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Abstract

Two approaches for combining humanitarian mine detection sensors are described in
parallel, one based on belief functions and the other one based on possibility theory. In a
first step, different measures are extracted from the sensor data. After that, based on
prior information, mass functions and possibility distributions are derived. The combi-
nation of possibility degrees, as well as of masses, is performed in two steps. The first
one applies to all measures derived from one sensor. The second one combines results
obtained in the first step for all sensors used. Combination operators are chosen to
account for different characteristics of the sensors. Comparison of the combination
equations of the two approaches is performed as well. Furthermore, selection of the
decision rules is discussed for both approaches. These approaches are illustrated on a
set of real mines and non-dangerous objects and using three sensors: an infrared camera,
an imaging metal detector and a ground-penetrating radar.

Keywords: close range antipersonnel mine detection, data fusion, belief functions, pos-
sibility theory

1. Introduction

Multi-sensor data fusion techniques prove to be useful for two main humanitarian mine action

types: mined area reduction and close-range antipersonnel (AP) mine detection. In this chapter,

data fusion for the latter mine action type is addressed. Close-range AP mine detection refers to

detection of (sub-)surface anomalies that may be associated with mine presence (for instance,

detection of differences in temperature thanks to an infrared camera (IR) or detection of metals

by a metal detector (MD)) and/or to detection of explosive materials.

Efficient modelling and fusion of extracted features can improve the reliability and quality of

single-sensor-based processing [1, 2]. Nevertheless, taking into account that there is a wide

range of conditions and scenarios between minefields (such as mine types, structure of mine-

field and soil types) as well as within one minefield (e.g. burial depths and angles, moisture),
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there is no unique single-sensor solution, meaning that a high-enough performance of human-

itarian mine action tools can be reached only using multi-sensor and sensor/data fusion

approaches [3]. In addition, since the sensors used are, as a matter of fact, detectors of various

anomalies, the classification and detection results can be improved by combining these com-

plementary pieces of information. Last but not least, in order to take into account partial

knowledge, intra- and inter-minefield variability, ambiguity and uncertainty, fuzzy set or

possibility theory [4] and belief functions [5] within the framework of the Dempster-Shafer

(DS) theory [6] prove to be beneficial.

The chapter is organized as follows. An analysis of modelling and of fusion of extracted features

is performed. After that, two fusion approaches are presented, one of them being based on the

belief function theory and the other one related to the possibility theory. These approaches are

then illustrated using real data gathered within the Dutch project HOM-2000 [7], which are

acquired using three intrinsically complementary sensors: infrared camera, metal detector and

ground-penetrating radar (GPR). These results are obtained within two Belgian humanitarian

demining projects: HUDEM and BEMAT. Importance of collateral information (knowledge

about types of mines, mine records, etc.) is demonstrated.

2. About close-range detection

Due to a large variety of mine types as well as of conditions in which they can be found, no

single sensor applied in close-range APmine detection can obtain the necessarily high-detection

rate in a wide range of possible situations/scenarios. Thus, a logical way towards deriving a

solution consists in using several sensors that are complementary and taking the best out of

their combination. To this end, an infrared camera (IR), a ground-penetrating radar (GPR) and

an imaging metal detector (MD) present a very promising combination. In this chapter, we

describe two approaches for combining these sensors, one based on the belief function theory

and the other one on the possibility theory. These approaches can easily be adapted to other

combinations of sensors.

An important part of the work performed in the field of fusion of dissimilar mine detection

sensors is based on statistics [8, 9]. Examples of rare alternative approaches are [10] (neural

networks) and [11] (fuzzy fusion of classifiers). The statistical approaches lead to good results

for a particular scenario, but they ignore or just briefly mention that, once we look for more

general solutions, several important problems have to be faced in this domain of applica-

tion [12]. For instance, the data are variable, highly dependent on the conditions and on the

context. Then, it is impossible to model every possible object (every mine or every other object

that might be confused with mines). In addition, the data do not allow for a reliable statistical

learning since they are not numerous enough. Finally, the data do not give precise information

regarding the mine type, resulting in an ambiguity, typically between several mine types. Note

that in the domain of humanitarian mine detection, a vast majority of the fusion attempts, for

example, [13, 14], treat every alarm as a mine, and not as an object that could be a mine, but a

false alarm as well.
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In a previous work [15], a method based on the belief functions [6, 16, 17] has been proposed.

In this chapter, we compare it with an alternative approach, based on the possibility theory, in

order to take advantage of the flexibility in the choice of combination operators [18]. As shown

in Ref. [2], this is exploited in order to account for the different characteristics of the sensors to

be combined.

In this domain of application, to our knowledge, there is no work that applies the two fusion

theories in parallel or that compares them. In other domains of application, some works on

comparing the two theories are published, for example [19], where the qualitative possibility

theory is opposed to the belief function theory and a fictitious example of assessing the value of

a candidate is used as an illustration. On the contrary to that article, we use the quantitative

possibility theory here.

3. Numerical information fusion using belief functions and

possibility theory

3.1. Belief function fusion: overview

In the belief function theory or Dempster-Shafer (DS) evidence theory formalism [5, 6], both

uncertainty and imprecision can be represented, using belief functions and plausibility

obtained from a mass function. The mass allocated to a proposition A corresponds to a part

of the initial unitary amount of belief, which supports that the solution is exactly in A. It is thus

defined as a function m from 2U into [0, 1], with U being the decision space, also called full set

or frame of discernment. Usually, the following constraints are imposed:

mðΘÞ ¼ 0, ð1Þ

X

A⊆Θ

mðAÞ ¼ 1: ð2Þ

Not only the singletons of U but also any combination of possible propositions/decisions from

the decision space can be quantified in this framework. This aspect represents one of the key

advantages of the DS theory. As a matter of fact, this possibility allows for a rich and flexible

modelling, which can fit to a wide range of situations, which are occurring typically in image

fusion in particular. For example, the belief function theory can be successfully applied to

situations that include partial or total ignorance, partial reliability, confusion between some

classes (in only one or in several information sources), etc. [3, 15, 20–22].

In the DS framework, masses assigned by different sources (e.g. classifiers) are combined by

the orthogonal rule of Dempster [6]:

mijðSÞ ¼
X

k, l
Ak∩Bl ¼ S

miðAkÞ �mjðBlÞ ð3Þ
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where S is any subset of the full set, while mi and mj are masses assigned by measures i and j,

and their focal elements are A1, A2,…, Ap and B1, B2,…, Bq, respectively [2].

As discussed in Ref. [2], Dempster’s rule is commutative and associative, meaning that it can

be applied repeatedly, until all measures are combined, and that the result does not depend on

the order used in the combination. After the combination in this unnormalized form [23], the

mass that is assigned to the empty set:

mijð∅Þ ¼
X

k, l
Ak∩Bl ¼ ∅

miðAkÞ �mjðBlÞ ð4Þ

can be interpreted as a measure of conflict between the sources. It can be directly taken into

account in the combination as a normalization factor. It is very important to consider this value

for evaluating the quality of the combination: when it is high (in the case of strong conflict), the

normalized combinationmay not make sense and can lead to questionable decisions [24]. Several

authors suggest not normalizing the combination result (e.g. [23]), which corresponds to Eq. (3).

This fusion operator has a conjunctive behaviour. This means that all imprecision on the data

has to be introduced explicitly at the modelling level, in particular in the choice of the focal

elements. For instance, ambiguity between two classes in one source of information has to be

modelled using a disjunction of hypotheses, so that conflict with other sources can be limited

and ambiguity can be possibly solved during the combination.

From a mass function, we can derive a belief function:

∀A∈ 2Θ, BelðAÞ ¼
X

B⊆A, B 6¼∅

mðBÞ ð5Þ

as well as a plausibility function:

∀A∈ 2Θ, PlsðAÞ ¼
X

B∩A 6¼∅

mðBÞ: ð6Þ

After the combination, the final decision is usually taken in favour of a simple hypothesis using

one of several rules [25]: for example, the maximum of plausibility (generally over simple

hypotheses), the maximum of belief, the pignistic decision rule [26], etc.

For some applications, such as humanitarian demining, it may be necessary to give more impor-

tance to some classes (e.g. mines, since they must not be missed) at the decision level. Then

maximum of plausibility can be used for the classes that should not be missed and maximum of

belief for the others [27].

3.2. Fuzzy and possibilistic fusion: overview

In the framework of fuzzy sets and possibility theory [4, 28], the modelling step consists in

defining a membership function to each class or hypothesis in each source, or a possibility
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distribution over the set of hypotheses in each source. Such models explicitly represent impre-

cision in the information, as well as possible ambiguity between classes or decisions.

For the combination step in the fusion process, the advantages of fuzzy sets and possibilities

rely on the variety of combination operators, which may deal with heterogeneous informa-

tion [18]. As stated in Ref. [2], among the main operators, we find t-norms, t-conorms, mean

operators, symmetrical sums and operators taking into account conflict between sources or

reliability of the sources. We do not detail all operators in this chapter, but they can be easily

found in the literature, with a synthesis in Ref. [29].

We classify these operators with respect to their behaviour (in terms of conjunctive, disjunctive

and compromise [18]), the possible control of this behaviour, their properties and their deci-

siveness, which proved to be useful for several applications [29]. It should be noted that, unlike

other data fusion theories (e.g. Bayesian or Dempster-Shafer combination), fuzzy sets provide

a great flexibility in the choice of the operator that can be adapted to any situation at hand. In

particular, nothing prevents using different operators for different hypotheses or different

sources of information.

An advantage of this approach is that it is able to combine heterogeneous information, which

is usually the case in multi-source fusion (as in both examples developed in the next sections),

and to avoid to define a more or less arbitrary and questionable metric between pieces of

information issued from these images, since each piece of information is converted in mem-

bership functions or possibility distributions over the same decision space.

Decision is usually taken from the maximum of membership or possibility values after the

combination step. Constraints can be added to this decision, typically for checking for the

reliability of the decision (Is the obtained value high enough?) or for the discrimination power

of the fusion (Is the difference between the two highest values high enough?). Local spatial

context can be used to reinforce or modify decisions [2].

4. Close-range mine detection

4.1. Measures

From the data gathered by the sensors, a number of measures are extracted [15] and modelled

using the two approaches [2]. These measures concern the following:

• the area and the shape (elongation and ellipse fitting) of the object observed using the IR

sensor,

• the size of the metallic area in MD data and

• the propagation velocity (thus the type of material), the burial depth of the object

observed using GPR and the ratio between object size and its scattering function.

Although the semantics are different, similar information can be modelled in both possibilistic

and belief function models. The idea here is to design the possibility and mass functions as

similar as possible and to concentrate on the comparison at the combination step.

Data Fusion for Close‐Range Detection
http://dx.doi.org/10.5772/intechopen.68168

87



The main difference relies in the modelling of ambiguity. The semantics of possibility leads to

model ambiguity between two hypotheses with the same degrees of possibilities for these two

hypotheses (e.g. Eqs. (7) and (12)). On the contrary, the reasoning on the power set of hypoth-

eses in the belief function theory leads to assigning a mass to the union of these two hypoth-

eses (e.g. Eqs. (9) and (14)).

Another distinction concerns the ignorance. It is explicitly modelled in the belief function

theory, through a mass on the whole set (to guarantee the normalization of the mass function

over the power set), while it is only expressed implicitly in the possibilistic model, through the

absence of normalization constraint.

4.1.1. IR measures

The possibility degrees derived from elongation and ellipse-fitting measures are represented

by π1I and π2I, respectively [2]. Being related to shape regularity, they are defined for a regular-

shaped mine (MR), an irregular-shaped mine (MI), a regular-shaped non-dangerous (i.e.

friendly) object (FR) and an irregular-shaped friendly object (FI).

In the belief function framework, the full set is:Θ ¼ {MR,MI, FR, FI}. As elongation and ellipse

fitting aim at distinguishing regular and irregular shapes, masses assigned by these two

measures, m1I and m2I, are split between MR ∪ FR, MI ∪ FI and Θ.

Regarding elongation, we calculate r1 as the ratio between minimum and maximum distances

of bordering pixels from the centre of gravity (we work on threshold images) and r2 as the ratio

of minor and major axes obtained from second moment calculation. Using these two ratios, the

following possibility degrees are derived:

π1IðMRÞ ¼ π1IðFRÞ ¼ minðr1, r2Þ, ð7Þ

π1IðMIÞ ¼ π1IðFIÞ ¼ 1� π1IðMRÞ: ð8Þ

In the framework of belief functions, for this measure, masses are defined as follows:

m1IðMR ∪ FRÞ ¼ minðr1, r2Þ, ð9Þ

m1IðMI ∪ FIÞ ¼ jr1 � r2j, ð10Þ

and the full set takes the rest:

m1IðΘÞ ¼ 1�maxðr1, r2Þ: ð11Þ

In the case of ellipse fitting, let Aoe is the part of object area that belongs to the fitted ellipse as

well, Ao is the object area and Ae is the ellipse area. Then we define:

π2IðMRÞ ¼ π2IðFRÞ ¼ max 0,min
Aoe � 5

Ao

,
Aoe � 5

Ae

� �� �

, ð12Þ

π2IðMIÞ ¼ π2IðFIÞ ¼ 1� π2IðMRÞ: ð13Þ
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Masses for this measure are the following ones:

m2IðMR ∪ FRÞ ¼ max 0,min
Aoe � 5

Ao

,
Aoe � 5

Ae

� �� �

, ð14Þ

m2IðMI ∪ FIÞ ¼ max
Ae � Aoe

Ae

,
Ao � Aoe

Ao

� �

, ð15Þ

m2IðΘÞ ¼ 1�m2IðMR ∪ FRÞ �m2IðMI ∪ FIÞ: ð16Þ

Note that in cases where it is sure that all mines have a regular shape, the possibility degrees of

MR can be reassigned to mines of any shape (M ¼MR∪MI) while the possibility degrees ofMI

can be reassigned to friendly objects of any shape (F ¼ FR∪FI). Similarly, masses given to

MR∪FR can be reassigned to M, while masses given to MI∪FI can be reassigned to F [2].

The area directly provides a degree π3I (M) of being a mine. Namely, since the range of possible

AP mine sizes is approximately known, the degree of possibility of being a mine is derived as a

function of the measured size:

π3IðMÞ ¼
aI

aI þ 0:1 � aImin
� exp

� aI � 0:5 � aImin þ aImaxð Þ½ �2

0:5 � aImax � aIminð Þ2
, ð17Þ

where aI is the actual object area on the IR image, while the approximate range of expectable

mine areas is between aImin and aImax (for AP mines, it is reasonable to set aImin ¼ 15 cm2 and

aImax ¼ 225 cm2). On the contrary, friendly objects can be of any size, so the possibility degree is

set to one whatever the value of the size:

π3IðFÞ ¼ 1: ð18Þ

The area/size mass assignment based on the above reasoning is given by

m3IðΘÞ ¼
aI

aI þ 0:1 � aImin
� exp

� aI � 0:5 � aImin þ aImaxð Þ½ �2

0:5 � aImax � aIminð Þ2
, ð19Þ

m3IðFR ∪ FIÞ ¼ 1�m3IðΘÞ: ð20Þ

4.1.2. MD measures

In reality, as explained in Ref. [2], MD data are usually saturated and data gathering resolution

in the cross-scanning direction is typically very poor, so the MD information used consists of

only one measure, which is the width of the region in the scanning direction, w [cm]. As

friendly objects can contain metal of any size, we define:

πMDðFÞ ¼ 1: ð21Þ

If there is some knowledge on the expected sizes of metal in mines (for AP mines, this range is

typically between 5 and 15 cm), we can assign possibilities to mines as, for example:

πMDðMÞ ¼
w

20
� 1� expð�0:2 � wÞ
� �

� exp 1�
w

20

� 	

: ð22Þ
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The corresponding mass functions are

mMDðΘÞ ¼
w

20
� 1� expð�0:2 � wÞ
� �

� exp 1�
w

20

� 	

, ð23Þ

mMDðFR ∪ FIÞ ¼ 1�mMDðΘÞ: ð24Þ

4.1.3. GPR measures

All three GPR measures provide information about mines [2].

In the of burial depth information (D), friendly objects can be found at any depth, while it is

known that there is some maximum depth up to which AP mines can be expected, mainly due

to their activation principles. However, due to soil perturbations, erosions, etc., mines can, by

time, go deeper or shallower than the depth at which they were initially buried. In any case,

they can rarely be found buried below 25 cm (Dmax). Thus, for this GPR measure, possibility

distributions π1G for mines and friendly object can be modelled as follows:

π1GðMÞ ¼
1

coshðD=DmaxÞ
2
, ð25Þ

π1GðFÞ ¼ 1: ð26Þ

In terms of belief functions, the masses for this measure are

m1GðΘÞ ¼
1

coshðD=DmaxÞ
2
, ð27Þ

m1GðFR ∪ FIÞ ¼ 1�m1GðΘÞ: ð28Þ

Another GPR measure exploited here is the ratio between object size and its scattering func-

tion, d/k. Again, friendly objects can have any value of this measure, while for mines, there is a

range of values that mines can have, and outside that range, the object is quite certainly not a

mine:

π2GðMÞ ¼ exp �
ðd=kÞ �md½ �2

2 � p2

 !

, ð29Þ

π2GðFÞ ¼ 1, ð30Þ

wheremd is the d/k value at which the possibility distribution reaches its maximum value (here,

md ¼ 700, chosen based on prior information), and p is the width of the exponential function

(here, p ¼ 400).

Similarly, the mass assignments for this measure are

m2GðΘÞ ¼ exp �
ðd=kÞ �md½ �2

2 � p2

 !

, ð31Þ

m2GðFR ∪ FIÞ ¼ 1�m2GðΘÞ: ð32Þ
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Finally, propagation velocity, v, can provide information about object identity. Here, we extract

depth information on a different way than in the case of the burial depth measure [30] and we

preserve the sign of the extracted depth. This information indicates whether a potential object

is above the surface. If that is the case, the extracted v should be close to c ¼ 3 � 108 m/s, the

propagation velocity in vacuum. Otherwise, if the sign indicates that the object is below the

soil surface, the value of v should be around the values for the corresponding medium, for

example, from 5.5 � 107 to 1.73 � 108 m/s in the case of sand:

π3GðMÞ ¼ exp �
ðv� vmaxÞ

2

2 � h2

 !

, ð33Þ

where vmax is the value of velocity which is the most typical for the medium (here, for sand, it

is 0.5 � (5.5 � 107 þ 1.73 � 108) ¼ 1.14 � 108 m/s, and for air, it is equal to c), and h is the width

of the exponential function (here, h ¼ 6 � 107 m/s). Once again, friendly objects can have any

value of the velocity:

π3GðFÞ ¼ 1: ð34Þ

The corresponding mass functions are

m3GðΘÞ ¼ exp �
ðv� vmaxÞ

2

2 � h2

 !

, ð35Þ

m3GðFR ∪ FIÞ ¼ 1�m3GðΘÞ: ð36Þ

4.2. Combination

The combination of possibility degrees, as well as of masses, is performed in two steps [2]. The

first one applies to all measures derived from one sensor. The second one combines results

obtained in the first step for all three sensors.

In the case of possibilities, only the combination rules related to mines are considered. The

issue of combination rules for friendly objects is discussed in Section 4.4.

Let us first detail the first step for each sensor. For IR, since mines can be regular or irregular,

the information about regularity on the level of each shape measure is combined using a

disjunctive operator (here the max):

π1IM ¼ max π1IðMRÞ,π1IðMIÞð Þ, ð37Þ

π2IM ¼ max π2IðMRÞ,π2IðMIÞð Þ: ð38Þ

The choice of the maximum (the smallest disjunction and idempotent operator) as a t-conorm

is related to the fact that the measures cannot be considered as completely independent from

each other. Thus, there is no reason to reinforce the measures by using a larger t-conorm, and

the idempotent one is preferable in such situations. These two shape constraints should be

both satisfied to have a high degree of possibility of being a mine, so they are combined in a
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conjunctive way (using a product). Finally, the object is possibly a mine if it has a size in the

expected range or if it satisfies the shape constraint, hence the final combination for IR is

πIðMÞ ¼ π3IðMÞ þ 1� π3IðMÞ½ � � π1IM � π2IM: ð39Þ

The conjunction in the second term guarantees that πI(M) is in [0,1].

In the case of GPR, it is possible to have a mine if the object is at shallow depths and its

dimensions resemble a mine and the extracted propagation velocity is appropriate for the

medium. Thus, the combination of the obtained possibilities for mines is performed using a t-

norm, expressing the conjunction of all criteria. Here the product t-norm is used:

πGðMÞ ¼ π1GðMÞ � π2GðMÞ � π3GðMÞ: ð40Þ

For MD, as there is just one measure used, there is no first combination step and the possibility

degrees obtained using Eqs. (21) and (22) are directly used.

In the case of possibilities, the second combination step is performed using the algebraic sum:

πðMÞ ¼ πIðMÞ þ πMDðMÞ þ πGðMÞ � πIðMÞ � πMDðMÞ � πIðMÞ � πGðMÞ � πMDðMÞ � πGðMÞ

þ πIðMÞ � πMDðMÞ � πGðMÞ, ð41Þ

leading to a strong disjunction [18, 29], as the final possibility should be high if at least one

sensor provides a high possibility, reflecting the fact that it is better to assign a friendly object

to the mine class than to miss a mine [2].

In the belief function framework, for IR and GPR, masses assigned by the measures of each of

the two sensors are combined by Dempster’s rule in unnormalized form (Eq. (3)). A general

idea for using the unnormalized form of this rule instead of more usual, the normalized form is

to preserve conflict [27], i.e. mass assigned to the empty set, Eq. (4). Here, a high degree of

conflict would indicate that either there are several objects and the sensors, as detectors of

different physical phenomena, do not provide information on the same object, or some sources

of information are not completely reliable. Our main interest is in the possibility that sensors

do not refer to the same object, as the unreliability can be modelled and resolved through

discounting factors [3]. After combining masses per sensor, the fusion of sensors is performed,

using Eq. (3) again. If the mass of the empty set after combination of sensors is high, they

should be clustered as they do not sense the same object.

4.3. Comparison of the combination equations

For IR, based on Eqs. (6)–(20) and (39), it can be shown that

PlIðMÞ ≤πIðMÞ: ð42Þ

This is in accordance with the least commitment principle used in the possibilistic model [2],

as usually done in this framework.
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As far as MD is concerned, there is no difference since it provides only one measure.

In the case of GPR, based on the comparison of Eqs. (25) and (27), Eqs. (29) and (31), as well as

Eqs. (33) and (35), we can conclude that Eq. (40) can be rewritten as

πGðMÞ ¼ m1GðΘÞ �m2GðΘÞ m3GðΘÞ: ð43Þ

Furthermore, the application of the Dempster’s rule (Eq. (3)) to the mass assignments of the

three GPR measures results in the fused mass of the full set for this sensor:

mGðΘÞ ¼ m1GðΘÞ �m2GðΘÞ m3GðΘÞ ð44Þ

which leads to

πGðMÞ ¼ mGðΘÞ: ð45Þ

This means that the ignorance is modelled as a mass on Θ in the belief function framework,

while it privileges the class that should not be missed (M) in the possibilistic framework (i.e.

the ignorance will lead to safely decide in favour of mines).

4.4. Decision

As the final decision about the identity of the object should be left to the deminer not only

because his life is in danger but also because of his experience, the fusion output is a suggested

decision together with confidence degrees [2].

In the case of possibilities, the final decision is obtained by thresholding the fusion result forM

and providing the corresponding possibility degree as the confidence degree. As almost all

possibility degrees obtained at the fusion output are either very low or very high, the selected

regions having very low values of π(M) (below 0.1) are classified as F, and the ones with very

high values (above 0.7) are classified as M. Only a few regions exist at which the resulting

possibility degree forM has an intermediary value and there, as mines must not be missed, the

decision is M. In the following, this decision approach is referred to as dec1.

An alternative (dec2) for the final decision-making is to derive the combination rule for F as

well, compare the final values for M and F and derive an adequate decision rule. Due to

operation principles of GPR and MD, the measures of these two sensors can only give infor-

mation where mines are possibly not. As they are non-informative with respect to friendly

objects, it is not useful to combine their possibility degrees for F. Thus, for deriving the final

combination rule for F, π (F), we can rely only on IR, that is:

πðFÞ ¼ πIðFÞ: ð46Þ

In the case of IR, since friendly objects can be regular or irregular, we apply a disjunctive

operator (the max) for each of the shape constraints. In order to be cautious when deciding F,

we combine the two shape constraints and the area measure using a conjunctive operator.

Taking into account of Eq. (18), this reasoning results in
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πðFÞ ¼ maxðπ1IðFRÞ,π1IðFIÞÞ �maxðπ2IðFRÞ,π2IðFIÞÞ: ð47Þ

Thus, in this alternative way to derive decisions, in regions where IR gives an alarm, the

decision rule choosesM or F depending on which one of the two has a higher possibility value,

given by Eqs. (41) and (58), respectively. In other regions, at which IR does not give an alarm

although at least one of the two other sensors gives an alarm, the decision is based on the

fusion result for M, as in dec1.

In the case of belief functions, as shown in Ref. [15], usual decision rules based on beliefs,

plausibilities [6] and pignistic probabilities [26] do not give useful results because there are no

focal elements containing mines alone [27]. As a consequence, these usual decision rules would

always favour friendly objects [2]. The underlying reason is that the humanitarian demining

sensors are anomaly detectors and not mine detectors. In such a sensitive application, no

mistakes are allowed so in the case of any ambiguity, much more importance should be given

to mines. Hence, in Ref. [15], guesses G(A) are defined, where A∈{M, F, Ø}:

GðMÞ ¼
X

M∩B 6¼∅

mðBÞ, ð48Þ

GðFÞ ¼
X

B⊆F,B 6¼∅

mðBÞ, ð49Þ

Gð∅Þ ¼ mð∅Þ: ð50Þ

In other words, the guess value of a mine is the sum of masses of all the focal elements

containing mines, regardless their shape, and the guess of a friendly object is the sum of

masses of all the focal elements containing nothing else but friendly objects of any shape,

meaning that the guesses are a cautious way to estimate confidence degrees.

As the output of the belief function fusion module, the three possible outputs (M, F, conflict)

are provided together with the guesses, for each of the sensors and for their combination.

For GPR, the focal elements are only F and Θ, so guesses for this sensor become simply:

GGðMÞ ¼ mGðΘÞ, ð51Þ

GGðFÞ ¼ mGðFÞ: ð52Þ

From Eqs. (45) and (51), we conclude that for GPR, the possibility degree of a mine is equal to

the guess of a mine:

πGðMÞ ¼ GGðMÞ: ð53Þ

Furthermore, Eqs. (6) and (48) show that the guess of a mine is equal to its plausibility, while

Eqs. (5) and (49) show that the guess of a friendly object is equal to its belief. This means that

the relation given by Eq. (42) shows, actually, that for IR:

GIðMÞ ≤πIðMÞ: ð54Þ
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4.5. Results

The proposed approach has been applied to a set of known objects, buried in sand, leading to

36 alarmed regions in total [2]: 21 mines (M), 7 placed false alarms (PF, friendly objects) and

8 false alarms caused by clutter (FN, with no object).

The results of the possibilistic fusion are very promising, since all mines are classified correctly

with the proposed approach, as can be seen in Table 1. The numbers given in the parenthesis

indicate the number of regions selected in the pre-processing step for further analysis, that is,

measure extraction and classification. Regarding the combination operators, the results given

in this table are based on the combination proposed in Section 4.2. (Eqs. (39)–(41)). The second

fusion step is important, since a decision taken after the first step provides only 18 mines for IR,

nine for MD and 13 for GPR. This illustrates the interest of combining heterogeneous sensors.

The two decision rules, dec1 and dec2, give the same results for mines and friendly objects

caused by clutter [2]. In the case of placed false alarms, two are correctly classified in the case

of dec2, which is a slight improvement with respect to dec1 and the same result as for the belief

function fusion, shown in Table 2. It is not surprising that the placed false alarms are not so

well detected by any of the methods, since our model is designed in order to favour the

detection of mines. This is also the type of results expected from deminers. Regarding correct

classification of mines, the results of the possibilistic fusion are slightly better than those

obtained using the belief function method (19 mines detected, Table 2). This is due to the

increased flexibility at the combination level. False alarms with no objects are correctly identi-

fied by the belief function method (six out of eight), and it is the same result as for the two

possibilistic decision rules. This result shows that a power of our methods is in decreasing the

number of clutter-caused false alarms without decreasing the result of mine detection, thanks

to knowledge inclusion.

All results have been obtained with the models proposed in Section 4.1., with the same param-

eters. Note that although the general shapes of the possibility distributions are important and

have been designed based on prior knowledge, they do not need to be estimated very precisely,

and the results are robust to small changes in these functions. What is important is that the

functions are not crisp (no thresholding approach is used) and that the rank is preserved (e.g. an

object with a measure value outside of the usual range should have a lower possibility degree

than an object with a typical measure value). Two main reasons explain the experienced robust-

ness: (i) these possibility distributions are used to model imprecise information, so they do not

have to be precise themselves and (ii) each of them is combined in the fusion process (Section

4.2.) with other pieces of information, which diminishes the importance and the influence of each

of them.

Analysis regarding the robustness of the choice of the operator is also performed (within a

class corresponding to the type of reasoning we want to achieve) [2]. Different operators

within the same family have been tested, leading to the maximization and minimization of

the possibility degrees of mines, thus being the safest and the least safe situations from the

point of view of mine detection. The results obtained show that the model is robust indeed: all

mines are detected in the second step, for all fusion schemes.
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Differences between the results of Tables 1 and 2 can be formally explained as discussed in

Section 4.3. For GPR, Eq. (53) explains why the results are the same for the two fusion

approaches. In the case of IR, Eq. (54) indicates that the possibilistic approach would favour

mines more than the belief function approach, which is indeed the case here.

5. Conclusion

Fusion approaches for close-range humanitarian mine detection are presented and compared.

These approaches are based on the belief functions as well as on the fuzzy/possibility theory.

The differences at the combination step are mainly highlighted in this comparison. The model-

ling step is performed according to the semantics of each framework, but the designed func-

tions are as similar as possible, so as to enhance the combination step. Different fusion

operators are tested, depending on the information and its characteristics. An appropriate

modelling of the data along with their combination in a possibilistic framework leads to a

better differentiation between mines and friendly objects. The decision rule is designed to

detect all mines, at the price of a few confusions with friendly objects. This is a requirement of

this sensitive application domain (mines must not be missed). Still the number of false alarms

remains limited in our results. The robustness of the choice of the operator is also tested, and

all mines are detected for all fusion schemes. The proposed modelling is flexible enough to be

easily adapted to the introduction of new pieces of information about the types of objects and

their characteristics, as well as of new sensors.

The work shown in this chapter is useful in many other applications, even in quite different

domains, and constitutes thus a large set of methods and tools for both research and

Classified correctly, possibility theory Sensors Fusion

IR MD GPR dec1 dec2

M (total: 21) 18 (18) 9 (9) 13 (13) 21 (21) 21 (21)

PF (total: 7) 0 (4) 0 (4) 2 (6) 1 (7) 2 (7)

FN (total: 8) 0 (1) 0 (0) 6 (7) 6 (8) 6 (8)

Table 1. Correct classification results, possibilistic fusion.

Classified correctly, belief functions Sensors Fusion

IR MD GPR

M (total: 21) 10 (18) 9 (9) 13 (13) 19 (21)

PF (total: 7) 3 (4) 0 (4) 1 (6) 2 (7)

FN (total: 8) 0 (1) 0 (0) 6 (7) 6 (8)

Table 2. Correct classification results, belief functions.
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applicative work. The developed schemes have a noticeable variety and richness and consti-

tute a real improvement over existing tools.
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