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Abstract

The demand for high quality computer graphics images is ever-increasing and hence, 

the demand for realism now extends throughout the various user communities and 

embraces such diverse applications as architectural representations, computer games, 

CAD, medical imaging and the film and entertainment industry. Unfortunately, the 

cost of realism is high in terms of computational complexity and real time construction 

of such images is still beyond the power of available systems.

The highest quality realism is obtained from radiosity images, but, computing the 

radiosity solution for a scene is a time consuming process, requiring O(n ) space and 

time complexity to solve the radiosity matrix. Many variations of the radiosity 

algorithm have been investigated but hierarchical radiosity has been without a doubt, 

the most valuable method for the accurate and rapid radiosity solution for scenes of 

modest sizes. The O(«) running time complexity of this algorithm represents the most 

optimal efficiency for arriving at a complete solution. However, the O(k2) linking time 

limits the overall size of scenes that hierarchical radiosity can manage. Clustering 

techniques have since been incorporated into hierarchical radiosity algorithms and 

have significantly improved the running time complexity from O(k1 + n) to 

0{k\ogk + n). Thus, clustered hierarchical radiosity algorithms represent the most 

efficient methods for solving the radiosity of a scene.

In this thesis, we have presented a new approach to clustering for hierarchical 

radiosity. The objective for this new approach was to improve the running time 

complexity hierarchical radiosity and thus its scalability, so that large, complex scenes 

can be rendered in a tractable amount of time. We have shown that the use of 

clustering to localise clusters of surfaces, reduces the size of the input surface 

geometry that needs to be solved by hierarchical radiosity. As a result, significant 

increases in performance have been achieved. The results of our clustering strategy 

show that our localisation technique scales linearly with increasing complexity of the 

input scene.
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Chapter 1 Introduction

The quality of images in all forms of modem media is expected to be of the highest 

possible standard. In computer graphics, this implies that they must represent what the 

eye sees in nature, or even the esoteric mind images of an artist. Such images must 

therefore portray three-dimensionality, colour and shadow subtlety, and articulation of 

forms. Given infinite computing power, we could satisfy all these parameters. 

Unfortunately, this is obviously not possible and so we must concentrate efforts on 

developing efficient algorithms and new image theories to attain the level of quality 

expected, within the bounds of current computing technology.

Photo-realistic image rendering is particularly difficult to compute because of the 

complexity of the physical nature of light. However, global illumination algorithms 

such as radiosity and Monte Carlo ray-tracing based methods (see Slater et al. [92]), 

provide the necessary foundation for extremely high quality rendered photo-realistic 

images.

Monte Carlo path tracing algorithms are stochastic sampling methods that have 

recently become very popular in solving the global illumination problem. These 

methods are relatively quick to generate images but they tend to be noisy due to 

stochastic sampling. Nevertheless, Monte Carlo path tracing methods are only really 

useful for the efficient rendering of local illumination. These methods require 

substantial computation to generate global illumination solutions for photo-realistic 

image generation, as they have to cast vast numbers of rays to achieve sufficient 

sampling.

The main disadvantage of Monte Carlo path tracing based algorithms, which are image 

space methods, is their dependence on viewpoint. There have been attempts to solve 

this problem, usually by employing caching techniques to accelerate image generation 

from the new viewpoint. With this restriction, Monte Carlo path tracing algorithms are 

typically only suitable for rendering high quality snapshots of environments at a 

particular viewpoint.
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The radiosity rendering algorithm has become established as the method for rendering 

the highest quality, view independent images for virtual environments. Radiosity is 

currently the only global illumination algorithm that correctly computes shadows due 

to area light sources. In combination with discontinuity meshing, the most complete 

description of global illumination within a virtual environment is obtained, capturing 

all the subtle lighting effects such as colour bleeding and shadow penumbra and 

umbra.

However, due to the high computation cost of obtaining a global illumination solution 

and the limitation that all surfaces are assumed to be Lambertian (i.e. diffuse), 

radiosity algorithms have not gained wide use and have quite often been dismissed as 

being to expensive to compute.

There have been attempts to combine radiosity with Monte Carlo path tracing methods 

to generate hybrid algorithms, for example by Chen et a l [38]. These algorithms 

typically use radiosity to generate a coarse, diffuse global illumination solution and use 

ray-tracing techniques to generate the complete, high quality image with rendered 

specular effects, etc. However, these methods have yet to achieve significant 

popularity. Therefore, the thrust of this thesis will be to continue the quest for a highly 

scalable radiosity method.

In 1959 Eckbert and Drake [4] introduced a radiosity method to compute the radiant 

heat exchanges between surfaces. Since that time, radiosity has become a recognised 

method for realistic image synthesis. The first significant advancement to the radiosity 

algorithm was developed in 1984 by Goral et a l [15]. Contour integration was used to 

analytically solve the form factors between two surfaces and the radiosity equation was 

solved using Gaussian elimination.

Cohen et a l [19][22] made a substantial improvement on Goral et a l 's  radiosity 

method. Form factors were solved using numerical integration techniques (the 

hemicube method) and the radiosity equation was solved iteratively using the Jocobi or 

Gauss-Seidel iterative methods.
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In 1991 Hanrahan et a l [39] introduced the most advanced method for solving the 

radiosity equation. Hanrahan et a l introduced a hierarchical radiosity algorithm that 

adaptively and hierarchically refines surfaces according to the light transport between a 

surface and the surrounding geometry. Instead of refining a surface to create a single 

mesh, this method maintains a multi-resolution hierarchy of refined meshes. Thus, 

weakly interacting surfaces will only need to interact at the coarsest levels in the mesh 

hierarchy. Conversely, surfaces that require more accurate representations of light 

transport can interact with more accurate meshes. Therefore, the key part of the 

hierarchical radiosity method is the accurate building of the links between these 

interacting surfaces, which reflects the nature of light transport throughout a scene.

Unfortunately, the initial linking stage of hierarchical radiosity hinders the scalability 

of this algorithm, as it requires an 0(n ) search of the scene geometry to establish a 

description of the light transport throughout the environment. There have been 

attempts to optimise the running time complexity consumed by initial linking. The 

current most popular method for optimising initial linking was presented by 

Holzschuch et a l [56], whereby the initial links are created lazily. In this method links 

are only created when the light transport between patches are sufficiently important.

The main drawback of hierarchical radiosity is that the coherence between the surfaces 

within a scene are not taken into account. In a typical scene, it is common for surfaces 

to group together and interact with the surrounding geometry as a single unit. 

Therefore, such surfaces can be approximated by a single entity and hence significant 

savings can be made on the numerous light interactions that would otherwise have to 

be computed.

Thus, the development of clustered hierarchical radiosity enables nearby surfaces to be 

grouped into clusters, such that clusters can now interact with the scene geometry. 

There are currently two main implementations of clustering for hierarchical radiosity. 

Sillion [57] [66] represent the clusters as isotropic scattering volumes to approximate 

the light transported by the surfaces contained within the clusters, while 

Smits et a l [59] use the surfaces within the clusters to estimate the error bounds on the 

light transported between clusters. Clustered hierarchical radiosity is the most
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significant advancement made to traditional hierarchical radiosity and has enabled the 

photo-realistic rendering for scenes of moderate size.

The principle aim of the research in this thesis is to improve the scalability of 

hierarchical radiosity, such that solving large complex scenes is possible in a tractable 

amount of time. Hence we aim to reduce the complexity of the input surface geometry 

supplied to hierarchical radiosity algorithm.

We specifically aim to utilise clustering to locate tight fitting clusters around distinct 

objects, since the surfaces within objects tend to have similar lighting properties. Thus 

good, robust approximations can be obtained from these clusters. However, the main 

purpose for using clustering is to obtain as many clusters available within a scene that 

contain as few surfaces as possible. Hence we aspire to:

• Locate the maximum number of object clusters within a scene.

• Optimise clusters such that they only contain a single object.

However even if optimal clustering is achieved, it is possible for clusters to contain 

objects that are composed of great number of finely tessellated surfaces. Thus we also 

present a prototype system that incorporates multi-resolution, level of detail (LOD) 

representation of these objects.

Thesis Overview

Chapter 2 introduces radiosity in a review that describes the basic definitions of 

radiosity and also the traditional techniques used to solve the radiosity problem. We 

commence by describing the main methods for computing form factors and then 

proceed with an explanation of progressive refinement radiosity. Also, we explain the 

two paradigms of shooting and gathering light and present the algorithm for 

progressive refinement radiosity. Finally, we discuss the benefits of sub-structuring 

and its application to progressive refinement radiosity.

Chapter 3 discusses in depth, the hierarchical radiosity algorithm and the most current 

techniques used to improve hierarchical radiosity. We begin by introducing a basic
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algorithm for hierarchical radiosity and then proceed with a comprehensive analysis of 

patch refinement and linking, which is an essential component of this algorithm. Next 

the method of multigridding is reviewed and an algorithm given to demonstrate how 

this method would be applied to the current hierarchical radiosity algorithm. A 

detailed discussion on clustering techniques follows. Here, we discuss the various 

manual and automatic clustering algorithms that have been applied to classical 

radiosity and hierarchical radiosity. Finally, we examine the techniques of 

discontinuity meshing and dynamic discontinuity meshing. This technique produces 

the most complete definition of shadowing within an environment and is an important 

method for generating accurate shadows. However, computing discontinuity meshes is 

notoriously expensive and so we discuss extremal discontinuity meshing. We also 

provide an algorithm for computing extremal discontinuity lines. Dynamic 

discontinuity meshing is also discussed and we present a simple experiment showing 

the benefits of extremal meshing and dynamic discontinuity meshing.

Chapter 4 presents an improved clustering strategy for hierarchical radiosity. We 

establish that the only practical approach for improving the scalability of hierarchical 

radiosity such that large, complex scenes can be solved is to reduce the number of 

surfaces solved by hierarchical radiosity, by utilising clustering techniques. We 

discuss in depth our localisation technique, which utilises clustering in a unique way, 

such that weakly interacting, that is, the light transport between clusters are detached 

from the environment and rendered independently.

Chapter 5 presents a set of experiments to test the performance and scalability of our 

new clustering strategy presented in the previous chapter. A series of scenes that 

represents a wide range in scene complexity were used in our tests, and contained 

between 550 and 27000 surfaces. The results shown in this chapter suggest that our 

new algorithm is suitable for solving large complex scenes and importantly, is capable 

of delivering linear running time complexity for these environments.

Chapter 6 introduces multi-resolution modelling. The results shown in Chapter 5 

demonstrate that reducing the number of input surfaces solved by hierarchical radiosity 

at any one time, is the only viable method for improving the scalability of hierarchical 

radiosity. However, as one should expect, our localisation technique performs poorly
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when a scene is composed of a few objects that are composed of a very large number 

of tessellated surfaces. Thus, we describe level of detail representation in 

multi-resolution modelling and present a prototype system for incorporating level of 

detail representation to our localisation algorithm. Results are also given for the same 

set of scenes used in Chapter 5 and enables a comparison between the performance of 

the combined localisation and multi-resolution algorithm and the localisation 

algorithms in Chapter 4.

Chapter 7 presents the final conclusions of this thesis. We discuss the achievements 

of our new clustering strategy and suggest a possible direction for future work in 

extending the scalability of hierarchical radiosity.
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Chapter 2 A Review of Radiosity

2.1 Introduction

Since its introduction to computer graphics, radiosity has matured into a well described 

and well implemented set of algorithms. It has evolved into a powerful technique that 

can render scenes to a high degree of accuracy and realism.

Radiosity or radiant exitance, began in 1936 when Moon [3] wrote “The Scientific 

Basis o f  Illumination Engineering”. Interestingly, luminous exitance was called 

luminosity but there was no term for radiant exitance, so he coined the term radiosity 

to describe the radiant flux density leaving a surface [52]. It was not until Eckbert and 

Drake [4] introduced a radiosity method to compute the radiant heat exchanges 

between surfaces, that radiosity has become a recognised method for realistic image 

synthesis.

2.2 Basic Definitions

To tackle the radiosity problem, the following basic definitions describe fundamental 

properties of radiosity.

Radiant Energy (Q):

Measured in Joules (J), radiant energy is the amount of energy contained in a quantum 

of electromagnetic radiation. The energy can be calculated using Planck’s equation:

Q = h f  2.1

where h is Planck’s constant and / i s  the frequency of the quantum of electromagnetic 

energy.
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Radiant Flux (O)

Measured in Watts (W) or Joules per second (Js_1), radiant flux  is the rate of change of 

radiant energy Q, with respect to time (Equation 2.2):

O = ^ ~  2.2
dt

Radiant flux is also referred to as radiant power and can be conveniently thought of as 

the power contained in an infmitesimally thin geometric ray of light.

Radiant Flux Density (dO/dA): Irradiance & Radiant Exitance

Measured in Watts per square metre (W m '), radiant flux density, which is also known 

as radiosity (B), is the rate of change of radiant flux with respect to area (A). In other 

words, radiant flux density is the radiant energy flowing though a unit area per unit 

time.

When applied to a scene, radiant flux density can either arrive at, pass through or leave 

a surface. Radiant flux density that leaves a surface (see Figure 2.1) due to emission 

and/or reflection is referred to as radiant exitance (.M). Radiant flux density that 

arrives at a surface (see Figure 2.2) is referred to as irradiance (E).

dA

M  =
d O 
dA

dA

E =
dO
dA

Figure 2.1 Radiant exitance from a surface. Figure 2.2 Irradiance of a surface.

Radiance (L)

1 9Measured in Watts per steradian per square metre (Wsr’ m '), radiance is the amount 

of radiant flux (energy) that is contained in an infmitesimally thin cone of light (see 

Figure 2.3).
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dA

Figure 2.3 Ail illustration of radiance.

The definition o f radiance is:

2.3
dAdco cos 6

where O is the radiant flux contained in an elemental cone dco, arriving or leaving a 

differential area dA at an angle 6 from the normal n. It is important to note that 

radiance is independent o f irradiance or radiant exitance. The ANSI/IES 1986 [20] 

definition o f radiance states the radiant flux density can be “leaving, passing through 

or arriving at” a surface.

Bidirectional Reflectance Distribution Function, BRDF (fr)

Measured in inverse steradians (sr'1), the bidirectional reflectance distribution function  

describes the reflective properties o f a surface and is the ratio o f the reflected radiance 

to the incident radiosity.

Reflectivity (p)

Reflectivity is the fraction of incident radiant energy that is reflected and is related to 

the BRDF o f a surface. Reflectivity is defined as:

2.4
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where:

f r{x) is the BRDF

Qr is the direction (angle) of the reflected radiance, with respect to the 

normal

Q is the surrounding hemisphere around point x

If all surfaces are restricted to being Lambertian, then the diffuse reflectivity p  is:

p (x )= f ,( x ) x  2-5

2.3 The Radiosity Function

The radiosity (B) at any point on a surface is the integral of the radiance at that point 

over the surrounding hemisphere Q. This is also true for radiant exitance (M) as this 

quantity indicates the direction of the radiosity at a point on a surface. Radiosity (B) 

and radiant exitance (M) are commonly interchanged. The radiosity equation is as 

follows:

Z?(jc)= J^L(jc,0)cos# dco 2.6

In realistic scenes, the radiance across object surfaces is dependent upon 0 (the 

direction of the ray of radiant flux, with respect to the normal of the surface). 

Therefore the radiance function can be extremely difficult to solve, if at all, 

analytically. This would appear to make radiosity rendering unfeasible, but for most 

cases, we can assume all surfaces are Lambertian. Lambertian surfaces have the

important property of having a constant radiance function that is independent of

viewing direction. These surfaces are often referred to as ideal diffuse emitters or 

reflectors.

Since Lambertian surfaces are completely diffuse, the distribution of light that leaves a 

surface is independent of the angle of incidence from the arriving light. Therefore, if
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we consider the light that falls onto a differential area on our Lambertian surface, we 

can approximate that light as an infinite number of geometric rays. Consequently we 

can use Lambert’s cosine law to calculate the intensity of any ray that leaves the 

surface. Thus the intensity of a ray that leaves a Lambertian surface at angle 0 from 

the surface normal, can be calculated as follows:

Id = Incos0 2.7

In is the intensity of a ray leaving at the surface normal. Thus using Lambert’s Cosine 

Law (Equation 2.7), we can remove the directional dependence of light 0 from the 

radiosity equation, with the following relationship:

L(x ,0) = L(x ) 2.8

Therefore the radiosity equation simplifies to:

B(x ) = L(x ) £ c o s  Odco

2 K n
= Z (x)Jo d(f) ^  dG sin 6 cos 0  ^.9

= L(x) n

We can see from Equation 2.9 that radiosity algorithms aim to simulate the

inter-reflecting photic field between diffuse surfaces in an environment.

As radiosity is the radiant flux flowing through a unit area per unit time, radiosity can 

be expressed as irradiance or radiant exitance depending on whether radiant flux is 

arriving or leaving a surface. However, by definition, radiosity is radiant

exitance [48][52]. Therefore it is common for the radiosity equation to be described in 

terms of radiosity, B , or radiant exitance, M. This can be a source of confusion, but as 

long as the definition of radiosity is kept in mind, radiosity and radiant exitance can be 

used interchangeably. Thus radiosity algorithms calculate the radiant exitance of a 

scene:

M (x) = L (x )x  2.10
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where M(x) is the radiant exitance function and L(x) is the radiance function of a

surface at a point x.

2.4 The Rendering Equation

In 1986 Kajiya [23] introduced the Rendering Equation. Based upon Maxwell’s 

equation for electromagnetics, the rendering equation is essentially a geometrical 

optics approximation [23] and is a compact formulation of the global illumination 

problem [36][48]. The rendering equation is stated as:

/(* , x ’) = g(x , x')  ̂  s(x, x') + |  f  ̂p (x, x \ x ") l { x \ x ”)dx"j 2.11

where:

7(x, x’) is related to the intensity of light passing from point x' to point x;

g(x, x') is a “geometry” term and encodes the occlusion of surface points by

other surfaces points [23]; 

e(x, x') is related to the intensity of the emitted light from point x' to point x;

p(x, x \  x") is related to the intensity of light scattered from x" to x by a surface

element at x';

S is the union of all the surfaces in the environment.

Tampieri [48] expresses Kajiya’s rendering equation [23] in a more convenient form 

(Equation 2.12):

L(x,x",X) = Le(x,x",;l)+  f, f r(x ',x ,x ’,X)L(x’, x , X ) ^ ^ - v ( x , X')dAx'

2.12
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where:

L(x, x", X) is the radiance at a point * in the direction o f point x", at wavelength

X;

Le{x, x", X) is the radiant exitance per unit solid angle emitted from x  towards x ", 

at wavelength A;

S  is the union o f all the surfaces in the environment;

f r(x, x , x", X) is a minor reformulation o f the bidirectional reflectance distribution

function  (BRDF);

v(x, x') is a visibility term; it is 1 if  x  and x' are visible to each other and 0 

otherwise;

x, x', x"  are differential surface elements;

6, (j> are the angles between the surface normals at x and x' and the line

connecting the two points (see Figure 2.4).

Towards x"

Figure 2.4 The geometry between two differential surface areas, used in Equation 2.1.

If  we assume that all surfaces are Lambertian and omit the dependence on wavelength, 

we can further simplify the rendering equation in Equation 2.12 to:

L ( X )  =  L , ( X ) +  f r ( x ) j ,  L ^  2.13
J x e S  y

where r is the distance between x and x'.

Equation 2.13 is known as the Diffuse Rendering Equation and is used by radiosity 

algorithms to solve the global illumination problem. From this equation, we can see
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that the radiance functions L(x) and L(x) (the unknown quantities that need to be

solved) occur both on the left hand side of the equation and inside the integral. These 

integral equations are known as Fredholm integral equations o f the second kind 

[8][75] and are impossible to solve analytically in all but the simplest cases [83][84].

2.5 Solving the Radiosity Equation

For general scenes, it is impossible to solve the diffuse rendering equation analytically 

(Section 2.4). Therefore the only way to solve the (diffuse) rendering equation is 

numerically.

Firstly we need to rewrite the diffuse rendering equation in terms of radiosity B and 

radiant exitance M. The radiant exitance function M(x) is explicitly stated here instead 

of as radiosity, because this term defines any light emitting surfaces that may exist in 

an environment.

From Equation 2.9, we can see that there is a relationship between radiosity B and 

radiance L. Therefore we have:

where Pd{x) is the reflectivity at x.

Next we need to discretise Equation 2.14. Taking the finite element approach, each 

surface in a scene is approximated by dividing it into a fine mesh of elements. Each 

element is assumed to have constant radiosity. Hence for every element z, the area 

averaged radiosity Bt (Equation 2.15) and reflectance pi (Equation 2.16) for a finite 

area surface St are given by:

2.14

2.15

2.16
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By integrating Equation 2.14 over the area o f surface Si, we derive the traditional

radiosity equation (see Tampieri [48]):

Z? = M. + pi  V  B. —  f  f  c o s  ^ c o s  ^  x '̂  fa'fa  2 . 1 7
' J A  JxeS ,  Jx'65 . TTY  V ';=1 r

Or more compactly:

2.18
7=1

where Fy is the ybwz factor  between elements t and j ,  and is calculated as:

^ I f f  cos 6 cos d )  / i \  ,  1 1Fa = —  \  r - ^  v(x, x  J dx'dx 2.19
9 A ; y 7ir

2.5.1 Form Factors

If a patch i is transmitting flux and a patch j  is receiving flux, then the form  factor  Fy is 

simply the ratio between the flux ( O y )  that reaches the receiving patch j  and the flux 

that was transmitted (O,) by patch i. See Figure 2.5 for an illustration.

hj

i

d>
F = — -  

,J O.

Figure 2.5 An illustration of the form factor between two 

patches i (emitter) and j  (receiver).
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From Equation 2.18 we can see that the most time consuming part of solving the 

radiosity equation, is computing the form factor (Equation 2.19) between two surface 

elements. Since form factors cannot be solved analytically, except for the most trivial 

cases, a numerical approach must be used.

To solve the form factor between two arbitrary patches i and j  (as shown in Figure 

2.5), we must first consider the form factor between two infmitesimally small 

differential areas. The solution for the form factor between two differential areas dAt

and dAj is:

c o s ^ c o s ^  
-  n r 2

From this point, it is now possible to consider the form factor between a differential 

area to a finite area, . This is accomplished by integrating Equation 2.20 over

the finite area Aj to give:

r C O S # C O S 0 ,
F ^ Al = 1 ' - r ^ d A j  2.21

J J 7TT
Aj

By integrating Equation 2.21 over the finite area Aiy the final ‘full’ form factor shown 

in Equation 2.22 can be solved for two finite areas:

1 r f C O S # C O S 0 ,^= tJ I L» J dAjdA, 2.22

Equation 2.22 is the same as Equation 2.19, but for unoccluded finite area patches.

When attempting to numerically solve the ‘full’ form factor equation, the first step is 

to consider Equation 2.21, the form factor between a differential area emitter dAj and a 

receiver patch Ay. However care must be taken when using Equation 2.21, because we 

are in effect treating the differential area as a point source. Therefore it must be 

ensured that the distance between the emitter and the receiver must be greater than five 

times the maximum projected width of the emitter [52]. This is known as the 

five-times rule and was demonstrated by Murdoch [11] in a study in illumination 

engineering.
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There is a surprisingly simple analytical solution for solving Equation 2.21. Providing 

that the patches are planar convex polygons, the form factor FdA^ Aj is:

If patch Aj has n vertices, then fik is the angle (in radians) between the two vectors 

formed by each pair o f consecutive vertices o f Aj, and cos a* is the angle between the 

plane formed by the two vectors that were used to compute J3k and the plane containing 

dA(. Figure 2.6(a) shows diagrammatically, the angles a  and p.

Figure 2.6 (a) A visual representation of how the angles a  and p  are constructed.

(b) shows the vectors required to calculate a  and p. Only calculations for one side of Aj

are shown here.

Calculating p^ is a straightforward matter o f computing the angle between two vectors, 

but it is not immediately obvious how to calculate cos att. Figure 2.6(b) shows in more 

detail how this would be accomplished for one side o f A t (i.e. k=0).

Thus for all sides, k =0 to n, by expressing cos a* in terms unit vectors rk and rk+x, and

bearing in mind that Aj is a closed polygon, this enables Equation 2.23 to be expressed 

in a more convenient form. This is shown in Equation 2.24.

n - \

2.24
*=0
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Equation 2.24 is in fact the contour integration solution to Equation 2.19 for the

area. This solution was introduced by Nishita and Nakamae [18], who generalised this 

method to account for partially occluded polygons. Nishita et a l recognised that since 

dAi is infmitesimally small, it can be approximated as a point source. Thus, an area 

subdivision algorithm for hidden surface elimination, for example Wamock’s 

algorithm, can be used to successively divide a polygon until all sub-polygons are 

either totally occluded, or totally unoccluded. The final form factor between dAt and 

Aj is then, simply the sum of the form factors between dAi and all the unoccluded 

sub-polygons of Aj.

Once the computation of the form factor FdA_>A is possible, Fy can be computed by

integrating over the finite area Aim. For the method by Nishita et a l [18], providing that 

the patch dAt is always sufficiently small that it can be approximated by a point source, 

this procedure is just a simple summing of all F^ ^ ^  over the area At. That is:

Nishita et a l [18] showed that their algorithm worked well for complex scenes with 

partially occluded polygons. However, the implementation and integration of 

Wamock’s algorithm into form factor calculation is complex, thus many methods 

adopt numerical integration or stochastic techniques instead [52].

To date, the most popular methods are:

• The Hemicube method [19]

• The Cubic Tetrahedron method [35]

• The Ray casting method [33]

The first two methods are numerical integration techniques, known as numerical 

quadrature, that are based upon Nusselt’s Analogy, which is discussed in 

Section 2.5.2.

specialised case between an unoccluded (i.e. v(x,x') = 1) differential area and a finite

2.25
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The Ray casting method is another method for solving the form factor problem. Ray 

casting is a stochastic sampling method that combines Monte Carlo and ray-tracing 

techniques, to calculate the form factor between two patches. As a result, ray casting 

algorithms are much simpler and easier to implement than the numerical quadrature 

techniques i.e. the hemicube and cubic tetrahedral methods.

Ray casting has many attractive features: this technique can handle both planar and 

curved surfaces as well as non diffuse and transparent surfaces. More importantly, the 

ray casting method determines the form factors at the vertices of each patch. Hence 

the radiant exitance at each vertex of a patch can be calculated directly. This is 

required when shading the patches for final output to the display. In contrast, the 

hemicube and cubic tetrahedron methods compute the radiant exitance for the whole 

patch. Thus some form of interpolation is required to obtain the radiant exitances at 

the vertices.

Despite the advantages of ray casting, a large number of rays must be cast per form 

factor calculation, to approach the accuracy of the hemicube or cubic tetrahedron 

methods. Since casting rays is a costly procedure, potentially requiring O(n2) 

comparisons, this is perhaps the most major disadvantage of the ray casting technique. 

However, well proven ray-tracing acceleration techniques [16] [27] can be applied to 

improve the performance of ray casting.

2.5.2 The Hemisphere Method: Nusselt’s Analogy

Nusselt’s analogy [1] is a purely geometric solution for computing the form factor 

between a differential area polygon dAt and a finite area receiving polygon Aj 

(Equation 2.21). Nusselt’s analogy works by projecting the outline of the receiver 

patch onto a hemisphere of unit radius, then directly projecting the outline onto the 

base of the hemisphere. See Figure 2.7.
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Figure 2.7 Nusselt’s Analogy.

From Figure 2.7, the form factor FdA ^ Aj is:

A
= —  2.26' 1 n

Although Nusselt’s analogy produces a very compact solution for calculating the form 

factor between dAj and Aj, the major obstacle here is calculating A. Projecting A '  onto 

the base o f a unit hemisphere is anything but trivial!

From Nusselt’s analogy, we obtain a very important relationship. The solid angle dco 

that is subtended by dAj as seen from dAh is equal to the projected area o f dAj onto the 

surface o f a unit hemisphere. Hence the total projected area A' is calculated by 

integrating over the finite area Aj. From this relationship, computing the area A' can be 

accomplished numerically by breaking the hemisphere into small delta solid angles 

and summing all the covered delta solid angles that formed the projection onto the 

surface o f the hemisphere.
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Figure 2.8 Computing the form factor using Nusselt’s analogy.

Referring to Figure 2.8, if  we consider a delta solid angle constructed by the centre o f 

the differential area dAj and the differential area dAj o f Aj, this will cause a projection 

dA onto the surface o f the hemisphere. This projected area dA can be calculated as 

follows:

dA = cos Ojdco 2.27

where dco is the solid angle subtended by dAj as seen from dAt, and Oj is the angle

between the normal of dAj and vector between dAj and dAt. See Figure 2.8.

Thus the projected area dA' onto the base circle o f the hemisphere is:

dA' = cos6J.d<y 2.28

The final projected area A' (as shown in Figure 2.7) can then be calculated by

integrating over the area Af.
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A' = Jcos Ojdco 2.29

cos 0-dAj
Since dco = ------ -— - ,  Equation 2.29 becomes:

r

cos#, cos 0fdA,
 2.30r

Finally, Equation 2.30 can be substituted into Equation 2.26 to obtain the form factor 

Fja _+Aj as shown in Equation 2.21.

2.5.3 The Hemicube Method

If the hemisphere in Nusselt’s analogy is replaced by a hemicube, we have Cohen and 

Greenberg’s [19] hemicube method for solving form factors. Cohen and Greenberg 

realised that patches that have the same projected area on a hemisphere (see Figure 

2.9(a)), will have the same solid angle as seen from the emitting patch. Hence these 

patches will have the same form factor. Also, if the same projected area on the surface 

of the hemisphere is projected onto any other surrounding surface, then that projected 

area, although different from the projected area on the hemisphere, will also have the 

same form factor. See Figure 2.9(b). Therefore, any geometric object can replace the 

hemisphere of Nusselt’s analogy.

Cohen and Greenberg replaced the Nusselt’s hemisphere by a geometrically similar 

object: the hemicube. The subdivision of all faces of the hemicube into a regular grid 

of cells is analogous to breaking up the hemisphere into smaller delta solid angles.
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Figure 2.9 Two diagrams illustrating two patches that (a) have the same projected area 

and hence the same form factor and (b) the same projected area and hence the same 

form factor on any surrounding surface.

Thus, to calculate the form factor between two patches, the target patch is projected 

onto each face o f the hemicube and the sum of all the delta form factors o f the cells 

that were covered, is the final form factor. See Figure 2.10.

Hemicube cell

Projected area

Figure 2.10 Calculating form factors using the Hemicube method.

The number o f cells on the top face defines the resolution o f the hemicube. Typically, 

hemicube resolutions range from 32x32 to 1024x1024 [52]. Cohen and 

Greenberg [19] used resolutions between 50x50 and 100x100.
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The advantage of using the hemicube method, is that the delta form factors of each cell 

in the grid can be pre-calculated and stored in a convenient lookup table. Due to the 

eight-way symmetry of the top face and the two-way symmetry of the four half faces, 

for a hemicube with resolution n x n cells, only 3«2/8 values need to be stored in the 

lookup table [19] [52]. Each delta form factor is calculated from the form factor 

between two differential areas (see Equation 2.20).

Also, since each face of a cube exactly covers a 90° frustum as viewed from the centre 

of a cube, existing clipping algorithms can be reused for calculating the projections of 

patches. In fact, the 90° frustum simplifies frustum clipping calculations, thus polygon 

clipping algorithms (e.g. Sutherland-Hodgman [5]) can be streamlined to make use of 

this advantage [19].

A detailed implementation of the hemicube method by Cohen and Greenberg [19], is 

given by Ashdown [52].

2.5.4 The Cubic Tetrahedron Method

The problem with Cohen and Greenberg’s hemicube method [19] is that every patch 

within a scene has to be projected onto five separate planes; the top face and four half 

faces of the hemicube. See Figure 2.11(a). Ashdown [52] describes this as a 

‘nuisance’, but for a scene with a large number of patches, this will hinder the 

performance of form factor calculation.

As mentioned in Section 2.5.3, Nusselt’s hemisphere [1] can be replaced by any object 

that surrounds the differential area. This is because the projected area of a polygon 

onto the surface of a hemisphere will have exactly the same form factor if it was to be 

projected onto any surrounding surface [19], See Figure 2.9 for an illustration. The 

actual size and type of volume object used for the projection medium, is arbitrary, 

since it is the form factor of the projected area that is required.
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Beran-Koehn and Pavicic [35] improve upon Cohen and Greenberg’s method by 

replacing the hemicube by a simpler geometric object known as the cubic tetrahedron.

The cubic tetrahedron object is formed when a cube that has been sliced by a plane, 

such that three o f the cube’s vertices lie in the slicing plane. Essentially the cubic 

tetrahedron object is nothing more than a tetrahedron that has been constructed from a 

cube. See Figure 2.11 (b).

/  /  /  /
Y~ f 7 T 7

/

(a) (b)

Figure 2.11 Constructing (a) the hemicube and (b) the cubic tetrahedron.

The simple geometry o f the cubic tetrahedron reduces the number o f projection planes 

to three identical triangular faces. Considering that a scene may contain many 

hundreds or thousands o f polygons, this is a significant improvement.

As with the hemicube method, when calculating the delta form factors for the cubic 

tetrahedron, the cells are square. However, at the base o f  each face o f  the cubic 

tetrahedron are a series o f triangular cells, where the plane has sliced the cube. 

Beran-Koehn and Pavicic [43] suggest two solutions to this. If these cells are included 

in the delta form factor calculations, then the delta form factors must be adjusted to 

account for the area being only half that o f the square cells. Otherwise, if  the 

resolution o f the cubic tetrahedron is suitably high, then these patches can be ignored.

Ashdown [52] has a highly detailed implementation o f a progressive radiosity renderer 

that uses the Beran-Koehn and Pavicic’s cubic tetrahedral method for calculating form 

factors [35][43].
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The cubic tetrahedron method has two main advantages over Cohen and Greenberg’s 

hemicube method. The first advantage is that each of the three faces of the cubic 

tetrahedron is identical. Therefore this simplifies the implementation of this method. 

Secondly, there are only three faces belonging to the cubic tetrahedron, which means 

that only three viewing frustums need to be used. As a result, fewer patches need to be 

clipped, compared to the hemicube method. This is an important result as the 

following benefits are gained:

• Reduced intersection testing

• Reduced polygon clipping

• Reduced hidden surface calculations

Intersection testing, polygon clipping and hidden surface removal are all expensive 

computations.

However due to the simpler geometry of the cubic tetrahedron, this method only 

samples a scene with three half-faces. This is less than the hemicube method, which 

samples a scene with one full face and four half-faces. This can be seen from Figure 

2.11, which shows the construction of a hemicube and a cubic tetrahedron.

Thus, the resolution of the cubic tetrahedron must be doubled for the sampling to be 

the same as the hemicube method. As a result, the storage requirements for the delta 

form factor lookup table for the cubic tetrahedron will be slightly larger than for the 

hemicube.

Overall, the cubic tetrahedron method has many attractive benefits over the hemicube. 

In particular, the reduction in the number of projection planes that need to be 

considered will immediately improve the efficiency of form factor calculation. 

Ashdown [52] reports that the cubic tetrahedral method needs to perform on average, 

2.75 clipping operations per polygon, compared to 3.83 operations for the hemicube 

method.
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2.5.5 The Ray-casting Method

The form factor between two polygons can be calculated using ray-casting techniques. 

Ray-casting uses stochastic or Monte Carlo techniques to obtain a set of randomly 

distributed points across the surface of a polygon, from which rays are constructed and 

cast into the environment.

Early ray-casting techniques by Maxwell et a l [25] and Malley [30] used ray-tracing 

methods to calculate form factors, but it was Wallace et a l [33] that combined 

ray-tracing methods for calculating form factors with stochastic sampling. This led to 

the production a simple but effective algorithm for progressive refinement radiosity, 

that generates fewer visual artefacts and is algorithmically much less complex, than 

existing numerical integration methods (e.g. hemicube method, cubic tetrahedral 

method).

From Maxwell et a l [25], the radiative exchange process between surfaces in an 

environment are modelled by following the progress of discrete ‘bundles’ of energy, as 

they propagate and interact within the scene. Thus, the form factor (or ‘configuration 

factor’ as it is referred to by Maxwell et a l [25]) is equal to the fraction of the total 

energy bundles emitted from a surface that are incident upon a second surface.

The basic idea of Maxwell et a l ’s method [25] for ray-casting is based upon Eckert’s 

experimental method for determining form factors [2]. Eckert experimentally 

modelled Nusselt’s analogy (see Figure 2.7) by using a hemispherical milk-glass1 light 

fixture and a small electric light bulb (centred at the base of the light fixture) to 

represent the unit hemisphere (the milk-glass light fixture) and the differential surface 

element (the light bulb). This is shown in Figure 2.12.

An opaque model of the surface for which the form factor was to be determined, was 

oriented and positioned within the milk-glass light fixture. Then in a darkened room, 

the light bulb was illuminated and the whole assembly, photographed. Since the

1 The ‘m ilk-glass’ definition o f the light fixture describes the glass to be semi-opaque and is o f a milky colour.
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camera is located in the line o f sight that is normal to the base o f the hemispherical 

milk-glass light fixture, the shadow cast by the opaque object onto the milk-glass is 

approximately equivalent to the projected area onto the base o f the milk-glass. Thus 

by measuring the area o f the shadow and the base o f the circle from the photograph, 

the form factor is simply the ratio between the two areas.

Shadow

Opaque object

Light blub

Milk-glass

Figure 2.12 Eckert’s experimental arrangement for calculating form factors.

Maxwell et al. [25] translated Eckert’s experiment into a method for computer 

graphics by replacing the physical components o f the experiment, by computer 

models. From Figure 2.12, the light bulb, milk-glass and opaque object were modelled 

as the differential area, the unit hemisphere and the finite area, respectively, o f 

Nusselt’s analogy. However, to calculate the area o f the shadow that was projected 

onto the surface o f the unit hemisphere, a ray-casting method was developed.

Maxwell et al. [25] replaced the photograph used by Eckert [2], by a plane that lies on 

top of, but is tangential to, the unit hemisphere (see Figure 2.13). This plane is then 

discretised into a regular grid o f n by n cells. The projected area o f a surface (shown 

as Aj in Figure 2.13) can be computed by casting rays from the centre o f the 

differential area (which is centred about the base circle o f the hemisphere) through the 

centre o f each cell on the tangential plane. Every cell for which the ray shot was 

unobstructed, is marked as ‘being in light’. Otherwise the ray was blocked and thus 

the cell was marked as ‘being in shadow’.
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As with Eckert’s experiment, it is the shadow area that will be used to calculate the 

form factor. Since the area o f each cell is known, by summing the areas for all cells 

that are in shadow, the total shadow area can be computed. The form factor is then 

simply the shadow area divided by the area o f the base circle of the hemisphere. As a 

unit hemisphere was used, the area o f the base circle is n. Maxwell et al. [25] used a 

raster graphics screen to represent the tangential plane, thus each cell o f the plane 

corresponds to a pixel on the screen.

Wallace et al. [33] introduced an improved progressive refinement radiosity solution 

that eliminates the aliasing artefacts and implementation complexities o f the hemicube 

method, by replacing the hemicube method with a ray-tracing algorithm for computing 

form factors. Wallace et al. [33] improved the ray-tracing techniques by 

Maxwell et al. [25] and Malley [30] to produce a ray-tracing method o f calculating 

form factors that is not based upon Nusselt’s analogy.

Based upon the shooting method o f progressive radiosity, this method takes the novel 

approach o f computing the form factors between every element vertex in the scene and 

every source patch that has energy to shoot. Therefore, the most significant difference 

between this method and all previous techniques including Maxwell et al. [25] and 

Malley [30], is that illumination can be computed directly at every vertex in the scene. 

All other methods compute the illumination at the centre o f a patch, which is then 

assumed to be constant across the surface o f the patch. Therefore, to compute the

X X X  \ \ \ \ \ ^  E H  P ro je c te d  sh a d o w  a re a

p la n e  /  a __________— X *  - ^ X  \

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ^ \

Figure 2.13 An illustration of Maxwell et a l’s. ray-casting method.
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illumination at the vertices, it is necessary to interpolate between neighbouring 

patches. This in turn is an approximation, and introduces inaccuracies and hence 

artefacts into the final solution.

dAi dAi

(a) (b)

Figure 2.14 Two diagrams illustrating (a) the form factor between a 

differential area and a finite patch and (b) the form factor between a finite

area and a differential area.

Calculating the form factors at the vertices is very similar to existing methods of 

calculating form factors. The only difference is that this method calculates the form 

factors between a finite area and a differential area (Figure 2.14(b)), that is, the reverse 

of the usual way (Figure 2.14(a)). Calculating the form factors between two areas 

(finite or differential) is made very simple, by making use of a very important 

relationship known as the reciprocity principle (Equation 2.31).

In essence, the reciprocity principle states that, given the form factor Fy from patch i to 

patch j ,  the form factor in the reverse direction Fju is a simple ratio of the areas of the 

two patches.

Wallace et al. [33] solved Equation 2.21 by dividing the source polygon, Aj (see Figure 

2.15) into delta areas, AAj, such that the delta areas represent the differential area dAj in

2.31
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Equation 2.21. Thus Equation 2.21 can be expressed by the following summation

(Equation 2.32):

^cos0lkcoseik 
~  L ----------- — 2---------- a a j  2 3 2k=l IZ'k

However, it was reported [33] that Equation 2.32 would grow without bound if AAj 

does not ‘shrink’ as the distance r becomes less that unity. The solution to the problem 

was to explicitly treat the delta areas as finite areas. This can be thought of as the 

calculation of a delta form factor.

AAj

Figure 2.15 Numerical integration method of Equation 2.21 (from Wallace et al. [33]).

To keep the form factor calculations simple, Wallace et al. [33] used the analytical 

form factor (from Howell [12]) between a differential area and a finite disk that are 

parallel and face each other (see Figure 2.16), to represent dAi and Aj respectively.
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Figure 2.16 The analytical form factor between a differential area and a finite disk.

Thus the equation for the form factor becomes:

FJA . a — , A s = n a 2 a 2 = —dAf—̂A: 2 , 2

r  + \  2.33
• P  -   I ________

dAi~*Aj n r 2 + Aj

Equation 2.33 can be generalised such that the differential area and finite disk can have 

different orientations, as shown in Figure 2.17. It must be noted that this equation 

(Equation 2.34), is an approximation.

A t c o s#  cos#.
dA,-*Ai ~F ^ a =  v-  - : - y 2.34

n r  + Aj

dAi

Figure 2.17 An approximate but generalised analytical form factor between a 

differential area and a finite disk.



Bearing in mind that it is the form factor between a finite area disk and a differential 

area i.e. FA^ dA , that needs to be computed, the reciprocity principle (Equation 2.31)

needs to be applied to Equation 2.34 as follows.

If i is the differential area dAi and j  is the finite area then we have the following 

reciprocity principle:

dAjFdAĵ Aj = AjFAĵ  dAj 2.35

Rearranging Equation 2.35 such that FA appears on the left hand side, we have:

= ^ F ^ ,  2.36
A j

Substituting Equation 2.36 into Equation 2.34, we finally have the form factor FA ^ dA , 

as shown in Equation 2.37.

dA A ,cos6, cos0, dA cos6, cos0,
P  -  _  j!_ . __J._______ l L -  ^  1 J 7 7 7

AJ^dA' Aj n r 2 + Aj 7rr2+Aj

To compute the form factors for every element vertex in a scene, it is simply a case of 

evaluating Equation 2.37 as shown in Figure 2.18.

Wallace et a l [33] state that it is only necessary to determine the form factor between a 

source surface Aj to a vertex V on At (Figure 2.18(b)), rather than to the differential 

area dAt (Figure 2.18(a)). Hence, this forms the basis of Wallace et a l’s ray-tracing 

method for calculating form factors.

The last step is to integrate over the source polygon Aj to obtain the total form factor. 

Performing this stochastically requires the source polygon to be sampled. If the 

sample points on the source polygon have been distributed evenly [33] (as shown in 

Figure 2.18), it can clearly be seen that the total form factor is simply the sum of each 

ray-traced delta form factor calculation, between each delta area (i.e. a sample point) 

on the source polygon Aj and every vertex on the receiving polygon At. However there 

are aliasing problems with this method, which are outlined by Wallace et a l [33].
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Receiving polygon A,

(a)
Receiving polygon Aj

(b)

Figure 2.18 (a) Computing the form factors between a finite area and a differential 

area, (b) A simplified form factor calculation between a finite area and a vertex.

These aliasing artefacts typically manifest themselves along shadow boundaries, where 

insufficient sampling causes overlapping sharp edged shadows to appear, instead o f a 

single soft edged shadow. One method for addressing this problem is to filter the 

radiosity at all vertices, by applying a weighted average o f the radiosities o f all 

neighbouring vertices [33]. However, the most successful method for addressing the 

sampling problem is to jitter  the sample points on the source polygon (e.g. Cook [21]).

Jittering is a powerful method o f random sampling and has the effect o f changing the 

aliasing into noise.

All calculations so far are only valid for unoccluded source and receiver polygons. In 

general scenes, polygons are very rarely unoccluded, therefore to cater for polygon 

occlusion, a visibility S  is added to the form factor calculation. This is a simple 

boolean value that represents whether or not a ray was obstructed when it was cast 

from a vertex on the receiver polygon to a sample point on the source polygon. If the 

ray was obstructed, then S  would be zero and thus the delta form factor would be zero.

This finally leads to a general equation (Equation 2.38) for evaluating the form factor 

between a general source polygon Aj to a vertex on A,:
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2.6 Computing the Radiosity Equation

As the radiosity equation (Equation 2.18) is simply a set of linear simultaneous 

equations, it is commonly expressed in matrix form (Equation 2.39).

' M P \ F \1 1 St
1

B t

m 2
= ~  P l^ 2 \ 1 — P l F 22 •• ~ P l F 2n b 2

M n . 1
1 a a^ ~ P n F n2 ' -  \ ~ P u F nn_ Bn

A variety of mathematical techniques can be used to solve the radiosity equation. The 

two most common methods of solving Equation 2.39 are:

• direct methods

• iterative methods

The main disadvantage of radiosity is that a typical scene will need to be decomposed 

to a very large number of surface elements. Since the overall size of the matrix is 

proportional to the number of surface elements squared, the computational cost for 

solving the radiosity equation (Equation 2.39) is therefore very high. Solving this 

equation using direct methods such as Gaussian elimination would require 0(n  ) space 

and 0(«3) time [52] to compute. Hence, we can see that with an increasing number of 

surface elements the computational cost can very rapidly escalate and thus become 

unusable for solving scenes of any significance. For example, Goral et al. [15] used 

the Gaussian elimination approach with partial pivoting.

The classic alternative to direct methods like Gaussian elimination is to use iterative 

techniques such as the popular Jacobi and Gauss-Seidel methods for solving 

simultaneous equations. Nishita and Nakamae [18], Cohen and Greenberg [19], and 

Cohen et al. [22] used these methods for solving the radiosity equation. These 

iterative methods improve the time complexity for solving the radiosity equation to



0{n2) which is better than Gaussian elimination, but is still insufficient for large n. 

Nishita and Nakamae [18] note that setting up the n b y  n form factor matrix of 

Equation 2.39 for a large n, would require excessive amounts o f memory. Thus to gain 

any significant performance increase, an improved approach to handling the radiosity 

equation needs to be considered.

2.7 Progressive Refinement Radiosity

Cohen et al. [31] developed a progressive refinement radiosity algorithm that can 

generate an image in O(n) time and space. This algorithm is based upon the idea of 

shooting flux, whereby each light source in the scene shoots its flux to all the other 

elements (see Figure 2.19). Each element effectively becomes a secondary light 

source and hence shoots the flux they receive, back into the environment.

Ei

Figure 2.19 An illustration of shooting flux into the environment.

The progressive refinement algorithm is an iterative process that is still based upon the 

Gauss-Seidel approach. Gortler et al. [47] establish that the progressive refinement 

radiosity method is in fact a variant o f the Southwell Relaxation iterative method.

Each iteration step takes 0(/i) time to compute. However it must be noted that it still 

takes this algorithm 0 (« 2) time to completely solve the radiosity equation. As with the 

Jacobi and Gauss-Siedel iterative methods, the progressive refinement algorithm 

terminates when the solution at the end o f each iteration, falls within a specified error 

margin.
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The main criterion for the progressive refinement radiosity method is to generate a 

useful image rather than a complete solution, in the most efficient manner, that is, in 

the quickest possible time. Therefore, Cohen et a l [31] restructured the radiosity 

algorithm in two important ways.

Firstly, in order for a valid image to be available after each iteration, the radiosity of all 

patches in the scene must be updated simultaneously. Secondly, to optimise the speed 

of convergence to which a solution is obtained, patches are processed by always 

selecting the patch that has the greatest amount of flux to shoot.

2.7.1 Gathering Light

In conventional radiosity algorithms, the Gauss-Seidel or Jacobi iterative methods 

solve the radiosity matrix of Equation 2.39 one row at a time. Referring to Equation 

2.18, this is can be visualised by Figure 2.20(a).

The radiosity of each patch Bt in the scene is solved in turn, by summing the radiosity 

estimates of every patch Bj in the present iteration. This process can be intuitively 

thought of as gathering the radiosity from all patches Bj in the scene onto a single 

patch Bu See Figure 2.20(b).

The ‘gathering’ of radiosity is a colloquial term used to describe the process by which 

the Gauss-Seidel or Jacobi iterative methods, that are used by traditional radiosity 

algorithms, to solve the radiosity matrix (Equation 2.39).

As there are n patches in a scene, the radiosity must be gathered onto every patch in 

the scene. Therefore for n patches within a scene, Equation 2.18 must be computed n 

times for one iteration step to be completed. As a result, computing one iteration step 

has a time complexity cost of O(n2). Unfortunately the 0(n2) running time complexity 

does not scale well. Since a typical scene may contain a large number of patches, this 

method quickly becomes unfeasible.
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Figure 2.20 (a) An illustration of Equation 2.18 for the gathering of radiosity and

(b) a pictorial illustration.

2.7.2 Shooting Light

It is possible to reverse the process of Equation 2.18 such that the radiosity o f a patch i 

is shot into the environment o f all other patches j .  This is achieved by applying the 

reciprocity principle shown in Equation 2.31 to Equation 2.18 as follows.

From Cohen et al. [31], the contribution o f radiosity made by patch i from  patch j  is:

B ^ j  = P,Bi FIJ2.40

Therefore the contribution of radiosity made by a single patch i to a single patch j ,  

using the reciprocity principle is:

Fa A, FttA,
BJ-« = P f r  where— = F ,  2.41

j  j

This is true for all patches j , so Equation 2.41 must be applied to all patches j .  This 

can be seen from the illustrations in Figure 2.21. Unlike the gathering method (Section 

2.7.1), Equation 2.41 can be solved in constant time, as the form factors Fy are 

pre-computed (for run time efficiency) and stored in lookup tables. Thus for n patches 

in a scene, the running time complexity to solve Equation 2.41 for all patches is O(n).
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Figure 2.21 (a) An illustration of Equation 2.18 for the shooting of radiosity and

(b) a pictorial illustration.

2.7.3 Shooting vs. Gathering

To meet the criterion for progressive refinement radiosity, an approximate image 

rather than a complete image, must be available at interactive speeds.

Considering the gathering method in Section 2.7.1, a single iteration o f the gathering 

method only solves the radiosity for a single patch. Therefore, to obtain an image 

would require Equation 2.18 to be solved for all patches i. Unfortunately, this will 

take 0{n2) time and so this method does not fulfil the criterion for a progressive 

refinement algorithm. Although the physical interpretation o f the gathering method 

can be easily identified from the radiosity matrix o f Equation 2.39, as shown in Figure 

2.20, it is too expensive to compute at interactive speeds. However, the gathering 

method does have the advantage o f being able to solve the radiosity o f specifically 

selected patches, after every iteration.

The shooting method is an entirely different paradigm, whereby the patch with the 

greatest amount o f flux (i.e. the product o f  the radiosity and the area o f a patch) to 

shoot, distributes its radiosity to all other patches within the environment. This is 

because there is no point distributing the radiosity o f a patch that has little or no energy



Shooting the flux for a single patch to another single patch within a scene can be 

accomplished in constant time, as the form factors Fy have already been pre-computed 

and the form factors F}/ can be calculated on the fly using the reciprocity principle 

shown in Equation 2.31. Therefore to shoot flux to n other patches in the scene, can be 

computed in 0(«) time and hence is suitable for generating approximate images after 

every iteration.

Initially, only light sources will shoot flux. However as the iterative process proceeds, 

patches within the environment will accumulate energy. In turn, these patches may 

gather enough energy to become ‘secondary light sources’ and shoot flux back into the 

environment.

2.7.4 The Algorithm

The progressive refinement algorithm basically consists of the following steps [34]:

1. Initialisation

2. Find shooting patch

3. Compute form factors

4. Distribute radiosity

5. Update and display results

6. Goto 2

The initialisation step initialises the radiosity values of every patch to its initial 

exitance value. Initially, only light sources will have a non zero value.

The iterative procedure commences by finding the patch with the greatest unshot 

energy (flux) to shoot into the scene. However if the remaining unshot energy within 

the entire scene is less than a predetermined value, then the radiosity equation has 

converged to a solution. From Ashdown [52], this is calculated as follows:

n

y > Q ,. < s  where AO; = ABiAj
i= \
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where ABt is the unshot radiosity (radiant exitance) of patch i, A t is the area of patch i, 

and s  is a predetermined threshold.

The form factors using the hemicube method can either be computed on the fly, or 

pre-computed before hand and stored in a lookup table. Cohen et al. [31] compute the 

form factors on the fly to avoid the O(n ) start up costs, as does Chen [34]. Thus for 

every patch, the hemicube is placed on the centre of the shooting patch and project all 

other patches onto all five hemicube faces. By summing all the delta form factors the 

form factor is obtained for two finite area patches.

The next step is to distribute the radiosity of the shooting patch to every other patch in 

the scene. This is done by applying Equation 2.41 to all patches in the scene, but not 

including the shooting patch. Once the shooting patch has distributed its energy into 

the scene, an approximate image is available for viewing. However this stage maybe 

postponed until a solution has been fully converged. The pseudo code for the 

progressive refinement radiosity method is as follows:

// Initialise the radiosities of all patches:
FOR every patch i DO

ABi = initial radiosity of patch i 
ENDFOR

WHILE 2 AOk for every patch k > e DO
Select patch i with the greatest unshot flux AOi 
Compute patch-patch form factors Fij 
FOR every patch j DO 

Arad = pjABiFji
ABj += Arad // update unshot radiosity 
Bj += Arad // update total radiosity of patch j

ENDFOR
ABi = 0  // reset unshot radiosity for patch i

ENDWHILE

where:

AB is the unshot radiosity of a patch;

AO is the unshot flux of a patch;

Arad is the amount of flux contained by a shooting patch;

p is the reflectance of a patch.
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During the early stages of progressive refinement, the initial images will most often 

appear quite dark. This is because only radiosity from the primary light sources would 

have been distributed into the scene. Most of the illumination within a scene actually 

comes from indirect or secondary illumination between the surfaces (patches) within a 

scene. As a result, secondary illumination has yet to contribute to energy to the current 

solution iteration, thus the global illumination of the scene has not yet been represented 

accurately.

In order to compensate for this, Cohen et a l [31] incorporate an ambient correction 

term after every iteration. However, this term does not play any part in the solution 

process. It is merely added for display purposes only. The ambient term itself 

diminishes as the solution progresses, therefore useful images will be available during 

the initial stages of progressive refinement.

Based upon the current iteration’s estimate of the radiosity of all patches, the ambient 

term is essentially an average radiosity term, or in this case a radiant exitance term, 

that is computed from the average reflectivity of the scene. When added to all patches 

within a scene, this ambient term essentially simulates the effect of adding a 

completely diffuse light source that evenly illuminates every patch within the 

scene [52].

The radiant exitance of the ambient term is derived from the average reflectivity, pavg, 

and the interreflectance factor, R, of a scene, as shown in Equation 2.42:

ambient 2.42

where the interreflectance factor i? is:

2.43

and the average reflectivity pave of a scene is:
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Detailed explanations and derivations of paVe> R and the ambient term have been 

documented by Cohen et a l [34] and Ashdown [52],

2.8 Sub-structuring

When solving the radiosity matrix using popular methods such as the Jacobi or 

Gauss-Seidel iterative methods as described above (Section 2.6), the arrangement of 

the surfaces in the scene is not considered. Hence every element contributes a 

coefficient into the radiosity matrix regardless of what its impact is to other elements. 

What is needed is a more intelligent approach to solving the radiosity equation.

Cohen et al. [22] introduced a two level sub-structuring method, which creates one 

level of finely meshed elements and one level of coarsely meshed patches. The 

concept of this method is that an accurate solution for the radiosity at a point on a 

surface, can be obtained with the global radiosities generated by the coarse 

patch-to-patch interactions. Since the radiosity across a surface may vary 

significantly, for example at shadow boundaries, the coarse representation (i.e. the 

patch representation) may be insufficient to capture this detail. Hence each surface 

also has a fine mesh of elements.

Using this method [22], the time complexity for solving the radiosity equation can be 

reduced to 0(nm), where n is the number of finely meshed elements and m is the 

number of coarse patches. The benefit of this method of sub-structuring becomes 

apparent when the number of patches is much less than the number of elements, that is, 

m « n .  In general, it has been proven [22] that m « n  which implies that overall time 

complexity could theoretically reach 0(h)- Combining this sub-structuring method 

with their progressive refinement technique [31], this combined technique allows 

rendered images to be displayed after each iteration during the radiosity solving phase. 

This is very useful, as the progressive refinement technique tends to converge quite 

quickly, therefore enabling a reasonably good (but approximate) rendered image to be
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2 ,
rapidly available to the user. This method, however, still requires O(n ) time to 

completely solve the radiosity equation.

The pseudo code for the progressive refinement radiosity algorithm with 

sub-structuring is as follows:

// Initialise the radiosities of all patches:
FOR every patch i DO

ABi = initial radiosity of patch i 
ENDFOR

WHILE £ AOk for all patches k > e DO
Select patch i with the greatest unshot flux AOi 
Compute patch-element form factors Fie 
FOR each patch j DO

FOR each element k of patch j DO 
Arad = peABiFei
// update area weighted unshot radiosity of 
// element e belonging to patch j 
ABe += Arad Ag/Aj
// update total radiosity of element e 
Be += Arad 

ENDFOR 
ENDFOR
ABi = 0  // reset unshot radiosity for patch i

ENDWHILE

where:

AB is the unshot radiosity of a patch;

AO is the unshot flux of a patch;

Arad is the amount of flux contained by a shooting patch;

p is the reflectance of a patch.

2.9 Summary

In this chapter, we have shown that the Gaussian elimination method for solving the 

radiosity matrix, which was originally used by Goral et al. [15], is too expensive for 

scenes of any practical size. As a result, Cohen et al. [19] and Cohen et al. [22] 

utilised iterative techniques such as the Jocobi and Gauss-Seidel methods for solving 

the radiosity equation.
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These iterative methods improve the upon the 0(«3) running time complexity of 

Gaussian elimination, to 0(«2). However, the quadratic time and space complexity 

means that scenes are still limited to scenes of small size.

The progressive refinement radiosity algorithm introduced by Cohen et a l [31] is a 

viable, alternative method for solving the radiosity equation. The progressive

refinement radiosity algorithm combines the hemi-cube technique from 

Cohen et a l [19] and the two-level sub-structuring and adaptive refinement techniques 

from Cohen et a l [22], with a shooting method to distribute energy throughout a 

scene. This energy shooting method enables quick convergence to a solution, however 

this algorithm still takes O(n ) to arrive at complete radiosity solution.

The main advantage of the progressive refinement radiosity is that it only requires 

O(n) memory requirements per iteration and a partial image is available in 0(n) time 

(i.e. after every iteration). Thus progressive refinement radiosity is a very attractive 

algorithm for generating rendered images at interactive rates.

The main disadvantage of progressive refinement radiosity is that it is still bounded by 

the fundamental O(n ) complexity for completely solving the radiosity matrix [83].

In a scene, there will generally be surfaces that transport negligible quantities of 

energy to other surfaces and hence can be either ignored, or represented coarsely. This 

can be further extended to include groups of surfaces that weakly interact with the 

surrounding geometry.

Therefore in the following chapter, we will discuss algorithms that explore the effects 

of light transport within a scene. These algorithms will implement various techniques, 

that will surpass the O(n ) time complexity bound of current radiosity algorithms.
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Chapter 3 Hierarchical Radiosity

3.1 Introduction

To date the most advanced radiosity engines incorporate a whole host of complex 

techniques that make computing the radiosity equation more efficient. The most 

important breakthrough since Cohen et al s methods [22] [31] is the hierarchical 

radiosity technique [39].

Hanrahan et al. [39] introduced a hierarchical approach to ‘patch to patch’ interactions 

that was inspired by the technique for solving the n-body problem [17]. This 

technique enables the computation of all forces on a particle in less than quadratic 

time. When radiositising a scene, a very similar calculation is performed between the 

surfaces in a scene. Therefore, incorporating this technique can make a significant 

improvement to the radiosity algorithm

The hierarchical radiosity algorithm is a method that explicitly represents the transport 

of light throughout the environment of a scene, by representing each light interaction 

between each and every adjacent patch by a link. Thus each patch will have a 

collection of links that represents the light transported by every adjacent patch that 

interacted with it (see Figure 3.2(c)). To ensure that the accuracy of the radiosity 

across a patch is maintained, the hierarchical radiosity algorithm keeps a 

multi-resolution patch hierarchy for every patch in the scene. This extends Cohen et 

a l’s two level patch-element hierarchy, by adaptively storing representations of the 

original patch at various levels of detail. Since the hierarchical patch refinement 

process is integral to the hierarchical radiosity algorithm, this method has the 

advantage over previous radiosity algorithms of not requiring any initial meshing.

Hanrahan et a l’s hierarchical radiosity approach [39] improves upon Cohen et a l’s 

O(nm) time complexity to 0(l?+n), where k  is the number of initial surfaces and thus 

corresponds to the maximum number of link interactions that have to be considered, 

and n is the total number of patches that are created after patch refinement. Hence
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theoretically, using the hierarchical radiosity algorithm, a scene can be computed in 

linear time. Unfortunately we must also take into account the O (^) linking time when 

considering the overall performance of hierarchical radiosity.

3.2 A Basic Hierarchical Radiosity Algorithm

The basic components of hierarchical radiosity can be summarised in Figure 3.1.

R ender sceneP atch  refinem ent Solve radiosity
Load scene 
geom etry

T riangulate 
scene geom etry

Figure 3.1 The basic components of hierarchical radiosity.

Figure 3.2 illustrates the main steps of the hierarchical radiosity method for a simple 

scene, consisting of a small rectangular light source and a larger rectangular floor 

surface (Figure 3.2(a)). The triangulation of the input geometry has been omitted from 

this illustration.

Once all the surfaces of the input scene have been loaded, they must be decomposed 

into simple polygons such as quadrilaterals and/or triangles. There are two main 

reasons for restricting all scene polygons into quadrilaterals or triangles.

Firstly, these two types of polygon will enable the reliable generation of convex mesh 

elements. This is important since most of our computations will only produce robust 

solutions with a mesh constructed from convex polygons. This can always be 

achieved if all polygons are reduced to triangles.

Secondly, the patch refinement stage oversees the construction of the hierarchical form 

factor matrix approximation. During this stage, it is often very convenient to utilise 

Siegel and Howell’s analytical form factor estimate for a differential area and a finite 

circular disk [10]. However this form factor estimate only holds true for square 

quadrilaterals or equilateral triangles, as these polygons can be approximated to a 

circular disk. In other words, care must be taken to ensure that the quadrilateral or 

triangular polygons are not long and thin.
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(c) (d)

Figure 3.2 The hierarchical patch refinement and linking process of a simple scene.

(a) shows initial geometry and (b) after patch refinement, (c) shows the link 

interactions between patches and (d) shows the final radiositised solution.

Generally, a scene can be efficiently decomposed into a mesh o f roughly equilateral 

triangles by using a high quality Constrained Delaunay Triangulation (CDT) 

algorithm. Unfortunately CDT algorithms can be very complex, especially those that 

generate very high quality meshes.

There are a number of CDT implementations available, o f varying sophistication, but 

there are robust CDT implementations by Shewchuk [70], Stuerzlinger [46] and
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Lischinski [60] that are freely available. Both Worrall [82] and Hedley [83] used 

Shewchuk’s CDT implementation with great success.

From Figure 3.2(b) we can see the results of hierarchical refinement. It is quite logical 

that the floor surface has been subdivided into a number of smaller patches, since it is 

usually not possible to capture the radiosity across a surface with only a single patch. 

Thus each time a patch is subdivided, the new sub-patches are entered into a new level 

in the patch hierarchy. Figure 3.5 illustrates patch sub-division and the creation of the 

patch hierarchy for the floor surface in Figure 3.2.

Figure 3.2(c) shows the interactions of the links between all patches in the patch 

hierarchy. The light transport is depicted by the colour shading at the ends of the link. 

Finally, Figure 3.2(d) shows the final radiositised and rendered scene.

3.3 Patch Refinement

One of the integral components of the hierarchical radiosity algorithm is patch 

refinement. The patch refinement process between two patches is guided by an oracle 

function that determines whether the accuracy of the refinement criterion between the 

two patches has been met. Depending upon the result returned by the refinement 

oracle, two patches may be considered accurate enough that refinement is not 

necessary, or, one or both patches may require further refinement by sub-division.

The two most typical refinement oracles are the F-only and BF oracles that were used 

by Hanrahan et a l [39]. The F-only refinement oracle is based entirely on the form 

factor between two patches. Thus sub-division is based entirely upon the geometry 

between two patches. The BF refinement oracle is a brightness weighted estimate for 

patch sub-division that uses the product between the form factor and the radiosity shot 

between two patches. Both types of refinement produce different final meshes as 

shown in Figure 3.3.
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(a) (b)

Figure 3.3 Patch subdivision using (a) F only refinement and (b) BF refinement.

The refinement oracles that were originally used by Hanrahan et al. [39], represent 

only one type o f refinement method. Stamminger et al. [80] published a comparison 

o f three different types o f hierarchical radiosity ‘refiners’:

• form factor based;

• bounding;

• sampling;

Form factor based refinement uses the form factor calculations themselves (as used by 

Hanrahan et al. [39]) as an approximation o f the overall error, to drive the refinement 

process. Stamminger et al. [80] reported that form factor based refinement methods
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are by far the easiest of the three methods to implement. However, the refinement 

process is only as accurate as the form factor approximations used. Thus artefacts will 

manifest themselves where the form factor approximations lead to inaccurate values, 

as will be shown later in this section.

Stamminger et a l [79] presented the bounding based refinement method, which 

computed the bounds on the light transport between two arbitrary objects. However, 

Stamminger et a l [80] state that the bounds from this method are conservative and 

tend to be too pessimistic, but the distance between the bounds can be used to guide 

the refinement process.

The main advantages of this refinement method are:

• It can be applied to any arbitrary type of object.

• It does not suffer from sampling artefacts.

The disadvantages are:

• It is quite expensive to compute.

• Visibility calculations are more difficult to compute and are less accurate.

The final refinement method is the sampling refinement method. This method was 

used by Gibson et a l [73] to compute the form factor between a point and a finite area. 

This method for calculating form factors is similar to the raycasting method by 

Wallace et a l [33]. It was found that sampling based refinement methods are quite 

versatile and can inherently handle partial occlusion between polygons.

The conclusion by Stamminger et a l [80] for the outcomes of the comparisons 

between the three types of hierarchical radiosity refinement methods is quite 

surprising. The results of their experimental error measurements [80] showed that 

there was no great difference in error and thus accuracy, between the three methods. 

Willmott [90] notes that most of the difference in accuracy between the methods 

comes from the accuracy of visibility calculation, and the robustness and simplicity of 

the implementation methods themselves.
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Impressive results can be obtained from hierarchical radiosity, using form factor based 

refinement. However, due to the approximations used for form factor calculation, it is 

possible for the refinement process to produce erroneous results. By using sampling 

based refinement techniques, a viable hybrid ‘form factor-sampling’ solution can be 

created that maintains the simplicity and robustness of the form factor based 

refinement method.

This section proceeds with the form factor based method of refinement as first 

introduced by Hanrahan et a l [39], followed by a simple solution for overcoming the 

accuracy problems produced by approximate form factor calculations.

At the heart of the hierarchical radiosity algorithm is the construction of the 

hierarchical form factor matrix and the multi-resolution patch-element hierarchy. 

Hanrahan et a l [39] developed a recursive refinement procedure that decomposed two 

input polygons into a hierarchy of patches and elements, and built simultaneously a 

hierarchical representation of the form factor matrix.

During this process, the interactions between two adjacent patches are considered. 

Using an oracle function, if the interaction between the two patches is considered to be 

accurate enough, then a link is created between the two patches. If, on the other hand, 

the error estimate from the oracle function is too large, then the larger patch is 

subdivided.

The most common strategy for sub-dividing polygons is to use quad-tree subdivision. 

Quad-tree subdivision subdivides a polygon by bisecting each of the original polygon 

sides at the midpoint, to produce four smaller polygons of equal area. This is shown in 

Figure 3.4.
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Figure 3.4 Quad-tree subdivision for (a) a quadrilateral and (b) a triangle, 

(c) Tree structure representation.

Triangulated 
Floor Surface

Floor surface

f

Root Level o f  
Patch 

Hierarchy
<

V

1st Level o f  
Patch 

Hierarchy

f

2nd Level o f  
Patch 

Hierarchy

Figure 3.5 An illustration showing the construction of patch hierarchy for the floor

surface in Figure 3.2.
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Each of the four subdivided polygons becomes a child polygon of the original parent 

polygon. In turn, each child polygon can become a parent. As both parent and 

children polygons are refined, a hierarchical quad-tree structure of polygons is built. 

An illustration of this process for the scene in Figure 3.2 is shown in Figure 3.5. Thus 

to build the entire hierarchical structure of the whole scene, each polygon must be 

refined against every other polygon.

The following pseudo-code shows Hanrahan et a l’s [39] original patch refinement 

procedure:

PROCEDURE Refine(patch p, patch q) 
Compute the form factors Fpq and Fqp 
IF (Fpq < Fe) AND (F^ < Fe) THEN 

Link(p, q)
ELSE

IF Fpq > Fqp THEN 
IF Aq > Ag THEN

subdivide patch q 
refine all child patches of q 

ELSE
Link(p, q)

ENDIF
ELSE

IF  Ap > Ag THEN
subdivide patch p 
refine all child patches of p 

ELSE
Link(p, q)

ENDIF
ENDIF

ENDIF
ENDPROCEDURE

Fg is a predetermined threshold value that determines when a form factor estimate is 

accurate enough. Ae is a predetermined threshold value that determines the minimum 

area a patch can have. This prevents infinite, recursive patch subdivision of the above 

refinement procedure.

During patch refinement, care must be taken when computing form factors. 

Unfortunately errors in form factor calculation do not always manifest themselves 

directly in the radiosity solution. There is a particular situation where polygon 

geometry can lead to erroneous form factor calculation and hence incorrect patch 

refinement. Figure 3.6 shows how the placement of the light source within a scene, 

can cause incorrect patch sub-division.
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Figure 3.6 A simple scene showing how the input scene geometry can lead to erroneous 

form factor calculation and hence incorrect patch sub-division, (a) wireframe view 

(b) flat shaded view (c) smooth shaded view.

The wireframe view in Figure 3.6(a) shows that there are a number o f polygons on the 

top half o f the back wall that appear not to have been subdivided correctly. O f course, 

it may be that this is a correct solution, however, the rendered image in Figure 3.6(b) 

shows that this is not the case. Occasionally, applying linear interpolation may solve 

the problem, but it can be seen in Figure 3.6(c) that there is clearly an error during 

form factor calculation (including visibility computation) and/or patch refinement.
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The actual cause o f the problem in Figure 3.6 is due to the way the form factors are 

calculated between a differential area polygon and a finite area polygon. The two most 

common ways for solving form factors are to use the contour integration approach that 

was used by N ishitae/# /. [18] (as expressed in Equation 2.24), or to use the form 

factor approximation between a differential area and a finite area disk [10][12]. Figure 

3.7 shows what has happened.

Polygon i

Polygon j

(a)

(b)

Plane containing

(C)

polygon i.

(d) (e)

Figure 3.7 (a) A selected pair of erroneous patches from Figure 3.6.

(b) Form factor calculation using the contour integration approach, (c) Form factor 

calculation between a differential area and a finite disk, (d) A view of (b) perpendicular 

to polygon i. (e) A view of (c) perpendicular to polygon i.

Considering the two shaded polygons i and j  in Figure 3.7(a), Figure 3.7(b) shows 

diagrammatically, the process o f computing the form factor shown in Equation 2.24, 

and Figure 3.7(c) the computation o f the form factor shown in Equation 2.34.

From Figure 3.7(b), it can be seen that the vector r0 lies behind the plane containing 

polygon i and the vector r/ lies in front o f this plane. For clarity, Figure 3.7(d) shows 

Figure 3.7(b) from a view point that is perpendicular to plane containing polygon i.
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Form factor calculations between two polygons are only valid when they face each 

other, thus any calculations involving backfaces, have the undesirable effect of 

changing the sign of the calculation. Since form factors always obey 

0 < FormFactor < 1, a negative form factor is invalid and is usually set to zero, if 

detected.

In the case of Figure 3.6 and hence Figure 3.7(b) (i.e. using Equation 2.24 for form 

factor calculation), two out of three vertices that belong to polygon j , lie completely 

behind the plane of polygon i. In this particular case, it is also very unfortunate that 

the plane constructed by the origin of polygon i and the vertices V; and V2 on polygon j ,  

contributes a significantly large delta form factor such that the total form factor (i.e. 

after the summation) is negative. Hence if the refinement oracle function uses the 

form factor to determine patch sub-division, as is the case in Figure 3.6, even though it 

can be seen that the form factor is non-zero, due to the arrangement of the two 

polygons the form factor will be zero. Therefore the refinement oracle would indicate 

that no refinement should take place and hence the scene is left with an incorrect patch.

The same problem can occur if the differential area to circular disk (see 

Howell [10] [12]) approach to form factor calculation is used. This can be seen in 

Figure 3.7(c).

The cause of the problem here is that only the centres of the two polygons i and j  are 

considered when calculating form factors. Thus in the scenario shown in Figure 3.6, 

the vector between the centres of the two polygons i and j ,  lies behind the plane of 

polygon i. Again for clarity, Figure 3.7(e) shows Figure 3.7(c) from a view point that 

is perpendicular to the plane containing polygon i.

In the same way as the contour integration approach, the form factor value that is 

computed will also be negative and so invalid. As a result, this form factor value will 

cause the polygon refinement procedure to indicate that no refinement should take 

place and so produce the incorrectly shaded polygons shown in Figure 3.6.

To solve this problem, it is necessary to overcome the limitations imposed by the form 

factor approximations of Equation 2.24 and Equation 2.34. These approximations only
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work reliably when the differential area polygons and the finite area polygons either 

directly face, or face away from each other. Polygons that ‘partially face’ each other 

(i.e. either polygon straddles the plane of the other) as shown in Figure 3.7, will cause 

unreliable results depending upon the geometry of the finite area polygon.

Since the key cause of these approximations is effectively the ‘undersampling’ of the 

finite area polygon, the solution would be to ensure that the finite area polygon is 

adequately sampled. In particular the sampling should increase, the larger the finite 

area polygon is, with respect to the differential area.

To maintain the benefits gained by using the form factor approximation methods, 

increased sampling should only be applied when the differential area polygons and the 

finite area polygons ‘partially face’ each other. This situation can be detected if the 

form factor result is negative or in the case of the differential area to finite disk 

approach, if  cos# or cos# is less than zero.

There are a variety of sampling methods that can be applied. A simple uniform 

sampling method would be to subdivide the finite area polygon into a regular grid of 

delta areas. The total form factor would be the sum of all delta form factors that were 

positive. However, if  the finite area polygon is large, it maybe necessary to finely 

subdivide this polygon and thus generate many unnecessary, small sub-polygons, that 

actually are positioned behind the plane of the differential area polygon.

A proposal for a more efficient method would be to use a stochastic variation on the 

uniform sampling method, such as the raycasting method used by Wallace et a l [33] 

(see Section 2.5.5). A fixed number of rays could be cast from the centre of the 

differential area to the finite area, or a more dynamic approach could be taken by using 

a heuristic based upon the size of the finite area polygon and possibly the distance 

between the differential area polygon and finite area polygon, to scale the number of 

rays shot. However, care must be taken to ensure that there is an even distribution of 

sample points across the surface of the finite area polygon.
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The following C++ code shows the algorithm for incorporating the raycasting method 

to the form factor calculation between a differential area and a finite area disk.

double FormFactor(Patch *diff, Patch *fin) {
Vector R = Subtract(&fin->_centre, &diff->_centre); 
double RR = R.x*R.x + R.y*R.y + R.z*R.z;
R.normalise();
double cosl = Dot(&R, &diff->_normal); 
double cos2 = -Dot(&R, &fin->_normal); 
if (cosl >= 0.0 && cos2 >= 0.0)

return (fin->_area * cosl * cos2) / (M_PI * RR + fin->_area); 
return RaycastFF(diff, fin);

}
double RaycastFF(Patch* diff, Patch* fin) { 

const int numRays = 128; 
double ff = 0.0;
double area = fin->_area / (double)numRays;

for (int i=0; icnumRays; i++) {
Point A = diff->select(); // select a random point on diff
Point B = fin->select(); // select a random point on fin
Vector dir = Subtract(&B, & A ) ; 
double RR = Dot(&dir, &dir); 
dir.normalise();
double cosl = Dot(&dir, &diff->_normal); 
double cos2 = -Dot(&dir, &fin->_normal); 
if (cosl > 0.0 && cos2 > 0.0)

ff += cosl*cos2/(M_PI*RR + area);
}
ff *= area; 
return ff;

}

The R aycastFF function can be used independently to calculate the form factor 

between a differential area and a finite area disk.

Figure 3.8 shows the results of the scene in Figure 3.6, using the above, more reliable 

method for form factor calculation. Figure 3.8(a) shows the wireframe mesh generated 

by hierarchical patch refinement. It can be seen that only patches below the light 

source were significantly refined, leaving the patches on the wall above the light 

source at a relatively coarse level of refinement. Figure 3.8(b) shows the scene 

rendered with flat shading and Figure 3.8(c) shows the scene rendered with linear 

(smooth) shading.
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(c)

Figure 3.8 The simple scene from Figure 3.6 with correct patch subdivision, 

(a) wireframe view, (b) flat shaded view and (c) smooth shaded view.

3.4 Improving the Linking Time for Hierarchical Radiosity

It is the linking stage o f hierarchical radiosity that hinders the scalability o f this 

algorithm. There have been attempts to minimise the time complexity o f the linking 

stage. Holzschuch et al. [56] presented a lazy linking method whereby the whole 

initial linking procedure is avoided by deferring the creation o f a link until the 

interactions between patches are sufficiently important. Lischinski [62] used an
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ad hoc method of linking. In the initial linking stage, this method only allows 

non-primary light source surfaces whose form factor were below a preset threshold, to 

be linked.

The lazy linking method by Holzschuch et a l [56] has been used extensively by a 

number of authors (e.g. Sillion [56], Worrall [82], Hedley [83], Gibson [67][84], 

Willmott [90]) to reduce the lengthy initial linking stage of hierarchical radiosity.

The algorithm for Holzschuch et a l’s [56] lazy linking method (adapted from 

Gibson [67]) is as follows:

PROCEDURE LazyLink
FOR each pair of unclassified polygons p, q DO 

IF p and q face each other THEN
IF (Bp > eunk) OR (Bq > elink) THEN

Compute the form factor Fpq and Fqp
IF (BpFqp > Elink) OR (BqFpq > Eiink) THEN 

Link p and q 
Mark p, q as classified
Compute the visibility factor between p, q 
IF p, q is not totally occluded THEN 

Link p, q 
ENDIF 

ENDIF 
ENDIF 

ELSE
Mark p, q as classified 

ENDIF 
ENDFOR 

ENDPROCEDURE

Bp is the product between the reflectance and emittance of patch p  and Bq is the 

product between the reflectance and emittance of patch q.

eiink is the threshold used to establish top-level patch interactions. Only patches that 

are ‘bright enough’ i.e. greater than S]jnk, will be considered for linking. To prevent 

energy being lost due to a BF product less than e^k, the value for e^k should be less 

than Fe (or 8refine as it is labelled in Holzschuch et a l’s algorithm [56]). A suitable 

value for eiink is: 8]ink = Fe / 5 [56].

The main problem with hierarchical radiosity algorithms that use the ‘gather’ 

technique for solving the radiosity equation, is that all links created in the linking stage
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must be kept. Fortunately Stamminger et ah [85] describe a method for getting rid of 

links in hierarchical radiosity.

Stamminger et a l [85] realised that if the ‘shooting’ method as used in progressive 

refinement radiosity, is used to distribute energy to all other patches in the 

environment, the amount of unshot energy decreases exponentially. Thus, instead of 

propagating the full amount of radiosity after every iteration, only the exponentially 

decreasing amount of unshot power is transported. As a result, there is a decreased 

probability is reusing an existing link, which enables links that will not be used again 

to be deleted.

All links that are reused are held in a cache. This is because the cost of recomputing 

these links will result in a very noticeable performance hit. A suitable caching strategy 

is given by Stamminger [85].

3.5 Solving the Radiosity Equation

Solving the radiosity matrix for hierarchical radiosity is performed for every surface in 

the scene, by repeatedly gathering the radiosity across all links connected to each 

sub-patch in the surface’s multi-resolution patch hierarchy, until some convergence 

criterion is met.

For every patch in the patch hierarchy, this is accomplished by summing the product 

between the form factor, the diffuse colour and the average radiosity of every linked 

patch.

The following C++ code is an algorithm that shows the gather procedure for 

Hanrahan et aVs [39] original hierarchical radiosity method.
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void Gather(Patch* p) {
p->_Bg.setRGB(0.0, 0.0, 0.0); 
for (Link* l=p->_links; 1!=NULL; l=l->next) 

p ->_Bg += l->q->_Bs * 1->FF;

p->_Bg *= p->_surface->ref1(); 
p->_Bg.clamp();

if (p->_child[0] != NULL) {
Gather(p->_child[0]);
Gather(p->_child[1] ) ;
Gather(p->_child[2]);
Gather(p->_child[3] ) ;

}
}

Once all energy has been gathered onto a surface, it must be then distributed evenly 

throughout the multi-resolution patch hierarchy. This must be done because the 

linking between patches can be at any level within the patch hierarchy. Hence this will 

cause the gathering of energy to be scattered throughout the patch hierarchy [67]. By 

performing a bi-directional push-pull sweep of the patch hierarchy after every gather 

step, the energy distributed within the patch hierarchy will be kept in a consistent state.

During the push phase of the sweep, all the gathered radiosity is pushed down the 

patch hierarchy to the leaf nodes. The total amount of energy received by a patch is 

the sum of the energy it received directly, plus the sum of all the energy received by its 

parent patches.

In the pull phase of the sweep, the energy at the leaf nodes is pulled back up the patch 

hierarchy and each of the patches at the current level of the patch hierarchy is set to the 

area weighted average of its children’s radiosities [39].

The push-pull procedure is achieved by simply traversing recursively, the quadtree 

hierarchies of every patch. The push phase is achieved by recursively calling the 

children nodes until the leaf nodes are reached. Once at the leaf nodes, the pull phase 

will automatically execute, as the recursion process unwinds itself.

The algorithm for this procedure is best illustrated by the following code:
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Spectra PushPull(Patch* p, Spectra Bdown, double* error) {
Spectra Bup;
if (p->_child[0] == NULL)

Bup = p->_surface->emit() + p->_Bg + Bdown; 
else {

double iArea = 1.0/p->_area;
Bdown += p->_Bg;
Bup = PushPull(p->_child[0], Bdown, error) * p->_child[0]->_area;
Bup += PushPull(p->_child[1], Bdown, error) * p->_child[1]->_area;
Bup += PushPull(p->_child[2], Bdown, error) * p->_child[2]->_area;
Bup += PushPull(p->_child[3], Bdown, error) * p->_child[3]->_area;
Bup *= iArea;

}
Spectra e = p->_Bs - Bup;
*error += e.red*e.red + e.green*e.green + e.blue*e.blue;

p->_Bs = Bup; 
return Bup;

}

Thus to compute one iteration step, the following code would be:

double iterate(void) { 
double error = 0.0;
for (long i=0; i<_numPatches; i++) {

Gather(_patchList[i]);
PushPull(_patchList[i], Spectra(0.0, 0.0, 0.0), &error);

}
return sqrt(error);

}

It can be seen that the error estimate can be calculated after each push-pull step. Thus 

a total error estimate can be obtained by summing over all patches. Hence when the 

total error estimate falls within a specified tolerance, the radiosity solution has 

converged.

The benefits from performing the initial linking and patch refinement become apparent 

when solving the radiosity matrix (Equation 2.39). As with progressive refinement 

radiosity (see Section 2.7), the radiosity system can be solved by using either the 

gathering or shooting methods.

The gathering method requires Equation 2.18 to be solved for each patch in the 

environment. However during the refinement and patch linking process, every patch 

in the scene accumulates a set of links to all patches within the environment that 

interacted with it. This, in fact, represents the summation of Equation 2.18 except that 

it has been optimised to only include patches of significance. Also, as patches can
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interact between various levels in the multi-resolution patch hierarchy, this means 

many coefficients in the radiosity matrix will be represented by a single calculation. 

Hence the gathering procedure for hierarchical radiosity will be on average, far more 

efficient than for the progressive refinement radiosity method.

The shooting method can also be applied to hierarchical radiosity. As with 

Cohenetal's  [31] progressive refinement algorithm, all patches are sorted into a 

priority queue based upon the brightness of every patch [39]. Each patch is then taken 

off the queue and its radiosity is shot to all patches that were linked to it. Unlike 

traditional progressive refinement radiosity, the shooting procedure is far more 

efficient when applied to hierarchical radiosity, as energy is only shot to linked 

patches, rather than to every patch within the entire scene.

3.6 Multigridding

An improvement to the hierarchical radiosity refinement process is to incorporate a 

method that refines the patch hierarchy as the iteration proceeds. This is an idea 

similar to a numerical technique known as multigridding.

To begin with, the multigridding technique solves a finite difference equation at a 

coarse resolution, then at successively finer resolutions. The advantage of this is that 

the lower resolution solutions are relatively cheap to compute and in turn, these 

solutions provide a better starting point for the more expensive solutions at finer 

resolutions.

A similar technique can be applied to the hierarchical radiosity refinement procedure. 

Hanrahan et a l [39] modify the gather procedure to allow patches to re-refine 

themselves against all patches that were linked to them. Consequently, the refine 

procedure has to be extended to delete existing links before re-refinement, to prevent 

existing energy from contributing to the solution again.

The following code shows how the gather procedure would be modified to incorporate 

multigridding.
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void multigridGather(Patch* p, double eps) { 
Link* 1 = p->links, *L; 
while (1 != NULL) {

Patch* q = l->q;
L = 1;
1 = 1 - >next;
refinePatch(p, q, L, 0.0, eps);

}

p->Bg.setRGB(0.0, 0.0, 0.0); 
for (Link* l=p->links; l!=NULL; l=l->next) 

p->Bg += l->q->Bs * 1->FF * 1->vis;

p->Bg *= p->surface->ref1(); 
p->Bg.clamp();

if (p->child[0] != NULL) {
multigridGather(p->child[0], eps); 
multigridGather(p->child[1], eps); 
multigridGather(p->child[2], eps); 
multigridGather(p->child[3], eps);

}
}

The multigridding procedure is utilised by successively re-running the refinement 

process with smaller Fe values. Effectively the radiosity solution is recomputed until 

the current solution is deemed to be accurate enough.

After every re-refinement step, a fully converged radiosity solution is obtained. This 

leads to the problem of when to terminate the re-refinement process. It is possible to 

use perception metrics (e.g. Hedley [83], Gibson [84]) to determine if there are any 

perceptible differences between two consecutive solutions. However these methods 

are expensive to compute [83]. A simpler solution that is most frequently adopted, is 

to run the re-refinement process for a fixed number of iterations [90].

3.7 Clustered Hierarchical Radiosity

On further inspection of the hierarchical radiosity method, we find that the main 

drawback of traditional hierarchical radiosity is that object coherence is not taken into 

account during the linking stage.
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Although the hierarchical data structure in traditional hierarchical radiosity is a much 

more sophisticated extension of Cohen et a l’s. [22] two-level patch-element hierarchy, 

refinement is only performed on a per surface basis.

However, a typical scene is composed of many objects, of which each object will be 

represented by many surfaces that are mutually visible [59]. Therefore, not only do 

surfaces and elements interact with each other, but objects (i.e. groups of surfaces or 

elements) also interact with other elements, surfaces and objects. Thus, we must also 

consider objects as another level in the hierarchy. Unfortunately there is no 

mechanism in traditional hierarchal radiosity that will allow surfaces to be grouped 

together into larger entities.

With the development of the clustered hierarchical radiosity method, groups of 

surfaces or clusters can now be considered when calculating energy exchanges. This 

means that distant objects or objects that exchange very little energy into a scene can 

now be represented by a single energy interaction, saving many costly surface to 

surface calculations that would otherwise be required in the initial linking stage. 

Clustered hierarchical radiosity is the most significant advancement made to 

Hanrahan et a l’s [39] hierarchical radiosity algorithm.

Clustering is a pre-processing stage that sorts groups of surfaces into clusters, usually 

based upon how close each surface is to each other. Each cluster forms a small part in 

a general hierarchical data structure. There have been quite a few approaches to 

clustering surfaces. The most notable approaches to clustering have been made by 

Rushmeier et a l [49], Kok [50], Sillion [57][66] and Smits et a l [59].

Manual (non-automatic) Clustering Methods

Rushmeier et a l  [49] describe a non-automatic approach for clustering groups of small 

surfaces. In their method, an optically equivalent box approximates groups of small 

clusters of surfaces, such that the energy reflection distribution approximates the 

overall BRDF of the surfaces. This was achieved by using Monte Carlo sampling.
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Based upon the progressive multi-pass method for solving global illumination by 

Chen et a l [38], this method attempts to simplify the geometry of an environment for 

indirect illumination to accelerate global illumination calculations.

The progressive multi-pass method is a hybrid method that aims to combine the 

advantages of radiosity and ray-tracing. In particular, radiosity is used to generate a 

coarse, but view independent, global illumination solution, whilst ray-tracing 

techniques such as Monte Carlo Path Tracing techniques are used to generate high 

resolution, view dependent, final rendered images.

Thus, the aim of the Rushmeier et a l [49] method is to simplify the geometry of a 

scene, such that the O (^) time complexity of hierarchical radiosity is reduced. 

However, the radiosity solution that is computed for the simplified scene is only used 

to calculate weakly directional, indirect illumination.

This method has two important disadvantages.

• Cluster selection must be done manually, and in advance.

• This method does not maintain a hierarchy, which therefore means clusters 

cannot interact.

Kok [50] introduces a method that extends traditional radiosity by grouping together 

surfaces that are small and close together, to create ‘macro-patches’. The motivation 

for grouping these patches together is that individually, these patches are almost never 

selected to shoot energy into an environment. However, the total unshot energy from a 

number of these small, but closely packed surfaces, can be quite considerable.

There are two methods for calculating form factors, based on ray-tracing. The first 

method is by Wallace et a l  [33] and uses directed rays between a source patch and all 

other patches in a scene, to calculate the energy received by the source patch. The 

second method, as used by Malley [30] and Sillion et a l [32], is an undirected method 

that casts rays in a cosine distribution, from the source patch into the environment. 

Thus, Kok [50] presents two methods for grouping patches.
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Unfortunately the patch-grouping method presented by Kok [50] is non-automatic, but 

it is mentioned that the adaptive grouping of patches is possible.

Automatic Clustering Methods

Sillion [57] [66] proposed a clustering method that works by creating a hierarchical set 

of abstract volumetric entities that exchange energy. Each volume is represented as an 

isotropic scattering medium and is expressed by an extinction coefficient, which 

measures the rate of attenuation per unit length due to absorption and scattering.

The aim of isotropic clustering is to eliminate the 0(n2) initial linking time, that is 

present in traditional hierarchical radiosity [39]. Sillion uses a k-d tree to partition the 

environment into clusters of surfaces. A k-d tree is essentially identical to a BSP tree, 

except that the splitting planes are always axially aligned. However, other clustering 

methods such as octrees or hierarchical bounding boxes can be used in place of k-d 

trees [66].

Whichever clustering method is used, the entire scene is represented by a root cluster 

and the initial linking process simply consists of creating a self link, which is a single 

link from the root cluster to itself. Since a self link takes constant time to build, the 

O(n ) linking time is completely eliminated. Instead, linking is performed solely 

within the hierarchical refinement method, such that light transport is modelled 

between adjacent patches, patches and clusters, and adjacent clusters.

Smits et al. [59] presented a clustering algorithm that estimates the energy transfers 

between clusters, whilst maintaining reliable error bounds on each transfer. Two 

methods for bounding the energy transfer between adjacent clusters are presented [59]. 

The two methods are derived by systematically introducing approximations into the 

exact expression of energy transfer (see Equation 2.13).

The first method uses the maximum radiance value between pairs of surfaces in 

adjacent clusters, to bound the energy transfer between clusters. Thus, any cluster that
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has been linked according to this criterion has established an a-link. a-links are 

efficient to compute, requiring 0(n\ogn) time and space complexity.

The second method introduces a further approximation. A much cruder bound that 

only uses the distance between surfaces in both clusters, is placed on the energy 

transfer equation. Hence this bound requires no knowledge of the surfaces and so is 

very efficient to compute. /3-links only require 0(«) time and space complexity to 

compute. Thus any clusters that were linked using this bound, have established a 

/3-link.

The linking stage attempts to link clusters together via /3-links. If the link between a 

pair of clusters is considered not to be accurate enough, then a-linking is attempted. If 

a-linking is still insufficient, then the child clusters of the larger cluster are recursively 

refined against the smaller cluster. However, if neither of the clusters have children, 

then normal hierarchical patch refinement is performed on the surfaces of each cluster.

Thus, this method accelerates the traditional hierarchical radiosity algorithm by 

replacing the very expensive initial linking procedure with clustering. The results [59] 

show that the overall complexity of this clustered hierarchical radiosity algorithm is 

0(k\ogk + «), where k and n represent the number of initial surfaces and the number of 

patches created after refinement, respectively.

Hasenfratz et al. [87] have compiled an excellent analysis of clustering strategies for 

hierarchical radiosity. The following clustering strategies were studied:

• Proximity clustering.

• Overlapping k-d trees.

• Overlapping k-d trees with limited branching.

• Tight fitting octrees.

The most important goal for a good clustering algorithm is a method that faithfully 

models the light transfer between groups of objects. Unfortunately, there is currently 

no precise definition that can be computed a priori, which will specify the creation of 

clusters that will faithfully model light transfer. Instead, a set of heuristics have been
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devised by several researchers (e.g. Christensen et al. [61], Sillion ef al. [63], Gibson 

et al. [67]) to determine how surfaces are to be clustered.

Hasenfratz et a l [87] outline four required properties that will yield a satisfactory 

simulation of light transfer:

• A proportional representation of light transfer precision, with respect to the 

level of cluster refinement.

• The avoidance of overlapping clusters.

• The preservation of object group shapes.

• Clusters should maintain surfaces of similar sizes.

Results show that the time taken to cluster a scene using proximity clustering is much 

slower than the overlapping k-d tree or tight fitting octree methods, and can be a 

problem for scenes that contain a very large number of surfaces. This is primarily due 

to the more complex bottom-up algorithm required to group surfaces together. This is 

in contrast to the k-d tree and octree methods, which use simple but very fast, 

top-down recursive subdivision methods.

The proximity clustering technique produces the most predictable behaviour and 

generates the best shadow quality results, which is due to the more tightly fitting 

clusters that are generated. However, the overlapping k-d tree with limited branching 

method appears to offer the best compromise in quality and speed.

An important observation gained from the analysis by Hasenfratz et al. [87] is that 

clustering generally generates reliable results, but exhibits less well behaved results for 

scenes that contain large numbers of small surfaces.

Regular Grid Data Structures

The most popular regular data structures are the uniform grid and the octree, which 

were commonly used in the past to accelerate ray-tracing. These two data structures
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are simple to construct and offer very efficient access to the voxels contained within 

the data structure.

The k-d tree data structure was used in the first clustering algorithm by 

Sillion [57] [66], for hierarchical radiosity. However, this data structure caused 

problems with surfaces that straddle the splitting planes of the k-d tree.

The inability of these data structures to adequately handle surfaces that straddle voxel 

boundaries, is a major drawback. Sillion [57] proposed that these surfaces should be 

placed at the lowest level in the cluster hierarchy, which entirely contains them. 

However, Hasenfratz [87] reports that for many models, this can have very negative 

consequences since a large number of objects can end up at very high levels in the 

hierarchy. This can adversely affect computation speed.

Christensen et a l [61] modify the octree method such that bounding box of the child 

octants can change. This solves the problem of surfaces that straddle voxel 

boundaries, but has the drawback of introducing overlapping clusters.

Despite the problems outlined above, regular grid data structures offer extremely 

reliable cluster creation and are very quick to build. These data structures have been 

used successfully by a number of authors (e.g. Sillion [57][66], Christensen et a l [61], 

Hedley [83], Willmott [90]) to construct clusters for clustered hierarchical radiosity.

Hierarchical Bounding Volumes

Hierarchical bounding volumes aim to provide tight fitting bounding shapes around 

groups of spatially adjacent surfaces, such that the entire scene is organised into 

distinct objects. In order to simplify bounding volume calculations, axially aligned 

boxes are usually used although any simple geometric shape could be used, for 

example, bounding spheres.

Constructing hierarchical bounding volumes is complex. Many bounding box 

generation techniques are bottom-up techniques that are based on Goldsmith and
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Salmons’ [26] automatic bounding box creation method. In order to construct the 

bounding boxes using this method [26], it is necessary to estimate the cost of adding a 

new object and thus the evaluation cost of the whole tree. It is therefore necessary to 

use a cost function based on the intended use of the tree.

In Goldsmith and Salmons’ algorithm [26] the heuristics was tailored towards 

producing efficient ray-bounding box intersections. However, Gibson [73] reported 

that this method will generally group surfaces together, that are well suited for use in 

hierarchical radiosity clustering algorithms. A very useful explanation of Goldsmith 

and Salmon’s algorithm [26] is given by Haines [29]. This document [29] also 

includes changes to the original algorithm that provides addition efficiency for ray 

tracing.

Muller et al. [88] present an automatic bounding box creation method that stores 

hierarchical bounding boxes in a binary tree. Thus, this method can efficiently cluster 

a scene in 0(«log«) time.

There has been much research into the automatic construction of hierarchical bounding 

volumes. Although these data structures can be complex to build, they do create good 

quality, tight-fitting bounding volumes that are suitable for clustered hierarchical 

radiosity.

3.8 Discontinuity Meshing

Shadows are extremely important features in a scene. They provide important visual 

cues, hence if  they are missing or misrepresented in a scene, they can cause glaring 

visual anomalies. Discontinuity meshing is a technique that computes the shadows 

cast by objects. When casting shadows due to area light sources, discontinuity 

meshing provides the most complete description of a shadow, as this technique is able 

to locate discontinuities within the penumbra. Discontinuity meshing is a purely 

geometric approach to computing shadows that does not make use of any object or 

image space coherence.
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Discontinuity meshing for radiosity systems was introduced independently by 

Heckbert [36] and Lischinski et a l [41]. Both Heckbert and Lischinski et a l initially 

focused on a 2D ‘flatland’ world, before extending the work to three 

dimensions [44] [45],

The main aim of discontinuity meshing is to generate high quality meshes that 

accurately encode the discontinuities in the radiosity function across a surface, before a 

radiosity solution is computed for the mesh. This is because the quality of a rendered 

image is heavily dependent on the size and shape of the initial mesh [45]. Otherwise, 

artefacts such as light leaks and shadow leaks will manifest themselves in the final 

solution. Discontinuity meshing avoids these artefacts by explicitly calculating all 

shadows (umbra and penumbra) in a scene.

Generating a discontinuity mesh requires a wedge tracing technique for casting 

shadow discontinuities from all light sources, through all occluding surfaces, onto the 

surrounding geometry. For a polygonal light sources and occluding surfaces, this 

accomplished by:

• Casting all wedges constructed from each vertex of a light source, through all edges 

of an occluding surface (Vertex-Edge events or VE events).

• Casting all wedges constructed from each edge of a light source, through each 

vertex of an occluding surface (Edge-Vertex events or EV events).

Each wedge tracing operation produces a discontinuity line, where a discontinuity 

mesh is composed of a complete set of discontinuity lines. It must be noted that this 

procedure will not always produce a complete discontinuity mesh. There is a 

particular visual event known as the edge-edge-edge (EEE) event, which must be 

included to produce a complete discontinuity mesh.

EEE events occur when three edges interact together in the environment. These events 

produce a ‘ruled quadratic’ discontinuity surface. There are two main types of EEE 

events: EeEE and EEE events. EeEE are similar to EEE except that one edge belongs 

to an edge of a light source. Unfortunately, EEE events are not easy to find and 

produce quadratic discontinuity surfaces, which in turn are awkward to triangulate.
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Computing a complete discontinuity mesh is extremely expensive. For this reason, 

most discontinuity meshing algorithms omit EEE visual events. According to 

Worrall [82], EEE events have very little perceptible impact on the final solution, so 

can largely be ignored. Hedley [83] describes the three types of discontinuity meshes 

that can be created:

• A complete discontinuity mesh.

• A full discontinuity mesh.

• An extremal discontinuity mesh.

Complete discontinuity meshes contain discontinuities that represent all visual events 

(EV, VE and EEE events) involving light sources. These meshes have been used in 

‘back-projection’ algorithms by Drettakis et a l [58]. Back-projections can be used to 

quickly compute exact radiance values from light sources, but Hedley [83] notes that it 

is not obvious whether the computational costs associated with calculating a complete 

discontinuity mesh is justified, because back-projections only accelerate visibility 

computations from primary light sources.

A full discontinuity mesh is a complete discontinuity mesh that excludes all visual 

events that require a search of the scene polygons [83]. In other words, only visual 

events that involve the vertices and edges of light sources are considered. EEE events 

are not computed for these meshes.

An extremal discontinuity mesh is a mesh that only contains discontinuity lines that 

form the minimal and maximal shadow boundaries. The minimal boundary is defined 

by the boundary that separates the umbra and penumbra, and the maximal boundary is 

defined by the maximum penumbra boundary.

It is important to note that Drettakis [53] states that the maximal shadow boundary is 

comprised totally of EVE events (EV and VE events), but the minimal shadow 

boundary can be comprised of both EVE and EEE events. Thus a full discontinuity 

mesh and an extremal discontinuity mesh may not always define the minimal boundary 

correctly.
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A very useful summary of discontinuity meshing was given by Slater et a l [92]. This 

book [92] also contains information on other methods for generating shadows (e.g. 

Blinn [28]) and describes the most popular data structures on handling shadows, most 

notably BSP trees, the ‘shadow volumes’ method by Crow [9] and DM-trees 

(discontinuity meshing trees).

A DM-tree combines a 2D BSP tree and a ‘winged edge data structure’ 

(Baumgart [6] [7]) to enable polygons to be combined by its discontinuity edges. The 

winged edge data structure maintains efficient adjacency information.

The shadow volumes method by Crow [9] has since been revised by Bergeron [24] and 

is still one of the most popular methods for shadow computation [92].

3.9 Extremal Discontinuity Meshing

Discontinuity meshing is currently the only algorithm that can locate discontinuities 

within a shadow, in particular, within the shadow’s penumbra. Thus together with 

radiosity, the most complete representation of the radiance function across a surface 

can be obtained.

However, computing a full discontinuity mesh is computationally very expensive. It 

was found by Hedley [83] that the radiosity gradients within the penumbra of a 

shadow, are very subtle. Using perception metrics, Hedley [83] found that the 

penumbral boundary could be approximated by linear interpolation, without any 

perceptible difference. Thus by only casting an extremal discontinuity mesh, the total 

number of discontinuity lines cast can be greatly reduced.

Nishita and Nakamae [13] were the first to compute the exact extremal shadow 

boundaries. Campbell and Fussell [40] have since optimised this algorithm and have 

incorporated shadow volume BSP trees and object space acceleration techniques, for 

efficient shadow boundary computation.
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Campbell [42] gave an algorithm for computing extremal discontinuity lines. The 

algorithm for computing extremal discontinuity lines is:

FOR every edge belonging to an occluder DO 
FOR every light source vertex DO

Construct the wedge plane formed by the current light source vertex 
AND the current occluder edge 

Compute the angle between the normal of the wedge plane 
AND the normal of the occluder 

ENDFOR
The plane with the smallest angle will form a maximal extremal boundary 
The plane with the largest angle will form a minimal extremal boundary 

ENDFOR

Figure 3.9 shows an illustration of the wedge tracing process for casting discontinuity 

lines. The two highlighted wedges show an illustration o f the wedges that will form 

the maximal and minimal extremal discontinuity lines.
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Figure 3.9 Computing extremal discontinuity lines.
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From the previous algorithm, the main task for computing discontinuity lines is the 

calculation of the angle between the plane of the wedge formed, and the plane of the 

occluding surface.

Figure 3.10(a) shows a diagram of a single wedge, formed between one light source 

vertex and one edge belonging to an occluding polygon.

'occluder

wedge

Occluder
Wedge
Plane

Light
source

(a)

occluder

^  wedge

(b)

Figure 3.10 Calculating the angle between a wedge and an occluder.

By including the normals of the plane of the wedge and the plane of the occluding 

polygon in this diagram, we can see that the angle 0 between the two planes is simply 

the angle between the normals (see Figure 3.10(b)).

However, it is not necessary to calculate the angle 6 explicitly. Since the goal is to 

find out which wedges form smallest and largest angles between the light source 

vertices and the occluding polygon edges, this can be accomplished very efficiently by 

computing the dot product between the normals of the two planes.

Hence, if both normal vectors nwedge and noccluder are unit vectors, then cos6 is simply:

cos# = nwedge • noccluder
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Thus, this expression for calculating cos6 can be substituted in place of calculating 6 in 

the above algorithm for computing an extremal discontinuity lines.

The Scope of Discontinuity Meshing

In general, radiosity rendering methods only consider static scenes. This is mainly due 

to the rigidity of the meshes that are required to compute a radiosity solution for a 

scene. A moving object would require parts of the mesh to change dynamically and 

hence the re-computation of the radiosity solution for the sections of the scene that 

have changed. The main complexity of dynamic scenes is the problem of computing 

the dynamic shadowing for moving objects, due to area light sources.

Unfortunately, there has been very little progress made towards the goal of dynamic 

shadowing. This topic is extremely complex and only a few attempts at solving this 

problem have been made. The most significant research into the area of dynamic 

shadowing has been carried out by Worrall et a l [68] [82] and Loscos and 

Drettakis [78]. Chrysanthou [71] also proposed a method of updating shadow 

discontinuities due to area light sources, which use dynamic BSP trees. Unfortunately 

this method requires frequent insertion and deletion of items in the BSP trees. Due to 

the nature of BSP trees, it is inevitable that these items will become fragmented and 

thus will increase the total size of the BSP trees. Chrysanthou [71] acknowledges the 

problem of fragmentation, but Worrall [82] concludes that BSP trees are unsuitable for 

dynamic shadowing.

Extremal Meshing for Dynamic Discontinuity Meshing

The main problem with dynamic discontinuity meshing is the heavy cost involved in 

recomputing the polygon meshes that belong to every surface in a scene, every time a 

surface is moved.

Every mesh has been constructed such that the radiosity across all surfaces is 

accurately modelled. Hence any moving objects will change the light transport within 

a scene and thus the shadows cast by occluding surfaces will change accordingly.
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Since shadows interact with the surrounding geometry, it is a very costly procedure to 

locate and update any such changes.

There are two approaches to dynamic shadowing and dynamic discontinuity 

meshing [78] [82]. Both methods are based upon the original method by 

Worrall et a l [68]. The approach by Worrall [82] is a ‘mesh-based’ approach, whereas 

Loscos et a l [78] used a ‘wedge-based’ approach.

The principle differences between the two approaches, as summarised by Worrall [82], 

are:

Data: The wedge-based method requires all wedges in the scene to be explicitly

stored; the mesh-based method does not.

Time: The mesh-based method only re-casts wedges when a migration is either

starting or ending; the wedge-based method re-casts them every frame.

It can be seen that Worrall’s [82] mesh-based approach for dynamic discontinuity 

meshing is far more scalable than the wedge-based approach by Loscos et a l [78].

Regardless of whichever approach is taken, a significant amount of work has to be 

done when updating the polygon meshes, after the movement of surfaces.

The Benefits of Extremal Discontinuity Meshing

Neither Worrall [68] [82] nor Loscos et a l [78] make use of extremal discontinuity 

meshing. Instead, Worrall [82] generates a fu ll discontinuity mesh (i.e. no EEE events) 

and Loscos et a l [78] generates a complete discontinuity mesh.

Casting a discontinuity mesh is expensive [83], thus reducing the number of 

discontinuity lines that need to be generated will significantly reduce the time taken for 

discontinuity meshing. Also, reducing the number of discontinuity lines cast will also 

reduce size of the mesh generated after a constrained Delaunay triangulation.
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Figure 3.11 presents an illustration showing the differences between an extremal 

discontinuity mesh and a full discontinuity mesh. The resulting polygon meshes are 

also displayed, to show how discontinuity meshes are integrated into a scene.

Figure 3.11(a) shows the extremal discontinuity mesh generated by a rectangular area 

light source and a rectangular occluding surface. Once the discontinuity lines have 

been cast, they need to be incorporated into the surfaces that they have interacted with. 

For the scene shown in Figure 3.11(a), all discontinuity lines interact with a single 

floor surface and thus after a constrained Delaunay triangulation, Figure 3.11(b) shows 

the final polygon mesh.

Figure 3.11(c) shows a full discontinuity mesh generated by the same scene geometry 

as shown in Figure 3.11(a). The definition of a ‘full discontinuity mesh’ as stated by 

Hedley [83], is a discontinuity mesh that contains discontinuity lines generated by 

vertex-edge and edge-vertex visual events.

It can be clearly seen in Figure 3.11(c) that a full discontinuity mesh is more complex 

than an extremal mesh. As a result, the triangulated mesh generated from a full 

discontinuity mesh (Figure 3.11(d)) is significantly larger than the mesh produced by 

an extremal discontinuity mesh (Figure 3.11(b)).
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82



Type of 

Discontinuity Mesh

Number of discontinuity 

lines generated

Number of triangles in 

triangulated mesh 

584Extremal 12

Full 32 1528

Table 3.1 A comparison between extremal and full discontinuity meshing.

Table 3.1 shows a summary of the number of discontinuity lines and number of 

triangles generated by the scenes in Figure 3.11.

From the results shown in Table 3.1, it can be seen that dynamic discontinuity meshing 

can benefit greatly from extremal discontinuity meshing.

Research performed by Hedley [83] shows that there is very little perceptible 

difference between the results obtained by extremal discontinuity meshing or by full 

discontinuity meshing. Thus extremal discontinuity meshing should always be used in 

preference to full discontinuity meshing.

Further Experimental Justification for the Use of Extremal Meshing

Since Worrall [68] [82] and Loscos et al [78] ignored the use of extremal discontinuity 

meshes, we performed a simple experiment in using extremal discontinuity meshes for 

modelling a rotating object. We show that extremal meshes are sufficient to represent 

all shadow subtleties in this experiment.

Using a single, stationary rectangular area light source, we rotate a planar square 

occluder to show the progression of both umbra and penumbra of the shadow by using 

extremal meshing. A full mesh comparison is also given.
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(a) (b)

Figure 3.12 The images shown in column (a) show the results from a full discontinuity 

mesh and column (b) the results from an extremal discontinuity mesh.

Figure 3.12 shows two rendered snapshots o f the experiment, with the occluder rotated 

at 0° and 45° respectively. The full discontinuity meshed solution is shown in the left 

column and the extremal discontinuity meshed solution, in the right column.

These images show that there are minimal perceptible differences in the quality o f the 

shadows generated by extremal meshing. Even though there are radiosity gradients 

within the penumbra o f the shadow, these are very subtle and can be approximated by 

linear shading. Thus, when considering the discontinuity mesh o f dynamic objects,
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extremal meshing will enable significant savings in shadow computation with no loss 

in quality.

The following table (Table 3.2) shows the amount of work done by full discontinuity 

meshing and extremal meshing for rotating the occluding polygon in Figure 3.12, 360° 

in 15° increments.

Full discontinuity 

meshing

Extremal discontinuity 

meshing

Total no. of discontinuity lines cast 768 288

Total no. of triangles generated 36672 14016

Table 3.2 A comparison of the total work done by rotating the occluding polygon shown 

in Figure 3.12 for full and extremal discontinuity meshing.

3.10Summary

In this chapter, it has been established that hierarchical radiosity [39] is the most 

advanced method for solving the radiosity equation. However, hierarchical radiosity 

has a running time complexity of OQ<? + n), where k is the number of initial surfaces 

and n is the total number of patches generated by hierarchical refinement. This means 

that hierarchical radiosity can completely solve the radiosity matrix (Equation 2.39) in 

linear time -  a significant improvement on the 0(n  ) running time complexity of 

previous radiosity methods, for example progressive refinement radiosity [31].

The only downside to the hierarchical radiosity method, is the 0(k2) initial linking 

time. This problem has since been optimised by incorporating various clustering 

techniques (e.g. Sillion [57][66], Smits et al. [59]) into the hierarchical radiosity 

algorithm. Hence the improved running time complexity for a clustered hierarchical 

radiosity algorithm is now 0(k\ogk + n).
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However, even the improved 0(k\ogk + n) time complexity is still insufficient for a 

large k. Since very little more can be done to improve upon the clustered hierarchical 

radiosity algorithm, optimisation must be found elsewhere.

The most logical place to look for optimisation is within the input surfaces. Due to the 

general nature of global illumination within the scene, there will often be localised 

portions of illumination within a scene. Hence careful optimisation of a scene, can 

lead to a smaller, but essential set of input surfaces that need to be considered by a 

radiosity algorithm. Thus in the following chapter, we propose and implement a 

technique that utilises the illumination information within a scene to localise groups of 

surfaces, which can be gathered together into clusters. These clusters of surfaces can 

then be rendered independently.

We have also demonstrated in this chapter the benefits of extremal discontinuity 

meshing. The simple example presented in Figure 3.11 can be extended to complex 

scenes without a loss in perceptible detail in the rendered scene. This is consistent 

with the results by Hedley [83] and is proposed as a simple extension to the work by 

Worrall [82].

To demonstrate the effectiveness of extremal discontinuity meshing, the simple 

example shown in Figure 3.11 was extended to allow the occluder to rotate. Dynamic 

scenes are non-trivial problems to solve. By allowing the occluding polygon to rotate, 

the entire discontinuity mesh and radiosity solution must be recomputed. Recasting 

the full discontinuity mesh for Figure 3.11 would require 32 discontinuity lines to be 

wedge traced and the creation of 1528 triangles after triangulation, and represents a 

considerable amount of work.

In contrast, casting an extremal discontinuity mesh would only require 12 discontinuity 

lines to be wedge traced and only 584 triangles to the created after triangulation. As 

shown in Figure 3.12, the rendered images for extremal discontinuity meshing are 

practically indistinguishable from the fully discontinuity meshed solutions. Therefore, 

we will restrict attention to all further work on discontinuity meshing to extremal 

meshing.
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In the following chapter, we develop a new clustering strategy for hierarchical 

radiosity that utilises extremal meshing, to enable efficient computation of large 

complex scenes.
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Chapter 4 An Improved Clustering Strategy for 

Hierarchical Radiosity

4.1 Introduction

Radiosity is a powerful tool for rendering photo-realistic scenes. Once the radiosity of 

a scene has been calculated, a ‘virtual reality’ walkthrough of the scene is immediately 

available. However, this comes at a costly price as calculating the radiosity of a scene 

is anything but trivial.

With traditional radiosity techniques, rendering a scene meant solving the often very 

large radiosity matrix (Equation 2.39). As mentioned in the previous chapter, the 

sub-structuring method introduced by Cohen et a l [22] can be used to reduce the 

computation time, but even this method becomes impractical when solving scenes that 

contain a moderately large number of surfaces.

The hierarchical radiosity technique described in Chapter 3 has since superseded 

Cohen’s sub-structuring method. Currently, larger scenes can now be rendered in a 

practical amount of time. However, hierarchical radiosity does have a very costly 

O(A )̂ initial linking stage, where k is the number of initial surfaces. As a result, for 

large to very large scenes this method will spend most of its time in the linking stage.

To overcome this problem, a clustering technique is applied to the input scene such 

that spatially adjacent surfaces are grouped together into clusters. A cluster is simply a 

bounding volume that encapsulates a number of nearby surfaces. Clustering in this 

fashion assumes that spatially adjacent surfaces have similar properties, such that the 

properties of the cluster realistically represent all the surfaces contained within the 

volume. In general scenes, groups of surfaces naturally cluster into distinct objects, so 

the clustering technique is normally very effective.



Clustering is an invaluable technique for optimising radiosity computation. Without 

clustering, the hierarchical radiosity algorithm would be too expensive to solve large 

complex scenes. However most clustering techniques do not make “intelligent” use of 

the scene geometry, particularly in the surrounding geometry. Clustering algorithms 

simply group together surfaces that fit within the dimensions of their data structures.

For example, the octree data structure is one of the most popular methods used in 

clustering. It is very easy to visualise and computationally very quick to construct - 

the 0(n\ogn) construction time is very desirable. However this method is not without 

its problems [87]. The rules for refining the octree structure are quite rigid, only 

allowing eight fixed size, axially aligned children to be created. During octree 

construction, we quite often find that surfaces straddle adjacent child octants and hence 

a decision on whether the surface should be split or replicated, must be made. Neither 

of these options are really acceptable. To circumvent these problems, Christensen et 

al. [61] modified the octree such that variable sized octants are allowed, but 

unfortunately this introduces the problem of overlapping octants. Other methods 

involve using heuristics to determine where to place these surfaces within the data 

structure [63].

An alternative method for clustering scenes is to use hierarchical bounding volumes. 

This data structure is usually constructed in a bottom-up fashion, and was used by 

Smits et al. [59] in order to avoid the problem of eliminating surface duplication, that 

was associated with octrees and other rigid data structures. It is also possible to 

generate hierarchical bounding volumes using a multi-resolution hierarchy of regular 

grids [63]. This is also a bottom-up technique and has been used successfully by 

Sillion [63] and Gibson et al. [73].

Both these methods of clustering significantly improve the scalability of traditional 

hierarchical radiosity, but it must be noted there are hidden costs within the 

0(&logk+ri) running time complexity of the clustered hierarchical radiosity algorithm. 

Within the patch/cluster refinement and linking phase there are two costly procedures: 

form factor calculation and visibility computation. Although we can approximate 

unoccluded form factor calculations by using Siegel and Howell’s analytic form factor
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for a finite differential area and a finite disk [10], we are still left with a very costly 

visibility computation.

Visibility computation can potentially take 0(n2) time to compute, but acceleration 

techniques can reduce this to 0(«log«) for tree base subdivision methods, or even O(n) 

for uniform grid methods. Thus we must include these costs within the linking phase, 

which means that as the number of input surfaces increases, these costs will become 

more and more noticeable. Willmott [90] calculated that the time complexity of 

finite-element radiosity methods including visibility testing, is potentially 

0((k\ogfe)2+n\ogn) where k is the number of initial surfaces in the scene and n is the 

total number of patches generated after hierarchical refinement.

Hence we find that the overall scalability of clustered hierarchical radiosity is 

inevitably bounded by the number of input surfaces. Therefore, the only way to 

improve scalability is to reduce the number of surfaces that have to be solved by the 

hierarchical radiosity algorithm. Currently, this can only be achieved by clustered 

hierarchical radiosity methods [56].

Improving the Performance of Hierarchical Radiosity

In order to reduce the time complexity of the hierarchical radiosity algorithm to below 

the existing time complexity of current clustered hierarchical radiosity algorithms, a 

new strategy for processing the input scene is required. Since we cannot change the 

time complexity with which the hierarchical radiosity algorithm solves n final solution 

elements, the only way to improve the algorithm is to reduce the amount of work done 

by the hierarchical radiosity solver. This invariably means the number of input 

polygons that are passed to the hierarchical radiosity solver has to be reduced, but at 

the same time, this reduction must have minimal affect on the final solution.

For scenes of moderate size, existing clustered hierarchical radiosity methods produce 

excellent results in a tractable amount of time. However, recently Willmott [90] stated 

that for scenes with a very large number of input polygons (e.g. in the order of millions 

of polygons), even with the 0(k\o%k+ri) running time complexity of these algorithms, 

such scenes are no longer feasible with current technology.
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To date, there has only been one significant attempt at reducing the time complexity of 

the hierarchical radiosity algorithm, by directly minimising the number of input 

polygons. Willmott [90] designed a new Face Cluster Radiosity algorithm that is 

based upon Garland’s [86] method for polygonal surface simplification. Essentially 

Willmott’s [90] new algorithm reduces the number of input polygons by simplifying 

tessellated surfaces and applying vector based radiosity to remove the faceted 

appearance that would otherwise be left by the simplified surfaces. This method is 

very effective at reducing the number of input polygons and has been shown to render 

enormous scenes in remarkably little time.

Soler et a l [89] introduced an interesting method for reducing the time taken for 

solving very large hierarchical radiosity problems. In this method, a very large 

hierarchical radiosity problem is replaced by a collection of smaller hierarchical 

radiosity problems. Unfortunately, in order to gain the benefits of this method, scenes 

need to have a high degree of self-similarity. However, this method was proved to be 

very effective in solving botanical scenes [89].

Another approach to reducing the time complexity of hierarchical radiosity is to make 

more use of the input scene geometry. The topology of the input scene contains a 

wealth of information that can aid in large reductions in the amount of computation 

required to solve a scene. Unfortunately, to fully utilise the scene information for 

reducing the number of input polygons solved by hierarchical radiosity, would require 

a full radiosity solution in the first place! This means that this optimisation method 

would become an a posteriori algorithm and thus cannot be used as an optimisation 

pre-processing stage. However, there is still important information within the initial 

scene that can be utilised a priori. In particular, the coherence of the input scene 

geometry could lead to a better clustering strategy.

Generally, within a scene, groups of polygons will cluster together to form objects of 

varying complexity. Most importantly, the illumination of the scene is usually 

configured according to the layout of these objects. Therefore, we generally find that 

scenes will be comprised of distinctly illuminated and non-illuminated areas.
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Current clustered hierarchical radiosity methods only make use of the object clusters 

during the radiosity link refinement stage. Thus, in the final radiosity solution, all 

clusters and surfaces contribute to the work that has to be performed by the 

hierarchical radiosity solver.

It is however, possible to improve upon this by making greater use of the object 

clusters that are created and how those clusters affect other clusters and the 

surrounding geometry. Thus, if an area of the scene is considered relatively self 

contained, why not simply remove that area from the scene and render it as a separate 

entity?

It is possible, in a pre-processing stage, to localise the initial scene geometry to form 

‘independent areas’ of illumination that can be detached from the main scene. This 

can be achieved by estimating the energy interactions between the primary light 

sources and the object clusters, and the interactions between object clusters, to produce 

bounded areas that can be solved independently. These clusters effectively localise the 

scene into smaller sub-scenes.

Since each of these bounding areas can be solved independently, this means that a 

sub-portion of the entire scene can be removed. Hence there will be fewer surfaces 

that need to be processed by the hierarchical radiosity solver.

4.2 Reducing Scene Complexity

Consider the scene shown in Figure 4.1. It is composed of a single rectangular light 

source, a single rectangular floor surface and two chairs. Each chair is constructed 

from 548 triangles, hence this scene contains a total of 1098 polygons. After 

triangulation, the scene in Figure 4.1 will contain a grand total of 1100 triangles.

Using traditional hierarchical radiosity, potentially 1.21 million link interactions may 

need to be created in the initial linking stage. By ignoring pairs of polygons that do 

not face each other, the number of links can be greatly reduced. In this particular case,
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approximately 191000 links would be generated. This leads to a significant saving in 

memory, but the linking stage is still has a running time complexity o f 0 (n 2).

Figure 4.1 A simple scene.

The scene in Figure 4.1 is very simple, only containing two distinct objects (i.e. the 

two chairs), but a great deal o f work has to be done to compute a radiosity solution. 

Adding more chairs to the scene will quickly make computing a radiosity solution 

intractable.

Upon closer inspection of Figure 4.1 it can be seen that due to the configuration o f the 

scene, the two chairs do not significantly interact with each other. Thus each chair
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could be treated independently. Due to the O(n2) time complexity of the linking 

procedure, solving each chair independently will yield significant savings.

Hence introducing a scene localisation technique has the potential of greatly reducing 

that total amount of computation that needs to be done by the hierarchical radiosity 

algorithm. In the case of Figure 4.1, solving each chair independently would 

potentially require 302500 link interactions each. For both chairs, this results in an 

immediate reduction by half, of the 1.21 million links that otherwise would be 

potentially need to be computed. By ignoring pairs of polygons that do not face each 

other, approximately 41000 links would actually need to be created, per chair. Again, 

this is yields a significant saving in memory.

Also, by considering each chair separately reduces the total number of surfaces by 

half, that need to be processed by the hierarchical radiosity algorithm. Since the time 

complexity for the hierarchical radiosity algorithm is O(k*+ri), this corresponds to a 

theoretical four-fold gain in efficiency at the linking stage. Thus less links will be 

generated, which leads to a quicker linking time and a saving in memory. Since there 

are two chairs, a more realistic gain of two is likely.

4.3 Localising a Scene

To localise a scene, all surfaces within the scene must be grouped into suitable 

clusters. The criteria for generating clusters are:

• Surfaces must group together to form distinct clusters.

• Clusters must have tight fitting bounding boxes around their contents.

• Clusters must not overlap.

Grouping surfaces together to form distinct clusters is the most important step in scene 

localisation. Without well-formed clusters, it is very difficult to accurately judge 

where the boundary for localisation should begin. By ensuring that clusters have tight 

fitting bounding boxes, this will minimise any unnecessary overlapping between 

clusters.
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Figure 4.2 The clusters generated from Figure 4.1.

The type o f bounding box used for clustering is arbitrary and it is most common to use 

axially aligned bounding boxes, as these objects are easy to maintain and very quick to 

compute. Figure 4.2 shows the results o f clustering for Figure 4.1 using axially aligned 

bounding boxes.

Although two tight fitting axially aligned bounding boxes were constructed around the 

two chairs in Figure 4.2, these clusters are not optimally tightly fitting. Therefore, it is 

possible for clusters to overlap unnecessarily. More complex bounding shapes could 

be used to generate much tighter fitting bounding volumes, but axially aligned 

bounding boxes are very efficient objects to compute and store.
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Ideally, the optimal localisation solution would be to reduce the scene into many 

localised clusters that contain a relatively small number of surfaces. By keeping the 

number of surfaces within a cluster to a minimum, the O(n ) running time complexity 

of the linking process, will also be kept to a minimum. Essentially, it is desirable to 

create many localised clusters that contain a minimal number of surfaces, than to 

create few localised clusters that contain many surfaces.

Unfortunately, overlapping bounding boxes will generally have to be merged together, 

to form a larger cluster. This in turn will reduce the overall efficiency of localisation 

technique by reducing the total number of clusters that will be created, whilst at the 

same time, increasing the number of surfaces contained within that cluster. 

Overlapping bounding boxes mainly occur when two clusters have surfaces that are 

sufficiently close together, that it is difficult to define a separation boundary.

Assessing the Suitability of Clusters for Localisation

Once suitable clusters have been located, each cluster is assessed for its suitability to 

be localised. The two main criteria for deciding whether a cluster is detachable from a 

scene are:

• The light transport between adjacent clusters must be minimal

• The shadow influence of a cluster must not interact with adjacent clusters

Calculating the light transport between clusters can be accomplished with the same 

methods used in clustered hierarchical radiosity algorithms. In this case, it is the 

amount of flux or power, transferred between clusters that will be required for 

assessing the suitability of cluster detachment. Hence if a cluster receives and 

transmits little light energy from and from surrounding clusters, then that cluster would 

be deemed suitable for localised rendering. In practice, calculating flux involves 

calculating the BFA product between pairs of clusters.

Computing the amount of flux transported (i.e. the BFA product) between clusters 

requires the calculation of radiant exitance (B), the volume-to-volume form factor (F) 

and the area (A) of a cluster. The two excepted methods for accomplishing this are the
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methods by Sillion [57][66] and Smits et al. [59]. It must be noted that these methods 

do not necessarily have to use the BFA product, as there are many other metrics for 

measuring the light transport between adjacent clusters. For example, Sillion [57][66] 

used the BF product.

For this localisation algorithm, only an approximate value for light transport between 

two clusters is required. By using the idea of lazy linking [56], the relevant surfaces 

within a cluster that directly receive illumination from primary light sources can be 

found very efficiently. From this, an approximate but useful measure of the 

‘brightness’ of a cluster can be obtained at a minimal computational cost. If lazy 

linking is used in the initial linking stage in the hierarchical radiosity algorithm, then 

computing the radiosity of the surfaces within the cluster that receive primary 

illumination, can be gained at very little extra cost.

Since we are only interested in the light transfer in the direction in which two clusters 

face each other, it is necessary for the BFA product to include directional information 

between two clusters. This can be achieved by applying Gibson and Hubbold’s 

method for calculating the projected-area in the direction o f transfer [73]. The 

projected area of a surface is calculated by multiplying the cosine of the angle between 

the normal of the surface, and the direction vector of the two facing clusters. Hence 

the BFA product will provide a useful estimate of the radiant flux or power, transferred 

between pairs of clusters.

Before a cluster is deemed suitable for detachment, the effects of the cluster on the 

surrounding geometry have to be considered. Specifically, it is the shadows cast by 

the surfaces within a cluster onto the surrounding geometry that will finally determine 

if that cluster will be detached. Generally, if the shadow cast by a cluster interacts 

with an adjacent cluster, both clusters will be forced to merge into a larger cluster.
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Figure 4.3

Consider the scene in Figure 4.3. The proximity o f the chair to the table is sufficient, 

that both objects would be considered to be part o f the same object cluster. However, 

due to the light source and the surface geometry of the two objects, there is minimal 

light interaction between the two objects.

By observing the shadow cast by the chair, it can be seen that the shadow does not 

interact with the table at all. Thus this is a special case situation where the bounding 

box o f two (or more) clusters overlap, but do not need to be merged.
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Locating the Extremal Shadow Boundary of a Cluster

The next step is to compute the extents of the shadow cast by the surfaces within a 

cluster. This can be achieved by casting discontinuity lines for each surface within the 

cluster, onto the surrounding geometry. However, this is somewhat expensive. A 

more efficient approach would be to cast an extremal discontinuity mesh (see 

Section 3.9) instead of a full discontinuity mesh. Once the extremal discontinuity 

mesh has been cast, an outer convex hull can be generated which can then be used to 

define a boundary for cluster detachment.

Discontinuity meshing is a very expensive process, but can be optimised by only 

casting extremal discontinuity lines. However, the scene localisation method does not 

require a highly accurate shadow boundary for cluster detachment. All that is required 

is a maximum or upper boundary around the cluster, which will encapsulate the entire 

shadow cast by the surfaces within a cluster.

Since the bounding box around a cluster represents such a boundary, the discontinuity 

mesh cast by the axially aligned bounding box of the cluster itself, will always 

encapsulate the entire shadow cast by the surfaces contained within. By casting an 

extremal discontinuity mesh, can once again, optimise the efficiency of discontinuity 

meshing process.

Fortunately, a large proportion of the cost of computing an extremal discontinuity 

mesh can be further avoided in this algorithm. Since only the maximal boundary of 

the extremal discontinuity mesh is required to compute the maximum boundary of the 

bounding box around the cluster, there is no need to compute the extremal mesh of the 

umbra. Thus half of the discontinuity lines can be immediately dismissed.

A further saving can be made by observing that the discontinuity lines generated by 

either VE or EV events, will provide sufficient information for the construction of the 

maximal bounding for a cluster. Hence the total number of discontinuity lines that 

need to be cast can be reduced by an additional 50%. As a result, the time required for 

computing an extremal discontinuity mesh for this algorithm, is minimal.
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Figure 4.4 The extremal discontinuity meshes that are generated by the clusters shown in

Figure 4.2

The results o f casting an extremal discontinuity mesh from the axially aligned 

bounding boxes shown in Figure 4.2, can be seen in Figure 4.4.

Once the extremal shadow boundary has been computed, the bounding box of the 

cluster is expanded to incorporate the shadow boundary, and this cluster is ready for 

detachment. This is shown in Figure 4.5.
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Figure 4.5 The final expanded bounding boxes.

4.3.1 A Simple Two-Pass Method for Clustering Surfaces

There are a variety o f clustering methods for clustering surfaces together and they 

broadly fall into two categories: regular, typically axially aligned space subdivision 

methods and hierarchical bounding volumes. Since the goal for clustering is to form 

distinct objects from spatially close surfaces, this can only be achieved reliably by 

bounding box methods.
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The most popular methods for generating hierarchical bounding boxes are based upon 

the automatic algorithm by Goldsmith and Salmon [26]. The hierarchy produced is 

versatile and the hierarchy of bounding boxes can be used to accelerate visibility 

testing. However, if visibility testing is accelerated by other means, then a simpler 

approach to clustering via bounding boxes, can be achieved.

The algorithm for generating bounding boxes is simple: all spatially nearby surfaces 

must be grouped together to form a cluster.

The main difficulty in collecting surfaces to form object clusters, is to determine the 

extents of the boundary of inclusion around a surface. This boundary will determine 

whether or not a surface is close enough to another surface or cluster, to be merged. If 

the boundary limit is set too large, then it is possible that two very close but distinct 

neighbouring clusters may be erroneously merged. Conversely, if the boundary limit 

is set too small, then many clusters will be formed that only contain a single or at most, 

a few surfaces.

For scenes that have an even distribution of surfaces, it is possible to set a single 

boundary limit. Unfortunately, this is usually not that case for general scenes as it is 

quite common for scenes to have an uneven distribution of densely and sparsely 

populated areas of surfaces.

To overcome this problem in the simplest possible way is to cluster all surfaces within 

a scene in two stages. The first stage clusters all surfaces that are very close together. 

In this stage, it is possible that many clusters may only contain a single or a few 

surfaces. Hence, the second stage coalesces clusters that are close together including 

any left over surfaces that were not clustered in the first stage. Each time a surface or 

cluster is merged, the bounding box around the expanded cluster is updated.

The most efficient method for computing the boundary limit of a surface is to use the 

minimum and maximum extents of the surface to create an axially aligned bounding 

box around it. In effect, every surface immediately becomes a cluster.
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The advantage of treating individual surfaces as clusters means that a generalised 

algorithm for grouping surfaces and clusters can be created. This in turn will greatly 

simplify this two-pass clustering algorithm.

To ascertain whether or not a surface or a cluster is sufficiently close to another surface 

or cluster, is easily determined by testing whether their bounding boxes overlap. If the 

bounding boxes overlap, then the two objects (surface or cluster) are deemed to be 

close enough to be coalesced.

Computing the intersection between bounding boxes is quite complex. However, in 

this algorithm we are not concerned with the exact intersection details between 

overlapping bounding boxes. All that is required is a simple indication of whether or 

not two bounding boxes overlap.

This is easily accomplished by testing to see if any of the comers of one bounding box 

lie within the extents of the other bounding box. Hence, there are three possible 

conditions:

• All points belonging to the source bounding box lie totally within the target 

bounding box.

• Some points belonging to the source bounding box lie within the target 

bounding box.

• No points belonging to the source bounding box lie within the target bounding 

box.

The first condition indicates that source object lies totally within the target, whilst the 

second, indicates that the source object only partially overlaps the target object. 

However, both conditions require that the source object to be added to the target 

cluster.

Thus, computing the intersection between a pair of bounding boxes can be 

accomplished by the following pseudo code:
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PROCEDURE testBBoxIntersection(BoundingBox A, BoundingBox B)
Set counter c to zero

FOR all 8 boundingbox corner points DO
IF a corner point in BoundingBox B lies within BoundingBox A THEN 

Increment counter c by 1 
END IF 

ENDFOR
IF counter c is 8 THEN

BoundingBox B lies totally inside BoundingBox A 
ELSE IF counter c is > 0 THEN

Part of BoundingBox B lies inside BoundingBox A 
ELSE

BoundingBox B does not intersect BoundingBox A 
ENDIF 

ENDPROCEDURE

The algorithm for the first stage of clustering using bounding boxes is:

FOR all surfaces DO
FOR all currently created clusters DO

IF current surface bounding box overlaps current cluster THEN 
Add surface to current cluster 

ENDIF 
ENDFOR
IF current surface did not overlap with any cluster THEN 

Create a new cluster and add current surface 
ENDIF 

ENDFOR

Figure 4.6 shows the results of the first stage of bounding box creation, for a sample 

scene.

It can be seen from Figure 4.6 that several features, for example, the wheels and the 

back of the office chair, have been clearly identified and clustered together, but have 

not been included in the main bounding box. Thus, the second stage of this bounding 

box creation algorithm merges these smaller clusters into the main bounding box.
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Figure 4.6 The results of clustering after the first stage of bounding box creation.

Figure 4.7 The final results of clustering after the second stage of bounding box creation.
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The second stage of this two-pass method simply scans through all clusters created in 

the first stage, to check for any clusters that need to be merged. As with the first stage, 

exactly the same bounding box testing will be used in this stage.

FOR every cluster i DO 
FOR every cluster j DO 

IF i !=j THEN
Check for bounding box intersection between i and j 
IF we have an intersection THEN 

Merge together clusters i and j 
ENDIF 

ENDIF 
ENDFOR 

ENDFOR

Figure 4.7 shows the results after the second stage of this bounding box creation 

algorithm have been applied.

The performance of this algorithm 0(nm2+m2) where n is the number of input surfaces 

and m is the number of clusters created. The m2 quadratic terms come from the simple 

linear searching algorithm used for merging objects (surfaces or clusters) together.

At first glance, this algorithm performs very poorly, offering 0(n  ) time complexity if 

every surface in the scene forms an individual cluster (i.e. m=n). However, general 

scenes intrinsically contain clusters of surfaces, which means that the worst case 

running time will only be achieved in unrealistically contrived scenes.

For general scenes, the number of bounding boxes created will be far less that the total 

number of input surfaces. Therefore, m «  n which means that this algorithm will 

typically have a running time complexity of O(n). Hence, this algorithm should scale 

well for typical scenes even though the complexity of this algorithm is O(nm2).

4.3.2 Cluster Detachment

The final step before rendering, for the scene localisation process, is the detachment of 

the clusters from the main scene. The main algorithm for the cluster detachment 

process is as follows:
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FOR every cluster DO
FOR every surface that intersects the current cluster DO 

Cut out the area of intersection from the current surface 
Add the cut out area as a new surface to the current cluster 

ENDFOR 
ENDFOR

For the scene in Figure 4.1, Figure 4.5 shows two clusters that are required for 

detachment. Once the clusters have been removed, two holes will be left in the floor 

surface. Unfortunately, it is most likely that the hierarchical refinement will ignore the 

presence of holes in a surface.

To solve this problem, any surface that contains holes will need to be decomposed into 

triangles, that is, the surface will need to be triangulated. This way, surfaces that 

contain holes will be represented by a collection of individual triangles and thus will 

not affect the hierarchical radiosity algorithm.

However, to ensure that all triangles are suitable for hierarchical radiosity refinement, 

all surfaces should undergo a constrained Delaunay triangulation. This is important 

since the form factor approximation calculations require all triangles not to be long and 

thin. A constrained Delaunay triangulation will ensure that the quality of the triangles 

produced is suitable for hierarchical radiosity.

For the scene in Figure 4.1, Figure 4.8 shows the resulting mesh after a constrained 

Delaunay triangulation has been applied to the floor surface, and Figure 4.9 shows the 

triangulated mesh for the two detached clusters.
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(a) (b )

Figure 4.8 (a) The CDT mesh of the floor for the scene shown in Figure 4.1 after cluster

detachment, (b) The rendered image.

Figure 4.9 The CDT mesh for the two detached clusters in Figure 4.1.
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4.3.3 Reintegration

The reintegration process recombines the meshes of the separately rendered clusters, 

into a single final mesh. Essentially, this involves combining the individual meshes 

for each patch that was generated by the hierarchical radiosity solver.

The task of merging meshes can be a very complex process, but there is a simple 

method that will enable individually rendered meshes to be displayed without the need 

for mesh merging.

When all input surfaces have been triangulated, each triangle essentially becomes an 

individual patch and is refined separately by the hierarchical radiosity algorithm. 

Unfortunately, by treating adjacent triangles that are part of the same surface as 

individual patches, can cause disruptions in the continuity of the radiosity function at 

the triangle boundaries. By ensuring that adjacent triangles share common edges, this 

can largely solve the problem. The remaining problem is caused by T-vertices, which 

are generated during the hierarchical patch refinement process.

During the patch refinement process in the hierarchical radiosity procedure, patches 

are subdivided by bisecting the edges of the parent patch to produce four new 

sub-patches (see Section 3.3). Since bisection always takes place at the middle of an 

edge, every edge belonging to a root patch will maintain a binary tree of subdivided 

edges. Therefore, maintaining shared edges during hierarchical patch refinement is 

relatively simple.

As all triangular patches are now connected together, each patch can create its own 

mesh independently, but is still connected to the overall main mesh. Thus the need for 

merging meshes is no longer needed.

Figure 4.10 shows the results of reintegrating the left cluster in Figure 4.5, into the 

main scene. The results of the reintegration of the second (right hand) cluster into the 

main scene can be seen in Figure 4.11. Lastly, the complete scene is shown in Figure 

4.12.
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Figure 4.10 The rendered image of the left cluster in Figure 4.5 (left) and the 

reintegration of the detached cluster into the main scene (right).

aI B
Figure 4.11 The rendered image of the right cluster in Figure 4.5 (left) and the 

reintegration of the detached cluster into the main scene (right).
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Figure 4.12 The final reintegrated scene.

4.4 Image Artefacts Caused by T-Vertices

It must be noted that one important side effect will occur, which is caused by the 

triangulation o f a surface. The triangles generated by the constrained Delaunay 

triangulation process were generated externally, without the use o f the radiosity 

function o f the source surface to guide the triangulation process. Therefore, it is very 

likely that some o f the boundaries formed by the edges o f the triangles will be 

unsuitable to represent the radiosity function across the source surface. This is because 

radiosity solutions can be potentially discontinuous across surface/patch boundaries, as 

well as being continuous in areas without sharp shadow boundaries [37]. Hence, the 

appropriate level o f continuity across all triangles generated by the constrained 

Delaunay triangulation must be maintained, or artefacts will become visible.
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The most visibly obvious artefacts are caused by T-vertices (see Figure 4.13) and are 

compounded by the patch refinement process in the hierarchical radiosity algorithm. 

During the patch refinement process, it is possible for two patches that share a 

common boundary, to have different levels of subdivision.

A

B

C

Figure 4.13 An illustration of a T-vertex (from Baum et al. [37]). If the vertices 
ACD define a triangle, then there is a T-vertex at T.

This can be seen on the floor surface in Figure 4.12 and the artefacts caused by 

T-vertices are particularly evident along the boundary lines formed by the constrained 

Delaunay triangulation.

Figure 4.14 shows a clearer wireframe view of the final mesh, after the reintegration 

process. It can be seen that the most noticeable artefacts are in the areas where the two 

detached clusters have been reintegrated. This is due to the differing levels of 

refinement of the individual triangular patches.

Unfortunately, the greater the difference between the levels of subdivision of the two 

adjacent patches that share a common edge, the more pronounced the artefacts would 

be. This is because a greater number of T-vertices will be present at the boundary 

between the two patches. Baum et a l [37] describe an anchoring technique that will 

eliminate T-vertices.
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4.5 Recursive Scene Localisation

Consider the scene in Figure 4.15. If the current scene localisation technique is 

applied to this scene, then the following clusters shown in Figure 4.16 will be 

generated.

From Figure 4.16 it can be seen that two clusters were successfully localised from the 

scene in Figure 4.15. Although only two clusters were generated, it is still more 

efficient to solve the radiosity system with localisation, rather than without.

A far more optimal clustering solution for the scene in Figure 4.15 can be obtained by 

reanalysing the clusters that have just been built. From Figure 4.16, it can be seen that 

it is possible to further localise the surfaces within the larger cluster, to obtain a set of 

sub-clusters. Clusters can be recursively re-localised because once a cluster has been 

deemed suitable for localisation, the cluster and its contents effectively becomes a 

self-contained ‘world’. Thus the main light transport will be between the surfaces 

contained within the cluster.

An important caveat must be noted. Every time a group of surfaces are clustered and 

localised from the main scene or from its parent cluster, a small amount of energy is 

lost from the whole scene. This is because when a cluster is localised, any secondary 

energy that would otherwise be distributed back into the environment, is lost. Thus a 

limit on the number of times a cluster can be recursively localised must be imposed. 

Scenes that have been over zealously localised tend to be darker than normal, with 

clusters that had received little primary light energy becoming very dark.

Typically, a cluster will only need to be re-localised once. It is usually clusters that 

contain objects that have been stacked on top of other objects, which will be 

candidates for re-localisation.
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Figure 4.15 A medium complexity scene containing 1678 initial surfaces.



Figure 4.16 The results of cluster location for the scene in Figure 4.15.
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Figure 4.17 The generated clusters for the objects on the table top in Figure 4.15.

Figure 4.17 shows the resulting sub-clusters that were obtained after the localisation 

technique was reapplied to the surfaces contained within the larger cluster (shown in 

Figure 4.16). Figure 4.18 shows a diagram o f the hierarchy o f clusters generated by 

recursive localisation.

World (1678)

Cluster (10)

Cluster (2)

Chair (548)

Cluster (548)

Plant (705) Monitor (10) Keyboard (5)

Light(1) Floor (1) Table (408) Cluster (705) Cluster (5)

Cluster (1128)

Figure 4.18 A diagram showing the hierarchy of clusters generated for the scene in 

Figure 4.15 (number of surfaces in parentheses).

The advantages in applying recursive localisation can be seen in the following table.
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Time taken to solve clusters (s)

Light + Floor Chair Table Plant Monitor Keyboard Total Time

Localisation 32.88 15.59 64.29 212.76

Recursive

Localisation
32.14 15.47 8.49 82.19 1.8 0.23 140.32

Table 4.1 A time comparison between localisation and recursive localisation.

It can clearly be seen that applying recursive localisation improves the total time taken 

to compute a complete radiosity solution. Thus, for scenes of increasing complexity, 

the savings will be cumulative.

4.6 Summary

In this chapter, we have introduced a new method for reducing the complexity of a 

scene for hierarchical radiosity. This method aims to reduce the O(k1 + n) running 

time complexity of hierarchical radiosity to 0(n) by reducing the initial data input size. 

It is also a new approach to clustering, where clusters of surfaces are detached from a 

scene and rendered independently.

The most popular clustering strategies are discussed here, and a simple bounding box 

clustering strategy is presented. Although there are more efficient algorithms 

available, this simple clustering strategy is easy to construct and implement, and 

provides reliable operation during scene localisation.

An important part of the localisation procedure presented in this chapter is the 

detachment of clusters, and involves casting discontinuity lines to compute the shadow 

boundary of a cluster. As described in the previous chapter, we restrict our attention to 

extremal discontinuity meshing.

It was also shown that the localisation method could accumulate significant savings in 

time spent in the linking phase of hierarchical radiosity. Since the number of initial 

surfaces within each localised clusters is a smaller portion of the total surfaces within a
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scene, the OQ?) linking time is kept to a minimum. As a result, the number of links 

created is correspondingly reduced. Thus, the localisation achieves savings in both 

time and space complexity.

However as the localised clusters are rendered independently, when these clusters are 

recombined, it is possible for artefacts to appear along the boundaries of the clusters. 

This is due to differing levels of refinement between adjacent clusters causing 

T-vertices to appear at the cluster boundaries. T-vertices have been well documented 

by Baum et al. [37] and they describe a method for removing them.

In general scenes, it is normal for objects to rest upon other objects to create more 

complex objects. Unfortunately these objects are usually spatially close enough to 

each other, that clustering algorithms only form a single cluster. Since the localisation 

algorithm works most efficiently when a scene is localised into many clusters that 

contain relatively few surfaces, we have enhanced the localisation algorithm to 

recursively localise clusters, to search for sub-clusters.

Having developed this new approach for clustering scenes in hierarchical radiosity, 

next we undertake a comprehensive series of tests to show the effectiveness and 

scalability of this method. We report this work in the next chapter.
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Chapter 5 Results

5.1 Introduction

To determine the performance of the localisation algorithm described in the previous 

chapter, this chapter tests the performance and scalability of the algorithm for scenes 

of increasing complexity. The timing results1 from our localisation algorithm were 

compared with timings gained from Bekaert et al. [91] ‘RenderPark’ test-bed system 

for global illumination.

To enable impartial comparisons between the localisation method and RenderPark, 

both systems utilise object space acceleration techniques such as uniform grid [27] or 

octree [16] space subdivision, hierarchical patch refinement and lazy linking [56].

RenderPark implements a Galerkin radiosity solver. Galerkin radiosity [14] [51] 

utilises higher order basis functions to approximate the radiosity across the finite mesh 

elements generated by the (hierarchical) refinement process. Hence better 

approximations of the radiosity function across a surface can be potentially obtained 

with fewer mesh elements.

However, our localisation algorithm implements a traditional hierarchical radiosity 

solver. Traditional hierarchical radiosity [39] uses constant or Haar basis functions to 

represent the function across the finite mesh elements. As a result, this potentially 

means that many more smaller mesh elements would be required to accurately 

represent the radiosity function across a surface.

Fortunately the Galerkin radiosity module in RenderPark supports a selection of basis 

functions, including a constant basis function. Thus, to ensure fair testing between 

RenderPark and our localisation method, both systems will use constant basis 

functions.

1 All timings were performed on a Pentium III 700Mhz PC with 768MB of RAM, running Slackware Linux 8.0.
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Finally, the main aim of the tests between RenderPark and our localisation method is 

to determine the performance and scalability between our algorithm and existing 

clustering strategies.

RenderPark implements both isotropic and anisotropic clustering strategies. However, 

isotropic clustering strategies are well known and have been widely used by a variety 

of authors, for example, Sillion [57][63], Gibson [73][84], Hazenfratz et al. [87], 

Muller [88]. Thus, the isotropic clustering strategy will be used in all RenderPark 

tests.

5.2 The Scalability of Simple Scenes

To test the scalability of the new clustering strategy described in Chapter 4 for simple 

scenes, eight scenes with increasing complexity (shown in Figure 5.1) were tested with 

this algorithm and RenderPark. The complexity of a scene was altered by increasing 

the number of chairs in the scene. Each chair was placed at a random location and at a 

random orientation.

The number of initial surfaces in the scenes shown in Figure 5.1, range from 550 to 

4386 surfaces and thus represent scenes of low to medium complexity. The motive 

behind the set-up and creation of these test scenes shown in Figure 5.1, is to assess 

how well our localisation technique fairs against a well known clustering strategy.

RenderPark offers a very robust implementation of isotropic clustering, hierarchical 

refinement and Galerkin radiosity. Thus consistent results will be available for 

comparison.

The progression of the scenes in Figure 5.1 was designed to test how well the 

localisation method and RenderPark cope with scenes of increasing complexity. To 

make this a realistic test, a ‘real’ object was added to the scene, in preference to adding 

random surfaces. Thus an office chair was chosen as the object to add to the scenes.
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The office chair object is not a trivial object. It contains 548 surfaces of varying sizes 

and orientations. This object is sufficiently complex that neither the localisation 

method nor RenderPark will have an unfair advantage.

Table 5.1 shows the timing results gained from the localisation method for clustering, 

linking and total times for computing a hierarchical radiosity solution. The final 

rendered scenes are shown in Figure 5.1.

Scene in 

Figure 5.1

Number of initial 

surfaces

Clustering

time

Linking

time

Total Computation 

Time

(a) 550 0.01 0.46 189.71

(b) 1098 0.03 0.85 205.23

(c) 1646 0.054 1.23 212.724

(d) 2194 0.094 1.67 246.164

(e) 2742 0.105 2.22 268.025

(f) 3290 0.177 2.34 270.567

(g) 3838 0.2 2.89 277.05

(h) 4386 0.337 3.61 317.087

Table 5.1 Timings for the localisation algorithm.

From Table 5.1, it can be seen that the time complexity for clustering is unfortunately 

quadratic, as can be seen from the graph in Figure 5.2. From the timing results in 

Table 5.1, clustering takes up a very small proportion of the total time taken to 

compute a radiosity solution. Thus clustering will only incur a small time penalty on 

the localisation algorithm, even as the size of the input scene increases. As a result, it 

is normally worthwhile to cluster a scene. Even if clustering is not used in radiosity 

computation, it is still very useful for object space acceleration.
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(C) (d )

Figure 5.1 Solutions from the localisation method.
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Figure 5.1 cont.
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Figure 5.2 A graph showing the time taken to cluster the scenes in Figure 5.1.
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Figure 5.3 A graph showing linking times for the scenes in Figure 5.1.

Figure 5.3 shows the timing results for the linking phase for each scene in Figure 5.1. 

This graph shows that as the complexity of the scene increases, the linking time, which 

is the most expensive part o f hierarchical radiosity computation, now increases linearly 

instead of the normal quadratic time complexity.
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Figure 5.3 shows an important result. The linking phase is an integral part of 

hierarchical radiosity. This phase essentially records (for every patch in the scene) the 

light transported throughout the entire scene. Modelling every light interaction takes 

0(n2) time to compute and accounts for the k1 term in the O(k1 + n) total running for 

hierarchical radiosity.

The results shown in Figure 5.3 show that as the complexity of a scene increases, the 

overall linking time for the localisation method increases linearly. It must be noted 

that the linking time within the localised clusters still takes quadratic time to compute. 

It is the overall linking time for the entire scene, with respect to increasing scene 

complexity, which now increases linearly. Thus, the reduction due to scene 

localisation, in the number of initial surfaces the hierarchical radiosity system needs to 

consider, is sufficient that the original quadratic running time complexity has been 

effectively reduced to a linear running time complexity.

Finally, Figure 5.4 shows a graph of the total rendering times for each scene in Figure 

5.1. The results show that as the complexity of the scene increases, the total rendering 

time is linear. A comparison of the running time complexities between this algorithm 

and a variety of radiosity algorithms is shown in Table 5.2.

Method Running time complexity

Localisation 0(nm2 + n) but in practice, achieves 0(n)

Progressive Refinement Radiosity 0(nl)

Hierarchical Radiosity O + n)

Clustered Hierarchical Radiosity 0(&logA: + n)

Face Clustering (Willmott [90]) 0(n\ogn) but in practice, achieves 0(«)

Table 5.2 Time complexity comparison between a variety of radiosity algorithms.
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Figure 5.4 A  graph showing the total rendering times for the scenes in Figure 5.1

The graph shown in Figure 5.4 demonstrates the performance and scalability benefits 

gained by the localisation method. The best fit line shown in Figure 5.4 shows that the 

running time complexity o f this algorithm scales linearly with the number o f input 

surfaces. Therefore, localisation should be applied to complex scenes.

The variations in the timings about the best-fit line are mainly due to random positions 

and orientations o f the extra chairs within the scene. The positioning and orientations 

o f the objects within the scene affect the number o f visibility calculations that have to 

be made. More importantly, the number o f triangles generated after constrained 

Delaunay triangulation is quite sensitive to the layout of the objects within a scene and 

can be seen in Figure 5.5. This illustration shows that as the cluster approaches the 

boundary o f a surface, the constrained Delaunay triangulation algorithm will generate 

a greater number o f small triangles.

It is quite possible for the triangulation stage o f any radiosity method to contain many 

tiny triangles, generated by the constrained Delaunay triangulation algorithm. In some 

cases this is beneficial since it can help in reduce the time spent on hierarchical 

refinement. However, it can be possible for the constrained Delaunay triangulation 

algorithm to generate vast numbers o f tiny triangles.
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Figure 5.5 A diagram showing how the placement of an object can affect the 

number of triangles generated by constrained Delaunay triangulation.
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Although these tiny triangles will never be subdivided by hierarchical refinement, each 

triangle will be considered as an initial surface. As the time and space complexity of 

the linking stage in hierarchical radiosity is O(k1), each of the unnecessarily small 

triangles will add considerably to the amount of work that needs to be done by the 

hierarchical radiosity solver.

To stop the size of the triangles from becoming too small, the parameters controlling 

the limits of area size and angle of the triangles generated, should be altered in the 

constrained Delaunay triangulation.

In fact, over refined meshes actually degrades the performance of hierarchical 

radiosity. Since hierarchical radiosity has its own refinement algorithm, it is far better 

to let the hierarchical radiosity perform its own refinement. Thus, in general, the size 

of initial surfaces supplied to hierarchical radiosity should be as large as possible.

Interestingly, if the best-fit line from the graph in Figure 5.4 is extrapolated back such 

that it intersects the time axis, a noticeable offset can be observed. This is actually 

caused by the light source and the floor surfaces.

As it turns out, the linking and hierarchical refinement between the light source and 

floor surface dominates the total computation time. Figure 5.6 shows a graph of the 

ratios between the time taken to compute a radiosity solution between the light source 

and the floor surface, and the total computation time for solving the entire scene.

For the scenes in Figure 5.1 that contain very few clusters, the total computation time 

is entirely dominated by the light source and floor surfaces. This is due the large 

amount of time that has to be spent hierarchically refining a relatively large floor 

surface.

However as the number of clusters increases, the total area of the floor surface will 

reduce significantly, as sections of the floor surface are cut away due to localisation. 

Hence, this will result in a reduction in the amount of time spent on refining the floor 

surface.
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Figure 5.6 The ratio between the computation time taken to render the light 

source and floor surface, and the total computation time.

As a result, it can be seen from the graph in Figure 5.6 that the ratio of the computation 

time spent on the light source and floor surface, and the whole scene, reduces 

significantly from over 90% for the scene in Figure 5.1(a) to approximately 50% for 

the scene in Figure 5.1(h).

Thus for scenes with low complexity, the cost o f applying the whole localisation 

procedure, which includes, surface clustering, computing and casting extremal 

discontinuity lines, cluster detachment, is greater than what it would cost to solve these 

types o f scenes the traditional hierarchical radiosity technique.

For example, the following table (Table 5.3) shows the times taken to render the 

simple scene in Figure 5.1(a) with RenderPark, hierarchical radiosity and the 

localisation method.

RenderPark Hierarchical Radiosity Localisation Method

Time (s) 88.01 169.68 189.71

Table 5.3 Rendering time comparisons for Figure 5.1(a).
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Figure 5.7 Solutions from RenderPark for the scenes in Figure 5.1.
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(g) (h)

Figure 5.7 cont.
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To compare the results gathered by the localisation algorithm with RenderPark, the 

data files for the test scenes shown in Figure 5.1 were converted to the materials and 

geometry form at [76]. To ensure consistency between the results generated by 

RenderPark and our localisation method, the dimensions o f all geometry were 

maintained.

Figure 5.7 shows the equivalent scenes in Figure 5.1 that have been rendered by 

RenderPark. Two main differences can be noted between the two sets o f rendered 

images. Firstly, the colour o f the chairs is slightly different. This was due to the 

conversion between the RGB colours used in the localisation algorithm to the 

CIE-XYZ colour space used in RenderPark. Secondly, the lighting intensities o f the 

rendered images in Figure 5.7 are slightly different from the images in Figure 5.1. 

This was due to the tone mapping function present in RenderPark that was absent from 

our localisation method. These are purely visual differences. The energy transported 

within the scenes is identical in both systems.

Figure 5.8 shows a graph o f the times taken to render the scenes in Figure 5.7. For 

these scenes, RenderPark also shows linear time complexity in rendering time.

RenderPark

700 n
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500 -

£ 300
200

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of input surfaces

Rendering T im e

Figure 5.8 A graph showing the rendering times for the scenes in Figure 5.7.
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Figure 5.9 A comparison between the localisation method and RenderPark.

Figure 5.9 shows a comparison of the rendering times between our localisation method 

and RenderPark. The most notable difference between the two systems is the offset of 

the localisation method.

As described above, scenes o f minimal complexity may cause the localisation method 

to perform relatively badly, in comparison to RenderPark or any system that uses 

comparable algorithms to RenderPark. For the first two test scenes in Figure 5.1 (and 

Figure 5.7), the localisation algorithm takes almost twice as long to render these 

images. Hence, localisation would not be used for such scenes.

However, for the latter test scenes shown in Figure 5.1 (and Figure 5.7), the 

localisation method out performs RenderPark. It can be seen from the graphs in Figure 

5.4 (and also Figure 5.8) that adding more chairs to the scene adds only a small 

increase to the total computation time.

Both RenderPark and the localisation method exhibit linear running time complexities, 

hence it can be superficially concluded that both algorithms have equal scalability. 

However, upon closer inspection o f the results shown in Figure 5.9, comparing the 

graph o f the localisation method with the graph o f RenderPark, shows that the
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localisation method has an almost constant running time complexity in comparison. 

This is in fact only an illusion created by the vertical scale of the graph, but it does 

emphasise the differences in performance of the two systems, even though they share 

the same running time complexity.

5.3 The Scalability of Complex Scenes

The series of test scenes presented in this section, aims to test the performance and 

scalability of the localisation and recursive localisation algorithms for scenes that 

contain a greater range of complexity, than the scenes presented in the previous section 

(Section 5.2). The test scenes presented in Figure 5.10 and Figure 5.11 also aim to 

represent more realistic scenes that would be found in the ‘real’ world.

The number of initial surfaces for these test scenes (shown in Figure 5.10 and Figure 

5.11) has been increased from 1678 to 26833 surfaces and thus represents scenes of 

low to high complexity. Also the complexity of the input geometry has been increased 

to allow for more complex objects to be included in the scene. Thus objects may now 

have other objects resting upon them. Hence the performance of the recursive 

localisation algorithm can be tested.

Figure 5.10(a) corresponds to a base scene, from which more complex scenes will be 

created. The test scenes shown in Figure 5.10 were extended from the base scene by 

adding and repositioning Figure 5.10(a), hence scenes of low to medium complexity 

were generated.

For the test scenes in Figure 5.11, the test scene shown in Figure 5.10(d) was used as 

the base scene, and so scenes of medium to high complexity were generated. The test 

scenes in shown Figure 5.11 were produced in the same way as Figure 5.10.

All test results gained from the localisation and recursive localisation algorithms are 

compared against timings obtained from RenderPark. To ensure consistency, exactly 

the same parameters, as used in the previous section (Section 5.2), will be applied in 

this section.
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Figure 5.10 Low to medium complexity test scenes that contain (a) 1678, (b) 3355, 

(c) 6789 and (d) 5032 surfaces, respectively.
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Figure 5.11 High complexity test scenes that contain (a) 13417, (b) 20125 and (c) 26833

surfaces, respectively.
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The results of the localisation and recursive localisation algorithms for the scenes 

shown in Figure 5.10 and Figure 5.11, are shown in the following table.

Number o f surfaces
Localisation algorithm: 

rendering time (s)

Recursive localisation algorithm: 

rendering time (s)

1678 557.55 764.01

3355 1403.95 1416.68

5032 1897.95 1911.58

6709 2443.97 2167.94

13417 3678.76 2237.45

20125 5674.45 3852.95

26833 7022.81 4549.94

Table 5.4 Timings for the localisation and recursive localisation algorithms, for the

scenes in Figure 5.10 and Figure 5.11.

A Rendering Time Comparison
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Figure 5.12 A comparison between the rendering times generated from the localisation

and recursive localisation algorithms.
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Figure 5.12 shows a graph displaying the results shown in Table 5.4. It can be seen 

from this graph, that the benefits of recursive localisation become apparent for the 

more complex scenes shown in Figure 5.11. Both the localisation and recursive 

localisation algorithms work most efficiently for scenes that can be clustered into 

many individual objects.

For the scenes in Figure 5.10, there is little difference in rendering times between the 

two algorithms. As described in the previous section (Section 5.2), this is mainly due 

to the total rendering time being dominated by the computation of a radiosity solution 

between the light sources and the floor surface.

As a result, only a minimal increase in performance will be gained by performing 

recursive localisation on scenes of low to medium complexity. In fact, the graph 

shown in Figure 5.12 shows that the cost of performing the recursive localisation 

procedure actually increases the total computation time over the normal localisation 

method, for the scenes in Figure 5.10.

However, as the number of clusters increases, an increasing amount of the floor 

surface will be cut away by the localisation algorithm. This will result in a 

corresponding reduction of the total area of the floor surface and thus a reduction in 

the amount of time taken to hierarchically refine this surface.

In general, the greater the number of clusters generated by a scene (see Figure 5.13(a) 

and Figure 5.14(a)), the greater the number of holes on the floor surface after 

localisation. This in turn will reduce the total area of the floor surface, but will 

increase the number of triangles generated by a constrained Delaunay triangulation 

(see Figure 5.13(b) and Figure 5.14(b)). However, the triangles generated by a 

constrained Delaunay triangulation will be small in comparison to the size of the 

original surface, so the time taken to hierarchically refine these triangles will be 

correspondingly much less.
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(a)

(b)

Figure 5.13 The results showing the (a) clusters and the (b) CDT mesh 

generated for the test scene shown in Figure 5.11(a).
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Figure 5.14 The results showing the (a) clusters and the (b) CDT mesh 

generated for the test scene shown in Figure 5.11(c).
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For the more complex scenes in Figure 5.11, the benefits of increased clustering and 

hence increased localisation, becomes more apparent. As a result, the performance of 

recursive localisation is much more noticeable than with normal localisation. This is 

because these scenes contain sufficient complexity that there are many more 

sub-clusters generated. Again, see Figure 5.13 and Figure 5.14 for an illustration.

Since the time savings gained by recursive localisation are cumulative, the total time 

savings for large scenes become significant. This is particularly evident in the graph 

shown in Figure 5.12.

Comparing the timing results (see Table 5.4) for the most complex scene, Figure 

5.11(c), the recursive localisation method is over 50% faster than the standard 

localisation method.

The following table (Table 5.5) show the timing results from RenderPark, for the 

scenes in Figure 5.10 and Figure 5.11.

Number of surfaces Rendering time (s)

1678 253.66

3355 628.16

5032 988.73

6709 1412.75

13417 4554.23

20125 9104.47

26833 13465.1

Table 5.5 Timings from RenderPark, for the scenes in Figure 5.10 and Figure 5.11.

Finally, a comparison between the results from RenderPark, localisation and recursive 

localisation methods for the scenes in Figure 5.10 and Figure 5.11 can be found in 

Figure 5.15. The following table (Table 5.6), shows that actual timing results from the 

localisation, recursive localisation and RenderPark systems.
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Number o f surfaces
Localisation: 

Time (s)

Recursive localisation: 

Time (s)

RenderPark:

Time(s)

1678 557.55 764.01 253.66

3355 1403.95 1416.68 628.16

5032 1897.95 1911.58 988.73

6709 2443.97 2167.94 1412.75

13417 3678.76 2237.45 4554.23

20125 5674.45 3852.95 9104.47

26833 7022.81 4549.94 13465.1

Table 5.6 A comparison of rendering times for the scenes in Figure 5.10 and Figure 5.11.

A Rendering Time Comparisons
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Figure 5.15 A comparison of rendering times for the localisation and recursive 

localisation methods, and RenderPark.

It can be seen that RenderPark performs well for the scenes in Figure 5.10, consistently 

outperforming both the localisation and recursive localisation methods. However, 

RenderPark does not perform as well as the localisation methods for the large scenes in 

Figure 5.11.
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5.4 Summary

The results in this chapter show that the localisation and recursive localisation methods 

perform well for large complex scenes, where the surfaces in the scene cluster into 

many objects. Since the cost of computing a hierarchical radiosity solution is 

expensive, the only way to improve the efficiency of hierarchical radiosity is to reduce 

the input size, and hence the amount of work done.

The localisation methods presented in Chapter 4 show that this can be achieved, 

enabling large scenes containing more than 20000 surfaces, to be solved by traditional 

hierarchical radiosity in linear time. This is an important result for those who need to 

handle photo-realistic scenes in applications such as VR.

We have achieved the following:

• A new localisation algorithm for reducing the complexity of an input scene, for 

hierarchical radiosity.

• A recursive localisation algorithm for optimal cluster generation.

• Linear running time complexity for solving large scenes with hierarchical 

radiosity.

• Super-linear performance when compared to existing clustering algorithms.

The results shown in this chapter demonstrate that as the complexity of a scene grows, 

the efficiency of our localisation method improves and hence the more appropriate our 

methods become.
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Chapter 6 Multi-resolution Modelling

6.1 Introduction

The vast majority of acceleration techniques applied to radiosity have focused upon 

efficiently solving the radiosity equation and form factor computation. For complex 

scenes, the meshes that are generated can be overwhelming. Research carried out by 

Hedley [83] and Gibson [84], have attempted to reduce the complexity of the 

generated meshes using perception-based metrics.

Hedley [83] addressed the problem of scalability. Discontinuity meshing does not 

scale well with increasing input size. Hedley [83] proposed four techniques for 

reducing the number of discontinuity surfaces that need to be processed:

• Only building discontinuity surfaces with those parts of occluders which are in

silhouette with respect to the light source.

• Using a perception based metric to determine when it is not necessary to trace 

discontinuity surfaces from given occluders.

• A discontinuity line is only placed on receiving surfaces if the light source,

which caused it, makes a perceptible difference to the radiosity leaving that

surface.

• Considering only those discontinuity surfaces that form the extremal boundary 

of the shadow.

When combined, these four techniques significantly reduce the amount of processing 

that needs to be carried out and thus improves the scalability characteristics of 

discontinuity meshing.

Another way to address the problem of scalability is to analyse and reduce the 

complexity of the input scene before discontinuity meshing or radiosity computation is 

performed. Currently, this problem has only been addressed by Willmott [90] and by 

the work presented in this thesis.
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Unfortunately the methods by Hedley [83] and Gibson [84] do not perform any 

optimisations on the initial scene geometry. Therefore, the size and complexity of the 

initial scene geometry will ultimately determine the overall performance of these 

methods. Hence, the true scalability of any radiosity algorithm is dependent upon how 

well it can organise and optimise the input scene geometry, before it is committed to 

the radiosity solver.

6.2 LOD: An Alternative Method for Reducing Scene 

Complexity

To date, the vast majority of radiosity systems model each object in a scene with a 

single representation. Such a model is called a fixed resolution model The 

disadvantage of using a fixed resolution model is that, regardless of what distance an 

object maybe from the viewer, the representation of that object is always the same. 

However, the further away an object is from the viewer, the less detail the viewer is 

able to resolve. A much more efficient method of modelling objects is 

multi-resolution modelling. With multi-resolution modelling each object has a 

hierarchy of representations that vary from coarse representations to a high-detail 

models. Depending upon the distance away from the viewer, the correct level o f detail 

(LOD) of the object is chosen.

Figure 6.1 shows an example of levels o f detail for a model of a cat. The top row of 

cats shows the various levels of detail the cat model may represent in its hierarchy and 

the bottom row shows the distance at which an application might decide to draw each 

level of detail. Unfortunately there were no results included by Erikson [69] for the cat 

model in Figure 6.1, but it does demonstrate the effectiveness of LOD in 

multi-resolution modelling.
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i

Figure 6.1 An example of Levels of Detail (from Erikson [69]).

Heckbert and Garland [55] state that multi-resolution modelling is useful in radiosity. 

Traditional radiosity algorithms require each polygon in a scene to be pre-meshed into 

many small elements, in order to capture the radiosity gradients across each polygon. 

As a result a large proportion of time is spent computing insignificant light transfers 

between distant elements.

Although two-level patch-element hierarchies [22] can reduce the complexity to 0(nm)  

and hierarchical radiosity [39] to O(n), Heckbert and Garland [55] propose that if 

multi-resolution modelling is used with hierarchical radiosity, an algorithm with linear 

or better complexity can be achieved.

Unfortunately creating a multi-resolution model is difficult and such models are most 

often created by hand. Heckbert and Garland [55] discuss and evaluate six possible 

methods for generating multi-resolution models:

• Image pyramids

• Volume pyramids

• Texture and reflectance models

• Pictures from multiple angles

• Ray space

• Polygonal models
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Out of the six possible methods, polygonal models have received the most work. The 

principle challenge of using the polygonal model for multi-resolution modelling is 

polygonal simplification. Polygonal simplification is the automatic conversion of a 

detailed model to a simpler one.

There has been a recent explosion in research into polygon simplification [69] [77]. 

The main area of research for multi-resolution modelling has been in the areas of CAD 

and VR [64] [74], where typical scenes may contain hundreds of thousands of 

polygons.

To date, there has only been one significant piece of research into multi-resolution 

modelling and radiosity, which is by Willmott [90]. Willmott combined 

Garland’s [86] polygon simplification algorithm with hierarchical radiosity, to enable 

huge scenes to be rendered in a tractable amount of time.

Willmott’s method is particularly effective for scenes that contain models that are 

constructed from very finely tessellated surfaces. Here, the polygonal simplification 

algorithm can contract vast numbers of neighbouring surfaces into larger, but 

approximate surfaces.

Level of detail (LOD) representation of an object is a complex topic. With 

non-automatic multi-resolution modelling, LODs introduce a ‘popping effect’ when a 

transition occurs between two LOD representations. This is because there is a fixed 

number of representations stored within the multi-resolution hierarchy.

Research performed by Lounsbery et al. [54] introduced a multi-resolution 

representation of a mesh that consists of a simple base mesh and a sequence of local 

correction terms called wavelet coefficients. Each wavelet coefficient represents the 

detail of the input mesh at various resolutions. Thus, depending upon what level of 

detail is required, coefficients can be added or removed to achieve the desired result.

The major advantage of the method by Lounsbery et al. [54], is that the resulting 

approximation is guaranteed to be within a specified error tolerance of the original 

mesh. However, Eck et al. [65] found that the method proposed by
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Lounsbery et a l [54] had a serious shortcoming. It is restricted to meshes with 

subdivision connectivity, that is, it is restricted to the simple base mesh. Eck et a l [65] 

propose a method that reduces this shortcoming.

Hoppe [72] [81] introduced the progressive mesh, which was a new scheme for storing 

and transmitting arbitrary triangular meshes. The progressive mesh incorporates a new 

mesh simplification procedure that aims to preserve both the geometry of a mesh and 

its overall appearance. The most significant contribution this algorithm presents that 

has not been introduced before, is that it offers efficient, loss-less and continuous 

representation of an arbitrary mesh.

6.3 Combining Radiosity and Multi-resolution Modelling

Multi-resolution modelling offers the most logical approach for improving the 

performance and scalability of radiosity algorithms. Hierarchical and clustered 

hierarchical radiosity algorithms provide the most optimal methods for solving the 

radiosity equation. However, modem day rendering requirements demand that 

hundreds of thousands, if not millions of polygons must be rendered at interactive 

speeds. It is currently not possible for radiosity methods to render such scenes using 

current techniques.

The fundamental problem with the radiosity method lies with the way radiosity models 

achieve global illumination. Thus, the penalty for obtaining extremely high quality 

rendered images is paid in the amount of time needed to compute a solution.

Since it has been established that clustered hierarchical radiosity algorithms provide 

the most optimal methods for solving the radiosity equation, then the solution to the 

problem of scalability must be dealt with elsewhere. The only other source of control 

left, is over the input scene geometry. Hence, if the method for solving the radiosity 

equation cannot be made more efficient, then the quantity of input will have to be 

reduced.
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Thus, the aim of any algorithm that exploits the initial scene geometry is to optimise 

the input polygons such that the radiosity algorithm operates at peak efficiency, whilst 

generating high quality images with the reduced input. Multi-resolution modelling 

offers the best means for achieving this goal. Currently, level of detail in 

multi-resolution modelling is mainly used for reducing the complexity of distant 

objects. Thus, objects that are further away from the users view point, will be 

represented by lower resolution definitions.

However, the relative positioning of objects within a scene is not the only factor that 

influences the level of detail an object should be represented at. The lighting within a 

scene is the most influential factor for determining the level of detail of objects. For 

example, objects that are totally occluded or lie within areas of a scene that receive 

relatively little light, should be represented by a corresponding lower resolution model, 

even though those objects may be close to the users viewpoint. Unfortunately, in the 

main application areas of multi-resolution modelling (e.g. VR and CAD), the 

influence/effects of lighting on the resolution of objects within are scene are typically 

overlooked.

6.3.1 The Proposed Algorithm

To achieve an algorithm that incorporates multi-resolution modelling and hierarchical 

radiosity is relatively simple, but such an algorithm would require the following 

non-trivial algorithms:

• A flexible clustering algorithm that form tight bounding boxes around distinct 

objects.

• A polygon/mesh simplification algorithm.

• A hierarchical radiosity algorithm.

The results presented in Chapter 5 have already shown that the localisation method 

provides a highly scalable algorithm for solving large, complex scenes. Hence, the 

proposed algorithm would essentially utilise multi-resolution modelling to further 

optimise the surfaces contained within the clusters, which were generated by the 

localisation method described earlier in this thesis. Therefore, we present a prototype

150



to demonstrate the feasibility of constructing such a system and present preliminary 

results showing the performance gained by this system.

We begin by clustering a scene in the same fashion as the localisation method. Then, 

using the same light transport information gathered for the current cluster, we 

determine an appropriate level of detail representation for that cluster.

There are two basic control factors for determining the level of detail a cluster should 

be represented at:

• The level of illumination falling on a cluster.

• The distance between the cluster and the user’s viewpoint.

Ideally, all multi-resolution control factors should be view independent, due to the 

view independence of radiosity. Unfortunately the second control factor is an entirely 

view dependent metric. However, it is an essential parameter in multi-resolution 

modelling and hence is included here.

The primary control of level of detail representation will be from the illumination of 

the scene. Thus, for clusters that lie in dark areas of the scene, either because there is 

little surrounding illumination or the cluster is occluded, a relatively coarse level of 

detail representation is required. Conversely, clusters that are well illuminated would 

be represented at a correspondingly finer level of detail. However, it is generally 

likely that there will be clusters that are very well lit, but are relatively distant. These 

clusters would be better represented at a coarser level of detail. Hence, we apply the 

second control factor to revise the current estimate for the level of detail representation 

of a cluster.

Once all clusters have been represented at an appropriate level detail, the clusters are 

then detached from the scene and rendered independently by hierarchical radiosity. 

Figure 6.2 shows the basic algorithm.

151



Cluster scene Reintegrate clusters
Load scene 
geometry

Detach clusters 
from scene

Apply level o f  detail 
to all clusters

Solve each cluster 
by hierarchical 

radiosity

Figure 6.2 A basic algorithm for combining level of detail and the localisation method.

To generate multi-resolution models, we use Garland’s polygon simplification 

algorithm [86] to generate polygon meshes at various levels of detail. Incidentally, 

this polygon simplification algorithm was also used as a base algorithm by 

Willmott [90].

Garland’s polygon simplification algorithm takes a single argument that specifies the 

desired number faces the input model will be reduced to. Unfortunately, there were no 

other mechanisms for controlling the level of detail produced by this algorithm. 

Hence, with no metrics for guiding the simplification, the levels of detail 

representations were performed manually.

Figure 6.3 shows an example of the effectiveness of multi-resolution modelling. In 

this example we show the model of the plant at two levels of detail. The first image, 

Figure 6.3(a), is the control image that shows the plant model at it original resolution 

(705 surfaces). Figure 6.3(b) shows the same scene but the level of detail of the plant 

model has been reduced to 600 surfaces. Finally, Figure 6.3(c) shows the plant model 

that is constructed from only 229 surfaces.

It can clearly be seen from Figure 6.3 that there is very little perceptible difference 

between the lower resolution models and the original image. As a result, for this 

particular scene the plant model can be represented with only a third of its original 

number of surfaces. Hence, a significant saving is made.

152



nmaga
Radiance Rendering Ray Tracing Tone Mapping Camera

Radiance Rendering Ray Tracing i Mapping

Radiance Rendering Ray Tracing Tone Mapping

(c)

Figure 6.3 Multi-resolution models of a plant with (a) 705 (original), (b) 600

and (c) 229 surfaces.
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6.3.2 Results

To test the performance o f the combined localisation method and multi-resolution 

modelling, we reuse the test scenes shown in Figure 5.10 and Figure 5.11. This will 

enable a direct comparison between the localisation method and this combined 

method.

Figure 6.4 shows the results for a portion o f the scene in Figure 5.10(a) obtained by the 

localisation (Figure 6.4(a)) and localisation with multi-resolution modelling (Figure 

6.4(b)) methods.

testl.mgf

(a) (b)

Figure 6.4 (a) Original model containing 1678 surfaces, (b) Lower resolution model

containing 1134 surfaces.

It can be seen from Figure 6.4 that there is little perceptible difference between the two 

rendered images. In this scene, multi-resolution modelling was primarily used to 

represent lower levels o f detail for the chair and the pot plant on the desk.

The level to which polygon simplification was applied to Figure 6.4(b) was 

conservative. Hence, it would be possible to obtain even more coarse levels of detail 

for the objects in the scene. However at this level o f detail, multi-resolution modelling
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achieved a reduction o f 30% in the total number o f surfaces in the scene, whilst 

enabling a high quality image to be rendered.

The following table (Table 6.1) shows the total computation times for rendering the 

scenes in Figure 5.10 and Figure 5.11, for the combined LOD and localisation method.

Rendering Time (s)

Scene Localisation Recursive Localisation LOD+Recursive Localisation

Figure 5.10(a) 557.55 764.01 701.07

Figure 5.10(b) 1403.95 1416.68 1248.8

Figure 5.10(c) 1897.95 1911.58 1569.99

Figure 5.10(d) 2443.97 2167.94 2162.33

Figure 5.11(a) 3678.76 2237.45 1864.79

Figure 5.11(b) 5674.45 3852.95 2831.76

Figure 5.11(c) 7022.81 4549.94 3651.18

Table 6.1 Time comparisons between the localisation methods and LOD+localisation.

Rendering Time Comparison
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1 0 0 0 0  1 5 0 0 0  2 0 0 0 0  2 5 0 0 0  3 0 0 0 0
Number of input surfaces

5 0 0 0

Localisation
LOD+Recursive Localisation

Recursive Localisation

Figure 6.5 Rendering time comparisons between the localisation, recursive 

localisation and LOD+recursive localisation methods.
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Figure 6.5 shows a graph comparing the total rendering times obtained by the 

localisation algorithms in Section 5.3 and the combined LOD and recursive 

localisation algorithm described in this chapter.

As mentioned above, conservative estimates for LOD representation were used in 

these experiments. This was because the LOD models were constructed manually and 

so the results shown in Table 6.1 and Figure 6.5 could be improved. However, the 

results gained by this prototype, show that combining LOD with the localisation 

algorithms enhances the overall performance for solving hierarchical radiosity.

6.4 Summary

In this chapter, we have discussed multi-resolution modelling. The benefits of 

multi-resolution modelling in VR and CAD simulations, is impressive. This technique 

has enabled walkthroughs of scenes containing millions of triangles [74] at interactive 

rates.

Multi-resolution modelling would be an ideal method for reducing the scene 

complexity for radiosity. Work done by Willmott [90] has confirmed this. However, 

Willmott’s method does not make use of the lighting within the environment to guide 

the level of detail of objects within a scene. Instead, Willmott replaces the patch 

hierarchies that would be generated by hierarchical radiosity, with multi-resolution 

models.

Although significant speedups have been obtained by Willmott [90], the construction 

of the test scenes are such that the majority of all surfaces are contained within a few 

highly complex objects. In general scenes, this is not usually the case. A scene will 

typically contain many, less complex objects. Hence the results of Willmott’s 

algorithm [90] will be less dramatic.

However, if multi-resolution modelling was applied to the localisation algorithm 

presented earlier in this thesis, the complexity of the localised clusters could be further
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reduced. Thus in this chapter, we have combined level of detail with the localisation 

algorithm.

We have shown that multi-resolution models can represent objects contained within 

clusters generated by the localisation algorithm described in previous chapters. The 

results gained in this chapter show that the time taken to render the large, complex 

scenes in Figure 5.11 for the combined LOD and recursive localisation algorithm 

produces a consistent 100% performance increase. Even though the LOD models were 

constructed by hand, this is still a significant result and thus multi-resolution modelling 

should always be considered in radiosity systems that solve large, complex scenes.

Unfortunately, the current implementation for this combined LOD and recursive 

localisation algorithm method has two major shortcomings:

• LODs are performed manually.

• No facility is provided for LOD storage, thus LODs must always be 

recomputed on the fly.

These two shortcomings must be resolved if large, complex scenes are to be solved by 

radiosity methods. However, the purpose for the implementation and experimentation 

of a combined hierarchical radiosity and multi-resolution modelling system presented 

in this chapter, is to demonstrate the feasibility and practicability of such a system.
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Chapter 7 Conclusion

As we have stated in many sections of this thesis, the demand for high quality 

computer graphics images is ever-increasing. Simple images that were acceptable two 

decades ago are no longer satisfactory. Hence, the demand for realism now extends 

throughout the various user communities and embraces such diverse applications as 

architectural representations, computer games, CAD, medical imaging and the film 

and entertainment industry. Unfortunately, the cost of realism is high in terms of 

computational complexity and real time construction of such images, is still beyond 

the power of available systems.

The highest quality realism is obtained from radiosity images, but, computing the
• ♦ • 9radiosity solution for a scene is a time consuming process, requiring O(n ) space and 

time complexity to solve the radiosity matrix. Thus, early work in radiosity 

concentrated upon the efficient computation of this matrix. As a result, efficient 

methods for computing form-factors and iterative methods for solving the radiosity 

matrix were developed.

This led to the implementation of the ‘progressive refinement radiosity’ algorithm, 

which was the first radiosity system to implement the new paradigm of ‘shooting’ light 

into an environment, and was also the first to attempt a multi-resolution mesh 

representation of the surfaces within a scene, albeit a two-level sub-structure of 

patches and elements [22][31].

Although progressive refinement radiosity still required O(n2) time to arrive at a 

complete radiosity solution, it was a unique algorithm that enabled partial radiosity 

solutions to be rendered after every iteration, in O(«) time. This was a very important 

feature, as it enabled scenes to be previewed at increasingly more accurate stages of 

progressive refinement. Hence a decision could be made on whether a solution should 

run to completion or be terminated.
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The hierarchical radiosity algorithm [39] eventually superseded progressive refinement 

radiosity. Hierarchical radiosity has been without a doubt, the most valuable method 

for the accurate and rapid radiosity solution for scenes of modest sizes. The O(n) 

running time complexity of this algorithm represents the most optimal efficiency for 

arriving at a complete solution. However, the O (^) linking time limits the overall size 

of scenes that hierarchical radiosity can manage.

Clustering techniques [57][59] have since been incorporated into hierarchical radiosity 

algorithms and have significantly improved the running time complexity from 

O(A2 + n) to 0(&log& + n). Thus, clustered hierarchical radiosity algorithms represent 

the most efficient methods for solving the radiosity of a scene.

In this thesis, we have presented a new approach to clustering for hierarchical 

radiosity. The objective for this new approach was to improve the running time 

complexity of hierarchical radiosity and thus its scalability, so that large, complex 

scenes can be rendered in a tractable amount of time.

We have shown that the use of clustering to localise clusters of surfaces, reduces the 

size of input that needs to be solved by hierarchical radiosity. As a result, significant 

increases in performance have been achieved. The results of our clustering strategy 

show that our localisation technique scales linearly with increasing complexity of the 

input scene.

The most notable achievements obtained from our localisation algorithms are:

• A simple clustering algorithm that can be recursively reapplied,

• The quality of rendered shadows are unaffected by clustering,

• The running time complexity for linking is linear instead of quadratic,

• The total running time complexity for rendering complex scenes is linear,

• For very complex scenes, the recursive localisation method is more than 50% 

faster than the localisation method,

• When compared to existing clustered hierarchical algorithms, both the 

localisation and recursive localisation methods achieve super-linear 

performance.
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The simple bounding box technique proposed earlier, has proved to be a quick and 

simple method for generating clusters. It also has the advantage of being able to 

recursively locate sub-clusters.

One problem with clustering algorithms is their insensitivity to the illumination of a 

scene. Since clustering algorithms operate solely on the scene geometry, it is usually 

not possible to control the behaviour of clustering in a fashion more suitable to the 

illumination of a scene. Thus it is possible for clusters to contain deep hierarchies of 

sub-clusters. By designing a clustering method that initially gathers surfaces into 

general clusters, only clusters that are in areas with significant illumination will need 

to be refined. As a result, we were able to keep the cost of clustering to a minimum.

An important feature of our localisation method is that there is no degradation in the 

quality of the shadows cast by the surfaces within a cluster. One of the main problems 

with isotropic clustering algorithms is that the surfaces contained within, very rarely 

behave isotropically. As a result, shadows tend to become washed out. This is not the 

case for our algorithm. In our algorithm, we add all portions of the surrounding 

geometry that lie within the extremal shadow boundary cast by a cluster, into the 

cluster. Then each cluster is solved independently by hierarchical radiosity. With this 

approach, there is no loss of shadow quality.

However, the current implementation of the localisation technique is not without 

drawbacks. The first major limitation of this method is that a single, user defined, 

BFA threshold is used to determine whether clusters are deemed suitable for 

detachment. This scheme works well for scenes that have an even illumination level 

throughout the environment. However, for scenes that have varying levels of 

illumination, this simple metric is insufficient and hence clusters will not be correctly 

selected for detachment. Thus, further research should be carried out into finding an 

automatic and dynamic metric for determining cluster detachment.

The second drawback is that when a cluster is detached from the main scene, any 

energy contributions it would have made back into the scene are lost. The main effect 

of this is usually a reduction in the overall brightness of a scene. However, careful 

selection of the BFA threshold can keep the amount of energy lost to a minimum. A
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viable solution to this problem would be to leave the shell of the cluster behind. The 

shell would represent an approximation of the energy transported by the surfaces 

within the cluster, in much the same way as traditional clustering methods for 

hierarchical radiosity.

Today, there is an ever increasing demand for complex environments to be rendered. 

Not only are these environments required to be rendered at interactive rates, they must 

also be of photo-realistic quality. Due to the view-independence of radiosity, it is a 

logical choice for rendering virtual environments. However, the running time 

complexity of current radiosity algorithms means that they cannot compute radiosity 

solutions for complex scenes at interactive rates. Hence radiosity is rarely used in 

modem day VR simulations.

Since there is a large demand for realistic rendering of complex VR environments, 

especially in the computer games industry, there has been a sizeable amount of 

research into level of detail representation of objects in multi-resolution modelling. 

Multi-resolution modelling has been used successfully to enable huge virtual 

environments to be rendered at interactive rates [74]. However most of these 

simulations utilise very simple lighting and shading techniques for rendering. 

Therefore, to achieve photo-realistic rendering would require radiosity or ray-tracing 

algorithms.

Multi-resolution modelling is the next step forward for photo-realistic rendering 

algorithms to achieve the performance and scalability for rendering huge scenes. It has 

already been shown by Willmott [90], that multi-resolution modelling can be applied 

to hierarchical radiosity. However, Willmott’s method [90] does not make use of the 

illumination within the scene to guide the level of detail which objects should be 

represented at. Instead, Willmott only demonstrates the effectiveness of the polygon 

simplification algorithm by Garland [86]. However, the results by Willmott [90] 

confirm that reducing the complexity of the input geometry is the only method that 

will significantly improve the performance of hierarchical radiosity. This is also 

confirmed by the results gained from our localisation algorithms.

161



The localisation method presented in this thesis aims at reducing the scene complexity 

by using the light transported between clusters to determine whether a cluster of 

surfaces can be rendered independently. Thus, each cluster contains a reduced number 

of surfaces that need to be solved by hierarchical radiosity. In contrast, Willmott uses 

a direct approach of simplifying the geometry within the scene. Either way, both 

methods aim to reduce the computation time of hierarchical radiosity by reducing the 

number of surfaces.

At the present time, our localisation method does not optimise the surfaces contained 

within the localised clusters. Therefore, it is very possible that objects within the scene 

could be optimised considerably by multi-resolution modelling. Preliminary results 

have been obtained from our prototype system that combines the recursive localisation 

method with multi-resolution modelling. The results shown in Section 6.3 suggest that 

a 100% increase in performance is attainable, even with conservative LOD 

representations for large complex scenes. Hence, with improved metrics it is possible 

to further reduce the level of detail of the objects within the clusters in the scene.

Unfortunately, the prototype system is limited in two important ways. Firstly, the 

construction of the LOD representations was performed manually. Secondly, there 

was no facility to store the LOD representations within the system. However, research 

into progressive meshes by Hoppe [72] [81] appears to provide the necessary 

framework for the storage of multi-resolution models and also the smooth progression 

between adjacent LOD representations.

Thus, as a proposal for further work, an automatic system for generating and storing 

multi-resolution models combined with hierarchical radiosity should be investigated. 

Such a system would require perception based metrics for the automatic determination 

of the level of detail for all clustered objects, according to the illumination within a 

scene.
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