13,200 research outputs found

    Content Based Image Retrieval by Convolutional Neural Networks

    Get PDF
    Hamreras S., Benítez-Rochel R., Boucheham B., Molina-Cabello M.A., López-Rubio E. (2019) Content Based Image Retrieval by Convolutional Neural Networks. In: Ferrández Vicente J., Álvarez-Sánchez J., de la Paz López F., Toledo Moreo J., Adeli H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science, vol 11487. Springer.In this paper, we present a Convolutional Neural Network (CNN) for feature extraction in Content based Image Retrieval (CBIR). The proposed CNN aims at reducing the semantic gap between low level and high-level features. Thus, improving retrieval results. Our CNN is the result of a transfer learning technique using Alexnet pretrained network. It learns how to extract representative features from a learning database and then uses this knowledge in query feature extraction. Experimentations performed on Wang (Corel 1K) database show a significant improvement in terms of precision over the state of the art classic approaches.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Structured Knowledge Representation for Image Retrieval

    Full text link
    We propose a structured approach to the problem of retrieval of images by content and present a description logic that has been devised for the semantic indexing and retrieval of images containing complex objects. As other approaches do, we start from low-level features extracted with image analysis to detect and characterize regions in an image. However, in contrast with feature-based approaches, we provide a syntax to describe segmented regions as basic objects and complex objects as compositions of basic ones. Then we introduce a companion extensional semantics for defining reasoning services, such as retrieval, classification, and subsumption. These services can be used for both exact and approximate matching, using similarity measures. Using our logical approach as a formal specification, we implemented a complete client-server image retrieval system, which allows a user to pose both queries by sketch and queries by example. A set of experiments has been carried out on a testbed of images to assess the retrieval capabilities of the system in comparison with expert users ranking. Results are presented adopting a well-established measure of quality borrowed from textual information retrieval

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd

    Enhancing Automatic Annotation for Optimal Image Retrieval

    Get PDF
    Image search and retrieval based on content is very cumbersome task particularly when the image database is large. The accuracy of the retrieval as well as the processing speed are two important measures used for assessing and comparing the effectiveness of various systems. Text retrieval is more mature and advanced than image content retrieval. In this dissertation, the focus is on converting image content into text tags that can be easily searched using standard search engines where the size and speed issues of the database have been already dealt with. Therefore, image tagging becomes an essential tool for image retrieval from large image databases. Automation of image tagging has received considerable attention by many researchers in recent years. The optimal goal of image description is to automatically annotate images with tags that semantically represent the image content. The speed and accuracy of Image retrieval from large databases are few of the important domains that can benefit from automatic tagging. In this work, several state of the art image classification and image tagging techniques are reviewed. We propose a new self-learning multilayered tagging framework that can address the limitations of current approaches and provide mutual accuracy improvement between the recognition layer and the annotation layer. Our results indicate that the proposed framework can improve the overall accuracy of information retrieval in a variety of image databases

    Deep filter banks for texture recognition, description, and segmentation

    Get PDF
    Visual textures have played a key role in image understanding because they convey important semantics of images, and because texture representations that pool local image descriptors in an orderless manner have had a tremendous impact in diverse applications. In this paper we make several contributions to texture understanding. First, instead of focusing on texture instance and material category recognition, we propose a human-interpretable vocabulary of texture attributes to describe common texture patterns, complemented by a new describable texture dataset for benchmarking. Second, we look at the problem of recognizing materials and texture attributes in realistic imaging conditions, including when textures appear in clutter, developing corresponding benchmarks on top of the recently proposed OpenSurfaces dataset. Third, we revisit classic texture representations, including bag-of-visual-words and the Fisher vectors, in the context of deep learning and show that these have excellent efficiency and generalization properties if the convolutional layers of a deep model are used as filter banks. We obtain in this manner state-of-the-art performance in numerous datasets well beyond textures, an efficient method to apply deep features to image regions, as well as benefit in transferring features from one domain to another.Comment: 29 pages; 13 figures; 8 table

    Using dempster-shafer theory to fuse multiple information sources in region-based segmentation

    Get PDF
    This paper presents a new method for segmentation of images into large regions that reflect the real world objects present in a scene. It explores the feasibility of utilizing spatial configuration of regions and their geometric properties (the so-called Syntactic Visual Features [1]) for improving the correspondence of segmentation results produced by the well-known Recursive Shortest Spanning Tree (RSST) algorithm [2] to semantic objects present in the scene. The main contribution of this paper is a novel framework for integration of evidence from multiple sources with the region merging process based on the Dempster-Shafer (DS) theory [3] that allows integration of sources providing evidence with different accuracy and reliability. Extensive experiments indicate that the proposed solution limits formation of regions spanning more than one semantic object
    corecore