63 research outputs found

    Data Fusion for Close‐Range Detection

    Get PDF
    Two approaches for combining humanitarian mine detection sensors are described in parallel, one based on belief functions and the other one based on possibility theory. In a first step, different measures are extracted from the sensor data. After that, based on prior information, mass functions and possibility distributions are derived. The combination of possibility degrees, as well as of masses, is performed in two steps. The first one applies to all measures derived from one sensor. The second one combines results obtained in the first step for all sensors used. Combination operators are chosen to account for different characteristics of the sensors. Comparison of the combination equations of the two approaches is performed as well. Furthermore, selection of the decision rules is discussed for both approaches. These approaches are illustrated on a set of real mines and non‐dangerous objects and using three sensors: an infrared camera, an imaging metal detector and a ground‐penetrating radar

    Technologies for safe and resilient earthmoving operations: A systematic literature review

    Get PDF
    Resilience engineering relates to the ability of a system to anticipate, prepare, and respond to predicted and unpredicted disruptions. It necessitates the use of monitoring and object detection technologies to ensure system safety in excavation systems. Given the increased investment and speed of improvement in technologies, it is necessary to review the types of technology available and how they contribute to excavation system safety. A systematic literature review was conducted which identified and classified the existing monitoring and object detection technologies, and introduced essential enablers for reliable and effective monitoring and object detection systems including: 1) the application of multisensory and data fusion approaches, and 2) system-level application of technologies. This study also identified the developed functionalities for accident anticipation, prevention and response to safety hazards during excavation, as well as those that facilitate learning in the system. The existing research gaps and future direction of research have been discussed

    Belief functions contextual discounting and canonical decompositions

    Get PDF
    AbstractIn this article, the contextual discounting of a belief function, a classical discounting generalization, is extended and its particular link with the canonical disjunctive decomposition is highlighted. A general family of correction mechanisms allowing one to weaken the information provided by a source is then introduced, as well as the dual of this family allowing one to strengthen a belief function

    Cartographie De L’état Du Couvert VĂ©gĂ©tal Du Nord De La CĂŽte D’ivoire À Partir D’images Satellites: Exemple De La Zone De Korhogo

    Get PDF
    The purpose of this study is to determine the state of the vegetation cover in the region of Korhogo through remote sensing. Nowadays, the problem of desertification in the Sahel is serious. This could be explained by the phenomenon of climate change. We want to map the state of the vegetation cover in the study area. This study therefore focuses on the state of the vegetation cover in the region of Korhogo in northern Cîte d’Ivoire. We will use one Landsat satellite image from December 16th 2000 and proceed with image processing. Processing techniques by the normalized difference vegetation index, the index armor and colorful composition 472. After these treatments in our pictures, we observe the behavior of vegetation. We can then get an overview of the vegetation in this area

    Landmine Detection and Discrimination using High-Pressure Waterjets

    Get PDF
    Methods of locating and identifying buried landmines using high-pressure waterjets were investigated. Methods were based on the sound produced when the waterjet strikes a buried object. Three classification techniques were studied, based on temporal, spectral, and a combination of temporal and spectral approaches using weighted density distribution functions, a maximum likelihood approach, and hidden Markov models, respectively. Methods were tested with laboratory data from low-metal content simulants and with field data from inert real landmines. Results show that the sound made when the waterjet hit a buried object could be classified with a 90% detection rate and an 18% false alarm rate. In a blind field test using 3 types of harmless objects and 7 types of landmines, buried objects could be accurately classified as harmful or harmless 60%-90% of the time. High-pressure waterjets may serve as a useful companion to conventional detection and classification methods

    Imaging : making the invisible visible : proceedings of the symposium, 18 May 2000, Technische Universiteit Eindhoven

    Get PDF
    • 

    corecore