence it can be real or integer 

numbers. 

6.1 HARDWARE FOR IMPLEMENTATION 

The hardware chosen to implement the DWT transform is the Field Programmable Gate 

Array (FPGA) which has a widespread use in the development of Application Specific 

Integrated Circuits (ASICs). FPGAs are used in what is called 'semi-custom' hardware 

design. The main advantage of the use of FPGAs in ASIC logic circuit design is that 

they make circuit fabrication much quicker because all the necessary hardware is 

already fabricated in silicon. FPGAs are prefabricated integrated circuits containing sets 

of logic blocks, which contain gates, flip-flops, multiplexers and RAM, etc. This 

ready-made hardware is then 'wired together' by the designer to create the desired digital 

logic circuit. 

The integrated circuit making the FPGA contains Configurable Logic Blocks (CLBs) 

and input/output (I/0) blocks. Each contigurable logic block contains flip-flops and 

logic gates. The configurable Logic Blocks are then connected to form desired lob>ic 

which is then connected w the I/0 pins. Connections are made by programming the 

connections into the FPGA's own internal memory that then controls the switching 

matrices. 
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6.2CONTROL 

All scheduling of the proposed architecture is performed by a control unit which takes 

care of the data path and scheduling required by the.DWT process. Since the proposed 

architecture uses systolic filters (see filter design), then no control requirement is 

required for the filters. It is for this reason that systolic filters are commonly used for 

implementation of the 2D-DWT. 

The main job of the control unit is then simplified to the task of delivering the correct 

data which could be either input data, intermediate DWT data or output data to the right 

location for processing. In order to simplifY design of the control unit an image of size N 

x N is considered as it is exposed to the proposed architecture. 

First, it is assumed that this image is to be decomposed by the 2D-DWT transform and 

that the image is square, i.e. it has the same number of rows as columns. The image is 

'Clocked' through the first systolic filter, again this requires no control as the filter 

produces a result for every clock cycle . A~iter N 2 cycles, the image ha..s been through the 

first systolic filter and a lD-DWT transform of the image is placed in the memory bank 

by the control unit. Control lines are available, row and column, in the control unit that 

determine the memory address space required. The image located in memory after being 

through the systolic filter and place in the memory bank consists of low and high oass 
• • & 

coefficient data as seen in figure 6.2. 

1 1o 1 h 1 h 1 h 

I h 1 1o 1 h I h 

I h 1 h 1 h l h 
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I • I h I h I k 

I h I • 1 • 1 h 

I h I • 1 h I h 

I • 1 • 1 • 1 k 

Fig.6.2. 

Systolic filter output to the memory bank 
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According to the wavclctting process, rows of the image arc first passed through a low 

and high pass liltcr. This has been just achieved by passing thr.: rows of the image 

through the systolic filter in the architecture. The image in the memory bank now 

consist of low and high pass coefficients. It is now required that the low pass and high 

pass filter coeflicients arc applied column wise to the systolic filter to achieve the first 

level 20-DWT transform. 

Consider how the image is stored in memory after the first row transformation took 

place, since the image is size N x N then memory addresses N toN would contain the 

transtOnned image. If memory was to be mapped at this stage, the following contents 

will be revealed. 

2K +I for K~ 0, I ,2,3 .. K-1 contains all the high pass coefficients 

2K for K~O,I ,2,3,4,5 .... K-1 contains all the low pass coefficients. 

From this observation, the first level control algorithm can be derived; 

While not done (A bit sent after N x N Clock cycles, hence image transfer) 

{ 

Let K~O (initialise memory pointer) 

On positive clock cycle ( Low pass filter of systolic filter takes place at this stage) 

Memory write to location 2K 

increment K 

On negative clock cycle( High pass filter of systolic filter takes place at this stage) 

Memory write to location 2K + 1 

increment K 
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Secondly, columns of the transposed row image need to be process for the 2D-DWT 

transform. This takes place in parallel by the second parallel filter which is also a 

systolic filter. The control unit has to ensure the correct transformed columns are send to 

the parallel filter for processing and store the intermediate result back to memory. The 

result of this operation is the first level 2D-DWT. The parallel filter processes the high 

and low pass filter components of the row transformed coefficients in a column fashion 

and the control unit writes the results of this back to memory. The resultant image in 

memory now consists of two dimensional low pass and high pass coefficient data as 

seen in figure 6.3. 

Fig. 6.3. 

First level, two dimensional coefficient data in memory. 

More importantly, the original row transformed image located in memory space N x N 

is replaced by the first level 2D-DWT coefficient data generated by the parallel filter. 

This scheduling control is very important as otherwise very large memory is required 

for higher level decompositions. 
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The task or the control unit is hence to send both the high pass and low pass row filter 

coetlicients to the parallel filter. Concurrently executing processes arc possible in 

VHDL making this an ideal tool in development of parallel circuits. 

Low and High pass row transfonned coeflicients can be then transformed by the parallel 

t\lter to achieve 20-DWT as already discussed. A suitable algorithm can also be 

developed by examining the location of the low and high pass coefficients in the 

memory bank; 

For all elements in row transtbnned image ( N x N) 

On positive clock cycle (required to synchronise process) 

When done ( image was transfonned and placed in memory) 

for m~O to Columns -I increment 2 ( for all columns containing low pass 

coefficients) 

for n~O to Row-! increment I ( for all elements in odd columns) 

memory read n + Column x m 

On negative edge (parallel filter can process one 2D-DWT coefficient per cycle) 

memory write 2D-DWT coefficient (and repeat for loop for other elements) 

Resuming the process so far, a N x N image is row transfonned by a systolic filter and 

the resultant row coefficients are written to memory. The row coefficients are then 

column transfonned by a parallel fitter and the first level 2D-DWT is written to 

memory. Further level decomposition, involves exposing the low pass 2D-DWT 

coefficients to the same procedure. 
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It has hcen seen that Mallat's implementation of the 2D-DWT involves a recursive 

pyramid where the low pass DWT coefficients are further broken down by further 

decomposing them. In this design Mallat's recursive pyramid to implement the 2D-DWT 

is also followed. The reason lOr this is that Mallat's recursive pyramid is a computational 

cllCctivc way to implement the dimensional transfOrm. 

The function of the control unit for higher level decompositions is to control the data 

path so that the low pass 2D-DWT coetlicients are again send to the transtbnn process. 

This is equivalent to the recursive processing of the low pass components in Mall at's 

algorithm. Again, with reference to figure 6.3, the location of the low pass coefficients 

in the image in memory can be used to develop a suitable algorithm; 

For all elements stored in memory N x N space 

when done 

For m~O to row- I increment m by 2 (for all even rows) 

( 

} 

for n~O to column- I increment n by 2 (for all even columns) 

memory read address~ n + column x m ( send data to row filer ) 

Write result of row transformed 2D-DWT to memory. 

Not all coefficient elements are transformed by this algorithms. At the second level of 

decomposition, only odd rows and columns of the transformed image are required to be 

processed since these contain the low pass coefficient data required. In other words, 

only the iow pass coefficients of the first level decomposition are send to the row filter 

for further decomposition. Also, because not all first level coefficients are affected by 

the above algorithm (only odd columns and rows) then some coefficients of the original 

first level transformed image remain unaffected by the above algorithm. The resulting 

image located in memory consists of a row transformed 20-DWT coefficient data as 

seen in figure 6.4. 
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Fig.6.4 

Low pass coefficients resulting from the first levei2D-DWT are row transformed by the 

systolic filter. 

The above process has performed the ID-DWT to level one 2D-DWT coefficients by 

filtering the low pass two dimensional coefficients. In order to achieve 2D-DWT 

coefficients at the· second level of decomposition, columns of the row transformed 

2D-DWT coefficients need to be processed accordingly. Again, the low and high pass 

coefficients of the row transformed data at the first level of decomposition is processed 

column wise by the parallel filter. This results in level 2 2D-DWT coefficient data 

produced. The control unit is again responsible to control the data path so that the right 

coefficients are delivered to the parallel filter. Finally, results are written to the proper 

location in memory by the control unit 
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Tht.! same process or low and high pass Jiltcring can he aprlicd to existing octave 

coeflicients. Each level breaks down the low pass Iiiier coefficients by applying Mallat's 

pyramid algorithm. Again, ligurc 6.4 can he used as a base to dcvclor a suitable 

algorithm; 

For all 2D-DWT lirst level elements 

when done 

for m=O to column- I increment m by 4 

fOr n=O to row- I increment n by 2 

memory read address= m +column x J ( low pass coefficient) 

on negative clock cycle 

) 

write result ofeolumn transfonned (21evel) to memory 

For all 2D-DWT coeflicients first level elements 

( 

For m=2 to column -I increment m by 4 

For n=2 to row -I increment n by 2 

) 

memory read address ~ m + column x J (LLH elements to parallel 

filter) 

write result to memory ( these results. together with the LLL results are the 

2D-DWT coeflicients at the second level of decomposition ) 

The decomposed image now contains second octave 2D-DWT coefficients as seen in 

Figure 6.5. Further decompositions are possible, each decomposed image containing 

fewer and fewer bits representing the low pass wavelet coefficients. 

76 

• 



Fig.6.5 

2D DWT coefficients when a second level decomposition is involved. 

The process of iterating the low pass filter coefficient for further octave breakdown is 

termed dilation [ 6]. Theoretically, the process can be iterated infinitely with each level 

producing low pass coefficients which can be further decomposed. However, ifN data 

elements are available and N = 2n then a maximum of D dilations or decomposition 

levels can be applied to the image. 

6.3 VHDL ARCHITECTURE IMPLEMENTATION 

In this section the proposed architecture is implemented in VHDL using Synopsis and 

Peak:VHDL software. During the design process, the top-down design method is 

followed . In doing this, two models of the system are created and simulated using 

VHDL. The first model as seen in figure 6.5, is an abstract behavioural model. This 

model is intended as an operational model more than a synthesis model. An operational 

model is referred to as the model where the architecture is considered as a black box or 

a single operational entity. Several inputs such as data, filter coefficients, control lines, 

etc. are used without much consideration to their format. These inputs work with the 

entity to produce wavelet coefficients which are then fed to further stages of the coding 

system. 
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Fig. 6.5 

Behavioural 2D DWT VHDL code block diagram. 

As indicated previously VHDL is a very powerful language, even code at this abstract 

behavioural level can be translated to synthesis type RTL code. Providing that the right 

libraries and translation tools, such as VHDL to Behaviour Block Intermediate Fonnat 

(VHDL28BfF) are/available, synthesis is possible from behavioural code. However, 

These translation tools can be very expensive, even Synopsys, one of the most powerful 

VHDL compilers, does not have this translating tool as a basic option and requires a 

very expensive upgrade to be able to use it. When we consider the basic Synopsys 

options are already expensive by themselves, then this option could be out of economic 

reach. Appendix a, has a guide showing how these tools could be used to translate 

VHDL behavioural code to RTL synthesisable code. The tool guide could be handy 

when the price of translating tools decreases and these become more predominant. 
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The purpose of the behavioural code model is mainly to define the second structural 

model parameters. Data precision. which determines width of multipliers, adders, and 

memory storage capacity, optimal filter lcnt,'ih, and optimal data path control are some 

of the useful parameters that can be obtained from the behavioural model. Structural 

VDHL code can be quite easily translated to Register Transfer level code which is then 

synthesised into the target device. Hopefully, the structural model will already be 

optimised with the most etlicient parameters found in the behavioural model. 

6.4 BEHAVIOURAL VHDL CODE 

The first behavioural model as seen in figure 6.5 consists of a single entity. In reality 

this entity can be seen to consist of several working functions. Each function 

theoretically could be separated into an individual entity. Indeed, the splitting of 

individual functions into modular entities is the purpose of the structural model. The 

behavioural model consists of a Test bench used to test the architecture, a 20-

DWT/IDWT block and a global block. VHDL listings are included in the appendix a as 

indicated bellow; 

l. IDWT/DWT. VHD The VHDL 20 IDWT/DWT Behavioural code. 

2. TB DWT/IDWT.VHD The Test bench used to test the behavioural code. 

3. GLOBAL. VHD The package containing global parameters. 

The above blocks are linked together, as indicated by figure 6.6., to fonn the 

behavioural test system. 
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Moreover, the behavioural model is used to determine structural parameters such as data 

precision and filter length. To determine these parameters, each individual block in the 

behavioural architecture is considered separately. 

GLOBAL.VHD 

A package that contains amongst other things global variables. This variables determine 

properties such as )he size of the memory bank and other temporary variables used 

intermediate result storage. At this stage precision of filter coefficients and data 

precision has not been considered. Instead, the Real VHDL type is used for precision of 

data. However, the Real VHDL type has a precision of2" where n is the CPU register 

width i.e. a 16 bit machine has n ~ 16 . The precision available when using Real data 

types is always umealistic for many single chip designs. The results of multiplications, 

in particular, can be twice the value of the CPU register. Large multipliers may cause 

the design to be deployed in multi-chip environment, complicating the design because of 

the additional handshaking and scheduling required. 
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On the other hand implementing the lirst behavioural model using real data types 

simplifies the design process, results can be easily interpreted and evaluated. An 

interesting tCature of VHDL is that it allows precision of real data types to be adjusted 

accordingly. This is done exactly in the same way as fonnatting a real type in C or 

C++. The width of precision of a real type can be adjusted by including the %n.n 

parameter after variable declaration. This gives a very powerful concept, being able to 

work with easy to interpret real variables, and adjusting the precision of the data type 

accordingly. Results can be then obtained from experiments which will give indication 

as to how precision of data atl'ects image quality. Also an optimal precision parameter 

tor the structural model will be detennined from experimental results. 

TB DWTIIDWT.VHD 

A standard test bench is created to test the behavioural 20-DWT architecture. The 

problem with testing image coding architectures is that it must be applied to an image. 

Most standard images have huge amounts of data, testing for all data in the image 

becomes a long, tedious process. The standard test bench, as seen in figure 6. 7, applies 

stimuli data to the Unit Under Test (UUT). Responses to these stimuli can then be 

accessed for evaluation purposes. However, as already stated, a standard image contains 

a huge amount of stimuli. Evaluation of every possible stimuli for responses would then 

take a huge amount oftime, which is not practical. 
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Fig. 6.7 

Standard Testing of stimuli 

Clearly a more practical approach is required to test architectures which work on huge 

amount of data. A second model of testing uses VHDL ability to handle files. Also, this 

model involves usage of Matlab to evaluate PSNR, a image quality measurement for 

reconstructed images. The second test model is an invaluable tool for testing 

architectures which handle huge amount of d.ata. It is simplistic and results are easily 

evaluated for errors using the Matlab software. 

The second test model, as seen in figure 6.8, is very simple. A file consisting of the 

image data is applied to the UUT. Other stimuli applied includes analysis/synthesis filter 

type coefficients, level of decomposition to be applied, and a synthesis or analysis mode 

Output of the test system is a text file which is the n level decomposition of the image, 

where n is the level applied in the stimuli. Matlab could be used at this stage to examine 

the decomposed image, this would give early indication that the decomposition stage of 

the DWT transform works effectively. 
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A better solution is to apply tbe n level decomposed image back to tbe DWT/IDWT 

architecture. The synthesis stimuli can be then selected for synthesis mode, indicating 

image reconstruction. The resultant Image file can be examined with Matlab, image 

quality measurements for the reconstructed image can be easily determined .. Using this 

approach a more efficient testing method is achieved, the full decomposition / 

reconstruction functionality of the whole architecture is tested for functionality. 
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The main functional component of the behavioural model is the DWT/JDWT block. 

This block is capable of implementing the 2D-DWT and its inverse to an image of 

arbitrary size and to a given level of decomposition and reconstruction. Although this is 

implemented by a single entity three functional blocks are evident; A computational 

unit, A memory unit, and a control unit as seen in figure 6.9. 
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Fig. 6.9 

DWTIIDWT Functional Blocks. 

The Computational unit IS responsible to achieve the Multiply and Accumulate 

functionality for the architecture. Furthermore, the function of the Low and High pass 

filters has been shown to consist of MAC operations. Control of the data path as well 

as memory scheduling control are achieved by the control !ffiit. The memory !ffiit is a 

generic, simple storage area. Intermediate coefficients are stored in this area in a two 

dimensional array. The length of the array is determined by parameters defined in the 

global package. Using a generic memory is advantageous since it allows processing of 

arbitrary image sizes. 

6.5 FILTER VARIATIONS 

It has been seen how important filter coefficients are in determining the accuracy of the 

wavelet coefficient~. It is advantageous to have an architecture that permits several 

filters to be employed in the same design and hence change quality of wavelet 

coefficients accordingly. For instance, certain filter coefficients produce less aliasing 

than others on images. 

The first behavioural model is design to produce an architecture that is capable of 

selecting between different filter coefficient selections. Experiments can be done on 

linages to see the 'best performing' filter. Several of the most common filter coefficients, 

including the HARR wavelet filter coefficients, and some of the most common 

Daubechies wavelet filter coefficients are included in the first proposed architecture. It 

is hoped that selection of an optimal filter for the structural model <;an be done by 

experiments on test images. 

84 



6.6 STRUCTURAL ARCHITECTURE 

The Structural model is closer to the synthesisable model or RTL model. In this model. 

the system is thought in terms of registers and how the data flows between them. Factors 

considered at this level were how the data flows between the processes, how the input 

data should be fed to the system. and how the results should be outputted. More 

importantly this model will take into account some of the constraints given by the target 

hardware and time becomes an essential parameter. 

The system functions can be summarised as a Multiply Accumulate operation or 

computation stage, and a recursive feeding back of low pass coefficient data to the 

process as seen in figure 6.9. In the first behavioural model, these system functions are 

not well defined as individual entities. On the other hand in the structural model the 

entities are well defined and interaction between them is critical for the operation. 

The most critical parameter of consideration when designing at the structural level is 

time. It is required to know exactly what happens at every clock cycle. This is typical of 

a structural type design. we have considered WHAT is the system to do at the 

behavioural design and now consider HOW • which indicates a time element, this is 

going to be achieved. 
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6.7 MODULARITY 

Many designers of2D-DWT architectures [36-391 have failed to implement modularity 

into their designs. In the proposed architecture, modularity is an essential issue. 

Technolob'Y is a dynamic area were many changes take place. The number of transistors 

integrated on a single chip is growing very fast [42], from 256 thousand back in 1985 to 

around 2 million in 1997 and is set to continue growing. This means that density in 

target devices (FPGAs), grows sib'llificantly with time. 

It is known that when implementing the 2D-DWT and its inverse, the reconstructed 

image quality is highly related to the filter length [23]. The objective is to produce an 

architecture which can easily be adopted to current technology and also addresses the 

filter length constraints. To achieve this results, the structural computational unit is 

designed using modular functional cells which can easily be linked together to increase 

filter length. 

6. 7 STRUCTURAL COMPUTATIONAL UNIT 

A parallel and systolic filter are the main components of the computational unit as seen 

before. The structural computational unit has functional cells which implements the 

filter functions. These functional cells can be linked together to form longer structures, 

increasing the number of filter taps accordingly. Three elements are evident in each 

functional cell. Futherrnore, beacuse both filters are systolic, each cell consists of the 

same elements, being; 

. A multiplier. 

. An adder . 

. A multiplexer . 

. Delay unit (D-Fiip Flop) 
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6.71 STRUCTURAL MIILTIPLCF.R 

Listed as MUL T.VHD in appendix c. the multiplier takes input data and multiplies it 

with the correct low or high pass coefficient. Data input to the multiplier can be either 

unsigned input data coming from the image data. or signed filter coefficient data. 

Multiplying a signed number with an unsigned number produces a signed result. To 

prevent possible errors image data is converted to a signed form and all operations are 

done using 2's complements form. VHDL allows standard arithmetic operations on 

signed numbers and produces signed results. AJso, signed to unsigned conversion 

functions are available in VHDL. These functions can be used to make output data 

compatible with input image data. 

lnput data of n bits precision multiplied by x bits precision coefficients can produce 

(n+x) wide products. Some products are required to feed back to the multiplier. fed back 

data now has a prec,ision of(n+x) bits. this data is multiplied by x bit tilter coefficients 

to now have (n+x)+x bits wide precision or n + 2x. Clearly at each level of 

decomposition the precision of results grows bigger. Obviously because of hardware 

limitations, a limiting factor needs to be determined and this is where the first 

behavioural model is usefuL 
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Another valid method to determine the optimal bit prec1sion of results is to consider the 

worst case situation tOr the inputs to the multiplier in order to detcnnine the result 

precision. Worst case methods highlight the maximum I minimum precision that needs 

to be resolved by the system. Consider the tO! lowing worst case scenario: 

. Input data has a range of0-255 requiring 16 bits to be represented . 

. Wavelet coefficients can have a maximum I minimum va;ue of ± 1.00. To represent 

this using tw0
1
S complement numbers requires J bit tOr :;ibJtl, I bit fbr integer part, 

and n bits for fraction part 

Clearly, the multiplier can have a worst case situation of 16+(2+n). It is the purpose of 

the first behavioural model to find the value of n for optimal performance. This is 

achieved by perfonning different fmctional coefficient precision transfOrmations on test 

images. The PSRN image quality measurement can be evaluated for the different filter 

wavelet fraction precision. 

I 
6.72 THE ADDER 

Listed as ADD. VHD in appendix c, the adder is capable of adding two 2's complement 

numbers and producing a result also in 2s complement form. A standard test image has 

been applied to the wavelet transform in the first behavioural model. Results of this 

simulations can be used to determine precision of the adder. The maximum output of 

the row and parallel filters determines the maximum precision data to be processed by 

the filter adders. Again, experimental data can be used to determine maximum adder 

precision. 
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6.73 THE MULTIPLEXER 

Listed as MUL T. VHD in appendix c . the multiplexer is a standard device used to direct 

tlow of tilter coetlicients or data according to a control line. In practice. the multiplexer 

is not necessary as the control unit discussed previously can also achieve the same 

result. However, in order to simplify the design simple control is required. Also 

multiplexers used in this architecture require no control as they operate using the system 

clock. 

6. 74 THE DELAY IJNIT 

Listed as OFF. VHD in appendix c. the standard D type fiip flop is used to achieve delays 

in data transfer. Delays are common structures used when Mallat1
S pyramid for the 

wavelet transform is used as the method ofwaveletting. 

6.75 THE MEMOJ{Y 

Listed as RAM. VHD in appendix c. the memory block is a generic memory structure. 

Four lines implement the memory operation, as seen in figure 6.10 bellow. Address, 

data and control lines determine behaviour of the memory which can be simplified to 

the following procedure: 

. When the read line is active, data in the data bus is copied to the memory 

address specified by the address bus . 

. When the write line is active, data in the specified address is copied to the data 

bus . 

. An enable I disable line is included to prevent read and write operations 

occurring at the same time. 
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Fig.6.10 

Generic RAM block 

6.76 STRUCTURAL CONTROL 

The purpose of the structural control is to provide the data path for the architecture as 

well as memory scheduling as explained section 6.2. Several timing issues need to be 

resolved before producing VHDL structural code. 
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CHAPTER 7 

RllSl/LTS 

7.0 INTRODl/CTION 

A behavioural model architecture has been implemented and verified in VHDL. The 

standard image "Lena" is a moderate complex image that has become a standard test 

image for image compression techniques. It is important to note that the 2D-DWT 

subband decomposition docs not achieve compression by itself, it merely decomposes 

the image into octave bands according to the level of decomposition applied. Since no 

image coding is achieved by the subband decomposition, the only results that can be 

measured are directly related to the decompos.ed image. In tenns of results there are 

three areas of consideration given to this design: 

. What filter gave the best performance in terms of image quality . 

. What level of precision (coefficients and data) is required to achieve 

acceptable image quality . 

. What is the throughput of the tested architecture. 

image quality can easily be evaluated by using the proposed behaviour architecture to 

decomposed a standard image. The inverse transform is then used to reconstruct the 

image. Matlab can then be used to determine statistical image quality data and results 

can be evaluated for performance of the proposed architecture. 
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7.1 RESULTS AND OBSERVATIONS 

The behavioural VHDL model has the ability of selecting between different filter types. 

The "Lena" image has been decomposed to level three octaves by the wavelet transform. 

Furthermore, the octaves are inverse transformed to obtain the reconstructed original 

image. Because the model is a loosy system, there will be differences between the 

original image and the reconstructed image. Matlab can easily evaluate for differences 

between the original and reconstructed images by calculating the Mean Standard Error, 

an efficient statistical image quality parameter. 

Filter 10-18 13-11 6-10 9-7 5-3 2-6 9-3 2-2 

MSEdB 26.8 26.1 29. 28.9 41.4 45.6 33.1 58.6 

' 

Table 7.1 

MSE for different wavelet filter coefficients 

Table 7.1 results in?icate the higher tap filter 13-11 produces the best results in terms of 

MSE. However, this requires 13 multipliers, 13 registers, 13 multiplexers, and 10 adders 

to be implemented in a parallel filter. The same amount of components are also required 

in the systolic filter. Clearly in terms of cost and die size, it is impractical to have a 

13-11 tap filter. Shapiro's EZW algorithm originally used Antonnini's 9-7 tap filter [25]. 

Results from this filter yields similar results to the 13-11 tap filter but use less 

components in the filter. 
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Also, it is desired to know the affects data precision have in reconstructed image quality. 

Higher precision will yield better results but since there is a hardware limit to the size of 

the multipliers and adders which can be implemented into a single chip, an optimal 

value needs to be established for the structural model. In this simulation, as seen in table 

2, precision of wavelet and filter coefficients for the fraction part is assumed to be the 

same. 

Number ofbits 10-18 13-11 6-10 9-7 5-3 2-6 9-3 2-2 

used 

3 82.01 79.95 54.83 71.57 3.38 1.3 16.4 0.28 

4 79.4 74.31 55.8 69.12 2.8 0.61 14.07 0.11 

5 78.1 73.01 54.78 68.87 2.62 0.27 12.89 O.o3 

6 77.41 72.39 54.29 67.31 2.57 0.12 12.34 O.oi 

7 77.16 71.02 54.06 67.02 2.55 0.06 12.08 O.oi 

-

Table 7.2 

Filter and data precision MSE dB results 

Table 7.2 indicates, as expected, that higher preclSlon results in higher quality 

reconstructed images. Filter length also determines how this precision affects 

reconstructed image quality. It is observed that for low tap filters, precision of wavelet 

and filter coefficients is irrelevant. The last observation is very useful, if single chip 

designs imply lower tap filter structures, then precision of wavelet and filter coefficients 

can be discarded in the design. 
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7.2 OliTCOMES 

The first behavioural model serves as an experimental model. Simulation results can 

lead to optimal parameter definition for the second structural model. Based on 

simulation results, the following outcomes can be specified; 

!tow systolic filter: 

Inputs: 

. Input to the filter can either be data for the image or intermediate coefficient 

data. Since intennediate data has more precision than image data, input to the 

row filter should be a 16 bit, two's complement number with I bit si!,'ll, 8 bits 

integer part and 7 bits for fractional part. To achieve this unsigned image data is 

converted to the right format before being applied to the row filter . 

. Filter coefficients can be represented by a I 0 bit twos complement number 

consisting of I bit sign, I bit integer, and 8 bits fraction part. 

Multiplier: 

The structural multiplier takes a 10 bit coefficient and 16 bit data input giving a 

precision of 26 bits for results. However, the maximum data input and coefficient input 

is ( ± 1 x 255) ~ ±255. Hence, a 17 bit twos complement number is sufficient to 

represent maximum or minimum condition. Thus, results are rounded of to 17 bit 

precision number. Rounding off has an insignificant affect on reconstructed image 

quality because filter lengths are kept relatively small. 
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Adder: 

Signed 17 bit results of the multiplier can be added from previous stages which are also 

17 bit signed. A 20 bit adder should be sufficient to account for addition of two 17 bits 

signed data. 

Parallel filter: 

This filter is very similar to the systolic filter since it uses the same components. 

However, because it operates on lower octave data, higher precision input is expected. 

On the other hand, data output from the row systolic filter is rounded off before being 

placed in memory. Due to the rounding operation taking place at the row systolic filter, 

input data to the parallel filter has the same precision as input data to the row systolic 

filter. Again, due to the low filter length employed, no significant image quality 

degradation occurs due to this rounding of data, but the design is 0'featly simplified by 

using the same data precision through the architecture. 

Finally, a further outcome from the behavioural model is the optimal filter length 

required for the structural model, sometimes referred to as the number of filter taps. It is 

desired to use longer filter taps because they yield better performance. On the other 

hand, very long filters may not suit a single chip design. Furthermore, despite having 

poor reconstructed image quality, low tap filters are independent on coefficient and 

filter precision to produce good results. The 4-4 tap filter configuration is an efficient, 

single chip, data precision independent design used successfully in wavelet architectures 

[39]. 
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7.3 TIIROUGIII'!JT 

The proposed architecture has been accessed in terms of size and quality requirements. 

A very important measurable quantity is the throughput of the proposed architecture. 

This quantity indicates how long it takes to decompose and reconstruct an image and is 

an useful indication of the architecture performance because real time applications such 

as digital video decoding I encoding require high throughput. 

Throughput can easily be measured once the time to decompose or reconstruct an image 

is measured. Consider an image with N number of elements, to calculate the 

architecture's throughput for this image the following applies; 

I Throughput ~ 7 ( 15) 

Where N is the total number of pixels for the proposed architecture and T is the time it 

took to perform the simulation. 

When the "Lena11 image was 2D-DWT wavelet transformed to level 3 octaves, the 

simulation took 17212400 nanoseconds. Throughput is found by applying formula 15, 

with N~256 x 256 and T ~ 17212400 ns. The DWT part of the architecture can process 

around 38 MP/s or 38 million pixels per second. The decomposed image was then 

applied to the inverse transform and once again a throughput of around 38 MP/s was 

obtained. Hence the throughput of the DWT/IDWT is 38 MP/s. Real time video signal 

processing requires throughput higher than 30 MP/s . Clearly, the proposed architecture 

is suitable for real time applications. 
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7.4LATENCY 

The separable approach makes usc of I 0-0WT modules and memory storage to 

implement the 20-0WT. This approach is a simple, straightforward solution which is 

adopted by many 20-DWT architectures. Furthennore, The separable approach based 

architectures have the advantage of simple design and produce coefficients which are 

well localised in time and frequency. On the other hand it is recob'llised [37] that latency 

tor this systems is too long and the needed memory space used between row and column 

DWT processes is large causing problems for single chip desib'llS. 

Clearly, as the level of decomposition increases the overall latency increases due to the 

recursive nature of the separate approach. It is for this reason that the separable 

approach has sometimes being defined as non suitable for real timt.~ signal processing 

[17] .. 

To prevent the latency-memory problems of the separable approach some authors have 

proposed using non separable architectures [37]. These architectures are highly suitable 

for real time signal processing applications. However, the non separable approach yields 

wavelet coefficients which are not well localised in frequency and time. Coefficients 

resulting from this non separable approach appear as blocky artifacts when the image is 

reconstructed much like the DCT transform produces blocky artifacts for low bit rates. 

Current research is taking place for removing deficiencies in non separable as well as 

separable methods for subband transformation. 
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7.5 COMPARISON TO OTHER ARCHITECTURES 

Wavelet transform architectures form part of larger image coding systems. In terms of 

results, the 2D DWTIIDWT architecture is rarely tested for performance on its own. The 

approach taken all the time is to test the whole coding system rather than individual 

entities within the system. Several wavelet architectures [36-39] have been proposed and 

verified for performance. Performance of all architectures is measured with the same 

objectives; high-speed, small size and efficient designs . Some designs cover certain 

areas better than others. The proposed model also has its own benefits and 

disadvantages as seen in bellow. 

Archicteture Folded Digit Systolic !Direct [ 11] systollic- Parallel Sheu Propo-

[2] [2] [3] (processor) parallel [13] [4] -sed 

[11] 

Multipliers 16 14 24 - 4L 4L 16 8 

Adders 14 12 24 - 4L 4(L-1) 16 6 

Registers 164 258 48 N 2NL+4N 2NL+N 108 8 

Scheduling Complex. Simple Simple Complex Simple/C Simple Simple Simple/ 

omplex complex 

Period na na na 4N N+N N+N na N+N 

Here ,L is the filter length, N is size of image, and na means not applicable 
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7.6 INPUT OUTPUT CONSIIlERATIONS 

Although no consideration has been given to input and output of data from the proposed 

behavioural model architecture, in the structural model these are very important if the 

system is to function properly. Input to the architecture consists of image data stored in a 

tile. This data is send through a s~rial input in a row major fOrm. Handshaking is 

essential tOr proper timing between input of image data and recursive feeding of higher 

octave data. 

The raster scan method indicates the order in which subbands or wavelet coefficients 

flow from the wavelet architecture. These subbands are the output of the architecture to 

the EZW quantiser which operates on the coefficient bitstream received from the 

wavelet transfonn. The Depth First Search (DFS) approach is an alternative way to 

encode wavelet coefticients from the 2D-DWT architecture. From the point of view of 

the quantizer, the only difference is the way in which the coefficient bitstreams arrive at 

the quantiser. 

In this design, the programming ability of the processor design architecture is employed. 

The reason for this is that output is easily controlled to achieve desired results. In this 

case, the output is a parallel bitstream of DFS coefficients. Again, there is a require.ment 

for handshaking to occur. The wavelet transform sends coefficient bitstreams which 

follows the hierarchy of the tree from the root to the children in the DFS strateh'Y­

Further bitstreams should not be processed until the quantiser has finish encoding I 

decoding the current bitstream. 
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l 
CHAPTERS 

8.0 CONCLlJSION 

In the last decade, there has been an enormous increase in the applications of wavelets 

in various scientific and industrial applications . The major contribution of wavelet 

theory is to relate the discrete time tilterbank with the theory of continuous time space. 

Furthermore, wavelets can been shown to have far superior features fbr image 

processing applications such as; 

. Adaptive time-frequency windows 

. Lower aliasing distortion for signal processing applications 

. Computational complexity of O(N), where N is the number of data samples . 

. Inherent scalability 

. Efficient VLSI or VHDL implementation. 

Since DWT requues intensive computations, in particular the 20-DWT, several 

architectures have been proposed to efficiently implement this function. However, while 

some architectures have tried to address some issues such as speed, complexity, or cost. 

It is always a 'win-loose' situation. For instance, the parallel filter architectures [35] 

addresses computation speed but fails to address die size and cost. Other efficient 

architectures, such as the systolic architecture [35], achieve the 20-DWT with very 

simple designs and achieve high computational speeds but fail to address latency and 

have large memory storage requirements. 

There is a clear need for designing and implementing a DWT chipset that explores the 

potential of DWT particularly in the area of high computational speed and suitability 

for the EZW based coder. In order to achieve the requirement of high computational 

speed and suitability for the EZW coder the following architectures have been 

considered 
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. The Parallel architecture lOr its high computational speed . 

. The Systolic architecture for its simplistic design ICatures . 

. The direct (processor based) architecture for its ability to adapt to multiple 

applications . 

. The recursive architecture 

The sytollic-parallel architecture [35] has been implemented and verified in VLSI. In 

this architecture the 20-DWT is implemented by dispersing higher level computations 

amongst the lower level computations. Two one dimensional systolic modules are used 

to process the rows as the data enters the architecture in a serial fashion. Results of this 

processing are stored in a memory bank that is dependent on the filter width. From this 

memory bank, parallel filters perfonm filter steps of the column operations, the results of 

which are connected to the routing network in the one dimensional systolic modules to 

interleave the higher level computations onto the filtering array. The routing within the 

block memory prevents any blocking affects being introduced in the transfonm. 

The proposed architecture looks and operates very similar to the systolic-parallel 

architecture. However, there are some key differences which makes it uniquely 

different; 

. Modular filter design enables easy future filter expansion 

. The proposed architecture is designed to suit the EZW based coder 

. Digit type control enables output of coefficients in a raster type fonmat or DFS 

fonmat. 

. Output is made available in parallel to suit DFS EZW coding system. 
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A suitable architecture for the EZW based coder has been presented. The architecture 

employs systolic-pararcll filter to implement the non-scparahlc 2D-DWT. Simulation 

results indicate a high throughput for the employed systolic filters. However, it was also 

observed that a high latency resulted from the usc of a memory storage area. This 

latency was further aggravated by the recursive nature of the non-separable approach 

taken. 

Results obtained in simulation experiments show a throughput of 38 MP/s for the 

behavioural model. However, when compared with the throughput of I 00 MP/s for the 

lattice based architecture and separable transfonn type architectures, it is clear that early 

results indicate an unsuitable or marginal system results if the recommended 

architecture is used. To improve this latency situation many authors [37] have proposed 

using different scheduling approaches and methods such as pipelining to increase 

throughput. 

The proposed architecture was verified by implementing a behavioural model in VHDL. 

The purpose of implementing an architecture in VHDL is to verifY that it operates 

properly. After verification the architecture can be synthesised into a target device such 

asaFPGA. 

When implementing the architecture in VHDL, the Top Level approach was followed. 

First, an abstract behavioural model was developed. The purpose of this model was; 

. Simulate the behavioural architecture 

. Define parameters and specifications for second structural architecture . 

. Obtain experimental data such as optimal synthesis/analysis filter and data nrecision 
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A structural arctitecture model is also considered . This second model will be written in 

a structural fonn and will be closer to the synthesisable VIIDL code. The main issue in 

the second structural model is time, it is required to know precisely what data 

movements and calculations occur, at every clock cycle. 

In designing the tina! architecture a first behavioral model was created and certain 

assumptions about how the overall architecture will operate were made. The first 

behavioural model verified these assumptions through the use of simulation 

experiments. For instance, the minimum binary word lengths that can be used, which 

allows for some optimisation in the second structural model, are determined. Also, the 

first behavioural model can be used to determine the effects on image quality by using 

different data precision, filter type, and rounding off. 

The second model is used to define the registers that will be contained within the final 

implementation of the system. This model will take into account how the data is taken 

in the system and also outputted. Optimal data precision found in the first behavioural 

model can then be implemented at this second model. 

Results of the first behavioural model have been examined. These results indicate that 

the behavioural model design does implement the 20-DWT to an arbitrary level of 

decomposition. Also requirements have been placed on the second structural design by 

analysing experimental simulation results. Furthermore, these results indicate that the 

architecture can be considered efficient, in terms of computation speed, image quality, 

and suitability for the EZW based coder. Real time applications such as digital image 

encoding/decoding will require that attention is paid to the high latency of the proposed 

system. 
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8.1 FliRTIIER WORK 

A suitable behavioural architecture has been verified by the VI-IDL Synopsis tools. 

Results obtained from simulations indicate proper functionality of the proposed 

architecture. rurthennore, specifications have been obtained from the first behavioural 

model that will be implemented in a second structural model. 

Work has been undertaken towards second structural model, basic structural functional 

units have been implemented and verified. Simulation results indicate that these basic 

structural cells operate properly. However when these cells are placed together to fonn a 

working system, much consideration must be given to time which requires to know 

precisely what data movements exist in the architecture at every clock cycle. 

Development of the control unit which schedules the data path for the architecture has 

not being achieve at this stage. Further work is required to complete the control unit and 

develop the structural model. Finally, a working structural model can be synthesised m 

a target device. 

8.2 CONCLUDING STATEMENT 

A suitable 2D-DWT for the EZW coder has been presented and verified in VHDL. The 

opportunities for further research are excellent, a structural design is to be finalised and 

optimal data path control can be developed to reduce latency. Image coding applications 

are growing sharply, the need for a more efficient and powerful image coder provides 

sufficient motivation for future research. 
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Users' Guide: VHDL Behavior to FPGA 
Implementation 

Who should use this Manual: 

Page I of 14 

This Manual is intended to serve as a Users' Guide for synthesizing 
a Behavioral VHDL description onto the Xilinx FPGA Hardware. The 
use of the tools described in the Guide requires the basic 
knowledge of the various steps involved in the synthesis of a 
behavioral description into a hardware implementation. Also, it is 
assumed that the user has the basic knowledge of VHDL syntax 
and semantics and the use of Synopsys tools for simulation. At 
every step, we have included an illustrative example (tic example), 
showing the inputs and results of that step. 

Set-up: 

The following steps should be performed for any design to be 
synthesized using the tools described in this manual: 

• Uncomment the following lines in your '.cshrc' file: 
set _use_synopsys_tools 
set use xilinx tools - - -

• Include the fotlowing command in your ".cshrc.local" file, in 
order to set up the use of Xilinx M1 tools 

source /paclcages/Xilinx/setup 
• Copy the following two files to your home directory (or make 

necessary changes to them if you already have them) 
.synopsys vss.setup 
.synopsys dc.setup 

• Create a directory called 'synopsys_work' in your home 
directory 

• Include the following command in your ".cshrc.local" file in 
order to set up the use of all the other required tools 

set path = ($path 
/home/ddel/public_html/projects/asserta/bin) 

Design Flow 
The following are the tasks that ought to be followed in order to 
synthesize a behavior VHDL description onto an FPGA device. The 
names within parenthesis denote the tools that are used to 
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accomplish the corresponding task. 

• Behavioral Description in VHDL and RTL Correspondence 
• Simulation at Behavior Level (Synopsys tools) 
• Translation- Behavioral VHDL to Intermediate Format 

(vhdl2bbif) 
• Simulation after Tmnslation (Synopsys tools) 
• The Component Library Specification 
• High Level Synthesis (asserta) 
• Translation- RTL Intermediate Format to VHDL (rtl2vhdl) 
• Simulation at RT Level (Synopsys tools) 
• Logic and Layout Synthesis (rtlvhdl2fpga) 

Given below is a figure depicting the entire design flow. 

Behavioral VHDL 
N Specification 

Success? 
Simulate Behavior 

y Translation 
(vhdl2bbif) 

Coaponent Library 
Si.JIIulate Specification 

/ 

High-Level Synthesis 
(asserta) 

Translation 
(rt12vhdl) 

Simulate RTL 

Logic/Layout Synthesis 
(rt1vhd12fpga) 

FPGA Bitmap 

Figure 1. Design Flow 
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Behavior Description in VHDL and RTL 
Correspondence 

VHDL is a language designed to describe hardware components for 
simulation. As such, it permits virtually unlimited number of data 
types and other features to model hardware behavior. The whole 
gamut of such features however creates problem when one thinks 
of synthesis. The mapping from VHDL des:riptions into hardware is 
often confusing, when all VHDL constructs are taken into account. 
Moreover, some constructs in VHDL are purely for simulation. 

We synthesize a VHDL (subset) behavioral description into a RTL 
design based on the Glushkovian model (see figure below), 
consisting of a data path and a controller. The datapath consists of 
a netlist of components picked from the component library and the 
controller is a finite state machine. 

I /0 CLOCK RESET START FINISH 

DESIGN 

FLAGS 

DATAPATH CONTROLLER 

(Netlist of complUents) (Finite Stote MachDiel 

CONTROLS 

Figure 2: G1ushkovian 
Model 

The components in the datapath implement the operations specified 
in the behavior. The controller provides control signals that 
sequence these components, thereby executing the behavior 
specified. Note that the RTL design in addition to the design 1/0 
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ports (as specified in the behavior), also consists of four special 
signals: Clock (in), Reset (in), Start (in) and Finish (out). The way 
the RTL design comminicates to the environment is as follows. The 
Reset has to be made high for one clock, following which the design 
inputs can be placed and the Start signal is made high for one clock, 
indicating to the hardware that the inputs have been placed. The 
design then executes for several clocks and makes Finish high, 
inidicating to the environment that the outputs have been produced. 

In the following section, we will give an overview of the VHDL subset 
that we propose for synthesis. 

Behavior VHDL Subset 
This section provides a quick reference to the behavior vhdl subset 
that is supported for synthesis. It is assumed that the reader has 
prior knowledge about VHDL syntax and semantics. Interested 
readers may refer to the document "Appropriate Usage of VHDL : 
The Svnthesis Point of View", for a comprehensive discussion of 
the VHDL subset for general purpose synthesis. The following list 
describes the behavior VHDL subset that is supported: 

· The VHDL file : Should consist of a single entity and 
architecture pair describing the design to be synthesized. 

· Entity interf<;~ce : Port declarations of mode IN and OUT are 
supported. Array of ports is not supported. 

• Architecture declarative part : Signal and Constant 
declarations are supported. Signal initilalization is supported. 

• Architecture description : Should consist of a single process 
describing the behavior of the design. In general the notion of a 
behavior can be defined to be an algorithmic specification of 
the functionality of the design. For example, if you need 
synthesize a sorter, you could write the bubble-sort algorithm. 

• Process declarative part : Variable and Constant declarations 
are supported. Variable initialization is supported. 

• Process description : 

• Simple Signal assignment of the form "signal_ name 
<= expression" is supported. 

• Simple Variable assignment of the form 
"variable_name := expression" is supported. 

• Note : It is highly recommended for correct synthesis 
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that design ports be read into variables at the 
beginning of the process, and design ports be written 
to at the very end of the process. 

• The Control statements that are supported are : 
IF-statement, CASE-statement and the WHILE-loop. 

• Sensitivity list, Wait statements and after clauses are 
ignored. 
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· Data Types : The following data types are supported: "bit", 
"bit_ vector", "std_logic", "std_logic_vector'' and "integer". Note 
that for the integer data type, the user can provide a synthesis 
pragma "--$width" in order for specify an implementation width. 
If the pragma is not provided, a default of 16 bits is assumed 
for any integer. For example, the declaration 

"variable X : integer; --$width = 4" 
indicates that X should be implemented as a four bit register. 

· Arithmetic Operators : The following two's complement 
operators are supported: "+", "-", "*"and "f'. Note that for 
division the component library currently has a power of two 
divider. The user may use a synopsys divider to perform 
generic division as long as he provides it in the component 
library. 

· Relational Operators : The following operators are supported: 
"=" ">" "<" ' ' 

• Logical Operators : The following operators are suppe>rted: 
"and", "or", "not". 

Example behavior VHDL Specification :Traffic Light Controller 
{tlc.vhd) 

Simulation of the Behavioral VHDL specification using 
Synopsys tools 

In order to very that the design written in behavior VHDL is correct, it 
needs to be simulated. The next step is to write a design testbench 
in VHDL, for simulation. The Synopsys vhdl analyzer and vhdl 
simulator can be used as shown below, to simulate the behavioral 
description: 

vhdlan <design.vhd> 
<testbench.vhd> 

vhdlsirn 
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<testbench configuration> 

Note : IEEE synopsys library currently has a bug related to 
assignment statements (for example A := B + C; ). It expects the 
width of the output (A) to be equal to the inputs' width (B or C) in the 
case of+ and - operators. Whereas the output width should actually 
be one more than the input width. Therefore for the purpose of 
simulation, the specification has to be remodeled using IEEE 
package functions, CONV_INTEGER and 
CONV _STD_LOGIC_ VECTOR. However, for translation into the 
intermediate fomnat (bbif) these inputs must be in their original form. 

Illustrative Example: TLC 
TestBench Specification 
tlc-tb. vhd 
Commands used 
tlc.vhd tlc tb.vhd 

E 
Output of Simulation process 

vhdlan 

vhdlsim 

beh.out 

Translation - Behavior VHDL to Behavior 
Block Intermediate Format (bbif) 

l 

Command: 

vhdl2bbif [options] 
<design_vhdl filename> 

-b <filename> 
Publish BBIF. 

. . 

-bv <filename> : 
Publish BBIF in VHDL. 

If <filename> not provided, 
standard output is used. 

The next step is to translate the behavior description into an 
intermediate format suited for high-level synthesis. The vhdl2bbif 
translator takes the behavior vhdl description and produces an 
internal representation of the design. in the Behavior Block 
lntemediate Fomnat (bbif) that can later be provided to the 
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high-level synthesis tool (asserta). The vhdl2bbif translator can be 
invoked as follows: 

vhdl2bbif -b design.bbif -bv 
design_bbif.vhd design.vhd 

• Input : design. vhd - vhdl file containing the behavioral 
specification of the design. 

• Outputs : 
• design.bbif- BBIF (ascii file) containing the internal 

representation of the design. 
• design_bbif.vhd- BBIF (vhdl file) that containing the 

internal representation of the design. 

The BBIF ascii file along with a Component Library file serve as 
input to the Synthesis Tool asserta. The BBJF vhdl file contains the 
same internal representation of the design, except in a simulateable 
form. With proper insertion of wait statements at appropriate places 
in the BBJF vhdl file, it can be simulated along with the original 
testbench that was written along with the behavior vhdl file. 

The BBIF although being an intermediate representation, is in a 
high readable and understandable form. Designers may edit the file 
in order to make any meaningful last-minute changes before going 
through high-level ~ynthesis. Also if the user wishes to specify newly 
designed RTL components (other than the ones that we have 
provided) then a knowledge of the correspondence between the bbif 
and component libary is necessary. We provide here a brief 
description of the Behavior Block lntenmediate Format (bbif). For a 
more detailed description, interested readers may download a 
postscript version of the BBIF document. 

The Behavior Block lntenmediate Format has only one data type, 
which we call a carrier. A carrier is represented in the file as a tuple 
"(X 16)", denoting that the carrier X is 16 bits wide. The bbif file 
consists of the following sections: 

·Name of the design specification, denoted by "(SPEC 
.... )". 
·A list of carriers denoted by "(IN PORT ..... )" that 
represent the design input ports. 
·A list of carriers denoted by "(OUTPORT ..... )"that 
represent the design output ports. 
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·A collection of Behavior Blocks, each block beginning 
with a "(BB Block_name ..... ". 
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Each Behavior Block (BB) can be viewed as a procedure in a 
conventional programming language. A B8 consists of the following 
sections: 

• The name of the block. For example "(88 8/k_5 .... " 
• A list of carriers that a formal inputs to the block. For example 

"(88 8/k_5 ((X 16) (Y 17) )",denotes that X and Yare formal 
inputs to 8/k_5. 

• A list of carrie•s that are locals to that block. For example, 
"(LOCAL (P 5) (Q 8))". 

• A list of carriers that are constants. For example, "(CONSTANT 
(C 4 0101 ))". Constants have an extra field that denote that 
actual value of the constant. In this case, C represents the 
four-bit contant value "01 01 ". 

• A list of function statements, each statement of the form: 
stmt_number (function_name (input carrier names) (output 
carrier names)) 

Each operation in the input VHDL file is converted into a 
corresponding bbiffunction inside a 88. For example, if the VHDL 
file contains an equation of the form: 

/ a=b*c 
It is translated into a bbif function of the form: 

bb mult (b c) (a) 

NOTE : For each function name used in the bbif file, the component 
library must contain a component that can implement it. In other 
words, the function name must appear in the MODE field (see the 
following section that described the component library) of at/east 
one component in the component library. 

Illustrative Example : TLC 
Command used : vhdl2bbif 
-bv tlc bbif.vhd -b tlc.bbif tlc.vhd 
Translated BBIF VHDL file · tlc-bbif.vhd 
Translated BBIF file : tlc.bbif 

Simulation after translation( optional) 
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After the behavior VHDL file has been translated into the BBIF (acii 
and vhdl) files, the BBIF vhdl file must be simulated to ensure 
correct translation into bbif. With proper insertion of wait statements 
at appropriate places in the BBIF vhdl file, it can be simulated along 
with the original testbench that was written along with the behavior 
vhdl file. The translator modifies all data types and converts them to 
"STD _LOGIC_ VECTOR" data type. So, in order to successfully 
simulate the design at this stage, the test bench has to be suitably 
modified so that any data type other than "STD_LOGIC_ VECTOR" 
is converted into "STD_LOGIC_ VECTOR". For example, if the 
original behavior VHDL specification had a port declaration "Ain : in 
bit ", the translator converts this into the following port declaration " 
Ain : in std_logic_vector(1 downto 1) ". Therefore the testbench has 
to be modified to reflect this change as you will be simulating the 
translated bbifVHDL file. 

The file"bbif library.vhd" must be analyzed before analyzing any 
other files. This file contains a collection of functions that are 
required to simulate the bbif vhdl file. Again the synopsys simulation 
tools can be used: 

vhdlan <bbif_library.vhd> 
<design_bbif.vhd> <testbench.vhd> 
vhdlsim <configuration> 

Illustrative Example : TLC 
TestBench Specification tlc-tb.vhd 
Commands used vhdlan 
bbif librarv.vhd tlc bbif.vhd tlc tb.vhd - - -

vhdlsim E 
Output of Simulation : beh.out 

Specifying the component library 
For the purposes of synthesis, we have provided a standard 
component library "his components. lib" that can implement any of 
the basic operations specified in the behavioral VHDL subset 
described earlier. Each of these components also have a 
corresponding pre-synthesized counterpart that will be used by the 
synopsys logic synthesis tool. However, if the user wishes to use 
other component that he has pre-synthesized, then he can instruct 
the high-level synthesis tool recognize those compoents by 
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including them in the component library. 

In this section we will briefly describe the component library 
specification and its correspondence to the bbif file. The Component 
Library file consists of a list of component declarations. For each 
component declared in the component library there should also be a 
pre-synthesized synopsys component, that the synopsys tool can 
later use during logic synthesis. An example component declaration 
is given below: 

(COMP multiplier (input_ width output_ width) 
(CLASS ALU) 

) 

(MODE bb_mult) 
(INPORT (1 input_width)) 
(OUTPORT (1 output_ width)) 
(CONTROL) 

The declaration denotes that there is a pre-synthesized component 
called "multiplier". Note that the mode field denotes that component 
is capable of implementing the bbiffunction "bb_mult". Therefore 
the BBIF file and Component Library file have a direct 
correspondence. Every function in the BBIF file (example "bb_mult") 
must have a corresponding component in the Component Library 
file that can implement it, i.e whose MODE field contains the 
function name. 

If the user wishes t6 provide newly designed components, or 
change the components specified in the library that we have 
provided, he may do so adhering to the syntax specified in the 
Component Library Document. Note that the component library must 
contain some pre-<lefined components essential for high-level 
synthesis. 

The component library given as the Illustrative example may be 
used as the component library of any design that the user wishes to 
synthesize. 

Illustrative Example : TLC 
Use the Standard Component Library 
Specification : hls components.lib 

High Level Synthesis using asserta 
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Once the bbif file is obtained and the component library has been 
created, then next step involves performing High Level Synthesis. 
The following command should be used: 

asserta <bbiffile> <component library tile> 

The Synthesis process prompts the user to select a specific 
Resource Set (collection of components to be synthesized into the 
RTL datapath). The following query appears on the screen: 

Enter ~anges for Resource Sets 
(y/n) : 

The user can eitfler answer 'n' wherein the largest possible (fastest 
design) combination is synthesized. If the user answers 'y' and then 
he can explicitly specify the number of resources for each Resource 
that should be used. If the answer is 'y', then the user will be asked 
to enter the ranges for each Resource (the total number of 
resources of each resource type). For example, 

Enter Count for Resource Rl(l-4): 
The query shows that for resource R1, the maximum possible 
instances is four and the minimum is one. The user can choose a 
count of three instances to be synthesized, by entering 3 as the 
answer. 

The Synthesis process terminates with the following query 
I 

Enter name of the rtl file: 

Enter a file name where the output of asserta has to be stored. A 
good practice is to provide the design_ name here. 

Illustrative Example : TLC 
Command: asserta tlc.bbif tlc.comp 

Enter ranges for Resource Sets 
(y/n) : n 

Enter name of rtl file : tlc 

Synthesized RTL Output: tlc.rtl 

Translation - asserta RTL to VHDL using 
rtl2vhdl 

The output of the high-level synthesis tool asserta is also an 
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intermediate representation. This representation has to be 
converted into the corresponding VHDL RTL representation. To 
achieve this purpose, execute the following command. 

rtl2vhdl <component library file> 
<rtl file> <design name> 
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The component library file is the same file that was input to the 
high-level synthesis tool. This will produce 3 files containing the 
VHDL representations of the datapath, the controller and the overall 
design : design_name_dp.vhd design_name_con.vhd 
design_name_des.vhd. 

Illustrative example : TLC 
Command used 
tlc.comp tlc.rtl tlc 
Outputs of rtl2vhdl 

Simulation at RTL 

rtl2vhdl 

tlc dp.vhd 
tlc con.vhd 
tlc des.vhd 

The next step is to simulate the design at the rtl vhdllevel. In order 
to do this, modify your ".synopsys_vss.setup" file so that lib_fpga 
now points to the sjmulation library. That is, the following line should 
be uncommented 

lib_fpga : 
/home/ddel/public html/projects/asserta/rtl components/: 

and the following line should be commented out 

lib_fpga : 
/home/ddel/public_html/projects/asserta/rtl_components/: 

Once this has been done, the following commands are invoked: 
vhdlan <design_name_dp.vhd> 
<design_name_con.vhd> 
<design_name_des.vhd> 
<testbench2.vhd> 
vhdlsim <config_name> 

Ensure that the files are analyzed in the same order as specified 
above. 
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Illustrative example : TLC 
Testbench Spec : tlc tb.vhd tlc configs.vhd 
Commands used : vhdlan tlc_dp. 'lhd 
tlc con.vhd tlc des.vhd tlc tb.vhd 

Output of sim 

tlc_configs.vhd 
vhdls1m tlc_config 
rtl.out 

Logic and Layout Synthesis using 
rtlvhdl2fpga 
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The resulting RTL design (consisting of the three vhdl files along 
with the pre-synthesized RTL component library) must now be taken 
through the Synopsys Logic Synthesis tool (fpga_compiler) targeted 
for the Xilinx 4000 family. The fpga_compiler will then produce an 
"xnf' file that must then be taken through Xilinx M1 Layout Synthesis 
tools to obtain a bitmap file for the fpga devide. We have provided a 
script "rtlvhdl2fpga" that invokes the Synopsy fpga_compiler 
followed by the Xilinx M1 tools, to synthesize an RT level VHDL 
specification, onto any Xilinx FPGA device. 

Before running the "rtlvhdl2fpga" script, modify your 
".synopsys_vss.setup" file so that lib_fpga now points to the 
synthesis library. That is, the following line should be uncommented 

lib_fpga : 
/home/ddel/public_html/projects/asserta/rtl_components/: 

and the following line should be commented out 

lib_fpga : 
/home/ddel/public_html/projects/asserta/rtl_components/: 

The "rtlvhdl2fpga" script usage is as follows: 
Usage: rtlvhdl2fpga <arguments> 

The following arguments must be 
provided: 

<design_entity_name> 
(eg. tlc behavior) 

<device-speedgrade> 
(eg. 4013e-3) 
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<package> 
(eg. hq240) 

<rtl file name> 
(eg. tlc) 

Note: The following three files 
should be present in the 

current directory: 
tlc dp.vhd tlc_con.vhd 

tlc des.vhd 
Some useful outputs: 

xilinx/5 trace/tlc.twr -
design performance data 

xilinx/6 bit/tlc.ncd 
placed design, viewable using EPIC 

xilinx/6 bit/tlc.bit 
design bit map file 

xilinx/7 ba/tlc.xnf - back 
annotated xnf file 

For example, if your design name (entity name in the original 
behavior vhdl speyfication) was "tlc_behavior'' and the rtl file name 
that you provided.for the high-level synthesis tool (asserta) was "tic" 
and you want the implementation on a Xilinx 4013e chip, 240 pin 
package, with speed grade -3, then the following command should 
do it: 

rtlvhdl2fpga tlc_behavior 4013e-3 
hq240 tlc 

This command will create two directories "synopsys" and "xilinx", 
wherein the respective logic/layout synthesis tools will be run. The 
resulting bitmap file in the directory "xilinx/6_bit" can then be 
downloaded on the corresponding FPGA device. Also a back 
annotated xnf file in the directory "xilinx/7 _ba" is produced. This file 
can be converted to a "wir" file (using the tool xnf2wir), and the "wir'' 
file can be simulated using the Viewlogic "powerview" tool set 
(viewsim). 
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library ieee; 
use ieee.std_logic_ll64.all; 
use work.all; 
use scd.textio.all; 

entity tb_dwt is 
end tb_dwt; 

architecture testbench of tb_dwc is 

component dwt 
port(clk,reset: in std_logic; 

data in: in real; 
dataouc: out real; 
filter: in integer); 

end component; 

begin 

signal elk: std_logic; 
signal reset: std_logic:='l'; 
signal datain: =eal; 
signal dataout: real; 
signal filter: integer; 

UUT: dwt port map 
(clk=>clk,reset=>reset,datain=>datain,dataout=>dataout,filter=>filter); 

--Set up lOOns clock cycle {arbitrary!) 
clock:process 
variable clktmp: std_logic:='O'; 

begin 
clktmp:=not clktmp; 
clk<=clktmp; 
wait for 50 ns; 

end process; 

--Stimulus required ~ unit under test 
stimulus:process 

begin 
--Reset signal asserted to initialite unit 
rE'set<= '1' ; 

--Then after 2Sns (arbitrary) 
wait for 25 ns; 

--Reset taken low starts process 
reset<='O'; 

--Filter type signal sent to unit 
filter<=O; 

--Data to unit is supplied by file not stimulus 

--while not(endfile(cfile)) loop 
--readline{cfile,inlinel; 
--read(inline,inputdata); 
--wait until clk'event and clk='l'; 
--datain<=l25.0; 
wait for 50 ns; 
--datain<=l25.0; 

--end loop; 
--file_close(cfile); 
wait; 



end process; 

end testbench; 

configuration build of tb_dwt i-; 
for testbench 
for uut: dwt 

end for; 
end for; 
end; 

I 



library ieee; 
use ieee.std_logic_ll64.all; 
use ieee.std_lagic_arith.all; 
use work.glabal.all; 
use std.textio.all; 

entity 
port( 

dwt is 

end dwt; 

elk: in std_logic; 
reset: in std_lagic; 
datain: in real; 
dataout: out real; 
filter: in integer); 

architecture behavior of dwt is 
signal hO: coef; 
signal hl: coef; 
signal siso: cold:=(others=>O); 

begin 

--8 Different anlysis filters supplied, correct one is chosen by filter signal 
coeff:process(filter) 
begin 
case filter is 

when 0 => 
h0(0)<=0.000000;h1(0)<=0.000000; 
h0(1)<=0.000000;hl(l)<=0.000675; 
h0(2)<=0.000000;h1(2)<=0.000002; 
h0(3)<=0.000000;h1(3)<=-0.006684; 
h0(4)<=0.000000;h1(4)<=0.001788; 
h0(5)<=0.02040l;h1(5)<=0.021802; 
h0(6)<=0.000058;h1(6)<=0.009733; 
h0(7)<=-0.111388;hl(7)<=-0.060571; 
h0(8)<=0.054299;hl(8)<=-0.115519; 
h0(9)<=0.536628;h1(9)<=0.440781; 
h0(10)<=0.536628;hl(10)<=-0.440781; 
h0(11)<=0.054299;hl(ll)<=O.ll5519; 
h0(12)<=-0.l11388;hl(12)<=0.060571; 
h0(13)<=0.000058;hl(13)<=-0.009733; 
h0(14)<=0.02040l;hl(14)<=-0.021802; 
hO(lS)<=O.OOOOOO;hl(lS)<=-0.001788; 
h0(16)<=0.000000;h1{16)<=0.006684; 
h0(17)<=0.000000;hl(17)<=-0.000002; 
h0(18)<=0.000000;hl(18)<=-0.000675; 
h0(19)<=0.000000;hl{19)<=0.000000; 

when 1 => 
hO(O)<=O.OOOOOO;hl(O)<=O.OOOOOO; 
hO(l)<=O.OOOOOO;hl(l)<=O.OOOOOO; 
h0(2)<=0.000000;hl(2)<=0.000000; 
h0{3)<=0.000000;hl(3)<=0.000000; 
h0(4)<=-0.00599l;hl(4)<=0.010028; 
h0(5)<=0.002658;h1(5)<=-0.004449; 
h0(6)<=0.033433;h1(6)<=-0.076889; 
h0(7)<=-0.023670;hl(7)<=0.048906; 
h0(8)<=-0.048704;hl(8)<=0.316861; 
h0(91<=0.271012;h1(91<=-0.588912; 
h0(10)<=0.542524;hl(101<=0.316861; 
h0(11)<=0.271012;hl(lli<=0.048906; 
h0(12)<=-0.048704;hl(12)<=-0.076889; 
h0(13)<=-0.023670;hl(13)<=-0.004449; 
h0(14)<=0.033433;hl(141<=0.010028; 
h0(15)<=0.002658;hl(15)<=-0.000000; 
h0(16)<=-0.005991;hl(16)<=0.000000; 
h0(17)<=0.000000;h1(17)<=-0.000000; 



h0(18)<=0.000000;hl(l8l<=-0.000000; 
h0(19)<=0.000000;hl(19)<=0.000000; 

when 2 => 
h0(0)<=0.000000;hl(0)<=0.000000; 
hO(l)<=O.OOOOOO;hl(ll<=O.OOOOOO; 
h0(2)<=0.000000;hl(2)<=0.000000; 
h0(3)<=0.000000;hl(3)<=0.000000; 
h0(4)<=0.000000;hl(4)<=0.000000; 
h0(5)<=0.000000;hl(5)<=0.000000; 
h0(6)<=0.000000;hl(6)<=0.000000; 
h0(7)<=0.000000;h1(7)<=-0.062500; 
h0(8)<=0.000000;h1(8)<=-0.062500; 
h0(9)<=0.500000;hl(9)<=0.500000; 
h0(10)<=0.SOOOOO;hl(l0)<=-0.S00000; 
h0(1ll<=O.OOOOOO;hl(lll<=0.062500; 
h0(12)<=0.000000;hl(l2)<=0.062500; 
h0(13)<=0.000000;hl(13)<=0.000000; 
h0(14)<=0.000000;hl(l4)<=0.000000; 
h0(15)<=0.000000;hl(l5)<=0.000000; 
h0(16)<=0.000000;hl(l6)<=0.000000; 
h0(17)<=0.000000;hl(l7)<=0.000000; 

h0(18J<=O.OOOOOO;hl(l8)<=0.000000; 
h0(19)<=0.000000;hl(l9)<=0.000000; 

when 3=> 
h0(0)<=0.000000;hl(0)<=0.000000; 
h0(1)<=0.000000;hl(l)<=0.000000; 
h0(2)<=0.000000;hl(2)<=0.000000; 
h0(3)<=0.000000;h1(3)<=0.000000; 
h0(4)<=0.000000;h1(4)<=0.000000; 
h0(5)<=0.000000;hl(5)<=0.000000; 
h0{6)<=0.000000;hl(6)<=0.000000; 
h0(7)<=0.000000;h1(7)<=0.000000; 
h0(8)<=-0.12SOOO;h1(8)<=0.250000; 
h0(9)<=0.250000;h1(9l<=-O.S00000; 
h0(10)<=0.750000;hl(l0)<=0.250000; 
h0(111<=0.2SOOOO;hl(lli<=O.oUOOOO; 
h0(12)<=-0.125000;h1(12l<=0.000000; 
h0(13)<=0.000000;h1(13)<=0.000000; 
h0(14)<=0.000000;hl(l4)<=0,000000; 
h0(15)<=0.000000;h1(15)<=0.000000; 
h0(16)<=0.000000;hl(l6)<=0.000000; 
h0(17)<=0.000000;hl(l7)<=0.000000; 
h0(18J<=O.OOOOOO;h1(18)<=0.000000; 
h0(19)<=0.000000;hl(l9)<=0.000000; 

when 4 => 
h0(0)<=0.000000;hl(0)<=0.000000; 
hO(li<=O.OOOOOO;hl(li<=O.OOOOOO; 
h0(2)<=0.000000;h1(2)<=0.000000; 
h0(3)<=0.000000;hl(3)<=0.000000; 
h0(4)<=0.000000;hl(4)<=0.000000; 
h0(5)<=0.000000;hl(5)<=0.013374; 
h0(6)<=0.000000;hl(6)<=-0.004942; 
h0(7)<=-0.091272;hl(7)<=-0.047544; 
h0(8)<=0.033722;hl{8)<=-0.094320; 
h0(9)<=0.557544;hl(9)<=0.434907; 
h0(10)<=0.557544;hl(l0)<=-0.434907; 
h0(11)<=0.033722;hl{ll)<=0.094320; 
h0(12)<=-0.091272;h1(12l<=0.047544; 
h0(13)<=D.OOOOOO;hl(l3)<=0.004942; 
h0(14)<=0.000000;hl(l4)<=-0.013374; 
h0(15)<=0.000000;hl(l51<=0.000000; 
h0(16)<=0.000000;hl(l6)<=0.000000; 
hOI171<=o.oooooo,nlil71<=o.oooooo, 



h0(18)<=0.000000;hl(18)<~0.000000; 

h0(19)<=0.000000;hl(l9)<=0.000000; 

when 5 => 
h0{0)<=0,000000;h1(0)<=0.000000; 
hO(l)<=O.OOOOOO;hl(l)<=O.OOOOOO; 
h0(2J<=O.OOOOOO;hl(2)<=0.000000; 
h0(3)<=0.000QOO;h1(3)<=0.000000; 
h0(4)<=0.000000;h1(4)<=0.000000; 
h0(5)<=0.000000;h1(5)<=0.000000; 
h0(6)<=0.023437;hl(6)<=0.000000; 
h0(7)<=-0.046875;h1(7)<=0.000000; 
h0(8)<=-0.125000;hl(8)<=0.250000; 
h0(9)<=0.296875;h1(9)<=-0.500000; 
h0(10)<=0.703125;hl(l0) ·=0.250000; 
h0(11)<=0.296875;h1(11)<=0.000000; 
h0(12)<=-0.125000;h1(12)<=0.000000; 
h0(13)<=-0.046875;hl(l3)<=0.000000; 
h0(14)<=0.023437;hl(l4J<~0.000000; 
h0(1SJ<=O.OOOOOO;hl(15)<=0.000000; 
h0(16)<=0.000000;hl(l6)<=0.000000; 
h0(17)<=0.000000;hl(l7)<=0.000000; 
h0(18)<=0.000000;hl(18)<=0.000000; 
h0(19)<=0.000000;hl(l9)<=0.000000; 

when 6 => 
h0(0)<=0.000000;hl(0)<=0.000000; 
hO(l)<=O.OOOOOO;hl(l)<=D.OOOOOO; 
h0(2)<=0.000000;h1(2)<=0.000000; 
h0(3)<=0.000000;hl(3)<=0.000000; 
h0(4)<=0.000000;h1(4)<=0.000000; 
h0(5)<=0.000000;hl(S)<=0.000000; 
h0(6)<=0.026748;hl(6)<=-0.045636; 
h0(7)<=-0.016864;hl(7)<=0.028771; 
h0(8)<=-0.078223;hl(8)<=0.295636; 
h0(9)<=0.266864;hl(9)<=-0.557544; 
h0(10)<=0.602949;hl{l0)<=0.295636; 
h0(11)<=0.266864;hl(ll)<=O.Oi8771; 
h0{12)<=-0.078223;hl(l2)<=-0.045636; 
h0(13)<=-0.016864;hl{l3l<=0.000000; 
h0{14)<=0.026748;hl(l4)<=0.000000; 
h0(15)<=0.000000;h1(15)<=0.000000; 
h0{16)<=0.000000;hl{l6)<=0.000000; 
h0(17)<=0.000000;hl(l7)<=0.000000; 
h0{18)<=0.000000;hl(18)<=0.000000; 
h0(19)<=0.000000;hl(19)<=0.000000; 

when 7 => 
h0(0)<=0.000000;hl(0)<=0.000000; 
hO(l)<=O.OOOOOO;hl(l)<=O.OOOOOO; 
h0(2)<=0.000000;h1(2}<=0.000000; 
h0(3)<=0.000000;hl(31<=0.000000; 
h0(4)<=0.000000;h1{4)<=0.000000; 
h0(5)<=0.000000;h1(5)<=0.000000; 
h0(6i<=O.OOOOOO;hl(6)<=0.000000; 
h0(7)<=0.000000;hl(7)<=0.000000; 
h0(8)<=0.000000;hl(8)<=0.000000; 
h0(9)<=0.SOOOOO;hl(91<=0.500000; 
hO(lO)<=O.SOOOOO;hl(lOJ<~-0.500000; 
hO(ll)<=O.OOOOOO;hl(ll)<=O.OOOOOO; 
h0(12)<=0.000000;h1(12)<=0.000000; 
h0(13)<=0.000000;hl(l3)<=0.000000; 
h0(14J<=O.OOOOOO;hl(14l<=O.OOOOOO; 
hO(lSJ<=O.OOOOOO;hl(lS)<=O.OOOOOO; 
h0(16)<=0.000000;h1(16)<=0.000000; 
h0(17l<=O.OOOOOO;hl{l7)<=0.000000; 



h0(18J<=O.OOOOOO;hl(18)<=0.000000; 
h0(19)<=0.000000;h1(19)<=0.000000; 
when others => 
null; 
end case; 
end process; 

dwt:process(clk,reset) 

begin 

--Variables for control, temp storage, etc. 
variable outline: line; 
variable b: integer:=O; 
variable o: integer:=O; 
variable a,in_r,in_w: integer; 
variable j,d_l_l: integer; 
variable d_l:integer:=l; 
variable k,z: integer; 
variable kl: integer; 
variable jl,ino,jno: integer; 

--Process finished signal (handy for large images!) 
variable flag_out:integer:=O; 

--Level of decomposition to be applied 
variable liv: integer; 

variable cont,contw: integer; 
variable livtemp: integer; 
variable flag,go_flag: integer; 
variable op: operation; 

--Temp storage for intermediate results 
variable nwx: new_x; 
variable xx: x:=(others=>O.O); 
variable yyl: yl; 
variable yyh: yh; 

--Image data is available at this file 
file input_file :text is in "tst_data_in"; 

--Decomposed image is here, subbands not ordered in any way 
file output_file: text is out "tst_data_out"; 

--Raster scan applied to subbands for multilevel type decomposition 
file out_file:text is out "tst_o_data_out"; 

--Variables to do with file application issues 
variable inline: LINE; 
variable outl,outlo: LINE; 
variable inputdata: integer; 
variable temp,tempo: real; 

--Storage area 
variable ima:image_matrix; 
variable imao:image_o_matrix; 

--Control of storage area 
variable control: integer; 
variable clock: integer:=O; 

if reset ='!'then 

--Initialite unit 
contw:=O; 



l 
j: =0; 
k,=o, 
j 1: =1; 
kl ,=1' 
cont:=ll; 
op := frow; 
liv:=l; 
flag: =1; 
go_ flag: =1; 

--Fill memory from data file 
if o=O then 

end if; 

for i in 0 to (row•column-1) loop 
readline(input_file,inline); 
read(inline,inpucdata); 
temp:= real(inputdata); 
ima(i) :=temp; 

end loop; 
o:=O+l; 

elsif clk'event and clk='l' then 

--Image decomposition control 
if liv<=level and op=frow then 

if cant /= 0 then 
cont:=cont-1; 
else 
cont:=O; 

end if; 

if a<row then 
if b<column then 

k'=b; 

else 

end if; 
else 

k,=Q; 
j (=a; 

if b<colurnn then 
k'=b; 

else 

end if; 
end if; 

k,=Q; 
j :=0; 
op:=frowt; 
livtemp: =9; 
kl:=k1*2; 
flag:=O; 

elsif liv <=level and op=frowt then 
if livtemp>O then 

livtemp:=livtemp-1; 
else 

end if; 

op:=fcolumn; 
cont:=lO; 
flag:=!; 
for i in 0 to 19 loop 

xx{i) :=0.0; 
end loop; 

elsif liv<=level and op=fcolumn then 
if cont /=0 then 

cont:=cont-1; 



else 
cont:"'O; 

end if; 
if b<column then 

else 

end if; 

if a<row then 
j: =a; 

else 

end if; 

j: =0; 
k;=b; 

if a<row then 
J :=a; 

else 

end it; 

j: =0; 
k:=jl; 
op:=fcolurnnt; 
livtemp:=9; 
flag:=O; 

elsif liv<=level and op=fcolumnt then 
if livtemp>O then 

livtemp:=livtemp-1; 
else 

end if; 

op:=fch; 
cont:=lO; 
flag:=!; 
for i in 0 to 19 loop 

XX(i) :=0,0; 
end loop; 

elsif liv<=level and op=fch then 
if cent /=0 then 

cont:=cont-1; 
else 

cont:=O; / 
end if; 
if b<column then 

else 

end if; 

if a<row then 
j: =a; 

else 

end if; 

j: =0; 
k;=b; 

if a<row then 

end if; 

j :=a; 
else 
k:=O; 
j: =0; 
op:=fcht; 
livternp:=9; 
jl:=j1*2; 
flag:=O; 

elsiE liv<=level and op=fcht then 
if livtemp>O then 

livtemp:=livtemp-1; 
else 

op:=frow; 
cont:=lO; 
flag:=!; 
for i in 0 to 19 loop 



end if; 
else 

xx(i) :o::O.O; 
end loop; 
liv:=liv+l; 

--Write decomposed image (no ordering of subbandsl 
if contw=O then 
for i in 0 to (row•column-1) loop 
write(outl,real(ima(i))l; 
writeline(output_file,outl); 
end loop; 

--Raster scan subbands process 
for i in l to level loop 

for n in 0 to 0 loop 
d_l:=2*d_l; 

end loop; 
d_l_l:=d_!/2; 

fori in 0 to ((row/(d_l))-1) loop 
for j in (column/d_l) to ((column/(d_l_1))-1) loop 

ino:=i*d_l; 
jno:=(j-column/d_ll*d_1+d_l_1; 
if row*colunu1> {jno+column*ino) then 

tempo: =ima (jno+column*ino); 
imao(j+column*i) :=tempo; 

end if; 
end loop; 

end loop; 

fori in (row/d_l) to ((row/(d_l_1-0}}-1) loop 
for j in {column/d_l) to ((colurnn/(d_l_1))-1) loop 

ino:=(i-row/d_l}*d_l+d_1_1; 
jno:=(j-column/d_1)*d_l+d_l_1; 
if row*column>(jno+co1umn*ino) then 
temp6:=ima{jno+column*ino); 
imao ( j +column* i J :=tempo; 
end if; 

end loop; 
end loop; 

fori in (row/d_ll to ((row/(d_l_ll)-1) loop 
for j in 0 to ((column/{d_l))-1) loop 

ino:=(i-row/d_l)*d_l+d_l_1; 
jno:=j*d_l; 
if row*column>(jno+column*ino) then 
tempo:=ima(jno+column*ino); 
imao(j+column*i) :=tempo; 
end if; 

end loop; 
end loop; 

if i=level then 

end if; 

fori in 0 to {(row/(d_l))-1) loop 
for j in 0 to ((column/(d_l-1))-1) loop 

ino:=i*d_l; 
jno:=j*d_l; 
if row*column>{jno+column*ino) then 
tempo:=ima(jno+column*ino); 
imao(j+column*i) :=tempo; 
end if; 

end loop; 
end loop; 



end loop; 

--Write raster scan subband image 
for i in 0 to (row•column-1) loop 
write(outlo,real(imao(i)J); 
writeline(out_file,outlo); 
end loop; 

--Done 
flag_out: =1; 
contw: =contw+l; 
end if; 
end if; 

--Memory address control 
a:=j+j1; 
b::o.k+kl; 
in_r:=k+column*j; 

--Decimate every other value 
for i in 9 downto 1 loop 
siso(i)<=siso(i-1); 
end loop; 
siso(OJ<=in_r; 
in_w:=siso(9); 

--nwx holds target element in image to be applied to transform 
if flag=! then 

nwx:=ima(in_r); 
else 

nwx:=O.O; 
end if; 

--Decimate every other value 
for i in 19 downto 1 loop 
xx(i) :=xx(i-1); 
end loop; 
xx(O) :=nwx; I 

--Target element is multiplied by filter coefficients 
if go_flag=l then 
if clock mod 2=0 then 

yyl:=O.O; 

else 

end if; 

for n in 0 to 19 loop 
yyl: =yyl+hO (n) *xx (n); 

end loop; 

if cont=O then 

end if; 

--Write low pass DWT coefficient 
ima(in_w) :=yyl; 

yyh;=O.O; 
for n in 0 to 19 loop 

yyh:=yyh+hl(n)*xx(n+l); 
end loop; 

if cont=O then 

end if; 

--Write high pass DWT coefficient 
ima ( in_w) : =yyh; 

end if; 
clock:=clock+l; 

end if; 



end process; 
end behavior; 

/ 



library ieee; 
use ieee.std_logic_ll64.all; 
use work.all; 
use std.textio.all; 

entity tb_idwt is 
end tb_idwt; 

architecture testbench of tb_idwt is 

component idwt 
port(clk,reset: in std_logic; 

datain: in real; 
dataout: out real; 
filter: in integer); 

end component; 

begin 

signal elk: std_logic; 
signal reset: std_logic:='l'; 
signal datain: real; 
signal dataout: real; 
signal filter: integer; 

UUT: idwt port map 
(clk=>clk,reset=>reset,datain=>datain,dataout=>dataout,filter=>filter); 

--Set up a lOOns clock cycle 
clock:process 
variable clktmp: std_logic:='O'; 

begin 
clktmp:=not clktmp; 
clk<=clktmp; 
wait for 50 ns; 

end process; 

--Stimulus required by unit under test 
stimulus:process I 

begin 
--reset pulse is sent to initialite unit 
reset<=' 1' ; 

--Then after 25 ns {arbitrary!) 
wait for 25 ns; 

--Reset is taken low so process starts 
reset<=' 0'; 

--Filter type sent to unit 
filter<=O; 

--Data to unit is supplied from file 

--while not(endfile(cfile)) loop 
--readline(cfile,inline); 
--read (inline, inputdata); 
--wait until clk'event and clk='l'; 
--datain<=125.0; 
wait for 50 ns; 
--datain<=l25.0; 

--end loop; 
--file_close(cfile); 
wait; 

end process; 



end testbench; 

configuration build2 of tb_idwt is 
for testbench 
for uut: idwt 

end for; 
end for; 
end; 

/ 



l 
library ieee; 
use ieee.std_logic_ll64.all: 
use ieee.std_logic_arith.all; 
use work.global.all; 
use std.textio.all; 

entity idwt is 
port( elk: in std_logic; 

reset: in std_logic; 
datain: in real; 
dataout: out real; 
filter: in integer); 

end idwt; 

architecture behavicr of idwt is 
signal gO: coef; 
signal gl: coef; 
signal siso: cold:=(others=>O); 

begin 

coeff:process(filter) 
begin 

--7 Different filters supplied in filter storage 
right one --filter signal is used to select 

case filter is 
when 0 => 

g0{0)<= 
gO (1) <= 
g0{2)<= 
g0(3)<= 
g0(4)<= 
g0(5)<= 
g0(6)<= 
g0{7)<= 
g0(8)<= 
g0(9)<= 
g0(10)<= 
gO(lll<= 
gO (12 )<= 
g0{13)<= 
g0(14)<= 
g0(15)<= 
g0(16)<= 
g0(17)<= 
g0(18)<= 
g0(19)<= 

when 1 => 

0.000000; 
0.001349; 

-0.000004; 
-0.013367; 
-0.003375; 

0.043604; 
-0.019467; 
-0 .121143; 

0.231037; 
0. 881563; 
0.881563; 
0.231037; 

-0.121143; 
-0.019467; 

0.043604; 
-0.003375; 
-0.013367; 
-0. 000004; 

0. 001349; 
0.000000; 

gO(OI<= 0.000000; 
gO(l)<= 0.000000; 
g0{2)<= 0.000000; 
g0(3)<= 0.000000; 
g0(4)<= 0.000000; 
g0(5)<= 0.020056; 
g0(6)<= 0.008898; 
g0(7)<= -0.153777; 
g0(8)<= -0.097811; 
g0(9)<= 0.633722; 
gO{lO)<= 1.177825; 
g0(111<= 0.633722; 
g0(12)<= -0.097811; 
g0(13)<= -0.153777; 
g0(141<= 0.008898; 
g0(151<= 0.020056; 
g0(16)<= 0.000000; 

g1(0)<= 
g1(1)<= 
g1(21<= 
g1(3)<= 
g1(4)<= 
gl(S)<= 
g1(6)<= 
g1(7)<= 
g1(8)<= 
g'1(9)<= 
g1(10)<= 
g1(11)<= 
gl(12)<= 
g1(13)<= 
g1(14)<= 
g1(15)<= 
g1(16)<= 
g1(17)<= 
g1(18)<= 
g1{19)<= 

gl(O)<= 
g1(1)<= 
gl(2)<= 
g1(3)<= 
g1(4)<= 
g1(51<= 
g1(6)<= 
g1(71<= 
g1(81<= 
g1(9)<= 
g1(10)<= 
g1 (111 -::= 
g1(12)<= 
gl(l3)<= 
g1(14)<= 
gl(15)<:; 
g1(16)<= 

0.000000; 
0.000000; 
0.000000; 
0.000000; 
0.000000; 

-0.040803; 
0. 000116; 
0.222775; 
0.108597; 

-1.073257 i 
1.073257; 

-0.108597; 
-0.222775; 
-0.000116; 

0.040803; 
0.000000; 
0.000000; 
0.000000; 
0.000000; 
0.000000; 

0.000000; 
0.000000; 
0.000000; 
0.000000; 
0.000000; 
0.011983; 
0.005316; 

-0.066867; 
-0.047341; 

0.097408; 
0. 542024; 

-1.085048; 
0.542024; 
0.097408; 

-0.047341; 
-0.066967; 

O.OOS31G; 



g0(17)<= 0.000000; g1(17)<= 0.011983; 
g0(18)<= 0. 000000; gl(l8)<= 0.000000; 
gO (19)<= 0.000000; gl(l9)<= 0.000000; 

when 2 => 
g0(0)<= 0.000000; gl{O)<= 0.000000; 
gO{l)<= 0. 000000; gl (1) <= 0.000000; 
g0(2)<= 0.000000; g1(2)<= 0.000000; 
g0(3)<= 0.000000; gl(3)<= 0.000000; 
g0(4)<= 0.000000; gl(4)<= 0.000000; 
g0(5)<= 0.000000; gl(S)<= 0.000000; 
g0{6)<= 0.000000; gl(6)<= 0.000000; 
g0(7)<= -0 .125000; g1(7)<= 0.000000; 
g0(8)<= 0.125000; g1(8)<= 0.000000; 
g0(9)<= 1.000000; gl(9)<=- -1.000000; 
g0(10)<= 1.000000; g1(10l<= 1. ooor,oo; 
gO(lll<= 0.125000; gl(ll) <= 0.000000; 
g0(12)<= -0.125000; g1(12l<= 0.000000; 
g0(13)<= 0.000000; gl(13)<= 0.000000; 
g0(14)<= 0.000000; gl(l4)<= o.oooono; 
g0(15)<= 0.000000; g1(151 <= 0.000000; 
g0(16)<= 0.000000; gl(l6)<= 0.000000; 
g0(17)<= 0.000000; gl(17)<= 0.000000; 
g0(18)<= 0.000000; gl(1B)<= 0.000000; 
g0(19)<= 0.000000; gl{19)<= 0.000000; 

when 3 => 
g0(0)<= 0.000000; gl(O)<= 0.000000; 
gO (1)<=- 0.000000; gl (1) <= 0.0000000; 
g0(2)<= 0.000000; gl{2)<= 0.0000000; 
g0(3)<= 0.000000; gl(3)<= 0.000000; 
g0(4)<= 0.000000; gl(4)<= 0.000000; 
gO(Sl<= 0.000000; gl(S)<= 0.000000; 
g0(6)<= 0.000000; g1(6J<= 0.000000; 
g0(7)<= 0.000000; gl{7)<= 0.000000; 
g0(8)<= 0.000000; gl (8) <= 0.000000; 
gO 191 <= 0.500000; g1(9)<= 0.250000; 
g0{10)<= 1. 000000; gl(lO)<= 0.500000; 
gO(lll<= 0.500000; gl(ll)<= -1.500000; 
g0(12)<= 0.000000; g1(12) <= 0.500000; 
g0(13)<= 0.000000; gl(l3)<= 0.250000; 
g0(14)<= 0.000000; g1{14):<= 0.000000; 
g0(15)<= 0.000000; gl(lSl<= 0.000000; 
g0(16)<= 0.000000; gl (16) <= 0.000000; 
g0{17}<= 0.000000; gl(l7)<= 0.000000; 
g0(18)<= 0.000000; gl(l8)<= 0.000000; 
g0{19)<= 0.000000; gl(19)<= 0.000000; 

when 4 => 
g0{0)<= 0.000000; gl(O)<= 0.000000; 
gO(l)<= 0.000000; gl(l)<= 0.000000; 
g0(2)<= 0. 000000; gl{2)<= 0.000000; 
g0(3)<= 0.000000; g1(3)<= 0.000000; 
g0(4)<= 0.000000; gl{4)<= 0.000000; 
g0(5)<= 0.026748' g1(5)<= 0.000000; 
g0(6)<= 0.009884; gl{6)<= 0.000000; 
g0(7)<= -0.095087; g1(7)<= 0.182544; 
g0(8)<= 0.188641; g1(8)<= 0.067457; 
g0(9)<= 0.869813; gl(9)<= -1.115088; 
g0(10)<= 0.869813; gl{!Ol<= 1.115088' 
gO{ll)<= 0.188641; gl(ll)<= 0.067457; 
g0(12)<= -0.095087; gl(l2)<.: -0.1825.{.4; 
g0(13)<= 0.009884; g1(13)<= 0.000000; 
g0(14)<= 0.026748; g1(14)<= 0.000000; 
g0{15)<= 0.000000; g1(151<= 0.000000; 
g0(15)<= 0.000000; g1(16)<= 0.000000; 
g0(17)<= 0.000000; g1(17)<= 0.000000; 
g0(18)<= 0.000000; g11181<= 0.000000; 
g0(19)<= 0.000000; g1119 I<= 0.000000; 

r 



when 5 => 
g0(0)<= 0.000000; g1(0)<= 0.000000; 
gO(ll<= 0.000000; gl(ll<= 0.000000; 
g0(2l<= 0.000000; g1(2)<= 0.000000; 
g0(3)<= 0.000000; gl(3)<= 0.000000: 
g0(4)<= 0.000000; g1(4)<= 0.000000; 
g0(5)<= 0. 000000; g1{5)<= 0.000000; 
g0(6)<= 0.000000; gl(6)<= 0. 000000; 
g0(7)<= 0.000000; gl(7)<= -0.046874; 
g0(8)<= 0. 000000; g1(8l<= -0.093750; 
g0(9)<= 0.500000; gl(9)<= 0.250000; 
g0(10)<= 1.000000; g1(10)<= 0.593750; 
gO(lll<= 0.500000; g1(lll<= -1.406250; 
g0(12)<= 0.000000; g1(12)<= 0.593750; 
gO (13 J <= 0.000000; gl(l3)<= 0.250000; 
g0(14)<= 0.000000; g1(14)<= -0.093750; 
g0(15)<= 0.000000; gl(15)<= -0.046874; 
g0(16)<= 0.000000; g1(16)<= 0.000000; 
g0(17)<= 0.000000; g1(17)<= 0.000000; 
g0(18)<= 0.000000; gl(18)<= 0.000000; 
gO (19) <= 0.000000; g1(19)<= 0.000000: 

when 6 => 
gO(OJ<= 0.000000; g1(0l<= 0.000000; 
gO(l)<= 0.000000; gl(ll<= 0.000000; 
g0{2)<= 0.000000; g1(2)<= 0.000000; 
g0(3)<= 0.000000; g1{3)<= 0.000000; 
g0(4)<= 0.000000; g1(4)<= 0.000000; 
g0{5)<= 0.000000; g1(5)<= 0.000000; 
g0(6)<= 0.000000; g1{6)<= 0. 000000: 
g0(7)<= -0.091272; g1(7)<= -0.053497 i 
g0(8)<= -0.057543; g1(8}<= -0.033728 i 
g0(9)<= 0. 591271; g1(9)<= 0.156446; 
g0{10)<= 1.115088; gl(10)<= 0.533727; 
g0(11)<= 0.591271; gl(ll)<= -1.205898: 
g0(12)<= -0.057543; g1(12)<= 0.533727; 
g0{13)<= -0.091272; gl(13)<= 0.156446; 
g0(14l<= 0.000000: gl{l4l<= -0.033728; 
g0(15)<= 0.000000: ~1(15)<= -0.053497; 
gO (16) <= 0.000000; g1(16)<= 0.000000: 
g0(17)<= 0. 000000; g1(17)<= 0.000000: 
g0(18)<= 0.000000: gl(l8)<= 0.000000; 
g0(19)<= 0.000000; g1(19)<= 0.000000; 

when 7 => 
g0(0)<=0.000000; g1(0)<=0.000000; 
gO(l)<= 0.000000; g1(1)<= 0.000000: 
gO 12 l <= 0.000000: gl {2) <= 0.000000: 
g0(3)<= 0.000000: g1(3)<= 0.000000: 
g0(4)<= 0.000000: g1(4)<= 0.000000; 
g0{5)<= 0.000000: gl(Sl<= 0.000000; 
g0{6)<= 0. 000000: g1{6)<= 0.000000; 
g0(7)<= 0. 000000: g1(7}<= 0.000000; 
g0{8)<= 0.000000; g1(8)<= 0.000000; 
g0(9)<= 1.000000; g1{9)<= -1.000000; 
g0(10)<= 1. 000000; gl(10)<= 1.000000; 
gO(ll)<= 0.000000; gl(ll)<= 0.000000; 
g0{12)<= 0.000000; g1(12l<= 0.000000; 
g0(13)<= 0.000000; g1{13)<= 0.000000; 
g0{14)<= 0. 000000; g1(14)<= 0.000000; 
g0(15)<= 0.000000; g1(15)<= 0.000000; 
g0(16)<= 0. 000000; g1(16)<= 0.000000; 
g0(17)<= 0.000000; g1(17)<= 0.000000; 
g0(18)<= 0.000000; g1(18)<= 0.000000; 
g0(19)<= 0.000000; g1(19)<:: 0.000000; 

when others => 
null; 
end case; 



end process; 

dwt:process(clk,reset) 

--Variables for control, temp storage, etc. 
variable outline: line; 
variable b: integer:=O; 
variable o: integer:=O; 
variable a,in_r,in_w: integer; 
variable j,d_l_l: integer; 
variable d_l:integer:=l; 
variable k,z: integer; 
variable kl: integer; 
variable jl,ino,jno: integer; 

--This variable inicates process is finished (Very handy for large images) 
variable flag_out:integer:=O; 

variable liv· integer; 
variable cont,contw: integer; 
variable livtemp: integer; 
variable flag,go_flag: integer; 
variable op: operation; 
variable nwy: new_x; 
variable x_x:real; 
variable y_l: x:=(others=>O.O); 
variable y_h: x:=(others=>O.O); 
variable yyl: yl; 
variable yyh: yh; 

--Decomposed image data is tared in this file! 
file input_file :text is in "tst_data_out•; 

--Transformed image will be stored in this file! 
file output_file: text is out "idwt_data_out ~; 

-- This variables have to do with file application issues 
variable inline: LINE; / 
variable outl,outlo: LINE; 
variable inputdata: real; 
variable temp,tempo: real; 
variable ima:image_matrix; 
variable control: integer; 

--Important control variables 
variable clock,f_rit,cco: integer:=O; 

begin 

if reset ='!'then 
--Initialite all 
contw:=O; 
j: =0; 
a:=O; 
b,=o, 
k,=o, 
j1:=4; 
kl '=8' 
cont:=l2; 
op := £column; 
liv:=level; 
flag:=!; 
go_flag:=l; 

if o=O then 
--Fill memory from file 



end if; 

for i in 0 to (row•column-1) loop 
readline(input_file,inline); 
read(inline,inputdata); 
temp:= real(inputdata); 
ima(i) :=temp; 

end loop; 
o:=O+l; 

elsif clk'event and clk='l' then 
if cco-=0 then 

end if; 

--Appropiate count control depends on filter chosen 
if filter=O or filter-=2 or filter=4 then 

f_rit:=l; 
cont:-=11; 
cco:=cco+l; 

end if; 

--Decomposed image data 
if liv>O and op=fcolumn 

reconstruction concrol 
then 

if cant /= 0 then 
cont:=cont-1; 

else 
cant: =0; 

end if; 

if b<column then 
if a<row then 

j:=a; 

else 
j :=0; 
k'=b; 

end if; 
else 

end if; 

if a<row then 
~:=a; 

else 
j: =0; 
k,=jl; 
op: =fcolumnt; 
livternp:=9; 
flag:=O; 

end if; 

elsif liv>O and op=fcolurnnt then 
if livtemp>O then 

livtemp:=livtemp-1; 
else 

end if; 

op:=fch; 
cont:=lO; 
flag:=1; 
clock:=clock+1; 
if f_rit=1 then 

clock:=clock+1; 
end if; 
for i in 0 to 19 ~cop 

y_l(i) :=0.0; 
y_h{i) :=0.0; 

end loop; 

elsif liv>O and op=fch then 
if cant /=0 then 

cont:=cont-1; 



else 
cont:=O; 

end if; 
if b<colurnn then 

else 

end if; 

if a<row then 
j:=a; 

else 

end if; 

j :=0; 
k,~b; 

if a<row then 
j: =a; 

else 

end if; 

j: =0; 
k,~o: 

op:=fcht; 
livtemp:=9; 
kl,~kl/2; 

flag:=O; 

elsif liv>O and op=fcht then 
if livtemp>O then 

livtemp:=livtemp-1; 
else 

end if; 

op:=frow; 
cant: =10; 
flag:=l; 
clock:=clock+l; 
if f_rit=l then 

clock:=clock+l; 
end if; 
for i in 0 to 19 loop 

y_ltil ,~o.o, 
y_h(i) :=0.0; 

end loop; I 

elsif liv>O and op=frow then 
if cant /=0 then 

cont:=cont-1; 

else 

end if; 

else 
cont:=O; 

end if; 
if a<row then 

if b<colurnn then 
k:=b; 

else 

end if; 

k:=O; 
j :=a; 

if b<colurnn then 
k:=b; 

end if; 

else 
k:=O; 
j :=0; 
op:=frowt; 
livtemp: =9; 
jl:=jl/2; 
flag:=O; 

elsif liv>O and op=frowt then 
if livtemp>O then 



else 

end if; 
else 

livtemp:=livtemp-1; 

op:=fcolurnn; 
cont:=lO; 
flag:=l; 
clock:=clock+l; 
if f_rit=l then 

clock:=clock+l; 
end if; 
liv:=liv-1; 
for i in 0 to 19 loop 

y_l(i) :=0.0; 
y_h(i) :=0.0; 

end loop; 

--When all is donP. write results in output file 
if contw=O then 

end if; 
end if; 

for i in 0 to (row~column-1) loop 
write(outl,real(ima(i))); 
writeline(output_file,outl); 

end loop; 
-- Done flag is active 
flag_out:=l; 
contw:=contw+l; 

--Memory address control 
a:=j+jl; 
b:=k+kl; 
in_r:=k+column*j; 

--Adds zeros between decomposed image samples 
for i in 12 downto 1 loop 

siso(i)<=siso(i-1); / 
end loop; 
siso ( 0} <=in_r; 
in_w:=siso(9); 

--nwy holds decomposed image element according to in_r 
if flag=! then 

nwy:=ima(in_r}; 
else 

nwy:=O.O; 
end if; 

--Write the low pass resuts 
if clock mod 2=0 then 

else 

for i in 19 downto 1 loop 
y_l(i) ;=y_l(i-1); 

end loop; 
y_liOI ;=nwy; 

--or high pass results 

end if; 

for i in 19 downto 1 loop 
y_h(i) ;=y_h(i-1); 

end loop; 
y_h(O) ;=nwy; 

Low/High pass coefficients produced here (will produced recomposed data) 
if go_flag=l then 



APPENDIXC 

STRUCTURAL VHDL CODE 

/ 



T.; h ... ~.,.,, Tt:'t:'t", 
................ .::> ..... 1 ...................... , 

use IEEE.STD LOGIC 1164.all; 

--::esi;;;, u ... a 

entity i-1UX is 

rTV Ct"T '10. :" ~~~ ~~-:~ • 
........... , .............. , ... ,. ~ .. _,._ .......... ~'j ....... , 

Dl: in std logic vector 120 down to 0); 
0) ; 

Mout: out sed logic vector (20 tJo•rmto 0) J; 

-~.-.l 'ofTTU, o::uu o:~vH, 

Architecture SaquE:iitia.l vf t·1UX l.S 

begJ..:: 
Process (CLK, SELl 
beg:u 
IF (NR = 'O'J then 

Mout<=(others=>'0'); 

if (SEL='O') then 
Mcut<= Dl; 

end if; 
if (.SEL='l I) 

Mout<~ 02; 
end if; 

END IF; 
E::-!.d process; 

end sequential; 

then 

I 

" 'I - " then 



TC'J;""J;"'· ----· 
'Jse IEEE. STD LOGIC 
~se IEEE.STt :oGIC 

:!6,1.dll; 
n.Rr'T'rr ~11· ••••-•••o•A __ , 

-- Tes: bene~ ~.~ test ~UX 

c:--.ti.::; ':.'B.}1U:\. :.._,s 
~:':.d ':"5 ~fLTX; 

r~r:.:-. o::-rl l,~,.,;,...=;rnr. 
~-"'' _,_.A ·~-:o-~· • I 

Signal "R .:::':'• . .::~, ... :,...,r::;.~. ..• , .... ~~- -~~--~j-~• 

r-1 -.,'). c-r-4 1~ ..... ;- •• ,..,,.... ... ...,,... ____ , .., ....................... ~~ ..................... -
Signal ~out: stG. .!_::g.:..: 'lect~= (20 dcwr.::o 0); 

Compcr.er.t MUX 
port CLK,SEL, ~R: in std logic; 

n1. in o::t-,-1 lf"'r.if""' •;c""+-'"'"''?11 ~n''·'" .. tr. ()I,,· 
~~- ~·· ~ .......... ~':' ... ~ ~- .... -~,~~ -- - -
D2: in st~logic_vector(20 do'tmtc: 0); 
~out: out std logic vectorf20 downto 

end Component; 

begin 

UUT: MUX port map (CLK,SEL,NR,Dl,D2,Mout); 

0 ''. ' ' ' 

Dl<="Olll111110CJ''oooooooooo" after 100 ns;-- 255.oooo in 
02<="011111111000011111111" after 100 ns; -- 255.0000 in 

--Data<="lllllllllOOOO'' after 250 ns; -- neq 255 in 
--coeff<=~0010100000000'' after 250 ns; -- 0.5 coeff 
--Data<=~OllllllllOOOOOOOOOOO" after 370 ns; -- 255 in 
--Coeff<="1010100000000" after 420 ns; -- neg 0.5 coeff 

NR <= '0' after 0 ns, 
'1' after 2 ns; 

-- '0' after 150 ns, 
--'1' after 200 ns, 
--'0' after 350 !!.S, 
--'1' after 400 ns; 

SEL<= '1' after 20 ns, 
'0' after 350 ns; 

CLK <~ not CLK after 5 ns; 

end MUX_JLR.CH; 



"' 
"' 



·_:: \ACC-t:.UAS \OFF. '/HO 

l. ibrary IEEE; 
use IEEE.STD LOGIC 1164.all; 
--Design ot a .j type flip flop cell str'JCture 

entity DE'E' is 

port( CLK,NR:in std logic; 
lJ: in std log.:.c vector (20 ·jowncc l); 
Q: out .std log:c v~ctc·r (20 ·Jownto 1)); 

end DE'F; 

To get scructu.:e several of these ·- :l.ls can be joined 
togerther 

Architecture Sequential of DFE' is 
begin 

process (CLK,NRI 
begin 

if (NR = '0') then 
-- res•:!t output to prevent errors 

Q<=(others=> '0'); 

--on clock event shift data out 
elsif (CLK'event and CLK ='1') then 

Q <·= 0; 

end if; 
end process; 

end Sequential; 
I 

• 



C: \ACC-r:.DAS \':'8 OFF. 'IHD 

:ibrary IEEE; 
~se IEEE.STD LOGIC !164.a!l; 

-- Test bench to test DFf 

entity TB DFF is 
end 'I'B DE"F; 

architecture OFf ARCH of TB OFF is 

Signal C~K: std ~ogic:='O'; 
Sign2l NR: std_~ogic; 

Signal D: std_logic_vector (20 downto 1); 
Signal Q: std logic_7ector (20 downto !); 

Component DFF 
~ort ( CLK, NR: in std_lcgic; 

D: in std_logic_vector(20 downto 1); 
Q: out std_log1c vector{20 downto l) ); 

end component; 

begin 

UUT: DFF port map (CLK,NR, D, Q); 

D<-"00000000000000000011" after 100 ns; 

NR <= '0' after 0 ns, 
'1' after 2 ns; 

/ 

CLK <= not CLK after 5 ns; 

end DFF ARCH; 



<:U. 

"" 
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C: \ACC-EDAS \MULT. ·rHO 

Library IEEE; 
'JSe ISEE.STD LOGIC ll64.all; 
"se IEEE.STD LOGIC ARITH.all; 

rl<!.. 
--Design of a generic signed rntiioJ.ti;t'ibr cell structure 

entity ADD is 
Gene.::c (N: Lrltege::-:=16~; 
port( CLK,NR:in std logic; 

end ADD; 

Data: in std logic vector (12 ·Jc•r~r.r:0 OJ; 
C:oeff: in std_logic vector (12 downto 0); 
S.esul.t:out Std lcg.ic '!eCt'Jr(l2 downtG· 0)) i 

To get structure several of these cells can be joined 
toget:her 

Architecture Sequential of ADD is 
begin 
process (CLK,NR) 

variable mult result: signed(l2 downto 0) :=(others=>'O'); 
begin 

if (NR = '0') then 

--RESET ALL / 
Result<= (others=>'O'); 
--on clock event multiply data by high pass coeffient 

elsif (CLK'event and CLK ='1' J chen 

result<=unsigned(coeff)+un,igned(data); 
end if; 

end process; 
end Sequential; 



'.:: \ACC-i::DAS\TB i\DD. '/HD 

Library IEEE; 
~se !EEE.STD LOGIC ~l64.al1; - -
use IEEE.STD LOGIC ARITH.~ll; 

-- Test bench to test ~T~ 

entity TB_ADD is 
end '!'B ADD; 

;_j,rchitecture ADD ARCH of TB ADD is 

CLK: std :og.:,::-='0'; Signal 
Signa.:. 
Signal 
Signal 
Signal 

Data: std~logic_vector (12 downto 0); 
r~e-=-=· Std. ',-,,...;,~ "Jec•~r 112 downt~ 0'. 
'-''-' l_J.. o -'-V';!~·-- ~ '-'-' '-' '/ f 

Result: std lcgic_vector (12 downco 0); 

Component ADD 
port ( CLK, NR: in std logic; 

Data: in std_logic_vector(12 downtc OJ; 
coeff: out std logic vector(l2 downto 0); 
Result: out std logi-c_vector {12 downto 0) ); 

end component; 

begin 

UUT: ADD port map {CLK,NR, Data,Coeff,result); 

Data<="OllllllllOOOO" after 100 ns;-- 255.0000 in 
Coeff<="OllllllliOOOO" after 100 ns; -- 255.0000 in 
--Data<="lllllllll0000" after 250 ns; -- neg 255 in 
--coeff<=''0010100000000'' after 250 ns; -- 0.5 coeff 
--Data<="OllllllllOOOOOOOOOOO" after 370 ns; -- 255 in 
--Coeff<="l010100000000" after 420 ns; -- neg 0.5 coeff 

NR <= '0' after 0 ns, 
'1' after 2 ns; 

-- '0' after 150 ns, 
--'1' after 200 ns, 
--'0' after 350 ns, 
--'1' after 400 ns; 

CLK <= not CLK after 5 ns; 

end ADD_ARCH; 
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C: \Jl.CC-SDAS\TB MULT. VHD 

Library IEEE; 
use IEE£.S'l'D LOGIC ll64.all; - -
use I~EE.STD LOGIC ARITH.all; 

- -

-- Test bench to test MULT 

entity TB_MULT .is 
er.d TB YIULT; 

architecture MULT ARCH of TB MULT is 

Signal CLK: std logic:~'O'; 
5ignal NR: std_lcqic; 
Signal Data: std_logic_vector (12 ct1wnto 0); 
Signal Coeff: st.d locic ?ectcr ( 12 dmvnto 0); 
Signal Result: sta l;gi~_vector. (25 downto 0); 

Component Mult 
port ( CLK, NR: !n std_~ogic; 

Data: in std logic vector(12 downto 0); 
coeff: out std logic vector(l2 downto 0); 
Result: out stCJ_logi-c_vector (25 downto 0)); 

end component; 

begin 

UUT: MULT port map (CLK,NR, Data,Coeff,result); 

Data<="01ll111110000" after 100 ns;-- 255.0000 in 
Coeff<="001010006oooo• after 100 ns; -- o. 5 coeff 
--Data<-"1111111110000" after 250 ns; -- neg 255 in 
--coeff<="0010100000000" after 250 ns; -- 0.5 coeff 
--Data<="01111111100000000000" after 370 ns; -- 255 in 
--Cceff<="1010100000000" after 420 ns; -- neg 0.5 coeff 

NR <- '0' after 0 ns, 
' 1 ' after 2 ns; 

-- '0' after 150 ns, 
--'1' after 200 ns, 
--I Q I after 350 ns, 
--'1' after 400 ns; 

CLK <= not CLK after 5 ns; 

end MULT_ARCH; 



•;: \ACC-EDA5 IMULT. '/HD 

:...ibrar\' IEEE; 
~se :E~E.STD LOGIC ll64.a~~; - -· 
~se !EEE.STD LOGIC ARITfl.all; - -

--Design of a generic signed multiplier cell structure 

cnti:y :--JULT is 
~·.:e~,e.:::":.: ::--1: :_~teqe::-:=<6:; 

port1 CLK,NR:in std_loqic; 
Data: .:_~ std lagic ~ector 1 12 ~own:o 0); 
Coeff: i.n std loaic vector (12 downto OJ; 

-~ . -
:1.esul:::out 

end MULT; 

--?RECISION OF DATA IS (DETERMINED FROM EXPERIMENTS IN !"IRST 
--3En.n.v:OURAL MODEL) o.n.T~ll. :!:!'f IS 19 BIT TWOS COMPLEMENT, : 3IT 
--SIGN, 8 BIT INTEGER PART AND 10 BIT FRACTION PART. 
--~li.TER COEFFICIENT J:S .'\N 19 SIT Tt•lOS COMPLEMENT :-.IUMBE?,, 
--1 BIT SIGN, 1 BIT INTEGER, 16 BIT FRACTION PART. 
--RESU~T IS A 20 BIT TWOS COMP!..EMENT NUMBER, l B'.:T S!SN, 
--8 BIT INTEGER,l1 BIT FRACTION PART. 

To get structure several of these cells can be joined 
together 

Architecture Sequential of MULT is 
begin ,; 

process (CLK,NR) ' 

variable mult result: signed(12 downto 0) :=(others=>'O'); 
begin 

if (NR = '0') then 

--RESET ALL 
Result<= {others=>'O'J; 
--on clock event multiply data by high pass coeffient 

elsif (CLK'event and CLK ='1') then 

result<=unsigned(coeff)*unsigned(data); 
end if; 

end process; 
end Sequential; 



:oo"' •OUno 

"'"" 

: 1c.~ s 
!L.7 l Rt.\!,'\&~ ~~F 

/ 



:..ibrac: lEC::E; 
'!Se IEEE.STQ ~OG:C ::n4.a~l; - -
use IEEE.STD LOGIC ARITH.all; - -

--Test Oench tc ;:est S-AM 

entity TB RAM is 
end T9 R..n.M; 

architecture RAM ARCH of ':'B RAM is 

Signal AE: std_!ogic; 
Signal RW: S[d_logic; 
Signal address: std_logic_vector(20 Gnwnto OJ; 
Signal data: std_logic vector(20 downto 0); 

component RAM 

Port ( AS, RW; in Std_logic; 
address: in std_2.ogic ''~ctor ( 20 downtc iJ); 
data: inout std_logic vector(20 downto 0) ); 

end component; 

begin 

UUT: RAM port map (AE,RW,ADDRESS,DATA); 

AE<='O' after 50 ns; 
AE<='l' after 100 ns; 
ADDRESS<="OOOOOOOOOOOOOOOOOOOOl" after 150ns; 
RW<='O' after 100 ns; 
DAT!'.<="OOOOOOOOOO 00000000101" after l20ns; 
AE<='O' af(er 200 ns; 
AE<='l' after 250 ns; 
RW<='l' after 300 ns; 
ADDRESS<="OOOOOOOOOOOOOOOOOOOOl" after 280ns; 

end RAM_ARCH; 



~ibrary I£EE; 
~se 2:EE£.5':'D ~OGlC .:._tlJ.li..LL; 

:::ntity ::\.AM i_s 
Gene:-:...: ~:1: Lnteqr~r: --256~; 
~ort _:>.C:,;1.W: 

A·.:IC.:ess: !.:-: ::r:J _:.::c:.·:: ' . .-.-::c:·:::::-'~)~1 ::s·,.m:·"':' _, ; 
jaco: ~::cu.: :;;::d ~oqi-..: ·;ec:"):::-i2·J .jO'~m::·.: tj; ,1; 

end RAM; 

A.rchitectu.:e Sequentioi o: R.ZlJ•l is 

type rmbit is array (0 ::on) of sLd_logic_vector(20 dm·mto 0); 

begin 

Process (AE,RW,Address,data) 
variable ·jram: .:mbi t; 
begin 

if (AE ='0') then 
data <= "000000000000000000000"; 

elsif (AE'event and AE=':!.') then 
if (RW = '1'1 then 

data<=dram(address); 
end if; 
if (RW = '0' I then 

' dram(address) :=data; 
end if; 

end if; 

end process; 
end sequential; 
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