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Abstract

As the performance and energy efficiency requirement of GPGPUs have risen, memory man-

agement techniques of GPGPUs have improved to meet the requirements by employing hardware

caches and utilizing heterogeneous memory. These techniques can improve GPGPUs by pro-

viding lower latency and higher bandwidth of the memory. However, these methods do not

always guarantee improved performance and energy efficiency due to the small cache size and

heterogeneity of the memory nodes. While prior works have proposed various techniques to

address this issue, relatively little work has been done to investigate holistic support for memory

management techniques.

In this dissertation, we analyze performance pathologies and propose various techniques

to improve memory management techniques. First, we investigate the effectiveness of advanced

cache indexing (ACI) for high-performance and energy-efficient GPGPU computing. Specifically,

we discuss the designs of various static and adaptive cache indexing schemes and present im-

plementation for GPGPUs. We then quantify and analyze the effectiveness of the ACI schemes

based on a cycle-accurate GPGPU simulator. Our quantitative evaluation shows that ACI

schemes achieve significant performance and energy-efficiency gains over baseline conventional

indexing scheme. We also analyze the performance sensitivity of ACI to key architectural pa-

rameters (i.e., capacity, associativity, and ICN bandwidth) and the cache indexing latency. we

also demonstrate that ACI continues to achieve high performance in various settings.

Second, we propose IACM, integrated adaptive cache management for high-performance and

energy-efficient GPGPU computing. Based on the performance pathology analysis of GPGPUs,

we integrate state-of-the-art adaptive cache management techniques (i.e., cache indexing, bypass-

ing, and warp limiting) in a unified architectural framework to eliminate performance patholo-

gies. Our quantitative evaluation demonstrates that IACM significantly improves the perfor-

mance and energy efficiency of various GPGPU workloads over the baseline architecture (i.e.,

98.1% and 61.9% on average, respectively) and achieves considerably higher performance than

the state-of-the-art technique (i.e., 361.4% at maximum and 7.7% on average). Furthermore,

IACM delivers significant performance and energy efficiency gains over the baseline GPGPU ar-

chitecture even when enhanced with advanced architectural technologies (e.g., higher capacity,

associativity).

Third, we propose bandwidth- and latency-aware page placement (BLPP) for GPGPUs with

heterogeneous memory. BLPP analyzes the characteristics of a application and determines the

optimal page allocation ratio between the GPU and CPU memory. Based on the optimal page

allocation ratio, BLPP dynamically allocate pages across the heterogeneous memory nodes. Our



experimental results show that BLPP considerably outperforms the baseline and state-of-the-

art technique (i.e., 13.4% and 16.7%) and performs similar to the static-best version (i.e., 1.2%

difference), which requires extensive offline profiling.
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I Introduction

From big data computing to machine learning, GPGPUs are being used in various computing

domains as it utilizes thousands of cores for high performance and energy-efficient computing. To

further improve the performance and energy efficiency, modern GPGPUs have begun to improve

memory management techniques in terms of both architecture and system software. For the

GPGPU architecture, hardware caches have been widely adopted in the memory hierarchy [1,2]

for faster memory access. For example, the NVIDIA Kepler GK110 architecture includes 16KB

(or 48KB) L1 cache per core and total capacity of 1,536KB L2 caches [1]. The rationale behind

this design decision is that small yet fast GPGPU caches would effectively capture the locality

in the memory accesses of GPGPU workloads and reduce memory access overhead, similarly to

CPU caches.

However, incorporating hardware caches in the GPGPU memory hierarchy does not always

guarantee enhanced performance and energy efficiency in GPGPU computing. The fundamental

limitation is that in GPGPU, thousands of GPGPU threads share significantly small capacity

of GPGPU caches, which can cause various performance pathologies. Without effective cache

management, GPGPU architectures may fail to achieve the best possible performance and energy

efficiency when using GPGPU caches.

In order to improve effectiveness of hardware caches, researchers have proposed architectural

techniques based on adaptive warp scheduling and limiting [3–8], and cache bypassing [4, 5].

Relatively little work, however, has been done in the context of advanced cache indexing (ACI)

for GPGPUs, which has been shown to be one of the most effective techniques to improve

performance in CPU hardware caches [9–11].

To bridge this gap, we investigate the effectiveness of advanced cache indexing for high per-

formance and energy efficient GPGPU computing [12, 13]. We discuss the design of various

static and adaptive cache indexing schemes and present implementation for GPGPU architec-

tures. We then quantitatively evaluate the static and adaptive cache indexing schemes compared

to the baseline conventional indexing scheme in terms of performance and energy efficiency us-

ing GPGPU workloads. We also investigate the performance sensitivity of the advanced cache

indexing schemes to key architectural parameters such as cache capacity and indexing latency.

Furthermore, little work has been done to create a unified architecture framework that tightly

integrates the state-of-the-art adaptive cache management techniques and investigate their ef-

fectiveness when they are tightly integrated. Based on the analysis of GPGPU performance

pathologies, we conclude that multiple cache management schemes needs to be integrated to

achieve the best possible performance. Therefore, we propose IACM [14, 15], integrated adap-

tive cache management for high-performance and energy-efficient GPGPU computing. IACM

incorporates the state-of-the-art adaptive cache management techniques (i.e., adaptive cache

indexing, adaptive warp limiting, and cache bypassing) in a unified architectural framework.

Based on a cycle-accurate GPGPU simulator [16] and various GPGPU workloads, we quantify
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the performance and energy efficiency of IACM.

In terms of system software, GPGPUs have begun to utilize heterogeneous memory for im-

proved performance. Researchers [17–23] have presented the design and implementation of vir-

tual memory for GPGPUs with heterogeneous memory that comprises the GPU (e.g., GDDR5)

and CPU (e.g., DDR4) memory nodes. By using both GPU and CPU memory nodes, GPGPUs

are able to increase effective bandwidth and capacity of the memory. For better heterogeneous

memory system, system must provide the transparent support for virtual memory so that pro-

grammers can fully utilize all the available heterogeneous memory nodes without the need for

manually managing the data transfers.

In order to achieve the best possible performance on GPGPUs with heterogeneous memory,

system should first dynamically categorize application characteristics. Then, it should allocate

pages judiciously across the heterogeneous memory nodes by considering the application char-

acteristics and the differences between GPU and CPU memory in terms of both bandwidth and

latency. Most of the aforementioned prior works have only investigated the efficient design and

implementation of the address translation [20,21], cache hierarchy [19], and warp scheduling [18],

lacking the heterogeneity-aware memory management.

The prior work in GPGPUs with heterogeneous memory [17] has proposed a memory man-

agement technique that places memory pages by considering the memory bandwidth difference

of the GPU and CPU memory. However, it lacks the consideration of the GPGPU caches, which

significantly affect the memory performance in terms of bandwidth and latency. This leads to al-

locating pages across the heterogeneous memory nodes in a latency-oblivious manner, achieving

suboptimal performance.

To bridge this gap, we propose bandwidth- and latency-aware page placement (BLPP) for

GPGPUs with heterogeneous memory which consists of three phases [24]. First, BLPP col-

lects the performance counter data of the target application using offline profile data or using

runtime information. Second, BLPP determines the optimal memory allocation ratio based on

the application characteristics and the performance differences of the heterogeneous memory

nodes. Finally, it dynamically allocates memory pages based on the optimal allocation ratio.

We demonstrate the effectiveness of BLPP through quantitative evaluation with various GPGPU

workloads.

Specifically, this dissertation makes the following contributions:

• Analysis on Advanced Cache Indexing Schemes

– We explain performance pathologies of GPGPU hardware cache by analyzing memory

access pattern of GPGPU application and discuss various static and adaptive cache

indexing schemes that can mitigate the issues. We discuss design and implementa-

tions of advanced cache indexing schemes for high performance and energy-efficient

GPGPU computing.
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– With a cycle-accurate GPGPU simulator [16], we provide a quantitative evaluation

of the advanced cache indexing schemes. We use benchmarks from various bench-

mark suites with a wide range of memory access characteristics for in-depth analysis.

Specifically, we quantify the performance and energy efficiency of the advanced cache

indexing schemes for the L1 data and L2 caches of the GPGPU architecture. We

provide various data such as cycle breakdown, reservation fails, and miss rate to gain

a deeper insight.

– We investigate the performance sensitivity of the advanced cache indexing schemes

to key architectural parameters: indexing latency, number of sets, associativity, and

capacity of L1 data cache. Our sensitivity study demonstrates that the advanced

cache indexing schemes continues to provide significant performance gains even when

the additional indexing latency occurs due to the hardware complexity. And even

when the advanced cache indexing schemes are used in a hardware cache that is en-

hanced with larger capacity or high associativity, it will continue to provide significant

performance gains.

• Propose and Evaluate Integrated Adaptive Cache Management

– We propose IACM, integrated adaptive cache management for high performance and

energy-efficient GPGPU computing. IACM is an integrated GPGPU architecture

that incorporates the state-of-the-art adaptive cache management techniques (i.e.,

adaptive cache indexing, adaptive warp limiting, and cache bypassing) in an unified

manner.

– We present three IACM designs, each with a different methods of unifying adaptive

cache management techniques. We perform extensive design parameter sweeps to

find parameters with the best performance for each of three IACM designs based on

a cycle-accurate GPGPU simulator. We then compare performance of three IACM

designs and determine the design that provides the highest performance among the

three.

– We quantify the performance and energy efficiency of IACM using the IACM design

with the best performance. Our quantitative evaluation demonstrates that IACM

significantly outperforms the baseline GPGPU architecture in terms of performance

and energy efficiency (i.e., 98.1% and 61.9% on average) by effectively unifying the

adaptive cache management techniques in an integrated manner and eliminating the

performance pathologies.

– We quantitatively compare IACM with the state-of-the-art technique [6] which also

integrates various cache management techniques. Our experimental results show that

IACM outperforms the state-of-the-art technique with a majority of the evaluated

benchmarks. This is because IACM employs the adaptive cache indexing technique
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unlike state-of-the-art which employs the static cache indexing technique, and applies

the adaptive techniques in a more coordinated manner. Overall, IACM achieves

considerably higher performance (i.e., 361.4% at maximum and 7.7% on average)

than the state-of-the-art technique across all the 20 evaluated benchmarks, which

clearly demonstrate the effectiveness of IACM.

• Propose and Evaluate Bandwidth- and Latency-aware Page Placement

– We identify and quantify that the state-of-the-art page placement technique [17]

achieves suboptimal performance on the practical GPGPU architecture with het-

erogeneous memory. We analyze that this is mainly because the prior technique

lacks the consideration of the performance effects of the GPGPU caches in terms of

bandwidth and latency.

– We propose BLPP, bandwidth- and latency-aware page placement for GPGPUs with

heterogeneous memory. BLPP is comprised of three phases. First, BLPP collects the

performance characteristics (e.g., cache miss rates and memory traffic) of the target

application using offline profile data or runtime information. Second, it determines

the optimal allocation ratio across the heterogeneous memory nodes based on the

application characteristics. Finally, it dynamically places memory pages by using the

optimal allocation ratio determined from previous phase.

– We propose and evaluate two versions of BLPP. The static version of BLPP (S-BLPP)

employs the offline profile data of the target application. In contrast, the dynamic

version of BLPP (D-BLPP) dynamically classifies the target application character-

istics and determines the optimal allocation ratio without requiring offline profiling.

Using quantitative evaluation, we show that D-BLPP achieves similar performance

to S-BLPP.

– We quantify the effectiveness of BLPP based on a cycle-level GPGPU simulator and a

variety of GPGPU workloads. Our experimental results show that BLPP considerably

outperforms (e.g., 16.7% higher performance) the state-of-the-art technique [17] and

achieves the performance similar (e.g., 1.2% lower performance) to that of the static

best version, which requires extensive offline profiling for every application, dataset,

and memory allocation ratio. We also provide execution cycle breakdown and memory

allocation ratio data of each techniques for an in-depth analysis.

The rest of this dissertation is organized as follows. Section II provides background informa-

tion on the baseline GPGPUs and its performance pathologies. Section III provides performance

and energy efficiency analysis on GPGPUs when using advanced cache indexing schemes. Sec-

tion IV presents the IACM architecture and compares its performance and energy efficiency

against the baseline and state-of-the-art architecture. Section V presents BLPP and compares
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its performance to the baseline and state-of-the-art technique. Section VI summarizes related

works and Section VII concludes the dissertation.
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Figure 1: The baseline GPGPU architecture

II Background

2.1 Baseline GPGPU Architecture

Figure 1 shows the baseline GPGPU architecture that consists of multiple single-instruction

multiple-thread (SIMT) cores1. Each SIMT core includes L1 memory components such as a

private L1 data cache, which serves memory requests from LDST unit. When a cache miss

occurs from L1 data cache, memory request is sent to the corresponding memory partition

through the interconnection network. Each memory partition consists of hardware components

such as an L2 cache bank, and a memory controller and is connected to an off-chip DRAM

module. To support outstanding memory requests, L1 and L2 caches are augmented with the

miss status holding registers (MSHRs), which dynamically track the status of pending misses.

A GPGPU program consists of kernels that are offloaded to GPGPUs. These kernels can

be divided into concurrent thread blocks (CTA), warps, and threads. Threads belonging to

the same CTA can be synchronized using synchronization primitives such as barriers and share

data through a shared memory. With CTA being consisted of multiple warps, group of threads

form a single warp. SIMT core executes threads in a warp granularity, and every thread within

a scheduled warp executes in a lockstep manner. Execution order of warps can affect overall

performance of GPGPU. Therefore, prior works have extensively investigated warp scheduling

techniques such as Greedy-Then-Oldest (GTO) [3] and two-level [8] scheduling techniques.

2.2 Performance Pathologies of GPGPU Caches

Similar to CPU caches, GPGPU caches may suffer from well-known performance pathologies

such as thrashing and contention. In GPGPU computing, cache thrashing occurs when the

working-set size of a kernel exceeds the capacity of the cache. One of the key parameters that
1MP and MC in Figure 1 denote memory partition and memory controller, respectively.
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determines the effective working-set size of a kernel is number of active warps, which is controlled

by the warp scheduler. GPGPUs are significantly more vulnerable to cache thrashing than CPUs

due to thousands of threads sharing the cache.

Cache contention occurs when concurrent threads compete for hardware resources required

for a cache operation. In GPGPU computing, the hardware resources that often trigger drastic

performance degradation from contention are cache lines, MSHR entries, and miss queue entries.

A reservation fail occurs when a memory operation cannot proceed because of a failure to reserve

any of the aforementioned hardware resources.

Specifically, a cache-line reservation fail for a memory operation occurs when all the cache

lines in the set associated with the memory operation are currently reserved for other pending

memory operations. With ineffective cache indexing, cache-line reservation fails can frequently

occur even when there are plenty of available cache lines. Reservation fails for MSHR and miss

queue entries typically occur with frequent cache misses.

Threads that cause cache contention or cache thrashing can belong to a same warp or dif-

ferent warps. Following the terminologies used in [3], we refer to the former as the intra-warp

interference and the latter as the inter-warp interference. Reason we are distinguishing intra-

warp and inter-warp interferences is because different cache management technique should be

used to mitigate performance pathologies depending on the interference, which will be discussed

in the later sections.

2.3 Heterogeneous Memory Systems

To date, high-performance GPGPUs have been mostly managed as separate computing devices

from CPUs, requiring GPGPU programmers to manually manage memory transfer between

the GPU and CPU memory. Therefore, programmers had to decide which and when memories

should be transferred between the GPU and CPU memory for optimal performance. To enhance

the programmability and support a wide range of applications, researchers have extensively

investigated automatic memory management techniques to provide the unified address space for

GPGPUs with heterogeneous memory that comprises the GPU and CPU memory nodes [17,19,

20,22,23,25].
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Figure 2 shows the GPGPU architecture with heterogeneous memory, which enables the

GPGPU to seamlessly access the data in the GPU and CPU memory nodes without manual

memory management by a programmer. In line with the state-of-the-art designs, we assume that

the CPU and GPGPU are connected via a dedicated high-performance GPU-CPU link such as

NVIDIA’s NVLINK [26] and AMD’s HyperTransport [27].

Prior works have presented the design and implementation of the OS-controlled unified mem-

ory for GPGPUs with heterogeneous memory [19, 20, 25]. In this work, we follow the work [19]

and assume that the underlying GPGPU architecture with heterogeneous memory implements

the selective caching protocol. Reason we are implementing selective caching is mainly because

the selective caching protocol achieves high performance with low hardware complexity. In

contrast, the other proposals require intrusive modifications in the GPU and/or CPU memory

hierarchy [20,25], significantly increasing the hardware complexity.

The selective caching protocol disallows the GPGPU caching of any data that is (1) mapped

in the CPU physical memory or (2) actively used by the CPU on-chip caches. By enforcing these

properties, the selective caching protocol eliminates the need for supporting cache coherence

in the GPGPU caches and requires no or little modifications in the GPU and CPU memory

hierarchy [19].
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Listing 1: The code snippet of the ATAX benchmark

void atax_kernel1 ( f l o a t ∗A, f l o a t ∗x , f l o a t ∗tmp)

{

// blockDim . x = 256

i n t i = blockId . x∗blockDim . x + threadId . x ;

i f ( i < NX) {

i n t j ;

// NY = 4096

f o r ( j =0; j < NY; j++)

tmp [ i ] += A[ i ∗ NY + j ] ∗ x [ j ] ;

}

}

Block offset

7 0

TID in warp

19 14 j 2

Figure 3: An example of cache conflicts when running ATAX

III Quantifying the Performance and Energy Efficiency of Ad-

vanced Cache Indexing for GPGPU Computing

3.1 Motivation

The baseline GPGPU architecture is potentially vulnerable to cache thrashing and contention

given that thousands of threads share small hardware caches. To gain a deeper understanding of

the cache performance pathology of GPGPUs, we present a case study with the ATAX benchmark

in the PolyBench benchmark suite [28], which contains a pathological memory access pattern.

Listing 1 shows the code snippet of ATAX. Because NY is 4096, the memory addresses for

concurrent accesses to array A performed by all 32 threads within a warp have unique bit values

from B14 to B18, which essentially encode the thread ID in a warp (see Figure 3). Thus, the

bits from B14 to B18 are highly effective for avoiding reservation fails and conflict misses among

the threads within a warp.2 In contrast, because every thread in a warp executes in a lock-step

manner, the bits from B7 to B13, determined by the variable j, have identical values across all

threads within a warp. Therefore, the bits from B7 to B13 are ineffective if used to mitigate the

cache thrashing among the threads.
2Note that a reservation fail occurs when there is no available cache line or hardware resource (MSHR or miss

queues) for a memory request because all of them are currently in use to serve other pending memory requests.
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BSS 0N-1

Figure 4: Bitwise XOR indexing

With a hardware cache that consists of 32 sets (i.e., indexing bits consist of five bits), the

conventional cache indexing scheme employs the bits from B7 to B11, causing drastic cache

contention among the threads in the same warp. If the cache employs an advanced cache

indexing scheme that can avoid this cache contention, the overall performance can be significantly

improved. For instance, adaptive cache indexing can indicate that the bits from B14 to B18 are

highly effective for avoiding cache contention based on runtime information, therefore using

employ them as the indexing bits.

The cache thrashing and contention of GPGPU workloads can be triggered by intra-warp

interference and inter-warp interference [3]. While inter-warp interference can be mitigated using

other GPGPU cache management techniques, such as warp scheduling [3], they are generally

ineffective when used to address intra-warp interference. Because advanced cache indexing is

expected to efficiently address both types of interference, it is crucial to thoroughly investigate

the effectiveness of various advanced cache indexing schemes for high performance and energy

efficient GPGPU computing.

3.2 Static Cache Indexing

This section discusses advanced static cache indexing schemes. In Sections 3.2 and 3.3, without

a loss of generality, we assume a GPGPU architecture with an N -bit address space. We also

assume a hardware cache whose block size, associativity, and number of sets are correspondingly

2B bytes, W , and 2S . An N -bit memory address A is expressed as A[N − 1 : 0] and its cache-

block address AB is expressed as A[N − 1 : B]. In addition, cache index I for a memory address

is expressed as I[S − 1 : 0].

3.2.1 Bitwise XOR Indexing

Bitwise XOR indexing (BXI) computes the set index mapped to a cache-block address by per-

forming the bitwise XOR operation for the first and second lowest S bits of the cache-block

address [10]. Lowest 2S bits are used to construct a set index because the lower bits change

more frequently than the higher bits in a typical sequence of memory accesses, resulting in a

more uniform distribution of the memory addresses during a time interval. Figure 4 shows how

BXI constructs the indexing bits for an N bit memory address. Owing to its simple and rapid

hardware implementation, BXI is applicable to L1 caches. In addition, the area overhead of BXI

10



I5 = A30 ⊕A29 ⊕A28 ⊕A27 ⊕A24 ⊕A22 ⊕A18 ⊕A17 ⊕A12

I4 = A31 ⊕A29 ⊕A28 ⊕A27 ⊕A26 ⊕A23 ⊕A21 ⊕A17 ⊕A16 ⊕A11

I3 = A30 ⊕A28 ⊕A27 ⊕A26 ⊕A25 ⊕A22 ⊕A20 ⊕A16 ⊕A15 ⊕A10

I2 = A29 ⊕A27 ⊕A26 ⊕A25 ⊕A24 ⊕A21 ⊕A19 ⊕A15 ⊕A14 ⊕A9

I1 = A28 ⊕A26 ⊕A25 ⊕A24 ⊕A23 ⊕A20 ⊕A18 ⊕A14 ⊕A13 ⊕A8

I0 = A31 ⊕A30 ⊕A29 ⊕A28 ⊕A25 ⊕A23 ⊕A19 ⊕A18 ⊕A13 ⊕A7

Figure 5: Polynomial modulus indexing

is expected to be low because it requires 5 XOR gates in the case of the 4-way 16KB L1 data

cache with a block size of 128 bytes.

3.2.2 Reverse-Engineered Bitwise XOR Indexing

Recent work has reverse-engineered the NVIDIA GTX470 architecture and concluded that a

variant of the bitwise XOR indexing scheme appears to be employed in its L1 data cache [29].

Specifically, as for the 4-way 16KB L1 data cache with a block size of 128 bytes, the reverse-

engineered bitwise XOR indexing (RXI) scheme computes the indexing bits as follows – I4 =

A19 ⊕A11, I3 = A17 ⊕A10, I2 = A15 ⊕A9, I1 = A14 ⊕A8, and I0 = A13 ⊕A7 [29].

The area overhead of RXI is expected to be low because RXI requires the same number of

the XOR gates to compute the indexing bits for the same cache configuration as BXI does. The

main difference between BXI and RXI is that RXI employs higher bits to construct some of the

indexing bits (e.g., A19 for I4). We conjecture that the design decision of RXI has been made

mainly based on the observation that some of the higher bits can effectively reduce the cache

contention for some GPGPU workloads. Section 3.4 quantitatively compares the performance

and energy efficiency outcomes of BXI and RXI.

3.2.3 Polynomial Modulus Indexing

Polynomial modulus indexing (PLI) represents an N -bit memory address as a polynomial A(x)

in the Galois field of 2 (GF(2)) [6,7,9,10]. For instance, A(x) for memory address 57 is expressed

as x5+x4+x3+1. Suppose that P (x) is a polynomial whose order is S. A(x) can be expressed

as A(x) = P (x) ·Q(x) +R(x) where Q(x) and R(x) are polynomials in GF(2) and the order of

R(x) is less than S. In such a case, R(x) can be considered as the polynomial representation of

the cache index for the memory address [6]. In other words, cache index R(x) is computed as

R(x) = A(x) mod P (x).

Prior work holds that PLI can achieve the best permutation when P (x) is an irreducible

polynomial [9]. For example, we assume a cache with 64 sets (i.e., S = 6) and 128-byte blocks
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(i.e., B = 7). We also assume P (x) = x6 + x + 1, which is one of the irreducible polynomials

whose order is 6. Figure 5 shows the indexing bits constructed by PLI for the aforementioned

cache, whose configuration is identical to that of the L2 cache evaluated in Section 3.4.

PLI near-randomly interleaves consecutive memory addresses with various strides, even when

the stride is a multiple of the number of cache sets (i.e., 2S) [6,9]. However, prior work states that

PLI is not resistant to all possible memory strides, potentially leading to suboptimal performance

in pathological cases (e.g., when the stride is 2S − 1) [11]. Furthermore, because the hardware

logic required to compute the index is rather complicated (e.g., trees of XOR gates) and is in the

critical path, PLI may increase the hit time of the cache [30]. We investigate the performance

impact of the additional indexing latency in Section 3.4. The area overhead of PLI is expected

to be rather low (but slightly higher than BXI and RXI) because it requires tens of XOR gates

to compute the indexing bits, as shown in Figure 5.

3.2.4 Prime Modulo Indexing

Prime modulo indexing (PRI) computes the index of a cache block address (AB) using the

following equation: I = AB mod p, where p is the largest prime number that is equal to or

smaller than the number of sets in the cache [11, 31]. The main advantage of PRI is that it

is resistant to a wide range of memory strides, even including the aforementioned pathological

cases for PLI [11].

However, given that PRI requires an integer division to compute the index for each cache

access, it can introduce a significant indexing latency, potentially degrading the overall perfor-

mance. While prior work proposed a fast implementation for PRI [11], it applied PRI only to

the L2 cache because the additional indexing latency of PRI makes it infeasible for L1 caches.

In addition, PRI is associated with from the set fragmentation problem [11], in which some of

the sets in the cache are unutilized if the number of sets is not a prime number, which is a

common case (e.g., a power of two). For instance, if a hardware cache consists of 32 sets, PRI

only utilizes 31 sets, resulting in set fragmentation of 3.125% (= 1
32 × 100).

3.3 Adaptive Cache Indexing

With regard to adaptive cache indexing (ADI) for GPGPUs, we adopt a technique referred to as

ASCIB, that has been proposed to adjust the cache indexing bits dynamically to reduce conflict

misses for CPU caches [32]. We choose ASCIB as the baseline design owing to its simplicity and

applicability to L1 caches.

The ADI phase consists of three phases: victimization, selection, and idle phases (Figure 6).

The victimization phase determines the victim bit from among the current indexing bits, which

contributes the least to reducing set conflicts. For this purpose, ADI computes the entropy of

each of the current indexing bits to quantify its variability. The entropy counter (CE) of each

indexing bit increments by 1, if the corresponding indexing bit value is 1. Assuming that the
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Probe !=
Reservation Fail

Current Phase?

Cache Access

Vic_counter < nv

Sample Data

Probe == Miss

Sample Data

Selec_counter < ns

Vic_counter++

Select Victimization Bit

Selec_counter++

Select Selection Bit &
Start Flushing

Idle_counter < ni

Idle_counter++

Current Phase = Vic &
Reset Idle_counter

Victimization

Selection

Idle

End

yes

yes yes yes

no no no

no

yes

no

Current Phase = Idle &
Reset Selec_counter

Current Phase = Selection &
Reset Vic_counter

Figure 6: The overall execution flow of the adaptive cache indexing scheme

B2B1B0 
0 0 1
0 1 1
0 0 1
0 1 0

entropy(B0)=MIN(3,4-3)=1 corr(B0,B1)=MAX(3,4-3)=3
entropy(B1)=MIN(2,4-2)=2 corr(B0,B2)=MAX(3,4-3)=3
entropy(B2)=MIN(0,4-0)=0 corr(B1,B2)=MAX(2,4-2)=2

Figure 7: An example of determining a victimized bit

total sample count is T , the entropy of each indexing bit is computed to be MIN(CE , T −CE).

In addition, ADI computes the correlation of every pair of the current indexing bits. The

correlation counter (CC) increments by 1 if the indexing bits in the corresponding pair have the

same value. The correlation of each pair is computed to be MAX(CC , T − CC).

ADI employs a metric called usefulness to compare the entropy of each of the indexing bits

and the correlation of each pair of the indexing bits directly. With a total sample count of T ,

the usefulness of the entropy (i.e., E) of each of the indexing bits is computed to be E and the

usefulness of the correlation (i.e., C) of each pair of the indexing bits is computed to be T −C.

If the indexing bit with the lowest entropy has a lower usefulness value than the pair of the two

indexing bits with the highest correlation, the indexing bit with the lowest entropy is selected

as the victim bit. Otherwise, the indexing bit that has lower entropy between the two indexing
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Candidates
B2B1
0 0
1 0
0 1
0 1
1 1

Index
B0 
1
1
0
1
0

B2 B1 B2 B1

0 1 0 0
1 1 1 0

0 1 MRP(B2)=(MP0(B2)+MP1(B2))/2=1

MP0(B2)=2/2: 01 MP1(B2)=3/3: 010
MRP(B1)=(MP0(B1)+MP1(B1))/2=7/4

When B0=0 When B0=1 When B0=0 When B0=1

MP0(B1)=2/1: 11 MP1(B1)=3/2: 001

Figure 8: An example of selecting a new indexing bit

bits with the highest correlation is selected as the victim bit. Figure 7 shows an example of

the determination of a victimized bit (i.e., B2). In this work, the victimization phase period is

configured as 1K L1 data cache misses.

The hardware overhead of the victimization phase is estimated as follows. The victimization

phase requires S·(S+1)
2 counters to collect the entropy and correlation data, where 2S is the

number of sets in the cache. With a period of 2M misses for the victimization phase, each

counter requires M bits. Therefore, M ·S·(S+1)
2 bits are required for the counters. In addition,

the victimization phase requires S·(S+1)
2 M -bit adders and S·(S−1)

2 XOR gates to compute the

entropy and correlation [32,33]. For instance, with a 16KB L1 data cache, the hardware overhead

required for the victimization phase includes 150 bits for the counters, 15 10-bit adders, and 10

XOR gates when S = 5 and M = 10.

The selection phase determines the new indexing bit that is expected to be most effective

for reducing set conflicts. ADI quantifies the effectiveness of each bit using a metric called the

mean relative period (MRP). For a sequence of memory addresses, the mean period (MP) of an

address bit position is defined as the average length of consecutive zeros or ones. The MRP of

the bit position is defined as the average of the MPs. More specifically, the sequence of memory

addresses is clustered based on the values of the current indexing bits (excluding the victim

bit). For each cluster of addresses, the MP of the bit position is computed. The MRP of the

bit position is computed as the average of the MPs across all clusters of addresses. The new

indexing bit is then determined as the bit with the lowest MRP among all non-indexing bits.

This is done because it is expected to change most frequently relative to the current indexing

bits. In this work, the selection phase period is configured as 1K L1 data cache accesses.

Figure 8 shows an example of the selection of new indexing bit. The bit sequences of B2 are

01 (B0 = 0) and 010 (B0 = 1) when B0 = 0 and B0 = 1, respectively. The MP of B2 when

B0 = 0 is computed to be 1 (i.e., 2
2 = 1) because the length of the bit sequence is 2 (i.e., 01) and

because there are two segments of consecutive zeros or ones (i.e., 0 and 1). Similarly, the MP

of B2 when B0 = 1 is computed to be 1 (i.e., 3
3 = 1) because the length of the bit sequence is 3

(i.e., 010) and because there are three segments of consecutive zeros or ones (i.e., 0, 1, and 0).

The MRP of B2 is then computed to be 1 (i.e., the average of the MPs). Finally, B2 is selected

as the new indexing bit because it has the lowest MRP.

If the new indexing bit differs from the victim bit, all of the cache lines in the state other than
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the invalid state must be flushed to guarantee correctness. In line with earlier results [32,33], our

experimental results show that the performance degradation due to cache flushing is insignificant,

as the process is not performed too frequently.

The hardware overhead of the selection phase is estimated as follows. The selection phase

requires a tag cache that consists of 2S−1 entries. With the N -bit memory address space and

2B-byte cache blocks, each entry requires (N − S − B + 1) bits in order to compute the MRP

of the candidate bits. With a period of 2M accesses for the selection phase, each candidate

bit requires an M -bit counter. Therefore, the hardware overhead required for the tag cache is

(N−S−B+1) ·(2S−1+M) bits. In addition, (N−S−B+1)M -bit adders and (N−S−B+1)

XOR gates are required to compute the MRP [32,33]. Further, S logN -bit registers are required

to store the current indexing bit information. For example, with a 16KB L1 data cache, the

hardware overhead required for the selection phase includes 546 bits for the tag cache and the

counters, 21 10-bit adders, and 21 XOR gates when N = 32, S = 5, B = 7, and M = 10.

Finally, during the idle phase, the system runs without performing any monitoring or adap-

tation activities during a predefined period (i.e., 4K accesses). Note that all phases are fully

decoupled from the critical path for L1 cache accesses. For instance, computations of met-

rics such as the entropy, correlation, and MRP are don separatly from the critical path. This

property makes ADI applicable to L1 caches (as well as the L2 cache).

To adopt ADI for massively-parallel GPGPU architectures, we extend the baseline ADI as

follows. First, we design ADI to support multiple outstanding memory requests robustly. Upon

a cache miss, a cache line is reserved for the requesting thread. The underlying warp scheduler

then schedules another warp, which is ready to run with minimal overhead through fast hardware

context switching to maximize the throughput. While the prior memory request is still being

handled by the hardware components in the memory hierarchy (e.g., DRAM), it is possible for

ADI to change the cache indexing bits. If the corresponding cache line is immediately invalidated

during the cache flushing step, subtle correctness issues may arise when the pending data arrives,

which was originally indexed based on the previous cache indexing bits.

To address such correctness issues, we introduce a new cache-line state called reserved-doomed

(RD), which indicates that the corresponding cache line is reserved for a pending memory request

that was issued before the cache indexing bits changed to the current ones but that has not been

completed. When a cache line is in the RD state, it cannot be reserved for any subsequent

memory request. When the pending data arrives, the corresponding cache line transitions from

the RD state to the invalid state and becomes available for subsequent memory requests.

In our design, the physical location (i.e., the set index and the way number) of each cache

line in the reserved or RD state is encoded in the header of the corresponding request/response

packet to/from a lower memory component in the hierarchy. We expect the overhead of this

design to be low. For instance, as for the 4-way 16KB L1 data cache with the block size of 128

bytes, the extra bits required in the header of each memory request or response packet amount to

7 bits (i.e., 5 bits for the set index and 2 bits for the way number). Because the memory request
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Time Core L1D Response L1D Line State
0 ld A Miss

NOC
Send request for A

1
2 ld B Reservation Fail
3
4 ld B Miss

I → R
R → RD (flush) 

RD
RD → I
I → R

Receive A
Send request for B

Figure 9: An example of cache-line state transitions

and response packets already include the 8-byte control data (e.g., the address and SIMT core

ID) [16], we believe that adding an extra 7 bits to encode the physical location of the reserved

cache line incurs low overhead.

Figure 9 shows an example of how the state of a cache line changes when memory operations

are performed on a system in which ADI is applied to its L1 data cache. At time 0, the SIMT

core attempts to load data A. Because the request incurs an L1 data cache miss, the state of the

corresponding cache line in the L1 data cache is changed from the invalid to the reserved state

and the request is sent through the interconnection network. At time 1, the state of the cache

line is changed to the reserved-doomed (RD) state due to the cache flushing triggered by ADI.3

At time 2, the core attempts to load data B, which happens to be mapped to the same cache

line as data A. Because the corresponding cache line is in the RD state, the request for data B

cannot proceed due to the reservation fail. At time 3, data A is received from the interconnection

network and the state of the cache line is changed to the invalid state. Finally, at time 4, the

core retries to load the data B, incurring an L1 data cache miss.

Second, because the baseline ADI only supports a single core, we extend it to support multiple

SIMT cores and L2 cache banks. To this end, we duplicate the hardware logic required for ADI

across all the SIMT cores and L2 cache banks. With this design approach, ADI allows for each

private L1 data cache and each L2 cache bank to adapt in a fully distributed manner without

requiring any centralized hardware structure. As analyzed above and also quantified earlier [32]

(i.e., the area overhead < 2%), the area overhead required for ADI is expected to be low.

Third, for the L1 data cache, ADI filters out the addresses for the writes to global memory

during the victimization and selection phases. This is done because most modern GPGPU

architectures typically employ a policy with write evict (on write hits) and write no-allocate (on

write misses) for global memory accesses without providing cache coherence across private L1

data caches.
3Note that cache flushing is typically performed in multiple cycles. To ensure correctness, the cache controller

rejects any incoming memory request from the SIMT core until cache flushing is complete. For brevity, in this

example, we assume that cache flushing is performed in a single cycle.
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Table 1: Architectural parameters of the simulated system

Parameter Value

SIMT Core Core count: 16, SIMT width: 32, pipeline depth:

5, frequency: 700MHz

Per-core resource Number of registers: 32768, scratchpad: 48KB,

MSHRs: 32, warps: 48, threads: 1536

Schedulers Warp scheduler: Greedy-Then-Oldest (GTO),

CTA scheduler: round-robin

L1 data cache Capacity: 16KB/core, line size: 128B, associa-

tivity: 4, coalescing: enabled

Interconnect Frequency: 700MHz, channel width: 32

L2 cache Capacity: 64KB/bank, number of banks: 12,

line size: 128B, associativity: 8

DRAM Frequency: 924MHz, scheduler: FR-FCFS,

number of MCs: 6, channel BW: 4B/cycle

3.4 Evaluation

This section provides a quantitative evaluation of advanced cache indexing (ACI) for GPGPU

computing. Specifically, we aim to investigate the following – the effectiveness of ACI for L1

data and L2 caches and the sensitivity of ACI to architectural parameters such as the indexing

latency, cache capacity, and associativity.

3.4.1 Methodology

We implemented the ACI schemes in the GPGPU-Sim simulator (version 3.2.2) [16]. We use

architectural parameters similar those defined in the configuration file in the GTX480 directory

(Table 1). We investigate the performance and energy efficiency of the following cache index-

ing schemes – conventional (CVI), bitwise XOR (BXI), reverse-engineered bitwise XOR (RXI),

polynomial modulus (PLI), prime modulo (PRI), and adaptive indexing (ADI) schemes. Re-

garding ADI, the periods of the victimization, selection, and idle phases are set to 1K misses,

1K accesses, and 4K accesses to the L1 data and L2 caches, respectively. Note that the L1 data

and L2 caches with the conventional and ACI schemes are configured with the same capacity

and associativity. We use the Greedy-Then-Oldest (GTO) warp scheduler [3]. To quantify the

energy efficiency of the ACI schemes, we use GPUWattch [34].

Table 2 summarizes all of the benchmarks that we use to investigate the effectiveness of the

ACI schemes. The benchmarks are selected from the commonly used GPGPU benchmark suites

proposed in [28,35–38]. The benchmarks exhibit widely different memory access characteristics.

Inspired by the classification presented in [6], we classify the benchmarks into five categories
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Table 2: Benchmarks

Category Name Description

Streaming

HS HotSpot [35]
NW Needleman-Wunsch [35]
BLK Black Scholes [36]
CONV Convolution [36]
FWT Fast Walsh Transform [36]

Conflicting

2DC 2D Convolution [28]
2MM 2 Matrix Multiplications [28]
SRAD Speckle Reducing Anisotropic Diffusion [35]
SC Streamcluster [35]

Thrashing

BFS Breadth-First Search [35]
KM Kmeans [35]
II Inverted Index [37]
SPMV Sparse Matrix-Vector Multiplication [38]

Conflicting &
ATAX Matrix Transpose and Vector Multiplication [28]

Thrashing
GSM Scalar, Vector and Matrix Multiplication [28]
SYRK Symmetric Rank-K Operations [28]

Friendly

BP Back Propagation [35]
BT B+ Tree [35]
NN Nearest Neighbor [35]
OP Monte Carlo Option Pricing [36]

based on their memory access characteristics – streaming, conflicting, thrashing, conflicting and

thrashing, and cache friendly benchmarks.

3.4.2 Effectiveness of Advanced Cache Indexing for the L1 Data Cache

First, we investigate the performance and energy efficiency of the ACI schemes. Figures 10

and 11 show the overall performance (i.e., instruction per cycle (IPC)) and energy consumption

normalized to the conventional cache indexing scheme when the ACI schemes are applied to the

L1 data cache. To evaluate their potential for improving the performance and energy efficiency,

we assume that the ACI schemes do not incur any extra overhead (e.g., indexing latency), which

may be rather optimistic for the sophisticated cache indexing schemes such as PLI and PRI.

Section 3.4.4 quantifies the performance sensitivity of PLI to the indexing latency.

Figure 10 demonstrates that the ACI schemes significantly improve the performance of some

benchmarks, especially the conflicting and conflicting and thrashing (C+T) benchmarks. Specif-

ically, BXI, RXI, PLI, PRI, and ADI provide corresponding performance improvement of 40.2%,

39.8%, 47.0%, 45.8%, and 42.3% over the conventional indexing scheme on average (i.e., geo-

metric mean). In addition, the ACI schemes incur little or no performance degradation across

all of the evaluated benchmarks.
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Figure 10: Overall performance results of the ACI schemes applied to the L1 data cache

Figure 11 shows that the ACI schemes significantly reduce the energy consumption, especially

the conflicting and conflicting and thrashing (C+T) benchmarks. Specifically, BXI, RXI, PLI,

PRI, and ADI provide corresponding energy reductions of 10.7%, 11.0%, 13.2%, 12.7%, and,

12.1% over the conventional indexing scheme on average (i.e., geometric mean). Similarly to the

performance result trend, the ACI schemes incur little or no increase in their energy consumption

levels across all the evaluated benchmarks.

To gain deeper insight into the performance and energy results, we provide detailed cycle and

energy breakdowns of a subset of the evaluated benchmarks. To maintain variety yet conciseness,

we investigate the seven benchmarks among all the evaluated benchmarks by selecting at least

one benchmark from each category which exhibits different performance and energy trends when

the ACI schemes are applied.

Figure 12 shows the execution cycle breakdown of the seven benchmarks. For each bench-

mark, we run it with 6 different indexing configurations for the L1 data cache. Each bar is

normalized to the baseline version in which the conventional indexing scheme is used for the L1

data and L2 caches. Each bar consists of multiple segments, each indicating busy cycles, idle

cycles due to a load imbalance across SIMT cores (Idle Core), idle cycles spent when no warp

is ready to execute (Idle Warp), cycles spent for ALU (PL ALU), LDST (PL LDST), and both

(PL Both) pipeline stalls, and cycles stalled at the scoreboard, waiting for the data produced

by ALU (SB ALU), LDST (SB LDST), and both (SB Both) instructions.

Figure 12 shows that the ACI schemes significantly improve 2DC, ATAX, and SYRK performance

outcomes. For these benchmarks, the ACI schemes effectively reduce L1 data cache misses (Fig-

ure 13(a)) and reservation fails (Figure 13(b)), which eventually reduces the LDST stall cycles

(i.e., the “PL LDST" segment in Figure 12). In particular, regarding ATAX, ADI outperforms all
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Figure 11: Overall energy results of the ACI schemes applied to the L1 data cache

static cache indexing schemes by successfully identifying and utilizing the important bits as the

indexing bits based on the runtime information (Section 3.1).

Some of the ACI schemes show different performance trends than the others. For NW, ADI

is ineffective compared to the other schemes. This is mainly due to the short kernel execution

time of NW, eventually providing insufficient adaptation opportunities for ADI.

For SC, BXI, RXI, and ADI are outperformed by PLI and PRI. Some of the high bits

in the memory address are effective for reducing the cache contention of SC. However, BXI,

RXI, and ADI are designed mostly to utilize the lower bits for constructing the indexing bits to

provide higher performance across a wide range of applications (BXI and RXI) and maintain low

hardware complexity (ADI) [32]. Therefore, BXI, RXI, and ADI show suboptimal performance

for SC. In contrast, PLI and PRI achieve higher performance by effectively utilizing the most

significant bits.

For 2DC, RXI is significantly outperformed by BXI. This occurs mainly because some of

the higher bits employed by RXI to construct the indexing bits are less effective for mitigating

the intra-warp interference incurred in 2DC. Figures 13(a) and 13(b) also show that RXI incurs

significantly more L1 data cache misses and reservation fails than BXI.

Finally, the performance impact of the ACI schemes is negligible for BFS and BT. This is

mainly because they are highly hand optimized schemes to facilitate the coalescing of the memory

addresses requested by the threads in the same warp, limiting the effect of the ACI schemes. For

these benchmarks, Figure 13 shows that the L1 data cache misses and reservation fails remain

rather unaffected when the ACI schemes are applied to the L1 data cache.

We now investigate the energy efficiency of the ACI schemes. Figure 14 shows the energy

consumption normalized to the conventional indexing scheme. The L1 data cache, NOC, L2,
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Figure 12: Execution cycle breakdown of the conventional and ACI schemes applied to the L1

data cache
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Figure 13: L1 data cache misses and reservation fails of the conventional and ACI schemes

applied to the L1 data cache

DRAM+MC, idle core, and others (mainly related to SIMT cores) segments indicate the energy

consumed by the corresponding hardware components. Figure 14 shows that the ACI schemes

significantly improve the energy efficiency for a subset of the evaluated benchmarks (i.e., 2DC,

SC, ATAX, and SYRK), demonstrating the potential of ACI schemes to realize high performance

and energy efficient GPGPU computing. For these benchmarks, we observe that the energy

reduction is mainly achieved from the reduction in the non-memory hardware components (i.e.,

the idle core and others). Similar to the performance results, the energy consumption of BFS

and BT remains unaffected with the ACI schemes.

To gain a deeper understanding of the energy reduction realized with ACI schemes, Figure 15

shows the power consumption normalized to the conventional indexing scheme. For the bench-

marks that result in an energy reduction with the ACI schemes, we observe that power consumed
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Figure 14: Energy consumption breakdown of the conventional and ACI schemes applied to the

L1 data cache

by the hardware components (e.g., DRAM and memory controllers) in the memory hierarchy

increases. Note that, with the ACI schemes, reservation fails in the L1 data caches are signifi-

cantly reduced. This allows for more memory requests per unit time to be performed through

the hardware components in the memory hierarchy, increasing their dynamic power consump-

tion. However, because the overall memory traffic is reduced with fewer L1 data cache misses

(Figure 13(a)), ACI marginally reduces the energy consumption of the hardware components in

the memory hierarchy.

Figure 15 shows that the power consumption of the non-memory hierarchy components (i.e.,

idle cores and others) is less significantly affected than the hardware components in the memory

hierarchy with the ACI schemes. This occurs because the non-memory hierarchy components

continues to consume dynamic power even for instructions that have been issued but have failed

to execute due to events such as reservation fails. In addition, the “others” segment includes

the static power consumption, which is not affected by the use of the ACI schemes. As such,

combined with the reduced execution cycles, the energy reduction stemming from the non-

memory hierarchy components accounts for a significant portion of the total energy reduction

for the aforementioned benchmarks with the ACI schemes.

3.4.3 Effectiveness of Advanced Cache Indexing for the L2 Cache

This section investigates the effectiveness of ACI for the L2 cache.4 For each benchmark, we

run it with 8 different cache indexing configurations. Each configuration is labeled with two
4Because the RXI scheme has been reverse-engineered only for the L1 data cache but not for the L2 cache [29],

we are unable to investigate the effectiveness of RXI with regards to the L2 cache.
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Figure 15: Power consumption breakdown of the conventional and ACI schemes applied to the

L1 data cache

letters. The first and second letters denote the cache indexing scheme used for the L1 data

and L2 caches, respectively. Each letter indicates one of the following cache indexing schemes –

conventional (C), bitwise XOR (B), polynomial modulus (L), prime modulo (R), and adaptive

(A) indexing schemes. For example, the LL configuration indicates that PLI is used for the L1

data and L2 caches. For another example, the AC configuration indicates that the adaptive and

conventional indexing schemes are used for the L1 data and L2 caches, respectively. Using these

configurations, we quantify the additional performance and energy efficiency gains of the ACI

schemes applied to the L2 cache.

For all 20 evaluated benchmarks listed in Table 7, BXI, PLI, PRI, and ADI improve the

performance by 57.1%, 69.9%, 65.7%, and 59.8% and reduce the energy consumption by 28.0%,

32.3%, 29.3%, and 27.9%, respectively, over the conventional indexing scheme. To keep the

discussion concise and focused, we discuss the experimental results of the four benchmarks (i.e.,

2DC, SC, BFS, and ATAX), each of which exhibits different performance and energy efficiency trends

with the ACI schemes applied to the L2 cache.

Figure 16 shows the execution cycle breakdown normalized to the results of the conventional

indexing scheme applied to the L1 data and L2 caches. To quantify the additional performance

gain of the ACI schemes applied to the L2 cache, we report the results with the schemes only

applied to the L1 data cache and both the L1 data and L2 caches. For 2DC, the ACI schemes

applied to the L2 cache have an insignificant performance effect because the memory controller

and DRAM form the major performance bottleneck due to bandwidth saturation.

In contrast, the ACI schemes provide a significant additional performance gain for SC, BFS,

and ATAX when they are applied to both the L1 data and L2 caches, mainly because these
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Figure 16: Execution cycle breakdown of the conventional and ACI schemes applied to the L1

data and L2 caches
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Figure 17: L2 data cache misses and reservation fails of the conventional and ACI schemes

applied to the L1 data and L2 caches

schemes effectively reduce the number of L2 reservation fails (Figure 17(b)), eventually leading

to a reduction in the LDST pipeline (i.e., the PL LDST segment in Figure 16) and fewer

scoreboard stalled (i.e., the SB LDST segment) cycles.5

BXI and ADI provide smaller performance gains for SC than for the other ACI schemes

because they do not employ most significant bits, which are highly effective for mitigating

the cache contention issue, for indexing6 For instance, Figure 17(a) shows that BXI incurs
5For 2DC, the number of reservation fails in the L2 cache greatly increase with the ACI schemes because

significantly more memory requests per cycle are sent to the L2 cache due to the reduced reservation fails in the

L1 data cache enhanced with the ACI schemes.
6As in case of the L1 data cache, BXI and ADI applied to the L2 cache are designed to utilize the lower bits

of a memory address when constructing the indexing bits to achieve higher performance across a wide range of

applications (BXI) and to maintain low hardware complexity (ADI).
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Figure 18: Energy consumption breakdown of the conventional and ACI schemes applied to the

L1 data and L2 caches

significantly more L2 cache misses than the other ACI schemes. In addition, it is interesting

that while the ACI schemes have insignificant performance effects on the L1 cache for BFS,

they significantly improve the performance when they are applied to the L2 cache. This clearly

demonstrates the importance of holistically optimizing the hardware caches in the GPGPU

memory hierarchy.

We now investigate the energy efficiency of the ACI schemes applied to the L2 cache. Fig-

ure 18 shows the energy consumption breakdown normalized to the results of the conventional

indexing scheme applied to the L1 data and L2 caches. For 2DC, the ACI schemes have insignifi-

cant effects on energy consumption because the major performance bottlenecks are the memory

controller and DRAM.

In contrast, the ACI schemes significantly reduce the energy consumption of SC, BFS, and

ATAX when they are applied to both the L1 data and L2 caches. In a closer analysis of the energy

consumption results, Figure 19 shows the power consumption breakdown normalized to the re-

sults of the conventional indexing scheme applied to the L1 data and L2 caches. The ACI schemes

applied to the L2 cache increase the power consumption of SC significantly, mainly due to the

increased power consumption of the memory hierarchy components (e.g., NOC, DRAM+MC)

because more memory requests per cycle can be transmitted through the memory hierarchy by

effectively mitigating the L2 cache contention issue using the ACI schemes. However, the perfor-

mance improvement of the ACI schemes effectively cancels out the increased power consumption,

significantly reducing the energy consumption of SC.

Interestingly, the ACI schemes applied to the L2 cache reduce both the energy and power

consumption outcomes for BFS and ATAX. The ACI schemes significantly reduce L2 cache misses
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Figure 19: Power consumption breakdown of the conventional and ACI schemes applied to the

L1 data and L2 caches

with these benchmarks as well. In other words, the L2 cache effectively filter out the memory

requests that would be sent to the memory controller and DRAM when using the conventional

indexing scheme, reducing the power consumption by these components. Combined with the

reduced power consumption and fewer execution cycles, the ACI schemes significantly reduce

the overall energy consumption of BFS and ATAX.

3.4.4 Sensitivity of Advanced Cache Indexing to Architectural Parameters

This section investigates the performance sensitivity of the ACI schemes to key architectural

parameters, in this case the indexing latency, cache associativity, and capacity. To compile the

performance sensitivity results, we apply the advanced indexing schemes to the L1 data cache

and the conventional indexing scheme to the L2 cache.

Given the rather complicated hardware logic of some of the ACI schemes (e.g., PLI) located

along the critical path, they can introduce additional indexing latency [30], especially as the

SIMT core frequency aggressively scales in the future generation of GPGPU architectures. To

quantify the performance effect of the additional indexing latency, we compare the performance

of PLI by sweeping the additional indexing latency from 0 to 4. We investigate the performance

sensitivity of PLI to indexing latency because (1) the hardware logic of PLIthat computes the

indexing bits is in the critical path, and (2) this scheme shows high performance and energy

efficiency across a variety of the evaluated benchmarks.

On average, the performance impact of the additional latency is rather insignificant. Specif-

ically, the average performance degradation rates across all the 20 benchmarks listed in Table 7

are 0.9%, 1.3%, 2.8%, and 5.7% when the additional indexing latency is set to 1, 2, 3, and 4
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Figure 20: Sensitivity to the indexing latency

cycles, respectively. This occurs mainly because some of the benchmarks are already associated

with a number of reservation fails per access even when the L1 data cache is augmented with

PLI. Meanwhile, other benchmarks show decreased performance outcomes, as the additional

indexing latency directly affects the performance of the benchmarks. Therefore, it is important

to apply PLI judiciously depending on the application characteristics and additional indexing

latency.

Figure 20 shows the execution cycles (normalized to the conventional indexing scheme) of

PLI by sweeping the additional indexing latency from 0 to 4 cycles. For the benchmarks (i.e., NW,

SC, BFS, ATAX, and BT) resulting in a large number of reservation fails per L1 data cache access

(e.g., 18.5 for NW), the additional indexing latency causes little performance degradation (0.6%

for NW with 4-cycle additional indexing latency). In contrast, for the other benchmarks (i.e., 2DC

and BT) that cause a relatively small number of reservation fails per L1 data cache access (e.g.,

0.11 for 2DC), the additional indexing latency incurs significant performance degradation (45%

for 2DC with 4-cycle indexing latency). In summary, the performance sensitivity results of PLI

to indexing latency indicate that sophisticated ACI schemes such as PLI can be effective for

high performance and energy efficient GPGPU computing depending on the additional indexing

latency and the characteristics of the application.

We now investigate the performance sensitivity of the ACI schemes to L1 data cache as-

sociativity. Intuitively, we quantify how the performance gain of the ACI schemes changes as

the baseline L1 data cache is augmented with high associativity. Figure 21(a) shows the IPC

ratio7 of the ACI schemes relative to the conventional indexing scheme as the L1 data cache
7For each cache indexing scheme, Figures 21(a), 21(b), and 21(c) report the geometric mean of the IPCs

collected from all 20 benchmarks presented in Table 7.
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Figure 21: Sensitivity to the L1 data cache associativity and capacity

associativity scales from 2 to 16 with the capacity to 16KB.

We observe that the performance gain of the ACI schemes over the conventional index-

ing scheme decreases as the L1 data cache associativity increases, as the baseline cache with

conventional indexing becomes less vulnerable to cache contention with higher associativity.

Nevertheless, the ACI schemes continue to provide performance gains even over the baseline

cache augmented with high associativity (e.g., 16), which is considered to be highly challenging

to implement without sacrificing performance, especially for L1 caches. In addition, the experi-

mental results suggest that it is valuable to investigate techniques that can effectively increase

the degree of cache associativity with little or no performance overheads [39–41].

We then investigate the performance sensitivity of the ACI schemes to the L1 data cache

capacity. Figure 21(b) shows the IPC ratio of the ACI schemes to the conventional cache indexing

scheme as the L1 data capacity scales from 8KB to 64KB while the associativity is held constant

at 4. The performance gain of the ACI schemes increases with a larger cache capacity. Because

the conventional indexing scheme continues to be plagued with high cache contention, even with

a larger number of sets (from the larger cache) and with the workloads that exhibit pathological

access patterns.

In contrast, the ACI schemes effectively mitigate the potential cache contention due to patho-

logical memory accesses and fully benefit from the larger cache capacity, providing increasing

performance gains over the conventional indexing scheme. The performance gain of ADI scales

less effectively than the other ACI schemes because the performance overhead caused by flushing

increases with a larger cache capacity.
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Finally, we assess the performance sensitivity of the ACI schemes when both the associativity

and capacity of the L1 data cache scale. Figure 21(c) shows the IPC ratio of the ACI schemes

to the conventional indexing scheme with the 2-way 8KB, 4-way 16KB, 8-way 32KB, and 16-

way 64KB L1 data caches, respectively. As discussed above, the performance gain of the ACI

schemes tends to decrease with higher associativity and increase with larger capacity. Because

the net performance effects of increasing the associativity and capacity cancel out, we observe

rather small differences in the performance gains across different associativity and capacity

configurations.

In summary, the performance sensitivity results in Figure 21 clearly demonstrate that the

ACI schemes are promising in the sense that they continue to provide significant performance

gains over the baseline cache even when they are enhanced with higher associativity and a larger

capacity.

3.4.5 Discussion

Our experimental results show that PLI achieves the highest performance and best energy effi-

ciency among the ACI schemes when applied to the L1 data cache or to both the L1 data and

L2 caches. Considering the higher performance, better energy efficiency, and lower hardware

complexity of PLI compared to PRI, PLI appears to be more effective than PRI for GPGPU

computing. In particular, none of the 20 benchmarks evaluated here seems to exhibit patholog-

ical performance behaviors for PLI [11]. However, as shown in Section 3.4.4, PLI might suffer

from performance degradation from additional indexing latency.

ADI shows slightly lower performance and energy efficiency outcomes compared to those of

PLI and PRI, as some of these benchmarks do not benefit from ADI due to their short kernel

execution cycles and because ADI only utilizes a subset of the bits in the memory address to keep

the hardware complexity low. However, ADI has less complicated hardware logic in the critical

path compared to other ACI schemes (e.g., PLI). Therefore, if additional indexing latency of PLI

and PRI is determined to be too high, ADI will offers bettter performance and greater energy

efficiency.

Finally, BXI and RXI show lower performance and energy efficiency outcomes than the

other ACI schemes because they use simpler hash functions than PLI and PRI and only utilize

a subset of the memory-address bits. Especially, BXI perform worse than RXI depite having

same hardware complexity. This is because BXI utilizes bits ineffective for mitigating cache

contentions (i.e., lower 2N bits) while RXI has been optimized for GPGPUs and utilizes higher

bits.
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IV Improving the Performance and Energy Efficiency of GPGPU

Computing through Integrated Adaptive Cache Management

4.1 Motivation

The need for adaptation: GPGPU cache performance outcomes are mainly determined by

how many threads share the cache, how evenly the cache indexing function distributes memory

requests across the cache sets, and what memory requests are worth being served by the cache or

bypassed. The cache management techniques that effectively handle each of these considerations

include warp limiting, cache indexing, and cache bypassing.

Given the disparate architectural characteristics of GPGPU workloads, static cache manage-

ment is highly likely to fail to achieve the best possible performance and energy efficiency for

various GPGPU workloads. For instance, recent studies show that adaptive techniques are more

effective than static methods for cache indexing [12], warp limiting [3], and cache bypassing [4].

The need for integration: Given the complex interference patterns among warps (and

threads), there is no single cache management technique that is effective across all the perfor-

mance pathological scenarios. For example, while adaptive warp limiting (AWL) is an effective

and versatile technique, it cannot address the performance degradation caused by intra-warp in-

terference because it cannot control threads within the same warp [5]. Therefore, multiple cache

management techniques must be exploited in a tightly integrated manner to effectively address a

wide range of performance pathologies more effectively (e.g., intra and inter-warp interferences)

in GPGPU computing.

Further, integrating adaptive cache management techniques can provide more opportunities

to achieve even higher performance and greater energy efficiency by facilitating constructive

interactions between them. For instance, with a judiciously controlled warp count, the perfor-

mance gain of adaptive cache indexing (ADI) can be significantly increased [12]. Similarly, AWL

may dynamically increase the warp count if ADI effectively mitigates the contention among the

concurrent warps with high-quality indexing, resulting in improved performance. Therefore,

considering the potential of integrated adaptive cache management, it is important to create a

fully integrated architectural framework and thoroughly quantify its effectiveness based on the

integrated architecture.

4.2 The IACM Architecture

4.2.1 Overall Architecture

This section discusses the design and implementation of integrated adaptive cache management

(IACM) for high-performance and energy-efficient GPGPU computing. Figure 22 shows the

baseline GPGPU architecture that we extend to implement integrated adaptive cache manage-

ment (IACM). Because the baseline GPGPU architecture is generic and similar to widely-used
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Figure 22: The baseline GPGPU architecture augmented with IACM

commercial architectures such as those of NVIDIA [1] and AMD [2], we believe that IACM can

be applied to a wide range of GPGPU architectures. Note that the hardware components added

for IACM (i.e., AWL, ADI, and Bypass) are shown in grey color, which will be discussed later

in this section.

Figure 23 shows the overall execution flow of IACM, which consists of three execution phases

– the adaptive cache indexing (ADI), the adaptive warp limiting (AWL), and the idle phases.

The ADI phase dynamically determines the cache indexing bits that can reduce cache thrashing

and contention based on the runtime information of the GPGPU workload. The AWL phase

dynamically controls the number of active warps to improve performance and energy efficiency.

The idle phase monitors the behavior of GPGPU workload without performing any adaptation

and triggers the entire adaptation process again if it detects a significant phase change of the

GPGPU workload.

We present three IACM designs, each of which composes the adaptive cache management

techniques in a different manner. The ADI-AWL version of IACM shown in Figure 23(a) per-

forms ADI before AWL, whereas the AWL-ADI version shown in Figure 23(b) applies the two

adaptive cache management techniques in the reverse manner. The Parallel version of IACM

simultaneously performs ADI and AWL. As quantified in Section 4.3.2, the ADI-AWL version

outperforms the other two versions mainly because it immediately applies ADI, which is highly

effective for mitigating instances of performance degradation due to high cache contention and

eliminates the potential performance interference between AWL and ADI. Based on this obser-

vation, we focus on the design and implementation of the ADI-AWL version throughout the rest

of this section.

4.2.2 Adaptive Cache Indexing

The ADI phase of IACM builds on our prior work [12] that extends ASCIB [32,33], an adaptive

indexing technique for CPU caches, in the context of GPGPU computing. We use ASCIB as
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Figure 23: The overall execution flow of IACM

the baseline for ADI owing to its simplicity and applicability to L1 caches [32, 33]. Although

Section 3.4.3 indicates that ADI has considerable performance gains when applied to L2 caches,

we only apply ADI to L1 caches because the performance gains when ADI is applied to L1 caches

is more significant compared those when applied to L2 caches, and we want to minimize the

hardware overhead. This section focuses on the changes made to the design of ADI for IACM

and refer readers to Section 3.3 for more details of ADI.

Figure 24 shows the overall execution flow of ADI. The execution flow has been modified

from Figure 6 to perform adaptation only at the ADI phase of IACM and to change phase of

IACM when the proper condition is met (i.e., Figure 23). First, when a memory request is

sent to the cache, IACM checks the current phase. If the current phase of IACM is not ADI,

adaptation will not be performed based on the information of the cache access.

Second, at the end of idle sub-phase, IACM checks if the difference in the instructions per

cycle (IPC) between the current and previous idle sub-phase is within a threshold (i.e., 25%).

If the IPC difference is within the threshold, IACM determines that there is a diminishing gain

with ADI and proceeds with the AWL phase. Otherwise, it triggers the victimization sub-phase
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Figure 24: The overall execution flow of ADI

of ADI again to discover indexing bits with higher quality.

Finally, we tweaked design parameters of ADI to achieve optimal performance and energy

efficiency when ADI is integrated into IACM. Based on the IACM design space exploration (i.e.,

Section 4.3.2), the periods for the victimization, selection, and idle sub-phases are set to 250

misses, 250 accesses, and 6250 cycles respectively.

Due to the change in the design parameters of ADI, the hardware overhead also changed.

For instance, using the equation derived in Section 3.3, we calculated that for the victimization

sub-phase, it requires 120 bits for the counters, 15 8-bit adders, and 10 XOR gates because

S = 5 and M = 8. For the selection sub-phase, 529 bits for the tag cache and counters, 21 8-bit

adders, and 21 XOR gates are needed because N = 32, S = 5, B = 7, andM = 8. As quantified

in Section 4.2.6, the area overhead for ADI is also low.

4.2.3 Adaptive Warp Limiting

After the ADI phase, IACM enters the adaptive warp limiting (AWL) phase. During the AWL

phase, IACM periodically samples the IPC of the GPGPU workload and dynamically adapts

the active warp count based on the trend of IPC changes to find the optimal warp count that
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maximizes the performance. Some earlier works use performance metrics that can be collected

using rather complicated hardware structures (e.g., locality scores [3]). Instead, IACM uses

IPC as the main performance metric because it can be collected without any extra hardware

using the performance counters already available in commercial GPGPU architectures [1]. It

also provides complete performance data.

Algorithms 1, 2, 3, and 4 show the pseudocode for AWL. The AWL phase consists of sub-

phases – binary search and linear search sub-phases. During the binary search sub-phase (Algo-

rithm 2), IACM searches for the optimal warp count using the binary search algorithm. IACM

starts from the current active warp count. First, it halves the warp count and checks if reducing

the warp count increases the IPC. If this is the case, IACM continues to halve the warp count

after each period (i.e., 6250 cycles) until the IPC stops increasing.8 Otherwise, it attempts to

double the warp count and repeats a similar process. If the binary search reaches the minimum

or maximum warp count, the AWL phase terminates. Otherwise, the AWL phase enters the

linear search sub-phase.

During the linear search sub-phase (Algorithm 3), IACM searches for the optimal warp count

in a fine-grained manner. IACM periodically (i.e., 6250 cycles) samples IPC and decrements

(or increments) the active warp count by 1 based on the IPC changes. When an optimal warp

count that maximizes IPC is found, the AWL phase terminates.

At the end of the AWL phase, IACM decides whether to proceed with the ADI phase or

the idle phase based on the change in the optimal warp count as determined during the AWL

phase. If the difference in the previous and current optimal warp counts exceeds a threshold

(i.e., 25%), IACM determines that the system has not yet reached a stable state and starts from

the ADI phase again (Line 5 in Algorithm 4). Otherwise, IACM enters the idle phase (Line 3

in Algorithm 4).

For the hardware overhead of AWL, several extra registers are needed to track the data (i.e.,

previous (5 bits) and current (5 bits) warp counts, search mode (i.e., binary or linear (1 bit)),

direction (i.e., up or down (1 bit)), etc.). The per-core storage overhead required for the registers

is 74 bits.

In addition, some extra hardware logic (e.g., shifters and comparators) is required for AWL.

Specifically, 13 multiplexors, 18 comparators, one OR gate, two AND gates, five 5-bit adders,

and four 5-bit shifters are required. In line with prior work [3, 4], the logic overhead required

for AWL is expected to be insignificant compared to the other logic that already exist in each

SIMT core. In addition, as quantified in Section 4.2.6, the area overhead for AWL is also low.
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Algorithm 1 Pseudocode for adaptive warp limiting
1: procedure adaptiveWarpLimiting

2: if phase = AWL then

3: if NT = 1 then . NT : total number of warps

4: NC ← 1 . NC : number of active warps

5: changePhase(NC)

6: else if kernelInit = true ∨ awlPhaseInit = true then

7: if kernelInit = true then

8: NC ← NT

9: end if

10: if NC = 1 then

11: direction ← up

12: else

13: direction ← down

14: end if

15: search ← binary

16: subPhaseCycles ← 0

17: IPCprev ← 0

18: kernelInit ← false

19: awlPhaseInit ← false

20: NS ← NC . NS : records NC when search begins

21: end if

22: if subPhaseCycles > CP then

23: subPhaseCycles ← 0

24: if search = binary then

25: doBinarySearch()

26: else . search = linear

27: doLinearSearch()

28: end if

29: subPhaseCycles++

30: end if

31: end if

32: end procedure
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Algorithm 2 Pseudocode for the doBinarySearch function
1: procedure doBinarySearch

2: if IPCprev < IPCcurr then

3: IPCprev ← IPCcurr

4: if NC = 1 ∨ NC ≥ NT then

5: changePhase(NC)

6: else

7: NC ← getNextWarpCount(search, direction, NC)

8: end if

9: else . IPCprev ≥ IPCcurr

10: IPCprev ← 0

11: if NC = NS/2 then

12: direction ← up

13: NC ← NS

14: else

15: if direction = down then

16: NC ← 2NC

17: end if

18: NS ← NC

19: direction ← down

20: search ← linear

21: end if

22: end if

23: end procedure

4.2.4 Idle Phase

During the idle phase, IACM periodically (i.e., 6250 cycles) samples the IPC of the GPGPU

workload without performing any ADI or AWL-related activities. If the difference in the previous

and current IPCs exceeds a threshold (i.e., 25%), IACM terminates the idle phase and proceeds

with the ADI phase. The per-core storage overhead of the idle phase is 38 bits, which are

required for the registers that holds the previous and current IPCs.
8The getNextWarpCount function invoked at Line 7 in Algorithm 2 and at Line 5 in Algorithm 3 takes three

parameters (i.e., the search sub-phase (i.e., binary or linear), the search direction (i.e., up or down), and the

current warp count) and computes the next warp count accordingly. For brevity, we omit the code of the

getNextWarpCount function.
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Algorithm 3 Pseudocode for the doLinearSearch function
1: procedure doLinearSearch

2: if IPCprev < IPCcurr then

3: IPCprev ← IPCcurr

4: if NC 6= NS/2 ∧NC 6= 2 ·NS ∧NC ≤ NT then

5: NC ← getNextWarpCount(search, direction, NC)

6: else

7: changePhase(NC)

8: end if

9: else . IPCprev ≥ IPCcurr

10: IPCprev ← 0

11: if NC = NS − 1 then

12: NC ← NS

13: direction ← up

14: else

15: if direction = down then

16: NC ← NC + 1

17: else

18: NC ← NC − 1

19: end if

20: changePhase(NC)

21: end if

22: end if

23: end procedure

4.2.5 Cache Bypassing

IACM employs the cache bypassing technique [42] for the L1 data cache. For seamless integration

with other adaptive techniques, IACM enables cache bypassing in all three phases. Similar to

an earlier technique [4], IACM builds upon the protection distance (PD) information of each

cache line to dynamically determine whether a memory request should be bypassed or not. Each

cache line is augmented with a few extra bits to track the remaining protection distance (RPD)

information dynamically. When a memory object is newly loaded into a cache line, the RPD

counter of the cache line is initialized to an initial value (i.e., 4). When the other cache line in

the same cache set is accessed, the RPD counter is decremented. When the cache line is accessed

again, its RPD counter value is set to the default value.

In IACM, memory requests bypass the L1 data cache if every cache line in the associated set

is currently holding a non-zero RPD counter value or reserved for other pending memory requests

(i.e., reservation fails). The main purposes of the former and the latter are to protect the existing
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Algorithm 4 Pseudocode for the changePhase function
1: procedure changePhase(NC)

2: if |NC −NP | ≤ εW then

3: phase ← Idle

4: else

5: phase ← ACI

6: end if

7: awlPhaseInit ← true

8: NP ← NC

9: end procedure

Table 3: Hardware overheads of the IACM components for the baseline GPGPU architecture

with 16 SIMT cores

Components ADI AWL Idle Cache bypassing

Storage (bits) 10384 1184 608 6144

Area(mm2) 1.40× 10−2 3.16× 10−3 1.74× 10−3 7.69× 10−3

Area (% to L1D) 1.875 0.459 0.286 1.005

Area (% to GPGPU die) 0.00265 0.000597 0.000329 0.00145

cache lines for reuse and to fully utilize the high interconnection network (ICN) bandwidth of

the GPGPU architecture, respectively. IACM prevents the ICN from being oversaturated due

to excessive cache bypassing by judiciously controlling the active warp count during the AWL

phase.

For the hardware overhead associated with cache bypassing, each cache line is augmented

with an N bit counter to track the RPD information. For instance, if the GPGPU architecture

uses the four-way set-associative 16KB L1 data cache with 128B cache lines and a 3 bit RPD

counter for each cache line, the extra bits needed (per core) to store the RPD information amount

to 384 bits (i.e., 128 cache lines, 3 bits per cache line), which is insignificant and in line with the

findings of previous work [4].

4.2.6 Hardware Overheads

Table 3 summarizes the hardware overheads of the IACM components. Specifically, we report

the storage overheads (in bits) for all 16 SIMT cores to implement each of the IACM components

by extending the baseline GPGPU architecture discussed in Section 4.3.1. In addition, we report

their area overheads (for all 16 SIMT cores), as estimated using CACTI [43] in terms of both the

absolute area (i.e., mm2) and the percentage of the total area of the L1 data cache and baseline

GPGPU architecture [44]. We observe that IACM incurs low hardware overhead.
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Algorithm 5 Psuedocode for idlePhase
1: procedure idlePhase

2: if phase = Idle then

3: if subPhaseCycles > CP then

4: subPhaseCycles ← 0

5: if idlePhaseInit = true then

6: idlePhaseInit ← false

7: else

8: if |IPCcurr − IPCprev| > εI then

9: phase ← ACI

10: idlePhaseInit ← true

11: end if

12: end if

13: IPCprev ← IPCcurr

14: end if

15: subPhaseCycles++

16: end if

17: end procedure

4.3 Evaluation

This section provides a quantitative evaluation of IACM. Our quantitative evaluation has follow-

ing goals – (1) to assess the performance and energy efficiency of IACM using various GPGPU

workloads, (2) to make a comparison with the state-of-the-art technique [6], and (3) to assess the

sensitivity of the performance and energy-efficiency gains of IACM to architectural parameters

such as the L1 data cache capacity and the interconnection network (ICN) bandwidth.

For cache indexing, we also quantify the effectiveness of the baseline (i.e., conventional 4-

way set associative) and advanced static cache indexing (i.e., a variant of bit-wise XOR [10,29])

schemes along with the adaptive cache indexing scheme. Specifically, for the 4-way 16KB L1 data

cache with 128-byte blocks, the advanced static indexing scheme computes the indexing bits as

follows – I4 = A19⊕A11, I3 = A17⊕A10, I2 = A15⊕A9, I1 = A14⊕A8, and I0 = A13⊕A7 [29].

4.3.1 Methodology

We implemented IACM in the GPGPU-Sim simulator (version 3.2.2) [16]. We use the archi-

tectural parameters defined in the configuration file in the GTX480 directory (Table 6). To

quantify the energy efficiency of IACM, we use GPUWattch [34].

Table 7 summarizes all of the evaluated benchmarks, which are selected from the benchmark

suites proposed in earlier studies [28,35–38]. Inspired by an earlier classification proposed in [6],

we classify the benchmarks into the five categories based on their architectural characteristics –
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Table 4: Simulation parameters

Parameter Value

SIMT core Core count: 16, SIMT width: 32, pipeline depth:

5, frequency: 700MHz

Per-core resource Num. of registers: 32768, scratchpad: 48KB,

MSHRs: 32, warps: 48, threads: 1536

Schedulers Warp scheduler: Greedy-Then-Oldest (GTO),

CTA scheduler: round-robin

L1 data cache Capacity: 16KB/core, line size: 128B, associa-

tivity: 4, coalescing: enabled

ICN Frequency: 700MHz, channel width: 32

L2 cache Capacity: 768KB, number of banks: 12, line

size: 128B, associativity: 8

DRAM Frequency: 924MHz, scheduler: FR-FCFS,

num. of MCs: 6, channel BW: 4B/cycle

the streaming, conflicting, thrashing, conflicting and thrashing, and cache friendly benchmark

categories.

In addition, we classify the benchmarks into the three categories based on their average

kernel execution cycles (i.e., length), denoted as short, medium, and long. Specifically, each

benchmark is sorted into the short, medium, or long benchmark category if its average number

of kernel execution cycles with the baseline GPGPU architecture is equal to or shorter than

8× 105 cycles, longer than 8× 105 cycles and equal to or shorter than 2× 107 cycles, or longer

than 2× 107 cycles, respectively.

4.3.2 IACM Design Space Exploration

Prior to quantifying the performance and energy efficiency of IACM, we compare the perfor-

mances of the three IACM designs (i.e., the ADI-AWL, AWL-ADI, and Parallel versions) dis-

cussed in Section 4.2.1 and determine the best IACM design among the three in terms of perfor-

mance. Because the performance of each IACM design is dependent of the design parameters,

we investigate the performance sensitivity and configure it with the design parameters that yield

the highest performance. The key design parameters of interest are the ADI period, the AWL

period, the threshold for the IPC difference in the ADI phase, and the threshold of the IPC

difference in the idle phase.

Figures 25(a), 25(b), 25(c), and 25(d) show the performance sensitivity of each IACM design

to the four design parameters. We use the IPC of each IACM design normalized to the baseline

design (i.e., higher is better) as a performance metric.

First, in most cases, the performance of each IACM design increases, reaches a maximum,
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Table 5: Benchmarks

Category Name Description Length

Streaming

HS HotSpot [35] Short

NW Needleman-Wunsch [35] Short

BLK Black Scholes [36] Short

CONV Convolution [36] Medium

FWT Fast Walsh Transform [36] Short

Conflicting

2DC 2D Convolution [28] Medium

2MM 2 Matrix Multiplications [28] Medium

SRAD Speckle Reducing Anisotropic Diffusion [35] Medium

SC Streamcluster [35] Medium

Thrashing

BFS Breadth-First Search [35] Short

KM Kmeans [35] Medium

II Inverted Index [37] Medium

SPMV Sparse Matrix-Vector Multiplication [38] Short

C+T

ATAX Matrix Transpose and Vector Multiplication [28] Long

GSM Scalar, Vector and Matrix Multiplication [28] Long

SYRK Symmetric Rank-K Operations [28] Long

Friendly

BP Back Propagation [35] Short

BT B+ Tree [35] Medium

NN Nearest Neighbor [35] Short

OP Monte Carlo Option Pricing [36] Short

and then decreases as the value of each design parameter increases. This is mainly because

there is a tradeoff between the increases and decreases of each of the design parameter values.

With small parameter values, IACM performs adaptations with insufficient runtime information

(i.e., the ADI and AWL periods), or remains in the ADI phase with diminishing gains (i.e., the

IPC threshold used in the ADI phase), or reduces the stability of the system by triggering a re-

adaptation too frequently (i.e., the IPC threshold used in the idle phase), resulting in suboptimal

performance. With large parameter values, IACM performs adaptation too slowly (i.e., the ADI

and AWL periods) or converges to a suboptimal system state (i.e., the IPC thresholds), degrading

the overall performance.

Second, the ADI-AWL version outperforms the other two versions in most cases. This occurs

because ADI is generally more effective than AWL for mitigating cache contention and improving

the overall performance for a subset of the evaluated benchmarks. Therefore, by performing ADI

first, the ADI-AWL version has more opportunities for dynamically discovering high-quality

indexing bits and quickly adapting to a near-optimal system state than the AWL-ADI version,

resulting in higher performance.
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Figure 25: IACM design space exploration

The Parallel version suffers from the interference between ADI and AWL in that the per-

formance effect made by a technique impacts the decision of the other technique in a negative

manner. For instance, in a certain adaptation period, AWL could choose a warp count that

decreases the overall performance and ADI could select indexing bits that increase the overall

performance. If the overall performance impact of ADI on the target application is more signif-

icant than that of AWL in that period, the overall performance would be improved. With the

improved performance, AWL would continue to change the warp count in the same direction in

the subsequent periods, which is highly inefficient. Due to the performance interference between

ADI and AWL, the Parallel version of IACM tends to converge to a suboptimal state or take

more time to converge to an efficient state. In contrast, ADI-AWL applies the two techniques

in a controlled manner, achieving higher performance.

To determine the best IACM design from among the three in terms of performance, we

choose the three values of each design parameter for each IACM design that outperform the

other values. For instance, we choose to set the AWL period to 6250, 12500, or 25000 cycles for

the ADI-AWL version because these values outperform the other values. We then configure each

IACM design with 81 different settings (i.e., three values for each of the four design parameters)

and determine the best setting that leads to the highest performance for each IACM design.

Because the ADI-AWL version configured with the ADI period of 250 L1 data cache misses

(accesses), the AWL period of 6250 cycles, and the IPC thresholds of 25% outperforms the

other two versions, we investigate its performance through the rest of the dissertation. With

this configuration, the ADI-AWL version spends 6.22 × 104 and 3.23 × 104 cycles on average
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Figure 26: Performance comparison of the three IACM designs

to execute the ADI and AWL phases, respectively. In other words, the time overheads of the

ADI and AWL phases are low at 0.42% and 0.22% of the average kernel cycles of the evaluated

benchmarks.

To investigate the performance differences of the three IACM designs in more detail, Fig-

ure 26 shows the performances of all evaluated benchmarks with each IACM design. Among

the evaluated benchmarks, we focus on the performances of the three IACM designs with the

conflicting and thrashing (C+T) benchmarks, which exhibit high performance sensitivity to the

effectiveness of the cache management techniques used.

We observe that the ADI-AWL version of IACM significantly outperforms the AWL-ADI

(i.e., 20.6% on average across the C+T benchmarks) and Parallel (i.e., 9.8% on average across

the C+T benchmarks) versions with the C+T benchmarks. The ADI-AWL version achieves

significantly higher performance than the AWL-ADI version because the ADI-AWL version

addresses the intra- and inter-warp interferences in a more efficient manner. Specifically, the

performance issue due to inter-warp interference for the C+T benchmarks tends to become

significant only after the performance issue due to intra-warp interference is effectively addressed.

The ADI-AWL version initially addresses the intra-warp interference through ADI and then the

inter-warp interference through AWL, which allows for IACM to perform adaptations more

rapidly and efficiently . In contrast, the AWL-ADI version attempts first to address the inter-

warp interference through AWL and then the intra-warp interference through ADI, which leads

to inefficient adaptations. The Parallel version is considerably outperformed by the ADI-AWL

version due to the interference between ADI and AWL.
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Figure 27: Overall performance and energy results

4.3.3 Performance and Energy Efficiency

First, we investigate the performance (i.e., instructions per cycle (IPC)) and energy efficiency

of IACM. Figure 27 shows the performance and energy normalized to the baseline GPGPU ar-

chitecture with none of the adaptive cache management techniques applied. IACM significantly

improves the performance of the GPGPU workloads with the maximum and average (i.e., geo-

metric mean) speedups of 32 and 2.0, respectively over the baseline architecture. IACM results

in higher speedups for the benchmarks in the conflicting, thrashing, and conflicting and thrash-

ing (C+T) categories. With IACM, however, some benchmarks, in this case , OP, exhibit slight

performance degradation, which will be discussed later.

Figure 27(b) shows that IACM can also effectively reduce the energy consumption of GPGPU
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workloads. The corresponding maximum and average energy reduction of IACM compared with

the baseline architecture are 92% and 38%. Similar to the performance results, there are a few

benchmarks that exhibit slightly increased levels of energy consumption (e.g., OP by 4.5%).

As IACM requires additional hardware overhead, we have also evaluate the impact of storage

overhead by comparing the performance of baseline GPGPU architecture augmented with IACM

and GPGPU with increased L1 data cache size equal to the capacity mentioned in Table 3. Our

evaluation shows that IACM significantly outperforms GPGPU with increased L1 data cache

size. Therefore, IACM is a better solution compared to increasing L1 data cache size equal to

the storage overhead of IACM.

To gain deeper insight on the performance and energy results, we provide detailed cycle and

energy breakdowns for each benchmark category. To keep this evaluation concise, we select three

benchmarks in each category by omitting some of the benchmarks that show the data trends

similar to any of the three selected benchmarks.

4.3.3.1 Streaming Benchmarks

Figure 28 shows the performance and energy breakdowns of the streaming benchmarks. For

each benchmark, we run it with 12 different architectural configurations by changing the cache

indexing schemes (i.e., baseline (B), advanced static (S), and ADI (A)), disabling or enabling

(*_B) cache bypassing, and disabling (GTO) or enabling adaptive warp limiting (AWL) to

investigate the effectiveness of each cache management technique. Note that for each benchmark,

the rightmost bar indicates the performance and energy results of IACM.

Figure 28(a) shows the cycle breakdown of the streaming benchmarks. Each bar is normalized

to the baseline version, in which none of the adaptive cache management techniques is applied.

Each bar consists of a number of segments, each of which indicates busy cycles (Busy), idle cycles

due to a load imbalance across SIMT cores (Idle Core), idle cycles spent when no warp is ready

to execute (Idle Warp), cycles spent for ALU (Pipeline ALU), LDST (Pipeline LDST), and both

(Pipeline Both) pipeline stalls, and cycles stalled at the scoreboard while waiting for the data

produced by ALU (Scoreboard ALU), LDST (Scoreboard LDST), and both (Scoreboard Both)

instructions.

Figure 28(a) demonstrates that IACM improves the performance of CONV. This performance

gain is mainly due to the decreased latency of the load instructions through a more effective use

of the L1 data cache with ADI and AWL.

However, the performance of BLK is slightly degraded when AWL is enabled. This is mainly

due to the short execution cycles (i.e., 6.71 × 105 cycles on average) of the kernels of BLK.

The kernels of BLK exhibit the best performance with a maximum active warp count. With

AWL enabled, IACM temporarily executes BLK with suboptimal warp counts (smaller than the

maximum warp count) until it discovers the optimal warp count. Since the execution cycles of

the kernels of BLK are rather short, this overhead is insufficiently amortized, resulting in slight
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Figure 28: Performance and energy breakdowns of the streaming benchmarks

performance degradation. Because hardware caches provide minor or no performance benefits to

BLK due to the low locality in memory accesses, ADI and cache bypassing have little performance

impact on BLK.

Due to reasons similar to those for BLK and the short execution cycles (i.e., 2.70 × 104

cycles on average) of the kernels, the performance of NW is also degraded when only AWL is

enabled. However, ADI mitigates the negative performance effect of AWL on NW, resulting in

no performance degradation. GTO with advanced static cache indexing performs well with NW

because the advanced static cache indexing scheme is efficient enough for NW.

Figure 28(b) shows the energy consumption outcomes normalized to the baseline version for

the streaming benchmarks. The L1 Data Cache, ICN, L2, DRAM+MC, Idle Core, and Others
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(mainly related to the SIMT cores) segments indicate the energy consumed by the correspond-

ing hardware components. IACM reduces the energy consumption of CONV mainly due to the

decrease in the total number execution cycles. IACM slightly increases the energy consump-

tion of NW and BLK due to the increased execution cycles. However, the increase in the energy

consumption of BLK is smaller than the increase in the total number execution cycles because

most of the additional cycles are idle cycles and some portions of the total energy consumption

remain unaffected by IACM. Similarly to the performance trend, the energy efficiency of NW is

also degraded when only AWL is enabled. However, ADI mitigates the negative effect of AWL,

resulting in slight degradation of theenergy-efficiency.

4.3.3.2 Conflicting Benchmarks

Figure 29(a) shows the performance results of the conflicting benchmarks. Compared to the

streaming benchmarks, the conflicting benchmarks exhibit higher performance gains with IACM.

This occurs because the non-streaming memory access patterns of the conflicting benchmarks can

better utilize the L1 data cache when the contention is significantly reduced through the adaptive

cache management techniques (especially ADI). We also observe that some of the adaptive cache

management techniques are rather ineffective for certain benchmarks. For instance, for SC, ADI

is effective, whereas AWL is rather ineffective. Nevertheless, IACM significantly improves the

performance of SC by robustly employing the adaptive cache management techniques.

Figure 29(b) demonstrates that IACM significantly reduces the energy consumption of the

conflicting benchmarks. In contrast to the case with the streaming benchmarks, IACM reduces

the energy consumption in the ICN and L2 cache through better utilization of the L1 data cache

through the adaptive cache management techniques.

4.3.3.3 Thrashing Benchmarks

Figure 30(a) shows the performance results of the thrashing benchmarks. AWL is the most

effective technique for the thrashing benchmarks because it dynamically adapts the active warp

count to avoid cache thrashing. For II, ADI and cache bypassing techniques are also effective and

constructively composed, allowing IACM to outperform the other architectural configurations.

Figure 30(b) demonstrates that IACM significantly reduces the energy consumption of the

thrashing benchmarks, especially KM and II. IACM reduces the energy consumption of the

hardware components (e.g., ICN, L2 cache, memory controllers, and DRAM) in the memory

hierarchy by effectively utilizing the L1 data cache through the adaptive cache management

techniques.

4.3.3.4 Conflicting and Thrashing Benchmarks
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Figure 29: Performance and energy breakdowns of the conflicting benchmarks

Figure 31(a) shows the performance results of the conflicting and thrashing benchmarks. For

ATAX and GSM, all adaptive cache management techniques effectively improve the performance

and are constructively composed, allowing IACM to significantly outperform the other archi-

tectural configurations. In particular, ADI significantly outperforms the advanced static cache

indexing (the bars labeled as “S”) for ATAX and GSM by dynamically exploiting higher quality

indexing bits based on the runtime information, demonstrating the effectiveness of the adaptive

approach of IACM. For all conflicting and threshing benchmarks, ADI becomes significantly

more effective when AWL is enabled because AWL effectively mitigates thrashing through judi-

cious concurrency control. These performance trends clearly demonstrate the importance of the

integrated approach of IACM. Further, Figure 31(b) demonstrates that IACM significantly im-
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Figure 30: Performance and energy breakdowns of the thrashing benchmarks

proves the energy efficiency for the conflicting and thrashing benchmarks by effectively reducing

the energy consumption of the cores and memory hierarchy components.

4.3.3.5 Cache-Friendly Benchmarks

Figure 32 shows that IACM provides little or no performance and energy-efficiency gain

for the cache friendly benchmarks because the baseline version already effectively utilizes the

L1 data cache. The performance degradation of OP is somewhat higher than those of other

benchmarks. Similar to the case with BLK in the streaming benchmark category, this occurs

mainly because OP consists of relatively short kernels (i.e., 7.55 × 105 cycles on average), with

which the overhead of IACM may not be fully amortized, resulting in performance degradation
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Figure 31: Performance and energy breakdowns of the conflicting and thrashing benchmarks

of 7.0%.

4.3.3.6 Summary of the Performance and Energy Results

Figure 33 shows the overall performance and energy results of different combinations of

the advanced cache management techniques across all the evaluated GPGPU workloads. We

observe the following data trends. First, IACM significantly outperforms the other versions in

which only one or two advanced cache management techniques are applied, which demonstrates

the effectiveness of the integrated approach that IACM employs. Second, ADI and AWL are

rather more effective than cache bypassing for improving the performance and energy efficiency

of GPGPU workloads. Finally, ADI provides significant performance and energy-efficiency gains
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Figure 32: Performance and energy breakdowns of the cache-friendly benchmarks

over the static advanced cache indexing scheme by effectively utilizing high quality indexing bits

guided on the runtime information.

4.3.4 Comparison with the State-of-the-Art Technique

We compare IACM with the state-of-the-art technique [6], which applies advanced static cache

indexing, warp limiting, and cache bypassing. Figure 34 shows the normalized IPC of IACM and

the state-of-the-art technique (i.e., DWT-PRIC) with the benchmarks in the streaming, conflicting,

thrashing, and C+T categories. We observe the following data trends.

First, IACM significantly outperforms DWT-PRIC with various benchmarks (e.g., CONV, KM, II,

GSM, and SYRK). This is mainly because IACM dynamically finds and employs the best indexing
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Figure 33: Performance and energy results of different combinations of the advanced cache

management techniques
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Figure 34: Performance comparison with the state-of-the-art technique

bits for each benchmark based on the runtime information (e.g., GSM and SYRK), the adaptive

warp limiting of IACM works more efficiently than the dynamic warp throttling of DWT-PRIC

that suffers from the sampling noise caused by contention on the hardware resources (e.g., L2

cache, ICN) shared among the SIMT cores9 (e.g., KM and II) or the use of a decision mechanism

based on cache misses per instruction, which occasionally makes the ineffective decision of dis-

abling dynamic warp throttling (e.g., CONV), and/or IACM applies the three adaptive techniques

in a more coordinated manner.

Second, IACM is rather outperformed by DWT-PRIC with some benchmarks (e.g., BLK, SC,
9For concurrency control, DWT-PRIC executes a portion of a kernel by configuring the warp count of each

SIMT core differently during the initial sampling phase, determines the SIMT core with the highest performance,

and executes the remaining portion of the kernel by setting the warp count of each SIMT core to the warp

count (i.e., NW ) of the SIMT core with the highest performance [6]. Due to the contention on the hardware

resources (e.g., L2 cache, ICN) shared among the SIMT cores configured with different warp counts during the

initial sampling phase, the warp count (i.e., NW ) determined by DWT-PRIC can be inaccurate and inefficient,

degrading the overall performance.
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and ATAX). This occurs mainly because these benchmarks consist of relatively short kernels (e.g.,

6.71× 105, 2.33× 106, and 1.72× 106 cycles for BLK, SC, and ATAX, respectively on average

when they are executed with IACM), with which the overhead of IACM may not be fully

amortized. IACM requires longer kernel execution cycles to outperform DWT-PRIC compared

to the baseline GPGPU architecture because DWT-PRIC is significantly more efficient than

the baseline GPGPU architecture. This causes IACM to require longer kernel execution cycles

to amortize the cycles spent for its dynamic system state space exploration. However, because

the execution cycles of kernels are sufficiently long (especially in non-simulation settings) in

common cases, the performance overhead of IACM is insignificant. Third, IACM and DWT-

PRIC perform similarly to the benchmarks (e.g., SRAD) for which the static cache indexing of

DWT-PRIC is effective.

Overall, our experimental results show that IACM achieves considerably higher performance

(i.e., 361.4% at a maximum and 7.7% on average) than the state-of-the-art technique (i.e.,

DWT-PRIC) across all 20 evaluated benchmarks, demonstrating effectiveness of IACM. While

detailed results are omitted for conciseness, our quantitative evaluation also shows that the

AWL-ADI and Parallel versions of IACM exhibit the performance trends similar to those of the

ADI-AWL version for each of the evaluated benchmarks and achieve correspondingly 6.0% and

5.4% higher performance on average than DWT-PRIC across all 20 evaluated benchmarks. The

performance gains of the AWL-ADI and Parallel versions are lower than that of the ADI-AWL

version of IACM due to their inefficiencies, as discussed in Section 4.3.2.

4.3.5 Sensitivity to Architectural Parameters

With the advancement of architectural and device technologies, the capacity, associativity, and

bandwidth of the hardware components in the GPGPU memory hierarchy are expected to con-

tinue to increase. Therefore, it is important to investigate the sensitivity of the performance and

energy-efficiency gains of IACM to the memory-related architectural parameters. Specifically,

we choose to investigate the sensitivity of IACM to the L1 data cache capacity, associativity

and the interconnection network (ICN) bandwidth owing to their importance in determining the

overall performance and energy efficiency of GPGPU architectures.

Figure 35(a) shows the sensitivity of the performance gain of IACM to the L1 data cache

capacity when sweeping it from 8KB to 64KB. The performance gain is defined as the ratio of

the IPC of IACM to that of the baseline architecture when the two architectures are configured

with the same value of the architectural parameter of interest. We investigate the sensitivity

of the benchmarks in the conflicting, thrashing, and conflicting and thrashing categories due to

their higher performance sensitivity levels to the architectural parameters compared to other

benchmarks categories.

The performance gain of IACM tends to decrease when the L1 data cache capacity exceeds

a certain threshold for a subset of benchmarks. For instance, the performance gain of IACM

for SYRK continues to decrease when the L1 data cache capacity is 32KB or larger. Because the
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Figure 35: Sensitivity of the performance gain of IACM to architectural parameters

performance pathologies of the baseline are mitigated with a sufficiently large L1 data cache.

Interestingly, the performance gain of IACM for cetain benchmarks such as ATAX, and GSM

continues to increase up to the L1 data capacity of 64KB. Because high quality indexing bits for

these benchmarks are not located in the low N bits of the cache-block address, increasing the L1

data cache capacity fails to mitigate the performance degradation with the baseline architecture,

which uses the low N bits for indexing. In contrast, because IACM robustly resolves the intra-

warp interference and effectively utilizes the increasing capacity of the L1 data cache with high

quality indexing bits, its performance gain continues to increase.

Figure 35(b) shows the sensitivity of the performance gain of IACM to the associativity

of the L1 data cache by sweeping it from 2 to 16. Generally, the performance gain of IACM

tends to decrease with higher associativity. In particular, unlike the sensitivity trend with

the L1 data cache capacity, the performance gain of IACM for ATAX and GSM continues to

decrease as the associativity increases. Because the intra-warp interference, which drastically

degrades the performance of ATAX and GSM on the baseline architecture can be mitigated with

higher associativity. Interestingly, the performance gain of IACM for the thrashing benchmarks

increases with higher associativity. Because the thrashing benchmarks incur frequent capacity

misses, the baseline architecture does not benefit from high associativity. In contrast, IACM

avoids cache thrashing by dynamically controlling the active warp count. Therefore, IACM can

fully benefit from high associativity, resulting in gradual increase of performance gains compared

to the baseline architecture.

Figure 35(c) shows the sensitivity of the performance gain of IACM to the ICN bandwidth
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Figure 36: Sensitivity of the energy-efficiency gain of IACM to architectural parameters

when by sweeping the channel width from 16 to 128 bytes. For thrashing benchmarks such as

KM, the performance gain of IACM decreases with a higher ICN bandwidth, mainly because the

baseline architecture suffers from ICN bandwidth saturation due to the thrashing in the L1 data

cache. In contrast, IACM does not suffer from ICN bandwidth saturation through the adaptive

concurrency control performed by AWL. Therefore, the baseline architecture benefits from the

higher ICN bandwidth more significantly than IACM, resulting in a decreasing performance

gain.

For the conflicting and conflicting and thrashing benchmarks, the performance gain of IACM

increases with a higher ICN bandwidth, mainly because the baseline architecture is bottlenecked

by the contention in the L1 data cache, resulting in little or no performance improvement from

higher ICN bandwidth.

Figure 36 shows the sensitivity of the energy-efficiency gain (i.e., higher is better) of IACM

to the memory-related architectural parameters. IACM exhibits energy-efficiency gain data

trends similar to the performance gain data trends and achieves significant energy-efficiency gains

across various architectural configurations. This is mainly because IACM achieves significant

performance gains across various architectural configurations and performance is one of the

major factors that determine the overall energy consumption. We also observe that the energy-

efficiency gains of IACM are smaller than the performance gains because some portions (e.g.,

the energy consumption of the SIMT cores) of the total energy consumption remain unaffected

by IACM.

In summary, our quantitative evaluation shows that IACM is promising in the sense that it
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can effectively improve the performance and energy efficiency of various GPGPU benchmarks

with current technology and continues to deliver significant performance and energy-efficiency

gains even when the GPGPU memory hierarchy is enhanced with more advanced technologies.
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V BLPP: Improving the Performance of GPGPUs with Het-

erogeneous Memory through Bandwidth- and Latency-Aware

Page Placement

5.1 Motivation

To achieve the best possible performance on GPGPUs with heterogeneous memory, it is cru-

cial to place memory pages across the memory nodes in a heterogeneity-aware manner. The

conventional memory placement techniques (e.g., the local and interleave memory placement

policies) for non-uniform memory access (NUMA) systems cannot achieve optimal performance

because they place memory pages across memory nodes without considering the performance

heterogeneity of the memory nodes.

Heterogeneous memory hierarchies exhibit different characteristics in terms of bandwidth

and latency. Typically, the GPU memory hierarchy achieves higher bandwidth with GDDR5

technology and lower latency with L1-data and L2 caches. In contrast, the CPU memory hier-

archy provides larger capacity with DDR4 technology but lower bandwidths and higher latency

levels.

A memory management system for GPGPUs with heterogeneous memory should be able

to (1) identify the performance characteristics (e.g., bandwidth sensitive) of the target applica-

tion accurately and (2) place pages across heterogeneous memory nodes based on the optimal

allocation ratio. The state-of-the-art memory-management technique for GPGPUs with hetero-

geneous memory [17] has limitations in that it (1) neglects the performance effects of GPGPU

caches in terms of bandwidth and latency and (2) places memory pages in a latency-oblivious

manner. As quantified in this work, the state-of-the-art technique often achieves suboptimal

performance owing to such limitations.

5.2 Design and Implementation

BLPP is a type of system software (e.g., OS or runtime system), consisting of following three

components (Figure 37) – (1) the application monitor, (2) the allocation ratio controller, and

(3) the memory allocator.
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5.2.1 Application Monitor

The application monitor monitors the target application to analyze its performance charac-

teristics. During the execution of the target application, the application monitor records the

performance counter data (i.e., L1 data (mG,L1D) and L2 cache (mG,L2), the miss rates, and

the data traffic from/to the memory partitions (BM )). These values are used to identify the

performance characteristics of the target application, specifically the memory bandwidth and

latency sensitivity.

We present two versions of BLPP – the static (S-BLPP) and dynamic (D-BLPP) versions of

BLPP. With S-BLPP, the application monitor collects the performance counter data during the

offline profiling process for the target application. The advantage of S-BLPP is that it can place

pages across the heterogeneous memory nodes in an optimal manner using the predetermined

allocation ratio from the very beginning of the execution process. The main disadvantage of

S-BLPP is that it requires offline profiling.

With D-BLPP, the application monitor periodically records the performance counter data

at runtime. The memory allocation ratio controller, which is discussed below, computes the

optimal memory allocation ratio based on the updated runtime data. The major advantage of

D-BLPP is that it requires no offline profiling process. The major disadvantage of D-BLPP is

that it may allocate pages across heterogeneous memory nodes with a suboptimal allocation

ratio before the optimal allocation ratio is dynamically computed.

5.2.2 Memory Allocation Ratio Controller

Based on the performance data collected from the application monitor, the memory allocation

ratio controller determines the optimal allocation ratio across the heterogeneous memory nodes

to achieve high performance. BLPP largely classifies target applications into bandwidth-sensitive

and other application categories.

BLPP determines the optimal allocation ratio (i.e., pOPT,S) for bandwidth-sensitive appli-

cations based on the bandwidth of the GPU (BG) and CPU (BC) memory nodes [17, 45]. We

consider a bandwidth-sensitive application whose total execution time is largely determined by

the data (D) transfer time between the SIMT cores and the memory nodes. We assume that the

corresponding ratios of the memory allocated to the GPU and CPU memory nodes are p and

1 − p. The total execution time of the target application is then computed using Equation 1,

where tG = p·D
BG

and tC = (1−p)·D
BC

.

tT = max(tG, tC) (1)

The total execution time of the bandwidth-sensitive application is minimized if and only if

tG = tC . If tG > tC , we can continue to reduce the total execution time by decreasing p >

until tG and tC become equal (and vice versa). With tG = tC , the optimal ratio (pOPT,S) of the

data placed in the GPU memory node for bandwidth-sensitive applications is computed using
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Equation 2.

pOPT,S =
BG

BG +BC
(2)

For bandwidth-insensitive applications, BLPP places memory pages by considering the ef-

fective latency of each memory node. Specifically, the effective latency of the GPU memory

hierarchy is computed using Equation 3, where LG,L1D, LG,L2, and LG,M denote the access la-

tencies of the GPGPU L1 data cache, L2 cache, and physical memory, respectively (see Table 6

for the exact latencies of the simulated architecture).

LG = LG,L1D +mG,L1D · (LG,L2 +mG,L2 · LG,M ) (3)

The effective latency of the CPU memory node is computed as follows – LC = LC,M , where

LC,M denotes the access latency of the CPU physical memory and the physical link between

the GPU and CPU. Because the baseline GPGPU architecture disallows the caching of memory

objects in the CPU physical memory, the effective latency of the CPU memory node is solely

determined by the latency of the CPU physical memory and the GPU-CPU link.

Given that the effective latency of the GPU memory hierarchy is considerably lower than

that of the CPU memory node, BLPP sets the optimal allocation ratio (i.e., pOPT,I) of the data

placed in the GPU memory node for bandwidth-insensitive applications using Equation 4.

pOPT,I = 1 (4)

In Equation 5, we define the ratio (i.e., rL) of the average memory access latency with the

pages allocated across the heterogeneous memory nodes based on the optimal allocation ratio

(i.e., pOPT,S) for bandwidth-sensitive applications to the average memory access latency with

all pages allocated based on the optimal allocation ratio (i.e., pOPT,I) for bandwidth-insensitive

applications. If the memory latency ratio (i.e., rL) of the target application is high, this indicates

that the latency of the GPU memory hierarchy is significantly lower than that of the CPU

memory node because the target application effectively utilizes the L1 data cache and/or L2

cache in the GPU memory hierarchy.

rL =

BG
BG+BC

· LG + BC
BG+BC

· LC

LG
(5)

BLPP classifies the target application into the bandwidth-sensitive application category if

rL is lower than a threshold (i.e., θL) and the data traffic (i.e., BM ) between the SIMT cores

and the memory partitions is higher than a threshold (i.e., θB).10 The rationale behind this

decision is that the use of the CPU memory node is beneficial only for applications which fail

to effectively utilize the caches in the GPU memory hierarchy and incur a large amount of the
10Based on design space exploration with various applications and parameter settings, we set θL and θB to 1.8

and 140 GB/s, correspondingly. Which achieve the highest performance across all applications and parameter

settings.
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Algorithm 6 Pseudocode for page placement
1: procedure BLPPAlloc

2: node ← initialNode

3: r ← getRandom(0, 1)

4: if r < pOPT then

5: node ← nodeGPU

6: else

7: node ← nodeCPU

8: end if

9: if node.isFull = true then

10: otherNode ← getOtherNode(node)

11: if otherNode.isFull = false then

12: node ← otherNode

13: end if

14: end if

15: page ← allocPage(node)

16: return page

17: end procedure

data traffic. For instance, if the target application effectively utilizes the L1 data cache with a

low miss rate, the use of the CPU memory may significantly degrade the overall performance as

memory requests to the CPU memory cannot employ L1 data cache.

Finally, based on the classification result, BLPP determines the optimal allocation ratio

(pOPT ) for the target application using Equation 6.

pOPT =

pOPT,S if rL < θL ∧BM > θB

pOPT,I otherwise
(6)

5.2.3 Memory Allocator

During the execution of the target application, the memory allocator dynamically allocates

pages on demand across the heterogeneous memory nodes based on the optimal allocation ratio

determined by the memory allocation ratio controller. Algorithm 6 shows the pseudocode for

the memory allocator.

The memory allocator generates a random number whose value range is [0, 1) (Line 3). If

the generated random number is less than the optimal allocation ratio (Line 4), the memory

allocator selects the GPU memory node as the target node (Line 5).11 Otherwise, the memory

allocator selects the CPU memory node as the target node (Line 7).
11Note that the memory allocator always selects the GPU memory node as the target node if the target applica-

tion is classified as a bandwidth non-intensive application because the optimal allocation ratio is 1 (Equation 4).
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The memory allocator checks if the selected target node is currently full (Line 9). If it is

full and the other memory is not full (Line 11), the other memory node is selected as the target

node (Line 12). Finally, the memory allocator places a page in the target node (Line 15).12

5.2.4 Discussion

We discuss the maximum performance gain of BLPP over the state-of-the-art technique (i.e.,

BAP) presented in [17] and the local memory placement policy, which only employs GPU mem-

ory. First, we investigate the maximum performance gain of BLPP over the local policy with a

bandwidth-sensitive application, whose total execution time is largely determined by the data

(D) transfer time between the SIMT cores and the memory nodes. The memory allocation ratios

determined by BLPP and the local policy are pOPT,S (Equation 2) and pLocal = 1. The total

execution time of BLPP and the local policy is computed as follows – tBLPP =
pOPT,S ·D

BG
and

tLocal =
pLocal·D

BG
.

Therefore, the maximum performance gain of BLPP over the local policy is computed using

Equation 7 for bandwidth-sensitive applications. With bandwidth-sensitive applications, we find

that the performance gain of BLPP over the local policy increases as the bandwidth of the CPU

memory increases.

gB =
tLocal
tBLPP

=
BG +BC

BG
(7)

We investigate the maximum performance gain of BLPP over BAP [17] for latency-sensitive

applications. We assume a latency-sensitive application whose working-set size is smaller than

the capacity of the GPU physical memory. Because BLPP allocates all pages in the GPU

memory node, the effective latency of each memory request with BLPP is computed as follows

– LBLPP = LG. In contrast, since BAP allocates pages with a memory allocation ratio of pBAP

(= BG
BG+BC

), the effective latency of each memory request with BAP is computed as follows –

LBAP = BG
BG+BC

· LG + BC
BG+BC

· LC .

Therefore, the maximum performance gain of BLPP over BAP for latency-sensitive appli-

cations is computed using Equation 8. With latency-sensitive applications, we observe that the

performance gain of BLPP over BAP increases as LC
LG

increases.

gL =
LBAP

LBLPP
=

BG
BG+BC

· LG + BC
BG+BC

· LC

LG
(8)

5.3 Evaluation

This section presents the results of a quantitative evaluation of BLPP. Specifically, we aim to

investigate the following – (1) the performance impact of BLPP, (2) the performance comparison

of the static and dynamic versions of BLPP, and (3) the performance sensitivity of BLPP to the

bandwidth ratio of the GPU to CPU memory.
12If the target node is still full (e.g., both memory nodes are currently full), a page existing in the target node

is replaced with the requested page by the LRU page replacement policy (omitted for conciseness).
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Table 6: Simulation parameters

Parameter Value

SIMT core Core count: 15, SIMT width: 32, pipeline depth: 5

Per-core resource Number of registers: 32768, scratchpad: 48KB,

MSHRs: 64, warps: 48, threads: 1536

Schedulers Warp scheduler: Greedy-Then-Oldest, CTA scheduler:

round-robin

L1 data cache Capacity: 16KB/core, line size: 128B, associativity: 4

Interconnect Channel width: 32

L2 cache Capacity: 1024KB, banks: 16, line size: 128B, asso-

ciativity: 8

GPU memory Total bandwidth (default): 200GB/s

GPU-CPU link Latency: 100 cycles [17, 18]

CPU memory Total bandwidth (default): 80GB/s

5.3.1 Experimental Methodology

We use the GPGPU-Sim simulator (version 3.2.2) [16], which we have extended to model the

heterogeneous memory hierarchies, selective caching protocol [19], and BLPP. Table 6 summa-

rizes the architectural parameters of the simulated GPGPU architecture, which are based on

the configuration file in the GTX480 directory. Unless stated otherwise, the bandwidths of the

GPU and CPU memory are set to 200GB/s and 80GB/s respectively, and the GPU-CPU link

latency is set to 100 cycles. These settings are identical to those used in prior works [17,18].

Table 7 summarizes all the evaluated benchmarks (i.e., 2MM, GE (GEMM), LM (lavaMD), SC

(scan), ST (streamcluster), 2DC (2DCONV), BFS, CFD, and II), which are selected from the bench-

mark suites presented in [28,35–37]. The memory-related performance data of each benchmark

is collected by executing it only using the GPU memory node.13 The evaluated benchmarks are

largely classified into two categories (i.e., bandwidth-sensitive and other benchmarks) based on

the classification criteria discussed in Section 5.2.2.

To compare the performance of different memory placement techniques quantitatively, each

benchmark is executed with the following five page placement techniques – (1) local (GPU

memory only), (2) static best (SB), which uses the optimal memory allocation ratio determined

through extensive offline profiling (i.e., 20 different memory allocation ratios), (3) the state-of-

the-art memory placement technique (BAP) proposed in [17], (4) static BLPP (S-BLPP), and

(5) dynamic BLPP (D-BLPP).
13The memory traffic (i.e., BM in Table 7) of some benchmarks is higher than 200GB/s because it captures all

data traffic transmitted through the interconnection network (ICN), which includes the memory requests that

are served by the L2 cache slices in the GPU memory partitions.
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Table 7: Evaluated benchmarks

Category Benchmark mG,L1D mG,L2 BM (GB/s)

BW

sensitive

2MM [28] 0.53 0.24 227.5

GE [28] 0.57 0.36 222.3

LM [35] 0.57 0.00 200.9

SC [36] 0.62 0.40 149.0

ST [35] 0.60 0.76 162.7

Others

2DC [28] 0.23 0.54 188.0

BFS [35] 0.35 0.36 112.5

CFD [35] 0.20 0.71 78.3

II [37] 0.03 0.19 33.0
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Figure 38: Overall performance results

5.3.2 Performance

First, we investigate the performance impact of BLPP. Figure 38 shows the average (i.e., ge-

ometric mean) execution cycles of each memory management technique normalized to that of

the local version. We observe the following data trends. First, BLPP outperforms the local and

BAP versions considerably. For example, S-BLPP achieves 13.4% and 16.7% higher performance

compared to the local and BAP versions, respectively. This is mainly because BLPP accurately

identifies the characteristics of the target application and effectively utilizes the GPU and CPU

memory by preserving the optimal memory allocation ratio determined based on the application

characteristics.

Second, BLPP achieves performance similar to that of the static best version, which requires

extensive offline profiling. For instance, S-BLPP shows 1.2% lower performance than the static

best version. This indicates that BLPP effectively utilizes the heterogeneous memory nodes by

accurately identifying the characteristics of the target application.
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Figure 39: Execution cycle breakdowns

Third, S-BLPP and D-BLPP achieve comparable performances. Specifically, S-BLPP achieves

2.7% higher performance than D-BLPP. D-BLPP achieves performance comparable to S-BLPP

because it robustly identifies the characteristics of the target application based on the perfor-

mance counter data collected at runtime and determines the efficient memory allocation ratio.

Our experimental results demonstrate that BLPP can be effectively employed as a runtime

approach, thus eliminating the need for offline profiling.

5.3.3 In-depth Analysis

To gain deeper insight into the performance results, Figure 39 shows detailed cycle breakdowns of

the evaluated benchmarks. Each bar is normalized to the local version and comprises multiple

segments, each of which denotes the busy cycles (Busy), idle cycles due to a load imbalance

across SIMT cores (Idle Core), idle cycles spent when no warp is ready to execute (Idle Warp),

cycles spent for ALU (Pipeline ALU), LDST (Pipeline LDST), and both (Pipeline Both) pipeline

stalls, and cycles stalled at the scoreboard to wait for the data produced by ALU (Scoreboard

ALU), LDST (Scoreboard LDST), and both (Scoreboard Both) instructions.

In addition, Figure 40 shows the allocation ratio of the GPU memory for each of the evaluated

benchmarks. Figures 39 and 40 demonstrate the following data trends. First, the performance

gains of BLPP over the local and BAP versions are mainly achieved by reducing the cycles spent

for LDST pipeline stalls (i.e., Pipeline LDST). This is because BLPP effectively utilizes all the

available bandwidth of the heterogeneous memory by actively employing both the GPU and

CPU memory nodes when executing bandwidth-sensitive benchmarks and reduces the memory

latency by only employing the GPU memory node when executing the other benchmarks.

Second, the performance gains of BLPP over the local and BAP versions are also achieved
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Figure 40: GPU memory allocation ratio

by reducing the cycles stalled at the scoreboard to wait for the data produced by LDST (i.e.,

Scoreboard LDST) instructions. This is also done because BLPP effectively utilizes the GPU

and CPU memory nodes based on the characteristics of the target application, reducing the

stalled cycles due to data hazards.

Third, interestingly, while the memory traffic of 2DC is rather high, BAP is significantly

outperformed by BLPP with 2DC. This occurs because 2DC effectively utilizes the L1 data cache

(i.e., mG,L1D = 0.23 in Table 7). While BAP employs additional bandwidth from the CPU

memory node by allocating a subset of the memory pages in the CPU memory node, accesses

to the pages allocated in the CPU memory node are disallowed to be cached in the L1 data

cache [19], significantly degrading the overall performance of 2DC, which effectively utilizes the

L1 data cache. In contrast, BLPP accurately identifies the effective cache utilization of 2DC and

accordingly determines the optimal allocation ratio (i.e., pOPT = 1), significantly outperforming

BAP.

Fourth, in addition to the aforementioned performance gains, BLPP achieves additional

performance gains over BAP for II by reducing the idle cycles due to a load imbalance across

SIMT cores (i.e., Idle Core). This mainly occurs because the thread blocks scheduled on a set

of SIMT cores access the CPU memory more frequently than those on the other set of SIMT

cores, eventually causing a imbalanced execution cycles among the SIMT cores. In contrast,

BLPP only employs the GPU memory by identifying II as a bandwidth insensitive application,

eliminating the load imbalance.

Fifth, all the versions achieve similar performance with BFS. As shown in Table 7, BFS exhibits

not only the relatively effective L1 data cache utilization but also the relatively high memory

traffic. Thus, all the versions achieve similar performance regardless of their different allocation
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ratios.

Finally, while D-BLPP shows performance comparable to that of S-BLPP on average across

the benchmarks, D-BLPP achieves slightly lower performance than S-BLPP for some bench-

marks (e.g., LM and SC). This is mainly because D-BLPP allocates pages only in the GPU mem-

ory before collecting the performance data of the target application, resulting in a higher GPU

memory allocation ratio than the optimal allocation ratio (Figure 40). Nevertheless, D-BLPP

achieves considerably higher performance than the BAP and local versions by dynamically find-

ing the efficient allocation ratio and allocating pages across the heterogeneous memory nodes,

showing that BLPP can be effectively implemented as a practical runtime system.

5.3.4 Sensitivity to Bandwidth Ratio

We investigate the performance sensitivity of BLPP to the bandwidth ratio of the GPU and CPU

memory. Figure 41 shows the average (i.e., geometric mean) execution cycles of each memory

management technique, normalized to those of the local version as the bandwidth ratio of the

GPU to CPU memory is swept from 0.625 to 10. We observe the following data trends.

First, BLPP achieves high performance across all the bandwidth ratios by effectively utilizing

the heterogeneous memory, demonstrating the robustness of BLPP. Second, as the bandwidth

ratio decreases (i.e., the bandwidth gap between the GPU and CPU memory decreases), BLPP

and BAP considerably outperform the local version by actively utilizing the CPU memory.

Third, as the bandwidth ratio increases (i.e., the bandwidth gap between the GPU and CPU

memory increases), the performance gap between BLPP and the local versions decreases as the

performance gain that can be achieved by employing the CPU memory node decreases.
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5.3.5 Summary of the Evaluation Results

Overall, our quantitative evaluation demonstrates the effectiveness of BLPP in that it consid-

erably outperforms the state-of-the-art technique, achieves the performance similar to that of

static best version, which requires extensive profiling, and delivers robust performance across

various GPU-CPU memory bandwidth ratios.
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VI Related Work

In the area of high performance and energy efficient CPU computing, advanced cache index-

ing (AC) has been actively researched. The proposed techniques can be largely classified into

static [9–11] and adaptive [32] indexing schemes.

Static cache indexing: Static cache indexing schemes employ sophisticated hash functions

to distribute memory addresses to different cache sets more evenly than the conventional indexing

scheme [9–11]. Some of them build upon rather simple hash functions (e.g., bit-wise XOR [10]),

suitable for L1 caches because of their simple and fast hardware implementation. Others use

more complicated hash functions (e.g., prime modulo indexing [11]), targeting shared caches to

minimize conflict misses at the cost of increased latency and hardware complexity. The main

drawback of the static indexing schemes is that they lack dynamic adaptation based on the

memory access pattern observed at runtime, potentially leading to suboptimal performance.

Adaptive cache indexing: To address the limitation of the static cache indexing, recent

research has proposed an adaptive cache indexing scheme (ASCIB) [32]. ASCIB monitors the

memory access pattern of workloads at runtime, determines the best indexing bits that are

expected to minimize conflict misses for the observed memory access pattern, and periodically

reconfigures them accordingly. In addition, since the hardware logic required for ASCIB is fully

decoupled from the critical path for L1 cache accesses, ASCIB can be used for L1 caches. In this

work, we adopt ASCIB as the baseline to implement the adaptive indexing scheme for GPGPU

computing.

GPGPU cache indexing: Researchers have recently proposed ACI schemes for GPGPU

architectures [6, 7]. These proposals build upon rather sophisticated static techniques – the

arbitrary modulus indexing [7], polynomial modulus indexing [6], and full permutation-based

indexing [46], which is a variant of the bit-wise XOR indexing. While insightful, as the case

with CPU caches, the proposed techniques may lead to suboptimal performance and energy

efficiency due to the lack of runtime adaptation. Our work is different from these proposals in

the sense that we aim to investigate the effectiveness of the ACI schemes including both static

and adaptive techniques for both the L1 data and L2 caches.

Adaptive GPGPU cache management techniques: Prior work has proposed adap-

tive GPGPU cache management techniques such as advanced cache indexing [6, 7, 12], warp

scheduling [3–8,47,48], and cache bypassing [4,5,48–50]. While insightful, the GPGPU architec-

tures proposed by most of the prior work integrates a subset of the adaptive cache management

techniques. For instance, the architecture proposed in [4] lacks the advanced cache indexing

technique, which is highly effective for mitigating GPGPU cache contention.

Khairy et al. have proposed an architectural framework (i.e., DWT-PRIC) that combines cache

management techniques such as advanced static cache indexing and warp limiting [6]. Our

work differs in that it investigates a fully integrated architectural framework for state-of-the-art

adaptive cache management techniques including adaptive cache indexing. Further, in contrast
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to DWT-PRIC, IACM employs adaptive cache management techniques in a more fine-grained

and seamless manner (e.g., L1 data cache and bypassing can be simultaneously enabled). As

demonstrated by our quantitative evaluation, IACM considerably outperforms DWT-PRIC (i.e.,

361.4% at maximum and 7.7% on average) across all the evaluated benchmarks due to the

aforementioned reasons.

Compiler-based static techniques for GPGPUs: Prior work has investigated compiler-

based static techniques for GPGPUs such as cache bypassing [51], efficient memory layout [52],

and parallelism management [53]. The proposed techniques identify the data access patterns

of the target GPGPU application by analyzing its source code at compile time and generate

the optimized binary for the target GPGPU application by injecting memory instructions that

bypass the cache hierarchy [51] to mitigate cache contention, producing the efficient layout of

the memory objects to effectively [52], or merging the code segments that are written to be

executed by multiple threads into the single code segment that is executed by a single thread

to manage the concurrency level [53]. While insightful, the proposed compiler-based static

techniques have fundamental limitations in that their analysis fails to achieve high accuracy if

the target application exhibits widely different behaviors based on the runtime conditions (e.g.,

input data size and type) or employs irregular data structures (e.g., graphs, trees), which leads

to suboptimal efficiency.

In contrast, IACM dynamically performs adaptations based on the runtime information of

the target GPGPU application, achieving high performance and energy efficiency as quantified

in this work. Further, we believe that compiler-based static techniques can be incorporated

into adaptive GPGPU cache management techniques such as IACM to further improve their

efficiency. For instance, compiler-based static techniques can be used to determine the (po-

tentially) efficient initial system states (e.g., the efficient initial warp count) and/or eliminate

(potentially) suboptimal system states (e.g., low warp counts if the target application is expected

to be scalable) from the system state space explored by adaptive cache management techniques.

CPU cache management techniques: Recent proposals have investigated the techniques

that can effectively increase cache associativity with small performance overheads [39–41]. It is

interesting future work to adopt these techniques in GPGPU caches. As shown in our quantita-

tive evaluation, we believe that IACM can be used as an effective and complementary technique

to further improve the performance and energy efficiency of highly associative GPGPU caches.

GPGPU heterogeneous memory management techniques: Prior works have pre-

sented the design and implementation of the virtual memory systems for GPGPUs with hetero-

geneous memory [17–21]. While insightful, most of the prior works have investigated the design

and implementation of the efficient address translation [20, 21], cache hierarchy [19], and warp

scheduling [18] with little or no focus on heterogeneity-aware memory management. Our work

differs in that it investigates the efficient memory management technique for GPGPUs with het-

erogeneous memory, which robustly places pages across the heterogeneous memory nodes based

on their performance differences.
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The prior work closely related to ours is the work presented in [17]. The state-of-the-art tech-

nique (i.e., BAP) proposed in [17] places memory pages by considering the bandwidth difference

of the GPU and CPU memory. While insightful, it lacks the consideration of the performance

effects of the GPGPU caches and places memory pages in a latency-oblivious manner, achiev-

ing suboptimal performance as quantified in this work. In contrast, BLPP fully considers the

performance effects of the GPGPU caches and allocates pages across the heterogeneous memory

nodes in a bandwidth- and latency-aware manner, achieving considerably higher performance

than BAP.

CPU heterogeneous memory management techniques: Prior works have presented

the performance analysis and optimization of CPU-based systems with heterogeneous mem-

ory [45, 54–57] or NUMA systems [58–62]. While impactful, the prior works take into account

only the latency [54] or bandwidth [45, 55, 56, 63] properties of heterogeneous memory nodes

without simultaneously considering the both properties or mainly focus on the performance

impact of the latency that incurs from remote memory nodes [57–62] for CPU-based systems.

Our work differs in that it investigates the bandwidth- and latency-aware memory management

technique in the context of GPGPU computing.
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VII Conclusions

This dissertation proposes various methods to improve the performance and energy efficiency of

GPGPU computing both in terms of computer architecture and system software by proposing

adaptive cache and memory management techniques. We believe both hardware and software

solutions must be provided in order to fully eliminate GPGPU performance pathologies. We

provide quantitative evaluation for all of the techniques we propose and compare it with the

baseline and state-of-the-art techniques.

First, this dissertation investigates the effectiveness of advanced cache indexing (ACI) for

high-performance and energy-efficient GPGPU computing. We first explain performance patholo-

gies of GPGPU hardware cache by analyzing memory access pattern of GPGPU application.

Then, we discuss static indexing schemes (i.e., bit-wise XOR, polynomial modulus, and prime

modulo indexing) and adaptive cache indexing schemes that can mitigate the issues. We discuss

design and implementations of advanced cache indexing schemes to GPGPU hardware. Our

quantitative evaluation demonstrates that the ACI schemes significantly improve performance

and energy efficiency over the conventional indexing scheme across various GPGPU workloads.

Our in-depth analysis shows that ACI reduces significant misses and reservation fails which leads

to performance and energy efficiency improvement. In addition, our experimental results show

that the ACI schemes continue to provide significant performance gains over the conventional

indexing scheme even when the additional indexing latency occurs due to the hardware complex-

ity and the baseline cache is enhanced with higher associativity and larger capacity. Overall, our

quantitative evaluation demonstrates that the ACI schemes are promising for high performance

and energy efficient GPGPU computing.

Second, this work presents IACM, integrated adaptive cache management for high-performance

and energy-efficient GPGPU computing. IACM incorporates the state-of-the-art adaptive cache

management techniques (i.e., adaptive cache indexing, adaptive warp limiting, and cache by-

passing) in a unified architectural framework. We present three IACM designs, each with a

different methods of unifying adaptive cache management techniques. We perform extensive

design parameter sweeps to find parameters with the best performance for each of three IACM

designs based on a cycle-accurate GPGPU simulator. We then compare performance of three

IACM designs and determine the design that provides the highest performance among the three.

Our quantitative evaluation demonstrates that IACM significantly outperforms the baseline ar-

chitecture in terms of performance and energy efficiency (i.e., 98.1% and 61.9% on average,

respectively), achieves considerably higher performance than the state-of-the-art technique (i.e.,

361.4% at maximum and 7.7% on average), and provides significant performance and energy-

efficiency gains over the baseline architecture enhanced with advanced architectural technologies

such as higher associativity, larger capacity, and interconnect bandwidth. In summary, IACM

is promising in that it significantly improves the performance and energy efficiency of various

GPGPU benchmarks with the current technology and continues to deliver significant perfor-
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mance and energy-efficiency gains even when the GPGPU memory hierarchy is enhanced with

advanced technologies.

Finally, this dissertation proposes BLPP, bandwidth- and latency-aware page placement

for GPGPUs with heterogeneous memory. BLPP is comprised of three phases. First, BLPP

collects the performance characteristics (e.g., cache miss rates and memory traffic) of the target

application using offline profile data or runtime information. Second, it determines the optimal

allocation ratio across the heterogeneous memory nodes based on the application characteristics.

Finally, it dynamically places memory pages by using the optimal allocation ratio determined

from previous phase. Our experimental results show that BLPP is effective in that it considerably

outperforms the state-of-the-art technique and achieves the performance similar to the static best

version, which requires extensive offline profiling. We also propose two versions of BLPP, Static

BLPP (S-BLPP), and Dynamic BLPP (D-BLPP). S-BLPP uses offline profile data of the target

application while D-BLPP uses runtime data. Our quantitative evaluation demonstrates that

D-BLPP achieves similar performance to S-BLPP, which shows that BLPP can be effectively

implemented as a practical runtime system.
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