13,308 research outputs found

    Epidemiology and biology of soil-borne pathogens affecting glasshouse-grown butterhead lettuce

    Get PDF

    RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

    Full text link
    Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%

    Augmented classification for electrical coil winding defects

    Get PDF
    A green revolution has accelerated over the recent decades with a look to replace existing transportation power solutions through the adoption of greener electrical alternatives. In parallel the digitisation of manufacturing has enabled progress in the tracking and traceability of processes and improvements in fault detection and classification. This paper explores electrical machine manufacture and the challenges faced in identifying failures modes during this life cycle through the demonstration of state-of-the-art machine vision methods for the classification of electrical coil winding defects. We demonstrate how recent generative adversarial networks can be used to augment training of these models to further improve their accuracy for this challenging task. Our approach utilises pre-processing and dimensionality reduction to boost performance of the model from a standard convolutional neural network (CNN) leading to a significant increase in accuracy

    Transformation of the business model to establish sustainable value in the consumer durables super store industry of Sri Lanka

    Get PDF
    The business model of an organization, operates as the fundamental blue print of the planning process, which shapes the nature of the strategies executed during the course of operation. These strategies in turn are responsible for the value creation or value erosion that takes place during the operation of the organization determining its sustainability, and in a broader context the sustainability of the industry. The research is done for the Consumer Durables Super Store (CDSS) industry of Sri Lanka concerning the existing business model, the value erosion occurring as a result of it and the risk it carries to the sustainability of the industry. The theoretical aspect of the research to develop a relationship based business model was anchored on the understanding of existing frameworks relating to sustainable value and extracting relevant areas of each of these frameworks (alignment of value, transforming current strategies and service offerings to create sustainable value) to develop a suitable hybrid framework with modifications to the literature to suite the research context.Ten in-depth interviews with CDSS organizational representatives holding leadership, sales and marketing management positions, and two focus group sessions with fifty selected customers were conducted in a virtual environment due to the prevailing pandemic situation. The data collected were analyzed with NVIVO 12, with themes relevant to the research utilized as codes, giving a clear understanding over the buyer and seller purview on the themes of the research. The findings surfaced the value erosion caused due to the financially driven strategies originated from the transactional orientation of the existing business model. The theories adopted to construct the relationship oriented business model to rectify the value erosion taking place, based on sustainable value, value alignment and service offerings, were modified to incorporate ‘quality of trade’ to bridge the gap, leading towards the creation and delivery of sustainable value to the buyer-seller eco system of the industry

    Moisture Content and In-place Density of Cold-Recycling Treatments

    Get PDF
    Cold-recycling treatments are gaining popularity in the United States because of their economic and environmental benefits. Curing is the most critical phase for these treatments. Curing is the process where emulsion breaks and water evaporates, leaving residual binder in the treated material. In this process, the cold-recycled mix gains strength. Sufficient strength is required before opening the cold-treated layer to traffic or placing an overlay. Otherwise, premature failure, related to insufficient strength and trapped moisture, would be expected. However, some challenges arise from the lack of relevant information and specifications to monitor treatment curing. This report presents the outcomes of a research project funded by the Illinois Department for Transportation to investigate the feasibility of using the nondestructive ground-penetrating radar (GPR) for density and moisture content estimation of cold-recycled treatments. Monitoring moisture content is an indicator of curing level; treated layers must meet a threshold of maximum allowable moisture content (2% in Illinois) to be considered sufficiently cured. The methodology followed in this report included GPR numerical simulations and GPR indoor and field tests for data sources. The data were used to correlate moisture content to dielectric properties calculated from GPR measurements. Two models were developed for moisture content estimation: the first is based on numerical simulations and the second is based on electromagnetic mixing theory and called the Al-Qadi-Cao-Abufares (ACA) model. The simulation model had an average error of 0.33% for moisture prediction for five different field projects. The ACA model had an average error of 2% for density prediction and an average root-mean-square error of less than 0.5% for moisture content prediction for both indoor and field tests. The ACA model is presented as part of a developed user-friendly tool that could be used in the future to continuously monitor curing of cold-recycled treatments.IDOT-R27-227Ope

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%

    Annals [...].

    Get PDF
    Pedometrics: innovation in tropics; Legacy data: how turn it useful?; Advances in soil sensing; Pedometric guidelines to systematic soil surveys.Evento online. Coordenado por: Waldir de Carvalho Junior, Helena Saraiva Koenow Pinheiro, Ricardo Simão Diniz Dalmolin

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    Response of saline reservoir to different phaseCOâ‚‚-brine: experimental tests and image-based modelling

    Get PDF
    Geological CO₂ storage in saline rocks is a promising method for meeting the target of net zero emission and minimizing the anthropogenic CO₂ emitted into the earth’s atmosphere. Storage of CO₂ in saline rocks triggers CO₂-brine-rock interaction that alters the properties of the rock. Properties of rocks are very crucial for the integrity and efficiency of the storage process. Changes in properties of the reservoir rocks due to CO₂-brine-rock interaction must be well predicted, as some changes can reduce the storage integrity of the reservoir. Considering the thermodynamics, phase behavior, solubility of CO₂ in brine, and the variable pressure-temperature conditions of the reservoir, there will be undissolved CO₂ in a CO₂ storage reservoir alongside the brine for a long time, and there is a potential for phase evolution of the undissolved CO₂. The phase of CO₂ influence the CO₂-brine-rock interaction, different phaseCO₂-brine have a unique effect on the properties of the reservoir rocks, Therefore, this study evaluates the effect of four different phaseCO₂-brine reservoir states on the properties of reservoir rocks using experimental and image-based approach. Samples were saturated with the different phaseCO₂-brine, then subjected to reservoir conditions in a triaxial compression test. The representative element volume (REV)/representative element area (REA) for the rock samples was determined from processed digital images, and rock properties were evaluated using digital rock physics and rock image analysis techniques. This research has evaluated the effect of different phaseCO₂-brine on deformation rate and deformation behavior, bulk modulus, compressibility, strength, and stiffness as well as porosity and permeability of sample reservoir rocks. Changes in pore geometry properties, porosity, and permeability of the rocks in CO₂ storage conditions with different phaseCO₂-brine have been evaluated using digital rock physics techniques. Microscopic rock image analysis has been applied to provide evidence of changes in micro-fabric, the topology of minerals, and elemental composition of minerals in saline rocks resulting from different phaseCO₂-br that can exist in a saline CO₂ storage reservoir. It was seen that the properties of the reservoir that are most affected by the scCO₂-br state of the reservoir include secondary fatigue rate, bulk modulus, shear strength, change in the topology of minerals after saturation as well as change in shape and flatness of pore surfaces. The properties of the reservoir that is most affected by the gCO₂-br state of the reservoir include primary fatigue rate, change in permeability due to stress, change in porosity due to stress, and change topology of minerals due to stress. For all samples, the roundness and smoothness of grains as well as smoothness of pores increased after compression while the roundness of pores decreased. Change in elemental composition in rock minerals in CO₂-brine-rock interaction was seen to depend on the reactivity of the mineral with CO₂ and/or brine and the presence of brine accelerates such change. Carbon, oxygen, and silicon can be used as index minerals for elemental changes in a CO₂-brine-rock system. The result of this work can be applied to predicting the effect the different possible phases of CO₂ will have on the deformation, geomechanics indices, and storage integrity of giant CO₂ storage fields such as Sleipner, In Salah, etc
    • …
    corecore