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Cristóbal Barba-Gonzaléz, José Garćıa-Nieto, Antonio J. Nebro?, and José F.
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Abstract. Big Data Optimization is the term used to refer to optimiza-
tion problems which have to manage very large amounts of data. In this
paper, we focus on the parallelization of metaheuristics with the Apache
Spark cluster computing system for solving multi-objective Big Data Op-
timization problems. Our purpose is to study the influence of accessing
data stored in the Hadoop File System (HDFS) in each evaluation step
of a metaheuristic and to provide a software tool to solve these kinds
of problems. This tool combines the jMetal multi-objective optimiza-
tion framework with Apache Spark. We have carried out experiments
to measure the performance of the proposed parallel infrastructure in
an environment based on virtual machines in a local cluster comprising
up to 100 cores. We obtained interesting results for computational effort
and propose guidelines to face multi-objective Big Data Optimization
problems.

Keywords: Multi-objective Optimization, Big Data, jMetal, Spark, Par-
allel Computing.

1 Introduction

Over the past few years, Big Data technologies have attracted more and more
attention, leading to an upsurge in research, industry and government appli-
cations. There are multiple opportunities and challenges in Big Data research.
One area in particular where Big Data is promising is Global Optimization [26].
The issue is that Big Data optimization problems may need to access a massive
amount of data to be solved, which introduces a new dimension of complexity
apart from features such as non-linearity, uncertainty and conflicting objectives.

Focusing on multi-objective optimization, metaheuristic search methods, such
as evolutionary algorithms, have been widely applied to a great number of aca-
demic and industry optimization problems [6]. Depending on the problem, a
metaheuristic may need to perform thousands or even millions of solution evalu-
ations. In the case of complex system optimization, the computational effort, in
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terms of time consumption and resource requirements, to evaluate the quality of
solutions can make it impracticable to apply current optimization strategies to
such problems. This issue is even harder when dealing with Big Data environ-
ments, where a huge volume of data hast to be accurately and quickly managed.

One strategy to cope with these difficulties is to apply parallelism [17]. In
the last few years, a number of approaches consisting in adapting metaheuristic
techniques to work in parallel on Hadoop, the de facto Big Data software plat-
form, have been proposed. These proposals are related to data mining or data
management applications, such as: feature selection [1], data partitioning [12],
dimension reduction [23], pattern detection [5], graph inference [16], and task
scheduling [22]. Most of these approaches are based on the MapReduce pro-
gramming model [15].

However, MapReduce entails a series of drawbacks that make it unsuitable
to be properly integrated with metaheuristics in particular and with global op-
timization techniques in general. Chief among them are: high latency queries,
non-iterative programming model, and weak real-time processing. Therefore,
there is a demand for new challenging approaches to integrate Big Data based
technologies with global optimization algorithms in order to cope with all these
issues.

In this paper, our approach is to address the parallelization of metaheuristics
in Hadoop-based systems with Apache Spark [25], which is defined as a fast
and general engine for large-scale data processing. Our proposal is to use the
jMetalSP framework1, which combines Spark with the jMetal multi-objective
optimization framework [11]2. Concretely, we have included support in jMetalSP
to parallelize metaheuristics with Spark in an almost transparent way, hence
avoiding the intrinsic shortcomings of the usual MapReduce model when applied
to global optimization.

We aim to consider two scenarios: first, to use Spark as an engine to evaluate
the solutions of a metaheuristic in parallel, and, second to study the influence of
accessing a massive amount of data in each evaluation of a metaheuristic algo-
rithm. Instead of focusing on a particular optimization problem, we have defined
a generic scenario, in which a benchmark problem is modified to artificially in-
crease its computing time and to read data from the Hadoop file system (HDFS).
We have carried out a number of experiments to measure the performance of the
proposed method in a parallel virtualization infrastructure of multiple machines
in an in-house cluster.

The main contributions of this paper are as follows:

– We provide a software solution for parallelizing multi-objective metaheuris-
tics included in the jMetal framework to take advantage of the high perfor-
mance cluster computing facilities provided by Spark. This way, developers
and practitioners are provided with an attractive tool for Big Data Opti-
mization.

1 In URL https://github.com/jMetal/jMetalSP
2 In URL http://jmetal.github.io/jMetal/
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– We perform a thorough experimentation of our proposal from three different
viewpoints. First, by measuring the performance of algorithms in terms of
computational effort in a Hadoop parallel environment; second, by analyzing
the influence of accessing data stored in HDFS in each evaluation of a meta-
heuristic; and third, by combining both approaches. To carry out this study,
we define different data access/processing tasks to be done when evaluation
a solution, so we can measure the performance of the algorithms accord-
ing to computational effort and size of data. This allows us to compute the
speedups that can be obtained and identify the system’s limits, to determine
whether or not it is worth using more resources to solve the problem.

The remainder of this article is organized as follows. The next section presents
an overview of the related work in the literature. Section 3 details our Big Data
optimization approach. In Section 4, the experimental framework and parameters
settings are described. Section 5 details the experimental results and analyses.
Finally, Section 6 outlines some concluding remarks and plans for future work.

2 Related Work

Large amounts of data and high dimensionality characterizes many optimization
problems in interdisciplinary domains such as, biomedical sciences, engineering,
finance, and social sciences. This means that optimization problems handling
such spatio-temporal restrictions often deal with tens of thousands of variables
or features extracted from documents, images and other objects.

To tackle such challenging problems, a series of proposals have appeared in
the last decade, which combine metaheuristics with data mining or data manage-
ment applications, and adapt them to perform in Hadoop environments. Con-
cretely, in [1] a swarm intelligence approach is adapted to optimize the features
that exist in large protein sequences using a two-tier hybrid model by applying
both filter and wrapper methods. A similar approach is proposed in [12], where
a particle swarm optimization algorithm (PSO) is used to discover clusters in
data that are continuously captured from students’ learning interactions. In [2],
intrusion detection is managed with a MapReduce strategy based on a PSO
clustering algorithm.

An interesting method has been reported in [23], in which, by using sen-
sor data to generate a PCA (Principal Component Analysis) model to forecast
photovoltaic energy, it is possible to reduce the dimensionality of data with the
collaboration of other artificial intelligence techniques, such as: fuzzy interfer-
ence, neural networks, and genetic algorithms.

In the case of biomedical sciences, the reconstruction of gene regulatory net-
works is a complex optimization problem that is attracting particularly special
from the research community, since it is considered to be a potential Big Data
problem in the specialized literature [26,3]. Along the same lines, in the study
carried out in [16], the authors proposed a parallel method consisting in a hybrid
genetic algorithm with PSO by means of the MapReduce programming model.
The resulting approach was tested in different cloud computing environments.
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Most of these approaches are based on the MapReduce (MR) programming
model [15], which yields a competitive performance in comparison with other
parallel (and sequential) models for the specific problems tackled. In addition,
other algorithmic adaptations to MapReduce operations can be found in meta-
heuristics, such as: PSO [18], Differential Evolution [9] and Ant Colony Op-
timization [24]. However, as stated, the MapReduce model entails a series of
drawbacks that make it unsuitable to be integrated with metaheuristics in par-
ticular and with global optimization techniques in general. These are directly
related to: high-latency queries, a non-iterative programming model, and weak
real-time processing. For instance, the following issues which we aim to cover
with our proposal, combining jMetal and Spark:

– MapReduce uses coarse-grained tasks to do its work, which can be too heavy-
weight for iterative algorithms, like metaheuristic algorithms. In the propos-
als analyzed, developers use various MapReduce hacks or alternative tools
to overcome these limitations, but this highlights the need for a better com-
putation engine that supports these algorithms directly, while continuing to
support more traditional batch processing of large datasets. Our software
proposal follows an iterative programming model, which eases the adap-
tation of algorithms and the integration with software classes managing a
multitude of optimization problems.

– Another problem with current optimization algorithms using MapReduce is
that they have no awareness of the total pipeline of Map plus Reduce steps,
so they cannot cache intermediate data in memory for faster performance.
Instead, they flush intermediate data to disk between each step. With Spark
the managed data can be cached in memory explicitly, thus improving per-
formance significantly.

– Existing proposals in the literature were not evaluated on well-grounded Big
Data environments. Most of them were tested to show their ability to solve
a given optimization problem in a parallel infrastructure composed of up to
ten machines, and therefore critical aspects such as data volume and variable
computational effort remain open issues. In the present study, a thorough
experimentation is carried out to measure the performance of algorithms
in terms of scalability in a 100-core Hadoop-based cluster, and to analyze
the influence of accessing a large amount of data in each evaluation of a
multi-objective metaheuristic.

3 Big Data Optimization Approach

To develop Big Data optimization applications it is necessary to have software
tools capable of coping with the requirements of such applications. Our con-
tribution in this sense is to propose jMetalSP [4][7], an open-source platform3

combining the jMetal optimization framework [11] with the Apache Spark cluster
computing system [25]. Below we describe the adopted Big Data Optimization
scheme in the context of jMetal, Spark, and jMetalSP.

3 URL: https://github.com/jMetal/jMetalSP
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Fig. 1. Class diagram with core classes and interfaces of jMetal 5.

Algorithm 1 Template of a metaheuristic

1: A(0)← GenerateInitialSolutions()
2: t← 0
3: Evaluate(A(0))
4: while not StoppingCriterion( ) do
5: S(t) ← Generation(A(t))
6: Evaluate(S(t))
7: A(t + 1) ← Update(A(t), S(t))
8: t← t + 1
9: end while

jMetal is an algorithmic framework, which includes a number of optimization
metaheuristics of the state of the art [11]. It mostly centers in multi-objective
optimization, although it also provides single-objective algorithms. In the work
presented here, we use jMetal 5 [19], which follows the architecture depicted in
Fig. 1. The underlying idea is that an algorithm (metaheuristic) manipulates a
number of solutions with some operators to solve an optimization problem.

jMetal 5 provides algorithm templates mimicking the pseudo-code of a generic
metaheuristic like that shown in Algorithm 1, where a set A of some initial
solutions is iteratively updated by generating a set S of new solutions until a
stopping condition is achieved. Another feature of jMetal is that it offers an
interface (called SolutionListEvaluator) to encapsulate the evaluation of a
list of solutions (i.e., a population in the context of evolutionary algorithms):

public interface SolutionListEvaluator<S> {

List<S> evaluate(List<S> solutionList, Problem<S> problem);

void shutdown();

}
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The encapsulated behavior of this interface is that the method evaluate

of the problem (see Fig. 1) is applied to all the solutions in the list, yielding
to a new list of evaluated solutions. Metaheuristics using this interface can be
empowered with different evaluator implementations, so that the current way
of evaluating solutions is transparent to the algorithms. For example, many
algorithms incorporate a method similar to this one (which corresponds to step
6 of the template shown in Algorithm 1):

protected List<S> evaluatePopulation(List<S> population) {

population = evaluator.evaluate(population, problem);

return population;

}

In this way, the actual evaluator is instantiated when configuring the settings
of the metaheuristic, so no changes in the code are needed. jMetal 5 currently
includes two implementations of SolutionListEvaluator: sequential and multi-
threaded. Our approach has been then to develop an evaluator based on Spark.

Apache Spark [25] is based on the concept of Resilient Distributed Datasets
(RDD), which are collections of elements that can be operated in parallel on the
nodes of a cluster by using two types of operations: transformations (e.g., map,
filter, union, etc.) and actions (e.g., reduce, collect, and count). The Spark based
evaluator in jMetal creates an RDD with all the solutions to be evaluated, and
a map transformation is used to evaluate each solution. The evaluated solutions
are then collected and returned to the algorithm.

It is worth noting that algorithms do not need to be modified to use Spark,
although the problem to be solved must fulfill the requirements imposed by
this platform, as the algorithms run map processes. For example, the evaluate
method of the problem must not modify variables outside the scope of the RDD
containing the list of solutions to be evaluated.

Currently, five multi-objective metaheuristics in jMetal 5 use evaluators, so all
of them can take advantage of the one based on Spark: NSGA-II [10], SPEA2 [27],
SMPSO [20], GDE3 [14] and PESA2 [8]. This scheme can be also used in a
number of single-objective algorithms: generational genetic algorithm (gGA),
differential evolution (DE), and two PSO algorithms.

jMetalSP is a new project for Big Data Optimization with multi-objective
metaheuristics [4] based on jMetal and Spark. It is currently intended to solve
dynamic multi-objective optimization problems in Hadoop environments by us-
ing the streaming data processing capabilities of Spark, while jMetal provides
the optimization infrastructure for implementing the dynamic problems and the
dynamic algorithms to solve them. We have extended jMetalSP with the Spark
evaluator, so it can be used also to solve non-dynamic optimization problems.

The attractive point of the adopted approach is that a number of single and
multi-objective metaheuristics can be executed in parallel without requiring any
modification. If we look closely at steps 3 and 6 in Algorithm 1 we can see that the
set S can be evaluated in parallel by the Spark-based evaluator, so the resulting
parallel model is a heartbeat algorithm: a parallel step is alternated with a
sequential one (for the rest of the phases in the main loop of the metaheuristic).
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Fig. 2. Computational environment for Big Data Optimization used to test the per-
formance of the proposed jMetal+Spark software solution, under different conditions
of computational effort and Big Data management

This obviously prevents linear speedups, and this is the price to pay for
having a very simple mechanism that uses jMetal’s algorithms in a Big Data
infrastructure. In this paper, our main interest is to measure the effective time
reductions that can be achieved in different contexts.

4 Experimental Framework

To evaluate the performance of the proposed approach, a series of experiments
have been conducted from three points of view: (1) computational effort, in
terms of which we measure the performance of the parallel model; (2) data
management, which is focused on testing the ability to manage a large number
of data files; and (3) a combination of (1) and (2). Therefore, for each, we follow a
different problem configuration involving: time consuming delays, different data
block sizes, and different cluster sizes. We are seeking the maximum limit that
a multi-objective algorithm can manage when handling Big Data without a loss
in performance.

For this reason, with the aim of guiding us and to simplify this experimenta-
tion, we have centered on one optimization problem and one algorithm to solve
it, although without emphasizing on the solution quality, as the behavior of
the parallel algorithm is the same as its sequential counterpart. Specifically, we
have selected the NSGA-II algorithm [10] and the multi-objective optimization
problem ZDT1 [13].

From an algorithmic point of view, we have used a common parameter setting
of NSGA-II to test our proposal in all the experiments. The variation operators
are SBX crossover and Polynomial mutation, with crossover and mutation rates
pc = 0.9 and pc = 1.0/L, respectively (L being the number of decision variables
of the problem), and both having a distribution index value of 20. The selection
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strategy is binary tournament and the population size has been set to 100 indi-
viduals. Finally, the stopping condition is met when the total number of 25,000
candidate solutions have been evaluated. In others words, the NSGA-II performs
250 evolution steps or iterations of the population throughout the running time.

All the experiments have been conducted in a virtualization environment
running on a private high-performance cluster computing platform. This in-
frastructure is located at the Ada Byron Research Center at the University of
Málaga (Spain), and comprises a number of IBM hosting racks for storage, units
of virtualization, server compounds and backup services.

Our virtualization platform is hosted in this computational environment,
whose main components are illustrated in Fig. 2. Concretely, this platform is
made up of 10 virtual machines (VM1 to VM10), each one with 10 cores, 10 GB
RAM and 250 GB virtual storage (adding up to 100 cores, 100 GBs of memory
and 2.5 TB HD storage). These virtual machines are used as Slave nodes with
the role of TaskTracker (Spark) and DataNode (HDFS) to perform fitness eval-
uations of algorithmic candidate solutions in parallel. The Master node, which
runs the core algorithm (NSGA-II), is hosted in a different machine (VM0) with
8 Intel Core i7 processors at 3.40 GHz, 32 GB RAM and 3 TB storage space.
All these nodes are configured with a Linux CentOS 6.6 64-bit distribution. The
whole cluster is managed with Apache Ambari 1.6.1 and executes the Apache
Hadoop version 2.4.0. This Hadoop distribution integrates HDFS and Apache
Spark 1.6.

The jMetalSP framework is then deployed on this infrastructure, providing
optimization algorithms with Spark methods to evaluate candidate solutions in
parallel, in addition to managing HDFS files.

5 Experiments

This section describes the set of experiments and the analyses carried out to
test our approach. We focus on the speedup and efficiency analysis in terms of
computational effort and data management.

5.1 Speedup and Efficiency

One of the most widely used indicators for measuring the performance of a
parallel algorithm is the Speedup (SN ). The standard formula of the speedup is
represented in Equation 1 and calculates the ratio of T1 over TN , where T1 is
the running time of the analyzed algorithm in 1 processor and TN is the running
time of the parallelized algorithm on N processing units (processors or cores).

SN =
T1

TN
(1)

EN =
SN

N
× 100 (2)
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Table 1. Experimental results of NSGA-II (jMetalSP) executed on 1, 10, 20, 50, and
100 cores with different time delays in each problem evaluation

Running Time (hours) Speedup Efficiency
Delay T1 T10 T20 T50 T100 S10 S20 S50 S100 E10 E20 E50 E100

10 s 76.50 10.90 8.10 5.00 3.50 7.02 9.44 15.30 21.85 70.20% 47.22% 30.60% 21.85%
30 s 216.70 34.10 24.40 16.30 10.80 6.35 8.88 13.29 20.06 63.50% 44.41% 26.59% 20.06%

A related measure is the Efficiency of a parallel algorithm, which is calculated
with the formula of Equation 2. An algorithm scales linearly (ideal) when it
reaches a speedup SN = N and hence, the parallel efficiency is EN = 100%.

5.2 Computational Effort

As stated, to measure the parallel computing performance of our approach we
have used the NSGA-II algorithm to solve a modified version of the ZDT1 prob-
lem. The running time of NSGA-II with those settings in a laptop equipped with
an Intel i7 processor is less than a second, so we have artificially increased the
computing time of the evaluation functions of ZDT1 (by adding an idle loop) to
simulate a real scenario where the total computing time would be in the order of
several hours. After a number of preliminary experiments, we set the evaluation
time to two values, 10 and 30 seconds; this way, we estimated the total running
time of the sequential NSGA-II algorithm to be around 76.5 and 216.7 hours,
respectively.

Table 1 shows the running time in hours used by the NSGA-II approach of
jMetalSP running on 1, 10, 20, 50, and 100 cores, with regards to the two delays
considered, applied in each solution evaluation. This table also contains the
corresponding speedup and efficiency values to the resulting times. As mentioned,
T1 (one core) is 76.5 hours or 3.19 days in the case of the 10 seconds delay
and 216.7 hours or 9.03 days with a delay of 30 seconds. As expected, these
times are reduced in relation to the increase in the number of cores used in the
parallel model. The highest reductions in time are obtained when our approach
is configured with 100 cores in parallel, for which the running time is reduced
to 3.5 hours (95.42%) in the case of a delay of 10 seconds and to 10.8 hours
(95.02%) using a 30 seconds delay.

In terms of efficiency, the highest percentage 70.2% is reached with 10 cores
and it decreases as the number of resources gets larger, to reach 47.22%, 30.6%,
and 21.85% with 20, 50, and 100 cores, respectively.

This behavior was somewhat expected as the parallel model is based on
alternating parallel and sequential steps. Considering the results, it is worth
mentioning that both problem configurations yield similar speedup and efficiency
values, which indicates that the bottleneck is due to both the parallel model and
the parallel infrastructure, so increasing the evaluation time does not compensate
the synchronization and communication costs.
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Table 2. Experimental results of NSGA-II (jMetalSP) executed on 1, 10, 20, 50, and
100 cores with different block sizes management in each problem evaluation

Running Time (hours) Speedup Efficiency
Block T1 T10 T20 T50 T100 S10 S20 S50 S100 E10 E20 E50 E100

32MB 41.47 2.47 1.94 2.18 2.56 16.78 21.37 19.02 16.19 167.79% 106.8% 32.38% 16.19%
64MB 41.28 4.20 3.72 3.99 4.52 9.82 11.09 10.34 9.13 98.20% 55.45% 20.68% 9.13%
128MB 48.45 7.89 8.94 9.92 9.47 6.14 5.41 4.88 5.11 61.40% 27.05% 9.76% 5.11%

5.3 Data Block Size

We now turn to a number of experiments to measure the influence of using
different data block sizes (file sizes) on the evaluation process of NSGA-II. For
this purpose, we have set NSGA-II to manage data files with different sizes
in each problem evaluation. This way, we have centered on file sizes of 32MB,
64MB, and 128MB; hence, each complete algorithm’s execution manages a total
volume of 0.8TB, 1.6TB, and 3.2TB, respectively. We have arranged a pool of
files stored in HDFS totalling 1TB, so the pool size is 1TB/file size.

Once a problem solution has been evaluated, the optimization algorithm
randomly (uniformly) selects a file from the pool. Neither additional computing
tasks nor delays are performed in the evaluation step for this analysis.

Table 2 shows the running time in hours used by the NSGA-II approach of
jMetalSP running on 1, 10, 20, 50, and 100 processors, for the three different
configurations of file size. As in the first experiments, the sequential time T1 is
an estimation. In addition, this table contains the speedup and efficiency with
regards to the resulting computing times. As we can observe, the running time
with one core T1 took approximately 1.72 days in the case of 32MB (41.47 hours)
and 64MB (41.28 hours) file sizes, and it was close to 2 days (48.45 hours) in the
case of 128MB. In fact, in the context of one processing unit, for the 32MB file
size the optimization algorithm took longer than for 64MB, which could be due
to the optimal block size in HDFS, which is 64MB [21] since no extra operations
of either wrapping or splitting are required with this file size.

As expected, the running time is reduced in general when using a higher
number of nodes in the parallel model. However, the highest reductions in run-
ning time are not obtained with 100 cores, but rather with 10 and 20. For the
latter, the execution time (T20) is 1.94 hours in the case of 32 MBfile size and
3.72 hours when using 64MB, which means a reduction of 95.32% and 90.98%,
respectively, with regards to the algorithm running time in one processor (T1).
In the case of 128MB file size, the highest reduction in computing time (83.71%)
is reached when running NSGA-II in parallel with 10 nodes (T10). Although this
behavior could be counter-intuitive, the fact of focusing only on data manage-
ment without spending extra computational effort in evaluating the solutions,
causes the network throughput in the parallel model to impair the overall per-
formance of the optimization approach, since the greater the number of cores
used, the higher the transference of data between nodes.
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Table 3. Experimental results of NSGA-II (jMetalSP) executed on 1, 10, 20, 50, and
100 processors with different time delays and 64MB block size management in each
problem evaluation

Running Time (hours) Speedup Efficiency
Delay T1 T10 T20 T50 T100 S10 S20 S50 S100 E10 E20 E50 E100

10 s 85.90 19.50 11.80 6.80 7.40 4.40 7.28 12.63 11.61 44% 36.40% 25.26% 11.61%
30 s 237.5 39.90 31.70 17.30 12.50 5.95 7.49 13.73 19.01 59.50% 37.45% 27.46% 19.01%

In terms of speedup, a number of 10 and 20 cores in the parallel model reach
close to linear (even superlinear) speedup values, although they get worse with a
higher number of nodes. In fact, the most efficient configuration is obtained with
10 nodes for the three file sizes. As our computational environment is composed of
10 virtual machines with 10 cores each (see Fig. 2), it is clear that the algorithmic
configuration with 10 nodes is able to launch all jobs within the same machine,
thereby avoiding having to use the underlying network and reaching the highest
efficiency in terms of data management. The achievement of superlinear speedups
is related to the application of data cache and file replication techniques in the
underlying Hadoop system.

5.4 Computing Data Plus Access Performance

Following the two experiments in the context of parallel numerical performance
and parallel data access performance, the next step is to combine both aspects to
simulate a real Big Data optimization problem, which involves both heavy data
access and data processing. Consequently, we have designed a new experiment
in which each evaluation task requires reading a file of 64MB size and then
simulating a computational effort of 10 and 30 seconds.

The resulting times, as well as speedup and efficiency metrics, are shown in
Table 3. We can observe that the running times are different depending on the
computational delay in the evaluations. With 10 seconds, the highest reduction
in running time is not obtained with 100 cores, but with 50: the execution time
(T50) is 6.8 hours which means a reduction of 92.08% with regards to the one
processor running time (T1); the efficiency value is 25.26%. In the case of using
a 30 seconds delay, the best running time is with 100 cores with a reduction of
94.73% with regards to one core. In this case, the efficiency value is 19.01%.

5.5 Discussions

As a general observation, in the scope of our experimental framework, Fig. 3
plots the running times consumed by our jMetalSP approach executed on 1, 10,
20, 50, and 100 cores with all the used configurations of computational delay
(10 s and 30 s) and data management (32MB, 64MB, and 128MB), plus the
experiment combining computational effort and data access.
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Fig. 3. Running time in hours (logarithmic scale) of jMetalSP version of NSGA-II
executed on 1, 10, 20, 50 and 100 cores with all configurations of computational delay
and data management

In this figure, it is clearly observable that the highest reduction in computing
time is reached when the evaluation of solutions in the evolution process of
NSGA-II entails a computational effort (30 s delay), as well as data management
(64MB file size). So, a complete execution of the optimization algorithm requires
several days (as much as 10) in a platform environment with fewer than 10
cores, although this computational time is reduced to less than a day when
using more than 20 cores in our parallel model. We therefore can suggest that a
good trade-off between performance and resource requirement is obtained with
a configuration of jMetalSP in the range of 20 to 50 cores, since all jobs are
finalized in less than half a day and it is 50% more cost efficient.

The results we have obtained in the experiments suggest demonstrates the
systems limits when dealing with a real-world Big Data optimization problem.
The stopping condition of the NSGA-II algorithm used is to compute 25,000
function evaluations, which is a usual value used to optimize the ZDT1 problem.
However, in a real scenario the number of evaluations would be most certainly
beyond that number.

If we consider the lowest times of the experiments carried out, they range
from 1.86 hours (computational effort, 10 second delay, 100 cores) to 8.58 hours
(combined experiment, 100 cores). Assuming that the algorithm would need to
compute 100,000 function evaluations, the times would increase to 7.44 and 34.32
hours, respectively. While the first time could be acceptable, the second could
be at the limit of an acceptable value. Consequently, augmenting the number of
evaluations to the order of 1 million or more would go beyond a reasonable time
in our Hadoop-based system, and specific algorithms should be designed instead
of merely using the standard NSGA-II metaheuristic, e.g. by incorporating local
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search methods or by designing problem-oriented operators to reduce the number
of evaluations to achieve satisfactory solutions.

Finally, it is worth mentioning that a similar experiment has been carried out
with SMPSO [20], a swarm-intelligence multi-objective approach, in the scope
of the experimental framework used here. SMPSO performs a different learning
procedure from NSGA-II, although they both use similar mechanisms in terms
of solution evaluation and multi-objective operation, i.e., archiving strategy and
crowding density estimator. As expected, SMPSO registered similar speedups to
NSGA-II, which leads us to claim that our jMetalSP approach behaves efficiently
with different optimizers.

6 Conclusions

In this paper, we have presented a study related to multi-objective Big Data
optimization. Our goal has been twofold: first, we have extended the jMetalSP
framework (which combines jMetal and Spark) in such a way that jMetal meta-
heuristics can make use of the Apache Spark distributed computing features
almost transparently; second, we have studied the performance of running a
metaheuristic based in our parallel scheme on three scenarios: parallel compu-
tation, parallel data access, and a combination of both. We have carried out
experiments to measure the performance of the proposed parallel infrastructure
in an environment based on virtual machines in a local cluster composed of up
to 100 cores.

The results lead us to get interesting conclusions about computational effort
and to propose guidelines when facing Big Data optimization problems:

– Our approach is able to obtain actual reductions in computing time from
more than a week to just half a day, when addressing complex and time
consuming optimization tasks. This performance has been obtained in the
scope of an in-house (virtualized) computational environment with limited
resources.

– In those experiments where we only focused on data management, without
spending extra computational effort on evaluating the solutions, the overall
performance of the parallel model is usually impaired when using a large
number of nodes (more than 50), because of the network overhead and the
increasing data transfer between nodes.

– A noteworthy trade-off between performance and resource requirements is
obtained with a configuration of jMetalSP in the range of 50 to 100 cores.

As for future work, we plan to evaluate the performance of our proposal in
the context of public in-cloud environments, with the aim of studying whether a
different behavior in the optimization of Big Data problems is observed in these
kinds of environments (compared with virtualized), or not. As a second line of
future work, we intend to use the available optimization algorithms in jMetalSP
to deal with real-world complex and data intensive optimization problems.
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cua Seco. An item based geo-recommender system inspired by artificial immune
algorithms. Journal of Universal Computer Science, 19(13):2013–2033, 2013.

6. C. Coello, G.B. Lamont, and D.A. van Veldhuizen. Multi-Objective Optimization
Using Evolutionary Algorithms. John Wiley & Sons, Inc. 2nd Ed., NY, USA, 2007.

7. J.A. Cordero, A.J. Nebro, J.J. Durillo, J. Garćıa-Nieto, I. Navas-Delgado, J.F.
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