2,717 research outputs found

    The Full Cost of Renewables: Managing Wind Integration Costs in California

    Get PDF
    Wind power will be an important component of California\u27s aggressive strategies to meet its greenhouse gas reduction targets by the year 2020. However, the costs of integrating wind power\u27s variable and uncertain output are often ignored. I argue that California must take prudent action to understand, minimize, and allocate wind integration costs. A review of numerous studies suggests that for wind penetration levels below 20%, integration costs should remain modest. However, costs are heavily dependent on market structure, and I suggest numerous ways that California can optimize its market design to manage wind integration costs

    Energy storage systems and grid code requirements for large-scale renewables integration in insular grids

    Get PDF
    This thesis addresses the topic of energy storage systems supporting increased penetration of renewables in insular systems. An overview of energy storage management, forecasting tools and demand side solutions is carried out, comparing the strategic utilization of storage and other competing strategies. Particular emphasis is given to energy storage systems on islands, as a new contribution to earlier studies, addressing their particular requirements, the most appropriate technologies and existing operating projects throughout the world. Several real-world case studies are presented and discussed in detail. Lead-acid battery design parameters are assessed for energy storage applications on insular grids, comparing different battery models. The wind curtailment mitigation effect by means of energy storage resources is also explored. Grid code requirements for large-scale integration of renewables are discussed in an island context, as another new contribution to earlier studies. The current trends on grid code formulation, towards an improved integration of distributed renewable resources in island systems, are addressed. Finally, modeling and control strategies with energy storage systems are addressed. An innovative energy management technique to be used in the day-ahead scheduling of insular systems with Vanadium Redox Flow battery is presented.Esta tese aborda a temática dos sistemas de armazenamento de energia visando o aumento da penetração de energias renováveis em sistemas insulares. Uma visão geral é apresentada acerca da gestão do armazenamento de energia, ferramentas de previsão e soluções do lado da procura de energia, comparando a utilização estratégica do armazenamento e outras estratégias concorrentes. É dada ênfase aos sistemas de armazenamento de energia em ilhas, como uma nova contribuição no estado da arte, abordando as suas necessidades específicas, as tecnologias mais adequadas e os projetos existentes e em funcionamento a nível mundial. Vários casos de estudos reais são apresentados e discutidos em detalhe. Parâmetros de projeto de baterias de chumbo-ácido são avaliados para aplicações de armazenamento de energia em redes insulares, comparando diferentes modelos de baterias. O efeito de redução do potencial de desperdício de energia do vento, recorrendo ao armazenamento de energia, também é perscrutado. As especificidades subjacentes aos códigos de rede para a integração em larga escala de energias renováveis são discutidas em contexto insular, sendo outra nova contribuição no estado da arte. As tendências atuais na elaboração de códigos de rede, no sentido de uma melhor integração da geração distribuída renovável em sistemas insulares, são abordadas. Finalmente, é estudada a modelação e as estratégias de controlo com sistemas de armazenamento de energia. Uma metodologia de gestão de energia inovadora é apresentada para a exploração de curto prazo de sistemas insulares com baterias de fluxo Vanádio Redox

    Understanding the Impact of Large-Scale Power Grid Architectures on Performance

    Get PDF
    Grid balancing is a critical system requirement for the power grid in matching the supply to the demand. This balancing has historically been achieved by conventional power generators. However, the increasing level of renewable penetration has brought more variability and uncertainty to the grid (Ela, Diakov et al. 2013, Bessa, Moreira et al. 2014), which has considerable impacts and implications on power system reliability and efficiency, as well as costs. Energy planners have the task of designing infrastructure power systems to provide electricity to the population, wherever and whenever needed. Deciding of the right grid architecture is no easy task, considering consumers’ economic, environmental, and security priorities, while making efficient use of existing resources. In this research, as one contribution, we explore associations between grid architectures and their performance, that is, their ability to meet consumers’ concerns. To do this, we first conduct a correlation analysis study. We propose a generative method that captures path dependency by iteratively creating grids, structurally different. The method would generate alternative grid architectures by subjecting an initial grid to a heuristic choice method for decision making over a fixed time horizon. Second, we also conduct a comparative study to evaluate differences in grid performances. We consider two balancing area operation types, presenting different structures and coordination mechanisms. Both studies are performed with the use of a grid simulation model, Spark! The aim of this model is to offer a meso-scale solution that enables the study of very large power systems over long-time horizons, with a sufficient level of fidelity to perform day-to-day grid activities and support architectural questions about the grids of the future. More importantly, the model reconciles long-term planning with short-term grid operations, enabling long-term projections validation via grid operations and response on a daily basis. This is our second contribution

    AI-driven approaches for optimizing the energy efficiency of integrated energy system

    Get PDF
    To decarbonize the global energy system and replace the unidirectional architecture of existing grid networks, integrated and electrified energy systems are becoming more demanding. Energy integration is critical for renewable energy sources like wind, solar, and hydropower. However, there are still specific challenges to overcome, such as their high reliance on the weather and the complexity of their integrated operation. As a result, this research goes through the study of a new approach to energy service that has arisen in the shape of data-driven AI technologies, which hold tremendous promise for system improvement while maximizing energy efficiency and reducing carbon emissions. This research aims to evaluate the use of data-driven AI techniques in electrical integrated energy systems, focusing on energy integration, operation, and planning of multiple energy supplies and demand. Based on the formation point, the main research question is: "To what extent do AI algorithms contribute to attaining greater efficiency of integrated grid systems?". It also included a discussion on four key research areas of AI application: Energy and load prediction, fault prediction, AI-based technologies IoT used for smart monitoring grid system optimization such as energy storage, demand response, grid flexibility, and Business value creation. The study adopted a two-way approach that includes empirical research on energy industry expert interviews and a Likert scale survey among energy sector representatives from Finland, Norway, and Nepal. On the other hand, the theoretical part was from current energy industry optimization models and a review of publications linked to a given research issue. The research's key findings were AI's significant potential in electrically integrated energy systems, which concluded AI's implication as a better understanding of energy consumption patterns, highly effective and precise energy load and fault prediction, automated energy management, enhanced energy storage system, more excellent business value, a smart control center, smooth monitoring, tracking, and communication of energy networks. In addition, further research directions are prospects towards its technical characteristics on energy conversion

    Methods for Optimal Microgrid Management

    Get PDF
    Abstract During the last years, the number of distributed generators has grown significantly and it is expected to become higher in the future. Several new technologies are being de-veloped for this type of generation (including microturbines, photovoltaic plants, wind turbines and electrical storage systems) and have to be integrated in the electrical grid. In this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-tribution system. This thesis deals with the development and application of system engi-neering methods to solve real-world problems within the specific framework of microgrid control and management. The typical kind of problems that is considered when dealing with the manage-ment and control of Microgrids is generally related to optimal scheduling of the flows of energy among the various components in the systems, within a limited area. The general objective is to schedule the energy consumptions to maximize the expected system utility under energy consumption and energy generation constraints. Three different issues related to microgrid management will be considered in detail in this thesis: 1. The problem of Nowcasting and Forecasting of the photovoltaic power production (PV). This problem has been approached by means of several data-driven techniques. 2. The integration of stations to charge electric vehicles in the smart grids. The impact of this integration on the grid processes and on the demand satisfaction costs have been analysed. In particular, two different models have been developed for the optimal integration of microgrids with renewable sources, smart buildings, and the electrical vehicles (EVs), taking into account two different technologies. The first model is based on a discrete-time representation of the dynamics of the system, whereas the second one adopts a discrete-event representation. 3. The problem of the energy optimization for a set of interconnencted buildings. In ths connection, an architecture, structured as a two-level control scheme has been developed. More precisely, an upper decision maker solves an optimization problem to minimize its own costs and power losses, and provides references (as 3 regars the power flows) to local controllers, associated to buildings. Then, lower level (local) controllers, on the basis of a more detailed representation of each specific subsystem (the building associated to the controller), have the objective of managing local storage systems and devices in order to follow the reference values (provided by the upper level), to contain costs, and to achieve comfort requirements

    Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques

    Get PDF
    Wind and solar irradiance are promising renewable alternatives to fossil fuels due to their availability and topological advantages for local power generation. However, their intermittent and unpredictable nature limits their integration into energy markets. Fortunately, these disadvantages can be partially overcome by using them in combination with energy storage and back-up units. However, the increased complexity of such systems relative to single energy systems makes an optimal sizing method and appropriate Power Management Strategy (PMS) research priorities. This thesis contributes to the design and integration of stand-alone hybrid renewable energy systems by proposing methodologies to optimise the sizing and operation of hydrogen-based systems. These include using intelligent techniques such as Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) and Neural Networks (NNs). Three design aspects: component sizing, renewables forecasting, and operation coordination, have been investigated. The thesis includes a series of four journal articles. The first article introduced a multi-objective sizing methodology to optimise standalone, hydrogen-based systems using GA. The sizing method was developed to calculate the optimum capacities of system components that underpin appropriate compromise between investment, renewables penetration and environmental footprint. The system reliability was assessed using the Loss of Power Supply Probability (LPSP) for which a novel modification was introduced to account for load losses during transient start-up times for the back-ups. The second article investigated the factors that may influence the accuracy of NNs when applied to forecasting short-term renewable energy. That study involved two NNs: Feedforward, and Radial Basis Function in an investigation of the effect of the type, span and resolution of training data, and the length of training pattern, on shortterm wind speed prediction accuracy. The impact of forecasting error on estimating the available wind power was also evaluated for a commercially available wind turbine. The third article experimentally validated the concept of a NN-based (predictive) PMS. A lab-scale (stand-alone) hybrid energy system, which consisted of: an emulated renewable power source, battery bank, and hydrogen fuel cell coupled with metal hydride storage, satisfied the dynamic load demand. The overall power flow of the constructed system was controlled by a NN-based PMS which was implemented using MATLAB and LabVIEW software. The effects of several control parameters, which are either hardware dependent or affect the predictive algorithm, on system performance was investigated under the predictive PMS, this was benchmarked against a rulebased (non-intelligent) strategy. The fourth article investigated the potential impact of NN-based PMS on the economic and operational characteristics of such hybrid systems. That study benchmarked a rule-based PMS to its (predictive) counterpart. In addition, the effect of real-time fuel cell optimisation using PSO, when applied in the context of predictive PMS was also investigated. The comparative analysis was based on deriving the cost of energy, life cycle emissions, renewables penetration, and duty cycles of fuel cell and electrolyser units. The effects of other parameters such the LPSP level, prediction accuracy were also investigated. The developed techniques outperformed traditional approaches by drawing upon complex artificial intelligence models. The research could underpin cost-effective, reliable power supplies to remote communities as well as reducing the dependence on fossil fuels and the associated environmental footprint

    Forecasting wind energy for a data center

    Get PDF
    Abstract. Data centers are increasingly using renewables such as wind and solar energy. RISE’s ICE data center has already solar panels and is now studying impact of adding a wind turbine into their microgrid. In this thesis, a machine learning model was developed to forecast wind power production for the data center. Data center in Luleå has several applications to utilize wind power forecasting. Renewable energy sources are intermittent, so accurate forecasting of output power reduces a need for additional balancing of energy and reserve power in an electricity grid. Renewable energy can be reserved from market for next hour or next day to maximize its use. Forecasting from 30 min to 6 hours ahead allows job scheduling to optimize usage of renewables and to reduce power consumption. Data center may target to minimize electricity cost or maximize usage of renewables for lower greenhouse gas emissions. Smart microgrid based on artificial intelligence is the way to implement the applications. Two open data sets from India and Sweden have been used in the research. The data available supports choosing of a statistical model. Random forest regression was the model used in the research. Data from India enabled to develop a model for one wind turbine. Developed model forecasted output power well. Swedish data set is from EEM20 competition, it included total wind power production in Sweden and had to be applied to approximate production of one wind turbine in Luleå. To achieve the goal output power of Luleå price region was averaged, and location for the simulation was chosen to be near Luleå. As expected, the accuracy of forecasting with Swedish data was reasonable, but approximations done reduced it. The developed model was applied to RISE’s ICE data center. Validation has been done, but final testing will take place in RISE’s simulation environment. In general, data from northern Sweden is not openly available for wind power forecasting. In addition, any scientific articles covering the geographical area were not found while working on literature review. The study with Swedish competition data gave understanding, which variables are significant in northern Sweden and about their relative importances. Wind gust is such a variable. Using two data sets from different geographical locations proved that climate has a major impact on performance of the trained model. Thus, it is reasonable to use the trained model in locations with similar weather conditions only.Tuulienergian ennustaminen datakeskusta varten. Tiivistelmä. Datakeskukset käyttävät uusiutuvia energialähteitä yhä enemmän. Tällaisia lähteitä ovat mm. tuuli- ja aurinkoenergia. RISE:n ICE datakeskuksella Luulajassa on jo aurinkopaneelit käytössä, ja nyt tutkitaan tuulimyllyn lisäämisen vaikutusta mikroverkkoon. Tässä työssä kehitettiin koneoppimismalli tuulivoiman tuotannon ennustamiseksi datakeskusta varten. Datakeskuksella on useita sovelluksia tuulienergian ennustamisen hyödyntämiseksi. Uusiutuvat energialähteet ovat luonteeltaan vaihtelevia, joten tuotetun tehon tarkka ennustaminen vähentää ylimääräisen säätämisen ja reservitehon tarvetta sähköverkossa yleensäkin. Datakeskus voi varata uusiutuvaa energiaa markkinoilta seuraavaksi tunniksi tai päiväksi uusiutuvan energian käytön maksimoimiseksi. Ennustaminen 30 minuutista 6 tuntiin etukäteen mahdollistaa työjonon aikatauluttamisen uusiutuvien käytön optimoimiseksi ja vähentää tehonkulutusta. Datakeskus voi pyrkiä minimoimaan sähkön käytön kustannuksia, tai pienentämään kasvihuonekaasujen päästöjä käyttämällä mahdollisimman paljon uusiutuvaa energiaa. Tekoälyyn perustuva älykäs mikroverkko on tapa toteuttaa edellä mainitut sovellukset. Tutkimuksessa on käytetty kahta avointa tietoainestoa Intiasta ja Ruotsista. Saatavilla oleva data tukee tilastollisen ennustemallin valintaa. Tässä työssä käytettiin satunnaismetsämenetelmää. Intian dataa käytettiin mallin kehityksessä yhtä tuulimyllyä varten. Kehitetty malli ennusti tuotetun tehon hyvin. Ruotsalainen data perustuu EEM20-kilpailuun, jossa arvioitiin koko Ruotsin tuulivoiman tuotantoa. Sitä olikin sovellettava Luulajassa olevan yhden tuulimyllyn tuotannon arvioimiseksi. Luulajan hinta-alueen tuottama teho keskiarvoistettiin, ja ennustamista varten valittiin maantieteellinen paikka läheltä Luulajaa. Kuten oli odotettavissa, soveltamisessa tehdyt likiarvoistukset pienensivät ennustamisen tarkkuutta, jota voidaan kuitenkin pitää kohtuullisena. Kehitettyä mallia sovellettiin RISE:n ICE datakeskusta varten. Algoritmin validointi on suoritettu, mutta lopullinen testaus tehdään RISE:n simulointiympäristössä. Yleisesti ennustamiseen soveltuvaa dataa ei ole Pohjois-Ruotsista tarjolla. Tieteellisiä artikkeleita ko. maantieteelliseltä alueelta ei löytynyt kirjallisuustutkimusta tehtäessä. Tutkimus ruotsalaisella datalla toi ymmärrystä siihen, mitkä muuttujat ovat merkittäviä Pohjois-Ruotsin alueella sekä niiden suhteellisesta merkityksestä. Kahden eri maantieteellisen alueen tietoaineiston käyttö osoitti, että ilmastolla on huomattava vaikutus koulutetun mallin suorituskykyyn. Näin onkin mielekästä käyttää koulutettua mallia vain sellaisilla alueilla, joiden sääolosuhteet ovat samankaltaiset
    corecore