360 research outputs found

    An Integral geometry based method for fast form-factor computation

    Get PDF
    Monte Carlo techniques have been widely used in rendering algorithms for local integration. For example, to compute the contribution of a patch to the luminance of another. In the present paper we propose an algorithm based on Integral geometry where Monte Carlo is applied globally. We give some results of the implementation to validate the proposition and we study the error of the technique, as well as its complexity.Postprint (published version

    Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    Full text link
    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed data well either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but were not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light time travel effect, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes photon-weighted mode, enhanced limb darkening treatment, better reflection treatment and Doppler boosting. Here we present the concepts on which PHOEBE is built on and proofs of concept that demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release of PHOEBE 2.0 on http://phoebe-project.or

    A Gathering and Shooting Progressive Refinement Radiosity Method

    Get PDF
    This paper presents a gathering and shooting progressive refinement radiosity method. Our method integrates the iterative process of light energy gathering used in the standard full matrix method and the iterative process of light energy shooting used in the conventional progressive refinement method. As usual, in each iteration, the algorithm first selects the patch which holds the maximum unprocessed light energy in the environment as the shooting patch. But before the shooting process is activated, a light energy gathering process takes place. In this gathering process, the amount of the unprocessed light energy which is supposed to be shot to the current shooting patch from the rest of the environment in later iterations is pre-accumulated. In general, this extra amount of gathered light energy is far from trivial since it comes from every patch in the environment from which the current shooting patch can be seen. However, with the reciprocity relationship for form-factors, still only one hemi-cube of the form-factors is needed in each iteration step. Based on a concise record of the history of the unprocessed light energy distribution in the environment, a new progressive refinement algorithm with revised gathering and shooting procedures is then proposed. With little additional computation and memory usage compared to the conventional progressive refinement radiosity method, a solid convergence speedup is achieved. This gathering and shooting approach extends the capability of the radiosity method in accurate and efficient simulation of the global illuminations of complex environments

    Modeling the interaction of light between diffuse surfaces

    Get PDF
    Mary Wollstonecraft and her daughter Mary Shelley are arguably the most important female writers of the eighteenth and nineteenth century, while Wollstonecraft is one of the most significant contributors to the women’s rights movement, with some of her ideas expressed in A Vindication of the Rights of Woman being referenced in the modern-day laws about the rights of women. This paper will analyze the life and work of Mary Wollstonecraft and Mary Shelley, focusing mostly on their most famous and most significant works, A Vindication of the Rights of Woman and Frankenstein; or The Modern Prometheus, respectively. Furthermore, it will analyze the position of women through the biographies of both writers and the autobiographical elements in their works, as well as through the analysis of the female characters in Frankenstein; or, The Modern Prometheus as a representation of more or less typical women of the time. Finally, it will search for and analyze the influence of Mary Shelley’s mother’s works and ideas on her writing in Frankenstein; or, The Modern Prometheus and her work in general. The aim of this BA paper is to analyze the position of women in society and literature through the above mentioned aspects of the life and work of Mary Wollstonecraft and Mary Shelley and to prove the importance of both of these authors, but especially Wollstonecraft, in the female struggle for obtaining the most basic human rights and the still persisting fight for gender equality

    Radioptimization - Goal based rendering

    Get PDF
    Journal ArticleThis paper presents a method for designing the illumination in an environment using optimization techniques applied to a radiosity based image synthesis system. An optimization of lighting parameters is performed based on user specified constraints and objectives for the illumination of t h e environment. The system solves for t h e "best" possible settings for: light source emissivities, element reflectivities, and spot light directionality parameters so that the design goals, such as to minimize energy or to give the the room an impression of privacy, are met. The system absorbs much of the burden for searching the design space allowing the user to focus on the goals of the illumination design rather than the intricate details of a complete lighting specification. A software implementation is described and some results of using the system are reported. The system employs an object space perceptual model based on work by Tumblin and Rushmeier to account for psychophysical effects such as subjective brightness and the visual adaptation level of a viewer. This provides a higher fidelity when comparing the illumination in a computer simulated environment against what would be viewed in the "real" world. Optimization criteria are based on subjective impressions of illumination with qualities such as "pleasantness", and "privateness". The qualities were selected based on Flynn's work in illuminating engineering. These criteria were applied to the radiosity context through an experiment conducted with subjects viewing rendered images, and the respondents evaluated with a Multi-Dimensional Scaling analysis

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Radiation techniques for urban thermal simulation with the Finite Element Method

    Get PDF
    Modern societies are increasingly organized in cities. In the present times, more than half of the world’s population lives in urban settlements. In this context, architectural and building scale works have the need of extending their scope to the urban environment. One of the main challenges of these times is understanting all the thermal exchanges that happen in the city. The radiative part appears as the less developed one; its characterization and interaction with built structures has gained attention for building physics, architecture and environmental engineering. Providing a linkage between these areas, the emerging field of urban physics has become important for tackling studies of such nature. Urban thermal studies are intrinsically linked to multidisciplinary work approaches. Performing full-scale measurements is hard, and prototype models are difficult to develop. Therefore, computational simulations are essential in order to understand how the city behaves and to evaluate projected modifications. The methodological and algorithmic improvement of simulation is one of the mainlines of work for computational physics and many areas of computer science. The field of computer graphics has addressed the adaptation of rendering algorithms to daylighting using physically-based radiation models on architectural scenes. The Finite Element Method (FEM) has been widely used for thermal analysis. The maturity achieved by FEM software allows for treating very large models with a high geometrical detail and complexity. However, computing radiation exchanges in this context implies a hard computational challenge, and forces to push the limits of existing physical models. Computer graphics techniques can be adapted to FEM to estimate solar loads. In the thermal radiation range, the memory requirements for storing the interaction between the elements grows because all the urban surfaces become radiation sources. In this thesis, a FEM-based methodology for urban thermal analysis is presented. A set of radiation techniques (both for solar and thermal radiation) are developed and integrated into the FEM software Cast3m. Radiosity and ray tracing are used as the main algorithms for radiation computations. Several studies are performed for different city scenes. The FEM simulation results are com-pared with measured temperature results obtained by means of urban thermography. Post-processing techniques are used to obtain rendered thermograms, showing that the proposed methodology pro-duces accurate results for the cases analyzed. Moreover, its good computational performance allows for performing this kind of study using regular desktop PCs.Las sociedades modernas están cada vez más organizadas en ciudades. Más de la mitad de la población mundial vive en asentamientos urbanos en la actualidad. En este contexto, los trabajos a escala arquitectónica y de edificio deben extender su alcance al ambiente urbano. Uno de los mayores desafíos de estos tiempos consiste en entender todos los intercambios térmicos que suceden en la ciudad. La parte radiativa es la menos desarrollada; su caracterización y su interacción con edificaciones ha ganado la atención de la física de edificios, la arquitectura y la ingeniería ambiental. Como herramienta de conexión entre estas áreas, la física urbana es un área que resulta importante para atacar estudios de tal naturaleza. Los estudios térmicos urbanos están intrinsecamente asociados a trabajos multidisciplinarios. Llevar a cabo mediciones a escala real resulta difícil, y el desarrollo de prototipos de menor escala es complejo. Por lo tanto, la simulación computacional es esencial para entender el comportamiento de la ciudad y para evaluar modificaciones proyectadas. La mejora metodológica y algorítmica de las simulaciones es una de las mayores líneas de trabajo para la física computacional y muchas áreas de las ciencias de la computación. El área de la computación gráfica ha abordado la adaptación de algoritmos de rendering para cómputo de iluminación natural, utilizando modelos de radiación basados en la física y aplicándolos sobre escenas arquitectónicas. El Método de Elementos Finitos (MEF) ha sido ampliamente utilizado para análisis térmico. La madurez alcanzada por soluciones de software MEF permite tratar grandes modelos con un alto nivel de detalle y complejidad geométrica. Sin embargo, el cómputo del intercambio radiativo en este contexto implica un desafío computacional, y obliga a empujar los límites de las descripciones físicas conocidas. Algunas técnicas de computación gráfica pueden ser adaptadas a MEF para estimar las cargas solares. En el espectro de radiación térmica, los requisitos de memoria necesarios para almacenar la interacción entre los elementos crecen debido a que todas las superficies urbanas se transforman en fuentes emisoras de radiación. En esta tesis se presenta una metodología basada en MEF para el análisis térmico de escenas urbanas. Un conjunto de técnicas de radiación (para radiación solar y térmica) son desarrolladas e integradas en el software MEF Cast3m. Los algoritmos de radiosidad y ray tracing son utilizados para el cómputo radiativo. Se presentan varios estudios que utilizan diferentes modelos de ciudades. Los resultados obtenidos mediante MEF son comparados con temperaturas medidas por medio de termografías urbanas. Se utilizan técnicas de post-procesamiento para renderizar imágenes térmicas, que permiten concluir que la metodología propuesta produce resultados precisos para los casos analizados. Asimismo, su buen desempeño computacional posibilita realizar este tipo de estudios en computadoras personales

    Localisation for virtual environments

    Get PDF

    Ambient occlusion and shadows for molecular graphics

    Get PDF
    Computer based visualisations of molecules have been produced as early as the 1950s to aid researchers in their understanding of biomolecular structures. An important consideration for Molecular Graphics software is the ability to visualise the 3D structure of the molecule in a clear manner. Recent advancements in computer graphics have led to improved rendering capabilities of the visualisation tools. The capabilities of current shading languages allow the inclusion of advanced graphic effects such as ambient occlusion and shadows that greatly improve the comprehension of the 3D shapes of the molecules. This thesis focuses on finding improved solutions to the real time rendering of Molecular Graphics on modern day computers. The methods of calculating ambient occlusion and both hard and soft shadows are examined and implemented to give the user a more complete experience when navigating large molecular structures
    corecore