

Guideline-based decision support in medicine : modeling
guidelines for the development and application of clinical
decision support systems
Citation for published version (APA):
Clercq, de, P. A. (2003). Guideline-based decision support in medicine : modeling guidelines for the
development and application of clinical decision support systems. [Phd Thesis 2 (Research NOT TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR566704

DOI:
10.6100/IR566704

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR566704
https://doi.org/10.6100/IR566704
https://research.tue.nl/en/publications/5d2a519b-4efd-491d-beed-083cf00e63b5

Guideline-based Decision Support in
Medicine

Modeling Guidelines for the Development and Application of Clinical
Decision Support Systems

Paul de Clercq

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

De Clercq, Paul A.

Guideline-based Decision Support in Medicine: Modeling Guidelines for the Development
and Application of Clinical Decision Support Systems / by Paul A de Clercq. -
Eindhoven : Technische Universiteit Eindhoven, 2003.
Proefschrift. - ISBN: 90-9016967-9
NUGI 981

Trefwoorden: medische informatica / richtlijnen / beslissingsondersteuning / kennissystemen
Subject headings: medical informatics / guidelines / decision support / knowledge systems

Druk: PrintPartners Ipskamp Enschede

Guideline-based Decision Support in
Medicine

Modeling Guidelines for the Development and Application of Clinical
Decision Support Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
 op dinsdag 24 juni 2003 om 16.00 uur

door

Paul Adrianus de Clercq

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. A. Hasman
en
prof.dr. H.H.M. Korsten

Copromotor:
dr.ir. J.A. Blom

Contents

5

Contents

Chapter 1
General Introduction 9

1 Guidelines in medicine 10
2 Active guideline-based decision support systems 11
3 Thesis overview 12
References 14

Chapter 2
Approaches for Creating Computer-Interpretable Guidelines that
Facilitate Decision Support: a Review 17

1 Introduction 18
2 Areas 19
3 The Arden Syntax 21
4 The GuideLine Interchange Format (GLIF) 25
5 PROforma 34
6 Asbru 44
7 EON 51
8 Discussion 61
References 71

Chapter 3
The Application of Problem-Solving Methods and Ontologies for
the Development of Shareable Guidelines 75

1 Introduction 76
2 The ontological guideline representation 79
3 The framework 82
4 Examples 84
5 Results 94
6 Discussion 95
Acknowledgements 98
References 98

Contents

6

Chapter 4
Design and Implementation of a Framework to Support the
Development of Clinical Guidelines 101

1 Introduction 102
2 Materials and methods 103
3 The Gaston framework 106
4 Results 135
5 Discussion 136
References 139

Chapter 5
A Strategy for Development of Practice Guidelines for the ICU
Using Automated Knowledge Acquisition Techniques 143

1 Introduction 144
2 Materials and methods 144
3 Results 151
4 Discussion 154
5 Conclusions 155
References 156

Chapter 6
Experiences with the Development, Implementation and
Evaluation of Automated Decision Support Systems 159

1 Introduction 160
2 Automated feedback on test ordering in general practice 161
3 A real-time reminder system in Critical Care environments 167
4 A Multidisciplinary Psychoactive Drug Selection Advisory System 177
5 Consumer Health Records for managing chronic diseases 183
6 Discussion 191
References 192
Appendix: CritICIS questionnaire 195

Chapter 7
General Discussion and Conclusions 197

1 Introduction 198
2 The Gaston representation model 198
3 The Gaston guideline development environment 205
4 Current and future research 208
5 Conclusions 209
References 210

Contents

7

Summary 211

Samenvatting 215

Dankwoord 219

Curriculum Vitae 223

Contents

8

CHAPTER 1

GENERAL INTRODUCTION

Chapter 1 Guidelines in medicine

10

1 Guidelines in medicine
During the last decade, studies have shown the benefits of using clinical
guidelines in the practice of medicine [1] such as a reduction of practice
variability and patient care costs, while improving patient care [2]. According to
the Institute Of Medicine (IOM), a guideline is defined as: ‘a systematically
developed statement to assist practitioner and patient decisions about
appropriate health care for specific clinical circumstances’ [3]. Although
guidelines have been developed for more than 50 years, recently the
emphasis has focused on the development of systematic and evidence-based
guidelines as well as their evaluation and ease-of-use in daily practice. A
variety of guidelines have been developed that focus on 1) different phases of
the patient care process (e.g., patient screening, diagnosis, workup, referral
and management), 2) different application domains (e.g., disease
management, protocol-based care and consultation), and 3) different modes
of use (e.g., clinical reference, knowledge source, education, quality
assurance).

Although the potential application of guidelines in daily care is enormous, a
number of difficulties exist related to the development and implementation of
guidelines. One of them is the interpretation of the content of a guideline: the
exact meaning of terms is not always defined, recommendations are not
always clearly articulated and sometimes vague wording is used (e.g., what is
meant when a guideline states: ‘start the prescription of an anti-hypertensive
when the patient has a blood pressure that is too high for too long a period’).

Another problem has to do with the fact that creating and updating guidelines
that keep up with state-of-the-art knowledge requires a huge amount of time
and resources, which are often used inefficiently [1]. A related problem is the
development and implementation of (inter)national guidelines on an
institutional level. As substantial time and effort is needed to create good
guidelines, there is an incentive to make guidelines sufficiently general to be
shared among different institutions. Site-independent guidelines are difficult to
use, however, without modifications to reflect the way in which medical care is
delivered within a particular organization [4]. Most guidelines undergo
changes to make them acceptable to health care providers within a particular
setting. These changes must be valid and consistent with the original
guideline. When guidelines are updated on an (inter)national level, these
changes have to be propagated to the guidelines on an institutional level while
keeping the local adaptations intact. This requires sophisticated versioning
and adaptation methods. Although the importance of guidelines is increasingly

Chapter 1 Active guideline-based decision support systems

11

recognized, health care institutions typically pay more attention to guideline
development than to guideline implementation for routine use in daily care [5].

Finally, there have only been limited efforts to evaluate the use and impact of
guidelines in clinical practice. Although the use of guidelines is increasingly
recognized as a method to improve the quality and cost-effectiveness, there is
still little known whether they truly live up to these expectations. Most of these
guidelines are written down as large documents in a textual format [6-9],
which are often cumbersome to read and difficult to integrate in the patient
care process. Also, studies have shown that clinicians are usually not familiar
with textual guidelines and do not apply them appropriately during actual care
[10].

2 Active guideline-based decision support systems
One of the problems with presenting guidelines as (structured) textual
documents to care providers is that it is a passive method of decision support:
the care provider must decide whether consultation of a guideline is
necessary. Often, care providers are convinced that their actions agree with
guideline standards and there is no need to consult the corresponding
guideline in order to be sure. In reality however, these actions may oppose the
guideline’s intentions [11].

Implementing guidelines in active computer-based decision support systems
promises to improve the acceptance and application of guidelines in daily
practice because the actions and observations of care providers are
monitored and advice is generated whenever a guideline is not followed.
Various studies, covering a wide range of clinical settings and tasks,
concluded that the use of these systems significantly improves the quality of
care, especially when used in combination with clinical information systems
such as Electronic Patient Record (EPR) systems [12]. It is stated that these
decision support systems are in fact not only crucial elements in long-term
strategies for promoting the use of guidelines [13] but also necessary for the
future of medical decision making in general [14].

Computer-based clinical guidelines are increasingly applied in diverse areas
such as policy development, utilization management, education, clinical trials,
and workflow facilitation. Many parties are developing computer-based
guidelines as well as decision support systems that incorporate these
guidelines, covering a wide range of clinical settings and tasks [15]. Despite
these efforts, only a few systems progressed beyond the prototype stage and
the research laboratory. Building systems that are both effective in supporting
clinicians and accepted by them has proven to be a difficult task. Yet, of the

Chapter 1 Thesis overview

12

few systems that were evaluated by a controlled trial, the majority showed
impact [16].

Various difficulties are encountered with respect to the guideline development
process, which ranges from the development of a guideline representation
model to the implementation of actual decision support systems that operate
in daily practice. Some of these difficulties are similar to the ones mentioned
earlier, related to the development of guidelines in general such as:

• How to interpret the content of a guideline;
• How to handle local adaptation and synchronization between

(inter)national and local guidelines;
• How to evaluate guidelines and decision support systems in daily practice.

In addition, new difficulties arise:
• How to represent and share various types of guidelines using a formal and

unambiguous representation;
• How to translate guidelines from a textual format into this formal

representation;
• How to verify guidelines;
• How to interface guideline-based decision support systems with external

patient information systems;
• How to provide decision support to a care provider in daily practice.

3 Thesis overview
The project, described in this thesis, aims at answering the above-mentioned
questions by developing and evaluating a generic approach that addresses
various aspects related to the guideline development process such as how to
represent, acquire and implement computer-based guidelines. The approach
has led to the development of the Gaston framework, which is described and
discussed in this thesis.

In parallel to this project that started in 1996, several other research groups
also started working on developing generic methodologies for representing,
acquiring and implementing computer-based guidelines
[17-24], although each project had its own focus points. The current results of
those projects are partly comparable to the results of this project. The various
similarities and differences will be explained in the remaining part of this
thesis.

Chapter 1 Thesis overview

13

This thesis is divided into four main parts: 1) description of the requirements,
2) description of the methods that led to the development of the Gaston
approach, 3) evaluation of the approach and 4) general discussion.

3.1 Requirements
When this project started, there was no blueprint available that mentioned
requirements for methodologies or approaches aimed at the development and
implementation of computer-based guidelines. Therefore, first a literature
review of existing approaches was conducted. Chapter 2 describes and
discusses existing approaches, after which a number of functional
requirements are postulated that form a basis for the development of the
Gaston approach. The first version of this chapter was written in 1997.
However, it was recently updated to reflect the large amount of changes and
updates that were made by the approaches during the last years. As a result,
a number of the requirements that formed the starting point of the Gaston
approach were also recognized by and implemented in other approaches.

3.2 Methods
Using the requirements in Chapter 2, Chapter 3 and Chapter 4 describe the
methods used to develop the Gaston approach, which consists of a
methodology for the development and implementation of computer-based
guidelines and guideline-based decision support systems. Chapter 3 focuses
on the aspect of guideline representation. It describes a new guideline
representation formalism that is based on the concepts of ontologies [25],
primitives [26] and Problem-Solving Methods (PSMs) [27], which aims at
improving the acceptance of sharable guidelines. It also shows some
examples of guidelines that were represented in terms of the developed
representation.

Chapter 4 describes the Gaston framework: a framework that, based on the
requirements in Chapter 2 and the guideline representation model in Chapter
3, facilitates the development and implementation of computer-based
guidelines and guideline-based decision support systems. This chapter
describes a guideline authoring environment that enables guideline authors to
define guidelines in terms of the developed representation model, and a
guideline execution environment that is able to execute guidelines and
interfaces with external patient information systems. Also, the chapter
describes in more detail the techniques behind the guideline representation
model.

Chapter 1 References

14

3.3 Evaluation
In order to evaluate whether the Gaston approach was able to facilitate the
development and implementation of guideline-based decision support
systems in different medical and application domains, a number of decision
support systems were developed with the approach. These systems and
experiences with the development of these systems are discussed in Chapter
5 and Chapter 6. Chapter 5 describes and discusses the first system that
was created by means of the Gaston approach. This system, named CritICIS,
was developed for use in Intensive Care Units (ICUs) and provided decision
support to ICU health care workers by means of generating reminders when
certain guidelines were not followed. This chapter describes the system as
well as a retrospective evaluation of the guidelines that formed the CritICIS
knowledge base.

Chapter 6 describes the experiences with a number of systems that were
developed with the Gaston approach with respect to guideline representation,
acquisition, verification and execution. The contents of this chapter, which
describes and discusses systems in the areas of ICU, family practice,
psychiatry and chronic disease management, is based on a number of articles
that were published in a variety of journals [28-31].

3.4 General discussion
This thesis concludes with Chapter 7, which contains a general discussion,
conclusions and suggestions for further research.

References
1. Grimshaw JM. Russel IT. Effects of Clinical Guidelines on Medical Practice: A Systematic

Review of Rigorous Evaluation. Lancet 1993;342:1317-22.
2. Effective Health Care. Implementing Clinical Practice Guidelines: Can guidelines be used

to improve clinical practice? Effective Health Care 1994;1(8).
3. Field MJ, Lohr KN (eds.). Clinical Practice Guidelines: Directions for a New Program.

Washington, DC: National Academy Press 1990.
4. Fridsma DB. Gennari JH. Musen MA. Making Generic Guidelines Site-Specific. Proc

AMIA 1996;:597-601.
5. Audet A, Greenfield S, Field M. Medical practice guidelines: current activities and future

directions. Ann Intern Med 1990;113:709-14.
6. The Agency for Health Care Policy and Research. Acute Low Back Pain in Adults:

Assessment and Treatment Quick Reference Guide for Clinicians 1994(14).
7. The Agency for Health Care Policy and Research. Smoking Cessation Clinical Practice

Guideline 1996(18).
8. National Heart, Lung, and Blood Institute. Guidelines for the Diagnosis and Management

of Asthma. Expert Panel Report 2. Washington: NIH 1997.
9. National High Blood Pressure Education Program. The Sixth Report of the Joint National

Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Washington:
NIH; 1998.

Chapter 1 References

15

10. Vissers MC, Hasman A, van der Linden CJ. Impact of a protocol processing system
(ProtoVIEW) on clinical behaviour of residents and treatment. Int J Biomed Comput
1996;42(1-2):143-50.

11. Vissers MC, Hasman A. Building a flexible protocol information system with ready for use'
web-technology. Int J Med Inf 1999;53(2-3):163-74.

12. East TD, Henderson S, Pace NL, Morris AH, Brunner JX. Knowledge engineering using
retrospective review of data: a useful technique or merely data dredging? Int J Clin Monit
Comput 1991;8(4):259-62.

13. Field MJ. Lohr KN (eds). Guidelines for Clinical Practice: From Development to Use.
Washington, DC: National Academy Press, 1992.

14. James BC. Making it easy to do it right. N Engl J Med 2001;345(13):991-3.
15. Van der Lei J. Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and

Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.
16. Johnston ME. Langton KB. Haynes RB. Mathieu A. Effects of computer-based clinical

decision support systems on clinician performance and patient outcome. A critical
appraisal of research. Ann Intern Med 1994;120(2):135-42.

17. Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY project--the iterative
development of the release one model. Proc AMIA Symp 1999;:359-63.

18. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa C. Guideline-based
careflow systems. Artif Intell Med 2000;20(1):5-22.

19. Herbert SI, Gordon CJ, Jackson-Smale A, Salis JL. Protocols for clinical care. Comput
Methods Programs Biomed 1995;48(1-2):21-6.

20. Clayton PD, Pryor TA, Wigertz OB, Hripcsak G. Issues and structures for sharing
knowledge among decision-making systems: The 1989 Arden Homestead Retreat. In:
Kingsland LC (ed). Proceedings of the Thirteenth Annual Symposium on Computer
Applications in Medical Care. New York: IEEE Computer Society Press. 1989:116–21.

21. Ohno-Machado L. Gennari JH. Murphy SN. Jain NL. Tu SW. Oliver DE. Pattison-Gordon
E. Greenes RA. Shortliffe EH. Barnett GO. The guideline interchange format: a model for
representing guidelines. JAMIA 1998;5(4):357-72.

22. Fox J. Johns N. Rahmanzadeh A. Disseminating medical knowledge: the PROforma
approach. Artif Intell Med 1998;14:157-81.

23. Shahar Y. Miksch S. Johnson P. The Asgaard Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med
1998;14:29-51.

24. Musen M. Tu S. Das A. Shahar Y. EON: A Component-Based Approach to Automation of
Protocol-Directed Therapy. JAMIA 1996;3:367-88.

25. Gruber TR. A translation approach to portable ontologies. Knowledge Acquisition
1993;5(2):199-220.

26. Wang D, Peleg M, Tu SW, Boxwala AA, Greenes RA, Patel VL, Shortliffe EH.
Representation primitives, process models and patient data in computer-interpretable
clinical practice guidelines: A literature review of guideline representation models. Int J
Med Inf 2002;68(1-3):59-70.

27. Chandraskekaran B. Generic tasks in knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert 1986;1:23-30.

28. Bindels R, De Clercq PA, Winkens RAG, Hasman A. A test ordering system with
automated reminders for primary care based on practice guidelines. Int J Med Inf
2000;58-59(1):219-33.

29. De Clercq PA. Blom JA. Hasman A. Korsten HHM. Gaston: An architecture for the
acquisition and execution of clinical guideline-application tasks. Med Inform Internet Med
2000;25(4):247-63.

Chapter 1 References

16

30. De Clercq PA. Hasman A. Design of a Consumer Health Record for Supporting the
Patient-centered Management of Chronic Diseases. Medinfo 2001;10(2):1445-9.

31. Van Hyfte DMH, De Clercq PA, Tjandra-Maga TB, Zitman FG, de Vries Robbé PF.
Modelling the psychoactive drug selection application domain at the knowledge level.
Proc Belgium-Netherlands Conf on Artificial Intelligence 1999;:187-8.

CHAPTER 2

APPROACHES FOR CREATING COMPUTER-
INTERPRETABLE GUIDELINES THAT FACILITATE

DECISION SUPPORT: A REVIEW

Submitted for publication

Paul A. de Clercq
Johannes A. Blom

Hendrikus H.M. Korsten
Arie Hasman

Chapter 2 Introduction

18

1 Introduction

1.1 Overview
During the last decade, studies have shown the benefits of using clinical
guidelines in the practice of medicine [1]. Utilizing guidelines such as standard
care plans, critical pathways and protocols in various clinical settings may
lead to a reduction of practice variability and patient care costs, while
improving patient care [2]. Although the importance of these guidelines is
widely recognized, health care organizations typically pay more attention to
guideline development than to guideline implementation for routine use in
daily care [3]. However, studies have shown that clinicians are often not
familiar with written guidelines and do not apply them appropriately during the
actual care process [4].

Implementing guidelines in computer-based decision support systems
promises to improve the acceptance and application of guidelines in daily
practice because the actions and observations of health care workers are
monitored and advice is generated whenever a guideline is not followed.
Various studies, covering a wide range of clinical settings and tasks,
concluded that the use of these systems significantly improves the quality of
care, especially when used in combination with clinical information systems
such as Electronic Patient Record (EPR) systems [5]. According to the
Institute of Medicine (IOM), these decision support systems are in fact crucial
elements in long-term strategies for promoting the use of guidelines [6].

Computer-based clinical guidelines are increasingly applied in diverse areas
such as policy development, utilization management, education, clinical trials,
and workflow facilitation. Many parties are developing computer-based
guidelines as well as decision support systems that incorporate these
guidelines [7]. The resulting products exhibit much redundancy and overlap
since there is little standardization to facilitate sharing or to enable adaptation
to local practice settings [8]. Yet considerable progress has been made and
standardized approaches for guideline representation and sharing are central
to these efforts [9].

This paper reviews approaches for developing and implementing computer-
based guidelines that facilitate decision support. The goal of the review is to
formulate a set of requirements related to guideline development and
implementation that can be used in the process of developing new
approaches or updating existing ones. The paper discusses five approaches,

Chapter 2 Areas

19

after which a number of requirements are postulated that are based on the
evaluation of each approach.

1.2 Methods
Although many fields contribute to the success of providing guideline-based
decision support, often the main focus of researchers is on guideline
representation and formalization issues. This paper, however, tries to evaluate
approaches with the focus on providing decision support. Therefore, it not
only addresses guideline representation issues, but also focuses on guideline
acquisition, verification and execution.

The approaches that are mentioned in this review are selected, based on a
literature search and the knowledge of the authors on existing approaches.
Inclusion of a paper into the review was based on the following criteria, First
of all, as this paper aims at defining requirements regarding the entire
guideline development and implementation process, we selected approaches
that each focus on certain aspects of this process (e.g., guideline
representation, acquisition, verification or execution). Other criteria are lifetime
and number of publications about the approach.

The literature search was conducted using the ‘Medline’ search engine,
combined with proceedings of the AMIA, MEDINFO and MIE conferences,
using the keywords ‘guidelines’, ‘approach’, ‘decision support’,
‘representation’, ‘acquisition’ and ‘execution’ in various combinations.

Taking into account the criteria, mentioned above, final inclusion of an
approach as a relevant subject in the review was based on our subjective
decision. Therefore, although we recognize that a number of other important
approaches exist nowadays such as PRODIGY [10], PatMan [11] and
DILEMMA [12], we have limited the number of refereed approaches (also to
constrain the size of the review) to the following five: The Arden Syntax [13],
GLIF [14], PROforma, [15], Asbru [16] and EON [17].

The remaining part of this paper defines a number of relevant areas with
respect to the guideline development process, after which the selected
approaches are discussed and evaluated. The paper finishes with a general
comparison of all approaches, a number of requirements and a discussion.

2 Areas
By analyzing existing literature on representing and implementing computer-
based guidelines [18, 14, 19, 20], combined with our own experience in this

Chapter 2 Areas

20

field, we identified four areas that can be distinguished in the process of
developing guideline-based decision support systems:

• Guideline modeling and representation;
• Guideline acquisition;
• Guideline verification and testing;
• Guideline execution.

For each of these areas, a number of general aspects can be formulated,
which will serve as guiding principles in the remaining part of this paper when
analyzing the various approaches and formulating the final requirements. The
remaining part of this section describes the four areas and their aspects in
more detail.

2.1 Guideline modeling and representation
To implement guidelines in computer-based decision support systems, the
question how to represent guidelines is a critical issue. A formal and
expressive model should provide 1) an in-depth understanding of the clinical
procedures, addressed by the guideline, 2) a precise and unambiguous
description of the guideline and 3) a means for automatic parsers to execute
guidelines to facilitate decision support. A number of representation-related
aspects can be formulated to fulfill the above-mentioned goals:

• Primitives: The set of building blocks, used to represent the guidelines

(e.g., rules, nodes, frames, etc) must be expressive enough to capture the
various aspects of a guideline. For example, as time and uncertainty play a
very important role in guidelines (especially in complex treatment plans), a
guideline representation should support these.

• Complexity: The representation must be able to represent various kinds of
guidelines that may differ considerably in complexity and level of
abstraction, for example by means of nesting or decomposition.

• Knowledge types: Guidelines contain a number of different knowledge
types such as declarative knowledge (e.g., domain-specific knowledge)
and procedural knowledge (e.g., inference or the method of decision
support), which should be modeled separately.

• Didactic and maintenance: As the content of a guideline is not static but
may change over time, the representation must be able store didactic and
maintenance information such as author names, versioning information,
purposes and detailed explanations.

• Language: The representation should be supported by a formal language
(vocabulary, syntax and semantics), which has to be expressive enough to

Chapter 2 The Arden Syntax

21

capture all the aspects, mentioned in the above points. In addition, a
parser must be able to execute the guidelines in order to provide decision
support, which requires a syntax that must meet execution-time
requirements such as compactness and execution speed.

2.2 Guideline acquisition
An important issue in the development of guidelines is the knowledge
acquisition process. Knowledge Acquisition Tools (KA-Tools) are increasingly
used to acquire knowledge directly from a domain expert. These tools may
facilitate the knowledge acquisition process by helping domain experts
formulate and structure domain knowledge used in guidelines, based on the
underlying guideline model. The user interface of a knowledge acquisition tool
must facilitate the entry of guidelines that are specific to a target guideline-
application domain. Also, an update mechanism (e.g., version control) must
be provided as guidelines may change over time.

2.3 Guideline verification and testing
For acceptance of computer-interpretable guidelines in daily clinical practice,
guidelines must be unambiguous and syntactically as well as semantically
correct. For example, incorrect advice (e.g., false alarms) is to be kept to a
minimum. Verification tests may serve such a purpose. These tests include
the detection of various types of logical and procedural errors. In addition,
testing guidelines in a simulation environment (e.g., testing the guideline using
a number of existing patient records) also increases their validity [21].

2.4 Guideline execution
To provide decision support, guidelines must be encoded in a format,
interpretable by automatic parsers that are incorporated in guideline execution
engines. Guideline execution engines must be optimized to meet execution-
time requirements such as compactness and execution speed. Furthermore,
the architecture of the guideline execution engine must be system-
independent as well as application-independent so that the guideline engine
can be used in multiple clinical domains.

3 The Arden Syntax

3.1 Introduction
Named after the Arden Homestead conference center, were the initial meeting
was held, the first version of the Arden Syntax was developed in 1989 [13] as
a response to the inability to share medical knowledge among different
institutions. The Arden Syntax (based on the HELP [22] and RMRS [23]
systems) is intended as an open standard for the procedural representation

Chapter 2 The Arden Syntax

22

and sharing of medical knowledge. It defines a representation for modular
guidelines: Medical Logic Modules (MLMs) [24]. Each MLM contains a
production rule that relates a set of input conditions to a particular set of
actions to take. Most MLMs are triggered by clinical events (e.g., admission of
a patient, storage of medical data). As a result, a number of logical decision
criteria are evaluated, and, if appropriate, an action such as sending a
message to a health-care provider is performed. The Arden Syntax focuses on
the sharing of ‘simple’ modular and independent guidelines (e.g., reminders).
It is not designed for complex guidelines that for example address treatment
protocols. The Arden Syntax was accepted in 1992 as a standard by the
American Society for Testing and Materials (ASTM). The current version of the
Arden Syntax is Arden 2.0 [25], developed and published by the HL7 group.

3.2 Guideline model and representation

3.2.1 Medical Logic Modules
In the Arden Syntax, each guideline is modeled as a MLM that makes a single
decision. Each MLM is an ASCII file, containing slots that are grouped into
three categories: maintenance, library and knowledge. The maintenance and
library categories describe the guideline’s pragmatics (e.g., title, version,
explanation and keywords) and the knowledge category describes the logic of
an MLM. Figure 1 shows an example of a MLM that warns a health care
provider whenever a patient’s hematocrit value becomes too low. The
remaining part of this section will explain the various parts of the MLM in more
detail.

3.2.2 Maintenance and library Slots
As MLMs are to be shared among various institutions, the maintenance and
library slots contain necessary documentation for each MLM. As shown in
figure 1, maintenance slots include the MLM’s (file)name, author, version,
institution, specialist, date of last modification and validation status. The
validation status is intended to document whether the MLM has been
approved in a certain local institution. This slot may hold the values ‘testing’,
‘research’ (approved for clinical research), ‘production’ (approved for clinical
care) and ‘expired’ (no longer in use). When a MLM is shared, the value of the
validation slot should initially be set to ‘testing’, indicating that a receiving
institution must approve the MLM for use in clinical care. As MLMs usually
require some form of local adaptation before they can be used in a certain
institution, changing the value of the validation slot to ‘production’ implies that
the responsibility for the MLM is transferred from the authoring institution to
the receiving institution. The name of the person who approves the MLM for

Chapter 2 The Arden Syntax

23

local use is stored in the specialist slot. As long as a MLM has not been
approved for clinical care, the specialist slot has no value.

maintenance

title

filename

version

institution

author

specialist

date

validation testing

library

purpose

explanation

keywords

knowledge

type data-driven

data

event

read last

read last

where it occurred before the time of

evoke

logic

if is not number then

conclude false

endif

if or then

conclude true

endif

action

write

:

: Alert on low hematocrit;;

: low_hematocrit;;

: 1.00;;

: CPMC;;

: George Hripcsak, M.D. (hripcsa@cucis.columbia.edu);;

: ;;

: 1993-10-31;;

: ;;

:

: Warn provider of new or worsening anemia.;;

: Whenever a blood count result is obtained, the hematocrit is checked

to see whether it is below 30 or at least 5 points below the previous

value.;;

: anemia; hematocrit;;

:

: ;;

:

blood_count_storage := {'complete blood count'};

hematocrit := {'hematocrit'};

previous_hct := ({'hematocrit'}

 hematocrit);;

: blood_count_storage;;

:

/* check that the hematocrit is a valid number */

 hematocrit

;

;

 hematocrit <= previous_hct-5 hematocrit<30

;

;;

:

 "The patient's hematocrit ("|| hematocrit ||") is low or falling
Figure 1: An example of an MLM, Arden Syntax keywords are shown in bold [24]

The slots in the library category are used for documentation and consist of the
MLM’s purpose, a more detailed explanation (which can for example be

Chapter 2 The Arden Syntax

24

shown to users when they receive MLM-generated messages) and a number
of keywords (for example used to categorize MLMs).

3.2.3 Knowledge slots
The actual medical knowledge is stored into the knowledge category. This
category consists of five mandatory slots (type, data, evoke, logic and action)
and two optional slots (priority and urgency). Of these slots, the most
important ones are data, evoke, logic and action.

Data slot
This slot is used to obtain the values of concepts that are mentioned in the
MLM from local clinical information systems such as EPRs. For example, the
line ‘hematocrit := read last {'hematocrit'};' indicates that the value of the
concept ‘Hematocrit’ (used in the logical expression of the MLM in figure 1)
corresponds to the last hematocrit value in for example an EPR. In practical
use, the value of the term between the curly braces has to be acquired from
the clinical information system. Similarly, the concept ‘Previous_hct’ is defined
as the hematocrit value before it. The terms between the curly braces are
often institution-specific: the implementation and integration of the actual
interface techniques are usually left to the local institutions [26].

Evoke slot
The evoke slot specifies the context in which an MLM should be executed.
MLMs can be executed as a result of three different types of events: database
operations, temporal events and external notifications. The first one is most
commonly used. For example, the MLM in figure 1 is executed as a result of
the ‘blood_count_storage’ event (i.e., whenever a new blood count is added to
the system’s database). Similarly to the terms in the data slot, the terms
between the curly braces (e.g., ‘complete blood count’) are institution-specific.

Logic slot
The logic slot contains the actual decision criteria that may lead to a certain
action. These logical expressions are implemented as production rules and
contain concepts that are defined in the data slot (e.g., ‘Hematocrit’). The
Arden Syntax supports various types of operators such as logical operators
(e.g., ‘or’, ‘and’), list operators (e.g., ‘merge’, ‘sort’), temporal operators
(‘after’, ‘before’, ‘ago’) and aggregation operators (‘sum’, ‘average’). The
boolean operators use a three-valued logic, in which the value ‘null’ is
considered as unknown. Whenever the rule’s premise is evaluated ‘true’, a
particular action that is specified in the action slot is carried out. When the
premise is evaluated ‘false’ or ‘null’, the execution of the MLM ends.

Chapter 2 The GuideLine Interchange Format (GLIF)

25

Action slot
Once the logical expression evaluates to ‘true’, the action slot is executed,
performing whatever actions are appropriate to the condition. Typical actions
include sending a message to a health care provider, adding an interpretation
to the patient record, returning a result to a calling MLM, and evoking other
MLMs (nesting). For example, the MLM in figure 1 writes a message to the
standard destination, stating that the patient’s hematocrit value is low or falling
(the || operator is a concatenation operator, inserting the actual hematocrit
value of the patient into the message). Calling other MLMs is supported in the
Arden Syntax by means of the ‘call’ statement. Although a MLM can invoke
other MLMs, the syntax itself does not support a general control structure to
steer these invocations [27].

3.3 Guideline acquisition, verification and testing
Various acquisition tools have been developed to assist guideline authors
writing MLMs. Examples include text-based editors where MLMs are typed in
as free text, supported by syntax-checkers to improve verification [28] as well
as systems that use a controlled vocabulary and ‘wizards’ to facilitate entering
MLMs by unfamiliar users [29, 30].

3.4 Guideline execution
In order to execute MLMs, they have to be translated into a format
interpretable by a guideline execution engine. A number of implementations
for executing MLMs have been developed, including the use of pseudocode
[31], C++ [32], Smalltalk and MUMPS. As the Arden Syntax leaves the
implementation of patient data modeling entirely up to the local institutions,
there are no standard mapping facilities to obtain values of required patient
data during guideline execution.

User comments were collected and analyzed over a period of 26 months
regarding the system that was in use at the Columbia-Presbyterian Medical
Center. In this period, a total of 126 comments were made by health care
providers. The majority of the given comments indicated that the messages
were actually or at least potentially useful, although a minority indicated that
they were unhelpful or actually harmful (a more detailed explanation is
provided elsewhere [33]).

4 The GuideLine Interchange Format (GLIF)

4.1 Introduction
The GuideLine Interchange Format (GLIF) was developed to model guidelines
in terms of a flowchart that consists of structured scheduling steps,

Chapter 2 The GuideLine Interchange Format (GLIF)

26

representing clinical actions and decisions. GLIF was developed by the
Intermed Collaboratory [34] including researchers at Columbia University,
Harvard University and Stanford University and was first published in 1998
[14]. The intended purpose of GLIF is to facilitate sharing of guidelines
between various institutions by modeling guidelines in such a manner that the
guidelines are understandable by human experts as well as by automatic
parsers used in different clinical decision support systems. GLIF is an object-
oriented representation, consisting of a set of classes that describe
characteristic guideline entities (e.g., actions and decisions), attributes for
those classes and data types for the attribute values.

In the first published version of GLIF (known as GLIF2), most of the attributes
were text strings that were not easily interpretable by parsers. Although GLIF2
facilitated the description of more complex guidelines than for example the
Arden Syntax did, it still had a number of deficiencies making it difficult to
implement GLIF guidelines in decision support systems. As recognized by the
current developers of GLIF [35], the model needed improvement in a number
of areas. First, important attributes of guideline steps (e.g., criteria) needed to
be specified more formally (instead of being described by means of text
strings). Also, GLIF2 had no constructs that formally allowed the mapping of
(patient) data elements in the guideline onto elements that are used in clinical
systems such as Electronic Patient Record (EPR) systems, which made it
difficult to incorporate GLIF guidelines in decision support systems, which are
able to interact with EPRs in a generic way. Furthermore, the number of
constructs in GLIF2 was rather limited, constructs that supported for example
alternative decisions, iterations, (patient) states, exceptions and events were
lacking. These issues have been addressed and have recently resulted in the
development of a new version (GLIF version 3) [35], which is discussed in the
remaining part of this section.

4.2 Guideline model and representation

4.2.1 Guideline steps
GLIF originated from combining a number of relevant features that were
determined from an analysis of the characteristics of a number of existing
guideline formalisms: 1) the earlier-mentioned Arden Syntax [13], 2) GEODE-
CM, a system that combines guidelines with structured patient data entry and
data retrieval from a clinical database [36], 3) MBTA, an architecture for
building large knowledge-based medical systems, focused on providing
reminders [37] and 4) EON, a component-based architecture for building
decision support systems for supporting guideline-based care [17].

Chapter 2 The GuideLine Interchange Format (GLIF)

27

The GLIF model is object-oriented and consists of a number of classes that
describe typical guideline characteristics (e.g., decisions and actions),
attributes of those classes and data types for attribute values. In GLIF version
3, all classes, attributes and relations are described by means of Unified
Modeling Language (UML) class diagrams [38].

A guideline, encoded in GLIF consists of a flowchart of guideline entities in
which each entity is an instance of one of the above-mentioned classes.
Figure 2 shows the main classes that are defined in GLIF version 3.

Guideline
Model
Entity

Synchro-
nization
Step

Patient
State
Step

Action
Step

Decision
Option

Decision
Step

Case
Step

Choice
StepMacroGuideline

Branch
StepNestable

Figure 2: Overview of the main classes in GLIF version 3

The Guideline object encapsulates a (sub)guideline. This object contains a
number of attributes that are administrative in nature (e.g., name and author)
but also attributes that describe the capabilities of a guideline (e.g., the
guideline’s intention and eligibility criteria). A GLIF guideline consists of a
collection of steps that are linked together in a directed graph (flowchart).
GLIF defines five steps: decision steps, patient state steps, branch steps,
synchronization steps and action steps.

Decision steps
Decision steps model decision points in a guideline and direct flow control
from one guideline step to various alternatives. A case step is a decision step
that contains a number of decision options, which are logical expressions
(e.g., is the patient older than 12 year). Based on the outcome, the guideline
flow is directed to the various alternatives (e.g., if the patient is younger than
12, then prescribe a pediatric dosage). Each decision option is expressed
through a formal expression syntax (referred to as the Guideline Expression
Language or GEL [39]), which is a superset of the Arden Syntax.

Another type of decision is the choice step. Choice steps represent situations
where a guideline suggests preferences, but leaves the actual choice to an
external agent. Similar to case steps, choice steps also contain a number of
decision options that are linked to various alternative guideline steps.

Chapter 2 The GuideLine Interchange Format (GLIF)

28

However, the actual choice concerning which alternative is chosen is made by
an external agent such as a user or an external software program.

Patient state steps
A patient state step serves two purposes. One purpose is to serve as a label
that describes the current patient state that is achieved by means of previous
steps. The other purpose is to serve as an entry point in the guideline,
depending on the current patient’s state (e.g., the patient revisits a family
practitioner with a high blood pressure). Each patient state contains attributes
that describe the state of the patient (e.g., the blood pressure is higher than
140/90 during the last week). Whenever this state occurs in practice, the
guideline that contains the corresponding Patient state step is executed.

Branch and synchronization steps
Branch steps model a set of concurrent steps by directing flow to multiple
parallel guideline steps and are used in conjunction with synchronization
steps. Multiple guideline steps that follow a branch step always eventually
converge in a corresponding synchronization step. When a branch that
started at a preceding branch step reaches the corresponding synchronization
step, a continuation attribute specifies whether all, some, or one of the
preceding steps must have been completed before control can move to the
next step. The continuation attribute is expressed as a logical expression.

Action steps
Actions steps model actions that are (or should be) performed in a guideline.
Each action step defines a number of tasks that formally describe the actual
tasks that are to be carried out. Three types of tasks are defined: 1) medically
oriented actions such as a recommendation for a particular course of
treatment, 2) programming-oriented actions such as retrieving data from an
electronic patient record or supplying a message to a care provider, and 3)
control-oriented actions that invocate nested structures such as
(sub)guidelines or macros to support recursive specification. Similar to the
use of macros in conventional programming languages, a macro provides a
means for defining information needed to instantiate a predetermined set of
steps. For example, GLIF defines an MLM-macro, which can be used to
define a MLM. Internally, the macro consists of two steps: a decision step and
an action step.

4.2.2 Medical ontology
Similar to the Arden Syntax, logical expressions and action specifications in
GLIF contain references to actual patient data item values (e.g., the age of a
patient) and clinical concepts (e.g., antibiotic, amoxicillin), which have to be

Chapter 2 The GuideLine Interchange Format (GLIF)

29

acquired during guideline execution from patient information systems such as
EPRs. In order to facilitate sharing of guidelines among different institutions,
GLIF aims at defining the structure of these patient data elements and
medical concepts in accordance with standard data models and medical
terminologies such as HL-7’s Reference Information Model (RIM, also known
as the Unified Service Action Model or USAM) [40] and the Unified Medical
Language System (UMLS) [41]. GLIF divides mapping-related information into
three layers: the core GLIF layer, the Reference Information Model (RIM)
layer, and the Medical Knowledge layer.

The first layer, core GLIF, is part of the GLIF specification language and
defines a number of elementary data items and relations that are used as
variables in the guidelines. It does not contain information on how these items
will be mapped to corresponding items in clinical information systems. For
example, core GLIF defines a Data_Item class that represents concepts such
as amoxicillin. Each Data_Item class contains a name attribute that specifies
the name of the concept. Whenever guideline authors want to use
expressions such as ‘is amoxicillin being prescribed for more than a week’,
they refer to a Data_Item class that represents the concept amoxicillin without
having to know where this information is stored in a clinical information
system.

Internally, each Data_Item class contains a reference to a corresponding
object in the RIM layer (second layer). The RIM layer provides a semantic
hierarchy of medical concepts and attributes. Although different RIMs may be
used, GLIF by default relies on the HL-7 RIM [40]. For example, this RIM
defines several general classes such as Medication, Observation and
Procedure, which represent medication, observations (e.g., diagnoses) and
procedures (e.g., treatments). The Medication class contains attributes such
as Dosage_quantity, Doseform and Route, which represent the quantity (e.g.,
1000 mg), form (e.g., capsule) and route (e.g., intravenous) of the medication.
Concepts in the RIM layer are linked (although not automatically) to data
items in the core GLIF layer. Therefore, whenever guideline authors want to
refer to concepts from the core GLIF layer (for example, when defining criteria
in a Decision step), they can specify values for each attribute of the
corresponding class in the RIM.

The Medical Knowledge layer (third layer) specifies the methods needed to
interface with various medical knowledge sources and other information
systems such as controlled terminologies (e.g., UMLS), knowledge bases and
clinical information systems (e.g, EPRs). This layer will contain the information

Chapter 2 The GuideLine Interchange Format (GLIF)

30

to integrate developed guidelines with institution-specific information systems.
However, this layer is still under development.

4.2.3 Guideline representation
Each guideline in GLIF consists of a set of nodes linked together in a
temporally sequenced graph (flowchart), in which each node corresponds to
an instance of one of the five classes. Figure 3 shows a graphical
representation of a GLIF guideline concerning a simple vaccination guideline
stating that children under 12 years should receive a pediatric dosage of a
certain vaccine whereas health care workers or adults above 65 years should
receive an adult dosage of the vaccine.

Adult
Dosage

Pediatric
Dosage

Age<12?
Health-care
Worker
Age>65?

OR

Data
Collected

Get
Occupation

Get
Age

Start
Guideline

Stop
Guideline

Collect
Data

Branch step 1

Action step 1

No

Yes No Yes

Action step 2

Synchronization step 1

Decision step 2

Action step 3 Action step 4

Decision step 1

Figure 3: Graphical representation of a guideline in GLIF [14]

In order for guidelines to be 1) readable by humans, 2) interpretable by
computers and 3) adaptable by different (local) institutions [8], GLIF allows for
a specification of a guideline at three levels of abstraction: the conceptual
level (level A), the computable level (level B) and the implementable level
(level C).

The highest level is the conceptual level where guidelines are represented as
flowcharts, which can be viewed by humans (e.g., guideline authors) but are
not interpretable by decision support systems. At this stage, details such as
the expression syntax, the contents of patient data elements, clinical actions
and guideline flow are not formally specified. These specifications take place
at the computable level, which then also allows for various verification checks
of the guidelines such as logical consistency and completeness. Finally, at the
implementable level, guidelines can be custom-tailored to particular

Chapter 2 The GuideLine Interchange Format (GLIF)

31

institutional information systems. At this stage, institution-specific procedures
and mappings (which are usually non-sharable) are specified, among other
things using the above-mentioned Medical Knowledge layer. Both the Medical
Knowledge and the implementable layer are still under development.

4.2.4 Language
In GLIF2, guidelines were written as text in an existing language called ODIF
(Object Data Interchange Format), which is a formal representation to
represent objects and instances of objects in a text-like manner [14, 42]. In
GLIF version 3, this syntax has been replaced with an XML-based syntax [43].
Figure 4 shows a small portion of a vaccine guideline in the XML-based
syntax.

<a:Guideline rdf:about="&a;Vaccine_INSTANCE_00001">

<a:name>Guideline for Vaccine X</a:name>
<a:intention>Decide whether to recommend the Generic vaccine and at what dosage</a:intention>
<a:algorithm>Vaccine_INSTANCE_00002</a:algorithm>

</a:Guideline>

<a:Algorithm rdf:about="&a;Vaccine_INSTANCE_00002">
<a:first_step>Vaccine_INSTANCE_00003</a:first_step>
<a:steps>

Vaccine_INSTANCE_00003,Vaccine_INSTANCE_00004,Vaccine_INSTANCE_00005,Vaccine_INSTANCE_00006,
Vaccine_INSTANCE_00007,Vaccine_INSTANCE_00008,Vaccine_INSTANCE_00009,Vaccine_INSTANCE_00010

</a:steps>
</a:Algorithm>

Figure 4: A portion of the vaccine guideline in XML

The upper part shows an instance of the Guideline class, together with values
for the name and intention attributes. In addition, the Guideline class in GLIF
defines an Algorithm attribute, which contains a reference to another instance.
The latter contains references to the first step and all actual steps present in
the guideline. In GLIF, every instance is identified by means of an ID. For
example, ‘Vaccine_Instance_00001’ refers an instance of the Guideline class
and ‘Vaccine_Instance_00002’ refers to an instance of the Algorithm class.
Instances ‘Vaccine_Instance_00003’ to ‘Vaccine_Instance_00010’ refer to the
various steps in the vaccine guideline, not shown here (the contents of the
steps attribute does not contain information about the sequence of the various
steps, which is modeled in the attributes of the step instances themselves).

As mentioned earlier, GLIF defines the GEL formal expression language that
is based on the expression grammar of the Arden Syntax. This language has
been adapted in order that references to concepts and attributes from the
core GLIF model are included in the grammar.

The GLIF model, representation and syntax are still under development.
Currently, a variety of guidelines [44-46] are being specified in order to
evaluate the various aspects of GLIF such as its three-level model and the

Chapter 2 The GuideLine Interchange Format (GLIF)

32

medical ontology. Also, GLIF intends to address other subjects such as
guideline goals, probabilistic models and patient preferences.

4.2.5 Modeling tools
Currently, two tools are used to develop the GLIF model in terms of classes
and attributes: Protégé [47] and GEODE [48]. These tools are also used for
creating the relations between the core GLIF items and the concepts from the
RIM and Medical Knowledge Layer. For example, figure 5 shows an example
of a Data_Item from the core GLIF model.

Figure 5: Definition of the cough Data_Item in Protégé

In this case, the concept cough is entered as a Data_Item in Protégé. The
form in the background shows the cough Data_Item, which is known by its
name (e.g., Cough) to guideline authors. This item is linked to the Observation
class of the HL-7 RIM or USAM (specified in the data Model Source ID
attribute). As a result, the cough item receives the attributes that correspond
to the Observation item in the USAM. In addition, the cough item is also linked
to a concept in the UMLS terminology where it has the code ‘C0010200’. This
is shown in the foreground form that is brought up whenever a user double-
clicks on the Concept item in the background form (the name Cough is used
twice in this example: as the name that identifies the Cough Data_Item but
also as the name of the Cough concept in the UMLS terminology). Whenever
a RIM or a controlled terminology is not available or necessary (for example,
when a guideline is solely created for viewing purposes) only the Name
attribute in the cough Data_Item is filled in, leaving the Data Model Class ID,
Data Model Source ID and Concept attributes blank.

Chapter 2 The GuideLine Interchange Format (GLIF)

33

4.3 Guideline acquisition, verification and testing
Besides model development tools, Protégé and GEODE are also used as
knowledge acquisition tools to facilitate the entering of guidelines. Both tools
visualize GLIF guidelines by means of flowcharts. For example, figure 6
shows part of a cough treatment guideline entered by means of the Protégé
knowledge acquisition tool.

Figure 6: Part of a GLIF cough treatment guideline as a flowchart in Protégé

The left pane shows a graphical overview of the guideline in terms of a
flowchart. The right pane shows an overview of all available guideline steps
(e.g., Action step, Patient state step, etc). All objects in the right pane can be
selected and dropped onto the left pane, thus creating the flowchart (level A).
Selecting a step in the flowchart brings up a form in which the details of that
step can be filled in (level B). For example, in figure 6, the Cough gone step
has been selected which is a Choice step. As a result, the various alternatives
and decision options can be specified (these are stored in the Options
attribute). As shown in figure 6, each choice step contains more attributes
which will not be explained further here. Protégé is a very generic knowledge
acquisition tool that shows instances (e.g., actions or decisions) as forms, in
which it is possible to assign values to each attribute (e.g., Name, Options,
Didactics, etc) as shown in figure 6.

Chapter 2 PROforma

34

The introduction of a RIM combined with an expression syntax allows for
performing verification tests, as patient data elements, logical criteria and
control flow are formally defined. Although there are currently no tools
available that are able to perform such tasks, GLIF researchers have
indicated that verification tools are currently under development.

4.4 Guideline execution
For GLIF2, efforts have been undertaken to develop guideline execution
engines such as the Partners Computerized Algorithm Processor and Editor
(P-CAPE) tool [49] and a generic GLIF2 execution engine [50]. As GLIF
version 3 is still under development (especially the medical ontology layer and
the implementable level), GLIF version 3 guideline execution engines are still
under construction. The most recent development is the GuideLine Execution
Engine (GLEE), which is able to execute GLIF-encoded guidelines and can be
integrated into the clinical information system of a local institution [51].

5 PROforma

5.1 Introduction
PROforma is a knowledge composition language supported by acquisition
and execution tools with the goal of supporting guideline dissemination in the
form of expert systems that assist patient care through active decision support
and workflow management [15]. PROforma was developed at the Imperial
Cancer Research Fund by John Fox and colleagues and aims at the
development of reliable expert systems that assist patient care through active
decision support and workflow management. The name PROforma is a
concatenation of the terms proxy (‘authorized to act for another’) and
formalize (‘give definite form to’).

5.2 Guideline model and representation

5.2.1 The domino model
PROforma addresses two aspects of the guideline development and
implementation process. First, it defines an abstract model that represents the
general clinical decision making process. This ‘domino’ model is shown in
figure 7.

Chapter 2 PROforma

35

Clinical
problems

Problem
solving Accept

Trigger

Argumentation Adopt

Data acquisition
and abstraction

Scheduling

Patient
data

Clinical
actions

Alternative
solutions

Pros and
cons

Selected
care plan

Figure 7: The PROforma clinical process domino model

This model is intended as a framework, which can be applied to specific
domains by defining domain-specific knowledge (e.g., rules) needed to
instantiate the kinds of inference, needed for that particular domain. Each
node represents a certain clinical situation. Arrows refer to inference
procedures that result in a transfer from one situation to another. The model
assumes that a trigger may lead to the recognition of some kind of clinical
problem, which requires a solution. The next step is to apply some kind of
problem solving to identify possible solutions to the problem. These possible
solutions are then evaluated to determine their strengths and weaknesses.
Based upon the outcome of the evaluation, a care provider can decide to
adopt a certain solution by selecting the corresponding care plan.
Alternatively, a care provider can decide that additional information (for
example, based on new patient data) is required to select the most favorable
solution. Once a care plan has been adopted, the sequence of clinical actions,
needed to execute the plan is scheduled and carried out. Finally, executing a
care plan may involve new clinical actions that require additional clinical
patient data such as relevant symptoms and additional lab data.

Based on the complexity of entered guidelines, a specific PROforma
application may instantiate the entire domino model or only a section of it. An
example of an instantiated British Thoracic Society (BTS) acute asthma
management guideline in terms of the domino model is shown in figure 8.
According to this guideline, the first clinical task on arrival of an asthma patient
is to assess the severity of the patient’s condition, for which there are four
alternatives (mild, moderate, severe and life-threatening). The guideline
recommends the collection of relevant data to permit the classification and
proposes an appropriate decision if the BTS criteria are satisfied (the decision
whether or not to accept the proposal is left to the physician). The level of
severity determines the appropriate treatment routine, consisting of various

Chapter 2 PROforma

36

clinical tasks such as prescribing drugs, recording patient response and
reviewing the patient’s condition. If the patient deteriorates during this
process, a rescue or other action may be triggered, requiring the patient to be
admitted into a hospital, which may also lead to the collection of additional
patient data as well as an adaptation of the treatment regime.

Assess
severity
of attack

Propose
BTS classes Accept

Trigger

BTS criteria Adopt

Data acquisition
and abstraction

Scheduling

Situation
assesment

Data entry
forms

Levels of
severity

Pros and
cons

Routine
treatment

Figure 8: A BTS acute asthma management guideline, embedded in the domino
model

Other examples of guidelines developed in terms of the PROforma domino
model, include guidelines for drug prescribing and risk assessment and
management [52].

5.2.2 The task ontology
In order to represent the domino model in terms of a formal language,
PROforma defines a task ontology that contains a number of concepts,
named tasks that are used to build guidelines (similar to the guideline steps in
GLIF). Each guideline in PROforma is modeled as a plan that consists of a
sequence of tasks. The PROforma task ontology defines four task classes,
each with their own attributes: 1) plans 2) decisions, 3) actions and 4)
enquiries (figure 9).

Root
task

ActionDecision EnquiryPlan

Figure 9: The PROforma task ontology

Chapter 2 PROforma

37

Root task
All tasks are derived from the root task. The root task contains a number of
attributes that are common to all four derived tasks. These include
administrative ones that hold a name, caption or description but also attributes
that describe the capabilities of a task such as goals (e.g.,
‘achieve(normal_respiration)’), pre- en postconditions (e.g.,
‘risk_level=severe’), trigger conditions (e.g., ‘peak_flow < 30’) and cycles
(e.g., ‘cycle(integer, interval)’).

Plans
Each plan models a (sub)guideline. Plans define 1) an ordered sequence of
tasks, 2) logical and temporal constraints on their enactment and 3)
circumstances in which a plan must be aborted or terminated (e.g.,
exceptions). Besides the common attributes that are defined in the root task,
the plan task contains additional attributes such as Components, Scheduling
and Temporal constraints and Abort or Termination conditions. The
Components attribute is a container that holds a set of task instances, similar
to the Steps attribute of the Algorithm class in GLIF. For example, a guideline
that consists of 4 task instances (e.g., ‘history’, ‘diagnosis’, ‘therapy’, ‘follow-
up’) is modeled through a Plan instance of which the Components attribute
contains references to those four task instances.

The ordering between these task instances is defined by means of two sorts
of constraints: scheduling constraints and temporal constraints. Scheduling
constraints order tasks in a plan by means of qualitative conditions (e.g., the
‘history’ task is executed ‘before’ the ‘diagnosis’ task). Temporal constraints
order tasks by using temporal conditions (e.g., the ‘follow-up’ task is executed
‘after a period of ten weeks’). By using these two types of constraints, tasks in
a plan are not modeled as traditional flowcharts that order guideline elements
usually only through scheduling constraints.

Another way of directing guideline flow in PROforma is through abort or
termination conditions. Each PROforma task passes through a number of
states such as ‘dormant’, ‘in progress’, ‘aborted’, ‘terminated’ and ‘performed’.
Every task is initially in a ‘dormant’ state. Executing a certain task changes its
state from ‘dormant’ to ‘in progress’. Whenever a task is finished normally, the
task’s state becomes ‘performed’. However, it is possible to force the
termination or abortion of a plan by means of the abort and termination
conditions. For example, a plan that manages the treatment of hypertension
aims at lowering the blood pressure to a normal value. When this plan will
finish normally, the plan’s postcondition (for example: ‘BP=normal’) will be
true. However, whenever the blood pressure of a certain patient reaches a

Chapter 2 PROforma

38

normal level while the plan is still in progress, the treatment should be
terminated earlier and the postcondition will be deemed to hold. However,
when for some reason the blood pressure is falling rapidly, the treatment must
be aborted and the postcondition will be false. In this plan, the termination
condition could be defined as ‘BP=normal’, whereas the abort condition could
be defined as ‘trend(BP)=falling’. The values of the pre- and postconditions
are used for example as trigger conditions that will activate other tasks.

Decisions
A decision is a task that represents a decision in a guideline about for
example a choice of investigations, diagnoses or therapies. A decision
consists of a set of possible outcome candidates plus various types of
schemas (logical expressions) that support or oppose each candidate. The
Decision class contains an attribute, which contains a list of all possible
candidates. For example, a decision that addresses administering the right
drug regarding liver diseases may contain a number of candidates, each
candidate suggesting the prescription of a different drug.

Every candidate is associated with a set of schemas. Schemas consist of
rules, qualitative symbols, quantitative weightings and certainty factors [53]
and support (+) or oppose (-) candidates, establishing a preference order
among them. For example, the fact that a patient is diagnosed with
oesophagitis, combined with the fact that (s)he has no liver disease supports
the prescription of cimetidine. This can be translated into an argument
schema: ‘diagnosis = oesophagitis and liver_disease = absent then
cimetidine: +’. Besides schemas, decisions also include mandatory data
constraints. These state that certain data (e.g., ‘presence of liver_disease’)
has to be available before a decision can be taken.

Actions
An action is a task that a PROforma execution engine can request for
enactment by an external agent (e.g., a clinical user or an external software
program or hardware device). Such an action in PROforma usually exists of
issuing a message to a user or calling an external program through a
predefined Application Programming Interface (API). Examples are ‘”give
ibuprofen, 10 mg"‘ that shows a message to a clinical user or
‘call(print(leaflet1)’) that executes an external procedure in order to print a
leaflet. In PROforma, actions are always atomic and are not decomposable.

Enquiries
Enquiries are used to acquire various kinds of information, such as clinical or
administrative information. This information can be obtained from a clinical

Chapter 2 PROforma

39

user or can be directly extracted from an external software agent or hardware
device (e.g., EPR or patient monitor). Therefore, as was the case with the
definition of an action, the Enquiry class contains attributes that define the
method of data retrieval such as ‘use_form(height_and_weight)’, which refers
to a procedure that provides a means for a clinical user to enter the patient’s
height and weight by showing a form. The Enquiry class also contains
attributes that store information of the acquired variable such as its type (e.g.,
‘type=integer’) and allowed values (e.g., ‘range=[100:230]’).

5.2.3 Guideline representation
Similar to GLIF, a guideline in PROforma is represented as a directed graph in
which the nodes are task instances. Figure 10 shows an example of a
guideline in terms of instances of plans (rounded rectangles), decisions
(circles), actions (square rectangles) and enquiries (diamonds).

History and
Main Complaint

Refer to
Specialist

Dyspepsia
or Reflux
Management

Special
Symptoms

Action 1

Plan 1

Enquiry 1
Decision 1

Figure 10: A guideline in terms of task instances

This guideline addresses the treatment of Dyspepsia. First, the patient’s
history and main complaint are acquired, after which the decision is made
whether the patient must be referred or that the patient must be treated for
dyspepsia or reflux (the ‘dyspepsia or reflux management’ plan is a
subguideline that contains tasks that describe the treatment of dyspepsia or
reflux).

PROforma contains temporal as well as scheduling constraints. Therefore, the
arrows in figure 10 may represent both these constraints and merely state that
there is some kind of relationship between linked concepts.

5.2.4 Language
Guidelines in PROforma are stored (in terms of instances of task classes)
using the Red Representation Language (R2L), a time-oriented knowledge
representation language [54]. A guideline, written in R2L, is a declarative
specification of tasks and their (inter)relationships organized in a hierarchy of
plans and their components. An example of a PROforma guideline in R2L is
shown in figure 11.

Chapter 2 PROforma

40

plan :: Protocol1 ;
caption :: 'Management of weight loss (simplified)' ;
precondition :: problem = weight_loss ;
goal :: clinical_goal = manage : weight_loss ;
component :: enquiryl ;
Component :: decisionl ;

schedule_constraint:: completed(enquiryl) ;
Component :: decision2 ;

schedule_constraint:: completed(decisionl) ;
component :: plan1 ;

schedule_constraint :: completed(decision2) ;
Component :: plan2 ;

schedule_constraint :: completed(decision2) ;
component :: plan3 ;

schedule_constraint :: completed(decisionl) ;
end plan .

decision :: decisionl ;
caption :: 'Diagnosis?' ;
goal :: goal = manage : cancer ;
source ::

age; mandatory :: yes ;
smoker; mandatory:: yes ;
biopsy; mandatory :: yes ;
pain: site; mandatory :: yes ;
pain: time; mandatory :: yes ;

choice_mode :: single ;
support_mode :: symbolic ;
candidate :: cancer ;

argument :: (age = elderly) + ;
argument :: (smoker = yes) + ;
argument :: (biopsy = positive) + ;
argument :: (pain: time = immediate) + ;
argument :: (pain: site = epigastric) + ;
recommendation ::

netsupport(decisionl, cancer) >= 1 ;
candidate :: peptic_ulcer ;

argument :: (age = young or age = adult) + ;
argument :: (biopsy = negative) + ;
argument :: (pain: site = epigastric) + ;
argument :: (pain: time = delayed) + ;
recommendation ::

netsupport(decisionl, peptic_ulcer) >= 1 ;
end decision .

Figure 11: A part of a guideline in R2L [52]

Before execution, guidelines in the R2L language are translated into another
language, called LR2L (‘Logic of R2L’), a language based on predicate logic.
This language is used as input for the verification and execution modules
(explained in the next sections).

5.3 Guideline acquisition
PROforma contains a number of tools to develop guidelines [55]. The
PROforma task authoring environment enables guideline authors to define
guidelines in terms of class instances (and attributes) of the task ontology.
Figure 12 shows a part of a treatment protocol that has been entered in the
task authoring environment.

Chapter 2 PROforma

41

Figure 12: A part of a guideline, entered in the task authoring environment

The left pane of the task authoring environment shows a treelike overview of
all (sub)plans that a guideline contains, whereas the middle pane shows a
graphical representation of the currently selected plan. When a task is
selected in the tree, the right pane shows its attributes. In this case, the
‘non_IBS_diagnosis’ action is chosen, which results in showing the relevant
attributes such as common attributes like Name, Caption, Goal and
Conditions as well as action-specific attributes such as Procedure (the content
of the Procedure attribute holds in this case a text that is shown to the user
during guideline execution). Entering guidelines in PROforma is a two-phased
process. First, a graphical layout of the plan is specified in terms of instances
of the four tasks, without entering attribute-specific values. The latter is done
in the second phase where for each instance its attributes are filled in.

5.4 Guideline verification and testing
A major focus point of the PROforma approach is to increase the safety of
guidelines. Unsafe situations may occur as a result of incorrect or incomplete
knowledge as well as incorrect or incomplete reasoning strategies. In order to
address these problems, the PROforma researchers developed a life cycle for
the engineering of knowledge base systems [56].

In this lifecycle, guidelines that are acquired by means of the PROforma task
authoring environment are stored in the R2L language, after which they are

Chapter 2 PROforma

42

processed by a verification tool to detect errors that are declarative in nature
such as incorrect data types, invalid syntax, missing task values (e.g., missing
candidates or decision rules), inconsistent data references and inconsistent
scheduling or temporal constraints.

Guidelines are then translated into the LR2L language. For example, figure 13
shows an LR2L equivalent of a decision rule that states that ‘intermittent
nausea caused by the drug cisplatin lasts at least 20 hours and takes effect
within 6 hours’.

[] [][]()26t,6tnt_nauseaintermittet,tcisplatintt 222121 ++→∀∀

Figure 13: A decision rule, translated in LR2L

The guidelines in LR2L are then processed by a PROLOG-like interpreter in the
PROforma execution engine, which is embedded in a test environment. In this
environment, users are able to view and evaluate guidelines (an example of
the user interface of the execution engine is shown in figure 14 in the next
section). After a certain test period, guidelines can be updated through the
task authoring environment or transferred to the execution engine used in
daily practice.

PROforma also defines an extension of the LR2L language, called Lsafe, which
defines additional safety-related operators such as integrity and safety
constraints [57].

5.5 Guideline execution
As mentioned in the previous section, the PROforma framework also contains
a standard execution engine that executes entered guidelines by parsing and
interpreting a LR2L task definition. The execution engine is able to directly read
and execute guidelines and can be interfaced through the API to various
interfaces. Figure 14 shows an example of the PROforma execution engine
user interface. The engine executes tasks according to a control regime in
which tasks pass through a sequence of states (e.g., ‘in progress’, ‘terminated’
or ‘abandoned’), in which the sequence is determined by situations that are
encountered by the system. When required, the engine collects information
(e.g., from clinical users or external devices) and takes actions (e.g., sending
a message).

Chapter 2 PROforma

43

Figure 14: Execution of a guideline in the PROforma execution engine

The left pane shows an overview of all tasks and their current state, indicated
by different colors of the task’s icon. For example, the icon of the
‘signs_and_symptoms’ enquiry is blue, which indicates that a task is
‘performed’. Furthermore, the icons of the ‘assess’ plan task and
‘do_baseline_tests’ decision task are yellow, indicating that these tasks are
currently ‘in progress’. Finally, the icons of all other tasks are gray, meaning
that these tasks are still in the ‘dormant’ state.

The right pane shows a more detailed overview of the currently executed task.
In this case, the ‘signs_and_symptoms’ enquiry task has been completed,
resulting in the execution of the ‘do_baseline_tests’ decision task. Based on
already known patient data (for example the patient’s age, which is already
filled in by the user), two possible candidates (‘yes’ or ‘no’) are shown, of
which ‘no’ is recommended by the system, based on the currently evaluated
schemas of this particular decision task. Before continuation, the user first has
to commit to the decision.

Chapter 2 Asbru

44

Various decision support systems were developed and implemented using the
PROforma approach. Also, a commercial version of PROforma, named
Arezzo, has been developed by InferMed Ltd. Examples of developed
decision support systems can be found there [58].

6 Asbru

6.1 Introduction
Asbru is a guideline representation formalism, developed at Stanford
University and the Vienna University of Technology and is part of the Asgaard
project [16], which focuses on the application and critiquing of time-oriented
clinical guidelines. The Asbru language [59] is a plan representation language
that represents clinical guidelines as time-oriented skeletal plans, which are
plan schemata at various levels of detail. In order to manage these (often
complex) skeletal plans, key aspects of Asbru are the representation of high-
level goals (intentions), the representation of temporal patterns and time
annotations, and the development of user interfaces to visualize developed
plans.

6.2 Guideline model and representation

6.2.1 The intention-based model
Asbru uses an intention-based model to represent clinical guidelines as
skeletal plans. Similar to the notion of plans in PROforma, a plan is a
collection of other items. The Asbru model identifies a number of general
tasks, which have to be carried out during the process of acquiring, testing
and executing guidelines. Examples of these tasks are guideline verification
and validation, applicability, execution, recognition and critiquing. Each task is
performed by means of Problem-Solving Methods (PSMs), which are generic
strategies to solve stereotypical tasks, independent of the system’s application
domain [60]. The knowledge needed to solve a certain task is defined by
means of knowledge roles, which give an abstract description of the function
domain knowledge has to play in a PSM. Knowledge roles are specified by a
guideline author during guideline acquisition. The Asbru language introduces
the following knowledge roles: preferences, plan intentions, conditions, effects
and a plan body. In Asbru, the content of a plan (the plan body) always
consists of other plans, until a plan is no longer decomposable. The latter is
referred to as an action. In Asbru, guidelines entirely consist of plans and
actions. The functionality of each plan is modeled by means of a number of
knowledge roles. This, in contrast to other approaches where the functionality
of a guideline is described in terms of its primitives such as enquiries,
decisions, actions (PROforma), decision steps, action steps and choice steps

Chapter 2 Asbru

45

(GLIF). Asbru defines the following knowledge roles, which are part of each
plan:

Preferences
Preferences bias or constrain the applicability of a plan to achieve a certain
goal. Examples of preferences are 1) ‘select-method’, a matching heuristic to
determine the applicability of the entire plan (e.g., ‘exact-fit’ or ‘roughly-fit’), 2)
‘resources’, a specification of forbidden or obligatory resources (e.g., in
certain cases of a pulmonary infection treatment, surgery is prohibited and
antibiotics must be used), and 3) the applied ‘strategy’ (e.g., ‘aggressive’ or
‘normal’).

Intentions
One of the key aspects of Asbru is the representation of intentions of a plan:
high level goals at various levels of a plan. Besides aiding in the selection of
the most appropriate plan, intensions are primarily used in the process of
providing decision support. For example, in a guideline for the treatment of
hypertension, one possible course of action may be the prescription of beta-
blockers in order to lower the blood pressure. However, it is possible that a
physician for some reason decides not to use beta-blockers, but aims at
lowering the blood pressure in another way. Although the physician follows the
plan’s intentions, (s)he technically does not follow it, so a guideline execution
program that monitors the physician’s actions may critique the physician that
(s)he is not following the plan. However, if the guideline execution program
recognizes from the plan’s intentions that its goal has been reached it will not
generate a critique, which will improve the acceptance of the system.

Intentions are defined as temporal patterns of provider action and patient
states that must be maintained, achieved or avoided. Four categories of
intentions are defined:

1. Intermediate state: the patient states that must be maintained, achieved or

avoided (e.g., weight gain levels of slightly low to slightly high).
2. Intermediate action: the provider actions that should take place during the

execution of the plan (e.g., monitor blood glucose one a day).
3. Overall state pattern: the overall pattern of a patient state that should hold

after finishing the plan (e.g., patient has an adequate glucose level).
4. Overall action pattern: the overall pattern of provider actions that should

hold after finishing the plan (e.g., patient has visited dietician regularly for
at least three months).

Chapter 2 Asbru

46

Conditions
Conditions are also temporal patterns and are used to change the state of a
plan. In Asbru, similar to the PROforma approach, plans are in a certain state
during execution time (e.g., ‘activated’, ‘suspended’, ‘aborted’ and
‘completed’). Conditions need to hold at particular plan steps to induce a
particular state transition of the plan instance. Asbru defined a number of
condition categories such as ‘filter-preconditions’ and ‘setup-preconditions’
that need to hold if a plan is considered applicable, ‘suspend-conditions’ that
determine when an active plan must be (temporarily) suspended, ”abort-
conditions’ that determine when an active or suspended plan has to be
aborted and ‘completed-conditions’ that determine when a plan is
(successfully or not) completed.

Effects
Effects describe the relationship between plan arguments and measurable
effects by means of mathematical functions (e.g., the insulin dose is inversely
related in some manner to the level of blood glucose). Effects may include
probabilities that specify the probability of the effect’s occurrence.

Plan body
The plan body is a set of actions or plans that have to be performed whenever
the preconditions hold. A plan is composed of other plans, which are
performed according to the plan’s type. Asbru defines three plan types:
‘sequential’, ’concurrent’ and ’cyclical’, the aspects of which are described by
means of the plan ‘subtype’ attribute. Examples of possible subtypes are ‘DO-
ALL-TOGETHER’ that indicates that all plans in the plan body must be
completed concurrently, ‘DO-SOME-TOGETHER’ that indicates that all plans
are executed in parallel and that some plans must be completed (a
‘continuation-condition’ specifies which plans have to be completed), ‘DO-
SOME-ANY-ORDER’ that indicates that all plans are executed sequentially
whereby the order of execution is determined by the ‘continuation-conditions’,
and ‘DO-EVERY’ that indicates a cyclical plan. In the last case, optional
temporal and continuation arguments are specified (e.g., whenever a plan is
started, ended and repeated). Each plan is decomposed into subplans until a
non-decomposable plan (called an action) is encountered.

6.2.2 Temporal patterns and time annotations
Important in Asbru are time annotations: specifying temporal aspects of a
plan. A time annotation specifies four points in time relative to a reference
point, which can be a specific or abstract point in time, or a plan’s state
transition. In this manner, Asbru allows for a representation of uncertainty in
starting time, ending time and duration. These four points are: the earliest

Chapter 2 Asbru

47

starting shift (ESS), latest starting shift (LSS), earliest finishing shift (EFS) and
latest finishing shift (LFS). Two durations can also be defined: The minimum
duration (MinDu) and maximum duration (MaxDu). Together, these data
specify the temporal constraints within which an action must take place, or a
condition must be fulfilled in order to trigger. Figure 15 shows a schematic
view of the time annotation, including an example as used in a guideline that
addresses the management of diabetes [16]. The Asbru temporal
representation also supports the concept of temporal abstractions, in which
guideline authors are able to specify expressions such as ‘has the patient
suffered from a second episode of anemia of at least moderate severity’.

Reference

Conception

Time

Timew: weeks

ESS

24 w

LSS

26 w

MaxDu

9 w

MinDu

7 w

EFS

32 w

LFS

34 w

Figure 15: Asbru time annotation. The upper part of the figure presents the generic

annotation. The lower part shows a particular example representing the time
annotation, which means ‘starts 24 to 26 weeks after conception, ends 32 to 34

weeks after conception, and lasts 7 to 9 weeks’

6.2.3 Guideline representation
In Asbru, a guideline is represented by means of a plan, which consists in turn
of a collection of other subplans. Plans are executed sequentially or in
parallel. As mentioned earlier, plans that have been started can be
suspended, aborted or completed (based on the plan’s conditions). When a
plan is completed, the next plan is the sequence (if any) is executed (only one
plan at a time can be activated). Figure 16 shows show the representation of
a guideline for the treatment of Infants’ Respiratory Distress Syndrome (I-
RDS).

This guideline consists of 4 plans that are executed sequentially. The most
important plan (‘one-of-controlled-ventilation’) consists internally of three
subplans (‘controlled-ventilation’, ‘permissive-hypercapnia’ and ‘crisis-

Chapter 2 Asbru

48

management’), which are also executed sequentially, although in this case the
order of the sequence depends on the outcome of the ‘one of controlled
ventilation’ plan’s ‘continuation-conditions’ (which specify the severity of the I-
RDS disease).

Weaning
One of

Controlled
Ventiliation

One of
CPAP

Extubation

Plan 1

Initial
Phase

Plan 2 Plan 3 Plan 4

Figure 16: Representation of a guideline in terms of plans

6.2.4 Language
The formal syntax of the Asbru language is defined in Backus-Naur Form
(BNF) [59]. The guidelines are encoded in a LISP-like language, as shown in
figure 17.

The first paragraph shows the main I-RDS guideline, which contains four
subplans that should be executed sequentially (see also figure 16). As
mentioned earlier, the ‘one-of-controlled-ventilation’ plan consists of three
subplans that are sequentially executed in some order before continuing
(shown partly in the second paragraph). The third paragraph shows one of
these subplans (‘controlled-ventilation’) in more detail. The aim of this plan is
to maintain a normal level of the blood-gas values and the lowest level of
mechanical ventilation (as defined in the context of controlled ventilation
therapy). The plan is activated when the Peak Inspiratory Pressure (PIP) is
smaller than or equal to 30 and the transcutaneously assessed blood-gas
values are available for at least one minute after activating the last plan
instance initial-phase. The plan must be aborted when the PIP is greater then
30 or the increase of the blood-gas values is too steep for at least 30
seconds. Every 10 seconds, the abort conditions are evaluated. The plan is
completed successfully when the FiO2 is smaller than or equal to 50%, the
PIP is smaller than or equal to 23, the breathing frequency is smaller than or
equal to 60, the patient is not dyspnoeic, and the blood gas values are normal
or above the normal range for at least three hours. The complete conditions
are evaluated every 10 minutes. The body of the plan again consists of two
subplans (‘one-of-increase-decrease-ventilation’ and ‘observing’) that are
executed sequentially.

Besides the BNF-based and LISP-like syntaxes, an XML-based version of the
Asbru syntax was also recently defined and published [61].

Chapter 2 Asbru

49

(PLAN I-RDS-therapy ...

...

(DO-ALL-SEQUENTIALLY

(initial-phase)

(one-of-controlled-ventilation)

(weaning)

(One-of-cpap-extubation)))

(PLAN one-of-controlled-ventilation ...

...

(DO-SOME-ANY-ORDER

(controlled-ventilation)

(permissive-hypercapnia)

(crisis-management)

CONTINUATION-CONDITION controlled-ventilation))

(PLAN controlled-ventilation

(PREFERENCES (SELECT-METHOD BEST-FIT))

(INTENTION:INTERMEDIATE-STATE (MAINTAIN STATE(BG) NORMAL controlled-ventilation *))

(INTENTION:INTERMEDIATE-ACTION (MAINTAIN STATE(RESPIRATOR-SETTING) LOW controlled-ventilation *))

(SETUP-PRECONDITIONS (PIP (<= 30) I-RDS *now*)

(BG available I-RDS [[_, _], [_, _], [1 MIN,_] (ACTIVATED initial-phase-l#)]))

(ACTIVATED-CONDITIONS AUTOMATIC)

(ABORT-CONDITIONS ACTIVATED

(OR (PIP (> 30) controlled-ventilation [[_, _], [_, _], [30 SEC, _], *self*])

(RATE(BG) TOO-STEEP controlled-ventilation [[_, _], [_, _], [30 SEC,_], *self*])))

(SAMPLING-FREQUENCY 10 SEC))

(COMPLETE-CONDITIONS

(FiO2 (<= 50) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])

(PIP (<= 23) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])

(f (<= 60) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*])

(state(patient) (NOT DYSPNEIC) controlled-ventilation [[_, _], [_, _], [180 MIN, _], *self*]))

(STATE(BG) (OR NORMAL ABOVE-NORMAL) controlled-ventilation [[_, _], [_, _], [180 MIN,_], *self*])

(SAMPLING-FREQUENCY 10 MIN))

(DO-ALL-SEQUENTIALLY

(one-of-increase-decrease-ventilation)

(Observing)))

Figure 17: A portion of the I-RDS guideline, encoded in Asbru [16]

6.3 Guideline acquisition, verification and testing
In contrast to approaches such as GLIF and PROforma, the developers of
Asbru have chosen not to visualize guidelines by means of a flowchart, mainly
as they feel that visualizing time and intentions through flowcharts is a very
difficult task. Instead, a tool named AsbruView was created that uses the

Chapter 2 Asbru

50

concept of metaphor graphics to visualize guidelines [62]. In AsbruView, plans
are visualized as running tracks and the various types of conditions are
visualized by means of traffic signs and other controls. This visualization is
known as the topological view. Figure 18 shows part of the I-RDS guideline in
the AsbruView topological view.

Figure 18: The I-RDS guideline, visualized in AsbruView. Of the four I-RDS subplans,

only the ‘initial-phase’ and the ‘one-of-controlled-ventilation’ plans are shown here
[62]

The length of the track represents time, the depth represents (sub)plans that
are on the same level of decomposition and the height represents the various
levels of decomposition. In this case, the main guideline (‘I-RDS-Therapy’)
contains two sequential subplans: ‘initial-phase’ and ‘one-of-controlled-
ventilation’ (The ‘weaning’ and ‘one-of-CPAP-extubation’ plans in figure 16 are
omitted here). The ‘initial-phase’ plan also contains two sequential subplans
(‘set-respirator-settings’ and ‘observing-blood-gas’) and the ‘one-of-controlled-
ventilation’ subplan contains the four earlier-mentioned subplans (see also
figure 17). The time dimension is only symbolic: a plan's size does not reflect
its actual duration.

Furthermore, AsbruView uses other metaphors to symbolize conditions. For
example, the ‘no entrance with exceptions’ traffic sign symbolizes the filter
preconditions and the turnpike (barrier) sign symbolizes setup preconditions.
Furthermore, each traffic light includes three kinds of conditions. The red light
symbolizes the abort-condition, the yellow light the suspend-condition and the
green light the reactivate-condition. The finishing flag, finally, symbolizes the
complete condition, which specifies when the plan has reached its goal and
can be considered successful.

Chapter 2 EON

51

In AsbruView, plans can be depicted by means of two different views: the
Topological view and the Temporal view [63]. Most common is the topological
view (shown in figure 18) that displays relationships between plans, without
an explicit timeline. In contrast, the recently developed Temporal view focuses
on the temporal dimensions of plans and conditions by showing plans as
explicit guidelines. The Temporal view uses the time annotation that specifies
four points in time relative to a reference point, also shown in figure 15. Figure
19 shows a portion of the I-RDS guideline, visualized through the Temporal
view.

Figure 19: The I-RDS guideline, visualized in AsbruView through the Temporal view

[63]

As the Asbru language is formally defined, entered guidelines can be verified
to detect various types of logical and procedural errors [64]. These tools are
currently under development.

6.4 Guideline execution
Tools and software that facilitate the execution of guidelines, written in Asbru
are currently under development.

7 EON

7.1 Introduction

7.1.1 Overview
EON, also developed at Stanford University, is a component-based
architecture used to build decision support systems that reason about
guideline-directed care [17]. The EON architecture consists of several
components that facilitate the acquisition and execution of clinical guidelines.
Similar to GLIF (as mentioned earlier, EON was one of the approaches from

Chapter 2 EON

52

which GLIF originated), the guideline model of EON, called Dharma [19], is
object-oriented and consists of classes that describe guideline entities as a
sequence of structured temporal steps. The Dharma model is non-monolithic,
meaning that the guideline model can be extended with additional classes that
capture new guideline behavior. Besides the Dharma guideline model, the
EON architecture also contains a number of run-time components, used to
construct execution-time systems.

7.2 Guideline model and representation

7.2.1 The Dharma guideline model
In contrast with for example GLIF and PROforma that model guidelines in
terms of a fixed number of primitives (e.g., decisions, actions), the
researchers of EON argue that -for the purpose of providing decision support-
a fixed number of primitives is not sufficient to model all sorts of guidelines, as
guidelines may differ considerably in variability and complexity. Instead, they
propose a non-monolithic (non-closed) guideline model, which consists of a
standard set of primitives that can be extended with task-specific submodels,
resulting in additional classes of primitives that are matched to the knowledge
requirements of different guidelines.

In the Dharma model, guidelines manage patient behavior, consisting of
decisions and actions that may lead to dependent changes in patient states
over time (figure 20).

Encounters

Disease progression

Worse

Actions

Better

Time

Figure 20: Conceptual model of the patient management process

In this conceptual model of multi-encounter patient management, decisions
are made during encounters between healthcare providers and patients.
Actions such as writing a prescription or requesting a laboratory test, are

Chapter 2 EON

53

carried out during encounters and may (in)directly lead to a change in the
patient state (e.g., the progression of a disease). Some actions can start
activities that extend over time. In order to define guidelines according to this
conceptual model, they are represented in terms of a number of key
characteristics, represented by primitives. Examples of EON primitives are
scenarios, decisions, actions and goals. These primitives form the core
guideline ontology. As the model is object-oriented, these characteristics are
represented by means of a set of classes, attributes for those classes and
data types for the attribute values.

Scenarios
A scenario is a (partial) characterization of the state of a patient (e.g., the
patient is currently being prescribed a low-dosed steroid). In a scenario,
eligibility conditions specify the necessary conditions for a patient to be in this
scenario. Scenarios allow a clinician to synchronize the management of a
patient with the corresponding parts of (a portion of) a guideline and are
commonly used as entry points in a guideline. In the Dharma ontology, a
scenario is always followed by a decision or action step. Each scenario in an
actual guideline is an instance of the scenario class, which contains several
attributes such as an attribute that specifies the eligibility criteria and an
attribute that specifies the step that follows the current scenario (similar to
GLIF). Scenarios allow a clinician to synchronize the management of a patient
to situations handled by a guideline.

Scenarios can be applied in several ways. First of all, they can be used as
'entry points' in a guideline. However, they can also serve to model
exceptions, which represent exceptional situations that rarely occur. As
expressing everything in a guideline can be impractical, a guideline author
may want to partition the guideline into normal situations that cover usual
cases and exceptions. The Dharma ontology defines two classes of
exceptions: 1) exceptions that are repairable (i.e., those that lead a patient
back to a scenario covered by the guideline), and 2) exceptions that are not
repairable, so that patient has to be managed outside this guideline.

Decisions
A decision represents a choice from a set of competing alternatives. In the
Dharma core ontology, two basic types of decisions are defined (by means of
two subclasses): decisions that model ‘if-then-else’ choices and decisions that
require making a heuristic choice from a set of pre-enumerated alternatives.
Regarding the latter, making a choice among the alternatives is aided by
preferences as determined by rule-in and rule-out conditions that support or
oppose each alternative (similar to the concept of schemas in PROforma). If a

Chapter 2 EON

54

rule-out condition evaluates to true, then the corresponding alternative is
rejected. If the rule-out condition does not apply and a rule-in condition
evaluates to true, the corresponding alternative is marked as preferred. If
neither evaluates to true, then the preference for the choice can be
determined by a default preference associated with each alternative. The
Dharma model supports different ways of expressing decision criteria, which
are explained in more detail later.

Actions
Actions are instantaneous acts that lead to changes in the state of the world
such as collecting patient data, displaying a message to the user or starting a
drug regimen. Actions are used heavily throughout guidelines modeled in
EON.

Whereas actions refer to instantaneous acts, activities model processes that
take place over time. Activities have states that can change from time to time.
These changes are usually the result of actions specified in a guideline, as
actions are able to start a new activity, stop an ongoing activity or change the
attribute values of an ongoing activity. Activities have states that are
characterized by a set of attributes such as a dose level (e.g., ‘low’, ‘high’,
‘medium’) and a frequency (e.g., ‘twice a day’) of a drug regime.

Finally, the model also includes actions that refer to a set of other actions or a
subguideline. Similar to GLIF, examples of such actions are actions that
model branching and synchronization constructs in order to execute parallel
tasks.

Goals
Every step can be associated with a goal. The notion of goals is comparable
with the notions of intentions in Asbru, although less sophisticated. In the
Dharma ontology, goals are represented as boolean criteria (e.g., ‘reduce the
arterial blood pressure to less than 130/85 within three weeks’). The format of
these criteria is explained later.

7.2.2 The Patient data model
The patient data model defines classes and attributes in order to represent
patient data. For example, the patient data model defines a Patient class,
whose instances hold demographic information about specific patients, a
Qualitative_Entry class that describes qualitative observations about patients,
a Numeric_Entry class that stores results of quantitative measurements, an
Adverse_Event class that models adverse reactions to specific substances, a
Condition class that represent medical conditions that persist over time, and

Chapter 2 EON

55

two intervention classes, Medication and Procedure, that model drugs and
other medical procedures that have been recommended, or used. The patient
data model defines characteristics regarding demographic and clinical
conditions of specific patients. It does not aim at modeling the entire patient
(e.g., replicate the structure of an EPR), but models only those distinctions
that are relevant for the purpose of defining guidelines and protocols. The
ideas behind the EON patient data model are very similar to those of the GLIF
Reference Information Model (RIM).

7.2.3 The Medical-specialty model
The medical-specialty model consists of a medical domain ontology that
models the structure of domain concepts (e.g., drugs and treatments) in terms
of organized classes, relations and attributes. The medical-specialty model
represents different sorts of domain-specific information. For example, in the
context of hypertension management, hyponatremia as a contraindication for
the use of thiazide may be defined as a serum sodium measurement that is
less than 135 mg/dl. In the medical-specialty model, the concept of
Hyponatremia is then defined in terms of the range of values, related to the
concept of Serum_sodium measurement. Concepts from the medical-
specialty model can be linked to concepts from the patient data model. In the
above-mentioned hyponatremia example, the hypertension management
guideline may contain an instance of the Numeric_Entry class (defined in the
patient data model). This class defines a Domain_term attribute, which refers
in this case to the concept Serum_Sodium from the medical-specialty model.
The medical-specialty model is very similar to the GLIF medical knowledge
layer.

7.2.4 Modeling tools
Protégé is used as a modeling tool to define the classes and attributes that
form the core guideline model, the patient data model and the medical-
specialty model. Also, additional classes that are derived from the core
guideline model that introduce additional functionality are defined and entered
by means of Protégé.

7.2.5 Guideline representation
Similar to GLIF, guidelines are represented in EON by temporally sequenced
graphs (flowcharts) of instantiated classes. For example, figure 21 shows part
of an influenza-vaccination guideline.

Chapter 2 EON

56

Collect age
and

history
data

Vaccinate

Not
Indicated

Yes

No

High risk
for flu?

Figure 21: Graphical representation of an influenza-vaccination guideline in EON

This guideline states that patients with a high risk for flu must be vaccinated.
The risk is based on the patient’s age and history and is defined as ‘age > 65
or presence of chronic heart or pulmonary problems’. The influenza-
vaccination guideline is modeled as an ‘if-then-else’ condition that consists of
three actions and one decision. The first action involves the collection of data,
necessary to determine whether the patient has a high risk for flu, modeled by
a decision. Depending on the outcome of that decision, a corresponding
action can be carried out (e.g., warn that this patient must be vaccinated). The
‘collect age and history’ action step is an instance of the
Consultation_Action_Step class, which is not in the core Dharma guideline
model, but is a derived class that defines an action step that acquires
consultation-based data (e.g., by means of asking questions to a physician).
Regarding temporal aspects, EON has adopted a subset of the Asbru
temporal language to represent temporal information.

7.2.6 Language
The EON model itself does not define a formal language regarding the
guideline model or the guidelines but uses the internal frame-based Resource
Description Format (RDF) of Protégé [65] to describe the models as well as
the guidelines. Although the focus of the EON project is not on defining a
formal syntax for representing guidelines in general, it does particularly
address the subject of how to describe criteria that are used in decisions.
EON defines three different criterion languages.

First, common but relatively simple criteria can be expressed as boolean
criteria in terms of a set of object templates. Criteria encoded in this object-
based language evaluate to true, false, or unknown. An example of such a
criterion is ‘diabetes mellitus is present and the most recent serum creatinine
is less than normal’.

According to the researchers of the EON project, such a criterion language is
not expressive enough to capture more complex criteria such as ‘is an
authorized medication present that is contraindicated by some medical
condition’. To represent such criteria, the Protégé Axiom Language (PAL) is

Chapter 2 EON

57

used, which is embedded into the Protégé development environment. The
PAL constraint language is a subset of the first-order predicate logic
Knowledge Interchange Format (KIF) syntax [66].

Finally, it is possible to write complex temporal criteria such as ‘presence of an
episode of uncontrolled blood pressure that overlaps with lisinopril medication
and that started within two weeks after the initiation of lisinopril’. These are
written as temporal queries, which during guideline execution are translated to
database queries [67].

Examples of criteria that were written in PAL or as temporal queries are
shown in the next two sections.

7.3 Guideline acquisition, verification and testing
Besides defining the various EON models, Protégé is also used as a
Knowledge Acquisition tool where guideline authors are able to enter and view
guidelines. Protégé takes as input the Dharma guideline model, a Patient
Data Model and a Medical-Specialty Model (explained in more detail in the
next section) to create a Knowledge Acquisition Tool. Figure 22 shows portion
of a guideline for the treatment of breast-cancer, visualized in Protégé (see
also figure 6).

Figure 22: Part of a guideline that addresses the management of breast-cancer

In this figure, the oval entitled ‘do all’ represents a specific action step that
models branching. Furthermore, statements such as ‘taxol x4 every 21 days’
are repetitions of actions involving the drug taxol as a prescribable item.
Besides actions, the part of the breast-cancer management protocol, shown in
figure 22 also contains 2 scenarios (‘completed surgery’ and ‘completed AC
chemotherap’) and a decision (‘ER-positive’).

Chapter 2 EON

58

As mentioned in the previous section, PAL is used to formally describe
complex criteria, used in decisions. Figure 23 shows examples of PAL criteria
that check the existence of drug contraindications.

(defrange ?current_med :FRAME Medication)
...
(exists ?current_med

(exists ?med_class
(and (subclass-of

(drug_name ?current_med) ?med_class)
(exists ?contraindication

(and (Absolute_Contraindications
 ?med_class ?contraindication)
(exists ?problem

(subclass-of
(domain_term ?problem)
 ?contraindication)))))))

Figure 23: Simplified PAL criteria to check the existence of contraindicated

medications

These criteria state that, for each current medication, its contraindications
from the medical-specialty knowledge base have to be determined, and to see
if there is any patient-data instance that suggests the presence of one of
these contraindications. PAL makes full use of Protégé's frame-based
knowledge model. For example, variables can range over instances of
Protégé classes (e.g. the variable ‘?current_med’ ranges over instances of the
Medication class) and attributes of classes (e.g. Absolute_Contraindications).
Protégé contains a structured editor that facilitates guideline developers in
writing these complex logical criteria. However, such criteria are usually not
formulated and entered by domain experts that are not trained in logic.

7.4 Guideline execution
To facilitate the development of guideline execution engines, EON defines an
execution architecture that contains components for guideline execution and
interfacing third-party information systems. Figure 24 shows an overview of
the execution architecture [68].

The heart of the execution architecture is formed by the Padda Guideline
Execution Server (or Padda Server), which applies a clinical guideline to
patient data queried from an information system’s database and generates
advisories [69]. Within the Padda Server, a knowledge-base handler manages
access to the guideline knowledge base and the patient data model via the
application-programming interface provided by Protégé. For a specific
guideline and patient, the Padda Server must determine if the guideline is
applicable to the patient, and subsequently, implement a model of interaction
with the outside world (e.g., information systems or clinicians). The Padda
Server uses patient data to suggest that a patient is in a specific scenario, and

Chapter 2 EON

59

that, as a result, tasks such as laboratory tests should be performed. The
server may also suggest that certain alternatives at a decision point are
preferred. However, users are always allowed to override the system’s
conclusions. For the Padda server to communicate with other information
systems (e.g., EPRs), an interface specification has been defined. This
specification, written in Common Object Request Broker Architecture Interface
Definition Language (CORBA IDL) consists of methods with which client and
server interact with each other as well as a description of the data structures
that are passed between the server and clients.

Padda Guideline
Execution Server

Host
System

Tzolkin Temporal
Data Mediator

WOZ
Explanation

Server

Dharma
Guideline
Model

Client

Temporal
Query

Temporal
Abstraction

Medical
Specialty
Model

Patient
Data
Model

Guideline
Knowledge

Base

Clinical
Information

System
Database

Figure 24: An overview of the EON execution architecture

To evaluate specific patient situations, available patient data must be mapped
to the terms and relations that are used in the guideline. The linking of
concepts in the patient data model to corresponding concepts in an
information system (e.g., an EPR) is done through the Tzolkin data mediator
[67]. This component performs two functions. First, it maps concepts from a
particular patient data model to corresponding concepts from the data model
of the host system. Second, it maps terminology in the medical-specialty
model (e.g., as names of laboratory test results) to the terminology used in the
host information system. As mentioned earlier, criteria often contain complex
temporal expressions. Making abstractions from time-stamped patient data
(e.g., an episode of uncontrolled blood pressure) and comparing temporal
sequences of occurrences (the episode of uncontrolled blood pressure
overlaps the use of lisinopril and it started within two weeks after initiation of
lisinopril) is often necessary. For formulating these types of criteria, the
Tzolkin temporal data mediator contains a temporal query language that is
able to define such temporal expressions. During runtime, the Tzolkin data
mediator translates these temporal queries to 'standard' database queries
(e.g., SQL). Figure 25 shows an example of a Tzolkin temporal query.

Chapter 2 EON

60

TEMPORAL SELECT domain_name
VALID INTERSECT(Condition, Medication)
FROM Condition, Medication
WHERE domain_name = "UNCONTROLLED_BP" AND

drug_name = "lisinopril”
WHEN start(Condition) AFTER start(Medication) AND

start(Condition) BEFORE
(start(Medication) + weeks(2)) .

Figure 25: An example of a temporal query that checks for the existence of an
episode of uncontrolled blood pressure that overlaps with administration of lisinopril

but occurring within two weeks of initiating lisinopril

Figure 26: Advice, given by the WOZ component of the ATHENA hypertension

advisory system

Finally, the WOZ (Wizard of OZ) component provides explanation services
[70]. An example of an advisory, provided by the WOZ component is shown in
figure 26. This advisory was issued by the ATHENA system, a decision

Chapter 2 Discussion

61

support systems that manages the treatment of hypertension, which was
implemented using the EON execution engine [71].

8 Discussion

8.1 Comparison

8.1.1 Overview
Each approach focuses on different aspects of guideline representation,
development and implementation. The Arden Syntax and GLIF approaches
focus on guideline standardization, PROforma on execution aspects, Asbru on
the representation and visualization of complex temporal plans, and EON on
the development of an architecture that supports the development and
implementation of guidelines. These different focus points have their
implications regarding the representation, acquisition, verification and
implementation of guidelines as shown in the previous sections.

8.1.2 Guideline Modeling and representation

Primitives
The representation model of the Arden Syntax differs from other approaches,
as it is the only approach that models each guideline as an independent
modular rule. As a result, the Arden Syntax is most suitable for representing
simple guidelines such as alerts in reminder systems.

The GLIF, PROforma, Asbru and EON approach all model guidelines in a
similar way, in terms of primitives (steps, tasks or plans) that describe the
control structure of a guideline. GLIF and EON have very similar models, as
they were partly developed by the same groups and researchers. The main
difference is that the GLIF model, just as PROforma and Asbru, contains a
fixed number of primitives, while the EON set of primitives is extendible. The
basic primitives however such as primitives that represent decisions, actions
and patient states (entry points) are present in both GLIF and EON. MLMs
contain similar constructs such as decisions (logic slot), actions (action slot)
and patient states (evoke slot). However, these can only be used to model
modular rule-based guidelines that perform simple actions (e.g., provide
alerts). Primitives that describe decisions and actions are also present in
PROforma. Although PROforma does not provide explicit support for defining
patient states, it is possible to model these through constructs like triggers and
pre- and postconditions [72]. The PROforma enquiry task is viewed as an
action in the GLIF and EON models. In Asbru, the basic primitive is an action:
every (sub)plan eventually consists of actions. In contrast to other approaches
where the functionality is described in terms of primitives, Asbru uses

Chapter 2 Discussion

62

knowledge roles such as preferences, intentions, conditions and effects for
this purpose.

All approaches support some form of temporal reasoning, of which the Asbru
approach contains the most sophisticated structures. EON and GLIF both
adopt a subset of the Asbru temporal language. In order to be compatible with
the Arden Syntax, the GLIF Expression Language (GEL) also defines a
number of operators that are defined in the Arden Syntax such as ‘before’,
‘after’ and ‘ago’. Similar constructs are also available in the PROforma
expression language. The Arden Syntax and GLIF support a limited form of
uncertainty in terms of a three-valued logic (‘true’, ‘false’ and ‘unknown’).
PROforma is the only approach that contains expressive constructs for
describing uncertainty aspects of a guideline. In contrast with the issue of
representing temporal aspects, the representation of uncertainty in guidelines
is not regarded as a critical issue in general.

Complexity
All models except for the Arden Syntax provide explicit support for nesting of
guidelines in order to model complex guidelines in terms of subguidelines
(GLIF and EON) or subplans (PROforma and Asbru). For this purpose, GLIF,
EON and PROforma contain an Action primitive that may contain a reference
to a subguideline or subplan. In Asbru, each plan body contains a number of
subplans until a non-decomposable plan (also called Action) is encountered.
Although the Arden Syntax is able to call other rules in the Action slot, there is
no general way of controlling these invocations.

EON, PROforma and Asbru also support the use of goals and intentions to
formally specify a guideline on a higher level of abstraction. Of these
techniques, the Asbru intension model is the most sophisticated.

GLIF defines different layers of abstraction, which allows guideline authors
only to view the general control structure (flowchart) of a guideline before
specifying all the necessary details. EON uses a non-monolithic approach: the
Dharma guideline model is based on a core model, which can be extended
with submodels depending on the complexity of the guideline (e.g., ‘if-then-
else’ rules versus complex treatment guidelines).

The representations of Asbru and EON also allow for the abstraction of
temporal data to facilitate the specification of complex temporal expressions.

Except Asbru, all approaches support the concept of referenced
subguidelines. In Asbru, subplans are ‘embedded’ in a plan, meaning that this

Chapter 2 Discussion

63

subplan is not known outside the embedding plan. As a result, a certain
subplan is not sharable with other plans outside the embedding plan.

GLIF also supports the representation of common guideline structures through
Macros, which facilitates the reuse of guidelines that are used often (e.g., ‘if-
then’ rules such as MLMs).

Knowledge types
Besides the knowledge that defines the control structure (e.g., rules,
primitives, plans, sequences), every guideline also contains domain-specific
knowledge such as medical knowledge (e.g., terminology) and knowledge
concerning the patient (e.g., the patient’s symptoms or history).

The Arden Syntax contains no support of separating these types of
knowledge, as each reference to a domain-specific item is stored as a label in
the data slot of a MLM. As a result, a MLM does not ‘know’ for example that
amoxicillin is an antibiotic. Also PROforma and Asbru contain no explicit
support for modeling domain-specific knowledge or for using standard
terminology systems. GLIF addresses this problem by modeling domain-
specific knowledge by means of defining a Medical Ontology that contains
three different layers: the core GLIF layer, the RIM layer and the Medical
Knowledge layer. EON takes a very similar approach by defining the Dharma
guideline model, the Patient Data Model and the Medical-Specialty Model.
Currently, both the layers in GLIF as well as the models in EON are still partly
under development.

Besides invoking subguidelines, a guideline may consist of various types of
actions such as medically oriented actions (e.g., recommending a particular
course of treatment) and programming-oriented actions (e.g., supplying a
message to a care provider). In the Arden Syntax, actions (stored in the action
slot) are usually programming-oriented as they are used to generate
reminders or alerts. This is also the case in the PROforma approach, as a
PROforma action is a programming-related task that is carried out by the
execution engine through an Application Programming Interface (API). GLIF
and EON both support these two types of actions. Finally, Asbru does not
support programming-related actions.

Didactic and maintenance
Didactic and maintenance information concerns information about authors,
versioning, purposes and detailed explanations. The Arden Syntax, GLIF and
EON approaches are all able to hold various kinds of information such as the
guideline’s author, version, institution, keywords, validation (e.g., ‘research’,

Chapter 2 Discussion

64

‘testing’, ‘production’) and explanation. In PROforma and Asbru, it is not
possible to store didactic and maintenance-related information (besides a
name and explanation).

Language
All approaches except EON have defined a language that entirely describes
the representation through a formal syntax: the Arden syntax, PROforma and
Asbru use BNF (the latest version of Asbru is also in XML-format) and GLIF
uses UML. EON relies on the internal syntax of Protégé. For each approach,
the syntax captures all aspects that are defined in the corresponding
representations.

Regarding the guidelines itself, the Arden Syntax describes guidelines in
terms of a semi-structured ASCII format (see figure 1), GLIF describes
guidelines in an XML format (see figure 4), Asbru in a LISP-like syntax (see
figure 17) and PROforma in the R2L language. EON uses a description that is
very similar to that of GLIF, with the main exception that GLIF describes
expressions in the Guideline Expression Language (GEL) while EON
describes expressions by means of the three different criterion languages.

PROforma is the only approach, which makes a distinction between a
declarative language (e.g., R2L), used during the guideline acquisition phase
and a procedural language (e.g., LR2L) that is processed by a general
interpreter (e.g., PROLOG) in an execution engine. All other approaches
require a custom-developed execution engine, in which the different
procedural aspects of the guideline are encoded programmatically (e.g., a
number of Java or C procedures that each executes a certain primitive).

In order to facilitate the translation from a declarative language to a
procedural language, the PROforma representation language contains
constructs that are filled in during guideline acquisition but are execution-
related. For example, PROforma defines an execution state that denotes the
state of a guideline during execution (e.g., ‘in progress’, ‘aborted’,
‘terminated’, ‘performed’). This is in contrast with EON and GLIF that define
patient states which are used during execution to determine the applicability of
a guideline (as mentioned earlier, PROforma is also able to model patient
states implicitly through constructs like triggers and pre- and postconditions).
Similar to PROforma, Asbru also contains the concept of guideline execution
states.

Chapter 2 Discussion

65

8.1.3 Guideline acquisition
The developers of the Arden Syntax have not developed tools that facilitate
the process of guideline acquisition, although various acquisition tools were
created by third parties. GLIF and EON use Protégé as the main knowledge
acquisition tool (see figures 6 and 22), in which guidelines are entered as
flowcharts. As mentioned earlier, every primitive is shown as a generic form in
Protégé (see also figure 6). The advantage is that the user interface is created
automatically by Protégé. The disadvantage is that there is limited guidance
as each instance is shown as a separate form and guideline authors can get
‘lost’ when there are too many forms open.

The GLIF Expression Language is similar to the Arden Syntax. During
knowledge acquisition in Protégé, GLIF expressions are still entered as
strings (e.g., ‘test_name = “Serum_Potassium”’), which has to be parsed in
order to extract the various kinds of information such as the different
operators and used domain terms. Therefore, it is possible for guideline
authors to type in erroneous criteria if there is no syntax checker available. As
EON contains three different criterion languages, each guideline author has to
decide which of these three languages (s)he will use. Although the EON
architecture contains tools that partly facilitate the structured entry of these
languages, only guideline authors that are skilled in writing logic and database
queries will be able to write complex criteria using PAL logic or temporal
queries.

PROforma uses a language (R2L) that has a predicate logic language (LR2L)
underlying, which has the advantage that guidelines are defined in a formal
manner. However, the PROforma tasks are very basic and ‘low-level’, so that
it may be difficult for guideline authors to enter guidelines, as they often do not
view guidelines in terms of schemas, pre-and post conditions and predicate
logic, making PROforma more like a guideline programming language than an
abstract representation. PROforma contains a very elaborate tool for guideline
acquisition. The acquisition tool facilitates guideline authors using a
sophisticated graphical editor, as shown in figure 12. However, guideline
authors may interpret the constraint satisfaction graph as a standard
flowchart. This is not the case however, as the arrows between task instances
can represent different types of constraint. Also, guideline authors are
required to specify execution-time information such as guideline execution
states, which may differ from an author’s viewpoint of a guideline.

Acquiring guidelines by means of using graphical metaphors has become one
of the focus points of Asbru. AsbruView uses sophisticated visualization
techniques to facilitate the acquisition of complex guidelines. In contrast to

Chapter 2 Discussion

66

GLIF, EON and PROforma, the Asbru researchers have chosen not to model
guidelines through flowcharts but by means of metaphor graphics such as
running tracks or traffic lights. It has still to be proven which visualization
technique is the most suited.

8.1.4 Guideline verification and testing
PROforma is the only approach that has developed tools, which -based on a
sound formal language- verify entered guidelines by detecting a number of
possible logical and procedural errors such as incorrect data types, invalid
syntax or attribute values, critical missing values or concepts and inconsistent
constraints. Although for other approaches, tools for guideline verification and
testing are reported to be in development, no results have been published so
far.

8.1.5 Guideline execution
EON and PROforma have developed execution engines which are able to
process guidelines developed in the corresponding languages. Also, these
two approaches have published results on the development and
implementation of actual decision support systems. PROforma is the only
approach that has developed a commercialized version. Both systems are
able to communicate with clinical information systems and users through
standard Application Programming Interfaces (APIs) or communication
protocols (e.g., CORBA).

A number of third parties have implemented decision support systems that are
able to execute Arden Syntax guidelines for use in their local institutions.
However, these are often not reusable in other environments.

The development and implementation of execution engines have not been a
major focus point of the GLIF developers until now. Recently, they have
started the development of the GuideLine Execution Language (GLEE),
although the development in still in its very early stages.

As mentioned earlier, no publications are known that address the
development of guideline execution engines, which are able to execute Asbru
guidelines.

8.2 Requirements

8.2.1 Overview
The descriptions and comparisons in the previous sections show that each
approach has a number of strong and weak points. This section formulates

Chapter 2 Discussion

67

requirements that were distilled from these strong and weak points in the
areas of guideline representation, acquisition, verification and execution that
can be used in the process of developing new approaches or improving
existing ones.

8.2.2 Guideline Representation

Primitives
A guideline representation must contain a set of primitives that is able to
represent all facets of simple as well as complex diagnostic and treatment
guidelines. These primitives must be understandable on a functional level by
guideline authors and on an executable level by computerized decision
support systems.

A guideline representation formalism must support at least the two necessary
basic building blocks: actions and decisions. In order to be able to specify
guideline-oriented actions (e.g., ‘prescribe new medication’ or ‘diagnose
patient with hypertension’) as well as programming-oriented actions (e.g., ‘get
all drugs from an EPR’ or ‘give message to user’) a guideline representation
must:

1. Provide a very expressive language that enables the specification of all

above-mentioned actions in a limited set of action-related primitives (e.g.,
the GEL language in GLIF, the R2L language in PROforma or the Asbru
expression language)

or

2. Provide the ability to derive new classes from the existing ones that define

new functionality (e.g., the non-closed DHARMA model in EON).

Other important primitives in a guideline representation model are primitives
that influence guideline flow such as entry/exit points (e.g., patient state
primitives) and repetition/loops (e.g., synchronization steps or the Asbru plan
type).

Temporal logic is a very important issue in guideline modeling. Guidelines
usually refer to complex temporal constructs to describe for example drug
prescription schemes. Therefore, a guideline representation model must
contain an expressive means of modeling temporal expressions (e.g., Asbru’s
temporal logic).

Chapter 2 Discussion

68

The truth-value of a decision can not always be evaluated as ‘true’ or ‘false’,
for example in the case of missing data (e.g., the patient’s medical history is
not known). Guideline models must be able to handle such situations (e.g.,
using the relatively simple three-valued logic in GLIF or the more complex R2L
language in PROforma).

Complexity
The guideline representation formalism must be able to represent various
kinds of guidelines, that may differ considerably in complexity in a consistent
manner such as relatively simple guidelines that model independent modular
rules (e.g., MLMs in the Arden Syntax or MLM-macros in GLIF), but also
complex guidelines such as clinical trials or treatment plans. In order to
represent these various types of guidelines in a consistent manner, the
formalism must be able to represent guidelines on multiple levels of
abstraction such as nesting, task or guideline decomposition (e.g.,
subguidelines or subplans in GLIF, EON, PROforma and Asbru), and
specifying the guideline’s intention or goal (e.g., Asbru’s intentions).

Knowledge
Computer-interpretable guidelines that are used for active decision support
must be integrated with existing clinical information systems such as
Electronic Patient Record (EPR) systems. Concepts that are used in a
guideline such as patient demographics, results of laboratory tests, indications
and drugs must be explicitly defined so that they can be mapped to entries in
a clinical information system. To facilitate the (re)use of a guideline among
different institutions and systems, the reasoning knowledge (e.g., the used
methods or primitives) must be separated from domain-specific knowledge
(e.g., used drugs or laboratory tests). Also, the representation should support
the use of standard data models and medical terminologies such as HL-7,
UMLS (e.g., the three-layered approaches in GLIF and EON) and SNOMED
[73].

Furthermore, in order to further facilitate the sharing of guideline-based
decision support systems and to increase the acceptance of (national)
guidelines in local institutions, actions that are programming-related must be
separated from actions that are not. In this manner, institution-specific actions
(e.g., sending an email to a physician vs. showing a message on a screen)
are defined separate from the knowledge that describes the guideline itself.
For example, guidelines may contain an additional ‘layer’ that describes such
actions, independent of the guideline process. This is supported by GLIF and
EON as it is possible to describe multiple kinds of tasks for each action such
as decision support-related or programming-related tasks.

Chapter 2 Discussion

69

Didactic and Maintenance
A guideline representation must be able to hold didactic and maintenance-
related information such as author names, versions, (literature) references,
sources and referees. Especially versioning-related information is very
important, as guidelines are usually dynamic (the contents may change
rapidly over time) and national guidelines may be adapted to local institutions.

Language
A guideline representation should define a formal language that is able to
capture all the requirements mentioned above, in an unambiguous way. On
the one hand, a representation must be abstract enough so that it is
interpretable by Knowledge Acquisition Tools (KA-Tools) and guideline authors
who do not have a logical or modeling background are able to define the
process (e.g., flow), decision criteria and actions in a guideline (e.g., the
decision criteria in GLIF). On the other hand, the representation must be
interpretable 1) by verification tools to test guidelines and 2) by automatic
parsers to execute guidelines (e.g., the LR2L language in PROforma).

8.2.3 Guideline acquisition
A very important issue in the development of guidelines is the acquisition
process. Each approach should be supported by KA-Tool (e.g., AsbruView,
Protégé and the PROforma KA-Tool). Although based on a representation
model, these tools must visualize guidelines from the viewpoint of a guideline
author who may have little notion of the precise structure of the underlying
language. The user interface of the KA-Tools must be flexible enough to
visualize guidelines on different level of complexity (e.g., macros in GLIF must
be visualized differently than entire flowcharts). Also, the various types of
knowledge (e.g., domain knowledge, reasoning knowledge and supporting
knowledge) must be visualized separately, depending on the role of the
guideline author. Finally, mechanisms that support multi-user and version
control must be provided.

8.2.4 Guideline verification and testing
To obtain unambiguous and syntactically as well as semantically correct
guidelines, verification tools (e.g., the PROforma verification tools) must be
provided to detect various kinds of errors such as errors concerning
incompleteness, inconsistencies, conflicts and (partial) tautologies, invalid- or
self-references and infinite loops. For example, in EON, action primitives can
represent the starting and stopping of a certain drug. A guideline verification
test should know and detect that these events are related. For example, it
should not be possible to stop a drug before starting it. Therefore, a ‘stop
drug’ action is never supposed to occur before a ‘start drug’ action. In GLIF,

Chapter 2 Discussion

70

every step that follows a branch step must always end at the corresponding
synchronization step. Verification tests must be able to reason with temporal
constructs in order to detect time-related errors. Finally, a simulation or test
environment must be available where guidelines can be tested against actual
or simulated patient data.

8.2.5 Guideline execution
As mentioned above, guidelines must be encoded in a format, interpretable by
automatic parsers that are incorporated in guideline execution engines. Every
approach must include such an engine that is able to execute guidelines in
various environments. Therefore, the guideline engine must be able to
interface with various clinical information systems in a consistent manner, for
example by mapping concepts from the guideline to corresponding items in a
clinical information system (e.g., the concept Drug in a guideline must be
mapped to a drug table of an information system’s database). Also, actions
that a guideline performs must be configurable as they may differ in various
local situations (e.g., send an e-mail in a certain situation in contrast to issuing
an on-screen alert in another one). This implies a component-based approach
in which each component performs a specific task such as reasoning or
interfacing. The encoded format as well as the guideline execution engine
must meet execution-time requirements such as compactness and execution
speed.

8.3 Conclusions
In the last decade, most of the attention is focused on the areas of guideline
representation models and underlying languages. However, the real benefit
lays in structuring and guiding the whole guideline development process: in
order to successively implement decision support systems that will be used in
daily practice, all the four areas (representation, acquisition, verification and
execution) must be taken into account. This is not a trivial task. Comparing the
various approaches, mentioned in this paper shows that design specifications
made in one area (e.g., guideline representation) have implications in other
areas (e.g., guideline execution).

For example, Asbru defines a guideline representation language that has a
very rich set of temporal constructs. However, a general guideline execution
engine still has to be developed that can be used in daily practice. Another
example is PROforma that focuses on guideline execution. This is reflected in
the guideline model: each primitive in the PROforma task ontology can easily
be mapped to a corresponding component in a guideline execution engine.
However, during guideline acquisition, all guidelines have to be defined in
terms of those primitives, which makes PROforma a more low-level language.

Chapter 2 References

71

Although significant progress has been made during the last years, especially
regarding guideline representation, several issues that relate to guideline
implementation and guideline-based decision support still have to be
addressed more extensively. Examples of such issues are how to implement
national guidelines as well as local adaptations of those guidelines and how to
increase the shareability of generic guideline execution engines among
different intuitions. Various solutions may be developed that address these
issues such as the development of versioning methods that enable
synchronization between national and local guidelines and the development of
standard interfaces to different external information systems.

In order to create an approach that is successful, an acceptable compromise
between all areas must be reached with the above-mentioned requirements
as starting points. In this compromise, a balance must be maintained between
the aspects of abstractness, expressiveness, formalization, acquisition and
execution.

References
1. Grimshaw JM, Russel IT. Effects of Clinical Guidelines on Medical Practice: A Systematic

Review of Rigorous Evaluation. Lancet 1993;342:1317-22.
2. Effective Health Care. Implementing Clinical Practice Guidelines: Can guidelines be used

to improve clinical practice? Effective Health Care 1994;8:1-12.
3. Audet A, Greenfield S, Field M. Medical practice guidelines: current activities and future

directions. Ann Intern Med 1990;113:709-14.
4. Vissers MC, Hasman A, van der Linden CJ. Impact of a protocol processing system

(ProtoVIEW) on clinical behaviour of residents and treatment. Int J Biomed Comput
1996;42(1-2):143-50.

5. East TD, Henderson S, Pace NL, Morris AH, Brunner JX. Knowledge engineering using
retrospective review of data: a useful technique or merely data dredging? Int J Clin Monit
Comput 1991;8(4):259-62.

6. Field MJ, Lohr KN (eds). Guidelines for Clinical Practice: From Development to Use.
Washington, DC.: National Academy Press, 1992.

7. Van Der Lei J, Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and
Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.

8. Fridsma DB, Gennari JH, Musen MA. Making Generic Guidelines Site-Specific. Proc
AMIA Symp 1996;:597-601.

9. Position statements from the Invitational Workshop: Towards Representations for
Sharable Guidelines. Available at http://www.glif.org/workshop/statement.htm.

10. Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY project--the iterative
development of the release one model. Proc AMIA Symp 1999;:359-63.

11. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa C. Guideline-based
careflow systems. Artif Intell Med 2000;20(1):5-22.

12. Herbert SI, Gordon CJ, Jackson-Smale A, Salis JL. Protocols for clinical care. Comput
Methods Programs Biomed 1995;48(1-2):21-6.

Chapter 2 References

72

13. Clayton PD, Pryor TA, Wigertz OB, Hripcsak G. Issues and structures for sharing
knowledge among decision-making systems: The 1989 Arden Homestead Retreat. In:
Kingsland LC (ed). Proceedings of the Thirteenth Annual Symposium on Computer
Applications in Medical Care. New York: IEEE Computer Society Press. 1989;:116–21.

14. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE. Pattison-Gordon
E. Greenes RA. Shortliffe EH. Barnett GO. The guideline interchange format: a model for
representing guidelines. JAMIA 1998;5(4):357-72.

15. Fox J, Johns N, Rahmanzadeh A. Disseminating medical knowledge: the PROforma
approach. Artif Intell Med 1998;14:157-81.

16. Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med
1998;14:29-51.

17. Musen MA, Tu SW, Das A, Shahar Y. EON: A Component-Based Approach to
Automation of Protocol-Directed Therapy. JAMIA 1996;3:367-88.

18. Wang D, Peleg M, Tu SW, Shortliffe EH, Greenes RA. Representation of Clinical Practice
Guidelines for Computer-Based Implementations. Medinfo 2001;10:255-9.

19. Tu SW, Musen MA. A flexible approach to guideline modeling. Proc AMIA Symp
1999;:420-4.

20. Boxwala AA, Tu SW, Zeng Q, Peleg M, Ogunyemi O, Greenes RA, Shortliffe EH, Patel
VL. Towards a Representation Format for Sharable Clinical Guidelines. J Biomed Inform
2001;34(3):157-69.

21. De Clercq PA, Blom JA, Hasman A, Korsten HHM. A strategy for development of practice
guidelines for the ICU using automated knowledge acquisition techniques. Int J Clin Monit
Comput 1999;15:109-117.

22. Pryor TA, Gardner RM, Clayton PD, Warner HR. The HELP system. In: Blum BI ed.
Information Systems For Patient Care. New York: Springer Verlag, 1984; 109-28.

23. McDonald C, Overhage JM, Dexter PR, Tierney WM, Suico JG, Zafar A, Schadow G,
Blevins L, Warvel J, Meeks-Johnson J, Lemmon L, Glazener T, Belsito A, Lindbergh D,
Williams B, Cassidy P, Xu D, Tucker M, Edwards M, Wodniak C, Smith B, Hogan T. The
Regenstrief Medical Record System 1999: Sharing Data Between Hospitals. Proc AMIA
Symp 1999;(1-2):1212.

24. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD. Rationale for the Arden
Syntax. Comput Biomed Res 1994;27(4):291-324.

25. Clinical Decision Support & Arden Syntax Technical Committee of HL7, inventor Arden
Syntax for Medical Logic Systems, version 2.0. Draft revision. USA. July 7, 1999.

26. Pryor TA, Hripcsak G. Sharing MLMs: an experiment between Columbia-Presbyterian and
LDS Hospital. Proc Annu Symp Comput Appl Med Care 1993;:399-403.

27. Sherman EH, Hripcsak G, Starren J, Jenders RA, Clayton P. Using intermediate states to
improve the ability of the Arden Syntax to implement care plans and reuse knowledge.
Proc Annu Symp Comput Appl Med Care 1995;:238-42.

28. Gao X, Shahsavar N, Arkad K, Ahlfeldt H, Hripc sak G, Wigertz O. Design and function of
medical knowledge editors for the Arden syntax. Medinfo 1992;:472-7.

29. Jenders RA, Dasgupta B. Assessment of a knowledge-acquisition tool for writing Medical
Logic Modules in the Arden Syntax. Proc AMIA Symp 1996;:567-71.

30. Bang M, Eriksson H. Generation of development environments for the Arden Syntax. Proc
AMIA Symp 1997;:313-7.

31. Hripcsak G, Cimino JJ, Johnson SB, Clayton PD. The Columbia-Presbyterian Medical
Center decision-support system as a model for implementing the Arden Syntax. Proc
Annu Symp Comput Appl Med Care 1991;:248-52.

Chapter 2 References

73

32. Kuhn RA, Reider RS. A C++ framework for developing Medical Logic Modules and an
Arden Syntax compiler. Comput Biol Med 1994;24(5):365-70.

33. Hripcsak G, Clayton PD. User comments on a clinical event monitor. Proc Annu Symp
Comput Appl Med Care 1994;:636-40.

34. The Intermed Collaboratory. Homepage available at http://smi-
web.stanford.edu/projects/intermed-web/.

35. Peleg M, Boxwala AA, Ogunyemi O, Zeng Q, Tu S, Lacson R, Bernstam E, Ash N, Mork
P, Ohno-Machado L, Shortliffe EH, Greenes RA. GLIF3: The Evolution of a Guideline
Representation Format. Proc AMIA Symp 2000;:645-9.

36. Stoufflet PE, Ohno-Machado L, Deibel SRA, Lee D, Greenes RA. GEODE-CM: A state-
transition framework for clinical management. In: Cimino JJ (ed). Proceedings of the
Twentieth Annual Symposium on Computer Applications in Medical Care. Philadelphia:
Hanley and Belfus, 1996:924.

37. Barnes M, Barnett GO. An architecture for a distributed guideline server In: Miller RA (ed).
Proceedings of the Nineteenth Annual Symposium on Computer Applications in Medical
Care. Philadelphia: Hanley and Belfus, 1995:233–7.

38. Object Management Group. Unified Modeling Language (UML) specification. Available at
http://www.rational.com/uml/index.jtmpl. version 1.3; 1999.

39. Peleg M, Ogunyemi O, Tu SW, Boxwala AA. Zeng Q. Greenes RA. Shortliffe EH. Using
Features of Arden Syntax with Object-Oriented Medical Data Models for Guideline
Modeling. Proc AMIA Symp 2001;:523-7.

40. Schadow G, Russler DC, Mead CN, McDonald CJ. Integrating Medical Information and
Knowledge in the HL7 RIM. Proc AMIA Symp 2000;:764-8.

41. Lindberg C. The Unified Medical Language System (UMLS) of the National Library of
Medicine. J Am Med Rec Assoc 1990;61(5):40-2.

42. Pattison-Gordon E. ODIF: Object Data Interchange Format. Boston, MA: Decision
Systems Group, Brigham and Women's Hospital; 1996. Report No.: DSG-96-04.

43. W3C. Extensible Markup Language (XML). Available at http://www.w3.org/XML/; 2000.
44. Advisory Committee on Immunization Practices A. Prevention and Control of Influenza.

Morbidity and Mortality Weekly Report 2000;49(RR03):1-38.
45. Irwin RS, Boulet LS, Cloutier MM, Gold PM, Ing AJ, O'byrne P, et al. Managing Cough as

a Defense Mechanism and as a Symptom, A Consensus Panel Report of the American
College of Chest Physicians. Chest 1998;114(2):133S-181S.

46. American College of Cardiology/American Heart Association/American College of
Physicians-American Society of Internal Medicine. Guidelines for the Management of
Patients with chronic Stable Angina. J Am Col Cardiol 1999;33:2092-2197.

47. Grosso WE, Eriksson H, Fergerson RW, Gennari JH, Tu SW, Musen MA. Knowledge
Modeling at the Millennium (The Design and Evolution of Protégé-2000). Proceedings of
the 12th International Workshop on Knowledge Acquisition, Modeling and Mangement
(KAW'99), Banff, Canada, October 1999.

48. Greenes RA, Boxwala A, Sloan WN, Ohno-Machado L, Deibel SRAA. Framework and
Tools for Authoring, Editing, Documenting, Sharing, Searching, Navigating, and Executing
Computer-based Clinical Guidelines. Proc AMIA Symp 1999;:261-5.

49. Zielstorff RD, Teich JM, Paterno MD, Segal M, Kuperman GJ, Hiltz FL, Fox RL. P-CAPE:
A High-Level Tool for Entering and Processing Clinical Practice Guidelines. Proc AMIA
Symp 1998;:478-82.

50. Boxwala AA, Greenes RA, Deibel SRA. Architecture for a Multipurpose Guideline
Execution Engine. Proc AMIA Symp 1999;:701-5.

51. Wang D, Shortliffe EH. GLEE - A Model-Driven Execution System for Computer-Based
Implementation of Clinical Practice Guidelines. Proc AMIA Symp 2002;:855-9.

Chapter 2 References

74

52. Fox J, Das S. The Logic of Medical Decision Making. In: Fox J, Das S. Safe and Sound:
Artificial Intelligence in Hazardous Applications 2000: 31-54.

53. Fox J, Das S. Arguments about beliefs and Actions: Decision making in the Real World.
In: Fox J, Das S. Safe and Sound: Artificial Intelligence in Hazardous Applications 2000:
55-76.

54. Fox J, Das S. The RED Knowledge Representation Language. In: Fox J, Das S. Safe and
Sound: Artificial Intelligence in Hazardous Applications 2000: 191-206.

55. Fox J, Das S. Constructing Intelligent Systems. In: Fox J, Das S. Safe and Sound:
Artificial Intelligence in Hazardous Applications 2000: 77-116.

56. Fox J, Das S. Safety First. In: Fox J, Das S. Safe and Sound: Artificial Intelligence in
Hazardous Applications 2000: 191-206.

57. Fox J, Das S. A formalization of safety. In: Fox J, Das S. Safe and Sound: Artificial
Intelligence in Hazardous Applications 2000: 77-116.

58. InferMed. Homepage availabe at http://www.infermed.com.
59. Miksch S, Shahar Y, Johnson P. Asbru: A Task-Specific, Intention-Based, and Time-

Oriented Language for Representing Skeletal Plans. Proceedings of the Seventh
Workshop on Knowledge Engineering Methods and Languages (KEML-97), Milton
Keynes, UK.

60. Chandraskekaran B. Generic tasks in knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert 1986;1:23-30.

61. Asbru 7.2 syntax. Available at http://www.ifs.tuwien.ac.at/asgaard/asbru/#Syntax.
62. Miksch S, Kosara R. Shahar Y. Johnson PD. AsbruView: Visualization of Time-Oriented,

Skeletal Plans. The Fourth International Conference on Artificial Intelligence Planning
Systems 1998, Carnegie-Mellon University, Pittsburgh, PA, 11-18. 1998.

63. Kosara R, Miksch S. Metaphors of movement: a visualization and user interface for time-
oriented, skeletal plans. Artif Intell Med 2001;22(2):111-31.

64. Duftschmid G, Miksch S. Knowledge-based verification of clinical guidelines by detection
of anomalies. Artif Intell Med 2001;22(1):23-41.

65. World Wide Web Consortium, Resource Description Framework (RDF). Available at
http://www.w3.org/RDF/

66. Knowledge Interchange Format: Draft Proposed American National Standard (dpANS).
1998.

67. Nguyen JH, Shahar Y, Tu SW, Das AK, Musen MA. Integration of Temporal Reasoning
and Temporal-Data Maintenance into a Reusable Database Mediator to Answer Abstract,
Time-Oriented Queries: The Tzolkin System. Journal of Intelligent Information Systems
1999;13(1-2):121-45.

68. Tu SW, Musen MA. Modeling Data and Knowledge in the EON Guideline Architecture.
Medinfo 2001;10:280-4.

69. Tu SW, Musen MA. From guideline modeling to guideline execution: defining guideline-
based decision-support services. Proc AMIA Symp 2000;:863-7.

70. Shankar RD, Musen MA. Justification of Automated Decision-Making: Medical
Explanation or Medical Argument? Proc AMIA Symp 1999;:395-9.

71. Goldstein MK, Hoffman BB, Coleman RW, Musen MA, Tu SW, Advani A, Shankar R,
O'Connor M. Operationalizing Clinical Practice Guidelines While Taking Account of
Changing Evidence: ATHENA, an Easily Modifiable Decision-Support System for
Management of Hypertension in Primary Care. Proc AMIA Symp 2000;:280-4.

72. Bury JP, Saha V, Fox J. Supporting ‘scenarios’ in the PROforma guideline modeling
format. Proc AMIA Symp 2001;:870-4

73. Spackman KA, Campbell KE, Cote RA. SNOMED RT: a reference terminology for health
care. Proc AMIA Symp 1997;:640-4.

CHAPTER 3

THE APPLICATION OF PROBLEM-SOLVING METHODS

AND ONTOLOGIES FOR THE DEVELOPMENT OF

SHAREABLE GUIDELINES

Published in:
Artificial Intelligence in Medicine 2001;22(1):1-22

Paul A. de Clercq

Arie Hasman
Johannes A. Blom

Hendrikus H.M. Korsten

Chapter 3 Introduction

76

1 Introduction

1.1 Overview
Recently, studies have shown the benefits of using clinical guidelines in the
practice of medicine [1]. Utilizing guidelines such as standard care plans,
critical pathways and protocols in various clinical settings may lead to the
reduction of practice variability and patient care costs, while improving patient
care [2]. Computer-based clinical guidelines are increasingly applied in
diverse areas such as policy development, utilization management, education,
conduct of clinical trials, and workflow facilitation. Many parties are developing
computer-based guidelines as well as decision support systems that
incorporate these guidelines [3]. There is little standardization to facilitate
sharing of guidelines or to enable adaptation to local practice settings [4].
However, currently efforts are made to introduce standardized approaches for
guideline representation and sharing [5]. This paper discusses some of the
suggested representations and discusses their weak and strong points, and
demonstrates and discusses a new approach that extends earlier-developed
formalisms. The overall goal of this approach is to improve the acceptance of
shareable guidelines and decision support systems in daily care by facilitating
the guideline acquisition and execution phases.

1.2 Guideline representation formalisms
Requirements for a sharable guideline representation language have been
formulated [6, 7] and include the possibility to represent temporal logic,
branching and sequencing, patient data elements, (eligibility) criteria, actions
and decompositions of actions.

1.2.1 Modeling in terms of primitives
A common approach to satisfy these requirements has been to model
guidelines in terms of primitives that represent steps such as actions,
decisions and plans. Examples of these representations are the Arden Syntax
[8], Proforma [9], the GuideLine Interchange Format (GLIF) [6], Asbru [10] and
EON [7]. The Arden Syntax, a language intended as an open standard for the
procedural representation and sharing of medical knowledge, does not satisfy
all above-mentioned requirements. It defines a representation for modular
decision rules that are encoded as Medical Logic Modules (MLMs). Each
MLM contains a production rule that relates a set of input conditions (e.g.,
patient data from a hospital information system) to a particular set of actions
to take (e.g., send reminders or alerts to a clinician). But since MLMs include
only terms and no further qualifying domain knowledge in the rule’s premise, it
is difficult to reason about a domain in terms of clinical concepts and

Chapter 3 Introduction

77

strategies used to solve problems in that domain [11]. Nevertheless, the Arden
Syntax has been accepted as a standard by a large number of researchers
and developers in the medical community.

In order to meet the above-mentioned requirements more fully,
representations such as GLIF and Proforma were developed that define a
richer set of primitives (e.g., primitives that represent decisions, branching and
actions). In addition, languages were developed that are able to reason with
complex temporal logic (e.g., Asbru and EON).

1.2.2 Modeling in terms of Problem-Solving methods
In parallel, various research groups developed representation formalisms that
concentrated on the abstract behavior of decision supports systems in
general. These formalisms express the notion that the behavior of decision
support systems can be described by means of two independent classes of
reusable components: 1) domain ontologies and 2) Problem-Solving Methods
or PSMs.

Domain ontologies provide a domain of discourse [12]; they model entities
and relationships for a particular domain of interest such as intensive care or
psychiatry. Problem-solving methods represent generic strategies to solve
stereotypical tasks, independent of the system’s application domain [13].
Clancey, for example, identified heuristic classification as a recurring strategy
in various rule-based systems such as MYCIN [14]. PSMs such as heuristic
classification are role-limiting by nature [15], meaning that the PSMs impose
specific problem-solving roles on domain knowledge. These problem-solving
roles are referred to as knowledge roles, which give an abstract description of
the function domain knowledge has to play. When refining a PSM to a certain
domain, the knowledge roles are mapped onto domain knowledge. PSMs can
be reused to solve similar problems in different application domains by using
different domain ontologies. PSMs are decomposable into subtasks, which
can be executed by submethods. When no longer decomposable, a
submethod is referred to as a primitive PSM or mechanism.

During the last decade, a number of different approaches have been
developed to represent the behavior of decision support systems in terms of
domain ontologies and PSMs (although each one is based on specific
viewpoints and methodologies). Well-known approaches are CommonKADS
[16], OCML [17], Protégé [18] and UPML [19].

Chapter 3 Introduction

78

1.2.3 Primitives vs. PSMs
When comparing guidelines that consist of primitives to guidelines that consist
of PSMs, each approach has its strong points as well as its shortcomings. An
advantage of the PSM-based approach is the separation of domain-specific
knowledge and domain independent methods, which increases the reusability
and shareability. A primitive is more difficult to reuse because often domain
and procedural knowledge are intertwined. Also, as PSMs pre-define the
global control structure, in a Knowledge Acquisition Tool or KA-Tool the author
only has specify the knowledge component [20, 21]. This is in contrast to the
primitive-based approach where also the control structure has to be explicitly
stated.

However, most of the guideline representations that are used in clinical
practice today do not use the notions of PSMs or ontologies, for several
reasons. As PSMs are domain-independent representations, the visualization
of a PSM through a KA-Tool may be too abstract for a domain expert to enter
domain knowledge efficiently. Most importantly, however, certain types of
protocols used in daily practice do not easily fit the highly formalized formats
used in a PSM.

1.2.4 Combining primitives and PSMs: a new approach
In order to represent and implement guidelines in various application
domains, this paper argues that the granularity and abstraction level of a
guideline representation formalism must reflect the guideline’s characteristics.
It defines a new approach, in which a guideline can be represented in terms of
1) primitives to construct the guideline’s control structure explicitly as well as
2) PSMs to model guidelines that perform stereotypical tasks. Also, guidelines
may contain subguidelines in order to solve multiple tasks. Two types of
ontologies are defined: domain ontologies and method ontologies. As
mentioned earlier, domain ontologies model domain-specific knowledge in
terms of entities, attributes and relations. Method ontologies [22] model
concepts such as primitives, PSMs and guidelines similarly. Furthermore, our
approach also defines a method library, which consists of a number of
available PSMs.

Primitives are used 1) to describe single guideline steps, and 2) to describe
the internal structure of PSMs. The model is non-monolithic, meaning that
ontologies can be extended to capture new guideline characteristics. The
remaining part of this paper describes this approach. Section 2 presents an
overview of the ontological representation. Section 3 presents a framework
that facilitates the guideline acquisition and execution stages. Examples of
PSMs and guidelines that were developed by means of this framework are

Chapter 3 The ontological guideline representation

79

shown in section 4. Section 5 discusses a number of developed systems and
section 6 discusses the approach in comparison with other ones.

2 The ontological guideline representation

2.1 Representing domain knowledge
To represent domain ontologies, the Entity-Relationship (ER) model [23] was
used. Figure 1 shows a section of a domain ontology that was developed by
means of the ER model. This particular domain ontology was designed for use
in Intensive Care Units (ICUs) and consists of entities, relations and attributes
related to the ICU domain such as drugs, diseases and treatments and
relationships such as the Has_Interactions relation.

Domain_Entity
……Treatment
……Drug
…………Antibiotic
…………Circulation
………………Acetylcysteine
……………………Adenosine
……………………Amiodarone
……………………Amlodipine
…………Beta-Blocker
…… Cardio-surgical
……Disease
……Indication
……Laboratory_Test
Relation_Entity
……Interaction_Relation

Drug

Dose -> number
Unit -> symbol (values: mmol/l, mg/kg, mg/pill)
Has_Interactions ->* Interaction_Relation

Interaction_Relation

 -> Drug
Severity -> symbol (values: normal, severe,

contraindicated)

……

Name -> string
ID -> number

Name -> string
Target

Figure 1: Part of a domain ontology. The left column shows a class hierarchy of

entities that describe a particular domain (ICU). The right column presents a more
detailed view of two classes and their attributes (not all attributes are shown). Each
attribute has a type such as integer, string or symbol and is by default inherited by

the subclasses (attributes that are inherited from other classes are shown in italic). In
this example, the Interaction_Relation class models an interaction between two

drugs. By means of the Interaction_Relation’s Severity attribute, each
interaction can be characterized as normal, severe or contraindicated. Attributes may
refer to one instance (e.g., each drug has only one dose) or multiple instances (e.g.,
each drug may have various interactions). If an attribute refers to multiple instances,

an asterisk follows the arrow

Concepts in a domain ontology may also contain references to patient records
or terminology servers where the actual data can be found during the
execution of a guideline. Although this enables the reuse of domain ontologies
(e.g., a single domain ontology can be linked to multiple patient record
systems or terminology servers), incompatibilities may exist between concepts
from the domain ontology and concepts from a patient record or terminology
server. This problem is also referred to as the mapping problem [24].

Chapter 3 The ontological guideline representation

80

2.2 Representing guidelines

2.2.1 Method ontologies
As mentioned earlier, guidelines are represented by a set of primitives or by
means of a PSM. Similar to domain ontologies that describe domain-specific
knowledge, method ontologies can be used to model primitives, PSMs and
guidelines in terms of entities, attributes and relations. A core method ontology
was developed that defines the characteristics of a primitive, a PSM, a
guideline and related concepts. Figure 2 shows a part of the core method
ontology that was developed to model various categories of guidelines.

Guideline_Entity

……PSM
……Primitive
…………Control_Primitive

Decision
………………Boolean_Criterion
………………K_Of_N_Criteria
…………Branching
…………Synchronization

…………Action
Knowledge_Role

Guideline

……Guideline

………………
……
……
……
……

……Input_Role
……Output_Role
……Intermediate_Role
Definition
……Procedure_Definition
……Visualization_Definition
Control_Structure

Primitive

K_Of_N_Criteria

Parameters ->* Intermediate_Role
Procedure -> Procedure_Definition

PSM

K_Of_N_Criteria

Control -> Control_Structure
Description -> string
Knowledge_Roles ->* Knowledge_Role

Control -> Control_Structure
Task_Description -> string
Validation -> symbol (values: test, Production)
Target_Users -> string
Eligibility_Criteria -> K_Of_N_Criteria
Abort_Criteria -> K_Of_N_Criteria

Name -> string
Author -> string
Explanation -> string
Goal ->
Visualization -> Visualization_Definition

Name -> string
Author -> string
Explanation -> string
Goal ->
Visualization -> Visualization_Definition

->
->

Goal -> K_Of_N_Criteria
Visualization -> Visualization_Definition

Name -> string
Author string
Explanation string

Figure 2: A section of the core method ontology that describes the guideline model.

The left column shows a hierarchy of classes that represents primitives, PSMs,
guidelines and related concepts. It also presents a number of primitives that are used

to describe single guideline steps such as decisions and actions. The right column
shows the three main classes in detail (again, not all attributes are shown).

2.2.2 Primitives
In the guideline model, primitives represent both non-decomposable parts in a
guideline (e.g. decisions and actions) similar to earlier-mentioned
representations, and non-decomposable parts in PSMs. These primitives are
based on version 2.0 of GLIF [6]. This specification (which originates from an
earlier version of EON) defines four types of primitives that are commonly
used to describe guidelines, such as 1) Action primitives that specify clinical

Chapter 3 The ontological guideline representation

81

actions, 2) Decision primitives that model decision points in a guideline, 3)
Branching primitives that direct the guideline flow to multiple (parallel) paths
and 4) Synchronization primitives that converge paths that previously
diverged by means of a Branching primitive. The K_Of_N_Criteria primitive
for example, derived from the Decision primitive represents a logical
statement that directs the flow of the guideline depending on its evaluation
(true or false). The statement contains a number of criteria and is evaluated
as true if at least a certain number (K) of all criteria (N) is true.

In addition to the attributes that are administrative in nature (e.g., name,
author and an explanation), a primitive in the method ontology also contains
additional attributes such as the Parameters, Visualization and Procedure
attributes, that define the primitive’s capabilities. Parameters are intermediate
roles, used to further define primitives but also may contain mappings to
parameters from other primitives, to concepts from the domain ontology or to
knowledge roles from a PSM. Visualization information is used by a system
developer to define the characteristics of a primitive-specific user interface in
a KA-Tool. Finally, the Procedure attribute contains execution-time information
(executable code), used by a decision support system that incorporates the
primitive.

2.2.3 Problem Solving Methods
PSMs model stereotypical processes that may occur in a guideline (e.g.,
heuristic classification or risk-assessment). A PSM differs from a primitive in a
number of aspects. First, PSMs define input and output knowledge roles,
used for communication outside the PSM (e.g., to exchange information with
another PSM that uses this PSM to solve a subtask). It also contains a
description of the used strategy (in the current version of the ontological
model, this description is stated in an informal way) and a goal that formally
describes the goal of the PSM. In contrast to primitives, PSMs have a control
structure that describes the internal structure of the PSM in terms of
subcomponents. This structure may refer to subtasks (that are solved by other
PSMs), but also to primitives. Similar to primitives, PSMs also contain
visualization information defining a specific user interface for use in a KA-Tool.
However, as the PSM has access to all the visualization information of the
subcomponents in the control structure (in terms of knowledge roles), this
information can be used by the PSM to construct user interfaces by combining
visualization information from all subcomponents), as will be illustrated later.
The actual implementation procedure of each primitive is hidden from the
PSM.

Chapter 3 The framework

82

2.2.4 Guidelines
The Guideline class describes an entire (sub)guideline, which is associated
with a task. This task can be solved by processing a set of primitives or by
selecting an appropriate PSM. Similar to a PSM, the internal structure of a
guideline is described by a control structure (in terms of subcomponents). The
control structure of a guideline contains a set of primitives or a reference to a
single PSM. In case of the PSM, the rationale behind this limitation is that
each guideline must solve a task, which is executed by a single PSM (the
PSM however, can use subtask decomposition to solve the task). In order for
a guideline to solve multiple tasks, subguidelines are used.

The visualization information of a guideline 1) creates a flowchart in case the
control structure consists of a number of elements or 2) utilizes the
visualization information of the PSM in case the guideline consists of a single
PSM.

Furthermore, the Guideline class defines several guideline-specific attributes
such as a task attribute that (informally) describes the task that has to be
solved, eligibility criteria that may evoke a guideline, abort criteria that may
abandon it and temporal criteria (e.g., this guideline is to be executed 4 times
a day). Other guideline-specific attributes are a Validation attribute that
indicates whether the guideline has been approved for routine use
(production) or is still in the test phase (test), and a Target_Users attribute
that denotes the intended users of the guideline (e.g., administrators,
physicians or nurses). Finally, a guideline also contains an attribute that
formally defines the goal of the solved task.

3 The framework
To facilitate the representation and development of guidelines and
corresponding decision support systems by means of primitives, PSMs and
domain ontologies, a framework that supports this methodology has been
developed. This framework consists of a suite of tools that support the various
stages in guideline development. Figure 3 shows the process view of the
framework.

The process consists of four stages:

1. Develop, derive or reuse application-specific domain and method

ontologies.
2. Develop or reuse libraries of PSMs.
3. Develop guidelines in terms of PSMs and primitives with a KA-Tool.

Chapter 3 The framework

83

4. Automatically translate these guidelines into a more efficient symbol-level
representation, which can be read in and processed by an execution-time
interpreter.

Ontology
Editor

Domain
Ontology

Method
Library

Domain-specific
Methods

Method
Ontologies

KATool Decision Support-System

Method
Manager

Design-time
Interpreter

Execution-time
Interpreter

Symbol-level
Knowledge Base

Figure 3: Process view of the framework. Rounded rectangles represent models

(e.g., ontologies), straight rectangles represent modules (e.g., programs)

Several tools support each stage. The ontology editor, developed in the
Protégé project [18] was used to facilitate the development of domain and
method ontologies. A separate KA-Tool was developed (not automatically
generated by Protégé), consisting of a kernel of which the functionality is
extended by loading additional plug-ins. Finally, a run-time environment was
developed that executes guidelines, acquired through the KA-Tool. A more
detailed and technical description of the framework can be found elsewhere
[25].

The first stage involves developing or reusing domain and method ontologies
by defining hierarchies of entities, attributes and relations. Depending on the
requirements of the method ontology, existing domain ontologies can be
extended with new attributes or relations.

A method library is a collection of available PSMs and primitives created in the
second stage that can be used in the third stage for the definition of guidelines
to solve certain tasks. As PSMs usually describe rather abstract problem-
solving behavior, a knowledge engineer uses the method manager to define
application-specific PSMs by refining the PSM’s knowledge roles. In addition,
the method manager supports the creation of not only application-specific but
also domain-specific methods by mapping concepts from the domain ontology
onto the corresponding knowledge roles in the method ontology.
The third stage utilizes the KA-Tool, containing a design-time interpreter that
loads the required primitives and domain-specific methods and creates a user
interface that enables guideline authors to develop guidelines. Primitives are

Chapter 3 Examples

84

represented in a flowchart, whereas PSMs are visualized by utilizing the
visualization information of the PSM itself. The latter enables guideline
authors to enter domain information regarding the corresponding task without
any knowledge of the internal control structure of the PSM.

When instructed, the KA-Tool combines the control structure of each guideline
and PSM and creates a structure that consists solely of primitives, creating a
symbol-level knowledge base that is processed by an execution-time
interpreter that executes the implementation modules that are attached to
each primitive.

4 Examples
This section describes three examples of guidelines -developed using the
framework described in this paper- to illustrate the versatility of this
methodology. The first example shows the representation of rule-based
guidelines (e.g., MLMs) by means of the framework, whereas the second
example shows the application of a selection PSM to solve common domain-
independent tasks (e.g., the detection of drug interactions). Finally, the third
example shows a complex hypertension guideline that consists of a number of
subguidelines, some of which contain only primitives, whereas others use a
single PSM to solve the subguideline’s task.

4.1 Situation-Action Rules

4.1.1 Representing Situation-Action Rules
The Situation-Action Rule (SAR) model represents a guideline by means of a
production rule that performs an action (e.g., generating a message or writing
data to a database) whenever the premise of a rule evaluates to true (‘IF
conditions THEN Action’). This model is very natural for certain classes of
decision support systems such as reminder systems [26, 27]. All SARs share
an identical format and perform similar actions. Therefore, it is possible to
define the control structure of a SAR in terms of primitives, similar to a PSM.
However, a SAR is not a PSM in the true sense of the definition, as it does not
utilize a specific strategy to solve a class of tasks, but uses an inference
method (e.g., forward chaining) to process a collection of rules. Nevertheless,
we have included this example to illustrate that with our approach it is
possible to define rule-based guidelines (which is still a very common
approach in the medical community) as well as complex PSMs and guidelines
by means of the same representation and methods.
In terms of a general inference strategy, a SAR performs the following steps:

Chapter 3 Examples

85

1. Validate all conditions. If a condition requires the execution of another SAR
(referred to as an intermediate rule in the SAR model), execute that rule
first.

2. If all conditions are satisfied, perform a certain action such as generating a
reminder or executing another SAR.

From this description it is clear that SARs are not PSMs, as they contain no
particular problem-solving strategy, but rely on a rule-specific inference
mechanism (e.g., forward chaining). Translating this strategy into a control
structure in terms of primitives is rather straightforward, as there are only two
steps to be taken in order to execute each SAR guideline:. Therefore, only two
classes are needed to execute each SAR: the K_Of_N_Criteria class (in
which K=N) and (a subclass of) the Action class. For this purpose, the earlier-
discussed core method ontology was extended with classes that represent
actions. Figure 4 shows part of an extended method ontology, used for
defining SARs.

Guideline_Entity
……Guideline
…
…
…………Control_Primitive
………
………

…………
…………
……

……
……

Name -> string
Author -> string
Explanation -> string
Satisfied_Step -> Guideline, Primitive
Otherwise_Step -> Guideline, Primitive

Name -> string
Author -> string
Explanation -> string

…PSM
…Primitive

………Decision
……………Boolean_Criterion

…… ……K_Of_N_Criteria
……… …Branching
…… ……Synchronization

……Action
…… ……Output
……………………Show_Reminder
……Condition

K_Of_N_Criteria

Criteria ->* Condition

Show_Reminder

Reminder_Message -> string

Figure 4: An extended method ontology, for defining SARs. Classes from included
ontologies are shown in italics. The K_Of_N_Criteria class is inherited from the

core ontology (in contrast with figure 3, the capability attributes are not shown here).
It models a decision based on a number of criteria by means of a Criteria attribute
that holds the given criteria, and the Satisfied_Step and Otherwise_Step that are

references to (sub)guidelines or primitives that may follow the K_Of_N_Criteria
primitive. The Condition class is an auxiliary class that contains the mappings to the
applied domain concepts. Furthermore, this ontology also defines a Show_Reminder

action used by reminder systems to generate advice

This particular method ontology was developed for use in the CritICIS system,
a real-time reminder system that provides decision support in ICUs [28]. The
ontology extends the core method ontology with a Show_Reminder primitive,
which models the action of issuing a reminder.

Chapter 3 Examples

86

4.1.2 Authoring Situation-Action Rules
Each primitive contains information to visually represent itself in a KA-Tool by
means of mapping knowledge roles onto the user interface of the KA-Tool.
From the viewpoint of the guideline’s author, each SAR performs a single
task, of which (s)he only has to specify the conditions and desired actions.
Based on the control structure and visualization information of the SAR
strategy, the KA-Tool design-time interpreter is able to construct a user
interface. It provides a means for entering conditions and actions. For
example, figure 5 shows the KA-Tool containing the domain ontology and
SAR guidelines for the CritICIS system.

Figure 5: The conditions of a SAR in the KA-Tool. The Potassium pop-up window

shows the attributes of the potassium laboratory test

The KA-Tool consists of three panes. The upper left pane presents an
overview of all designed guidelines, whereas the lower left pane shows all
concepts defined in an application-specific domain ontology. Whenever a
guideline is selected in the upper left pane, the design-time interpreter
constructs a user interface, shown in the right pane. The design-time
interpreter hides the guideline structure and maps all attributes onto two
pages: a ‘General properties’ page and a ‘Conditions’ page. In the first page
(not shown here) all common attributes (e.g., name, author and explanation)
can be entered, as well as a reminder message (linked to an instance of the

Chapter 3 Examples

87

Show_Reminder class). The second page presents all conditions, taken from
the K_Of_N_Criteria instance. In this example, all conditions are satisfied
when a laboratory test, carried out less than two days ago, returns a
potassium concentration that is lower than 3 mmol/l and the drug Digoxin has
been prescribed as well. The conditions consist of instantiated entities from
the domain ontology, which are selected from the domain ontology pane and
dragged to the right pane. This operation implements the AND-operator. The
OR-operator is implemented by dragging a domain entity from the domain
ontology pane atop an existing condition in the right pane. Finally, it is also
possible to edit the attribute values of a domain entity.

4.1.3 Executing Situation-Action Rules
As mentioned earlier, each primitive contains a reference to an
implementation procedure. The execution-time interpreter uses this
information when executing guidelines. In this example, the execution-time
interpreter executes the procedures corresponding to the K_Of_N_Criteria
and Show_Reminder primitives. Figure 6 shows a reminder, generated by the
CritICIS system.

Figure 6: A reminder generated by the CritICIS system. When the SAR’s conditions

evaluate to true, the reminder system generates and displays a reminder, shown
overlaying the user interface of a specific Computer-based Patient Record system

Chapter 3 Examples

88

4.2 Event-Based Modular Tasks

4.2.1 Representing Event-Based Modular Tasks
Representing complex guidelines is usually more difficult than representing
‘simple’ reminders [11]. Van der Lei and Musen developed a model that
defines four particular classes of common domain-independent tasks such as
selection tasks, preparation tasks, monitoring tasks and responding tasks [29].
All tasks that fall into these four classes are characterized as Event-Based
Modular Tasks (EBMTs) [30], as each task is modular and can be solved by
means of a sequence of steps that are executed whenever a pertinent event
occurs (e.g., starting a new drug). This event is usually generated by an
external source such as a Computer-based Patient Record (CPR). These
tasks can also be used for guideline implementation.

The remaining part of this paragraph uses the class of selection tasks as an
example. Selection tasks check whether a physician’s selected action or
decision is appropriate, and if not provide feedback. An example of a selection
task is the detection of drug interactions. A selection PSM with the following
general strategy was developed to solve these tasks:

1. Determine the selected treatment. As PSMs that solve EBMTs are

triggered via a pertinent event, this step is automatically executed first.
2. Conclude which constraints are violated. For example, are there current

treatments that are not compatible with the selected treatment?
3. Report all violated constraints. This PSM does not try to ‘fix’ violated

constraints (as is done for example by the propose-and-revise PSM), but
merely reports violated constraints to the user that started the treatment.
This approach is usually applied in critiquing systems [31], which is the
type of decision support systems intended by the developers of the
selection tasks.

Further specification of three knowledge roles refines this PSM: 1)
specification of the treatment, 2) specification of the constraints, and 3)
specification of the way in which violations are reported. The first two are input
roles, whereas the last one is an output role.

The drug interactions task warns against unwanted combinations of drugs. By
specifying the required knowledge roles, the selection PSM is able to report
drug interactions. In order to solve this particular task, the PSM must take the
following steps:

Chapter 3 Examples

89

• Determine all drugs that have known interactions with the newly
prescribed drug

• Determine all drugs that are being prescribed
• Report all drugs that are known interactions as well as being prescribed as

interactions

The first step requires access to a domain ontology to determine all possible
interactions, whereas the second step requires access to the CPR to obtain
all prescribed drugs. Finally, the third step issues a reminder. To describe the
control structure of the selection and similar PSMs, the method guideline
ontology was extended with new primitives, as shown in figure 7.

Guideline_Entity
……Guideline

………………
……

……
……

……

………………

Output
……………………Show_Reminder

Name -> string
Author -> string
Explanation -> string

Name -> string
Author -> string
Explanation -> string

……PSM
……Primitive
…………Control_Primitive

Decision
………………Boolean_Criterion

…… …………K_Of_N_Criteria
…………Branching

…… ……Synchronization
…………Action

Set_Operator
……………………Add_Entities_By_External
……………………Add_Entities_By_Relation
……………………Logical_Operator
………………

……………………Generate_Advice_From_Entities
……Set

Logical_Operator

Input_Sets ->* Set
Output_Set -> Set
Operation -> symbol (values: OR,

AND, XOR, NOT)

Generate_Advice_From_Entities

Entities_Set -> Set
Message_Mask -> string

Figure 7: A section of the derived EBMT method ontology. It defines various

primitives that represent operations on sets of domain entities, such as
Add_Entities_By_External, which is used to obtain a set of prescribed drugs from
an external source (e.g., CPR), Add_Entities_By_Relation, used to determine all
known interactions of the newly prescribed drug, and Logical_Operator, used to
determine the conjunction of two sets. Furthermore, the ontology also defines the

Generate_Advice_From_Entities primitive, which is used to report known
interactions. Finally, The Set class is a data structure, used to store a number of

domain entities (e.g., drugs)

Figure 8 presents a part of the control structure of the refined selection PSM
in terms of used primitives. By applying different refinements, this PSM could
be used to solve all selection tasks. Besides selection tasks, other EBMTs
such as monitoring tasks, preparation tasks and responding tasks can also be
solved by PSMs, similar to the one that was used to solve the selection tasks.
The example, presented in this section, describes a PSM that was refined
with simple straightforward mappings (although even this example has been
somewhat simplified for the convenience of the reader). In many situations
however, mapping terms from one (domain or method) ontology to another is

Chapter 3 Examples

90

not very straightforward. Problems arise if mappings are not one-to-one or,
even worse, there are semantic differences between the various ontologies
[32].

Branching_1 of Branching
(Parameters:Selection_Method = all_off

Order_Constraint = any_order)
Branches = Add_Entities_By_Relations_1,

Add_Entities_By_External_1)

Add_Entities_By_Relations_1 of Add_Entities_By_Relations
(Parameters:Source_Class = Drug

Source_Relation = Has_Interactions)
Output_Set = Set_1
Successor = Synchronization_1)

Add_Entities_By_External_1 of Add_Entities_By_External
(Parameters:Source_Class = Drug

Output_Set = Set_2
Successor = Synchronization_1)

Synchronization_1 of Synchronization
(Parameters:Continuation = wait_for_all

Successor = Logical_Operator_1)

Logical_Operator_1 of Logical_Operator
(Parameters:Input_Sets = Set_1,Set_2

Operation = AND
Output_Set = Set_3)

Generate_Advice_From_Entities_1 of Generate_Advice_From_Entities
(Parameters:Entity_Set = Set_3

Message_Mask = ‘%event.name% and %Entity_Set.name%
are known interactions’)

Figure 8: The control structure of the selection PSM, refined to report drug

interactions. The control structure of the selection PSM consists of six primitives.
Each primitive is characterized by means of parameters, which may refer to global

structures that contain information that is used throughout the control structure (e.g.,
Set_1, Set_2 and Set_3). The Branching and Synchronization primitives are

used to determine all known interactions as well as prescribed drugs (details on the
attributes of the Branching and Synchronization classes are described elsewhere
[6]). The Add_Entities_By_Relations_1 instance collects all known interactions by

means of the Has-Interactions relation whereas the
Add_Entities_By_External_1 instance collects all prescribed drugs from the CPR.
The Logical_Operator_1 instance determines all known interactions that are also

prescribed, which are reported by the Generate_Advice_From_Entities_1 instance
(the reminder message is generated from the Message_Mask attribute). Set_1, Set_2

and Set_3 are instances of the Set class

4.2.2 Authoring Event-Based Modular Tasks
Although the control structure of PSMs that are used to solve EBMTs is more
complex than that of SARs, each PSM still performs a single task from the
viewpoint of the guideline’s author. Figure 9 shows the corresponding KA-Tool
(also taken from the CritICIS system). It uses the visualization information
from the PSM and provides a means for entering domain-specific knowledge
such as drugs and their interactions.

Chapter 3 Examples

91

Figure 9: The user interface generated by the selection PSM to represent the drug

interaction task. It represents this PSM by means of an Events pane and an
Interactions pane, where each entity in the Event pane denotes a newly prescribed

drug. The content of the Interactions pane depends on the selected event in the
Events pane and lists all known interactions of the newly prescribed drug. Similar to

the KA-Tool that visualizes a SAR, drugs are selected in the application ontology
pane and dragged onto the Events or Interactions pane. Every drug that is linked to

an event by dragging it to the Interactions pane creates a Has_Interactions
relation in the application ontology between the event and the dragged drug (and

also the other way around, as this relation is bilateral)

4.2.3 Executing Event-Based Modular Tasks
Similar to the previous example, PSMs that solve EBMTs are executed by
means of the procedures attached to each primitive. In the CritICIS system,
for example, whenever an ICU physician prescribes a new drug for a given
patient, the CPR system activates CritICIS with a Prescribe_New_Drug
event. The CPR system also supplies additional parameters such as the
patient’s ID and the name of the started drug. Among other tasks, this event
causes the execution of the refined drug interaction PSM, which retrieves
from the domain ontology all known drugs that have an interaction relation
with the started drug and queries the CPR to determine whether one of them
is present. Whenever this is the case, the system performs one or more
actions. Similar to the reminder shown in figure 6, CritICIS reports violated
constraints by means of pop-up windows [30].

Chapter 3 Examples

92

4.3 A complex guideline for the treatment of hypertension

4.3.1 Representing complex temporal guidelines
Usually complex guidelines include various scenarios and temporal and
branching logic. In order to represent these complex guidelines, the method
ontology has been extended with new primitives, inspired by the recent EON
protocol model [7]. This model defines guidelines by means of a number of
concepts, such as scenarios, decisions, actions and activities. Figure 10
shows a section of the method ontology extended with primitives that
represent these concepts.

Guideline_Entity
……Guideline

…………Control_Primitive
……

……
……

……
……

Name -> string
Author -> string
Explanation -> string
Current_Activity -> Activity_Entity

Activity_Class -> Domain_Entity
Activity_Attributes ->* Attribute
Activity_Start -> Time_Annotation
Activity_End -> Time_Annotation

……PSM
……Primitive

…………Decision
…… …………Boolean_Criterion
………… ……K_Of_N_Criteria
…… ……Branching
………… Synchronization
…………Action
………………Activity
……………………Start_Activity
……………………Change_Activity
……………………End_Activity
Activity_Entity
……Monitoring
……Treatment

Start_Activity

Starting_Value -> symbol (values: minimum,
Default, maximum)

Treatment

Figure 10: A section of the extended ontology, developed to model guidelines that

contain complex branching and temporal logic

The Start_Activity class models an action that starts a new activity (e.g.,
start a new treatment). The Starting_Value attribute of this class specifies
initial values of the new activity. The Treatment class is an example of an
activity that models a treatment such as prescribing a new drug. The
Time_Annotation class models temporal points in terms of a reference point
and additional (optional) attributes to represent uncertainty in time. This class
is used by the Activity_Start and Activity_End attributes of the
Activity_Entity class that specify the start and endpoints of an activity.
Other attributes of this class are the Activity_Class and the
Activity_Attributes attributes that refer to the domain entities, specified in
the activity (e.g., the dose of a drug).

4.3.2 Authoring complex temporal guidelines
An example of a complex temporal guideline is a guideline for the treatment of
hypertension that was developed in the Medical Guideline Technology (MGT)
project [33]. As this guideline (translated from a paper version [34]) does not
rely on a single PSM to solve its task, the design-time interpreter uses the

Chapter 3 Examples

93

standard flowchart to represent the guideline’s control structure. Figure 11
shows the corresponding KA-tool, representing the hypertension guideline. It
contains a number of subguidelines. Some of these guidelines are defined in
terms of primitives (e.g., primitives used to determine the most favorable initial
drug), but there are also subguidelines that are defined by means of a PSM
(e.g. a refined selection task to determine drug interactions and a refined
version of Propose-and-Revise to substitute non-effective drugs for other
ones).

Figure 11: The hypertension guideline, shown in the KA-Tool. The ‘Goal Blood

pressure reached?’ step is selected, which is an instance of the K_Of_N_Criteria
primitive. As a result, a user interface is created that enables guideline authors to

define criteria in terms of domain ontology concepts

As the guideline structure is no longer hidden from the guideline author,
knowledge acquisition becomes a two-phase process. The first phase
consists of describing the guideline’s structure in terms of primitives and
subguidelines (flow control). In this phase, all primitives and subguidelines are
treated as black boxes with no domain-specific content. In order to build the
guideline by means of these boxes, the method manager containing all
available PSMs and primitives is also loaded in the KA-Tool and shown in the
upper left pane (figure 11). The second phase consists of specifying domain
knowledge that is required by the various primitives and PSMs such as known

Chapter 3 Results

94

interactions or compelling indications. Note that all SAR and EBMT
guidelines, described in the previous examples, also consist of two layers.
However, as the corresponding control structure is already defined, the first
phase is executed automatically.

4.3.3 Executing complex temporal guidelines
Again, this guideline is executed by means of the execution-time interpreter,
which processes the symbol-level knowledge base and executes attached
implementation procedures. However, as the hypertension guideline is
incorporated in a system that generates web-based advice, the output
ontology is extended with primitives that are able to generate HTML-pages.

5 Results
The methodology and tools described in this paper were used to develop a
number of guidelines and decision support systems. The CritICIS system
contains guidelines that are based on the Situation-Action Rules (SARS) as
well as on PSMs that solve Event-Based Modular Tasks (EBMTs) such as
selection tasks and monitoring tasks. The CritICIS system has undergone a
validation, in which guidelines were tested on a large patient data set of
previously admitted ICU patients. For this purpose, a development
environment was designed that enabled guideline authors (intensivists) to
develop, validate and update new guidelines as well as to customize existing
guidelines that were used in similar situations. Among other things, the
validation showed that 88% of all issued reminders, issued during the last two
years (based on the existing patient data set) were classified as correct. A
more detailed description of the development environment including the
validation procedure can be found elsewhere [28]. The CritICIS system is now
fully operational in the 20-bed ICU of the Catharina Hospital, Eindhoven, the
Netherlands. With the help of data collected from the operational system, the
SAR as well as the EBMT guidelines are currently being evaluated.

Another system that consists of SAR guidelines is the GRIF system,
developed to change Family Physicians' (FP) test ordering behavior by
focusing on the appropriateness of test requests. GRIF was validated by
comparing comments of human experts with comments of the reminder
system. The overall agreement in the final validation round was 69%, where
the number of correct reactions of the reminder system was almost as high as
the number of correct reactions of the human expert. Details are described
elsewhere [35].

The Multidisciplinary Psychoactive Drug Selection –advisor system (M-PADS)
is a decision support system, developed for selecting the most appropriate

Chapter 3 Discussion

95

psychoactive drug in order to treat psychiatric patients [36]. It contains
guidelines that consist of a number of selection and monitoring PSMs, varying
from the ones, described in the examples section to more complex ones that
process more ‘deep knowledge’ (using a semantic network). Each PSM is
modeled as a subguideline and branching and synchronization primitives are
used to execute these PSMs in parallel. In contrast to the other examples that
used Protégé for developing the domain ontology, the domain ontology for this
system was developed with the help of the GALEN approach [37]. A first
evaluation is currently ongoing.

Finally, the framework is currently also being used to develop guidelines that
are based on primitives as well as PSMs, similar the to already mentioned
hypertension guideline. Application domains include anesthesia (real-time
weaning protocols), family practice (diabetic guidelines) and oncology
(guidelines for the treatment of leukemia).

6 Discussion

6.1 Characteristics of the ontological approach
Over the last decade, a number of approaches for guideline representation
have been proposed. These representations usually define guidelines in terms
of primitives, such as actions and decisions. Although primitives are
invaluable to describe non-decomposable steps in a guideline, more abstract
descriptions such as PSMs facilitate the shareability and reusability of clinical
guidelines. As the ontological representation is extensible and represents
guidelines on the level of PSMs as well as on the level of primitives, it is
scalable, flexible and expressive enough to define guidelines that differ in
complexity and application domain, as illustrated by the examples.

A very important issue in the development of guidelines is the knowledge
acquisition process. Graphical editors such as KA-Tools are increasingly used
for acquiring guidelines. Representation formalisms such as GLIF and
Proforma characterize a guideline by means of a limited set of primitives (e.g.,
decisions and actions). Therefore, the user interface of each primitive is
limited to those basic primitives (e.g., a ‘prescribe new drug’ action is
visualized in the same way as a ‘send an e-mail to a practitioner’ action).
Being able to extend the method ontology by defining new primitives as well
as being able to define specific visualization information improves the
acceptance of the corresponding KA-Tool [28]. Furthermore, describing
(sections of) guidelines by means of PSMs facilitates the authoring of
guidelines by hiding the control structure and providing task-specific user

Chapter 3 Discussion

96

interfaces, in which domain experts are able to enter domain-specific
knowledge depending on the guideline’s task.

The examples and results have illustrated that the guideline’s application
domain dictates its representation. Guidelines that are more complex or
domain-specific usually require a more low-level representation (e.g., a set of
primitives) as these guidelines are usually too specific to be captured by
PSMs. Guidelines that address more generic tasks (e.g., heuristic
classification or selection tasks) are more suited to be represented by means
of PSMs. However, when guideline authors become more familiar with the
application domain, they may be able to recognize certain patterns, which can
be translated into PSMs.

6.2 Sharing models and guidelines among different institutions
As mentioned earlier, an important issue is the shareability of guidelines as
well as guideline representations among multiple institutions and
organizations to improve the guidelines’ effectiveness. The ontological
guideline representation described in this paper facilitates this shareability, as
earlier-developed domain and method ontologies can be reused among
various application domains. Also, whenever guidelines are described in
terms of PSMs, the guidelines itself are also shareable in the case that one
PSM can be applied to various domains (e.g., classification or clinical trials).
The two-phased process can be used to make guidelines more site-specific:
the basic structure of the guideline is defined during the first phase, after
which different institutions can modify domain knowledge to create a more
customized guideline. However, problems may also arise when utilizing the
ontological approach, of which the earlier-mentioned mapping problem is
probably the most common one.

6.3 Comparing other formalisms
When comparing the methodology and representation described in this paper
with other approaches such as the Arden Syntax, Prestige, GLIF, Proforma,
Asbru and the recent EON model, a number of similarities as well as
discrepancies are encountered. As the Arden Syntax models guidelines in
terms of modular rules, this representation is not suitable for representing
complex guidelines. In terms of the approach, described in this paper, the
SAR model encompasses Arden Syntax guidelines.

Both GLIF and EON model flow control in a guideline by sequences of
primitives, similar to the approach described in this paper. Asbru and
Proforma use similar constructs, with some differences however. In Asbru, for
example, the body of a (sub)guideline (referred to as a plan in both Asbru and

Chapter 3 Discussion

97

Proforma) consists only of actions. The decisions are modeled in the plan’s
preferences. The action sequence is modeled in the same manner as the
approach in this paper. Similar to GLIF, Proforma models guidelines (plans) by
means of a basic set of primitives, which are also graphically represented by
means of a flowchart. However, sets of primitives are not modeled as
sequences. Instead, all primitives are executed in parallel, where links
between primitives are temporal constraints. Prestige does not model
guidelines in terms of sequences of primitives, but as sequences of primitive
states (e.g., an action is in a rejected state or completed state), using
transition networks to describe guideline dynamics. Although well defined, this
approach may result in a more opaque guideline authoring process.

Our methodology and the EON approach share the view that non-monolithic
models are necessary in order to deal with the variety and complexity of
guidelines. In addition, conceptualization of the guideline domain in terms of
activities and scenarios allows the construction of complex temporal
guidelines, such as the hypertension guideline
.
None of the above-mentioned approaches use the notion of PSMs to describe
stereotypical tasks that a guideline may perform (although an older version of
EON was based on a single PSM, called ESPR, which was used to represent
clinical trials [38]). However, EON, Proforma and Asbru do contain constructs
for describing (sub)guidelines on higher levels of abstraction such as eligibility
criteria, intentions, goals, scenarios and plans. For example, Proforma uses
the same two-layered approach for laying out plans as our approach.

Regarding knowledge acquisition, EON and GLIF both utilize Protégé to
acquire knowledge from guideline authors, whereas Proforma relies on
custom-made graphical tools for the knowledge acquisition process. Asbru
uses Protégé as well as AsbruView [39] for knowledge acquisition. The KA-
Tool, developed to support the approach, described in this paper, uses plug-
ins to support the definition of very specific and flexible user interfaces for
guideline acquisition. This was for example not possible in the previous
Windows version of Protégé [18], where the user interface was not as flexible
as the one, described here. This has been recognized by the developers of
Protégé, as the recent Java version supports the use of plug-ins to create
flexible task-specific user interfaces. However, this version was not available
during the time our framework was developed.

In summary, the representation, described in this paper merges several
approaches, used in knowledge modeling to define various classes of
guidelines that differ in application domain and in complexity. The use of a

Chapter 3 Acknowledgements

98

suite of tools that supports all stages in guideline development and execution
is often underestimated but of crucial importance. The use of PSMs as well as
ontologies facilitates guideline reusability as well as shareability as we have
shown by means of the examples. Furthermore, primitive- and task-specific
user interfaces can drive an interactive KA-Tool to assist in the often arduous
process of guideline authoring. Finally, as ontologies can make the
conceptualizations behind a model explicit, the ontological representation can
be used to characterize the requirements of guidelines [40]. The granularity
and complexity of a guideline can be expressed in terms of number of used
instances, primitives, ontologies and (refined) PSMs. Examples include 1) the
GRIF knowledge base, which consists of about 2000 instances, 2 primitives, 2
ontologies and 1 strategy), 2) the M-PADS knowledge base, which consists of
about 150 instances, 9 primitives, 3 ontologies and 15 PSMs and 3) the
hypertension guideline, which currently consists of 180 instances, 5 ontologies
and 2 PSMs.

6.4 Conclusion
As illustrated by the examples and results, our approach meets all earlier-
mentioned requirements, seems expressive enough to represent various
classes of guidelines and will hopefully contribute to the development of
standards for computer-based clinical guidelines.

Acknowledgements
The authors wish to thank Mark Musen, Jan Bergmans and two anonymous
reviewers for comments on an earlier version of this paper.

References
1. Grimshaw JM, Russel IT. Effects of Clinical Guidelines on Medical Practice: A Systematic

Review of Rigorous Evaluation. Lancet 1993;342:1317-22.
2. Effective Health Care. Implementing Clinical Practice Guidelines: Can guidelines be used

to improve clinical practice? Effective Health Care 1994;8:1-12.
3. Van Der Lei J, Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and

Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.
4. Fridsma DB, Gennari JH, Musen MA. Making Generic Guidelines Site-Specific. Proc

AMIA 1996;:597-601.
5. Position statements from the Invitational Workshop: Towards Representations for

Sharable Guidelines. Available at http://www.glif.org/workshop/statement.htm.
6. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE. Pattison-Gordon

E, Greenes RA, Shortliffe EH. Barnett GO. The guideline interchange format: a model for
representing guidelines. JAMIA 1998;5(4):357-72.

7. Tu SW, Musen MA. A flexible approach to guideline modeling. Proc AMIA Symp
1999;:420-4.

8. Hripcsak G. Rationale for the Arden Syntax. Comput Biomed Res 1994;27(4):291-324.
9. Fox J, Johns N. Rahmanzadeh A. Disseminating medical knowledge: the PROforma

approach. Artif Intell Med 1998;14:157-81.

Chapter 3 References

99

10. Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med
1998;14:29-51.

11. Musen MA. Dimensions of Knowledge Sharing and Reuse. Comput Biomed Res
1992;25;435-67.

12. Gruber TR. A translation approach to portable ontologies. Knowledge Acquisition
1993;5(2):199-220.

13. Chandraskekaran B. Generic tasks in knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert 1986;1:23-30.

14. Clancey WJ. Heuristic classication. Articial Intelligence 1985;27(3):289-350.
15. Musen MA. Modern Architectures for Intelligent Systems: Reusable Ontologies and

Problem-Solving.Methods. Proc AMIA Symp 1998;:46-52.
16. Schreiber AT, Wielinga BJ, De Hoog R, Akkermans H, van der Velde W, Anjewierden A.

CommanKADS: A Comprehensive Methodology for KBS Development. IEEE Expert.
1994;:28-37.

17. Motta E. Reusable Components for Knowledge Modelling. Case Studies in Parametric
Design Problem Solving. Amsterdam: IOS Press, 1999.

18. Musen MA, Gennari JH, Eriksson H, Tu SW, Puerta AR. PROTEGE II: Computer Support
For Development Of Intelligent Systems From Libraries Of Components. Medinfo
1995;8(1):766-70.

19. Fensel D, Benjamins VR, Motta E, Wielinga B. UPML: A Framework for knowledge
system reuse. Proceedings of the International Joint Conference on AI (IJCAI '99) 1999.

20. Marcus S. Automated knowledge acquisition for expert system. Norwell: Kluwer Academic
Publishers, 1988.

21. Eriksson H, Musen MA. Metatools for knowledge acquisition. IEEE Software
1993;10(3):23-9.

22. Studer R, Eriksson H, Gennari J, Tu S, Fensel D, Musen M. Ontologies and the
Configuration of Problem-solving Methods. Proceedings of the 10th Knowledge
Acquisition for Knowledgebased Systems Workshop, Banff, 1996.

23. Chen PPS. The entity-relationship approach to logical data base design. The Q.E.D.
monograph series on Data base management no. 6. Wellesley, Mass : Q.E.D. Information
Sciences.

24. Gennari JH, Tu SW, Rothenfluh TE, Musen MA. Mapping Domains to Methods in Support
of Reuse. International Journal of Human-Computer Studies 1994;41:399-424.

25. De Clercq PA, Blom JA, Hasman A, Korsten HHM. Design and implementation of a
framework to support the development of clinical guidelines. Int J Med Inf 2001;64(2-
3):285-318.

26. Hripcsak G, Clayton PD, Jenders RA, Cimino JJ, Johnson SB. Design of a clinical event
monitor. Comput Biomed Res 1996;29(3):194-221.

27. McDonald CJ, Hui SL, Smith DM, Tierney WM, Cohen SJ, Weinberger M. Reminders to
physicians from an introspective computer medical record. A two-year randomized trial.
Ann Intern Med 1984;100:130-8.

28. De Clercq PA, Blom JA, Hasman A, Korsten HHM. A strategy for development of practice
guidelines for the ICU using automated knowledge acquisition techniques. Int J Clin Monit
Comput 1999;15:109-17.

29. Van der Lei J, Musen MA. A model for critiquing based on automated medical records.
Comput Biomed Res 1991;24:344-78.

30. De Clercq PA, Blom JA, Hasman A, Korsten HHM. Gaston: An architecture for the
acquisition and execution of clinical guideline-application tasks. Med Inform Internet Med
2000;25(4):247-63.

Chapter 3 References

100

31. Miller PL. Expert Critiquing Systems, Practice-Based Medical Consultation by Computer.
New York: Springer-Verlag, 1986.

32. Chandrasekaran B, Johnson TR, Smith JW. Task-Structure Analysis for Knowledge
Modeling. Communications of the ACM 1992;35(9):124-37.

33. The Medical Guideline Technology project. INCO-COPERNICUS Project IC15 CT 98-
0315. Homepage available at http://frost.open.ac.uk/mgt/.

34. National High Blood Pressure Education Program. The Sixth Report of the Joint National
Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Washington:
NIH; 1998.

35. Bindels R, de Clercq PA, Winkens RAG, Hasman A. A test ordering system with
automated reminders for primary care based on practice guidelines. Int J Med Inf
2000;58-59(1):219-33.

36. Van Hyfte DMH, De Clercq PA, Tjandra-Maga TB, Zitman FG, De Vries Robbé PF.
Modelling the psychoactive drug selection application domain at the knowledge level.
Proc Belgium-Netherlands Conf on Artificial Intelligence 1999;:187-8.

37. Rector A, Solomon W, Nowlan W, Rush T, Zanstra P, Claassen W. A Terminology Server
for medical language and medical information systems. Meth Inform Med 1995;34:147-57.

38. Musen MA, Tu SW, Das A, Shahar Y. EON: A Component-Based Approach to
Automation of Protocol-Directed Therapy. JAMIA 1996;3:367-88.

39. Miksch S, Kosara R, Shahar Y, Johnson PD. AsbruView: Visualization of Time-Oriented,
Skeletal Plans. The Fourth International Conference on Artificial Intelligence Planning
Systems 1998, Carnegie-Mellon University, Pittsburgh, PA, 11-8.

40. Pisanelli DM, Gangemi A, Steve G. Towards a Standard for Guideline Representation: an
Ontological Approach. JAMIA 1999;6(4):906-10.

CHAPTER 4

DESIGN AND IMPLEMENTATION OF A FRAMEWORK TO

SUPPORT THE DEVELOPMENT OF CLINICAL

GUIDELINES

Published in:
The International Journal of Medical Informatics 2001;64(2-3):285-318

Paul A. de Clercq

Arie Hasman
Johannes A. Blom

Hendrikus H.M. Korsten

Chapter 4 Introduction

102

1 Introduction
Recently, studies have shown the benefits of using clinical guidelines in the
practice of medicine [1]. Utilizing guidelines such as standard care plans,
critical pathways and protocols in various clinical settings may lead to a
reduction of practice variability and patient care costs, while improving patient
care [2]. Use of decision support systems that incorporate such guidelines
offer promising possibilities for guideline implementation. According to the
Institute of Medicine (IOM), these decision support systems are in fact crucial
elements in long-term strategies for promoting the use of guidelines [3].

There have been numerous efforts to develop systems that support guideline-
based care in an automated fashion, covering a wide range of clinical settings
and tasks [4]. Despite these efforts, only a few systems progressed beyond
the prototype stage and the research laboratory. Building systems that are
both effective in supporting clinicians and accepted by them has proven to be
a difficult task. Yet, of the few systems that were evaluated by a controlled
trial, the majority showed impact [5]. This paper describes and discusses
Gaston: a framework that facilitates all stages in the guideline development
process, ranging from the definition of models that represent guidelines to the
implementation of run-time systems that provide decision support, using the
guidelines that were developed during the previous stages. The Gaston
framework consists of 1) a newly developed guideline representation
formalism that uses the concepts of primitives, Problem-Solving Methods
(PSMs) and ontologies to represent guidelines of various complexity and
granularity and different application domains, 2) a guideline authoring
environment that enables guideline authors to define guidelines, based on the
newly developed guideline representation formalism, and 3) a guideline
execution environment that translates defined guidelines into a more efficient
symbol-level representation, which can be read in and processed by an
execution-time engine.

Section 2 of this paper defines a number of design criteria that were
formulated regarding the aspects of guideline representation, guideline
authoring and guideline execution and also describes the methods and
materials that were used to develop the Gaston framework, according to the
formulated design criteria. Section 3 describes the Gaston framework by
example in terms of the four stages that were identified in the guideline
development process, along with the tools that were developed to support
each stage. Section 4 presents a number of guidelines and decision support
systems that were developed by means of the Gaston framework. Finally,

Chapter 4 Materials and Methods

103

section 5 discusses various aspects of guideline-based decision support in
general and the Gaston framework in particular.

2 Materials and Methods

2.1 Design criteria

2.1.1 Guideline representation formalisms
A very important aspect that has to be reckoned with when designing
guideline-based decision support systems is the issue of guideline
representation. During the last decade, various guideline representation
languages have been developed, each with their own formalisms and
specifications. By analyzing a number of these, criteria were formulated for a
guideline representation language [6-8]. These requirements include the
possibility to represent temporal logic, branching and sequencing, patient data
elements, (eligibility) criteria, actions and decompositions of actions.

Depending on the guideline’s application domain, the guideline representation
formalism must also be able to represent in a consistent manner various kinds
of guidelines that may differ considerably in complexity. Examples are
relatively simple guidelines that model independent modular rules (e.g., alerts
in reminder systems) [9, 10], but also complex guidelines that use notions
such as temporal abstraction and scheduling in order to model complex
treatment plans [11-13].

Another important issue is the shareability of both the guideline representation
and the guidelines among multiple institutions and organizations to improve
the guidelines’ effectiveness [14]. Therefore, the guideline representation
formalism must facilitate the reuse and sharing of similar guidelines among
various domains.

2.1.2 Guideline acquisition
An important issue in the development of guidelines is the knowledge
acquisition process. The traditional knowledge elicitation methodology that
required an intense cooperation between knowledge engineer and domain
expert created a severe bottleneck as the two experts had to reach a common
understanding before progress could be made [15]. As a response to this
problem, Knowledge Acquisition Tools (KA-Tools) are increasingly used to
acquire knowledge directly from a domain expert. These tools may facilitate
the knowledge acquisition process by helping domain experts formulate and
structure domain knowledge for use in knowledge based systems [16]. Since
the use of knowledge acquisition tools in practice is very limited because of

Chapter 4 Materials and Methods

104

their inability to assist domain experts to enter knowledge (e.g., guidelines)
that is relevant to the specific guideline-application task, a criterion is that (the
user interface of) a knowledge acquisition tool facilitates the entry of
guidelines, specific to the target guideline-application domain.

2.1.3 Guideline execution
A guideline execution engine must be able to process the guideline
representation format directly. As execution speed is a very important
requirement at this stage, the representation language must be described in
an efficient format to be interpretable by an execution engine in real-time [17,
18]. Finally, guideline execution engines must also be able to exchange
information with the outside world, such as external information systems.

2.2 Applied materials and methods

2.2.1 Guideline representation formalisms
The core of the Gaston framework consists of a newly developed guideline
representation formalism. In order for this guideline representation formalism
to satisfy all above-mentioned requirements, a number of approaches that are
known in the area of knowledge representation are combined. These
approaches are based on the concepts of primitives, Problem-Solving
Methods (PSMs) and ontologies.

During the last decade, a common approach has been to model the control
structure of guidelines in terms of explicit primitives, which characterize
stereotypical tasks a guideline may perform, such as checking eligibility
criteria, actions and decisions [6-8]. At the same time, various research
groups developed representation formalisms that did not specifically focus on
guideline-based care, but concentrated more on the abstract behavior of
decision support systems in general [19-21]. These methodologies express
the notion that the behavior of decision support systems can be described by
means of two independent classes of reusable components: 1) domain
ontologies that characterize concepts and relationships in an application area,
providing a domain of discourse and 2) domain-independent algorithms that
describe abstract methods for achieving solutions to common tasks, such as
constraint satisfaction, classification, planning and critiquing. Although known
under various names, this paper refers to these algorithms as Problem-
Solving Methods (PSMs) [22]. PSMs such as heuristic classification [23] are
role-limiting by nature, meaning that the PSMs impose specific problem-
solving roles on domain knowledge. These problem-solving roles are referred
to as knowledge roles, which give an abstract description of the function
particular domain knowledge has to play. When refining a PSM to a certain

Chapter 4 Materials and Methods

105

domain, the knowledge roles are mapped onto domain knowledge. PSMs can
be reused to solve similar problems in different application domains by using
different domain ontologies. PSMs are decomposable into subtasks, which
can be executed by submethods. When no longer decomposable, a
submethod is referred to as a primitive PSM or mechanism.

When comparing the primitive-based approach vs. the PSM-based approach,
each approach has its strong points as well as shortcomings. On the one
hand, separating domain-specific knowledge and PSMs may increase the
reusability as well as shareability of developed guidelines, as earlier
developed domain ontologies and PSMs (that are already tested and proved)
can (partly) be reused in other developments. This is more difficult in the
primitive-based approach where domain and procedural knowledge are often
intertwined. Also, as PSMs usually describe knowledge on an abstract level,
the global structure can be explicitly stated, in contrast with primitive-based
approaches that often represent guidelines at a single level of detail. However,
most of the guideline representations that are used in clinical practice today
do not use the notions of PSMs and domain-specific knowledge, because of
several reasons, the main reason being that certain types of protocols used in
daily practice can not easily be expressed as structured, reusable
stereotypical tasks. This is especially true for many clinical guidelines, which
often address specific clinical problems. A more detailed discussion on the
subject of primitives vs. PSMs is given elsewhere [24].

The guideline representation formalism developed in the Gaston framework
combines the concepts of primitives and PSMs to represent guidelines in
terms of 1) primitives to construct the guideline’s control structure explicitly
and 2) PSMs to model guidelines that perform stereotypical tasks. Also, the
formalism supports the use of subguidelines in order to solve multiple tasks.

The representation uses ontologies as an underlying mechanism to represent
guidelines in terms of PSMs and primitives in a consistent way. Two types of
ontologies are defined: domain ontologies and method ontologies. As
mentioned earlier, domain ontologies model domain-specific knowledge in
terms of entities, attributes and relations [25]. Method ontologies [26] model
concepts such as primitives, PSMs and guidelines similarly. Primitives are
used 1) to describe single guideline steps, and 2) to describe the internal
structure of PSMs. The guideline representation formalism is non-monolithic,
meaning that ontologies can be extended to capture new guideline
characteristics. The ontologies were defined by means of the ontology editor
that was developed in the Protégé framework: a methodology and a set of
tools to develop knowledge based systems [21]. With Protégé, knowledge

Chapter 4 The Gaston framework

106

engineers are able to define concepts and relations to create domain as well
as method ontologies. Protégé uses a slightly adapted version of Open
Knowledge Base Connectivity (OKBC) [27, 28] as the underlying knowledge
model and stores the ontologies using various representation languages such
as CLIPS [29] and the Resource Description Format (RDF) [30].

2.2.2 Guideline acquisition
In order to create a flexible KA-Tool that can be used in various application
domains, the KA-Tool has been implemented as a kernel that loads a number
of plugins, in which each plugin defines a different functionality. The KA-Tool
loads the necessary ontologies (in CLIPS format) to visually represent
guidelines in terms of primitives and PSMs. The current version runs under
the Microsoft Windows environment, in which all plugins are implemented as
Dynamic-Link Libraries (DLLs). As DLLs are independent of the used
programming language, different languages can be used to develop plugins.

2.2.3 Guideline execution
Similar to the implementation of the KA-Tool, the guideline execution engine is
also implemented as a kernel that loads a number of plugins (DLLs).
However, in contrast with the requirements of the KA-Tool, the execution
engine must be optimized to meet the requirements of speed and
compactness in order to execute guideline in real-time. Therefore, the engine
was based on the format, developed in the SIMPLEXYS project that aimed at
the development of real-time decision-support systems [31].

3 The Gaston framework

3.1 Overview
By using the techniques, described in the previous section, the Gaston
guideline development methodology and supporting framework were
developed. The framework consists of a suite of tools that support the various
stages in guideline development. Figure 1 shows the process view of the
framework.

The process consists of four stages, each of which is reusable in other
guideline development processes:

• Develop, derive or reuse application-specific domain and method

ontologies.
• Develop or reuse libraries of PSMs.
• Develop guidelines in terms of PSMs and primitives through a Knowledge

Acquisition Tool (KA-Tool).

Chapter 4 The Gaston framework

107

• Automatically translate these guidelines into a more efficient symbol-level
representation, which can be read in and processed by an execution-time
interpreter.

Ontology
Editor

Domain
Ontology

Method
Library

Domain-specific
Methods

Method
Ontologies

KATool Decision Support-System

Method
Manager

Design-time
Interpreter

Execution-time
Interpreter

Symbol-level
Knowledge Base

Figure 1: Process view of the Gaston framework. Rounded rectangles represent
models (e.g., ontologies), straight rectangles represent modules (e.g., programs)

Several tools support each stage. Protégé was used to facilitate the
development of domain and method ontologies. A separate KA-Tool was
developed (not automatically generated by Protégé), consisting of a kernel of
which the functionality is extended by loading additional plug-ins. Finally, a
run-time environment was developed that executes guidelines, acquired
through the KA-Tool.

The first stage involves developing or reusing domain and method ontologies
by defining hierarchies of entities, attributes and relations. Depending on the
requirements of the method ontology, existing domain ontologies can be
extended with new attributes or relations.

A method library is a collection of PSMs and primitives created in the second
stage that can be used in the third stage for the definition of guidelines to
solve certain tasks. As PSMs usually describe rather abstract problem-solving
behavior, a knowledge engineer uses the method manager to design
application-specific PSMs by 1) refining the PSM by providing specific values
of certain attributes of the PSM (e.g., the specific contents of a message that
must be supplied to a user) and 2) specifying the PSM’s knowledge roles by
mapping concepts from the domain ontology onto corresponding concepts of
the PSM. Three types of knowledge roles are defined: Input roles, Output
roles and Intermediate roles. Input and Output roles refer to knowledge roles
that are also used by other PSMs (e.g. another PSM that uses this PSM to
solve a certain subtask), whereas Intermediate roles refer to knowledge roles
that are used only by the PSM internally.

Chapter 4 The Gaston framework

108

The third stage utilizes the KA-Tool, containing a design-time interpreter that
loads the required primitives and domain-specific methods and creates a user
interface that enables guideline authors to develop guidelines. Primitives are
displayed in a flowchart representing the guideline, whereas PSMs are
visualized by utilizing the visualization information of the PSM itself. The latter
enables guideline authors to enter domain information regarding the
corresponding task without the need to know the internal control structure of
the PSM.

When instructed, the KA-Tool combines the control structure of each guideline
and PSM and creates a network consisting solely of primitives. In this way, a
symbol-level knowledge base is created that can be processed by an
execution-time engine that executes the implementation modules, attached to
each primitive.

The remaining part of this section describes the various stages and
associated tools in more detail using as example a guideline-based decision
support system that was developed in the area of hypertension [32]. This
system was developed within the framework of the Medical Guideline
Technology (MGT) project [33].

3.2 Stage 1: defining domain and method ontologies

3.2.1 Utilizing the OKBC model
The first stage involves developing or reusing domain and method ontologies
by defining hierarchies of entities, attributes and relations. As mentioned
earlier, a slightly modified version of the OKBC knowledge model is used to
represent domain and method ontologies. OKBC is a frame-based language
and is used in the Gaston framework to define an ontology in terms of
classes, attributes and facets. Classes are concepts in the domain of
discourse. Each class is explicitly described by means of a number of
attributes, referred to as slots in Protégé. Facets describe the properties of an
attribute, in the same way as attributes describe a class. For example, the
concept of a drug can be represented by a Drug class that contains various
attributes such as a Dosage attribute that defines the drug’s dosage, a
Dosage_Unit attribute that defines possible units of a dosage and a
Presciption_Date attribute that defines the prescription date. Each attribute is
defined by means of a number of facets, such as a type facet that holds the
attribute’s type (e.g., ‘string’ or ‘number’) or an allowed-values facet that
holds the allowed values of an attribute. The type facet of the Dosage attribute,
for example, holds the value ‘number’, whereas the type facet of the
Dosage_Unit attribute holds the value ‘symbol’ to indicate that there only exist

Chapter 4 The Gaston framework

109

a limited number of possible dosage units. In this case, the allowed-values
facet holds the possible units such as mmol/l or mg/pill. Finally, the type facet
of the Presciption_Date attribute holds the value ‘date’. Furthermore, the
knowledge base that contains the actual guidelines and PSMs are described
by means of class instances in which the attributes have specific values. An
instance of the Drug class, for example, may refer to an actual prescription of
a drug, in which the attributes of the instance contain values related to the
prescribed drug.

Besides ‘traditional’ classes, the OKBC knowledge model in Protégé also
defines the concept of metaclasses. A metaclass is a class whose instances
are themselves classes. In OKBC, every frame (e.g., classes, attributes and
facets) is an instance of a class. Since classes are also frames, every class is
an instance of another class. Therefore, every class has a dual identity: it is a
subclass of a class in the class hierarchy—its superclass,—and it is an
instance of another class—its metaclass. Therefore, a metaclass acts as a
template for classes that are its instances. A metaclass describes how a class
that instantiates this template will look: namely, which attributes it will have
and what the attribute’s facets are. Similarly, a ‘traditional’ class describes
what instances of that class look like: which attributes the instances will have
and what are the facets of these attributes. For example, in Protégé, every
class by default is an instance of the metaclass :STANDARD-CLASS. This
metaclass contains a number of attributes (referred to as slots in Protégé) that
explicitly defines a class. Examples are the :NAME attribute that contains the
class’ name, the :DIRECT-SUPERCLASSES attribute that contains the class’
parents and the :DIRECT-TEMPLATE-SLOTS attribute that contains the attributes
of the class. However, if an ontology requires a different metaclass, such a
metaclass can be defined. Once it is defined, instances of it (which are
classes) can be acquired. A more detailed discussion on metaclasses and
their use in Protégé can be found elsewhere [28]. Examples of the use of
metaclasses are found in the next sections.

3.2.2 Domain ontologies
Domain ontologies model domain-specific knowledge in terms of entities,
attributes and relations. Because ontologies are models, there are multiple
ways of defining ontologies. A domain ontology generally defines the global
concepts that are relevant to the application domain in terms of classes (e.g.,
drugs) and attributes (e.g., dosage). Instances of a drug are not regarded as
part of the ontology but are acquired through knowledge acquisition [34].
However, inheritance is often used to define additional classes that
characterize more specific concepts (e.g., an antibiotic is a member of the

Chapter 4 The Gaston framework

110

class of drugs). For example, figure 2 shows an example of a domain
ontology, used in the development of the hypertension guidelines.

Domain_Entity
……Treatment
……Drug
…………Antibiotic

…………Circulation
………………Acetylcysteine
…………Beta-Blocker
…… Cardio-surgical
……Disease
……Indication
……Laboratory_Test
Relation_Entity
……Interaction_Relation

Drug
Dosage -> Number
Dosage_Unit -> Symbol (allowed-values: mmol/l,

mg/kg, mg/pill)
Prescription_Date -> Date
Has_Interactions ->* Interaction_Relation

Interaction_Relation
 -> Drug

Significance -> symbol (allowed-values: normal,
severe, contraindicated)

…………Anti_Depressive
………………Fluxetine_Hydrochloride

……

Target

Figure 2: Part of a domain ontology. The left column shows a class hierarchy of

entities that describe a particular domain. The right column presents a more detailed
view of two classes and their attributes (not all attributes are shown). Each attribute

has a type such as integer, string or symbol and is by default inherited by the
subclasses (attributes that are inherited from other classes are shown in italic). In this

example, the Interaction_Relation class models an interaction between two
drugs. By means of the Interaction_Relation’s Significance attribute, each

interaction can be characterized as normal, severe or contraindicated. Attributes may
refer to one instance (e.g., each drug has only one dosage) or multiple instances

(e.g., each drug may have various known interactions). If an attribute refers to
multiple instances, an asterisk follows the arrow

This particular domain ontology uses inheritance to define entities, relations
and attributes such as drugs, diseases and treatments. For example, an entity
that represents a disease has attributes that hold the name and date of
occurrence of the disease, whereas an entity representing a drug has
additional attributes that store the drug’s dosage and prescription date.
Furthermore, this domain ontology also contains relationships between
entities such as the Has_Interactions relation, which models an interaction
relation between two drugs.

Furthermore, metaclasses are used to define class-specific properties. For
example, a drug may also be known by its brand name (e.g., Fluoxetine
Hydrochloride is better known by its brand name Prozac). As this property
remains the same for each drug instance (contrary to, for example, the
dosage of a drug that may differ for various instances), it is defined as part of
the Drug class definition. Therefore, in this example, a :STANDARD-DRUG-CLASS
metaclass was derived from the :STANDARD-CLASS metaclass, which -besides
the standard attributes of the :STANDARD-CLASS metaclass- also defines an
additional :BRAND-NAME attribute of type string. As a result, it is possible to

Chapter 4 The Gaston framework

111

include a brand name in the definition of a Drug class and subclasses (which
are defined as instances of the :STANDARD-DRUG-CLASS metaclass). Similar to
metaclasses, metaslots are used to add new facets to an attribute definition.
For example, the Dosage attribute in the domain ontology is an instance of the
:STANDARD-DATASOURCE-SLOT metaslot, which is derived from the default
:STANDARD-SLOT metaslot. Again, besides the standard facets that are defined
in the :STANDARD-SLOT metaslot such as the name and type facets, the
:STANDARD-DATASOURCE-SLOT metaslot defines the datasource facet, which
refers to an interface to an external database such as a Electronic Patient
Record (EPR). This interface can be used by a guideline execution engine to
get the required data. As the datasource facet may refer to multiple interfaces,
a single domain ontology can be used in combination with various databases.

As mentioned earlier, instances (of non-metaclasses) are usually not included
in an ontology, but are acquired through knowledge acquisition. It depends on
the target domain and the developer of the domain ontology what is regarded
as a class and what is regarded as an instance. For example, in the domain
ontology that is shown in figure 2, all known drugs are predefined by means of
classes. Other ontologies only define a single Drug class [34]. Individual drugs
are then acquired as instances of the Drug class through knowledge
acquisition. Another example is the Has_Interactions attribute of the Drug
class, also shown in figure 2. As this attribute models an interaction between
two drugs, it is also possible to define the actual interaction in the domain
ontology (e.g., by means of a :HAS-INTERACTION attribute of the metaclass
:STANDARD-DRUG-CLASS). However, in the MGT project, interactions were
acquired through knowledge acquisition and are therefore not part of the
domain ontology.

Ontologies are entered through Protégé, which stores ontologies in a slightly
modified version of the CLIPS format. Figure 3 shows a part of the domain
ontology of figure 2 in terms of class and instance definitions.

In figure 3, attributes are referred to as a single-slot attribute when it holds a
single value (e.g., each drug only has a single dosage), whereas a multislot
attribute may contain multiple values (e.g., each drug can have multiple
interactions). Whenever the type facet holds the value ‘instance’, this attribute
points to a class instance. The :THING class (superclass of the
Relation_Entity class) is the root of an ontology. A more detailed description
of the CLIPS format can be found elsewhere [29].

The upper section of figure 3 shows the definition of the :STANDARD-DRUG-
CLASS metaclass and the :STANDARD-DATASOURCE-SLOT metaslot along with a

Chapter 4 The Gaston framework

112

number of their attributes (not all attributes are shown here). This section also
shows the definition of the Drug class, the Antibiotic class and the
Interaction_Relation class. The Interaction_Relation class inherits the
Target attribute from its parent, the Relation_Entity class. However, as the
Interaction_Relation class specifically represents drug interactions, it
overrides the allowed-classes facet by setting its value to the Drug class.

;+ *** Class Definitions ***

;+ *** Instance definitions***

(defclass :STANDARD-DRUG-CLASS
(is-a :STANDARD-CLASS)
(multislot :BRAND-NAME

(type string)))

(defclass :STANDARD-DATASOURCE-SLOT
(is-a :STANDARD-SLOT)
(single-slot datasource)

(type instance)
(allowed-classes DataSource_Definition)))

(defclass Drug
(is-a Domain_Entity)
(single-slot Dosage

(type float))
(single-slot Dosage_Unit

(type symbol)
(allowed-values mmol/l mg/kg mg/pill))

(single-slot Prescription_Date
(type date))

(multislot Has_Interactions
(type instance)
(allowed-classes Interaction_Relation)))

(defclass Anti_Depressive
(is-a Drug))

(defclass Fluxetine_Hydrochloride
(is-a Anti_Depressive))

(defclass Relation_Entity
(is-a :THING)
(single-slot Target

(allowed-classes Domain_Entity)))

(defclass Interaction_Relation
(is-a Relation_Entity)
(single-slot Target

(allowed-classes Drug))
(single-slot Significance

(type symbol)
(allowed-values normal severe contraindicated)))

([Fluxetine_Hydrochloride] of :STANDARD-DRUG-CLASS
(:BRAND-NAME “Prozac”))

([Dosage] of :STANDARD-DATASOURCE-SLOT
(datasource DataSource_Definition_1))

Figure 3: Part of a domain ontology, stored in a modified CLIPS format

As classes are also instances of metaclasses, a class is defined by setting the
attribute values of the class’ metaclass [35]. The lower section shows the
Fluoxetine_Hydrochloride class as an instance of the :STANDARD-DRUG-CLASS
metaclass. Similarly, it also shows the Dosage attribute as an instance of the

Chapter 4 The Gaston framework

113

:STANDARD-DATASOURCE-SLOT metaslot. The Datasource_Definition_1 instance
refers to an external interface definition (e.g., for communication with an EPR)
stored elsewhere.

3.2.3 Method ontologies
As mentioned earlier, guidelines are represented by a set of primitives or by
means of a PSM. Analogous to domain ontologies that describe domain-
specific knowledge, method ontologies specify primitives, PSMs and
guidelines in terms of entities, attributes and relations. A core method ontology
was developed [24] which contains classes that define primitives, PSMs,
guidelines and related concepts such as knowledge roles. Figure 4 shows a
part of the core method ontology that was developed to model various
categories of guidelines.

Guideline_Entity

……PSM
……Primitive
…………Control_Primitive

Decision
………………Boolean_Criterion
………………K_Of_N_Criteria
…………Branching
…………Synchronization

…………Action
Refiner
Knowledge_Role Guideline

……Guideline

………………
……
……
……
……

……Input_Role
……Output_Role
……Intermediate_Role
Definition
……Procedure_Definition
……Visualization_Definition
……Description_Definition
Control_Structure

Primitive

PSM

Goal -> K_Of_N_Criteria
Visualization -> Complex_Visualization_Definition
Control -> Control_Structure
Description -> Description_Definition
Refiners ->* Refiner
Mappings ->* Knowledge_Role

Goal -> K_Of_N_Criteria
Visualization -> Complex_Visualization_Definition
Control -> Control_Structure
Task_Description -> string
Validation -> symbol (allowed-values: test,

production)
Target_Users -> string
Eligibility_Criteria -> K_Of_N_Criteria
Abort_Criteria -> K_Of_N_Criteria

Name -> string
Caption -> string
Author -> string
Explanation -> string

Name -> string
Caption -> string
Author -> string
Explanation -> string

Name -> string
Caption -> string

->
->

Author string
Explanation string

Figure 4: A section of the core method ontology that describes the guideline model.

The left column shows a hierarchy of classes that represent primitives, PSMs,
guidelines and related concepts. It also presents a number of primitives that are used

to describe single guideline steps such as decisions and actions. The right column
shows the three main classes in detail (again, not all attributes are shown)

The Primitive class defines a primitive, whereas the PSM class defines
Problem-Solving Methods. Finally, the Guideline class models a
(sub)guideline. The Refiner, Knowledge_Role, Definition and
Control_Structure classes are auxiliary classes. Depending on the

Chapter 4 The Gaston framework

114

requirements of the guideline application domain, the core ontology can be
extended. For example, in order to be able to define more specific actions
(e.g., administer a drug), the core ontology is extended with primitives that
represent these actions. This approach makes it possible to manage various
categories of guidelines that differ in variability and complexity. Similar to
domain ontologies, method ontologies are entered in Protégé and stored in
the CLIPS format.

3.2.4 Specifying primitives
In the guideline model, primitives represent both non-decomposable parts in a
guideline (e.g. decisions and actions) similar to earlier-mentioned
representations, and non-decomposable parts in PSMs. These primitives are
based on version 2.0 of GLIF [8]. This specification defines the following types
of primitives that are commonly used to describe guidelines: 1) Action
primitives that specify clinical actions (e.g., administer a drug), 2) Decision
primitives that model decision points in a guideline (e.g., if this patient suffers
from hypertension then perform an action), 3) Branching primitives that direct
the guideline flow to multiple (parallel) paths and 4) Synchronization primitives
that converge paths that previously diverged because of a Branching
primitive.

As shown in figure 4, the pragmatics of a primitive is defined in the method
ontology by a number of attributes such as the Name, Caption (which holds the
primitive’s title), Author and Explanation attributes. Similar to the use of
metaclasses in domain ontologies, metaclasses are used in method
ontologies to define class-specific properties. All classes derived from the
Primitive class are also instances of the :STANDARD-PRIMITIVE-CLASS. This
metaclass defines four additional attributes, named :VISUALIZATION,
:PROCEDURE, :REFINERS and :MAPPINGS. Visualization information is used to
define a primitive-specific user interface in a KA-Tool in terms of the primitive’s
parameters. The :PROCEDURE attribute contains execution-time information,
used by the interpreter of a decision support system that incorporates the
primitive. This attribute, combined with the primitive’s parameters, defines a
generic interface to an actual implementation procedure (executable code).
The :REFINERS attribute specifies which (combination of) attributes of the PSM
are used to further refine the primitive and the :MAPPINGS attribute specifies
the primitive’s roles and contains mappings to parameters from other
primitives, to concepts from the domain ontology or to knowledge roles from a
PSM.

An example of a commonly used primitive is the K_Of_N_Criteria primitive,
derived from the Decision primitive. This primitive is a logical statement that

Chapter 4 The Gaston framework

115

directs the flow of the guideline depending on its evaluation (true or false).
The statement contains a number of criteria and is evaluated as true if at least
a certain number (K) of all criteria (N) is also true. Figure 5 shows the
representation of this primitive in terms of (meta)classes.

Besides the attributes, inherited from its parents, the K_Of_N_Criteria class
defines four additional attributes. The actual criteria are stored in the Criteria
attribute, which refers to one or more instances of the Criterion class (each
criterion is modeled by a single instance of the Criterion class). The K
attribute of the K_Of_N_Criteria class defines the number of criteria that must
be evaluated as true in order to evaluate the entire logical statement as true.
The Satisfied and Otherwise attributes contain references to primitives that
may follow the K_Of_N_Criteria primitive, depending on the outcome of the
logical statement. Figure 5 also defines the :STANDARD-PRIMITIVE-CLASS
metaclass, of which the K_Of_N_Criteria primitive is declared an instance of.
The Primitive_Visualization_Definition_1 instance (which is an instance
of the Primitive_Visualization_Definition class, defined elsewhere)
contains visualization information that is specific for the K_Of_N_Criteria
primitive. Similarly, the Procedure_Definition_1 instance contains specific
execution-time information. The value of the :REFINERS attribute is used to
refine every created instance of the K_Of_N_Criteria class. In this case, the
value of the :REFINERS attribute contains references to two attributes, which
indicate that each instance of the K_Of_N_Criteria primitive is refined by
specifying values for the Caption and K attributes. The one-to-one value of the
Refiners_1’s Mapping_Type attribute means that it is directly defined by filling
in a value for the Caption attribute in the refinement process. The content of
the Primitive_Visualization_Definition_1, Refiner_1 and Refiner_2
instances are used during the guideline acquisition phase, whereas the
contents of the Procedure_Definition_1 instance is used during the guideline
execution phase. The sections that describe the guideline acquisition (section
3.4) and guideline execution phases (section 3.5) present examples on the
use of the K_Of_N_Criteria primitive to acquire, represent and execute
criteria in a guideline.

3.2.5 Specifying Problem-Solving Methods
PSMs model stereotypical processes that may occur in a guideline such as
heuristic classification and risk-assessment. Although a PSM is partially
defined by means of the same attributes as a primitive, there are also
differences between them. PSMs contain a high-level description (stored in
the Description attribute) that describes the used strategy (in the current
version of the ontological model, this description is stated in an informal way).
In contrast to primitives, PSMs have a control structure that describes the

Chapter 4 The Gaston framework

116

internal structure of the PSM in terms of subcomponents. This structure may
refer to subtasks (that are solved by other PSMs), but also to primitives.
Similar to domain ontologies, instances of PSMs are not regarded as part of a
method ontology. The actual control structure of a PSM (which consists of
instances) is defined in the method library component. This component is
explained in more detail in section 3.3, which also presents an example of a
PSM and its control structure in terms of instances.

;+ *** Class Definitions ***

;+ *** Instance definitions***

(defclass :STANDARD-PRIMITIVE-CLASS
(is-a :STANDARD-CLASS)
(single-slot :VISUALIZATION

(type instance)
(allowed-classes Primitive_Visualization_Definition))

(single-slot :PROCEDURE
(type instance)
(allowed-classes Procedure_Definition))

(multislot :REFINERS
(type instance)
(allowed-classes Refiner))

(multislot :MAPPINGS
(type instance)
(allowed-classes Knowledge_Role)))

(defclass K_Of_N_Criteria
(is-a Decision)
(single-slot K

(type integer))
(multislot Criteria

(type instance)
(allowed-classes Criterion))

(single-slot Satisfied
(type instance)
(allowed-classes Primitive))

(single-slot Otherwise
(type instance)
(allowed-classes Primitive)))

(defclass Criterion
(is-a :THING)
(single-slot Target

(type instance)
(allowed-classes Domain_Entity))

(single-slot Next_Criterion
(type instance)
(allowed-classes Criterion))

(multislot Relation_Operators
(type string)))

([K_Of_N_Criteria] of :STANDARD-PRIMITIVE-CLASS
(:VISUALIZATION Primitive_Visualization_Definition_1)
(:PROCEDURE Procedure_Definition_1)
(:REFINERS [Refiner_1], [Refiner_2]))

([Refiner_1] of Intermediate_Role
(Mapping_Type one-to-one)
(Target [Caption]))

([Refiner_2] of Intermediate_Role
(Mapping_Type one-to-one)
(Target [K]))

Figure 5: The K_Of_N_Criteria primitive and auxiliary classes, represented in
CLIPS

Chapter 4 The Gaston framework

117

Similar to primitives, PSMs also contain visualization information that defines
a specific user interface for use in a KA-Tool. However, the visualization
information of the PSM differs from the visualization information of a primitive:
since a PSM has access to all the visualization information of the
subcomponents (primitives or PSMs) in the control structure (in terms of
knowledge roles), this information is used by the PSM to define a specific user
interface in terms of its own knowledge roles, in combination with the
knowledge roles of the subcomponents. The visualization information of a
PSM is stored in the Visualization attribute of the PSM class. An example is
provided in section 3.4.

3.2.6 Specifying Guidelines
The Guideline class describes an entire (sub)guideline. A guideline is
associated with a task it has to solve. This task can be solved explicitly by
processing a set of primitives or by selecting an appropriate PSM. Similar to a
PSM, a guideline contains a control structure that describes the internal
structure of the guideline in terms of subcomponents. In contrast to the control
structure of a PSM, however, the control structure of a guideline does not
support subtask decomposition: it contains a set of primitives or a reference to
a single PSM. In case of the PSM, the rationale behind this limitation is that
each guideline must solve a task, which is executed by a single PSM
(although the PSM can use subtask decomposition to solve the task).
Guidelines can be combined however to form a ‘superguideline’.

Similar to a PSM, a guideline also contains visualization information to
represent its control structure. From this visualization information, a flowchart
will be created in case the control structure consists of a number of elements.
In case the guideline consists of a single PSM, the visualization of the PSM
will be used.

Furthermore, the Guideline class defines several guideline-specific attributes
such as a Task attribute that (informally) describes the task that has to be
solved, eligibility criteria that may evoke a guideline, abort criteria that may
abandon it and temporal criteria (e.g., this guideline is to be executed 4 times
a day). Other guideline-specific attributes are a Validation attribute that
indicates whether the guideline has been approved for routine use
(production) or is still in the test phase (test), and a Target_Users attribute that
denotes the intended users of the guideline (e.g., administrators, physicians
or nurses). Finally, similar to a PSM, the Guideline class also contains a Goal
attribute that formally defines the goal of the solved task.

Chapter 4 The Gaston framework

118

3.3 Stage 2: developing method libraries
A method library is a collection of available PSMs that can be used by
guidelines to solve certain tasks. The method library consists primarily of
instances, as each PSM is represented by means of a collection of instances.
As is the case with ontologies, method libraries are also defined using
Protégé. This section uses the selection PSM as an example. This PSM
(described in more detail elsewhere [24]), covers situations in which a
physician’s newly selected action or decision may not be the most appropriate
one and if so, to report possible conflicting situations [11]. For example, this
PSM is used by a subguideline of the hypertension guideline for the detection
of drug interactions and the detection of inappropriate drug dosages.

In order to solve these tasks, the selection PSM generally executes the
following steps:

• Determine all possible conflicting situations regarding the newly selected

action or decision.
• Determine whether one ore more of these possible conflicting situations

actually occur.
• Report all found occurring conflicting situations to the user.

The first step requires access to a domain ontology to specify possible
conflicting situations, whereas the second step requires access to an external
data source such as an Electronic Patient Record (EPR) to obtain previously
selected actions or decisions. Finally, the third step generates advice to the
user. To describe the control structure of the selection and similar PSMs, the
method guideline ontology was extended with new primitives [24]. This part of
the ontology defines various primitives that represent operations on sets of
domain entities, such as Add_Entities_By_External, which is used to obtain
actions and decisions from an external source (e.g., EPR),
Add_Entities_By_Relation, used to determine all possible conflicting
situations, and Logical_Operator, used to determine the conjunction of two
sets. Furthermore, the ontology also defines the
Generate_Advice_From_Entities primitive that is used to report occurring
conflicting situations and the Set class, which is a data structure that is used
to store a number of domain entities (e.g., drugs).

Chapter 4 The Gaston framework

119

;+ *** selection PSM definition***
([PSM_1] of PSM

(Name “Selection PSM”)
(Description [Description_1])
(Goal [K_Of_N_Criteria_1])
(Refiners [Refiner_1], [Refiner_2])
(Mappings [Intermediate_Role_1], [Intermediate_Role_2],

[Intermediate_Role_3])
(Visualization [Complex_Visualization_Information_1])
(Control [Control_Structure_1]))

([Control_Structure_1] of Control_Structure
(Root_Element [Eligibility_Criteria_1])
(Elements [Eligibility_Criteria_1]], [Branching_1],

[Add_Entities_By_Relations_1],
[Add_Entities_By_External_1],
[Synchronization_1], [Logical_Operator_1],
[Generate_Advice_From_Entities_1]))

([Eligibility_Criteria_1] of Eligibility_Criteria
(Criteria <Empty>)
(Satisfied [Branching_1])
(Otherwise <Empty>)
(Output_Set [Set_1]))

([Branching_1] of Branching
(Branches [Add_Entities_By_Relations_1], [Add_Entities_By_External_1])
(Selection_Method all_off)
(Order_Constraint any_order))

([Add_Entities_By_Relations_1] of Add_Entities_By_Relations
(Input_Set [Set_1])
(Source_Relation <Empty>)
(Output_Set [Set_2])
(Successor [Synchronization_1]))

([Add_Entities_By_External_1] of Add_Entities_By_External
(Context_Class <Empty>)
(Output_Set [Set_3])
(Successor [Synchronization_1]))

([Synchronization_1] of Synchronization
(Continuation wait_for_all)
(Successor [Logical_Operator_1]))

([Logical_Operator_1] of Logical_Operator
(Input_Sets [Set_2], [Set_3])
(Operation <Empty>)
(Output_Set [Set_4]))

([Generate_Advice_From_Entities_1 of Generate_Advice_From_Entities
(Entity_Sets [Set_1], [Set_4])
(Message_Template <Empty>))

([Refiner_1] of Refiner
(Mapping_Type one-to-one)
(Target [Logical_Operator_1.Operation]))

([Refiner_2] of Refiner
(Mapping_Type one-to-one)
(Target [Generate_Advice_From_Entities_1.Message_Template])

([Intermediate_Role_1] of Intermediate_Role
(Mapping_Type one-to-one)
(Target [Eligibility_Criteria_1.Criteria))

([Intermediate_Role_2] of Intermediate_Role
(Mapping_Type one-to-one)
(Target [Add_Entities_By_Relations_1.Source_Relation]))

([Intermediate_Role_3] of Intermediate_Role
(Mapping_Type one-to-one)
(Target [Add_Entities_By_External_1.Context_Class]))

Figure 6: A part of the selection PSM in terms of instances. The values of the Goal,
Description and Visualization attributes are not shown here

Chapter 4 The Gaston framework

120

The Control attribute of the PSM class stores the PSM’s control structure in
terms of instances. However, as the method library only contains abstract
PSMs that are not yet further specified, the refiners and knowledge roles are
also not yet specified. The specification process that results in application-
specific PSMs is carried out during the knowledge acquisition phase. Figure 6
presents a part of the unrefined selection PSM in terms of primitives from the
method ontology.

The core of the selection PSM consists of the PSM_1 instance. Besides
attributes that describe the PSM’s pragmatics (e.g., Name, Author and
Description), the PSM_1 instance also contains attributes that define the
capabilities of the PSM such as the Goal, Parameters, Visualization and
Control attributes. Similar to the :REFINERS and :MAPPINGS attributes of the
:STANDARD-PRIMITIVE-CLASS metaclass, the Refiners and Mappings attributes
of the PSM are used to define an application-specific PSM. The selection
PSM in figure 6 defines two refiners and three mappings, which contain
references to specific attributes of instances that make up the PSM’s control
structure. As all knowledge roles of the selection PSM are used only internally
and not by other PSMs, these knowledge roles are defined as intermediate.
The control structure of the selection PSM consists of seven primitives. Each
primitive is characterized by means of a number of attributes, which may refer
to global structures that contain information that is used throughout the control
structure (e.g., Set_1). The first step is an instance of the
Eligibility_Criteria class. This primitive (derived from K_Of_N_Criteria)
specifies whether the physician’s newly selected decision or action applies to
this PSM. The Criteria attribute formally defines the actual action or
decision. However, as the actual action itself is specified in the refinement
process, it has no specific value yet in the abstract PSM’s control structure.
The newly selected action or decision is also stored in Set_1 for later use.
Whenever the eligibility criteria hold, the Branching and Synchronization
primitives are used to determine all information relevant for detecting possible
conflicting situations, related to the application of the selection PSM (details
on the attributes of the Branching and Synchronization classes are described
elsewhere [8]). The Add_Entities_By_Relations_1 instance retrieves all
possible conflicting situations, based on the newly selected action or decision
and the value of the Source_Relation attribute. The
Add_Entities_By_External_1 instance retrieves all relevant previously carried
out actions and decisions from an external source such as an EPR (the
Context_Class attribute specifies which type of actions and decisions must be
acquired from the external source). The Logical_Operator_1 instance
determines present conflicting situations by comparing all possible conflicting

Chapter 4 The Gaston framework

121

situations (stored in Set_2) with the actual actions and decisions (stored in
Set_3). Present conflicting situations are reported by the
Generate_Advice_From_Entities_1 instance (the message is generated from
the Message_Template attribute). Set_1, Set_2, Set_3 and Set_4 are instances
of the Set class. The next section presents an example of a refined selection
PSM that reports drug interactions, as well as an example of the use of the
PSM’s Visualization attribute.

3.4 Stage 3: authoring guidelines

3.4.1 Overview
The KA-Tool, used to facilitate the guideline authoring process, consists of a
collection of modular components. An overview of these components is shown
in figure 7.

The core of the KA-Tool is a design-time interpreter, which provides a means
of communication between the user and various knowledge managers such
as a domain manager, a guideline manager and a method manager. The
design-time interpreter combines information from all available managers and
creates a user interface that enables guideline authors to develop guidelines
in terms of PSMs and primitives.

Domain
ontology

Guideline
Library

Method
Library

Domain
Manager

Guideline
Manager

Method
Manager

KA-Tool

User
Knowledge

Base

Design-time
Interpreter

Figure 7: System overview of the components in the KA-Tool

3.4.2 Authoring primitives
The KA-Tool can be used to represent guidelines by means of primitives as
well as a PSM. When a guideline consists of primitives, guideline authoring
becomes a two-phased process.

The first phase consists of describing the guideline’s structure in terms of
primitives and subguidelines (flow control). In this phase, all primitives and

Chapter 4 The Gaston framework

122

subguidelines are treated as black boxes with no domain-specific content. As
mentioned earlier, the control structure of guidelines that do not consist of a
single PSM are visualized by means of a flowchart by default. Figure 8 shows
a part of the hypertension guideline in the KA-Tool, visualized in terms of a
flowchart.

Figure 8: The user interface of the Gaston KA-Tool, used for defining the control

structure of a hypertension guideline in terms of primitives. Primitives with a +sign
(e.g., ‘Address lifestyle modifications’) are references to subguidelines

The KA-Tool generally consists of three panes. The lower left pane shows all
concepts stored in an application-specific domain ontology, visualized through
the domain manager, which loads a domain ontology (this particular domain
ontology was developed for use in the domain of hypertension) and passes it
to the design-time interpreter. The upper left pane presents an overview of all
guidelines that are present in the guideline library. Similar to the domain
manager, the guideline manager loads and visualizes the contents of the
guideline library. Whenever a guideline is selected in the upper left pane, the
guideline manager combines the guideline’s control structure (stored in the
Control attribute) with the guideline’s visualization information (stored into the
Visualization attribute) and shows a detailed description of the guideline
through the design-time interpreter in the right pane.

Chapter 4 The Gaston framework

123

The method library contains all unrefined primitives and PSMs, which are also
shown in the upper left pane. When a guideline author wants to add a new
primitive to the guideline’s control structure, this primitive is selected in the
upper left pane and dragged onto the right pane. For example, the topmost
element in figure 8 is an instance of the K_Of_N_Criteria primitive, which was
selected from the upper left pane. As a result, the method manager activates
a primitive-specific ‘wizard’, also shown in figure 8. This wizard enables the
author to refine the selected primitive by specifying the primitive’s
intermediate roles, based on the contents of the :REFINERS and :PARAMETERS
attributes. The method manager has access to the domain ontology through
the design-time interpreter for mapping concepts from the domain ontology
onto the intermediate roles. Regarding instances of the K_Of_N_Criteria
class for example, the wizard enables guideline authors to specify values for
the Caption and K attributes (see also figure 5). The actual criteria itself are
not defined in this phase.

Every primitive is represented by a separate step in the flowchart. The shape
and colors of each primitive are defined in the :VISUALIZATION attribute of the
primitive’s metaclass. As shown in figure 5, the value of this attribute refers to
an instance of the Primitive_Visualization_Information. Figure 9 shows
the contents of this instance that describes the visualization information
regarding the K_Of_N_Criteria primitive.

;+ *** K_Of_N_Criteria Visualization definition ***
([Primitive_Visualization_Definition_1] of Primitive_Visualization_Definition

(Shape [Shape_Definition_1])
(User_Interface_Procedure “coreLib.K_Of_N_Criteria_CreateInterface”))

([Shape_Definition_1 of Shape_Definition
(Shape_Type diamond)
(Shape_Background_Color yellow)
(Shape_Foreground_Color black))

Figure 9: An instance of the Primitive_Visualization_Information class that
describes the visualization information regarding the K_Of_N_Criteria class

The appearance of each primitive is defined in the Shape attribute, which
describes the primitive’s shape in the flowchart (e.g., each K_Of_N_Criteria
instance is represented by a yellow diamond containing black characters).

Besides the appearance of each primitive in a flowchart, the
Primitive_Visualization_Definition class also defines another type of
visualization information that is used in the second phase of the guideline
acquisition process. This phase consists of specifying domain knowledge that
is required by the various primitives such as specifying the actual criteria in
the ‘Is the patient’s blood pressure too high?’ element (figure 10).

Chapter 4 The Gaston framework

124

Figure 10: The user interface of the Gaston KA-Tool, used for specifying primitive-

specific domain knowledge to ‘flesh-out’ primitives with domain knowledge

In this phase, the value of the User_Interface_procedure attribute is used,
which refers to a procedure name in a function library that is able to create a
primitive-specific user interface. In this case, the
K_Of_N_Criteria_CreateInterface procedure in the coreLib function library is
executed with the selected instance as a parameter. As a result, a user
interface is created that enables a guideline author to define a number of
criteria.

These criteria are formed by instantiated entities from the domain ontology,
which are selected from the lower left pane and dragged to the ‘conditions’
window in the right pane. Regarding the ‘Is the patient’s blood pressure too
high?’ element in figure 10 only a single criterion is entered, which states that
the patient’s blood pressure is too high when the systolic blood pressure
exceeds 140 mm Hg and the diastolic blood pressure exceeds 90 mm Hg. For
each criterion, it is possible to edit the underlying domain entity’s attributes.
For example, Blood_Pressure is a class that is defined in the hypertension
domain ontology. This concept has three attributes: Diastolic_pressure and
Systolic_pressure that are of type number, and Measured that is of type date.
Based on the attribute’s type, relations are displayed (e.g., less than, equals)

Chapter 4 The Gaston framework

125

that enable an author to specify certain conditions such as ‘more than 90’,
‘less than 90’, ‘equals 90’, ‘today’ and ‘more than 2 days ago’. Figure 11
shows the actual representation of the criterion of the ‘Is the patient’s blood
pressure too high?’ element in terms of instances as stored in the guideline
library.

;+ *** Criterion as instance definition ***
([K_Of_N_Criteria_1] of K_Of_N_Criteria

(Caption “Is the patient’s blood pressure too high?”)
(K <empty>)
(Criteria [Criterion_1])
(Satisfied [Start_Activity_1])
(Otherwise <empty>))

([Criterion_1] of Criterion
(Relation_Operators “Diastolic_pressure=More”,

“Systolic_pressure=More”,
“Measured=Equals”)

(Target [Blood_Pressure_1])
(Next_Criterion <empty>))

([Blood_Pressure_1] of Blood_Pressure
(Diastolic_pressure 90)
(Systolic_pressure 140)
(Measured “today”))

Figure 11: A criterion as a number of instances in the guideline library

Each criterion is modeled by means of an instance of the Criterion class,
which contains relations operators (e.g., ‘more’, ‘less’, ‘increases’,
‘decreases’, ‘equals’, ‘last’) as well as a reference to an instance (stored in the
Target attribute) of a domain ontology class (e.g., Blood_Pressure) of which
its attributes may contain the criterion’s values. The Next_Criterion attribute,
empty in this case, may hold a reference to another instance of the criterion in
case it consists of multiple parts (this implements the OR-operator). The K
attribute in the K_Of_N_Criteria_1 instance is left undefined, meaning that K
is equal to N (all criteria must be evaluated to true). The Otherwise attribute
contains no value, indicating that the guideline ends whenever this criterion
does not evaluate to true. The Satisfied attribute refers to an instance of a
Start_Activity primitive, which models an action that starts a new activity
[36] such as establishing a new diagnosis (e.g., the patient is diagnosed as
having hypertension) or starting a new treatment.

In order to model guidelines that contain activities, the core method ontology
again was extended with primitives that represent activities. The
Start_Activity class for example, models an action that starts a new activity
(e.g., start a new treatment). The Treatment class is an example of an activity
that models a treatment such as prescribing a new drug. The Activity_Start
and Activity_End attributes of this class specify the start and endpoints of the
treatment. Other attributes of this class are the Activity_Class and the
Activity_Attributes attributes that are intermediate knowledge roles that

Chapter 4 The Gaston framework

126

refer to the domain entities, specified in the activity (e.g., the dosage of a
drug). This extended ontology is described in more detail elsewhere [24].

;+ *** Start Beta-Blocker definition ***
([Start_Activity_1] of Start_Activity

(Current_Activity [Treatment_1])
(Starting_Value minimum))

([Treatment_1] of Treatment
(Activity_Class [Beta-Blocker])
(Activity_Attributes [Dose])
(Activity_Start “now”)
(Activity_End “now+24h”))

Figure 12: The prescription of a Beta-Blocker in terms of primitive instances. The
instances denote that the prescription starts immediately with a minimum dosage and
ends after 24 hours (the uncertainty part of the time annotation is not specified here)

Activities are used throughout the hypertension guideline. For example,
another section of this guideline states that a patient with high blood pressure
must be prescribed a standard anti-hypertensive (usually a Beta-blocker or
Diuretic), unless there are compelling indications that favor the prescription of
another drug. Also, a low dosage of the prescribed drug should be used,
slowly titrated upward using a patient-specific schedule. Figure 12 shows the
prescription of a Beta-Blocker in terms of the above-mentioned primitives.

3.4.3 Authoring PSMs
In contrast to defining the control structure of a guideline in terms of primitives
(phase 1), the control structure of a guideline that is executed by means of a
PSM is not explicitly described by a guideline author as this structure is
already defined in the PSM internally. When a guideline author creates a
guideline in terms of a PSM, the PSM is selected in the upper right pane,
similar to the selection of a primitive. The method manager then reads and
copies the control structure of the abstract PSM in the method library, after
which the guideline author is able to create an application-specific PSM by
filling in specific values for the Refiners and Mappings attributes though a
wizard, again similar to the use of primitive-specific wizards. For example, an
application-specific selection PSM was included in the hypertension guideline
in order to report drug interactions. For this purpose, two refiners and three
intermediate roles were specified through the wizard by filling in the values of
the corresponding attributes. Figure 13 shows the control structure of the
refined selection PSM after the intermediate knowledge roles were specified.

Chapter 4 The Gaston framework

127

;+ *** refined selection PSM control structure ***
([Eligibility_Criteria_1] of Eligibility_Criteria

(Criteria [Criterion_1])
(Satisfied [Branching_1])
(Otherwise <Empty>)
(Output_Set [Set_1]))

[Criterion_1] of Criterion
(Target [Drug_1))

([Drug_1] of Drug)

([Branching_1] of Branching
(Branches [Add_Entities_By_Relations_1], [Add_Entities_By_External_1])
(Selection_Method all_off)
(Order_Constraint any_order))

([Add_Entities_By_Relations_1] of Add_Entities_By_Relations
(Input_Set [Set_1])
(Source_Relation [Has_Interactions])
(Output_Set [Set_2])
(Successor [Synchronization_1]))

([Add_Entities_By_External_1] of Add_Entities_By_External
(Context_Class [Drug])
(Output_Set [Set_3])
(Successor [Synchronization_1]))

([Synchronization_1] of Synchronization
(Continuation wait_for_all)
(Successor [Logical_Operator_1]))

([Logical_Operator_1] of Logical_Operator
(Input_Sets [Set_2], [Set_3])
(Operation AND)
(Output_Set [Set_4]))

([Generate_Advice_From_Entities_1 of Generate_Advice_From_Entities
(Entity_Sets [Set_1], [Set_4]
(Message_Template “You have prescribed %Set_1[0].name%. However, the

patient has also been prescribed with
%Set_4[*].name%, which is a known interaction of
%Set_1[0].name%. This interaction is known as
%Set_4[*].attrs[0].value%”))

Figure 13: The control structure of an application-specific selection PSM that reports
drug interactions

In this case, the two refiner attributes have been specified by filling in certain
values such as the Operation attribute which has been ascribed the value
AND to obtain the conjunction of two sets, and the Message_Template attribute
which now contains the advice, shown to a user. Similarly, the three
knowledge roles now contain explicit mappings to concepts from the domain
ontology. For example, the value of the Criteria attribute of the
Eligibility_Criteria_1 instance now refers to a drug to indicate that this
PSM is triggered whenever a new drug is being prescribed. Also, the
Source_Relation attribute is mapped onto to the Has_Interactions attribute of
the Drug class to specify that the Has_Interactions attribute models drug
interactions and the value of the Context_Class attribute now refers to the
Drug class to acquire all prescribed drugs from an external source (e.g., EPR).

Chapter 4 The Gaston framework

128

By applying different refinements and mappings, the selection PSM can be
used to solve various selection tasks. Besides selection tasks, other tasks,
such as monitoring tasks, preparation tasks and responding tasks [11] can
also be solved by PSMs, similar to the one that was used to solve the
selection tasks. The application-specific selection PSM, shown in figure 13, is
further specified using simple straightforward mappings (although even this
example has been somewhat simplified for the convenience of the reader). In
many situations however, mapping terms from one (domain or method)
ontology to another is not very straightforward. Problems arise if mappings
are not one-to-one or, even worse, when there exist semantic differences
between the various ontologies [37].

Figure 14: The user interface generated by the selection PSM to represent the drug

interaction task

As shown earlier, each primitive contains information to visually represent
itself in the KA-Tool. Therefore, a user interface can be automatically
constructed, as described in the previous section. In case of a PSM, however,
each PSM performs a single task from the viewpoint of the guideline’s author.
Based on the control structure and visualization information of the PSM, the
guideline manager constructs a user interface through the design-time
interpreter that reflects this viewpoint. For example, figure 14 shows the user
interface of the KA-Tool used to acquire drug interactions. It uses the
visualization information from the PSM to override the default flowchart user

Chapter 4 The Gaston framework

129

interface and provides a means for entering domain-specific knowledge in
terms of knowledge roles such as drugs and their interactions.

As shown in figure 6, the visualization information of the selection PSM is
stored in the Complex_Visualization_Information_1 instance of the
Complex_Visualization_Information class. Figure 15 shows the contents of
the Complex_Visualization_Information_1 instance (although somewhat
simplified).

;+ *** selection PSM Visualization definition ***
([Complex_Visualization_Definition_1] of Complex_Visualization_Definition

(Elements [Visualization_Element_1])
(Root_Element [Visualization_Element_1])
(Visualization_Control static))

([Visualization_Element_1] of Visualization_Element
(Target [Add_Entities_By_Relations_1])
(Visual_Mapping_Type tab_page)
(Visual_Mapping_ID “Relations_Tab”)
(Visual_Mapping_Alignment client))
(Next_Visualization_Elements <empty>))

Figure 15: The contents of the Complex_Visualization_Information_1 instance,
used to visualize the selection PSM

The user interface of a PSM is built from a number of visual elements, which
are normally created by executing (a combination of) primitive-specific
visualization procedures such as the K_Of_N_Criteria_CreateInterface
procedure, although it is also possible to develop new visualization
procedures that are PSM-specific. Regarding the selection PSM that reports
drug interactions for example, guideline authors only have to define new
relations that describe drug interactions. As this part of the PSM is handled by
the Add_Entities_By_Relation primitive, the PSM’s user interface is
constructed by executing the visualization procedure, defined in the
:VISUALIZATION property of the Add_Entities_By_Relation primitive. The
format of each visual element is defined in an instance of the
Visualization_Element class. For example, the visual element that allows for
the definition of drug interactions in figure 14 is defined in the
Visualization_Element_1 instance in figure 15. The applied visualization
procedure is determined through the Target attribute, which refers to an
instance in the PSM’s control structure (e.g., the
Add_Entities_By_Relations_1 instance in figure 14). The
Visual_Mapping_Type, Visual_Mapping_ID and Visual Mapping_Alignment
attributes determine the visual element’s appearance in the KA-Tool. In this
case, the values tab_page, relations_tab and client imply that the user
interface element, created by the visualization procedure of the
Add_Entities_By_Relation primitive, is mapped onto a (new) tab page and
that the interface element must cover the entire area of the tab page. The

Chapter 4 The Gaston framework

130

Visualization_Control attribute of the
Complex_Visualization_Information_1 instance defines in what way and
order the group of visual elements must be visualized. In straightforward
PSMs such as the selection PSM, all visual elements are shown
instantaneously, i.e., there is no dynamic control structure that defines a
particular order among multiple visual elements. Regarding more complex
PSMs such a Cover-and-Differentiate [34], domain-specific knowledge that is
acquired through one visual element may dynamically determine its
successor. This however, is not the case in the selection PSM.

As a result of the contents of the Complex_Visualization_Information_1
instance, the refined selection PSM is represented by means of an Events
pane and an Interactions pane (shown in figure 14), where each entity in the
Event pane denotes a newly prescribed drug. The content of the Interactions
pane depends on the selected event in the Events pane and lists all known
interactions of the newly prescribed drug. Drugs are selected from the domain
ontology in the lower left pane and dragged onto the Events or Interactions
pane. Every drug that is linked to an event by dragging it to the Interactions
pane creates a Has_Interactions relation in the guideline library between the
event and the dragged drug (and also the other way around, as this relation is
bilateral). It is also possible to edit the relation’s attributes (e.g., the
Significance attribute of the Interaction_Relation class) and provide more
information on each relation such as literature references or hyperlinks.

3.4.4 Implementation of the KA-Tool’s component architecture
The component architecture of the KA-Tool is implemented as a kernel (the
design-time interpreter), which loads a number of plugins. Each plugin
contains a manager such as a guideline manager, a method manager or a
domain manager (see also figure 7). As a result, the functionality of the KA-
Tool is entirely defined by means of the loaded plugins. For example, when
the method manager plugin (or a plugin with a similar functionality) is not
loaded, it is not possible to construct new guidelines in terms of primitives or
PSMs, as the primitive- and PSM-specific wizards are defined in the method
manager plugin. However, when a guideline manager plugin as well as a
domain manager plugin is loaded, it is possible to define primitive- or PSM-
specific domain knowledge such as the drug interactions, shown in figure 14
or the criteria of the ‘Is the patient’s blood pressure too high?’ element, shown
in figure 10.

Similar to ontologies, plugins in the KA-Tool are also derived from core plugins
to introduce additional functionalities. For example, Gaston was used in a
number of projects [38-40] that aimed at the development of reminder

Chapter 4 The Gaston framework

131

systems, based on rule-based guidelines [41]. For this purpose, a guideline
manager was developed with access to a guideline library as well as a
method library. In this case, the method library contained a single rule-based
strategy that modeled the control structure of rule-based guidelines in terms of
primitives. By means of the visualization information of this strategy, authors
were able to create and implement new rule-based guidelines through the
plugin, without any knowledge on the underlying guideline’s control structure
[24].

The design-time interpreter communicates with all loaded plugins through a
standard interface: it does not differentiate between different types of plugins
such as domain manager plugins, guideline manager plugins and method
manager plugins. As there is also no limit on the number of loaded plugins,
multiple plugins of similar functionalities can be loaded. Therefore, the KA-
Tool may contain multiple domain ontologies, method libraries or guideline
libraries. An example of the latter can be found in the KA-Tool used to develop
guidelines for the CritICIS system, a real-time reminder system for use in
Intensive Care Units [38]. By means of the CritICIS KA-Tool, guideline authors
were able to define guidelines through multiple guideline managers.

3.5 Stage 4: executing guidelines
When instructed, the KA-Tool retrieves the control structure of each guideline
and PSM and creates a structure that consists solely of primitives. By
combining this structure with the implementation procedures that are attached
to each primitive, it is automatically compiled into a more efficient description.
Just as the :VISUALIZATION property of each primitive refers to a primitive-
specific visualization procedure used by the KA-Tool, the :PROCEDURE property
of a primitive contains the name of a primitive-specific implementation
procedure. The requirements of this description differ from the requirements of
the ontological representation that is used during the knowledge acquisition
process. The latter representation is sufficiently abstract and clear to be
comprehended by guideline authors, whereas the execution-time
representation is optimized to meet execution-time requirements such as
compactness and execution speed. During execution time, the compiled
representation forms a symbol-level knowledge base that is processed by a
decision support system. Similar to the architecture of the KA-Tool, the
decision support system consists of a collection of modular components,
implemented as a kernel that loads a number of plugins. Again, the kernel
(execution-time scheduler) communicates with all loaded plugins through a
standard interface that does not differentiate between different types of
plugins. Therefore, the decision support system may contain various types of
plugins, each with a different functionality. In order for a guideline-based

Chapter 4 The Gaston framework

132

decision support system to be flexible and reusable in various application
domains, a number of plugins were developed in the Gaston project that
define typical functionalities such as plugins that traverse the knowledge base
and plugins that define communication interfaces with the outside world (e.g.,
EPRs or EPR users). An overview of the execution-time scheduler with a
number of typical plugins is shown in figure 16.

User

Compiled
Structure

Data-
source

Datasource
Manager

Procedure
Manager

Event
Manager

Action
Manager

Decision Support System

Symbol-level
Knowledge

Base

Execution-time
Scheduler

Figure 16: System overview of the components in the Decision Support System

Four different types of plugins are shown, which all communicate through the
execution-time scheduler.

The Procedure Manager plugin traverses the compiled structure in the
compiled structure and informs the execution-time scheduler which
procedures are to be executed and in what order.

The Datasource Manager makes use of standard communication protocols to
exchange clinical data with data sources. Examples of data sources are EPRs
that contain clinical data (e.g., prescribed drugs or established diagnoses) or
patient monitors that contain physiological data (e.g., heart rate or ECG). The
defined protocols allow for a two-way communication, enabling data
acquisition as well as data storage. An example of the latter is the
hypertension guideline, which uses an instance of the Start_Activity class
(the second step in figure 8) to automatically diagnose the patient as having
hypertension if the patient’s blood pressure is too high. This diagnosis is then
stored into the patient’s EPR through the Datasource Manager. However, this
feature is normally used with caution in decision support systems.

Chapter 4 The Gaston framework

133

The Event Manager defines protocols for the specification of pertinent events
that trigger the execution of certain guidelines. These events may originate
from other systems such as an EPR (e.g., the prescription of a new drug) or
from a user that requests the execution of a guideline manually.

Finally, the Action Manager plugin is developed to establish a means of
communication with the users of the decision support system such as the way
in which advice is being presented to a user when necessary (e.g.,
reminders). Also, in case the decision support system is used as a
consultation system [42], this plugin facilitates a dialog between the system
and the user.

Figure 17: Advice generated by the selection PSM. The advice is shown, overlaying

the user interface of a specific EPR system

Figure 17 shows an example of the use of the decision support system in
daily care. In this case, a physician has prescribed a new drug for a given
patient by means of entering it into an EPR system. As a result, the EPR
system activates the decision support system with a Prescribe_New_Drug
event, which is processed by the Event Manager plugin. The EPR system
also supplies additional parameters such as the patient’s ID and the name of
the started drug. Among other tasks, this event causes the refined drug

Chapter 4 The Gaston framework

134

interaction PSM to be executed by the Procedure Manager plugin, which
retrieves all known drugs that have an interaction relation with the started
drug and queries the EPR through the Datasource Manager plugin to
determine whether one of them is present. Whenever this is the case, the
system reports these interactions to the user through the Action Manager
plugin by means of pop-up windows. As this picture was taken from a test
environment [38], users are able to validate the advice to improve the
guideline’s correctness and helpfulness.

Although each plugin in the decision-support system defines a different
functionality, their functions are not mutually exclusive. For example, the tasks
the Action Manager plugin performs can be viewed as comparable to the
tasks the Datasource Manager plugin performs in case the user is regarded
as a data source. Similarly, the Datasource Manager plugin as well as the
Event Manager plugin define a communication protocol with external data
sources such as an EPR. However, the plugins, shown in figure 16, were
developed independently of each other to facilitate the reusability of the
framework among different application domains. An example is the
implementation of the CritICIS system. During this project, an ICU replaced
their old EPR system with a modern one. In order for the CritICIS system to
function, a new Datasource Manager plugin was designed to acquire data
from and store data in the new EPR system. The other plugins did not have to
be changed, which shortened the time span necessary to migrate from the old
EPR system to the new one. Also, by adding new functionality to the Action
Manager plugin, the system could be reused to execute guidelines such as
the hypertension guideline over the internet [43]. An example is shown in
figure 18.

Plugins not only communicate with the outside world, but also exchange
required information among each other through the execution-time scheduler.
For example, whenever a primitive’s procedure requires certain data (e.g., to
evaluate a criterion), the Procedure Manager plugin sends a request to the
Datasource Manager plugin to obtain this data. The other way around, in
order to acquire this data, the Datasource Manager plugin requires the
location of the data in the data source (e.g., EPR). As mentioned earlier, this
information is stored into the :DATASOURCE attribute of each domain concept.
To acquire this information, the Datasource Manager plugin requests this
information from the Procedure Manager plugin that has access to the
compiled structure where this information resides.

Chapter 4 Results

135

Figure 18: Advice, generated by the Gaston guideline execution system that is

incorporated in an internet-based health record system

4 Results
The methodology described in this paper was used to develop a number of
guidelines and decision support systems that differ in granularity, complexity
and application domain.

The CritICIS system is a real-time reminder system used in critical care
environments such as Intensive Care Units. The domain ontology of this
system is based on the IMPACT Minimal Standard Data Set, a set of medical
terms describing the state of a patient in an Intensive Care Unit [44]. At
present, the ontology consists of about 2000 divided into about 100
categories. After a short training period, care providers found the user
interface of the KA-Tool as well as the decision-support system useful and
sufficiently ‘intuitive’. In order to determine the validity of entered knowledge,
the CritICIS system has undergone a first validation, in which guidelines were
tested on a large patient data set of previously admitted ICU patients. This
validation, described in detail elsewhere [38], showed that 88% of all issued
reminders were classified as correct. The CritICIS system is now fully
operational in the 20-bed ICU of the Catharina Hospital, Eindhoven, the
Netherlands.

Another system that has been developed by means of the Gaston framework
is the GRIF system, developed to change Family Physicians' (FP) test

Chapter 4 Discussion

136

ordering behavior by focusing on the appropriateness of test requests [39].
Using a retrospective random selection of 253 request forms the comments of
human experts to the comments of the reminder system were compared. A
panel of three expert physicians judged the requested tests independently
based on interpretations of the practice guidelines. The majority assessment
of the physicians was compared to the assessment of the reminder system. In
case the system’s output differed from the majority assessment the written
practice guidelines were consulted. On average 4.8 reminders were produced
per form. In total 32 of the 442 given reminders (7%) were given incorrectly.
The amount of information and the level of detail (the specificity of the terms)
in which the FP describes the patients' medical status are crucial for the
reminder system to react correctly. Details are described elsewhere [45].

The Multidisciplinary Psychoactive Drug Selection –advisor system (M-PADS)
is a decision support system developed for selecting the most appropriate
psychoactive drug in order to treat psychiatric patients [46]. It contains
guidelines and PSMs that solve a number of tasks, varying from tasks that are
similar to the earlier-mentioned drug interaction tasks, to more complex ones
that process ‘deep knowledge’ (using a semantic network). In contrast to the
other examples that used Protégé for developing the domain ontology, the
domain ontology for this system was developed with the help of the GALEN
approach [47]. A first evaluation is currently ongoing.

Finally, decision-support systems were developed that provide advice through
the Internet. These systems were integrated in a web-based consumer health
record system, which can be used both by care providers and patients to
enter and share medical and patient information [43]. Two pilot projects
concerning this topic are currently in progress: 1) the TANDEM project [40],
which focuses on the treatment of Diabetes and 2) the earlier-mentioned
Medical Guideline Technology (MGT) project [33] that focuses on the
treatment of Hypertension. The TANDEM system has now been in operation
for several months. A pilot study is in progress with 10 patients and two care
providers. Patients as well as care providers appear to have accepted the
system very well. The pilot study will continue for another three months. The
pilot study of the MGT project is currently in its initial phase.

5 Discussion
Although the number of guideline-based decision-support systems increased
rapidly during the last years, the number of systems that are actually used in
daily practice is still very small. The use of a framework as described in this
paper may increase the number of systems that are used in practice as it
covers all stages in the guideline development process, from the guideline

Chapter 4 Discussion

137

acquisition phase to the guideline execution phase. The use of primitives,
PSMs ontologies and plugins facilitates guideline reusability as well as
shareability. As the ontological representation is extendible and represents a
guideline on different levels, it is scalable, flexible and expressive enough to
define guidelines that differ in complexity and application domain, as is
illustrated by the number of systems that were developed by means of the
framework.

In contrast with other approaches that model PSMs, this framework differs
slightly as it models the control structure in terms of explicit primitives that
each describe a different aspect of the PSM. In other approaches, the control
structure of a PSM often primarily consists of other PSMs (in case a PSM is
no longer decomposable, such a PSM is referred to as a primitive PSM or
mechanism [26]), where the behavior of each (primitive) PSM is defined by
means of a formal language such as predicate logic (which automatically also
requires the development of a general interpreter that is able to execute the
logical statements efficiently). This approach can be implemented by the
Gaston framework, for example by means of creating a Primitive_PSM class
that contains an attribute (e.g., Operational_Definition), which holds a
formal description of the PSM’s behavior [48, 49]. In this case, the
implementation procedure stored in the :PROCEDURE attribute refers to a
general interpreter which executes the description (e.g., a CLIPS or a
PROLOG interpreter). The approach, described in this paper however, defines
the control structure of a PSM in terms of different elements (e.g., primitives or
other PSMs) in order to 1) use the same representation for defining guidelines
in terms of PSM as well as primitives, 2) attach visualization information to
each class to facilitate the knowledge acquisition phase and 3) attach
execution procedures to each class to automatically create a run-time
decision-support system. The number of decision support systems, used in
daily practice that are based on PSMs is very limited, mainly as a result of the
abstractness of a PSM. This project has started with implementing rather
simple PSMs such as the selection PSM, presented in this paper (and even
this example has been simplified somewhat). The examples and results
illustrate that the guideline’s application domain dictates its representation.
Guidelines that are more complex or domain-specific usually require a more
low-level representation (e.g., a set of primitives) as these guidelines are
usually too specific to be captured by PSMs. Guidelines that address more
generic tasks (e.g., heuristic classification or selection tasks) are more suited
to be represented by means of PSMs. When guideline authors become more
familiar with the application domain, they may be able to recognize certain
patterns, which can be embedded into PSMs. Besides further development of

Chapter 4 Discussion

138

the models, we are also currently implementing more complex PSMs such as
Cover-and-Differentiate and Episodic Skeletal-Plan Refinement (ESPR).

Creating a non-monolithic ontological representation supports the
development of extended ontologies and new primitives. However, one must
be careful not to create a large number of primitives to address very specific
tasks. Instead, creating more general primitives that can be refined to
represent specific behavior seems a more favorable option. As mentioned
earlier, ontologies primarily consist of classes and do not contain instances.
The latter are acquired during the knowledge acquisition phase. The
examples show that for knowledge acquisition, various types of instances
exist. For example, an instance that defines a drug interaction implies that this
interaction exists for all occurrences of that drug, although it is not defined at
the level of the Drug class. This, in contrast to an instance of the Drug class
that is used to describe a single activity. In this case, the instance represents
a particular prescription that is started on a certain date with a certain dosage.
Although both situations are represented by means of an instance, their
purposes are different. Therefore, they must be defined by means of different
relations, instead using a standard ‘instance-of’ relation [50]. For example, all
instances that represent drug interactions are defined as a
‘interaction_instance-of’ Drug, in contrast to an instance that represents an
activity that is defined as an ‘instance-of’ Drug. The framework supports this
feature through the metaclass feature of the OBKC model. As a result of
applying this model, an ontology in the Gaston does not primarily consists of
classes anymore, but also contains instances. For example, each primitive in
the method ontology is an instance of the :STANDARD-PRIMITIVE-CLASS
metaclass As mentioned earlier, the :VISUALIZATION attribute of this class
refers to an instance in another ontology that holds information to define a
primitive-specific user interface in the KA-Tool. Although this information is not
usually included in an ontology, this has been a deliberate design-criterion in
order to facilitate the development of systems that are used in practice.

The use of a kernel and plugins allows for the creation of various application-
specific systems during the guideline acquisition and execution phases. The
KA-Tool for example uses plug-ins to support the definition of very specific
and flexible user interfaces for guideline acquisition. This was for example not
possible in the previous Windows version of Protégé [21], where the user
interface was not as flexible as the one, described here. This has been
recognized by the developers of Protégé, as the recent Java version supports
the use of plug-ins to create flexible task-specific user interfaces [51].
However, this version was not available during the time this framework was

Chapter 4 References

139

developed (a re-implementation of the Gaston framework in Protégé will
require a complete reprogramming of the framework in Java).

In the literature, the process of guideline development is often focused on the
issues of guideline representation and acquisition (stages 1-3 in the Gaston
framework). However, an execution-time decision-support system that can be
automatically created from acquired guidelines (stage 4) is often
underestimated but of crucial importance. Developing the execution-time
system with the requirements of execution speed and compactness in mind
[31] resulted in a fast real-time system.

Concerning future developments, the model still needs improvements in a
number of areas. First, the description of a PSM as well as a guideline on a
high level is still informal. Consequently, there is no automatic mapping from a
task description to the control structure of the PSM. We are currently
investigating the integration of formal PSM-languages [48] within our
framework to make such mappings explicit. Also, the primitives developed in
our model do not represent uncertainty that is sometimes required by
guidelines. Finally, the representation of temporal information is also still
under development. Currently, our system representation is for example not
as expressive in this area as for example the representation, described in the
Asbru [13] language.

References
1. Grimshaw JM, Russel IT. Effects of Clinical Guidelines on Medical Practice: A Systematic

Review of Rigorous Evaluation. Lancet 1993;342:1317-22.
2. Effective Health Care. Implementing Clinical Practice Guidelines: Can guidelines be used

to improve clinical practice? Effective Health Care 1994;8:1-12.
3. Field MJ, Lohr KN. Guidelines for Clinical Practice: From Development to Use.

Washington, DC.: National Academy Press, 1992.
4. Van Der Lei J, Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and

Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.
5. Johnston ME, Langton KB, Haynes RB, Mathieu A. Effects of computer-based clinical

decision support systems on clinician performance and patient outcome. A critical
appraisal of research. Ann Intern Med 1994;120(2):135-42.

6. Hripcsak G. Rationale for the Arden Syntax. Comput Biomed Res 1994;27(4):291-324.
7. Fox J, Johns N. Rahmanzadeh A. Disseminating medical knowledge: the PROforma

approach. Artif Intell Med 1998;14:157-81.
8. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu SW, Oliver DE, Pattison-Gordon

E, Greenes RA, Shortliffe EH, Barnett GO. The guideline interchange format: a model for
representing guidelines. JAMIA 1998;5(4):357-72.

9. Miller PL. Expert Critiquing Systems, Practice-Based Medical Consultation by Computer.
New York: Springer-Verlag, 1986.

10. Hripcsak G, Clayton PD, Jenders RA, Cimino JJ, Johnson SB. Design of a clinical event
monitor. Comput Biomed Res 1996;29(3):194-221.

Chapter 4 References

140

11. Van der Lei J, Musen MA. A model for critiquing based on automated medical records.
Comput Biomed Res 1991;24:344-78.

12. Musen MA, Tu SW, Das A, Shahar Y. EON: A Component-Based Approach to
Automation of Protocol-Directed Therapy. JAMIA 1996;3:367-88.

13. Shahar Y, Miksch S, Johnson P. The Asgaard Project: A Task-Specific Framework for the
Application and Critiquing of Time-Oriented Clinical Guidelines. Artif Intell Med
1998;14:29-51.

14. Fridsma DB, Gennari JH, Musen MA. Making Generic Guidelines Site-Specific. Proc
AMIA Symp 1996;:597-601.

15. Miller RA. Strategies for Medical Knowledge Acquisition. In: Van Bemmel and Musen
(eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.

16. Eriksson H, Musen MA. Metatools for knowledge acquisition. IEEE Software
1993;10(3):23-9.

17. Gill H, Ludwigs U, Matell G, Rudowski R, Shahsavar N, Ström C, Wigertz O. Integrating
knowledge-based technology into computer aided ventilation systems. Int J Clin Monit
Comput 1990;7(1):1-6.

18. Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY. Real-Time Knowledge-Based
Systems. AI Magazine 1988;9;1:27-45.

19. Schreiber AT, Wielinga BJ, De Hoog R, Akkermans H, van der Velde W, Anjewierden A.
CommanKADS: A Comprehensive Methodology for KBS Development. IEEE Expert
1994;:28-37.

20. Motta E. Reusable Components for Knowledge Modelling. Case Studies in Parametric
Design Problem Solving. Amsterdam: IOS Press, 1999.

21. Musen MA, Gennari JH, Eriksson H, Tu SW, Puerta AR. PROTEGE II: Computer Support
For Development Of Intelligent Systems From Libraries Of Components. Medinfo
1995;8(1):766-70.

22. Musen MA. Modern Architectures for Intelligent Systems: Reusable Ontologies and
Problem-Solving Methods. Proc AMIA Symp 1998;46-52.

23. Clancey WJ. Heuristic classication. Articial Intelligence 1985;27(3):289-350.
24. De Clercq PA, Blom JA, Hasman A, Korsten HHM. The Application of Ontologies and

Problem Solving Methods for the Development of Shareable Guidelines. Artif Intell Med
2001;22(1):1-22.

25. Gruber TR. A translation approach to portable ontologies. Knowledge Acquisition
1993;5(2):199-220.

26. Studer R, Eriksson H, Gennari J, Tu SW, Fensel D, Musen MA. Ontologies and the
Configuration of Problem-solving Methods. Proceedings of the 10th Knowledge
Acquisition for Knowledgebased Systems Workshop, Banff, 1996.

27. Chaudhri V, Farquhar A, Fikes R, Karp P, Rice J. The Generic Frame Protocol 2.0.
Available at http://www.ai.sri.com/~gfp/spec.html.

28. Noy NF, Fergerson RW, Musen MA. The knowledge model of Protégé-2000: combining
interoperability and flexibility. 2th International Conference on Knowledge Engineering
and Knowledge Management (EKAW'2000), Juan-les-Pins, France, . 2000.

29. Giarratano J, Riley G. Expert Systems: Principles and Programming. Boston: PSW
Publishing Company, 1994.

30. World Wide Web Consortium, Resource Description Framework (RDF). Available at
http://www.w3.org/RDF/

31. Blom JA. Temporal logics and real time expert systems. Comput Methods Programs
Biomed 1996;51:35-49.

Chapter 4 References

141

32. National High Blood Pressure Education Program. The Sixth Report of the Joint National
Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Washington:
NIH; 1998.

33. The Medical Guideline Technology project. INCO-COPERNICUS Project IC15 CT 98-
0315. Homepage available at http://frost.open.ac.uk/mgt/.

34. Musen MA. Decision-support methods. In: Van Bemmel and Musen (eds). Handbook of
medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.

35. Kiczales G, des Rivieres J, Bobrow DG. The Art of the Metaobject Protocol. Cambridge,
MA: The MIT Press, 1991.

36. Tu SW, Musen MA. A flexible approach to guideline modeling. Proc AMIA Symp
1999;:420-4.

37. Chandrasekaran B, Johnson TR, Smith JW. Task-Structure Analysis for Knowledge
Modeling. Communications of the ACM 1992;35(9):124-37.

38. De Clercq PA, Blom JA, Hasman A, Korsten HHM, A strategy for development of practice
guidelines for the ICU using automated knowledge acquisition techniques. Int J Clin Monit
Comput 1999;15:109-17.

39. Bindels R, De Clercq PA, Winkens RAG, Hasman A. A test ordering system with
automated reminders for primary care based on practice guidelines. Int J Med Inf
2000;58-59(1):219-33.

40. The TANDEM project. Leonardo da Vinci Program DK/97/2/00376/Pl/II.1.1.c/FPC.
Homepage available at http://www.tandem.v-chi.dk/.

41. McDonald CJ, Hui SL, Smith DM, Tierney WM, Cohen SJ, Weinberger M. Reminders to
physicians from an introspective computer medical record. A two-year randomized trial.
Ann Intern Med 1984;100:130-8.

42. Miller RA, Masarie FE Jr. The demise of the "Greek Oracle" model for medical diagnostic
systems. Meth inform Med 1990;29:1-2.

43. De Clercq PA, Hasman A. Design of a Consumer Health Record for Supporting the
Patient-centered Management of Chronic Diseases. Medinfo 2001;10(2):1445-9.

44. Project IMPACT Page. SSCM Web Page. Available at
http://www.sccm.org/impact/impact_home_set.html.

45. Bindels R, Hasman A, Winkens RAG, Pop P, Van Wersch JWJ. Validation of a knowledge
based reminder system for diagnostic test ordering in family medicine. Int J Med Inf
2001;64(2-3):341-54.

46. Van Hyfte DMH, De Clercq PA, Tjandra-Maga TB, Zitman FG, De Vries Robbé PF.
Modelling the psychoactive drug selection application domain at the knowledge level
1999. Proc Belgium-Netherlands Conf on Artificial Intelligence 1999;:187-8.

47. Rector A, Solomon W, Nowlan W, Rush T, Zanstra P, Claassen W. A Terminology Server
for medical language and medical information systems. Meth Inform Med 1995;34:147-57.

48. Fensel D, Benjamins VR, Motta E, Wielinga B. UPML: A Framework for knowledge
system reuse 1999. Proceedings of the International Joint Conference on AI (IJCAI '99)
1999.

49. Gil Y, Melz E. Explicit representations of problem-solving strategies to support knowledge
acquisition. Proc Thirteenth National Conference on Artificial Intelligence 1996.

50. Woods W. What’s in a link: foundations for semantic networks. In: Bobrow and Collins
(eds). Representation and understanding: studies in cognitive science. London: Academic
Press, 1975.

51. Grosso WE, Eriksson H, Fergerson RW, Gennari JH, Tu SW, Musen MA. Knowledge
Modeling at the Millennium (The Design and Evolution of Protégé-2000). Proceedings of
the 12th International Workshop on Knowledge Acquisition, Modeling and Mangement
(KAW'99), Banff, Canada, October 1999.

Chapter 4 References

142

CHAPTER 5

A STRATEGY FOR DEVELOPMENT OF PRACTICE

GUIDELINES FOR THE ICU USING AUTOMATED

KNOWLEDGE ACQUISITION TECHNIQUES

Published in:
The International Journal of Clinical Monitoring and Computing 1999;15:109-117

Paul A. de Clercq

Johannes A. Blom
Arie Hasman

Hendrikus H.M. Korsten

Chapter 5 Introduction

144

1 Introduction
Practice guidelines are increasingly used in health care, especially in clinical
care and emergency care environments such as the Intensive Care Unit
(ICU), to improve the quality of care [1]. Reminder systems may use these
guidelines to provide decision support to the ICU health care workers [2].
Traditionally, knowledge engineers acquired the guidelines from a domain
expert (physician) by means of various knowledge elicitation techniques, such
as interview methods or card sorting [3]. This process usually creates a
severe bottleneck, however, because the domain expert and the knowledge
engineer have to reach a common understanding before progress can be
made [4] and even then the production rate of knowledge is very low.
Therefore, automated knowledge acquisition tools such as knowledge base
editors are increasingly used to acquire knowledge directly from domain
experts [5].

This paper demonstrates how the development of practice guidelines with
automated knowledge acquisition techniques can improve the quality of
computer support in an ICU. To validate our ideas, we created and installed a
knowledge acquisition environment in the ICU of the Catharina Hospital,
Eindhoven, the Netherlands. In this environment, physicians are able to
formulate, update and evaluate guidelines without the assistance of a
knowledge engineer.

2 Materials and methods

2.1 The knowledge acquisition environment
The knowledge acquisition environment consists of a collection of tools to
implement and evaluate practice guidelines:

• A graphical knowledge acquisition tool, called the CritICIS knowledge base

editor, is used to formulate and update practice guidelines. The knowledge
base editor is implemented by means of the Borland Delphi graphical
authoring environment and runs under the Microsoft Windows operating
system.

• A Patient Data Management System (PDMS) collects, stores and
manages clinical data as well as physiological data in an ICU [6]. The
PDMS in our ICU, called the Intensive Care Information System or ICIS1,
has been in operation for more than two years now and has made the use

1ICIS is manufactured by INAD Medical Systems BV, POB 178, 5600 AD,
Eindhoven, the Netherlands

Chapter 5 Materials and methods

145

of paper records superfluous. ICIS was developed with Microsoft Access
and runs under Microsoft Windows.

• An expert system, called CritICIS, reports inconsistencies between the
clinical data stored in the PDMS and the implemented guidelines that were
entered using the knowledge base editor. CritICIS is implemented as a
reminder system. It monitors the actions and observations of physicians
and nurses and generates a reminder whenever a guideline is not followed
[7]. Decision support systems that operate in dynamic and unstable clinical
domains such as the ICU should be real-time systems, because, even
though the volume of data in such an environment can be overwhelming
[8, 9], the system’s response must be timely. We developed the reminder
system by means of the Gaston architecture, a collection of tools that
assist in the design of real-time expert systems [10]. The Gaston
architecture contains the SIMPLEXYS verification toolbox: a variety of
tools to perform logical and semantic tests on the implemented guidelines
[11].

Knowledge acquisition environment

Create guideline

Update guideline

Figure 1: Formulating and evaluating practice guidelines in the knowledge acquisition

environment

Practice guidelines are formulated, updated and transferred to the knowledge
base of the reminder system with the help of the knowledge base editor.
Subsequently, the guidelines are validated by testing the guidelines on a data
set of previously admitted patients. A panel of ICU physicians then evaluates
the output of the reminder system. Based on this evaluation, the guidelines
may be updated (or discarded). When the ICU physicians approve a
guideline, it is exported to the system that is used in daily practice (figure 1).

2.2 Creating and updating guidelines
The CritICIS knowledge base editor is a graphical knowledge acquisition tool
that enables physicians to formulate guidelines and transfer them to the

Chapter 5 Materials and methods

146

reminder system’s knowledge base. This process of representing knowledge
has several distinct aspects [12], shown in the next sections.

2.2.1 Lexicon / Ontology
In order to be able to reason about a medical domain, its terms or objects
(e.g., diseases, drugs and diagnoses) must be established, classes of objects
must be defined (e.g., classes of diseases, classes of drugs, etc.) as well as
relationships between the various terms and classes (e.g., pneumonia is a
member of the class of lung diseases; the class of lung diseases in turn is part
of the diseases class). This structure is referred to as an ontology: a formal
description of objects in the world, those objects’ properties, and the relations
among them [13].

We have used the IMPACT Minimal Standard Data Set, a set of medical
terms, describing the state of a patient in an Intensive Care Unit [14] as an
ontology for our ICU. It defines a number of classes, each describing a distinct
medical category such as drugs, treatments and diagnoses. Every category
may contain subcategories. In the knowledge base editor the ontology is
implemented as a class tree and inheritance is used to create hierarchical
relationships. Every object in the tree is defined by a number of properties,
some of which are mandatory (e.g., the object’s name and code ID) whereas
others depend on the object’s representation in the real world. For example,
an object that represents a treatment has an additional property that holds the
treatment’s duration, whereas an object that represents a drug has properties
that store the drug’s dose, frequency and unit. At present, the ontology
consists of more than 1900 objects divided in about 100 classes.

2.2.2 Inference Syntax
Guidelines are also represented as objects. Every guideline object
encapsulates a production rule (using the syntax ‘IF expression THEN
GiveReminder’) and is defined by the following properties:

• Name: the name of the guideline.
• Author: the name of the guideline’s author.
• Type: the guideline’s type. The knowledge base editor defines two types:

Reminder and Intermediate. Guidelines of type Reminder issue a reminder
when a guideline is not followed, whereas guidelines of type Intermediate
are parts of other guidelines; they do not lead to a reminder but store
intermediate observations or conclusions.

• Validation: this binary property indicates whether a guideline is approved
for routine clinical care (Production) or is still in the test phase (Test).

Chapter 5 Materials and methods

147

• Explanation: the explanation property holds an explanation of the
guideline, for example used for documentation purposes. It may also
contain literature references.

• Message: this property holds the message that is to be given by the
reminder system when the guideline is not followed (only required for
guidelines of type Reminder).

• Expression: the expression part of the encapsulated production rule. If the
reminder system evaluates an expression as true, a reminder will be
issued. The property is stored as references to instantiated objects of the
ontology class tree, combined with Boolean operators (AND, OR and
NOT).

The user interface of the knowledge base editor presents the ontology as well
as the guidelines in the knowledge base to the user. It enables physicians to
define a guideline by entering its property values (figures 2 and 3).

Figure 2: The user interface of the CritICIS knowledge base editor. The upper left

window presents the knowledge base with all currently implemented guidelines. The
lower left window shows the ontology class tree. The right window presents a

detailed description of a single guideline by means of its property values

The user interface of the knowledge base editor is divided into three sections
or windows. The upper left window presents the knowledge base with all

Chapter 5 Materials and methods

148

currently implemented guidelines. The lower left window shows the ontology
class tree. The window on the right presents a detailed description of a single
guideline by means of its property values.

Guidelines are grouped into categories according to the guideline’s purpose.
Guidelines about drug contraindications, for example, are stored in the
contraindications category. Physicians may store guidelines into existing
categories or create a new category to hold the guideline. Whenever a
physician creates or selects a guideline, the right window presents the
guideline’s properties divided into two pages, called the ‘general properties’
page and the ‘expression’ page. The ‘Digoxin usage, combined with a low
potassium value’ guideline is an example; it indicates that a patient with a
potassium blood concentration less then 3 mmol/l should not be prescribed
the drug Digoxin. The right window in figure 2 shows the general properties of
this guideline such as name, author, type, etc.

Figure 3: A guideline’s expression. The Potassium pop-up window shows the

properties of the potassium laboratory test

The ‘expression’ page presents the content of the expression property. For
example, figure 3 shows the expression of the ‘Digoxin usage, combined with
a low potassium value’ guideline. This particular expression evaluates to true
if a laboratory test, carried out less than 2 days ago, returns a potassium

Chapter 5 Materials and methods

149

concentration lower than 3 mmol/l and if the medication Digoxin has been
prescribed as well. As a result, a reminder will be issued. The expression
consists of instantiated objects from the ontology class tree, which are
selected from the tree and dragged to the right window (this operation
implements the AND-operator). It is also possible to edit a term’s properties,
which depend on its representation in the real world. Finally, propositions that
consist of multiple terms can be created by dragging a term from the ontology
tree on top of an existing proposition in the right window (this implements the
OR-operator).

2.3 Validating implemented guidelines
After their creation or update, guidelines are tested in various ways. First, the
guidelines are translated into a semantic net, after which the correctness of
the net is verified. These tests include the detection of various types of logical
errors such as incompleteness, inconsistencies, conflicts and (partial)
tautologies, as well as the detection of procedural errors, such as infinite loops
(e.g., self-references) [11].

Figure 4: If a guideline is not followed, CritICIS generates and displays a reminder

that overlays the normal user interface of the PDMS

Next, the new guidelines are tested on a large data set of previously admitted
ICU patients. The physician activates the reminder system through the PDMS,

Chapter 5 Materials and methods

150

now pointing to the database of previously admitted ICU patients. The
reminder system checks for inconsistencies between the implemented
guidelines and these patient data. If an inconsistency is found, the
corresponding reminder is generated and displayed by means of a pop-up
window which overlays the normal user interface of the PDMS (figure 4).

The pop-up window asks the physician, who now may need to examine the
corresponding patient data, to classify the reminder as ‘correct’ (in case the
reminder was appropriate) or ‘incorrect’ (in case it was inappropriate). If it is
not possible to classify a reminder, it is labeled ‘inconclusive’. The physician
may additionally provide a rationale to explain his or her evaluation of the
reminder. All evaluations are stored into a database and presented as
histograms (figure 5), in which each column depicts the quality of a single
guideline by showing the number of times the corresponding reminder was
evaluated as correct, incorrect or inconclusive.

Figure 5: Each histogram shows the performance of one guideline. The title of every
guideline is shown in the bottom part of the screen, whenever the user points to the
corresponding histogram. An example is the column in the middle, which shows the
quality of the ‘Digoxin usage, combined with a low potassium value’ guideline. The

corresponding reminder has been generated 13 times, of which three were classified
as incorrect, eight as correct and two as inconclusive

Chapter 5 Results

151

2.4 Exporting the guidelines
Guidelines are stored into a knowledge base, which is maintained by the
knowledge base editor. When instructed, the editor is able to export the
content of the knowledge base in a number of formats. Normally, the
knowledge base is exported into the format that is used by the reminder
system. It is also possible to export the guidelines in different formats for other
systems. The knowledge base editor can be used for writing Medical Logic
Modules (MLMs) in the Arden Syntax, for example, a language designed as
an open standard for the procedural representation and sharing of medical
knowledge [15].

In parallel to the development of the knowledge base editor, the reminder
system is being integrated into the standard PDMS that operates in the ICU.
When all the ICU’s physicians have approved a guideline, it is transferred to
the reminder system and integrated into the PDMS. From then on, it provides
decision support to the health care workers of the ICU. In this environment,
the operation of the reminder system is similar to the operation of the system
in the knowledge acquisition environment, with the difference that now the
reminder system contains only validated guidelines and operates in real-time.

3 Results
Physicians as well as the nursing staff have accepted the knowledge editor
and the reminder system very well. After a short training period, physicians
find the editor’s interface useful and sufficiently ‘intuitive’. The content of the
guidelines varies from relatively simple, such as ‘a patient, admitted outside
normal working hours, is usually marked as an emergency’ to more complex,
such as the detection of drug contraindications and side effects or warnings
for the absence of certain monitoring requirements. Initially, physicians on an
ad-hoc basis implemented mainly local evidence-based guidelines. However,
in the course of time, physicians developed guidelines in a more structured
manner, based on literature and common consensus. Also, newly entered
guidelines were often variants of and inspired by previously entered
guidelines, e.g., a new contraindication or a new check for data entry
completeness.

At present, the physicians have entered 58 different guidelines into the
reminder system’s knowledge base by means of the knowledge base editor.
In order to determine the validity of these initially entered guidelines, we
tested the reminder system with the 58 guidelines on a patient data set of 803
previously admitted patients. As a result, 27 guidelines fired at least once,
generating 406 reminders in total. The 31 guidelines that never fired were not

Chapter 5 Results

152

further analyzed; a majority, however, is about exceptional situations that may
be life threatening but that occur only very infrequently. In order to estimate
the proportion of false-negatives (usually guidelines that are too specific), we
are currently developing an annotated and validated patient database. Using
this database, physicians will be able to estimate the number of false-
negatives by selecting patients in this database and checking whether a
reminder should have been issued.

Table 1 shows the validation results of the 27 guidelines that fired. We have
classified the corresponding reminders in 5 categories, based on their causes
of firing:

• Incorrect guideline. Reminders of this type are false alarms, given as a

result of an incorrectly implemented guideline. The corresponding
guideline is then removed from the knowledge base. Reminders of this
category were not found during the validation process.

• Too generic guideline. Reminders in this category also represent false
alarms, given as a result of a guideline that was not specific enough. The
corresponding guideline needs to be updated.

• Inconsistency database. Reminders of this type represent situations in
which data in the database of the PDMS is incomplete or inconsistent.
These data need to be corrected.

• Inappropriate action. Reminders in this category are issued whenever
actions or decisions of the ICU staff may not be the most appropriate ones.

• Potential risk. Reminders of this type represent situations that involve a
potential risk.

As shown in table 1, from the 406 issued reminders, 356 (88%) were
classified as correct and 50 (12%) were false alarms. The 50 false alarms
were issued by five guidelines that were too generic. An example is the top
guideline, stating that a patient with a subarrachnoid bleeding must be treated
with a laxative. It was issued 8 times, of which 7 were false alarms and 1 was
correct. The false alarms were due to the fact that the guideline did not
include certain exceptions (e.g., a patient with a traumatic head injury is not
treated with a laxative). Another example is the 'The complication oliguria not
diagnosed' guideline that embodies the notion that patients with a low urine
output suffer from oliguria. This guideline generated 60 reminders, of which 49
were given correctly and 11 were false alarms. The 11 false alarms all
concerned patients that had already been diagnosed with oliguria before their
admission to the ICU (diagnoses entered before admission to the ICU are
stored into another database table that erroneously was not specified for
inspection).

Chapter 5 Results

153

Name guideline
Too generic

guideline
Inconsistency

database
Inappropriate

action
Potential

risk

A subarrachnoid bleeding must be treated
with a laxative

7 1

No anti-coagulation prescribed 9 38 17

Defibrillation not recorded 6

Digoxin may increase rhythm disturbances 1

The complication oliguria not diagnosed 11 49

The complication anuria not diagnosed 29

A patient, admitted outside normal
working hours, is usually an emergency

 37

A patient treated with renal-substitution
therapy must be weighted daily

5 1 15

Serum-levels of the antibiotic must be
checked

18 1 20

Digoxine may impair renal function 15

Diuretics increase digoxin-toxicity 25

Serum levels of digoxin increase by using
verapramil or amiodaron

 10

Due to hypotension, adjust the starting-
dose of ACE-inhibition

 46

Due to blunt abdominal trauma, check
serum amylase

 7

Due to blunt thorax-trauma, make an
Echocardiogram

 1 7

This patient should be treated with
coumarin

 1 2

(Pre-)ecclampsia: Mg-supplement with a
low Ca++ increases its toxicity.

 1

Ca++ must be supplemented 1

NSAID's counteract the anti-hypertensive
medication

 7

You may consider giving magnesium in
the case of a (pre)-ecclampsia

 2

Half the dose of digoxin B.W. < 70kg, age
>70 or creatine clearance <70 ml/min

 8

Digoxin usage, combined with a low
potassium value

 2

Start digoxin according to protocol for
pneumonectomy-patients

 1

Toxicity of Digoxin increased by the use
of ampho-B

 2

Recently bradycardia: relative
contraindication for beta-blockade

 1

75% standard dose EXTRA after dialysis 1

75% standard dose EXTRA after dialysis 1

Table 1: Performance of the 27 guidelines that fired

Chapter 5 Discussion

154

In all these five cases, the guidelines were updated to incorporate the
exceptions, resulting in the elimination of all false alarms.

4 Discussion
Various studies, covering a wide range of clinical settings and tasks, conclude
that the use of practice guidelines significantly improves the quality of care
[16], especially when used in combination with computer-stored medical
record systems such as a PDMS [17]. However, the process of guideline
development is usually very time and resource consuming. There is a wide
variety of variables and the rules are often physician- or ICU-specific [18]. We
believe that automated knowledge acquisition tools such as knowledge base
editors are able to facilitate the guideline development process -- as long as
the physicians are willing to use them. Our knowledge base editor was
therefore developed in close collaboration with and as specified by the
physicians and nursing staff of our ICU. In order to enable sharing of the
guidelines with other ICU departments, the guidelines are exportable, e.g.
using the Arden syntax format [19].

An important issue is the attitude of the physicians and the nursing staff
towards the use of decision support systems [20]. During the last two
decades, the majority of expert consultation systems utilized the ‘Greek
Oracle’ approach. These systems, such as INTERNIST-I [21], typically expect
a health care worker to enter information about a patient, after which the
system produces a number of conclusions and recommendations such as a
list of possible diseases, a set of suggested tests or a treatment plan.
Experience revealed, however, that the system’s users could become
annoyed by this approach, because the user’s role often is diminished to that
of a passive observer or even a ‘slave’ of the computer. Reminder systems,
on the other hand, utilize the so-called critiquing approach. Critiquing systems
are silent whenever the computer judges the user’s (planned) behavior to be
satisfactory given the case data, but offer a critique of the behavior should the
user (propose to) take an action that is not consistent with the system’s
knowledge base [4]. As a result, a critiquing system structures its advice
around the physician’s own thinking and style of practice instead of ‘trying to
tell a physician what to do’ [22]. Also, practice guidelines are well suited for
implementation in a critiquing system, because a critiquing system notifies a
user whenever there are inconsistencies between implemented guidelines
and the treatment plans that were proposed by that same user or by the group
in which he or she participates. During the last 15 years there have been
several attempts to integrate critiquing systems with existing data-
management systems, usually applied to a narrow problem domain such as

Chapter 5 Conclusions

155

cancer treatment, hospital-acquired infections and antibiotic use, blood
ordering and hypertension [23-26].

Computer-based critiquing may also have its limitations [27]. A critiquing
system that only relies on medical records for its input may produce irrelevant
critiques because a medical record entered by a physician usually only
contains the actions of that physician; the underlying reasoning or rationale
has to be reconstructed. For example, a physician may be well aware of
violating a guideline but, since no guideline can cover all cases, other
circumstances may have led the physician to decide otherwise. Also, the data
in the patient database may be incomplete. In order to improve the
performance of computer-based critiquing, the format of computer-based
medical records must be further developed. In particular, medical devices
(e.g., monitors, ventilators and infusion pumps) that automatically store their
information and/or actions into the PDMS can lead to a far more complete
patient database; in addition, this approach can greatly alleviate the current
need for consistent and complete data entry by the ICU staff.

Another method of improving the performance of computer-based critiquing
may be the utilization of the critiquing process model. According to Van der
Lei and Musen [26], every computer system requires two distinct types of
knowledge to review automated medical records: critiquing knowledge
(knowledge about the process of critiquing itself) and medical knowledge
(specific medical knowledge, required by the critiquing process). Utilizing the
critiquing process model is thought to simplify system maintenance as well as
the knowledge acquisition process. The knowledge base of the reminder
system is currently implemented as a set of independent modules
(comparable to Arden Syntax modules). However, we have started to analyze
the existing guidelines in order to find a limited, useful classification of
critiquing tasks. This bottom-up approach contrasts with the more usual top-
down approach, which may lead to systems that are too ‘theoretical’ for the
daily practice of the ICU with its established norms and procedures. Further
research will have to determine whether (and if so, how) current and future
guidelines are indeed ‘bottom-up classifiable’ into more abstract critiquing task
classes.

5 Conclusions
This method enables physicians to define guidelines and transfer them to a
decision support system that is used in daily practice. Using the validation of
the guidelines on the stored patient database, physicians readily find
previously not thought of exceptions, and equally readily improve the
guidelines accordingly. These first results and findings convince us that this

Chapter 5 References

156

bottom-up strategy, combined with appropriate automated knowledge
acquisition tools, enables the medical specialists themselves to improve the
quality of the knowledge base and, hopefully, ICU patient care without the
assistance of a knowledge engineer.

References
1. Uckun S. Instantiating and monitoring skeletal treatment plans. Methods Inf Med

1996;35:324-33.
2. Lau F, Vincent DD. A Knowledge-Based Care Protocol System for ICU. Medinfo

1995;:979-83.
3. Welbank M. An overview of knowledge acquisition methods. Interacting with computers

1990;2(1):83-91.
4. Van Der Lei J, Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and

Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.
5. Musen MA, Fagan L, Combs DM, Shortliffe EH. Use of a domain model to drive an

interactive knowledge-editing tool. Int J Man-Mach Stud 1987;26:105-21.
6. Metnitz PGH, Lenz K. Patient data management systems in intensive care - the situation

in Europe. Intensive Care Med 1995;21:703-15.
7. McDonald CJ, Hui SL, Smith DM, Tierney WM, Cohen SJ, Weinberger M. Reminders to

physicians from an introspective computer medical record. A two-year randomized trial.
Ann Intern Med 1984;100:130-8.

8. Gill H, Ludwigs U, Matell G, Rudowski R, Shahsavar N, Ström C, Wigertz O. Integrating
knowledge-based technology into computer aided ventilation systems. Int J Clin Monit
Comput 1990;7(1):1-6.

9. Laffey TJ, Cox PA, Schmidt JL, Kao SM, Read JY. Real-Time Knowledge-Based
Systems. AI Magazine 1988;9(1):27-45.

10. De Clercq PA, Blom JA, Hasman A, Korsten HHM. Design and implementation of a
framework to support the development of clinical guidelines. Int J Med Inf 2001;64(2-
3):285-318.

11. Blom JA. Temporal logics and real time expert systems. Comput Methods Programs
Biomed 1996;51;35-49.

12. Musen MA. Dimensions of Knowledge Sharing and Reuse. Comput Biomed Res
1992;25;435-67.

13. Gruber TR. A translation approach to portable ontologies. Knowledge Acquisition
1993;5(2):199-220.

14. Project IMPACT Page. SSCM Web Page. Available at
http://www.sccm.org/impact/impact_home_set.html.

15. Jenders RA, Dasgupta B. Assessment of a knowledge-acquisition tool for writing Medical
Logic Modules in the Arden Syntax. Proc AMIA Symp 1996;:567-71.

16. Effective Health Care. Implementing Clinical Practice Guidelines: Can guidelines be used
to improve clinical practice? Effective Health Care 1994;8:1-12.

17. East TD, Morris AH, Wallace CJ, Clemmer TP, Orme JF Jr, Weaver LK, Henderson S,
Sittig DF. A strategy for development of computerized critical care decision support
systems. Int J Clin Monit Comput 1991;8(4):263-9.

18. East TD, Henderson S, Pace NL, Morris AH, Brunner JX. Knowledge engineering using
retrospective review of data: a useful technique or merely data dredging? Int J Clin Monit
Comput 1991;8(4):259-62.

19. Hripcsak G. Rationale for the Arden Syntax. Comput Biomed Res 1994;27(4):291-324.

Chapter 5 References

157

20. Shortliffe EH. Testing Reality: The Introduction of Decision-Support Technologies for
Physicians. Meth Inform Med 1989;28:1-5.

21. Miller RA, Masarie FE Jr. The demise of the "Greek Oracle" model for medical diagnostic
systems. Meth inform Med 1990;29:1-2.

22. Miller PL. Expert Critiquing Systems, Practice-Based Medical Consultation by Computer.
New York: Springer-Verlag, 1986.

23. Langlotz CP, Shortliffe EH. Adapting a consultation system to critique user plans. Int J
Man-Mach Stud 1983;19:479-96.

24. Evans RS, Larsen RA, Burke JP, Gardner RM, Meier FA, Jacobson JA, Conti MT,
Jacobson JT, Hulse RK. Computer surveillance of hospital-acquired infections and
antibiotic use. JAMA 1986:1007-11.

25. Lepage EF, Gardner RM, Laub RM, Jacobson JT. Assessing the effectiveness of a
computerized blood order "consultation" system. Proc Annu Symp Comput Appl Med
Care 1991;:33-7.

26. Van der Lei J, Musen MA. A model for critiquing based on automated medical records.
Comput Biomed Res 1991;24:344-78.

27. Van der Lei J, Van der Heijden P, Boon WM. Critiquing expert critiques. Issues for the
development of computer-based monitoring in primary care. Medinfo 1989;:106-10.

Chapter 5 References

158

CHAPTER 6

EXPERIENCES WITH THE DEVELOPMENT,
IMPLEMENTATION AND EVALUATION OF AUTOMATED

DECISION SUPPORT SYSTEMS

Based on papers published in:
The International Journal of Medical Informatics 2000;58-59(1):219-233

Medical Informatics and the Internet in Medicine 2000;25(4):247-263
The Journal of the European College of Neuropsychopharmacology 2000;10(3):390

Medical Informatics and the Internet in Medicine. Accepted for publication

Paul A. de Clercq
Rianne Bindels

Dirk M.H. van Hyfte
Hendrikus H.M. Korsten

Johannes A. Blom
Bruce H.R. Wolffenbuttel

Arie Hasman

Chapter 6 Introduction

160

1 Introduction
The number of guideline-based decision support systems that are aimed at
improving the quality of care is rapidly increasing. There have been numerous
efforts to develop systems that support guideline-based care in an automated
fashion, covering a wide range of clinical settings and tasks [1]. However,
building systems that are both effective in supporting clinicians and accepted
by them has proven to be a difficult task. Of the systems that were evaluated
by a controlled trial, the majority showed impact [2]. In order to be successful,
attention must be paid to various areas that are important in the guideline
development process such as guideline representation, acquisition,
verification and execution [3].

This paper reports experiences concerning the development, implementation
and evaluation of guideline-based systems that were created with the Gaston
approach: a methodology and framework that facilitates all stages in the
guideline development process, ranging from the definition of models that
represent guidelines to the implementation of run-time systems that provide
decision support, based on the guidelines that were developed during the
previous stages [4]. The framework consists of 1) a guideline representation
formalism that uses the concepts of primitives, Problem-Solving Methods
(PSMs) and ontologies [5] to represent guidelines of various complexity and
granularity and different application domains, 2) a guideline authoring
environment that enables guideline authors to define guidelines, based on the
newly developed guideline representation formalism, and 3) a guideline
execution environment that translates defined guidelines into a more efficient
symbol-level representation, which can be read in and processed by an
execution-time engine that forms the Decision Support System (DSS).

The aim of this paper is to examine the possibilities to develop and implement
guideline-based decision support systems for use in different domains through
the Gaston approach. Related to this are questions that are commonly
addressed when developing and implementing computer-based guidelines
such as ‘how to represent different sorts of guidelines in a straightforward
manner’, ‘how to facilitate guideline authors during the acquisition process’,
‘how to map concepts from a guideline to corresponding concepts in the real
world’ and ‘how to support care providers in daily practice using guideline-
based decision support systems’.

The remaining part of this paper addresses these questions by describing and
discussing four systems that were developed for use in the specialties of
family practice, critical care, psychiatry and chronic disease management: 1)

Chapter 6 Automated feedback on test ordering in general practice

161

GRIF: a reminder system that provides automated feedback on test ordering
in general practice [6], 2) CritICIS: a real-time critiquing system used in critical
care environments such as Intensive Care Units [7], 3) M-PADS: a
psychopharmacological advisory system that provides decision support on the
process of selecting the most suited psychoactive drug [8], and 4) a consumer
health record system for managing chronic diseases [9]. Each system has its
own focus points. The GRIF system for example focuses on the evaluation of
the system in daily practice and the behavior of its users (family practitioners).
The M-PADS system focuses mainly on the guideline representation part and
not so much on guideline verification or execution. The CritICIS system,
however, does focus on these aspects although it also focuses on the other
two (guideline representation and acquisition). Finally, the system for chronic
disease management focuses on how such a system can improve the
communication between patients and care providers.

The next four sections describe each system in more detail. The paper ends
with a general discussion on the use of these systems and their relation with
the Gaston framework.

2 Automated feedback on test ordering in general practice

2.1 Introduction
The consumption of diagnostic tests has increased over the past 20 years and
there is a growing awareness that a relatively large percentage of test
requests in health care are inappropriate.
To manage test consumption in the Maastricht region, the Transmural &
Diagnostic Center has given personal feedback in the form of written reports
to Family Practitioners (FPs) in the Maastricht region since 1985. Twice a
year, each FP in the Maastricht region (±85 FPs) receives a structured
feedback report with critical comments on his/her test requests in a previous
month. The individual biannual written feedback is based on a comparison of
request forms (including provided administrative patient data, clinical patient
data and requested diagnostic tests) with accepted national or regional
guidelines.

Although the individual written feedback provided by the diagnostic center in
Maastricht improved the quality of the test-ordering behavior of the FPs [10]
and was appreciated by FPs in the Maastricht region, a more direct (related to
each test order) and less laborious method of feedback was desired.
Therefore, it was suggested to develop an automated feedback system that
would directly assist in the test ordering process.

Chapter 6 Automated feedback on test ordering in general practice

162

To manage test consumption and to improve appropriateness of requests an
automated feedback system was developed to change the FP test ordering
behavior. The main aim of this study is to develop and evaluate an accurate
and reliable automated feedback system to produce immediate advice about
diagnostic test ordering of FPs.

2.2 Requirements
In daily practice the FP has about 8 to 10 minutes for the consultation of one
patient. For this reason the automated feedback system ‘s most important
requirement is to work fast. The system must be easy to use and should not
force FPs to enter data twice. Another important requirement is that the FP
receives the feedback at the time the tests are requested. Finally, we wanted
to limit the entry of free text (when entering the working hypotheses, existing
problems and complaints) because an automated feedback system is better
able to interpret standardized medical data.

The structured manual feedback reports contain several items: number of
tests requested (compared to the previous analysis and compared to the
average number of requests of their colleagues), rationality of the requests
based on provided patient information, discussion of incorrect or redundant
requests, a number of questions concerning the policy of the FP after
receiving the results of the tests and a request to answer questions posed in
the letter and to comment on the feedback. Our automated feedback system
covers only a part of these items. It provides feedback concerning incorrect or
redundant requests and indicates when insufficient patient information is
given.

2.3 Methods

2.3.1 Environment
The GRIF1 automated feedback system consists of five parts: a knowledge
base, an order entry system, a module that provides reactive support (i.e. the
advice), a module that provides passive support and a database [6]. Figure 1
shows an overview of all parts.

The order entry system
The FP will have to enter the data that (s)he thinks are sufficient to support
the test request. The order entry system is not yet fully integrated with the
Electronic Patient Record (EPR) of the FPs but has a real-time connection
with the EPR via an intermediate database. At the moment the FP wants to

1 GRIF is the Dutch acronym for “Geautomatiseerde Reminders als Interactieve Feedback” (Automated
Reminders as Interactive Feedback).

Chapter 6 Automated feedback on test ordering in general practice

163

request diagnostic tests, (s) he can switch from the EPR to the automated
feedback system and the necessary patient related data (name, address, date
of birth, gender, medication and existing problems) will be transferred from the
EPR database to an intermediate database. At the time the FP starts the order
entry system the data are transferred automatically from the intermediate
database into the corresponding fields of the order entry system. Request
specific data are entered directly into the system. These data consist of 1)
medical data: working hypotheses, signs and complaints and physical
examination results and 2) reasons for test request.

 Passive support
 module

 Order entry
 module

KBKA-Tool

DB
DB

DSS Reminder

EPR

GP

Figure 1: General structure of the automated feedback system. EPR is the Electronic
Patient Record of the FP, DB is a database and DSS is the decision support system

Finally we added a facility that allows the FP to use his own terminology. The
facility uses a list containing the medical terms for complaints and diagnoses
from a list, containing all International Classification of Primary Care (ICPC)
terms and their synonyms. After the FP has entered a search-term, a list of
corresponding ICPC-terms [11] is presented and the FP has to choose the
term that matches his/her description. The chosen term is translated into the
corresponding ICPC-code. In this way we standardize the medical data the FP
enters and therefore our guidelines in the knowledge base can be based on
ICPC codes only.

2.3.2 Development and implementation

Acquisition
The GRIF guideline knowledge base consists of 134 rules that were extracted
from known national and regional guidelines. These rules were represented
as Situation Action Rules (SARs) [5]. The situation description (‘if-part’) of
each rule consists of logical propositions combined with Boolean operators,
such as AND, OR or NOT. In this way situations are described for which
feedback should be generated. The action part therefore only contains
feedback such as giving a reminder to the physician. The guidelines are

Chapter 6 Automated feedback on test ordering in general practice

164

entered into the knowledge base using the GRIF Knowledge Acquisition Tool
(KA-Tool), which is part of the Gaston framework.

To allow reasoning about a medical domain, a domain ontology was built,
which provides a domain of discourse by modeling entities and relationships
for a particular domain of interest [5]. The ontology is read by the KA-Tool and
implemented as a class tree, consisting of classes, subclasses and class
members. The ontology consists of 153 objects divided into 11 classes,
including diagnostic tests, patient information (age and gender), medical
information (working hypotheses, existing problems and complaints) and the
reasons for request. Based on concepts from the GRIF domain ontology,
guideline authors were able to build the guidelines in the KA-Tool (examples
of the workings and the user interface of the GRIF KA-Tool are shown
elsewhere [6]).

Verification and testing
Verification refers to an internal static check on the system, which can be
performed without test cases, and validation refers to tests performed to
check the accuracy of the results given by the system, i.e. the performance of
the system itself [12]. Two clinicians and one of the researchers carried out a
logical verification (detection of contradictions and conflicts). A structure
verification (detection of duplication of rules, circular rules and redundancies)
of the knowledge base [13] was also carried out using a rule compiler [14].

Recommendations of the GRIF system were compared with comments of
human experts using a retrospective random selection of 253 request forms,
containing 1200 test requests. A panel of three expert physicians judged the
requested tests independently, based on their interpretations of the practice
guidelines.

The majority assessment of the physicians was compared with the
assessment of the GRIF system. In case the system’s output differed from the
majority assessment the written practice guidelines were consulted. On
average 1.75 recommendations were produced per form. In total 32 (7%) of
the 442 given recommendations were given incorrectly. The amount of
information provided and the level of detail (the specificity of the terms) with
which the FP describes the patients' medical status are crucial for the GRIF
system to react correctly [15].

Implementation
The KA-Tool transfers acquired rules to the Gaston Decision Support System
(DSS) that provides the active support (e.g., generating the actual

Chapter 6 Automated feedback on test ordering in general practice

165

recommendations). The DSS consists of a number of components that each
performs a separate task such as processing the guidelines, interfacing with
the order entry system and providing decision support to the GP [4]. In this
case, an interface component was developed that interfaces with the order
entry system. The DSS (see also figure 1) reads the patient data and checks
whether any of the rules will fire and which feedback has to be provided. An
example of feedback that is given by the DSS is shown in figure 2.

Figure 2: If a request is not according the guidelines, the reminder system generates

and displays a reminder that overlays the normal user interface of the order entry
form. Only the relevant words in the figure were translated from Dutch into English

In addition to the feedback, the pop-up window contains three buttons. The FP
presses 'accept' to indicate that (s)he accepts the recommendation and 'reject'
to indicate that (s)he does not agree. In both cases it is still possible for the
FP to make changes in the request form after (s)he has seen the
recommendation. Moreover the recommendation window contains a button to
request more information. If this button is chosen the recommendation
window will expand and may contain hyperlinks to the appropriate guidelines
and/or references to the literature.

The GRIF system is in operation for more than two years in 15 Family
Practices in the Netherlands and is still being used in daily practice.

Chapter 6 Automated feedback on test ordering in general practice

166

2.4 Results

2.4.1 Efficacy evaluation in a laboratory setting
The efficacy of the GRIF system was evaluated in a laboratory setting. A
randomized controlled trial (RCT) with balanced block design was used to
study the potential effect of the GRIF system. The FPs reviewed a random
sample of 30 request forms they filled in earlier that year. If deemed
necessary, they could make changes in the tests requested. Next, the system
displayed critical comments about their non-adherence to the guidelines as
apparent from the (updated) request forms. Twenty-four randomly selected
FPs participated. The number of requested diagnostic tests decreased with
17% (95% CI: 12-22%) due to the comments of the GRIF system. In addition,
the fraction of tests ordered not in accordance with the practice guidelines
decreased with 39% (95% CI: 28-51%). The FPs accepted 362 (50%) of the
729 recommendations. Although our experiment cannot predict the size of the
actual effect of the GRIF system in daily practice, it was concluded that the
observed effect might be the maximum achievable.

2.4.2 Evaluation in a daily practice
Eleven FPs in two regions of the Netherlands were monitored from August
2000 to July 2001. The GRIF system was implemented on the workstations at
the offices of the participating FPs. The FPs were asked to use GRIF during
patient consultation instead of filling in the paper request form. An analysis of
usage behavior, the quality of provided information and the fraction of
recommendations that was followed were analyzed.

During the intervention period, the FPs produced 2498 request forms using
the GRIF system with 10139 tests on it. Of the 2780 recommendations, the
percentage of followed recommendations varied between 3.4 and 8.3 percent
dependent on the type of recommendation that was given. Advice that
suggests removing a test because another - more appropriate or efficient -
test was also requested and comments that suggest to request an alternative
test were followed most frequently. The median time to generate, read and act
on the presented feedback comments was 13 seconds. Entering (coded)
medical patient data costs FPs a relatively large part of their patient
consultation time.

2.4.3 Experiences with GRIF
FPs user-satisfaction with GRIF was measured using a questionnaire and
group discussions (in the laboratory trial) and in-depth interviews (in the field
trial) were conducted to elicit the opinions about and experiences with the
system. The results show that the FPs in the laboratory trial had more positive

Chapter 6 A real-time reminder system in Critical Care environments

167

attitudes towards the system compared with the participants of the field trial.
All discussion groups and most of the FPs in the field trial regarded receiving
the feedback during the test ordering process an important advantage.

3 A real-time reminder system in Critical Care environments

3.1 Introduction
The CritICIS system is a real-time reminder system that that reminds ICU
health care workers of inconsistencies between a treatment plan and
implemented guidelines. In the first version of CritICIS, all guidelines were
implemented as Situation Action Rules (SARs), similar to the guidelines in the
GRIF system. Physicians and nursing staff enter the rules using the CritICIS
KA-Tool, after which a number of consistency and correctness tests are
performed on the rules. The rules are then transferred to the knowledge base
of the reminder system and validated by applying them to a large stored data
set of previous patients. If the new rules are approved, they are exported to
the reminder system that is used in daily practice. A detailed description of the
process of representing, acquiring, verifying and executing rule-based
guidelines in CritICIS has been published elsewhere [7]. This section
describes how the CritICIS system was extended with guidelines that are no
longer rule-based. In addition, this section also describes experiences of the
use of the CritICIS system in daily practice in an Intensive Care Unit (ICU),
where it is still in use today.

The objectives of the project were to provide decision support to health care
workers in clinical care and emergency care environments and to design a
knowledge acquisition environment that enables ICU care providers to
formulate, update and verify guidelines without the assistance of a knowledge
engineer. Also, decision support systems that operate in dynamic and
unstable clinical domains such as the ICU should be real-time systems,
because, even though the volume of data in such an environment can be
overwhelming, the system’s response must be timely.

3.2 Methods

3.2.1 Environment
The CritICIS environment consists of a collection of tools and modules to
implement and evaluate guidelines in the ICU. An overview of all components
is shown in figure 3.

The guidelines are entered by means of the CritICIS KA-Tool. This tool
contains 1) Problem-Solving Methods (PSMs), which are generic strategies to

Chapter 6 A real-time reminder system in Critical Care environments

168

solve domain-independent stereotypical tasks (see also next section) and 2)
primitives, which are small building blocks that are used to represent the steps
in a guideline. In addition, the KA-Tool also contains the IMPACT domain
ontology [16], which defines a set of medical terms, describing the state of a
patient in an Intensive Care Unit. The IMPACT ontology defines a number of
classes, each describing a distinct medical category such as drugs,
treatments and diagnoses. More information about the use of PSMs,
primitives and ontologies to acquire guidelines can be found elsewhere [5].

PDMS

DSS KA-Tool

Patient
Database

Guideline
Knowledge

Base PSMs &
Primitives

IMPACT
Ontology

Figure 3: An overview of the main components of the CritICIS environment

When the guidelines have been entered, they are transferred to the CritICIS
Decision Support System (DSS), where they form a guideline knowledge
base. These guidelines are then executed by the DSS, which reads in the
necessary patient data and compares the data with the guidelines. Whenever
a guideline is not followed, the DSS will send a warning to the ICU care
providers. The CritICIS DSS has access to two sources of data: 1) a Patient
Data Management System (PDMS) that holds clinical data such as prescribed
drugs and established diagnoses, and 2) a patient monitoring system that
broadcasts physiological data such as a patient’s blood pressure or heart rate.
Examples of the KA-Tool, the DSS and the PDMS are shown elsewhere [7].
The CritICIS system is in operation since 2001 at the ICU of the Catharina
Hospital, Eindhoven, the Netherlands.

3.2.2 Development and implementation

Acquisition
As mentioned earlier, the first version of the CritICIS system contained only
rule-based guidelines. An example of such as rule is shown in figure 4.

Chapter 6 A real-time reminder system in Critical Care environments

169

IF

AND

THEN

Clavulanic acid is present

Cefuroxime is present

give warning: “Prescribing

.”

Clavulanic acid and Cefuroxime at the same

time could be potentially hazardous for the patient

Figure 4: A rule-based guideline in CritICIS that describes a drug interaction. This

rule generates a reminder whenever the drugs Clavulanic acid and Cefuroxime are
used at the same time

It is possible to describe certain classes of guidelines such as reminders by
means of rules. However, describing guidelines in terms of the task that must
be performed and the actions required executing such a task is usually a
more natural way of representing knowledge. Besides representing less
complex modular guidelines, rules can also be viewed as instances of a task.
As a result of separating the domain concepts from the rule’s syntax in the
rule representation model, independent rules can be classified by identifying
similar characteristics. For example, different rules that handle drug
interactions and drug contraindications may all share the same syntax (figure
5).

Name
Author
Type
Category
Explanation

Message
Rule premise

Name
Author
Type
Category
Explanation

Message
Rule premise

Name
Author
Type
Category
Explanation

Message
Rule premise

: Undesirable combination of antibiotics.
: Korsten

: Reminder
: Undesirable medicine combinations

: Literature reference: [Zagola GP. and MacGregor D, The Critical
Care Drug Handbook 2nd Ed. pp. 165, 1997]

: Undesirable combination of antibiotics.
: and

: A Combination of a Beta-Blocker and Amiodarone is undesirable.
: Korsten

: Reminder
: Undesirable drug combinations

: See literature reference: [Zagola GP. and MacGregor D, The
Critical Care Drug Handbook 2nd Ed. pp. 195, 1997]

: A Combination of a Beta-Blocker and Amiodarone is undesirable.
: and

: HOCM and pericarditis are contraindications for Digoxin
: Roos

: Reminder
: Digoxin

: See: [Drug Therapy in Cardiothoracic Surgery, v Zwieten en
Eijsman, pp 40, 1997]

: HOCM and pericarditis are contraindications for Digoxin
: (or) and

<drug:Clavulanic acid> <drug:Cefuroxime>

<drug:Beta-Blocker> <drug:Amiodarone>

<disease:HOCM> <disease:Pericarditis> <drug:Digoxine>
Figure 5: Two drug interaction guidelines and one drug contraindication guideline,

taken from the CritICIS guideline knowledge base

Chapter 6 A real-time reminder system in Critical Care environments

170

Although these rules describe different drug interactions and
contraindications, they share a general syntax. These generalized rules are
referred to as rule templates (figure 6).

If < > is started;
And < > is present;
Then report that < > and < > are interactions

Drug contraindications:
If < > is started;
And < > is present;
Then report that < > and < > are contraindications

drug:A
drug:B

drug:A drug:B

drug:A
disease:B

drug:A disease:B
Figure 6: Examples of rule templates, acquired from analyzing similar rules

Sets of rules can be generalized to templates, on the basis of similar
characteristics. Each template can be characterized by means of a pertinent
event that executes the template (e.g., drug A is started) and actions that must
be performed (e.g., report an interaction). A template also implicitly contains a
relation between concepts. For example, regarding the drug interactions
template shown above, drug A and drug B have an interaction relation.

Each rule template can be viewed as a guideline that exists of a sequence of
steps that are carried out whenever a pertinent event occurs (e.g., starting a
new drug). These types of guidelines are referred to as Event-Based Modular
Tasks (EBMTs) and can be solved by the selection PSM that was especially
developed to represent and solve EBMTs. More information on the
representation and use of EBMTs and the selection PSM can be found
elsewhere [5, 4]. In the CritICIS system, EBMTs that address drug interaction
and contraindications were obtained by abstracting sets of rules to rule
templates. However, it is also possible to acquire EBMTs directly from other
sources such as the literature.

The CritICIS KA-Tool contains a number of PSMs and primitives such as
SARs, EBMTs and flowcharts in order to capture various types of guidelines.
As a result, the KA-Tool contains a number of different user interfaces that
visualize these different types. Examples of the KA-Tool that visualizes SARs
and EBMTs can be found elsewhere [5, 7]. Figure 7 shows an example of a
more complex weaning guideline, acquired through the CritICIS KA-Tool.

Implementation
The first version of the CritICIS DSS was able to execute rule-based
guidelines by reading data from the PDMS as well as the patient monitors and
warning physicians and nursing staff when necessary by means of displaying
pop-up windows [7]. In order to execute more complex guidelines such as

Chapter 6 A real-time reminder system in Critical Care environments

171

EBMTs and the above-mentioned weaning guideline, the DSS component that
takes care of processing the guidelines was updated in order to be able to
process these types of guidelines. It was not necessary to update the other
components.

Figure 7: Part of a weaning guideline, entered in the CritICIS KA-Tool

An example is the execution of EBMTs. Whenever a certain event triggers a
task (e.g., the prescription of a new drug), the EBMT procedure acquires the
necessary knowledge from the domain ontology (e.g., all known
contraindications of the started drug) and relevant patient data (e.g., all
established diseases from the PDMS) and, if necessary, generates a critiquing
statement: a recommendation involving one or more suggestions for possible
modifications of the care provider’s actions. For example, whenever an ICU
care provider prescribes a new drug for a given patient, the PDMS system
activates CritICIS with a ‘starting a new drug’ event. The PDMS also supplies
additional parameters to CritICIS such as the patient’s ID and the name of the
started drug. This event causes the drug contraindications task to be
executed. The drug contraindications task procedure then retrieves from the
domain ontology all known diseases that have a contraindication relation with

Chapter 6 A real-time reminder system in Critical Care environments

172

the started drug and queries the PDMS to determine whether one of them is
present. Whenever this is the case, the system generates a critiquing
statement. Similar to the generation of reminders by rule-based guidelines,
CritICIS generates critiquing statements by means of pop-up windows [5].

Currently, a closed-loop weaning decision support system is being developed
at the ICU of the Catharina hospital. This real-time DSS continuously analyzes
and monitors respiratory and lung mechanics, respiratory drive, gas
exchange, blood gases, and hemodynamics in order to detect the patient’s
optimum flow requirements and ventilatory support, and instantly adapts the
ventilator settings to the patient needs as required.

3.3 Results

3.3.1 Evaluation in daily practice

Evaluation of nursing guidelines for incomplete data
Besides the above-mentioned medical guidelines that provide decision
support to ICU physicians, the CritICIS system also contains guidelines that
are aimed to support the nursing staff when entering data in the PDMS. For a
national study, in which the ICU participated, it was required that the results of
certain laboratory tests had to be entered in the PDMS for a particular group
of patients. Whenever an applicable patient was discharged and some of
these test results were not entered at this time, CritICIS warned the nursing
staff and provided a means for entering the missing data at that time. These
data were then sent back to the PDMS. The system was implemented in daily
practice at the ICU of the Catharina hospital, which consists of 21 beds and a
nursing staff of 100 people. For one year, the number of daily discharged
patients was measured as well as the number of reminders that were given to
the nursing staff whenever one or more relevant data items were missing in
the PDMS database. Figure 8 shows the number of reminders divided by the
number of discharged patients for each day.

In 51% of all discharges patients, a reminder was given. It also shows that the
number of reminders per discharged patient is not decreasing in the course of
time, as one would expect. After conducting interviews with the nursing staff, it
was clear that they were not using CritICIS as a reminder system, but as an
intelligent order entry form. Part of the staff deliberately did not check whether
the data were complete as they knew that CritICIS would check which data
was missing and would provide a means for entering the required data during
the patient’s discharge process. The fact that the developers of CritICIS
intended to increase the acceptance of CritICIS by not only reminding the

Chapter 6 A real-time reminder system in Critical Care environments

173

nursing staff but also giving them the means to enter the missing data on the
spot resulted in this behavior. The advantage of this approach is that is does
increase the system’s acceptance. The drawback however, is that the users
start depending on the system, which increases the possibility of errors
whenever the system is not functioning or has an incomplete knowledge base.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

24
-06

-19
99

08
-07

-19
99

22
-07

-19
99

05
-08

-19
99

19
-08

-19
99

02
-09

-19
99

16
-09

-19
99

30
-09

-19
99

14
-10

-19
99

28
-10

-19
99

11
-11

-19
99

25
-11

-19
99

09
-12

-19
99

23
-12

-19
99

06
-01

-20
00

20
-01

-20
00

03
-02

-20
00

17
-02

-20
00

02
-03

-20
00

16
-03

-20
00

30
-03

-20
00

13
-04

-20
00

27
-04

-20
00

11
-05

-20
00

25
-05

-20
00

Figure 8: The number of reminders divided by the number of discharged patients,

measured for nearly one year. The average number of discharged patients is 7.9 per
day and the average number of reminders is 4.1 per day

Evaluation of medical guidelines
The CritICIS system contains a number of medical guidelines for example to
detect drug interactions, contraindications and side effects or the absence of
certain monitoring requirements [7]. The system, containing 67 rule-based
guidelines and three EBMTs, was implemented for use in daily practice. For
each guideline, only one reminder per day per patient was given. Whenever a
reminder was issued more than one time for a certain patient, it was marked
as ‘hidden’ and not shown to the physician. When a reminder was given, the
physician was able to classify the reminder as ‘correct’ or ‘incorrect’ by
examining the corresponding patient data in the PDMS. The classifications
‘correct’ and ‘incorrect’ correspond to the question whether a reminder was
issued correctly in the given situation. Optionally, the physician could supply a
rationale why (s)he classified a reminder as ‘correct’ or ‘incorrect’. Whenever
a physician was not able to judge a reminder (for example, due to lack of
time), (s)he could ignore the reminder. The rule-based guidelines were

Chapter 6 A real-time reminder system in Critical Care environments

174

executed whenever a physician changed an item in the PDMS database. The
EBMTs were executed whenever an event occurred that was relevant for a
specific EBMT. For example, the drug interaction EBMT was executed
whenever a new drug was being prescribed.

Over a period of 6 months, the DSS was executed 16,340 times. Of those
16,340 runs, there were 2,928 times that the DSS issued one or more
reminders. The total number of reminders was 3,753 of which 2,731 were not
shown to the physician (marked as ‘hidden’). Of the 1,022 reminders that
were given, 583 were ignored, 224 were classified as ‘correct’ and 215 were
classified as ‘incorrect’. Table 1 shows an overview of the 19 guidelines that
led to non-hidden reminders and their classifications.

Name guideline Correct Incorrect Ignore

A subarrachnoid bleeding must be treated with a laxative 13 18 42

No anti-coagulant prescribed 77 95 208

Defibrillation not recorded 0 1 0

Drug interaction: beta-blockers and amiodaron 0 0 7

The complication oliguria not diagnosed 29 45 119

The complication anuria not diagnosed 15 26 56

A patient treated with renal-substitution therapy must be weighted daily 25 2 28

Serum-levels of the antibiotic must be checked 2 2 2

Check presence of imipenem 3 0 1

Check gentamicin Top/down 21 3 18

Due to hypotension, adjust the starting-dose of ACE-inhibition 0 0 18

Due to blunt abdominal trauma, check serum amylase 11 6 31

Due to blunt thorax-trauma, make an echocardiogram 5 4 9

This patient should be treated with coumarin 7 0 2

No treatment for decubit stage 1 or 2 2 0 4

No treatment for decubit stage 3 0 0 3

Digoxin usage, combined with a low potassium value 4 0 3

Start digoxin according to protocol for pneumonectomy-patients 9 13 31

Recently bradycardia: relative contraindication for beta-blockade 1 0 1

Table 1: Classification of the 19 guidelines that led to one or more reminders

Chapter 6 A real-time reminder system in Critical Care environments

175

215 reminders were classified as ‘incorrect’. For the incorrect judgments, 64
times a rationale was given by an intensivist, explaining why (s)he found that
the reminder was incorrectly given. All the reminders that were classified as
incorrect concerned guidelines that were not specific enough or guidelines
that had to be updated due to changes in the treatment plans. For example,
the guideline ‘ no anti-coagulant prescribed’ was classified as ‘incorrect’ 95
times. The users’ rationales of why this guideline was not correct, repeatedly
mentioned the fact that fragmin was prescribed, which is an anti-coagulant.
The ICU staff had added fragmin to the list of used anti-coagulants, but this
information was not mirrored in the guideline. After updating the guideline, all
erroneous reminders disappeared.

Other incorrect reminders were a result of guidelines that were not specific
enough. For example, the guideline ‘Start digoxin according to protocol for
pneumonectomy-patients’, which states that a physician should prescribe
digoxin to a patient who underwent pneumonectomy, was classified 31 times
as incorrect. The rationale showed that only patients that recently underwent
pneumonectomy should be prescribed with digoxin.

All the guidelines that led to the incorrect reminder, shown in figure 1, could
be updated in order to decrease the number of false reminders. Some of
these guidelines were already examined during a retrospective study using
data of earlier admitted patients [7]. However, this study showed that it is still
possible to get incorrect reminders as a result of new patient data and
changing policies or guidelines.

3.3.2 User satisfaction with CritICIS
In order to measure the user satisfaction with CritICIS, a questionnaire was
developed, based on the IBM computer usability satisfaction questionnaire
[17]. The questionnaire consisted of 34 items, of which 14 were related to
usability, 7 to training and support, 4 to user satisfaction, 5 to behavioral
changes and 4 to usefulness (the questionnaire can be found in the appendix
of this paper). All items could be scored on a 5-point Likert scale where 1 is
‘strongly agree’ and 5 is ‘strongly disagree’. For all categories, the mean score
of each intensivist was calculated and classified as ‘positive’ (mean < 2.5),
‘neutral’ (2.5 <= mean <= 3.5) and ‘negative’ (mean > 3.5). Furthermore, the
questionnaire contained a number of open questions where opinions and
experiences could be given about the system. The questionnaire was given to
three intensivists that have been working with the CritICIS system in the ICU
of the Catharina hospital. All three have more than 15 years experience
working in the ICU and consider themselves expert on working with

Chapter 6 A real-time reminder system in Critical Care environments

176

computers in general and working with the PDMS in particular. Afterwards, the
outcome of the questionnaires was discussed with the intensivists.

All intensivists scored ‘positive’ in the usability category (means: 2.2, 1.2, 2.4),
meaning that they found the system workable. The user interface was
generally regarded as ‘intuitive’ and easy-to-use. The intensivists disagreed
somewhat on the issues of productivity and effectivity, as some stated that it
‘slowed down the process of entering patient data’.

In the training and support category, one intensivist scored ‘positive’ and two
scored ‘neutral’ (means: 2.7, 1, 2.6). The comments and discussion showed
that they found support and training sufficient.

In the user satisfaction category, all scores were classified as ‘positive’
(means: 1.5, 2, 1.3), meaning that they were satisfied with the system. This
opinion was confirmed in the comments and the discussion afterwards.

Regarding behavioral change, two intensivists scored ‘neutral’ and one scored
‘positive’ (means 2.8, 3, 2.4). In general, the intensivists did not believe that
the use of critiquing systems such as CritICIS would automatically change
their behavior, especially concerning the amount of entered data. They did
state that they would be willing to encode more information in the PDMS for
the purpose of decision support. Also, a combination of critiquing and pro-
active decision support would be favorable for them.

All intensivists strongly agreed that systems such as CritICIS are useful
(means: 1, 1.5, 1) and that similar systems must be implemented in other
departments.

Other comments of the intensivists concerned issues related to completeness,
local adaptation and interfacing. They stated that, in order to improve the
acceptance of the system in daily practice, it was necessary that the guideline
knowledge base must at least contain those guidelines that cover the daily
routine of the ICU. They stated further that a systematic procedure is
mandatory that facilitates entering new guidelines or updating existing ones.
Hospital organizational bodies must support this procedure. Also, they want to
use (inter)national guidelines as a basis, from which they must be able to
make local adaptations that fit their own institution. Furthermore, the guideline
knowledge base should contain more treatment guidelines that suggest best
practices and more nursing guidelines to improve the system’s acceptance for
the entire ICU.

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

177

Regarding decision support, they stated that, besides the PDMS and patient
monitors, the CritICIS system should be interfaced to even more ICU-related
equipment such as ventilators, pumps and laboratory systems. In addition to
the current critiquing approach, they also suggested a more pro-active
approach. Currently, the CritICIS system is implemented as a critiquing
system that warns physicians whenever a guideline is not followed. A pro-
active approach would enable them to ask the system for advice regarding
certain complications, treatments or possible differential diagnosis. Finally,
they suggested that it must be possible for CritICIS to sent reminder-related
data back to the PDMS if the intensivist agrees to a reminder. For example,
whenever a reminder states that the prescription of a certain medication is not
advisable, it must be possible to inform the PDMS that this medication must
be stopped immediately.

4 A Multidisciplinary Psychoactive Drug Selection Advisory
System

4.1 Introduction
Irrational and inconsistent use of psychoactive drugs is common in clinical
practice due to the complex knowledge and data intensive nature of the
psychoactive drug selection and prescription process. Sub optimal
psychoactive drug therapy leads to hospital admissions, extended length of
hospital stay, ineffective therapy, increased mortality and last but not least to
increased costs [18]. The psychoactive drug selection process requires
expertise from clinical, pathophysiological and pharmacotherapeutic
knowledge [19]. Due to the information load, the lack of appropriate up to date
information at the point of clinical care and the problem of integrating and
weighing all information, it is questionable whether any clinician can manage
such a complex situation effectively. As shown in a number of experiments,
clinicians can benefit from knowledge-based systems to improve the
psychoactive drug prescription [20].

A psychopharmacological advisor must meet a range of functional
requirements, for the clinician (user), the domain expert and the knowledge
engineer:

• The knowledge base should incorporate a multidisciplinary view on

psychoactive drug selection, because different clinicians use different
knowledge domains.

• The psychopharmacological advisory system should be able to explain its
advice to make the reasoning transparent to the clinician.

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

178

• The psychopharmacological advisory system should be integrated with a
patient record system.

• It must be easy for the domain expert to create and to maintain the
knowledge base and to interact with the knowledge base in his own
terminology in order to incorporate easily the continuously evolving
neuropsychopharmacological knowledge.

• Minimizing the difficulty of updating, both when new
neuropsychopharmacotherapeutic knowledge comes available or in the
situation of new reasoning strategies.

• To share domain specific knowledge by different reasoning strategies to
solve completely different tasks such as drug selection or drug
administration tasks.

• To reuse reasoning components across divergent application domains
(such as reasoning strategies to manage depression and bipolar disorder).
This can save development effort in building new decision aids for new
application domains.

4.2 Methods

4.2.1 Environment and System Overview
Instead of building a rule-based system in a straightforward way by the
transcription of rules elicited from a domain expert, a psychopharmacological
advisory system was developed in terms of the construction of a series of
explicit models related to the psychoactive drug selection task. A general
overview of the models and the software components to compose such a
system is illustrated in figure 9.

Domain
Ontology

Method
Library

Method
Ontologies KA-Tool DSS

Figure 9: Overview of the components (rectangles) and models (rounded rectangles)

of a psychopharmacological advisory system

The development and implementation process of a psychopharmacological
advisory system as shown in figure 9 consists of four steps:

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

179

1. Development of a domain ontology
2. Construction of a Problem Solving Method (PSM) in the method library
3. Develop guidelines by refining PSMs with domain entities in the KA-Tool
4. Development of the Decision Support System.

Acquisition
In earlier research [19], a neuropsychopharmacological domain ontology
relevant to rational psychoactive drug selection was defined, which combines
all involved knowledge domains, required to support the psychoactive drug
selection task. This ontology explicitly and formally represents domain classes
such as Drug_Therapy, Therapeutic and concepts such as
Anafranil_Therapy, Anafranil, Clomipramine, Antagonism-of-Alpha-1-receptor
and relations such as acts_On and has_Location.

The domain ontology was defined through the Galen Representation and
Integration Language (Grail), which is part of the Galen framework: a
technology that facilitates the development of medical terminology and coding
schemes [21]. Grail supports the composition of complex concepts from
elementary concepts such as ‘Dopamine-2-receptor at the postsynaptic
membrane’. The concepts from the Grail domain ontology were translated into
a frame-based representation, in which classes have attributes of defined
cardinality and data type (e.g., integer, float, string or Boolean). This
representation is then used during the guideline acquisition process to acquire
the guidelines that describe the rational psychoactive drug selection task
(described in the next sections).

Furthermore, a knowledge analysis was performed to describe the
psychoactive drug selection task by means of a clinical algorithm [8] and to
model in a semiformal way the specification of this task [22]. The psychoactive
drug selection task can be viewed as a modular task, which consists of the
execution of different subtasks. Each (sub)task can be furthermore divided
into more subtasks. As illustrated in figure 10, the psychoactive drug selection
task can be divided into seven subtasks: 1) generating the candidate drug-
therapy options for treating a specific psychiatric condition, 2) filtering out
those options that are in conflict with one or more aspects of the patient’s
condition, 3) determining the level of contraindication, 4) determining the risks
of the relative contraindications, 5) determining the required monitoring
activities, 6) rank ordering the therapy options according to different
neuropsychopharmacological-economical parameters and 7) determining the
patient preferences.

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

180

Psychoactive drug selection

2. Checking for
contraindications

2.1 Drug Drug
 interactions

2.2 Special disease
 states

2.3 Special patient
group

1. Generating drug-
therapy options

3. Determining level
of contraindication

4. Weighing
risk

7. Determining
patient

preferences

5. determining
monitoring
activities

2.1.3
Pharmacodynamic

2.1.2
Pharmacokinetic

2.1.1
Clinicalpharmacology

2.2.1
Clinicalpharmacology

2.3.1
Clinicalpharmacology

2.2.2
Pathophysiology

2.3.2
Pathophysiology

6. Rank
ordering

Figure 10: The hierarchical representation of the psychoactive drug selection task

These seven main (sub)tasks may be further subdivided in other subtasks.
For example as represented in a hierarchical way in figure 10 the task that
filters out possible contraindications (task 2) consists of three subtasks which
refer to three possible clinical situations where a contraindication may occur,
namely (task 2.1) contraindications based on drug-drug interactions, (task 2.2)
contraindications on special disease states and (task 2.3) contraindications on
special patient groups. Each of these subtasks can be further subdivided
referring to different reasoning strategies. These contraindication tasks can be
solved by reasoning based on clinical pharmacological knowledge (empirical)
or derived by deep level pharmacokinetic, pharmacodynamic, and
pathophysiological knowledge. All tasks are implemented by means of the
earlier-mentioned Event-Based Modular Tasks (EBMTs) and corresponding
PSMs, which are stored in the method library [5].

The KA-Tool loads the domain ontology and method library and creates a user
interface that enables guideline authors to define guidelines that describe the
psychoactive drug selection task in terms of primitives, PSMs and domain
entities. Figure 11 shows the user interface of the KA-Tool that visualizes the
generate drug-therapy option task.

The guideline acquisition process consists of refining each PSM with the
appropriate domain entities. The KA-Tool loads all instances which enables
the domain expert to fill in the knowledge roles of the selected PSM by means
of domain specific knowledge. In this way, domain experts are only able to
enter domain specific knowledge, while the knowledge that describes the
problem solving method (which is usually a far more complex structure)
remains unaltered. The domain expert can select an instance from the domain
ontology class tree (e.g. Major_Depression) and drag it into the DSM_IV
Diagnosis pane on the left side. Next he can drag a specific drug therapy (e.g.
Anafranil_Therapy) to the Drug_Therapy pane. By dragging an
Anafranil_Therapy he creates an is_indicated_by relation between the

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

181

Major_Depression and Anafranil_Therapy. By dragging the instance Anafranil
to the Therapeutic pane he creates the has_therapeutic relation between
Anafranil_Therapy and Anafranil. The number and the format of the panes on
the right side of the user interface depend on the knowledge roles of the
PSMs. In this way, the domain expert creates and maintains in his own
terminology the knowledge base of the psychopharmacological advisory
system.

Figure 11: The user interface of the KA-Tool that visualizes the generate drug-

therapy option task

Implementation
After entering the guidelines, The KA-Tool generates a knowledge base,
which translates the guideline knowledge base into a format that is
interpretable by Decision Support System (DSS), known as the
Multidisciplinary Psychoactive Drug Selection Advisory System (M-PADS).

The DSS is activated when the clinician selects the psychoactive drug
selection task. First the clinician has to enter the established DSM-IV
diagnosis of the patient. A list of possible drug-therapy options is now
generated. The clinician may now enter the concurrent medication (e.g.
Zantac) and/or the special disease state (e.g. hypotension), and/or the special
patient group (e.g. elderly) of the patient. The decision support system

Chapter 6 A Multidisciplinary Psychoactive Drug Selection Advisory System

182

generates on request a list of possible contraindications. The level of each
contraindication is mentioned (e.g. absolute/relative). The clinician can now
request the required monitoring activities of the relative contraindication. The
user can accept the allowed relative contraindications. On the basis of the
accepted drug-therapy options, the user can order the options according to
different psychopharmaco-pharmacoeconomic parameters. At this moment,
this rank ordering is now by hand. For each drug-therapy option, the
associated therapeutic with its modality (e.g. tablets, capsule, ampoule etc.),
dosage and cost can be requested. The patient and the clinician can now
discuss the options and select the preferred therapeutical one. The guideline
knowledge base currently contains knowledge of 15 psychoactive drugs, 200
elementary concepts and 300 compositional concepts related to the
antidepressant drug therapy domain. Figure 12 shows a first prototype of the
M-PADS DSS.

Figure 12: The user interface of M-PADS, illustrating the required patient data

4.3 Results
By using the methods, described in the previous section, it was possible to
develop a psychopharmacological advisory system based on explicit models
of the neuropsychopharmacological domain and the problem solving method
related to the psychoactive drug selection task. These explicit models
integrate the clinical pharmacological, pathophysiological and
pharmacotherapeutic knowledge required to support rational psychoactive
drug selection. At the moment, M-PADS is able to give patient specific advice,
based on up to date knowledge to treat major depressions. Since the
knowledge base is organized in a modular fashion with declarative and

Chapter 6 Consumer Health Records for managing chronic diseases

183

procedural knowledge separated, it can be easily expanded or modified so
that the knowledge remains up to date. We believe that M-PADS will have
opportunities to built reusable and explainable knowledge based systems for
pharmacotherapy. The results of this project have led to the publication of a
PhD thesis [23].

5 Consumer Health Records for managing chronic diseases

5.1 Introduction
Patient-centered care is an emerging theme in healthcare. In patient-centered
care the patient is actively involved in the care delivery process. The gradual
but deliberate transition of health services from the hospital and clinic to the
home and community creates an environment in which patients must
independently assess and interpret symptoms, seek appropriate health
services in a purposeful manner, and engage in health promotion, disease
prevention, and illness management activities [24]. To accomplish these tasks,
patients require access to information about disease processes, credible
intervention strategies, and personal health data. Information systems are
needed that provide patients with access to these types of information. A
recent study showed that for chronic patients a patient-centered approach 1)
increases the patients’ satisfaction with their physician's care, 2) increases the
patients’ interest in the contents of their medical records and 3) improves the
patients’ overall health status [25].

Physicians increasingly start using clinical information systems such as
Electronic Patient Records (EPRs) to store and present patient data [26].
Vendors increasingly sell (disk) space to consumers (which may be patients)
in which they can store relevant information about their health. These systems
are referred to as consumer record systems. The patient information that is
stored in these systems can be obtained from various sources such as the
information system of the patient’s physician or pharmacist and other sources
such as a Hospital Information System (HIS) or a laboratory system. In
addition, the patient could enter the information provided by the healthcare
provider into his/her consumer record. Although this may increase the
involvement in the management of their disease, it may decrease the validity
of the medical data. Since patients usually do not have the medical knowledge
and background of a care provider, they may interpret the care provider’s
information incorrectly, resulting in erroneously entered data. In this case,
automated decision support systems are able to guide patients (and
physicians) during the entry of such data and also provide feedback about the
patient’s disease.

Chapter 6 Consumer Health Records for managing chronic diseases

184

This section describes the development of consumer health record systems
that have been developed during two projects: 1) the TANDEM project [27],
which focuses on the treatment of Diabetes and 2) the Medical Guideline
Technology (MGT) project [28] that focuses on the treatment of Hypertension.

In these projects, data entry was carried out both by the care provider and the
patient, depending on the subject. During the development of the system the
reactions of the users about the functioning of the system are constantly
monitored via questionnaires. Since only a limited number of patients and
care providers were involved in the assessment of the system an
ethnographic-like approach (see later) was selected that in principle provides
useful results even with a small number of assessors. The architecture of the
system is displayed in figure 13. It serves as a conceptual framework that
identifies specific components and linkages that will engage the patient’s
perspective in the design of a healthcare information system. The patient is
the center of the model. The surrounding elements denote the diverse
sources of health information.

EPR

Consumer
Health

Informatics

Family
Practitioner

Hospital(s) Other
Providers/
Sources

Figure 13: A model for patient-centered information systems (adapted from
Brennan et al. [24])

The consumer health record should be easily accessible by both the patient
and the care provider. The care provider is responsible for the medical data,
the patient for those data that (s)he is able to provide trustworthy. The
contents of the record must be presented in a flexible manner so that it can be
changed or updated as a result of changing requirements of the patient and/or
provider.
A drawback of many health record systems is that these systems are not
‘open’, meaning that there is no means of information exchange between the
health record system and other information systems. Therefore, another
requirement is that the consumer health record system must be able to

Chapter 6 Consumer Health Records for managing chronic diseases

185

exchange information with other systems by means of standardized protocols
(e.g., HL7 messages).
To support the active role of a patient, the patients must 1) be able to discuss
public topics with other patients and care providers, but also private topics
with care providers only and 2) be provided with feedback or advice, based on
data stored in the consumer health record.
The necessary functions to carry out the evaluation study should be
incorporated into the system.

5.2 Methods

5.2.1 Environment
A toolkit was developed that enables system engineers to develop consumer
health record systems that meet the above-mentioned requirements.

To fulfill the criteria of easy accessibility, the toolkit applies web-technology for
viewing and entering patient information. As a result, patients and care
providers only require a web-browser to view and edit patient data. In order to
exchange data with other information systems, consumer health record
systems can be configured for information exchange by means of pre-defined
communication protocols (e.g. HL7 messages).

To support the active role of the patient, the toolkit allows care providers to
enter computer-based guidelines concerning chronic diseases that can be
executed by the consumer health record system to provide advice or
feedback to patients and care providers. The computer-based guidelines are
created and executed by means of the Gaston framework, which is included
in the toolkit. Gaston consists of a suite of tools and reusable software
components that support the various stages in guideline development, from
guideline design to guideline execution. The framework includes design-time
components to facilitate the guideline authoring process along with execution-
time components for building decision support systems that incorporate these
guidelines [4].

Also, the toolkit supports the use of discussion forums, in which patients and
care providers are able to discuss various topics related to the chronic
disease.

Finally, it was decided to evaluate the development of the consumer health
record system by means of an ethnographic-like approach [29]. This is a
subjective approach with which among others the development of information
resources can be evaluated. In contrast with more objective evaluation

Chapter 6 Consumer Health Records for managing chronic diseases

186

methods, this approach seeks to represent the viewpoint of the system’s
users (e.g., patients and care providers) as well as other significant
participants in the clinical environment where the system operates. The goal
of this approach is illumination rather than judgment. The investigators seek to
build an argument that promotes deeper understanding of the information
resource. It addresses the deeper questions: the detailed ‘whys’ and
‘according to whoms’ in addition to the aggregate ‘whethers’ and ‘whats’.
Researchers play an active role in the evaluation process and immerse
themselves physically in the consumer health record’s environment. They
collect data primarily through interviews and document reviews. In our case
this means observing the actions of patients and care providers, as apparent
from their contacts with the consumer health record system, and constantly
asking them about their opinion with respect to the system’s functioning. To
this end patient-specific questionnaires are embedded in the health record
system to collect the necessary data from patients and care providers. The
design of a consumer health record system is not rigidly predetermined and
does not unfold in a fixed sequence, but develops dynamically as the
experience of the researcher or developer increases. Therefore the health
record system can be updated easily by means of the toolkit.

The output of the toolkit is a web-based system that contains the following
functions:

1. Viewing and entering patient-specific information. The main purpose of a

health record is to store and present patient-specific information and share
it between patient and care provider. Therefore, patients as well as care
providers are able to view and enter data in the health record.

2. Exchange patient data with other information systems. Through the toolkit,
the consumer health record system can be configured for information
exchange. For example, when instructed, the consumer health-care record
system developed in the TANDEM project automatically acquires glucose
values from a glucose meter and stores these values in the health record.

3. Provide patient and care provider-specific advice, based on guidelines.
The Gaston framework was used to enable care providers to acquire and
execute computer-based guidelines. First, guidelines were created by
means of the Gaston KA-Tool, after which the guidelines were compiled
and uploaded to a server on which the execution engine (DSS) resides.
During execution, patient data was sent from the health record system to
the Gaston DSS that combined received patient data and acquired
guidelines and sent advice back to the health record system

4. Provide discussion forums. Discussion forums provide a means for
patients and care providers to discuss topics related to the domain of the

Chapter 6 Consumer Health Records for managing chronic diseases

187

chronic disease. Patients are able to submit messages to a discussion
forum or react to messages that were submitted earlier. The consumer
health record system provides two types of discussion: public and private.
The public discussion forum contains public messages that are accessible
by every patient who has access to the web pages. The private discussion
forum contains messages that are only accessible by the patient who
enters the private forum and the patient’s care provider. This discussion
forum is meant for personal questions and topics.

5. Evaluate the consumer health record system design. The design process
of the consumer health record system is evaluated by means of the
ethnographical-like approach. The ethnographical approach is an iterative
process. Based on the outcome of previous questionnaires combined with
current patient data, new patient-specific questionnaires are developed.
Also, the structure of the health record is regularly updated by using the
outcome of the questionnaires.

6. Provide additional information about the disease. This section contains
background information about the chronic disease that is managed by
means of the health record. In case of the TANDEM health record system,
the information consists of links to pages with information on diabetes.

Figure 14 shows an example of the health record system that was developed
for the management of diabetes in the TANDEM project. The patient
information section is selected, resulting in an overview of all available patient
data. The information is divided into a number of tab pages such as general
information, complications, medications, etc (the format of these tab pages is
configured through the toolkit). In this case, the patient has selected the
Psychological Health Profile (PHP) tab page, where the patient can enter
personal information (one of the research goals of the TANDEM project is to
determine if a PHP can be used to improve the patient’s well-being [30]). The
patient information is shared between patient and care provider, although
certain information can only be entered by the care provider (e.g., the patient’s
medical history).

The health record is used by three groups of consumers: patients, care
providers and researchers. Patient information is entered and updated by care
providers as well as patients. During a (pilot) study, a study protocol is
formulated, which specifies what kind of information should be updated or
added. The protocol also specifies the time-interval between new entries. For
example, the protocol in the TANDEM project states that at least every week,
the patient enters new relevant personal data such as the patient’s weight,
medication dosages and PHP. The glucose values are acquired from the
glucose meter. Advice is also provided when asked for, based on

Chapter 6 Consumer Health Records for managing chronic diseases

188

implemented guidelines. Furthermore, patients are encouraged to discuss
diabetes-related topics with other patients and care providers. The patients
and care providers have to answer a questionnaire on a regular basis. The
questions are based on the results of previous questionnaires and the current
patient data. These current patient data indicate which functions were used
most recently, so that the questions in the questionnaire can focus on these
functions.

Figure 14: Part of the patient information section in the health record, developed for
the management of diabetes. Other available sections are shown in the left part of

the record

5.2.2 Development and implementation

Acquisition
Regarding the TANDEM project, the SAR (Situation Action Rule) model [5]
was chosen that defines guidelines in terms of ‘if-then’ rules. These rule-
based guidelines were aimed at providing advice to patients about
hypertension (high blood pressure), rapid weight loss or HbA1c-increase.

The guidelines for the treatment of hypertension for use in the MGT project
were defined as temporally sequenced graphs (flowcharts) These guidelines,
translated from the WHO paper-based guideline for the treatment of

Chapter 6 Consumer Health Records for managing chronic diseases

189

hypertension [31], were aimed to provide treatment-related advice to care
providers. In both projects, the Gaston KA-Tool was used to acquire the
guidelines. Examples of the user interface of the KA-Tool that visualizes SARs
and flowcharts are found elsewhere [4].

Implementation
In both the TANDEM and MGT projects, the web pages were installed on a
server that is accessible via a browser by registered patients and care
providers. The execution engine of the advice systems was also installed on a
server and was able to communicate with the health record systems via an
XML/TCP interface. For this purpose, an interface component was developed
that communicated by sending and receiving XML-messages over the TCP
networking protocol. The guidelines that were created by means of the KA-
Tools could be automatically uploaded to this server by the guideline authors
themselves. Whenever the patient or care provider requests advice through
the ‘advice’ section, all relevant guidelines were executed. Each guideline
retrieves the necessary patient information from the consumer health record
and checks if advice must be given. If so, the action component of the
execution engine translates this advice into a webpage and sends it back to
the health record system so that it could be shown to a patient or care
provider. Examples of generated web pages are found elsewhere [4, 5].

5.3 Results

5.3.1 Implementation
The TANDEM consumer health care record system has been in operation for
several years. During the last part of the development a pilot study was
carried out with 10 patients and two care providers both to assess the usability
of the system and the appreciation of the system. The results are promising.
Patients as well as care providers received the consumer health record
system very well. The user interface was regarded useful and sufficiently
‘intuitive’. Patients as well as care providers agreed that the system was easy
to use and that no further training was necessary. For the TANDEM project,
the care providers insisted that during the pilot project, patient-specific advice
would be hidden from the patients as the care providers were afraid that this
would be regarded as to ‘harsh’ by the patient without proper instruction or
training. Instead, all patient-specific advices were sent as email messages to
the patient’s care provider.

5.3.2 Experiences with the consumer health record
For the patient data-related pages, remarks were being made about the layout
of the screens. For example, some patients regularly measured only height

Chapter 6 Consumer Health Records for managing chronic diseases

190

and weight. From the screens they got the impression that they had to enter
more data. At least it was not clear to them initially which screens would be
filled in by the care provider and which screens they had to fill in. These
questions came in an early stage at a time that the diabetologist had not yet
entered the medical data of these patients. But indeed a better layout could
improve the visibility and better differentiate the medical parts from the
consumer parts. The system was updated according to these remarks. On the
other hand, other patients asked whether it was possible to enter more data,
for example the entering of (changes in) activities, the occurrence of certain
diseases (e.g. flu) and (related) changes in therapy.

Also, remarks were made about the terminology used in the health record.
The diabetologist and diabetes nurse assumed that the patients would be able
to interpret the medical terms used in the screens as the various screens
were designed based on the content of existing forms, which were regularly
discussed with the patients. However, some patients did not understand some
medical terms although they had been filling in the paper-based forms for
some time.

The patients had mixed feelings about the public discussion forum but were
rather positive about the private discussion forum as this provided for them an
easy opportunity to consult their diabetologist or nursing staff.

The main attitude of the patients was that they were convinced that a
consumer health record as the one provided via these projects would be a
common feature of the future. It encourages the patients to actively work
together with the physician to solve their medical problems. The fact that you
have to enter your own data also provides a better insight in your situation.
This is especially true for patients with a chronic disease, who are becoming
more and more aware of their own health condition. As a result, the role of
the patient in the process of disease-management is changing from passive to
more active. The development of sharable consumer health records is crucial
in this process. However, there are several issues that have to be dealt with
such as the validity of the entered data, the presentation of information and
the ability of exchanging information with other systems and users. Although
the use of guideline-based decision support systems in these projects was still
limited, the first results and experiences convinced us that these techniques
are an integral part of patient-centered health records.

Chapter 6 Discussion

191

6 Discussion
Although a lot of progress is being made in the area of guideline-based
decision support, actual decision support systems are still not implemented on
a large scale. One of the largest problems is that the medical community is
very heterogeneous by nature. Numerous medical specialties exist, each with
their own types of guidelines, intended users and information systems. Local
institutions usually have their own local customs and regulations, which
demand that it must be possible to ‘override’ national guidelines with local
adaptations. Also, interfacing decision support systems with third-party
systems (e.g., EPRs) as well as with the system’s users (e.g., care providers)
usually requires a lot of effort and resources due to a lack of standardization.

The Gaston approach was developed in order to limit the amount of time and
resources by means of developing an architecture that can be used to
implement a large range of guideline-based decision support systems. The
experiences, described in this paper show that it is possible to use Gaston to
develop systems that differ in application domain (e.g., family practice, critical
care, psychiatry, chronic disease management), application environment (e.g.,
FP information system, PDMS, consumer health record system) and
application users (e.g., FP, physician, nursing staff, patient).

Using the developed representation model, combined with the corresponding
KA-Tools, it was possible to develop and acquire different types of guidelines
such as rule-based guidelines, EBMTs and multiple-step guidelines. In the
four projects, custom-developed domain ontologies were used (although
partly based on existing terminologies such as ICPC and IMPACT). In order to
improve standardization aspects, it might be more favorable to use standard
terminologies such as UMLS [32] or SNOMED [33] for all projects. On the
other hand, it is important that guideline authors in local institutions ‘recognize’
their own concepts. For example, a guideline may refer to the medication
Fluoxetine Hydrochloride that is defined in a standard domain ontology, which
might be better known in some specialties by its brand name Prozac. In
Gaston, mappings tools were utilized to reuse similar concepts in various
projects.

The Gaston KA-Tool was used to acquire all guidelines, varying from the
relatively simple rule-based guidelines (GRIF, TANDEM, CritICIS) to the very
complex hypertension (MGT) and weaning guidelines (CritICIS). Similar to the
development and application of domain ontologies, it is important to reach a
balance between standardization and easy-of-use. Defining multiple user
interfaces in the Gaston KA-Tool, based on the underlying guideline

Chapter 6 References

192

representation model, made it possible to reuse the KA-Tool in all projects.
The results from the CritICIS system show that local adaptation and
versioning aspects are very important. Although the Gaston tools contains
methods that facilitate 1) overriding national guidelines with local adaptations
and 2) updating local guidelines by guideline authors without the assistance of
knowledge engineers, the organization of institution must ensure that these
tasks are also carried out. If not, too much false reminders may be given,
which will decrease the system’s acceptance dramatically.

In all projects, the Gaston execution engine was used as a DSS and
interfaced with existing patient information. Two of the systems (GRIF and
CritICIS) are used in daily practice. In all projects, the main bottleneck was
interfacing the execution engine with the external patient information systems.
The fact that the domain ontologies were often developed with the
terminology of the patient information system in mind (e.g., the IMPACT
ontology was used in CritICIS as well as in the PDMS) simplified the
interfacing between the patient information systems and the Gaston execution
engines. Existing standard ontologies will be harder to interface as there may
exists syntactic as well as semantic differences between concepts from the
ontology and concepts from the target information system [34]. Separating the
Gaston execution engine into multiple components that each performs a
different task (e.g., guideline inference, system interfacing and user
communication) increased the reusability of the Gaston execution engine in
multiple application domains and settings.

In conclusion, although the number of systems that were developed using the
Gaston approach is still limited, the first experiences and results are very
promising. The fact that Gaston covers the entire guideline development and
implementation process and is supported by a number of generic tools related
to the various phases in that process is one of the key elements that made it
possible to reuse the approach in various projects. Although still a number of
problems have to be addressed, especially related to standardizing,
interfacing, organization and local adaptation, the foundation of Gaston is
strong enough to build on further.

References
1. Van der Lei J, Talmon JL. Clinical Decision-Support Systems. In: Van Bemmel and

Musen (eds). Handbook of medical informatics. Houten: Bohn Stafleu Van Loghum, 1997.
2. Johnston ME, Langton KB, Haynes RB, Mathieu A. Effects of computer-based clinical

decision support systems on clinician performance and patient outcome. A critical
appraisal of research. Ann Intern Med 1994;120(2):135-42.

Chapter 6 References

193

3. De Clercq PA, Blom JA, Korsten HHM, Hasman A. Approaches for Creating Computer-
interpretable Guidelines that Facilitate Decision Support: a Review. Submitted for
publication.

4. De Clercq PA, Hasman A, Blom JA, Korsten HHM. Design and implementation of a
framework to support the development of clinical guidelines. Int J Med Inform
2001;64:285-318.

5. De Clercq PA, Hasman A, Blom JA, Korsten HHM. The Application of Ontologies and
Problem Solving Methods for the Development of Shareable Guidelines. Artif Intell Med
2001;22(1):1-22.

6. Bindels R, De Clercq PA, Winkens RAG, Hasman A. A test ordering system with
automated reminders for primary care based on practice guidelines. Int J Med Inf
2000;58-59(1):219-33.

7. De Clercq PA, Blom JA, Hasman A, Korsten HHM. A strategy for development of practice
guidelines for the ICU using automated knowledge acquisition techniques. Int J Clin Monit
Comput 1999;15:109-17.

8. Van Hyfte DM, de Vries Robbe PF, Tjandra-Maga TB, van der Maas AA, Zitman FG.
Towards a more rational use of psychoactive substances in clinical practice.
Pharmacopsychiatry 2001;34(1):13-8.

9. De Clercq PA, Hasman A. Design of a Consumer Health Record for Supporting the
Patient-centered Management of Chronic Diseases. Medinfo 2001;10(2):1445-9.

10. Winkens RAG, Pop P, Bugter-Maessen AMA, Grol RPTM, Kester ADM, Beusmans
GHMI. Randomised controlled trial of routine individual feedback to improve rationality
and reduce numbers of test request. Lancet 1995;345:498-502.

11. Lamberts H, Wood M. International Classification of Primary Care. 3rd ed. Oxford: Oxford
University Press; 1987

12. Engelbrecht R, Rector A, Moser W. Verification and validation. In: van Gennip E, Talmon
J, editors. Assessment and evaluation of information technologies in medicine.
Amsterdam: IOS Press; 1995.

13. Fieschi M. Towards validation of expert systems as medical decision aids. International
Journal of Bio-Medical Computing 1990;26:93-108.

14. Blom JA. Temporal logics and real time expert systems. Computer Methods and
Programs in Biomedicine 1996;51:35-49.

15. Bindels R, Winkens RAG, Pop P, van Wersch JWJ, Talmon J, Hasman A. Validation of a
knowledge based automated feedback system for diagnostic test ordering in general
practice. Int J Med Inform 2001;64:341-54.

16. Project IMPACT Page. SSCM Web Page. Available at
http://www.sccm.org/impact/impact_home_set.html.

17. Lewis JR. IBM computer usability satisfaction questionnaires: psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction
1995;7(1):57-78.

18. Linden M. Therapeutic standards in psychopharmacology and medical decision-making
Pharmacopsychiatry 1994;27(1):41-5.

19. Van Hyfte D, Van Der Maas A, Tjandra-Maga T, De Vries Robbe P. A formal framework
of knowledge to support rational psychoactive drug selection. Artif Intell Med
2001;22(3):261-75.

20. Erdman HP. A computer consultation program for primary care physicians. Impact of
decision making model and explanation capability. Med Care 1987;25:138-47.

21. Rogers J, Roberts A, Solomon D, van der Haring E, Wroe C, Zanstra P, Rector A. GALEN
ten years on: tasks and supporting tools. Medinfo 2001;10(1):256-60.

Chapter 6 References

194

22. Van Hyfte DMH, de Clercq PA, Tjandra-Maga TB, Zitman FG, de Vries Robbé PF.
Modelling the psychoactive drug selection application domain at the knowledge level.
Proc Belgium-Netherlands Conf on Artificial Intelligence 1999;:187-8.

23. Van Hyfte DMH. Rational psychoactive drug selection: combining clinical,
pathophysiological and pharmacotherapeutic knowledge within a patient-specific
framework. PhD-thesis 2000. ISBN: 90-9013868-4

24. Brennan PF, Kuang Y.-S, Volrathongchai K. Patient-centered information systems.
Yearbook of Medical Informatics 2000, Schattauer Verlag, Stuttgart. 2000: 79-86.

25. Maly RC, Bourque LB, Engelhardt RF, A randomized controlled trial of facilitating
information giving to patients with chronic medical conditions: effects on outcomes of
care. J Fam Pract 1999;48(5):356-63.

26. Shortliffe EH. The Evolution of Electronic Medical Records. Acad Med 1999;74(4):414-9.
27. The TANDEM project. Leonardo da Vinci Program DK/97/2/00376/Pl/II.1.1.c/FPC.

Homepage available at http://www.tandem.v-chi.dk/.
28. The Medical Guideline Technology project. INCO-COPERNICUS Project IC15 CT 98-

0315. Homepage available at http://frost.open.ac.uk/mgt/.
29. Friedman CP, Wyatt JC. Evaluation methods in Medical Informatics. New York: Springer-

Verlag 1997:205-54.
30. Hays RD, Wells KB, Sherbourne CD. Rogers W. Spritzer K. Functioning and well-being

outcomes of patients with depression compared with chronic general medical illnesses.
Arch Gen Psychiatry 1995;52(1):11-9.

31. National High Blood Pressure Education Program. The Sixth Report of the Joint National
Committee on Detection, Evaluation, and Treatment of High Blood Pressure. Washington:
NIH; 1998.

32. Lindberg C. The Unified Medical Language System (UMLS) of the National Library of
Medicine. J Am Med Rec Assoc 1990;61(5):40-2.

33. Spackman KA, Campbell KE, Cote RA. SNOMED RT: a reference terminology for health
care. Proc AMIA Symp 1997;:640-4.

34. Chandrasekaran B, Johnson TR, Smith JW. Task-Structure Analysis for Knowledge
Modeling. Communications of the ACM 1992;35(9):124-37.

Chapter 6 Appendix: CritICIS questionnaire

195

Appendix: CritICIS questionnaire

 1 = strongly agree,
 2 = somewhat agree
 3 = neutral
 4 = somewhat disagree
 5 = strongly disagree

Usability Agreement

Overall, I am satisfied with how easy it is to use CritICIS. 1 2 3 4 5
It was simple to use CritICIS. 1 2 3 4 5
I could effectively complete the tasks and scenarios using CritICIS. 1 2 3 4 5
I was able to complete the tasks and scenarios quickly using CritICIS. 1 2 3 4 5
I was able to efficiently complete the tasks and scenarios using CritICIS. 1 2 3 4 5
I felt comfortable using CritICIS. 1 2 3 4 5
I believe I could become productive quickly using CritICIS. 1 2 3 4 5
It was easy to understand the advices given by CritICIS. 1 2 3 4 5
The organization of information on the screens was clear. 1 2 3 4 5
It was easy to find the information I needed. 1 2 3 4 5
Whenever I made a mistake using CritICIS, I could recover easily and quickly. 1 2 3 4 5
CritICIS gave error messages that clearly told me how to fix problems. 1 2 3 4 5
The interface of CritICIS was pleasant. 1 2 3 4 5
I liked using the interface of CritICIS. 1 2 3 4 5

Training and Support

Training in the use of CritICIS was sufficient. 1 2 3 4 5
It was easy to get acquainted using CritICIS. 1 2 3 4 5
The manual of CritICIS was clear. 1 2 3 4 5
The help-function of in CritICIS was clear. 1 2 3 4 5
It was easy to find guideline-related information in CritICIS. 1 2 3 4 5
Technical support in the CritICIS project was sufficient. 1 2 3 4 5
Support regarding the content in the CritICIS project was sufficient. 1 2 3 4 5

User-satisfaction

Overall, I am satisfied with CritICIS. 1 2 3 4 5
Overall, I find CritICIS useful. 1 2 3 4 5
CritICIS generates correct reminders regarding most patients. 1 2 3 4 5
CritICIS generates the right amount of reminders. 1 2 3 4 5

Behavior change
Working with CritICIS has changed my way of entering patient data. 1 2 3 4 5
Working with CritICIS makes me more aware on how to use patient data. 1 2 3 4 5
Working with CritICIS has limited the amount of entered patient data. 1 2 3 4 5
I prefer feedback before my actions rather than reminders afterwards. 1 2 3 4 5
I am prepared to encode patient information in ICIS for use in CritICIS. 1 2 3 4 5

Usefulness

I support the use of decision support systems in the ICU. 1 2 3 4 5
CritICIS is usable as a training-tool. 1 2 3 4 5
The patient will benefit from CritICIS. 1 2 3 4 5
I like to see CritICIS-like systems implemented in other departments. 1 2 3 4 5

Chapter 6 Appendix: CritICIS questionnaire

196

CHAPTER 7

GENERAL DISCUSSION AND CONCLUSIONS

Chapter 7 Introduction

198

1 Introduction
The research described in this thesis aimed at exploring the potential of a
generic methodology for the development and implementation of clinical
guidelines with the purpose of providing decision support. In order to get more
insight into the necessary steps that are required to reach the above-
mentioned goal, a number of relevant research questions were postulated in
Chapter 1. These questions address various difficulties, related to guideline
representation (e.g., ‘how to represent and share various types of guidelines
using a formal and unambiguous representation’), guideline acquisition (e.g.,
‘how to translate guidelines from a textual format into this formal
representation’ and ‘how to handle local adaptation and synchronization
between (inter)national and local guidelines’) and guideline-based decision
support (‘how to interface guideline-based decision support systems with
external patient information systems’ and ‘how to provide decision support to
a care provider in daily practice’).

The remaining part of this chapter discusses various aspects related to these
questions, after which a number of recommendations for future research and
conclusions are presented.

2 The Gaston representation model

2.1 The frame-based formalism
Chapter 2 described a number of different approaches that have been
developed during the last years. The models of these approaches are based
on various formalisms such as rules, frames or description logic. The Gaston
model is based on a frame-based representation, in which guidelines and
Problem-Solving Methods (PSMs) are represented in terms of sequences of
frame instances (e.g., primitives).

In the Gaston representation model, frames are used in two different ways: 1)
to represent knowledge related to the application domain (domain ontologies)
and 2) to represent knowledge related to the guideline’s control structure
(method ontologies). An advantage of using a frame-based representation is
that it is an intuitive way of modeling knowledge and is commonly used to
build ontologies. Also, the set of primitives (frames) can be easily extended,
for example by adding new domain or method classes. Logic-based
representations are often less intuitive, making it more difficult to build
ontologies.

Chapter 7 The Gaston representation model

199

Frame-based formalisms also have their drawbacks. A logic-based
representation is able to describe various kinds of relations between ontology
elements such as ForEevery, ThereExists, IsNot and Disjoint. Not all of these
relationships can easily be expressed in traditional frame-based
representations. These restrictions are especially important when describing
domain-specific knowledge such as drug interactions (although some of these
relations can be expressed in a frame-based language, as shown in Chapters
3 and 4). These restrictions are less crucial for method ontologies, as method
ontology primitives contain fewer of these types of relations compared to
domain ontologies. A drawback of using frames to represent method ontology
primitives is that these frames do not contain explicit procedural information,
which can be interpreted by a generic interpreter such as PROLOG. In our
model, each primitive has a custom-programmed procedure attached to it,
which is only able to execute that specific primitive. Compared to description
formalisms such as the PROforma LR2L language, which allows for the
processing of each primitive by a single generic interpreter, guideline
verification in our model is more difficult as different procedures may use
different (programming) languages to describe the primitive’s procedural
aspects.

However, we still chose a frame-based model as we felt (similar to the EON
and GLIF approaches) that guidelines, represented in this way are
understandable by humans as well as interpretable by automatic parsers.
Another advantage of the Gaston frame-based model is the ability to
introduce additional behavior in order to represent guidelines that differ in
complexity and application domain (e.g., new primitives or PSMs). Also, the
classes of the Gaston model can be used both to describe single guideline
steps as well as the internal structure of PSMs.

Recently, various studies were performed in which a number of guideline
approaches (among which Gaston) were compared [1, 2], including rule-
based, frame-based and logic-based approaches. The comparison led to the
identification of a number of common guideline components, which are also
largely supported by the Gaston representation model. From the results of
these studies, combined with the results of the projects that are described in
this thesis, we argue that current languages such as Gaston are becoming
powerful enough to capture the most important features, necessary for a
guideline representation model. Finally, languages such as the Ontology
Inference Layer (OIL) are currently being developed that combine aspects
from frame-based and logic-based representations [3], which may be
incorporated in the Gaston representation language.

Chapter 7 The Gaston representation model

200

2.2 Primitives vs. Problem Solving Methods
The examples, shown in this thesis, concern guidelines that differ in
complexity as well as application domain. Although some (parts of) guidelines
were represented through PSMs, primitives were more often used as building
blocks, especially in complex guidelines such as the hypertension and
weaning guidelines. Relatively simple strategies such as Situation Action
Rules (SARs) and Event-Based Modular Tasks (EBMTs) were frequently
represented by means of PSMs (Chapter 3). The more complex propose-and-
revise PSM [4] was used only once in the MGT project.

As a guideline’s control structure is usually very heterogeneous and built from
collections of small diverse tasks, primitives seem to be more suitable as
building blocks than PSMs. As a result, guidelines do not easily fit the
predefined structures of a PSM. On the other hand, describing (parts of)
guidelines by means of PSMs facilitates the authoring of guidelines by hiding
the control structure and providing task-specific user interfaces, in which
domain experts are able to specify relevant knowledge roles. This will
increase the reusability and shareability of guidelines among different
domains and applications.

Similar to PSMs in Gaston, the concept of using complex constructs that
internally hide the control structure was also recently included in other
approaches such as Macros in GLIF. We believe that, for certain classes of
relatively simple PSMs, the application of such constructs will facilitate the
acquisition of (complex) guidelines, when supported by user interfaces that
visualize the constructs, understandable by guideline authors that may have
little notion of the precise structure of the underlying representation. However,
more PSMs have to be developed that describe guideline-specific tasks.

2.3 Domain-specific knowledge
The Gaston approach uses the concepts of domain ontologies, method
ontologies and PSMs to separate knowledge that describes the control
structure (e.g., decisions and actions) from knowledge that describes the
application domain (e.g., used medications, treatments and contraindications).

Although the results from our projects show that it is possible to reuse
different types of knowledge, applying a single domain ontology in various
clinical specialties remains difficult. The IMPACT ontology in the CritICIS
project and the ICPC ontology in the GRIF project for example, were
especially developed for the intended application domain (e.g., ICU and family
practice), which greatly simplified the development process. These ontologies
were however difficult to interchange. For example, the IMPACT ontology was

Chapter 7 The Gaston representation model

201

not detailed enough to capture specific concepts that are commonly used in
the field of family practice and vice versa.

Another difficulty is the mapping problem. For example, one guideline defined
the concept ‘age’ whereas another guideline defined the concept
‘date_of_birth’, which have to be mapped in order to be interchangeable.
Although this is a relatively simple one-to-one example, there also exist
examples in which the mappings are less trivial [5]. We did not encounter
such complex problems however, also because the ontologies in our projects
were (partly) specifically designed for the application domain. The results of
our projects led to the development of a standard domain ontology. This
ontology consisted of a number of generic concepts (e.g., drugs, treatments,
diagnoses, laboratory tests), in which each concept was defined by means of
a standard set of attributes. For example, the concept ‘drug’ contained the
attributes ‘dose’ and ‘start_of_prescription’, whereas the concept ‘diagnosis’
contained an attribute named ‘diagnosis_date’. For particular domains, the
domain ontology was extended with new classes and attributes. When we
used this ontology to build the diabetes guideline for example, the diagnosis
‘diabetes’ was added, which, beside the standard ‘diagnosis_date’ attribute,
contained an additional attribute ‘type’ that denoted the diabetes type (e.g.,
type I or type II). The development of large reusable ontologies will form a
solution in the future. Therefore, current developments such as the
development of the HL7 Reference Information Model (RIM) [6], combined
with the development of standard terminologies such as SNOMED [7] will be
of crucial importance. However, we also believe that for the time being,
domain ontologies have to be adjusted, not only to the guideline’s application
domain but also to a guideline-based Decision Support System (DSS) that
must able to communicate with external patient information systems such as
Electronic Patient Records (EPRs).

2.4 Local adaptation and communication
The above-mentioned difficulties are heavily related to another problem in
guideline representation: the local adaptation and implementation of
guidelines. The possibility to adapt the contents of (inter)national to local
institutions is crucial for guideline acceptance [8]. This requires sophisticated
versioning and synchronization mechanisms. On the one hand, local guideline
authors must be able to override certain settings in the guideline in order to
adapt the guideline to local standards. On the other hand, whenever the
original guideline is updated, these updates must be reflected in the adapted
guideline without losing earlier-made overrides. Therefore, the knowledge that
describes the local adaptations must be separated from the knowledge that
describes the original guideline.

Chapter 7 The Gaston representation model

202

Local guidelines not only differ with respect to the contents but also with
respect to how these guidelines are used in an institution. For example, a
local implementation of a guideline may lead to some form of communication
with its users (e.g., generating a reminder on the screen of a nurse
practitioner) whereas another implementation of the same guidelines may
lead to another form of communication (e.g., sending a email to a physician).
In order to specify 1) local adaptations of the guideline’s contents and 2)
details concerning the communication between a guideline-based DSS and
external information systems and users, we argue that a guideline
representation model must contain multiple layers, containing information
related to the guideline’s structure, global and local contents and
communication.

Based on the results of the projects, described in this thesis, and other current
projects, we have chosen to extend the two-layered approach that was
already implemented in the KA-Tool (Chapter 4). Similar to the concept of
knowledge roles that give an abstract description of the function (domain)
knowledge plays, it is also possible to define different roles a guideline author
may play during the guideline acquisition process. Examples are 1) the
principal guideline author, who defines the control structure and initial contents
of the guideline, 2) the local guideline author, who adapts the contents of the
guideline to local standards and 3) the local information manager, who
specifies communication and implementation details. Currently, we have
implemented four layers in the KA-Tool:

• The Structure layer that describes the guideline control structure in terms

of primitives and PSMs.
• The Global Contents layer that describes the contents of each primitive

and PSM in terms of domain ontology concepts.
• The Local Contents layer that contains local adaptations of the contents of

each primitive and PSM;
• The Communication layer that contains communication and

implementation details such as the method of acquiring data from patient
information systems or the form of communication (e.g., showing warning
messages).

Figure 1 shows the KA-Tool that was used for the acquisition of weaning
guidelines in the CritICIS project (Chapter 6), extended with two additional
layers.

Chapter 7 The Gaston representation model

203

Figure 1: The CritICIS weaning KA-Tool, containing four layers

In this case, the Communication layer has been chosen (through the ‘Mode’
menu item), after which a guideline information manager has selected the
‘Change abdominal position?’ guideline step, shown in the top left corner of
the guideline’s control structure (the ‘plus’-signs in this primitive indicate that
additional details have been added). The communication details in this case
consist of a message that is sent to the nursing staff when certain conditions
apply (stored in the ‘Postconditions’ item). These conditions are for example
used during guideline execution to check whether the current user is a nurse
or a physician, as different messages may apply for different users.

Compared to the structure of the same weaning guideline, shown in figure 7
of Chapter 6, a number of primitives have been removed from the guideline’s
control structure in figure 1. These primitives such as ‘Report intubation!’ and
‘Weaning response is increasing!’ were instances of the ‘Generate_Message’
primitive, which was used to generate messages (e.g., reminders or advice) to
users (Chapter 3). In the four-layered approach, these instances are now
transferred to the Communication layer as they are related to the
communication aspect of providing decision support. However, as they are
still implemented as instances of the ‘Generate-Message’ primitive, the
Communication layer is defined by concepts from the same representation

Chapter 7 The Gaston representation model

204

model that is used throughout the guideline. Technical implementation details
(e.g., are messages shown on a computer screen or sent as HTML to a
browser) are not specified in this layer as these are handled by the
components of the DSS, described in Chapter 4.

Similar to Global Contents layer, the Local Contents layer also allows the
specification of the contents of each primitive and PSM in terms of domain
ontology concepts. However, content that is entered in the ‘Local Contents’
mode may differ from content that is entered in the ‘Global contents’ mode.
For example, a hypertension guideline may contain a decision step primitive
that decides whether a patient has a high blood pressure or not (Chapter 5).
In the Global Contents layer, a high blood pressure can be defined as ‘a blood
pressure that is higher than 150/90’. In the ‘Local Contents’ layer however, a
high blood pressure can be defined as ‘a blood pressure that is higher than
155/95’. Knowledge that is already present on the Global Contents layer (e.g.,
the definition of a high blood pressure) is copied to the Local Contents layer
where it can be changed (e.g., redefining the high blood pressure). It is also
possible to specify additional knowledge (e.g., adding a new criterion). This
technique is similar to the inheritance of attributes in frames and classes,
where items or values can be overwritten or added. However, the techniques
that perform the synchronization and versioning between the different
guideline layers are more complex than those, used in conventional object-
oriented techniques.

Using layers to represent and store various kinds of guideline-related
information separately has its pros and cons. One advantage is that the same
set of primitives and PSMs as well as the underlying language can be used
for all layers. Also, the results from our projects showed that guideline authors
have the tendency to include primitives that contain decision support-related
information in the guideline’s control structure (e.g., the ‘Generate_Message’
primitive), which may be favorable in some cases such as the application of
SARs in the CritICIS and GRIF projects (in these cases, the Communication
layer is omitted). However, ultimately this information should not be stored in
the guideline’s control structure. As each layer uses the same primitives and
PSMs, it facilitates transferring these concepts from the Structure layer to
other layers.

Besides the weaning protocol, we are currently applying the same four-
layered approach in a project for the development and implementation of
clinical trial oncology guidelines aimed at the treatment of Acute Myelogenous
Leukaemia (AML) patients [9].

Chapter 7 The Gaston guideline development environment

205

3 The Gaston guideline development environment

3.1 Task-specific user interfaces
Besides serving as building blocks for guidelines and PSMs, another reason
of using a frame-based model is related to knowledge acquisition. As
primitives and PSMs symbolize certain (sub)tasks in a guideline (e.g.,
decision, action, selection), a specific user interface corresponds with each
primitive or PSM that can be embedded as a separate module in the KA-Tool.
This shortens the development time of new primitives and improves the
acceptance by guideline authors.

As mentioned earlier, the real advantages of using PSMs are related to
knowledge acquisition. For each PSM, a guideline author only has to fill in the
relevant knowledge roles by selecting the proper concepts from the domain
ontology, while the internal structure of the PSM is completely hidden. It is
questionable however, whether the same technique can be applied with more
complex PSMs.

3.2 Guideline verification
Apart from PROforma, most approaches do not consider guideline verification
as one of their top priorities. Although guideline verification is an important
part of the guideline development process, it is understandable that the issues
of guideline representation, acquisition and execution have more priority in
projects that are also usually constrained by time and resources. It is natural
that first it must be established whether a computer-based guideline will
function in practice, before it can be established how a computer-based
guideline will function in practice.

The verification methods used in the Gaston approach also are still limited:
although we have applied methods for the detection of various logical and
procedural errors (Chapters 5 and 6), these were only tested on guideline
knowledge bases that mainly consisted of SARs such as the guidelines in the
CritICIS and GRIF projects.

Using drag-and-drop techniques that enabled authors to specify the control
structure and contents of a guideline by means of selecting, configuring and
combining concepts from method and domain ontologies prevents the
guideline authors to make syntactic errors. This, in contrast to approaches
were the knowledge is entered as text (e.g., the criteria in the Arden syntax or
GLIF). Naturally, semantic errors can still be made, as was shown in the
CritICIS project (Chapters 5 and 6). Although some of these errors can be

Chapter 7 The Gaston guideline development environment

206

detected by automated verification tools, simulation environments where
guidelines can be tested against actual patient data are crucial.

3.3 Guideline execution tasks
Guideline-based decision support usually receives less attention than
guideline representation and acquisition. However, we believe that
developing, implementing and evaluating DSSs in daily practice will improve
the acceptance of computer-based guidelines by health-care workers
considerably.

Similar to the tasks a health-care worker usually carries out in order to solve a
problem, DSSs that were developed and applied in our projects are able to
perform four basic tasks: 1) recognize relevant events from the outside world,
2) make assessments based on available knowledge, 3) retrieve more
information when necessary and 4) perform certain actions when necessary.
All tasks that are described in a guideline have to be carried out by one or
more of the four DSS tasks. For example, a warning message that is specified
in an action step can directly carried out by the ‘perform certain actions when
necessary ‘ DSS task. Sometimes, tasks that are specified in a single
guideline primitive have to be carried out by more than one DSS task. For
example, a decision step may contain the criterion ‘is the patient’s blood
pressure too high’. When this decision step is executed by a DSS, it executes
two tasks. First, the criterion is evaluated, which is carried out by the ‘make
assessments based on available knowledge’ task. When during the execution
of this criterion, the value of the patient’s blood pressure is required, the
‘retrieve more information when necessary‘ task is executed. As mentioned
earlier, we have defined different types of guideline developers such as the
principal and local guideline author, who define the control structure and
contents of the guideline, and the local information manager, who specifies
communication and implementation details. In this case, the (principal or local)
guideline author specifies information that will be carried out by the ‘make
assessments based on available knowledge’ DSS task, in contrast to the local
information manager, which specifies information that will be carried out by
the ‘retrieve more information when necessary‘ DSS task. During the
guideline authoring process, information that is relevant only to the guideline
author has to be hidden from the local information manager and vice versa.

It is possible to develop guideline primitives that can be directly mapped to
corresponding DSS tasks. For example, each of the four tasks of the
PROforma task ontology corresponds with one of our four DSS tasks.
However, this implies that the control structure of a guideline explicitly
consists of primitives that are relevant to the guideline author (e.g., the

Chapter 7 The Gaston guideline development environment

207

PROforma decision task) as well as the local information manager (e.g., the
PROforma enquiry task). This makes it more difficult to separate these types
of information from the various guideline developers.

The Gaston framework uses another approach by using the earlier-mentioned
layers: all communication-related information is stored into a Communication
layer, which is separated from the layers that contain inference-specific
information. The advantage of the PROforma approach is that the tasks that
are specified in a guideline primitive can be directly carried out by a DSS. In
our approach, the tasks in the Communication layer still have to be mapped
onto corresponding DSS tasks. The disadvantage of the PROforma approach
is that the guideline representation language is very ‘low-level’, which may
cause problems for guideline authors as well as local information managers
during the acquisition phase.

3.4 Interfacing external patient information systems
One of the great challenges will be interfacing a single DSS with multiple
patient information systems such as EPRs, consumer health record systems
and patient monitoring systems. DSSs must be able to react on events or
initiate a conversation to acquire data. For example, the current versions of
the CritICIS and TANDEM systems acquire data from two different patient
information systems simultaneously. Whenever the CritICIS system receives
an event from the PDMS (e.g., an antihypertensive drug is being prescribed),
it queries a monitoring system in order to acquire the patient’s real-time blood
pressure and breathing frequency.

Not all patient information systems are able to provide flexible communication
interfaces with a DSS such as Gaston (this is especially true for legacy
systems). If such interfaces do exist, retrieving data often consumes a lot of
time. Also, during execution (intermediate) conclusions such as ‘based on the
patient’s recent blood pressures, (s)he is diagnosed with hypertension’ must
be sent back to the patient information system or stored locally. A (partial)
solution is that the DSS must also be able to store patient data by itself, for
example in a self-managed patient database. An advantage is that, when a
DSS is executed multiple times, it is able to 1) cache recent patient data to
speed up the process and 2) store intermediate conclusions (e.g., ‘the patient
is diagnosed with hypertension’) or other patient-related information (e.g., ‘this
is the patient’s third visit’), which can be reused during subsequent
executions. However, this requires a synchronization mechanism between the
DSS and external patient information systems in order to keep the various
types of patient information up-to-date.

Chapter 7 Current and future research

208

3.5 Decision support
As the name indicates, the aim of a guideline-based DSS is to provide support
to health-care workers (e.g., physicians, nursing staff and patients). As
already mentioned, we argue that communication-related information must be
separated from other guideline-related information (e.g., inferencing). The
advantage of this method is that various communication methods can be
applied with respect to the same guideline such as proactive communication
(e.g., ‘guide’ the user actively through the guideline) or reactive
communication (e.g., critique the user whenever a guideline is not followed).
Each of these methods has its pros and cons. The advantage of a reactive
DSS such as the CritICIS and GRIF system is that it does not interfere with
the daily work of the care providers [10]. The advantage of a proactive system
such as the MGT hypertension advisory system is that it can suggest the
best-known treatment, for example to novice users. When guideline-based
DSSs contain additional institution-specific information related to workflow
management (e.g., which tasks are to be carried out by physicians and which
by the nursing staff), they could also be used as workflow management
systems [11].

4 Current and future research

4.1 Representation
Certain parts of the Gaston representation can still be improved, especially
concerning topics related to uncertainty, temporal logic and intentions. For
example, current Gaston projects focus on the integration of Asbru’s intentions
[12] and temporal logic and the possible use of aspects from other
approaches such as the PAL and LR2L languages in EON and PROforma.

The syntax of the underlying language has not yet formally been written down,
mainly as a result of time constraints. Also, the description of PSMs on the
task level is still informal. Consequently, there is no automatic mapping from
the PSM’s task description to a corresponding control structure. We are
currently investigating the integration of formal PSM languages within our
framework to make such mappings explicit. For this purpose, we will look at
more complex PSMs than the ones described in this thesis.

4.2 Verification
As shown in the CritICIS and GRIF projects, a number of methods were used
to verify rule-based guideline knowledge bases. We are currently expanding
these tests in order to detect other primitive-related errors such as ‘a drug
cannot be discontinued before it is prescribed’ or ‘every step following a
branch step must eventually lead to a corresponding synchronization step’.

Chapter 7 Conclusions

209

4.3 Integration
An important issue is the development and implementation of standardized
interfaces between patient information systems (e.g., EPRs) and guideline-
based DSSs, taking into account the existence of multiple domain ontologies
and terminologies, patient information systems and local organizations. We
have developed a number of standard interface components, which are able
to communicate with various types databases and information systems (e.g.,
ODBC, HL7 version 2, XML). New standards that are currently being
developed must be incorporated in the modern information systems as well as
DSSs.

Current Gaston projects focus on integrating a number of these new
standardized communication interfaces and terminologies such as interfaces
and terminologies developed by the OMG Healthcare Domain Task Force
(formerly known as CORBAMed) [13] and the earlier-mentioned HL7 [6] and
SNOMED [7] groups. Most of these are still under development, however.

5 Conclusions
This thesis presented the Gaston approach: a methodology and
accompanying framework for the development and implementation of
guideline-based decision support systems. The various projects, described in
this thesis, showed that this framework was generic and flexible enough to be
reused in different medical and applications domains. This is supported by the
fact that two developed DSSs are still being used in daily practice.

Similar to other approaches, the Gaston frame-based formalism was able to
represent guidelines that differ in complexity and application domain by
means of primitives as well as (relatively simple) PSMs. Current
developments will probably lead to a representation that contains elements
from frame-based and logic-based approaches.

The various projects in this thesis showed that it was possible to reuse the
same KA-Tool in all projects. Advantages of using PSMs are heavily related to
knowledge acquisition. PSMs facilitate the acquisition of (complex) guidelines,
supported by user interfaces that visualize the constructs, which are
understandable by guideline authors that may have little notion of the precise
structure of the underlying representation. On the other hand, primitives will
always be necessary for building custom-tailored guidelines.

Guidelines contain various types of knowledge such as domain-, procedural-
and implementation-specific knowledge. The possibility of specifying local

Chapter 7 References

210

adaptations and implementation details is crucial for the acceptance of
guidelines by individual institutions. The verification of all these types of
knowledge will become more important in the future.

To improve the acceptance of guideline-based DSSs, the greatest challenge
concerns the implementation of actual DSSs in daily practice, focused on the
areas of developing standardized terminology mapping and interfacing
techniques. Results of current developments such as OMG HDTF, HL7,
SNOMED and UMLS will be essential, just as the results of implementations
of locally adapted DSSs. As a result of the vast increase of clinical knowledge
in general and clinical guidelines in particular, generic frameworks such as
Gaston will be of crucial importance for the use and acceptance of these
guidelines in daily practice.

References
1. Wang D, Peleg M, Tu SW, Boxwala AA, Greenes RA, Patel VL, Shortliffe EH.

Representation primitives, process models and patient data in computer-interpretable
clinical practice guidelines: A literature review of guideline representation models. Int J
Med Inf 2002;68(1-3):59-70.

2. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD, Jones N,
Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe EH, Stefanelli M. Comparing
computer-interpretable guideline models: a case-study approach. J Am Med Inform Assoc
2003;10(1):52-68.

3. Fensel D, Harmelen F, Horrocks I, McGuinness D, Patel-Schneider PF. OIL: An Ontology
Infrastructure for the Semantic Web. IEEE Intelligent Systems 2001;16:38-45.

4. Marcus S. Automated knowledge acquisition for expert system. Norwell: Kluwer Academic
Publishers, 1988.

5. Chandrasekaran B. Johnson TR. Smith JW. Task-Structure Analysis for Knowledge
Modeling. Communications of the ACM 1992;35(9):124-37.

6. Schadow G, Russler DC, Mead CN, McDonald CJ. Integrating Medical Information and
Knowledge in the HL7 RIM. Proc AMIA Symp 2000;:764-8.

7. Spackman KA, Campbell KE, Cote RA. SNOMED RT: a reference terminology for health
care. Proc AMIA Symp 1997;:640-4.

8. Fridsma DB, Gennari JH, Musen MA, Making Generic Guidelines Site-Specific. Proc
AMIA Symp 1996;:597-601.

9. Van Oosterhout EMW, Talmon JL, De Clercq PA, Schouten HC, Jansen MPF, Hasman A.
The PropeR way to support medical doctors in daily practice. Part I: developing the
Protocol Based DSS. MIE 2003. Accepted for publication.

10. Miller RA, Masarie FE Jr. The demise of the "Greek Oracle" model for medical diagnostic
systems. Meth inform Med 1990;29:1-2.

11. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa C. Guideline-based
careflow systems. Artif Intell Med 2000;20(1):5-22.

12. Advani A, Lo K, Shahar Y. Intention-based critiquing of guideline-oriented medical care.
Proc AMIA Symp 1998;:483-7.

13. Object Management Group. Healthcare Domain Task Force. Homepage available at
http://www.omg.org/healthcare.

SUMMARY

Summary

212

During the last decade, studies have shown the benefits of using clinical
guidelines in the practice of medicine such as reduction of practice variability
and patient care costs, while improving patient care. A variety of guidelines
have been developed that focus on different phases of the patient care
process (e.g., patient screening, diagnosis, workup, referral and
management), application domains (e.g., disease management, protocol-
based care and consultation), and modes of use (e.g., clinical reference,
knowledge source, education, quality assurance).

The project, described in this thesis, aims at answering the question: ‘how to
represent, acquire and implement computer-based guidelines’ by describing
the development and evaluation of a generic approach that addresses various
aspects related to the guideline development process. The approach has led
to the development of the Gaston framework, which is described and
discussed in this thesis.

Chapter 1 presents an overview of the research area of this thesis: the
development and application of computer-based guidelines and guideline-
based decision support. Although the potential application of guidelines as a
form of decision support is enormous, a number of difficulties arise when
developing and implementing guidelines in daily care. A major problem is
related to the fact that guidelines are often represented as (structured) textual
documents, which is a passive form of decision support: the care provider
must decide whether consultation of a guideline is necessary. Often, care
providers are convinced that their actions agree with guideline standards and
that there is no need to consult the corresponding guideline in order to be
sure. In reality however, these actions may oppose the guideline’s intentions.

Implementing guidelines in active computer-based decision support systems
promises to improve the acceptance and application of guidelines in daily
practice because the actions and observations of care providers are
monitored and advice is generated whenever a guideline is not followed.
Various studies, covering a wide range of clinical settings and tasks, showed
that the use of these systems significantly improves the quality of care,
especially when used in combination with clinical information systems such as
Electronic Patient Records. It is stated that these decision support systems
are in fact not only crucial elements in long-term strategies for promoting the
use of guidelines but are also necessary for the future of medical decision
making in general.

Chapter 2 explores existing approaches by means of literature review. This
chapter describes and discusses existing approaches and postulates a

Summary

213

number of functional requirements that form a basis for the development of
the Gaston approach.

Based on these requirements, chapters 3 and 4 describe the methods used to
develop the Gaston approach, which consists of a methodology for the
development and implementation of computer-based guidelines and
guideline-based decision support systems. Chapter 3 focuses on the aspect
of guideline representation. It describes a new guideline representation
formalism that is based on the concepts of ontologies, primitives and
Problem-Solving Methods, which aims at improving the acceptance of
guidelines. Chapter 4 describes the Gaston framework: a framework that
facilitates the development and implementation of computer-based guidelines
and guideline-based decision support systems. This chapter describes a
guideline authoring environment that enables guideline authors to define
guidelines in terms of the developed representation model and a guideline
execution environment that is able to execute guidelines and interfaces with
external patient information systems.

In order to evaluate whether the Gaston approach was able to facilitate the
development and implementation of guideline-based decision support
systems in different medical and application domains, a number of decision
support systems were developed. These systems and experiences with the
development of these systems are discussed in chapters 5 and 6. Chapter 5
describes and discusses the CritICIS system that was created by means of
the Gaston approach. This system was developed for use in Intensive Care
Units (ICUs) and provided decision support to ICU health care workers by
means of generating reminders when guidelines were not followed. Chapter 6
describes the experiences with a number of other systems that were
developed with the Gaston approach in the areas of family practice,
psychiatry and chronic disease management.

From the results of these projects, Chapter 7 concludes that the Gaston
approach and framework was generic and flexible enough to be reused in
different medical and applications domains, supported by the fact that various
developed decision support systems are still being used in daily practice. It
also concludes that, as a result of the vast increase of clinical knowledge in
general and clinical guidelines in particular, generic approaches such as
Gaston will be of crucial importance for the use and acceptance of clinical
guidelines in daily practice.

Summary

214

SAMENVATTING

Samenvatting

216

Gedurende het laatste decennium hebben studies de voordelen aangetoond
van klinische richtlijnen in de dagelijkse zorgpraktijk zoals een afname van de
zorgvariabiliteit en de kosten voor patiëntenzorg. Een verscheidenheid aan
richtlijnen is ontwikkeld die zich richt op verschillende fasen van het proces
van patiëntenzorg (b.v. screening, diagnose, workup, doorverwijzing en
management van patiënten), applicatiedomeinen (b.v. ziekte management,
zorg gebaseerd op protocollen en consultatie), en verschillende
gebruiksvormen (b.v. klinische referenties, bron van kennis, onderwijs,
kwaliteitsgarantie).

Het project, zoals beschreven in dit proefschrift, richt zich op het
beantwoorden van de vraag: ‘hoe computer-gebaseerde richtlijnen te
representeren, verkrijgen en implementeren’ door het beschrijven van de
ontwikkeling en evaluatie van een generieke methodologie die gebruik maakt
van verscheidene aspecten gerelateerd aan het richtlijn-ontwikkelproces. De
methode heeft geleid tot de ontwikkeling van het Gaston framework dat
beschreven en bediscussieerd wordt in dit proefschrift.

Hoofdstuk 1 geeft een overzicht van het onderzoeksgebied dat in dit
proefschrift bestreken wordt: de ontwikkeling en toepassing van computer-
gebaseerde richtlijnen en op richtlijn gebaseerde beslissingsondersteuning.
De mogelijke toepassingen van richtlijnen als beslissingsondersteuning zijn
enorm. Echter, er ontstaan een aantal problemen wanneer deze richtlijnen
ontwikkeld en geïmplementeerd worden in de dagelijkse zorg. Een belangrijk
probleem is dat richtlijnen vaak bestaan uit (gestructureerde)
tekstdocumenten; een passieve vorm van beslissingsondersteuning: de
zorgverlener moet namelijk beslissen of het raadplegen van de richtlijnen
noodzakelijk is. Vaak zijn zorgverleners overtuigd dat hun acties
overeenkomen met richtlijnstandaarden en dat het niet nodig is om
overeenkomstige richtlijnen te raadplegen. De realiteit is echter dat de
gepleegde acties niet altijd in overeenstemming zijn met datgene wat in de
richtlijnen aanbevolen wordt.

Het implementeren van richtlijnen in actieve, op computer gebaseerde,
beslissingsondersteunende systemen zal de acceptatie en toepassing van
richtlijnen in de dagelijkse zorg verbeteren, omdat hierdoor de acties en
observaties van zorgverleners geobserveerd worden en advies wordt
gegeven indien een richtlijn niet nageleefd wordt. Verscheidene studies, met
betrekking tot klinische settings en taken lieten zien dat het gebruik van deze
systemen een significante verbetering van de dagelijkse zorg biedt, zeker
wanneer deze systemen gebruikt werden in combinatie met klinische
informatie systemen zoals Elektronische Patiënten Dossiers. Deze

Samenvatting

217

beslissingsondersteunende systemen zijn feitelijk niet alleen cruciale
elementen in lange-termijn strategieën voor het promoten van het gebruik van
richtlijnen maar zijn ook noodzakelijk voor de toekomst van het ‘medische
beslissingen nemen’ in het algemeen.

Hoofdstuk 2 bevat een literatuurstudie van bestaande benaderingen. Dit
hoofdstuk beschrijft en bediscussieert reeds bestaande toepassingen en
postuleert een aantal functionele eisen dat de basis van de Gaston
benadering vormt.

Aan de hand van deze eisen beschrijven hoofdstuk 3 en 4 de methoden die
geleid hebben tot de ontwikkeling van de Gaston benadering, bestaande uit
een methodologie voor het ontwikkelen en implementeren van computer-
gebaseerde richtlijnen en op richtlijnen gebaseerde beslissings-
ondersteunende systemen. Hoofdstuk 3 richt zich op de representatie van
richtlijnen. Er wordt in dit hoofdstuk een nieuw ontwikkeld richtlijn-
representatieformalisme beschreven, gebaseerd op de concepten van
ontologieën, primitieven en Probleem-Oplos-Methoden, dat zich richt op het
verbeteren van de acceptatie van richtlijnen. Hoofdstuk 4 beschrijft het Gaston
framework: een framework dat de ontwikkeling and implementatie van op
richtlijnen gebaseerde beslissingsondersteunende systemen ondersteunt. Dit
hoofdstuk beschrijft een richtlijn-ontwikkelomgeving waarmee richtlijnauteurs
in staat worden gesteld om hun richtlijnen te definiëren in termen van het
ontwikkelde representatiemodel, en een richtlijn-executieomgeving die in staat
is om richtlijnen uit te voeren en te communiceren met externe
patiënteninformatie systemen.

Om te evalueren of de Gaston benadering in staat is om de ontwikkeling en
implementatie van op richtlijn gebaseerde beslissingsondersteunende
systemen in verschillende medische toepassingsdomeinen te
vergemakkelijken is een aantal beslissingsondersteunende systemen
ontwikkeld met behulp van Gaston. Deze systemen en de ervaringen die
opgedaan zijn tijdens het ontwikkelen van deze systemen worden
bediscussieerd in de hoofdstukken 5 en 6. Hoofdstuk 5 beschrijft en
bediscussieert het eerste systeem dat ontwikkeld is met de Gaston
benadering. Dit systeem, CritICIS genaamd, is ontwikkeld voor gebruik in
Intensive Care Units (ICUs) en verzorgt beslissingsondersteuning voor ICU
zorgverleners door middel van het generen van ‘reminders’ wanneer bepaalde
richtlijnen niet worden gevolgd. Hoofdstuk 6 beschrijft de ervaringen die
opgedaan zijn met een aantal andere systemen ontwikkeld met de Gaston
benadering, in de specialismen huisartsengeneeskunde, psychiatrie en
behandeling van chronisch zieke patiënten.

Samenvatting

218

Uit de resultaten van deze projecten is geconcludeerd dat de Gaston
benadering en bijbehorend framework generiek en flexibel genoeg zijn voor
hergebruik in verschillende medische toepassingsgebieden, te meer daar
verschillende beslissingsondersteunende systemen nog steeds gebruikt
worden in de dagelijkse zorg. Ook is geconcludeerd dat als gevolg van de
snelle toename van medische kennis in het algemeen en klinische richtlijnen
in het bijzonder, generieke toepassingen zoals Gaston een cruciale rol zullen
gaan spelen bij het gebruik en de acceptatie van klinische richtlijnen in de
dagelijkse zorg.

DANKWOORD

Dankwoord

220

Ook al is de voornaamste schrijver en samensteller van een proefschrift de
persoon wiens naam op de omslag staat, vaak hebben meerdere personen
op verschillende wijzen bijgedragen aan het uiteindelijke resultaat. Ook dit
boekje zou nooit totstandgekomen zijn zonder de bijdrage van velen. Aan al
diegenen: ontzettend bedankt!

Graag wil ik een aantal mensen speciaal bedanken. Als eerste natuurlijk mijn
beide promotoren: Arie Hasman en Erik Korsten. Ze hebben samen laten zien
dat de twee onderzoeksgebieden die tezamen Medische Informatica vormen
uitstekend met elkaar te combineren zijn. Arie wil ik hierbij hartelijk bedanken
voor de onvermoeibare ondersteuning en het geduld gedurende de afgelopen
jaren, vooral als ik (soms na een tussenliggende periode van enkele
maanden) aankwam met versie 9.2 van hetzelfde artikel waarin de helft van
de voorgestelde wijzigingen weer ongedaan was gemaakt. Verder heeft hij me
(zoals het een goede promotor betaamt) ook nog andere essentiële
levensvaardigheden bijgebracht, bijvoorbeeld met betrekking tot de
commercie: dankzij zijn uitstekende onderhandelingen met een tuk-tuk
bestuurder heb ik in drie uur tijd zes verschillende juwelierszaken in Bangkok
gezien om daarna in een uithoek achtergelaten te worden. Arie, bedankt voor
de steun en het geloof de afgelopen jaren!

Ook Erik wil ik hartelijk bedanken voor zijn niet aflatende enthousiasme en
steun de afgelopen jaren. Zonder hem zouden de dingen die we samen
hebben bedacht nooit in de praktijk geïmplementeerd zijn. Zijn steeds
terugkerende uitspraak ‘we moeten nu toch echt regels gaan maken’ zal me
waarschijnlijk nog jarenlang blijven achtervolgen. Ambassadeurs zoals Erik
zijn noodzakelijk voor het welslagen van elk project waarin zowel
universiteiten als zorginstellingen deelnemen. Verder is dankzij Erik mijn
bewondering voor de Beatles omgeslagen in een lichte aversie en weet ik nu
hoe ik steenkastelen moet bouwen op het strand van San Francisco. We
zullen elkaar waarschijnlijk de komende jaren nog vaak tegen het lijf lopen.
Misschien komt het tennissen er nu eindelijk een keer van!

Verder wil ik mijn copromotor Hans Blom bedanken. Hij heeft ervoor gezorgd
dat ik de praktische kant van het onderzoek niet uit het oog verloren ben en
heeft ook borg gestaan voor de kwaliteit van mijn publicaties. Helaas is het je
niet gelukt om mij van het ‘komma syndroom’ af te helpen, maar je kunt
natuurlijk niet alles hebben.

Alle personen die betrokken zijn geweest bij mijn promotietraject wil ik
natuurlijk ook niet vergeten. Als eerste de verschillende artsen en
verpleegkundigen in het Catharina ziekenhuis die hebben bijgedragen aan het

Dankwoord

221

onderzoek, met name Arnoud Roos, Alex Bindels, Hanny Megens en Jan van
de Berk. Op de tweede plaats wil ik graag de mensen van Stanford Medical
Informatics bedanken voor de gastvrijheid die zij me geboden hebben, met
name Mark Musen, Mor Peleg en Samson Tu voor de vriendelijkheid en de
vele nuttige en leuke discussies die we gevoerd hebben.

Verder natuurlijk de vele TU/e kamergenoten die ik de laatste zes jaar hier
versleten heb, waarvan ik bang ben dat ik ze niet eens allemaal onthouden
heb. Speciaal wil ik Harald en Susanne noemen voor hun belangstelling, hulp
en commentaar gedurende het afgelopen jaar. Susanne, bedankt dat je mijn
paranimf wil zijn (en natuurlijk voor de speciale theekan)!

Natuurlijk wil ik hier ook mijn tweede paranimf, Rianne, bedanken. Samen
hebben we laten zien dat onze hersenspinsels ook echt in praktijk gebruikt
kunnen worden. Verder wil ik je bedanken voor het prettige gezelschap tijdens
alle installaties en de verschillende reizen naar het buitenland per trein, boot
en auto (per auto soms zelfs meerdere op één dag). Je hebt me wel
ingehaald wat de promotiedatum betreft maar dat gun ik je van ganzen harte!

Ook privé is zeven jaar een lange tijd geweest waarin verschillende omslagen
hebben plaatsgevonden. Voor wat betreft de eerste jaren wil ik Annemiek
bedanken voor de steun die ze me in die tijd gegeven heeft. Verder wil ik alle
personen bedanken voor de geboden hulp of getoonde belangstelling tijdens
de afgelopen jaren. Ik heb me voorgenomen om jullie in mijn toekomstige
privé-leven vaker te gaan zien. Nick, jou wil ik natuurlijk bedanken voor je hulp
bij het ontwerpen van de kaft. Speciaal wil ik ook Inge noemen, waarbij ik de
laatste periode altijd terechtkon indien nodig: hoe vaker we vanaf nu gaan
tennissen of snookeren, hoe minder tijd ik heb om te gaan werken!

Vanzelfsprekend ontbreken hier mijn ouders niet die altijd achter me gestaan
hebben. Zonder jullie zou dit proefschrift er nooit zijn gekomen. Jullie hebben,
samen met Eric, me altijd onvoorwaardelijk gesteund, welke keuzes ik ook
maakte. Zonder jullie drieën zou ik nooit staan waar ik nu sta: dank voor alles!

Als laatste natuurlijk Anouk. Ik hoop echt dat onderzoeken zoals deze ooit een
verschil zouden kunnen betekenen voor jou of anderen in de toekomst. Ik wil
je bedanken voor al het plezier dat we, ook al is het nog maar een korte tijd
geweest, samen al hebben gehad en ik weet zeker dat dit plezier de komende
jaren alleen nog maar toe zal gaan nemen!

Paul de Clercq,
Breda, april 2003.

Dankwoord

222

CURRICULUM VITAE

Curriculum Vitae

224

Paul de Clercq was born in Eindhoven, the Netherlands on August 9, 1969.
He received his undergraduate education at the Bisschop Bekkers College in
Eindhoven (Atheneum-B) from 1981-1987.

In 1992, he obtained a bachelor degree in Technical Physics at the
Hogeschool Eindhoven with his work entitled ’Development of Chaos Theory
Applications for Educational Purposes’.

In 1996, he obtained his masters degree in Electrical Engineering at the
Eindhoven University of Technology with his work entitled ‘Implementing a
Critiquing System to Provide Decision Support in the ICU: the CritICIS
System’.

In October 1996, he started his PhD study reported in this thesis at the Signal
Processing Systems group of Eindhoven University of Technology.

From 2001 to 2002, he worked as a researcher for the Medical Informatics
group at Maastricht University where he developed decision support systems
and patient-centered information systems.

In 2002, he founded the company ‘Medecs’, which aims at the development
and application of clinical decision support systems.

He currently lives in Breda and is the father of a daughter named Anouk.

	Contents
	1. General introduction
	2. Approaches for creating computer-interpretable guidelines that facilitate decision support
	3. The application of problem-solving methods and ontologies for the development of shareable guidelines
	4. Design and implementation of a framework to support the development of clinical guidelines
	5. A strategy for development of practice guidelines for the ICU using automated knowledge acquisition techniques
	6. Experiences with the development, implementation and evaluation of automated decision support systems
	7. General discussion and conclusions
	Summary
	Samenvatting
	Dankwoord
	Curriculum Vitae

