A graph theoretic approach is proposed for object shape representation in a
hierarchical compositional architecture called Compositional Hierarchy of Parts
(CHOP). In the proposed approach, vocabulary learning is performed using a
hybrid generative-descriptive model. First, statistical relationships between
parts are learned using a Minimum Conditional Entropy Clustering algorithm.
Then, selection of descriptive parts is defined as a frequent subgraph
discovery problem, and solved using a Minimum Description Length (MDL)
principle. Finally, part compositions are constructed by compressing the
internal data representation with discovered substructures. Shape
representation and computational complexity properties of the proposed approach
and algorithms are examined using six benchmark two-dimensional shape image
datasets. Experiments show that CHOP can employ part shareability and indexing
mechanisms for fast inference of part compositions using learned shape
vocabularies. Additionally, CHOP provides better shape retrieval performance
than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV
2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp
566-581. Supplementary material can be downloaded from
http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd