5,744 research outputs found

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic systemā€™ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the Kingā€™s College hospital accident and emergency (A&E) departmentā€™s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Guideline-based decision support in medicine : modeling guidelines for the development and application of clinical decision support systems

    Get PDF
    Guideline-based Decision Support in Medicine Modeling Guidelines for the Development and Application of Clinical Decision Support Systems The number and use of decision support systems that incorporate guidelines with the goal of improving care is rapidly increasing. Although developing systems that are both effective in supporting clinicians and accepted by them has proven to be a difficult task, of the systems that were evaluated by a controlled trial, the majority showed impact. The work, described in this thesis, aims at developing a methodology and framework that facilitates all stages in the guideline development process, ranging from the definition of models that represent guidelines to the implementation of run-time systems that provide decision support, based on the guidelines that were developed during the previous stages. The framework consists of 1) a guideline representation formalism that uses the concepts of primitives, Problem-Solving Methods (PSMs) and ontologies to represent guidelines of various complexity and granularity and different application domains, 2) a guideline authoring environment that enables guideline authors to define guidelines, based on the newly developed guideline representation formalism, and 3) a guideline execution environment that translates defined guidelines into a more efficient symbol-level representation, which can be read in and processed by an execution-time engine. The described methodology and framework were used to develop and validate a number of guidelines and decision support systems in various clinical domains such as Intensive Care, Family Practice, Psychiatry and the areas of Diabetes and Hypertension control

    Tackling Dierent Business Process Perspectives

    Get PDF
    Business Process Management (BPM) has emerged as a discipline to design, control, analyze, and optimize business operations. Conceptual models lie at the core of BPM. In particular, business process models have been taken up by organizations as a means to describe the main activities that are performed to achieve a specific business goal. Process models generally cover different perspectives that underlie separate yet interrelated representations for analyzing and presenting process information. Being primarily driven by process improvement objectives, traditional business process modeling languages focus on capturing the control flow perspective of business processes, that is, the temporal and logical coordination of activities. Such approaches are usually characterized as \u201cactivity-centric\u201d. Nowadays, activity-centric process modeling languages, such as the Business Process Model and Notation (BPMN) standard, are still the most used in practice and benefit from industrial tool support. Nevertheless, evidence shows that such process modeling languages still lack of support for modeling non-control-flow perspectives, such as the temporal, informational, and decision perspectives, among others. This thesis centres on the BPMN standard and addresses the modeling the temporal, informational, and decision perspectives of process models, with particular attention to processes enacted in healthcare domains. Despite being partially interrelated, the main contributions of this thesis may be partitioned according to the modeling perspective they concern. The temporal perspective deals with the specification, management, and formal verification of temporal constraints. In this thesis, we address the specification and run-time management of temporal constraints in BPMN, by taking advantage of process modularity and of event handling mechanisms included in the standard. Then, we propose three different mappings from BPMN to formal models, to validate the behavior of the proposed process models and to check whether they are dynamically controllable. The informational perspective represents the information entities consumed, produced or manipulated by a process. This thesis focuses on the conceptual connection between processes and data, borrowing concepts from the database domain to enable the representation of which part of a database schema is accessed by a certain process activity. This novel conceptual view is then employed to detect potential data inconsistencies arising when the same data are accessed erroneously by different process activities. The decision perspective encompasses the modeling of the decision-making related to a process, considering where decisions are made in the process and how decision outcomes affect process execution. In this thesis, we investigate the use of the Decision Model and Notation (DMN) standard in conjunction with BPMN starting from a pattern-based approach to ease the derivation of DMN decision models from the data represented in BPMN processes. Besides, we propose a methodology that focuses on the integrated use of BPMN and DMN for modeling decision-intensive care pathways in a real-world application domain

    Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning

    Full text link
    [EN] The conciliation of multiple single-disease guidelines for comorbid patients entails solving potential clinical interactions, discovering synergies in the diagnosis and the recommendations, and managing clinical equipoise situations. Personalized conciliation of multiple guidelines considering additionally patient preferences brings some further difficulties. Recently, several works have explored distinct techniques to come up with an automated process for the conciliation of clinical guidelines for comorbid patients but very little attention has been put in integrating the patient preferences into this process. In this work, a Multi-Agent Planning (MAP) framework that extends previous work on single-disease temporal Hierarchical Task Networks (HTN) is proposed for the automated conciliation of clinical guidelines with patient-centered preferences. Each agent encapsulates a single-disease Computer Interpretable Guideline (CIG) formalized as an HTN domain and conciliates the decision procedures that encode the clinical recommendations of its CIG with the decision procedures of the other agents' CIGs. During conciliation, drug-related interactions, scheduling constraints as well as redundant actions and multiple support interactions are solved by an automated planning process. Moreover, the simultaneous application of the patient preferences in multiple diseases may potentially bring about contradictory clinical decisions and more interactions. As a final step, the most adequate personalized treatment plan according to the patient preferences is selected by a Multi-Criteria Decision Making (MCDM) process. The MAP approach is tested on a case study that builds upon a simplified representation of two real clinical guidelines for Diabetes Mellitus and Arterial Hypertension.This work has been partially supported by Spanish Government Projects MINECO TIN2014-55637-C2-2-R and TIN2015-71618-R.FernĆ”ndez-Olivares, J.; Onaindia De La Rivaherrera, E.; Castillo Vidal, L.; JordĆ”n, J.; CĆ³zar, J. (2019). Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning. Artificial Intelligence in Medicine. 96:167-186. https://doi.org/10.1016/j.artmed.2018.11.003S1671869

    A Methodological Framework for the Integrated Design of Decision-Intensive Care Pathways\u2014an Application to the Management of COPD Patients

    Get PDF
    Healthcare processes are by nature complex, mostly due to their multi-disciplinary character that requires continuous coordination between care providers. They encompass both organizational and clinical tasks, the latter ones driven by med- ical knowledge, which is inherently incomplete and distributed among people having different expertise and roles. Care pathways refer to planning and coordination of care processes related to specific groups of patients in a given setting. The goal in defining and following care pathways is to improve the quality of care in terms of patient satisfaction, costs reduction, and medical outcome. Thus, care pathways are a promising methodological tool for standardizing care and decision-making. Business process management techniques can successfully be used for representing organiza- tional aspects of care pathways in a standard, readable, and accessible way, while supporting process development, analysis, and re-engineering. In this paper, we intro- duce a methodological framework that fosters the integrated design, implementation, and enactment of care processes and related decisions, while considering proper rep- resentation and management of organizational and clinical information. We focus here and discuss in detail the design phase, which encompasses the simulation of care pathways. We show how business process model and notation (BPMN) and decision model and notation (DMN) can be combined for supporting intertwined aspects of decision-intensive care pathways. As a proof-of-concept, the proposed methodology has been applied to design care pathways related to chronic obstructive pulmonary disease (COPD) in the region of Veneto, in Italy

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • ā€¦
    corecore