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Abstract 
During the last years, the number of distributed generators has grown significantly 

and it is expected to become higher in the future. Several new technologies are being de-

veloped for this type of generation (including microturbines, photovoltaic plants, wind 

turbines and electrical storage systems) and have to be integrated in the electrical grid. In 

this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent 

buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-

tribution system. This thesis deals with the development and application of system engi-

neering methods to solve real-world problems within the specific framework of microgrid 

control and management.  

The typical kind of problems that is considered when dealing with the manage-

ment and control of Microgrids is generally related to optimal scheduling of the flows of 

energy among the various components in the systems, within a limited area. The general 

objective is to schedule the energy consumptions to maximize the expected system utility 

under energy consumption and energy generation constraints. 

Three different issues related to  microgrid management will be considered in detail in 

this thesis: 

1. The problem of Nowcasting and Forecasting of the photovoltaic power production 

(PV). This problem has been approached by means of several data-driven 

techniques.  

2. The integration of stations to charge electric vehicles in the smart grids. The 

impact of this integration on the grid processes and on the demand satisfaction 

costs have been analysed. In particular, two different models have been 

developed for the optimal integration of microgrids with renewable sources, 

smart buildings, and the electrical vehicles (EVs), taking into account two different 

technologies. The first model is based on a discrete-time representation of the 

dynamics of the system, whereas the second one adopts a discrete-event 

representation. 

3. The problem of the energy optimization for  a set of interconnencted buildings. In 

ths connection, an architecture, structured as a two-level control scheme has 

been developed.  More precisely, an upper decision maker solves an optimization 

problem to minimize its own costs and power losses, and provides references (as 
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regars the power flows) to local controllers, associated to buildings. Then, lower 

level (local) controllers, on the basis of a more detailed representation of each 

specific subsystem (the building associated to the controller), have the objective  

of managing local storage systems and devices in order to follow the reference 

values (provided by the upper level), to contain costs, and to achieve comfort 

requirements. 
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1. Introduction 
The most versatile and widely used energy form is electricity, a resource accessi-

ble to more than 5 billion people around the world. The power grids that guarantee its 

availability are among the largest systems ever made, visible at night and even from 

space. 

Today power generation comes essentially from large power plants mainly fuelled 

by fossil fuels, nuclear and hydroelectric power that operate through well-established 

transmission and distribution systems. Although these systems have offered efficient ser-

vice around the world for over a century, the times are changing. Demand for energy is 

growing rapidly due to rapid social developments in many parts of the world, but also be-

cause modern digital economies increasingly depend on electricity availability. This de-

pendence relationship imposes new structural developments in order to avoid network 

problems. 

At the same time, modern societies have realized that, in order to combat climate 

change, it is necessary to reduce emissions. Optimum use of traditional sources has to 

underpin the development of production from non-traditional sources such as wind, so-

lar, solar, geothermal, and biomass power plants. Thus, there is a great variety of energy 

sources whose integration and optimum use yield complex problems relevant to the de-

sign and management of electrical grids. 

The impact of climatic conditions on the availability of wind and solar energy, to-

gether with the need to develop distributed facilities (e.g., domestic photovoltaic sys-

tems), further complicates the scenario, imposing the need for designing local networks 

capable of receiving and delivering electricity . In this connection, the power grid itself is 

used in new ways. Instead of serving relatively small geographic areas with links to other 

regions to ensure security of supply, networks are currently used as energy-efficient 

channels for longer distances. 

Since they have not being designed to meet these needs, traditional power grids 

are therefore unable to provide long-term satisfactory performance. A global and wide-

spread evolution is thus necessary. 

The necessary measures include:  

 the application of new design criteria and the use of advanced materials 

for equipment such as transformers and switches in order to improve the overall effi-

ciency, safety and performance; 

 the diffusion of electronic devices to optimize existing resources and im-

prove network flexibility in case of interruptions; 

 the use of storage technologies at all levels to mitigate peak demand and 

extend energy utilization produced from renewable sources; 

 the use of more flexible transmission and distribution methods to balance 

supply fluctuations, increase efficiency and optimize performance; 

 the integration of monitoring and control systems to prevent interruptions. 
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The term "smart grid", encompasses all these features in a single system by means 

of communication technologies that allow large data exchanges between Intelligent de-

vices distributed in the electric system. Pike Research, one of the leading market research 

companies, estimates a global investment of around $ 200 billion in smart grid infrastruc-

ture over the period between 2010 and 20151. 

Based on existing policies and trends, global energy needs will grow by 40% by 

2030, with a consequent increase in emissions of carbon dioxide2. The scientific commu-

nity is unanimous in believing that such an increase in emissions could have a significant 

impact on the economic, environmental and social level3. 

1.1 Context 
Energy demand engines are demographic growth and rising living conditions in 

emerging markets, which will continue to increase fuel consumption. The challenge is to 

break the links between economic growth and energy demand and between energy pro-

duction and carbon dioxide emissions. 

The International Energy Agency (IEA) has defined a strategy for the next two dec-

ades to pursue these two goals through the decisive implementation of some low-carbon 

technologies. According to this approach, more than half of the savings would be due to  

the implementation of energy efficiency measures, while a fifth would result from the in-

crease in the generation of energy from renewable sources. 

Adapting the electricity supply system is a fundamental move, for two reasons: 

first, the generation of electricity represents the largest percentage of anthropogenic CO2 

emissions and is equal to 40% of global CO2 emissions attributable to energy production . 

Second, the growth rate of electricity consumption is almost twice as much as the in-

crease in overall energy consumption, so reducing emissions generated by energy pro-

duction is increasingly urgent. 

Thinking about power management reducing emissions at source is just one of the 

ways to reduce CO2 levels. As highlighted in the IEA's analysis, improving energy efficiency 

is the most important means of setting a limit on primary energy consumption. The main 

goal of future networks is therefore to make energy efficient use, with the implementa-

tion of energy-saving technologies at every stage, from production to transmission and 

exploitation.  

                                                      

1 Pike Research, dicembre 2009. Cfr. http://www.pikeresearch.com/newsroom/smart-grid-investment-to-total-200-billion-worldwide-by-2015 
2 Agenzia Internazione per l’Energia (IEA), 2009. World Energy Outlook. 
3 IPCC (comitato intergovernativo per i cambiamenti climatici), 2007. The Fourth Assessment Report. 
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In an intelligent electricity grid, demand-response technology is part of demand in 

times when the cost of energy is lower Figure 1 given that in a traditional power grid, 

peaks of the demand (in certain hours within the day) are partially satisfied by using pow-

er plants specially maintained in stand-by.  

In 2016 Renewable Energy Sources (RES) generated more than 39%4 of the elec-

tricity in Italy, and “Renewable energy technology, especially solar and wind, has made 

                                                      

4 Gestore dei Servizi Energetici Divisione Gestione e Coordinamento Generale Unità Studi, Statistiche e So-
stenibilità, ufficiostatistiche@gse.it 
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Figure 2: Energy production cost (WEF)5 

Figure 1: Smart grid vs traditional grid 
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exponential gains in efficiency in recent years, enough to achieve economic competitive-

ness and, in an increasing number of cases, grid parity. For instance, the unsubsidized, 

levelled cost of electricity (LCOE) for utility-scale solar photovoltaic, which was highly un-

competitive only five years ago, has declined at a 20% compounded annual rate, making it 

not only viable but also more attractive than coal in a wide range of countries. By 2020, 

solar photovoltaic is projected to have a lower LCOE than coal or natural gas-fired genera-

tion throughout the world. Renewable infrastructure has moved much closer to utility-

like investments and no longer presents frontier technology-like risks.” 5  “These trends 

are relatively low-risk, with most necessary technologies already in development, and 

economies of scale continuing to be a self-reinforcing process. The fast adoption pace en-

courages supply expansion, which further reduces production costs and stimulates de-

mand. “6 Figure 2).  

These trends have led to the concept of ”Microgrid ” and thus even of “Microgrid 

management “. 

 

1.2 Development of photovoltaic  

The photovoltaic energy productions are characterized by the fastest growth, Fig-

ure 4 shows the PV installation evolution in the last 16 years. As it can be seen from this 

Figure 4, the solar power installed is given up to 75 GW in 2016; Furthermore, we can 

note the new investments of PV installation in China and in Japan. 

                                                      

5 Renewable Infrastructure Investment Handbook, Word Economic Forum 
http://www3.weforum.org/docs/WEF_Renewable_Infrastructure_Investment_Handbook.pdf 
6 Renewable Infrastructure Investment Handbook, Word Economic Forum 
http://www3.weforum.org/docs/WEF_Renewable_Infrastructure_Investment_Handbook.pdf 

Figure 2: PV Figure 3: PV 
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Figure 4: Evolution of annual PV installation7 

This induces relevant investment that reflect in the installed PV price; indeed the 

installation cost has a radical decline in the world in the last year as show in Figure 

2(orange line).  

 

1.3 Grid evolution: Microgrid and Smart grid 
The current model of a power grid is designed as a passive network whose unique 

function is that of carrying electricity in only one direction in a so called vertical system. 

Large power plants, fuelled mainly by fossil fuels, operate using and well-established dis-

tribution.   

The convergence of several factors, mainly including the generation of electricity 

from renewable sources distributed over the territory, promotes the development of a 

new network concept. In this context, a major role is played by the distributed generation 

(DG) which offers more security and better performance due to the flexibility and the 

ability to integrate several other systems of monitoring and control. 

The term smart grids incorporates all these features in one system through com-

munications technologies that allow large data exchange between devices deployed in 

                                                      

7 http://www.iea-pvps.org/index.php?id=trends0%20 report 2017 

Figure 5: Vertical Generation and Distributed Generation 

http://www.iea-pvps.org/index.php?id=trends0%20
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the electrical system. 

  

A power grid becomes smart when it integrates traditional technologies with in-

novative digital solutions that allow flexibility in its management. The key point of evolu-

tion is the shift from passive to active, so able to let bidirectional flows of energy allowing 

the interaction between producers and consumers. The “consumer” becomes 

“prosumer”. In fact, a single user of the system can, in different circumstances, be a feed-

er as well as a producer.  

Energy management systems are vital tools used to operate optimally with smart 

applications. Automatic control of the grid is completely meaningless without a reliable 

identification of the state of the grid itself. A pervasive monitoring infrastructure made of 

sensor and communication devices has to be put in place. A typical smart grid configura-

tion involves different actors that are all linked together through an intelligent manage-

ment method, integrating different distributed and heterogeneous sources, either pro-

grammable or stochastic. 

In detail, a microgrid is a low-voltage and small network connected to a distribu-

tion grid through the point of common coupling (PCC), and contains both distributed gen-

erations and loads. Several types of distributed energy resources (DERs) are used in a mi-

crogrid, such as microturbine (MT), fuel cell (FC) and energy storage system (ESS) as con-

trollable units. Renewable energy, such as wind energy and photovoltaic, are also includ-

ed in a microgrid as non-controllable units. 

 

 

 1.3.1 Development of Electrochemical Energy Storage 

Storage technologies have a more and more important role in the future of power 

energy. Storage systems are often related to a voltage and power quality support, due to 

the high power dencity (Figure 6: Power density vs. energy density of various energy stor-

age systemsFigure 6), but they also have to cope with the increasing use of renewable 

and intermittent energy sources, as wind and solar ones. Peaks and dips in demand can 

often be anticipated and satisfied by increasing or decreasing generation at fairly short 

notice. Storage systems may help the grid acting on the daily load curve by feeding the 

loads with “cheaper” energy accumulated during the not-peak hours.  
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1.3.2 Electrical vehicles 

Electric vehicles can be integrated within smart grids since they represents not on-

ly a load but also a potential resource. In a not so futuristic vision, they can act as a dis-

tributed energy resources, since they can favour active short-response participation on 

storage resources by providing regulation services and power supply. In these circum-

stances, therefore the manager can also encourage owners towards avoiding to use the 

car during periods of high load so as to use the battery as storage admitting bidirectional 

flows based on demand energy network.  

Furthermore, these systems riquires real-time accurate measurements and allow 

bidirectional power flow, enabling vehicle-to-grid (V2G) operation. In this system, 

Figure 6: Power density vs. energy density of various energy storage systems 

 

Figure 7: Smart metering and communication infrastructure 
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plugged-in electric vehicles can communicate with the power grid to sell demand re-

sponse services by either returning electricity to the grid or by throttling their charging 

rate and so representing a very flexible storage.  

The motivation that underlies the V2G operating mode is the fact that cars spend 

most part of their day still in the parking lot. Therefore, at world average, since at any 

given time instant more than 90% of cars are parked about 20 hours out of 24, it is rea-

sonable to consider the possibility that the batteries in electric vehicles are used to let 

electricity flow from the car to the electric distribution network and back. An electric car 

could exploit this actually dead period to offer to those who need it the residual energy 

stored in its battery.  

              The first step of V2G regards smart-charging strategies: batteries are charged dur-

ing the off-peak times achieving different advantages also they do not contribute to raise 

the demand peak8.  

At large scale, it is reasonable to think about a realistic scenario in which electric 

cars for the majority of their life are parked. Thus, always connected to the power grid 

through static bidirectional converters, they are ready to absorb or transfer energy on 

their batteries. In this way, it is possible for them to absorb excess production of electrici-

ty and to return to the system in periods of greatest load. Thus, considering the huge 

amount of vehicles in the system, this yelds a massive energy reservoir distributed in the 

grid.                                  

As previously mentioned, energy demand actually varies in time. It changes in the 

hot and in cold season for example and a peak demand can arise during certain phases of 

the day due to weather conditions, some sport events or other reason that involves the 

majority of people simultaneously.  When a peak demand occurs, the national grid turns 

on the corresponding power stations to meet the increase demand and often relying on 

inefficient recovery-plants.     

An income solution for the mitigation of this kind of events depends on energy 

demand management. When electricity demand begins to peak, network participants 

temporarily switch off or reduce consumes for a short periods of time until the demand 

returns to normal levels. This level of management is referred to Demand Response (Ales-

sandrini,  [15]). 

Demand Response is a process that enables utilities to match electrical supply and 

demand and so avoid high costs due to the impact of peak events. It is defined 

as: “Changes in electric usage by end-use customers from their normal consumption pat-

terns in response to changes in the price of electricity over time, or to incentive payments 

designed to induce lower electricity use at times of high wholesale market prices or when 

system reliability is jeopardized”9. 

It corresponds to a wide range of actions which can be taken at the customer side 

of the electricity meter in response to particular conditions within the electricity system 

                                                      

8 Brinkman, Eberle, Formanski - Vehicle Electrification, Quo Vadis? 
9 Balijepalli, Murthy; Pradhan, Khaparde – Review of Demand Response under Smart Grid Paradigm - 2011 
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such as peak period network congestion or high prices events and it can be perfectly ap-

propriate considering electric vehicles as a part of the system in which is possible to store 

energy.  

 

1.4 Outline og the rest of the theis 
 

Having so defined the framework within which the approaches presented in this 

thesis will be developed, it is now possible to outline the contents of the next chapters.  

In the next chapter, the literature concerning microgrid management, with specif-

ic reference to the topics dealt with in this thesis, will be reviewed. In Chapter 3, the vari-

ous components of a microgrid are described from a technical viewpoint and their inte-

gration into a real microgrid is considered. 

When dealing with microgrid management problems, one of the preliminary most 

serious difficulties is the  forecast of the power coming from (intermittent) renewable 

sources. For this reason, in chapter 4 a brief mention is made about a particular class of 

forecsting techniques falling within the framework of machine learning methods. 

Chapters 5, 6 and 7 contain the main contributions of this thesis, relevant to two 

different kinds of problem. The first one (dealt with in chapters 5 and 6)  is that concern-

ing the optimal scheduling of charging of electrical vehicles integrated with the overall 

management of a microgrid.  More precisely, in chapter 5 a discrete-time modelling of 

the system is adopted to state and solve the optimization problem, whereas in chapter 6 

the dynamics of the system is modelled within a discrete-event framework. 

The second type of problem (dealt with in chapter 7)  is that relevant to the ener-

gy management of a set  of buildings interconnected among themselves and with the 

main grid. A two-level optimization scheme is developed and applied for this purpose. 

The effectiveness of the proposed approaches have been evaluated by considering 

real case studies. Namely, as regards the vehicle charging problems, data coming from an 

experimental microgrid set in the Savona Campus of the University of Genoa have been 

used. Instead, as rtegards, the energetic management of the buildings, a set of existing 

buildings in a district in Genoa have been considered. 
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2. Literature review  
The main objective of this thesis is to develop a model and a management meth-

odology that can help in reducing the production costs of energy, improving the efficien-

cy, and reducing the environmental impact. 

2.1 Optimal energy management of microgrid 
In the new century, the electric power industry is facing unprecedented challenges 

arising from the continuous depletion of fossil fuels and the global worsening of environ-

ment. These challenges have spurred a great interest in integrating renewable energies 

into existing power systems. The development of the renewable energy sector, the con-

cept of sustainable energy, and the use of technologies for distributed generation have 

focused attention on smart grids. 

Another important class of systems to be considered in this connection are Mi-

crogrids. We can define Microgrids as low-voltage networks with distributed generation 

sources, local storage devices, and controllable loads that can operate either in an inter-

connected or isolated mode from the main grid (MG). 

Microgrid deployment is becoming an increasingly attractive solution for electrici-

ty customers who cannot rely on supply of power from the main grid, and/or are seeking 

economic benefits from a locally generated power; one of the advantages offered by mi-

crogrids is to improve power system resiliency via local supply of loads and curtailment 

reduction.  

Recent research on energy scheduling can be classified into three main streams: a) 

vehicles charging scheduling, b) building energy scheduling, and c) local-area energy 

scheduling.  

The overall objective is to schedule the energy consumptions of the dynamic tasks 

to maximize the expected system utility under the given energy consumption and energy 

generation constraints. In the paper by C. Gong at al. [1] , the real-time local-area energy 

scheduling is considered, for a local-area power network with a single energy source and 

multiple energy consumers, and with both stochastic and deterministic energy demands. 

A centralized scheduling model is adopted by Khodaei A. et al. [2] in which a mas-

ter controller collects all the required information for microgrid scheduling and performs 

a centralized operation and control. 

In the recent literature we also can find different papers dealing with the devel-

opment of models for the simulation and optimization of microgrids with storage and re-

newable energies both at planning and operational level. Chen et al. [3] present a meth-

odology for the optimal allocation and the economic analysis of an energy storage system 

in microgrids. Mohammadi et al. [4] present an optimized design of a microgrid in distri-

bution systems with large penetration of dispersed generation units (among which PV, 

wind turbines and batteries). 
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Bracco et al. [5] consider an Energy Management System (EMS),based on a dy-

namic optimization model to minimize operating costs and CO2 emissions. This model is 

formalized and applied to the University of Genoa Savona Campus test-bed facilities con-

sisting of a Smart Polygeneration Microgrid (SPM) and a Sustainable Energy Building (SEB) 

connected to this microgrid. 

H. Dagdougui et al. [6] focus on the decentralized control of smart microgrids 

(SMGs), where each microgrid is modelled as an inventory system locally producing ener-

gy by wind/solar sources. The objective is to satisfy the internal demand, and to exchange 

power with its local energy storage technology, the main grid, and other similar mi-

crogrids of the region. In this framework, the problem faced in this paper is the optimiza-

tion (minimization) of the costs of energy storage and power exchanged among SMGs. 

Kamjoo et al.[7] present a method to determine the optimal size of HRES (hybrid 

renewable energy system) components is proposed, considering uncertainties in renewa-

ble resources. The method is based on CCP (chance-constrained programming) to handle 

the uncertainties in power produced by renewable resources. The design variables are 

wind turbine rotor swept area, the PV (photovoltaic) panel area and the number of bat-

teries. The approach used in solving problems with CCP is based on the use of non-

Gaussian joint distribution function that follow Gaussian distribution.  

Besides,  some paper can be founded in the literature that investigate about local 

energy scheduling for a micro grid with a semi-Markov discrete-time random process 

model renewable generation such as PV considered by Barnes et al. [8]. Another example 

is proposed by  Zamo et al. [9] who present  the results of a study about forecasting pho-

tovoltaic (PV) and electricity production for some power plants in mainland France. 

The limit of the wind farm is different respect to PV,in fact, the limit is the dispatch 

ability of wind energy poses a challenge to its increased penetration. A technically feasi-

ble solution to this challenge is to integrate a Battery Energy Storage System (BESS) with a 

wind farm. This highlights the importance of a BESS control strategy. In view of this, some 

paper like that of Kou et al. [10] propose the application of a stochastic model predictive 

control scheme. 

 

2.2 Optimal PV Energy production Forecasting and Nowcasting 
 

The international increase in the use of renewable resources (RES) for power and 

energy production have led to an increasing attention on the PV power production per-

formance. This significant result implies difficulties in the management of the grid be-

cause RES are intermittent, distributed over the territory, and difficult to forecast at the 

local scale. It is necessary to define new Energy Management Systems (EMSs) that are 

able to minimize costs and emissions related to power and energy generation on the ba-

sis of loads and RES forecasting. In the recent literature many papers show the need of 

the development of new EMSs for smart grids and microgrids [11], [12], [13]. In all such 

works, RES forecasting plays a crucial role for the definition of economically and environ-
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mentally sustainable operational strategies. In fact, the decision models used to schedule 

plants power production use forecasting of renewables and loads that are supposed to 

occur in the considered optimization horizon. 

Forecasting methods can be broadly classified as physical or statistical. The physi-

cal approach uses solar and PV models to generate PV forecasts, whereas the statistical 

approach relies primarily on past data to train models, with little or no reliance on solar 

and PV models. From literature, it is clear that Numerical Weather Predictions (NWPs) 

models are operationally used to forecast the evolution of the atmosphere from about 6 

hours onwards. Satellite-derived solar radiation images are a useful tool for quantifying 

solar irradiation at ground surface for large areas, but they need to set an accurate radi-

ance value under clear sky conditions and under dense cloudiness from every pixel and 

every image. These limitations have set time series analysis as the dominant methodology 

for short-term forecasting horizons from 5 minutes up to 6 hours.  

The power produced by a PV system depends critically on the variability of the 

weather. This variability of the power production may increase operating costs for the 

smart grid. In literature, many works are present that propose approaches for solar fore-

casting for PV applications for different time scales. Generally, articles differ for the ap-

proaches, data sets and application areas. For short-medium term forecasting, in litera-

ture, an Artificial Neural Networks (ANNs) methodology is applied to data obtained from 

a 750 W power capacity of solar PV panel. The main objective is that of determining the 

time horizon suitable to generate a prediction of the electricity production at small scale 

solar power system applications.  

Bouzerdoum et al. [14] study a system in which the data used are the external 

temperature, the cell temperature and the solar irradiation, collected in 1 minute time 

horizon. They combine two well-known methods: the seasonal autoregressive integrated 

moving average method (SARIMA) and the support vector machines method (SVMs). An 

experimental database of the power produced by a small-scale 20 kWp GCPV plant is con-

sidered and the forecasted solar irradiance is used to estimate the power produced by 

the grid-connected PV system. The monitored climatic data are: the irradiance on the ar-

ray plane, the module’s temperature and the external temperature at array side. With 

reference to the electrical data, the recorded quantities are: the string voltage, current 

and power, the AC power, the module and the frequency of the grid voltage, and the en-

ergy produced at DC and AC side.  

Alessandrini et al. [15] propose the application of an analog ensemble (AnEn) 

method to generate probabilistic solar power forecasts. The AnEn is based on an histori-

cal set of deterministic numerical weather prediction model forecasts and observations of 

the solar power. The innovative aspect of the paper is the test of a new method for prob-

abilistic PV energy forecast over the 0÷72 hours lead time interval. The proposed method 

has the advantage of not requiring an irradiance-to power conversion function. In fact, 

only the meteorological forecasted variables, global horizontal irradiance, cloud coverage, 

temperature, solar azimuth, solar elevation and photovoltaic power measurements are 

used for this application.  
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Trapero et al. [16] propose a univariate Dynamic Harmonic Regression model set 

up in a State Space framework for short-term solar irradiation forecasting. Time series 

hourly aggregated as the Global Horizontal Irradiation and the Direct Normal Irradiation 

are used. Hourly series of solar irradiation data were constructed, aggregating 1-minute 

ground-based solar irradiance data, which were recorded between January 2009 and De-

cember 2011 by the available weather station. The dataset contains 26280 observations.  

Orwig et al. [17] develop standardized metrics, baselines, and target values to 

measure forecast accuracy improvement for a forecasting horizon of 24 hours, and assess 

that it is necessary to derive and predict several irradiance values including direct normal 

irradiance, diffuse irradiance, plane-of-array irradiance, and global horizontal irradiance 

from satellite imagery.  

Bracale et al. [18] propose a new short-term probabilistic forecasting method to 

predict the probability density function of the hourly active power generated by a photo-

voltaic system. Firstly, the probability density function of the hourly clearness index is 

forecasted making use of a Bayesian auto regressive time series model (using also the 

cloud cover and humidity). Then, a Monte Carlo simulation procedure is used to evaluate 

the predictive probability density function.  

Bacher et al. [19] propose a method for online forecasting in many applications 

and in this paper it is used to predict hourly values of solar power for horizons of up to 36 

hours. The data used are 15 minutes observations of solar power from 21 PV systems lo-

cated on rooftops in a small village in Denmark. The suggested method is a two-stage 

method where first a statistical normalization of the solar power is obtained using a clear 

sky model found using statistical smoothing techniques. Then forecasts of the normalized 

solar power are calculated using adaptive linear time series models. Both autoregressive 

(AR) and AR with exogenous input (ARX) models are evaluated, where the latter takes 

NWPs as input. The results indicate that for forecasts up to 2 hours ahead the most im-

portant input is the available observations of solar power, while for longer horizons NWPs 

are the most important input. The data covers the entire year 2006.  

Chen et al. [20] propose a two stage simplified approach for forecasting power 

generation 24 hours ahead of using a radial basis function neural network (RBFNN). At 

first they apply Self-Organizing Map (SOM) to partition the data into three clusters using 

NWPs for daily solar irradiance and cloud cover.  

Wolff et al. [21] use nearest neighbours regression and support vector regression 

for 1-hour ahead PV power forecast predictions based on measurements and numerical 

weather predictions. Pedro et al. [22] evaluate several univariated approaches using both 

statistical and computational intelligence methods including ARIMA, Neural Networks 

(NN) trained with both back propagation and genetic algorithms, and k-nearest neigh-

bours. They found that NNs trained with genetic algorithm was the most accurate for 

hourly solar PV power prediction.  

Nonnenmacher et al. [23] seek to evaluate and optimize NWPs based on direct 

normal irradiance (DNI) forecasts, predicting hourly average values of DNI, 12 and 36 

hours ahead. Tao et al. [24] estimate, for a PV system without any complex meteorologi-



 

19 

 

cal instrumentation, an instantaneous power output of the solar network using Nonlinear 

Autoregressive Neural Network with External input (NARX). However, in reality radiation 

models of inclined surfaces were a prerequisite input to their NARX model, which is not 

always available. Al-Messabi et al. [25] used dynamic neural networks to predict power 

generation of these arrays they use in particular Focused Time Delay NN (FTDNN) and Dis-

tributed Time Delay NN (DTDNN). Bessa et al. [26] propose a vector auto regression based 

method to benefit from spatial-temporal dependencies of PV power. Using past observa-

tions from the neighboring locations and for forecast horizons less than 4 hours, up to 

10% improvements in RMSE values are achieved. Liu et al. [27] propose a PV power fore-

casting model based on various meteorological data including AI and they validated the 

method through the analysis of the mean absolute percentage error between predicted 

values and measured values. In [28] a simple method is validated. They propose a fore-

casting method that mainly relies on mining data and finding days that are similar to the 

forecast day according to certain measures 

While the term forecasting is of widespread use in everyday language, the term 

nowcasting belongs to the technical vocabulary of several research areas. Its adoption in 

a new context needs some clarification, as it is currently used with slightly different con-

notations, especially in very technical and specific fields. There is a general agreement 

that the term nowcasting appears in the meteorology literature, where it refers to the 

process of providing weather information and forecasts from zero to few minutes ahead 

[29], [30], [31], [32], [33]. In general, the term is used in a different sense from forecasting 

in terms of timeframe (forecasts are short-term predictions). 

 

2.3 Microgrid and Electrical vehicle management 
 

The integration of renewables, electrical vehicles and microgrids is getting more 

importance in the last few years. Also this interaction permits to reduce greenhouse gas 

emissions, increases the interactions between different systems and the reliability of the 

distribution networks. 

In the recent literature, there are different papers that analyze smart grids man-

agement tools or EVs, but few of them consider Energy Management Systems (EMSs)[34] 

that integrate smart grids, the various modes of EVs charging and the definition in first-

time of user be charged in a specific station (from the DSO, Distribution System Operator, 

point of view). In order to have a clear definition of the technologies that are present at 

world scale, Shamshiri et al. [35] present an overview of smart grids features and high-

light the recent developments. Optimization models are crucial to achieve a reduction in 

electricity costs and to maximize investments. Monteiro et al. [36] show how significant 

reductions in electricity cost can be reached using proper approaches and develop a 

management architecture for the distributed micro-grid resource based on a multi-agent 

simulator that is able to optimize load scheduling. Nasrolahpour et al. [37] consider a mi-

crogrid and determine the optimal scheduling of each generator and the amount of con-

trollable loads during a day including purchased energy from the main grid.  
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As one of the key factor of the modernization through future smart cities, the in-

tegration of electric mobility in the grid has been analyzed by different authors perform-

ing accurate models and reliable methods to manage properly EVs. Gonzalez et al. [37] 

summarize the most recent literature among the advantages of electric vehicles related 

to ancillary service for smart grids. Zhao et al. [38] presents the results of an investigation 

for the evaluation of different charging concepts and strategies. Delaimi et al. [39] pro-

pose a load management solution for coordinating the charging of multiple plug-in elec-

tric vehicles in a smart grid system. Allard et al. [40] compare the performance of differ-

ent scenarios of smart charging and conventional charging applied to EVs, the imple-

mented simulation model is based on the trend of Norway and so with a great integration 

of renewable and in particular wind energy.  

Electric vehicles are equipped by efficient electric motors that are powered by 

high-density lithium ion batteries, which through chemical reactions generate electrical 

current; a typical drive for these vehicles is also composed by a DC/DC converter and an 

inverter that feeds the motor [41]. These motors allow bidirectional power flow. When 

there is a torque request from the traction system the power flow is from the battery to 

the wheels, otherwise during the regenerative braking the battery is recharged. The bat-

tery life is no more influenced only by the itinerary and the activity (for example pickup 

and delivering) [42] but also from the charging modes. 

There are different types of charging stations: for example in [43] solar stations 

are taken into account, combining a PV system with electric vehicles also connected to 

the main grid. In particular, authors present a load scheduling model using data collected 

in two years. There are also different type of charging modes: the most used in smart 

grids are Smart charging and Vehicle to grid (V2G). Smart Charging concept represents a 

more flexible way of charging vehicles in order to modulate the feeding of the vehicles 

according to the grid necessities, for example during the peak hours. Instead, in V2G con-

figuration, the power flow is bidirectional (from the grid to the vehicle and vice versa): the 

vehicle storage could help the microgrid to sustain the entire system if necessary or to 

regulate the voltage at the charging station node. These types of charging hav also some 

drawbacks: first of all, the creation of a fluctuating power demand. For this reason, the 

authors in [44] investigate a strategy to regulate the vehicle’s charge, considering differ-

ent priority orders to reach the maximum flexibility, managing the power and conse-

quently smoothing the demand curve. In [45] attention is focused on the active contribu-

tion, i.e., power modulation via different charging modes, of the electrical vehicles in the 

grid optimization considering the V2G mode. Differently, in [46] a mixed integer linear 

programming problem is formulated, with the objective of scheduling the charging of the 

vehicles, minimizing the energy costs and taking into account reliability and stability is-

sues both as regards the microgrid and the customers. 

The choice among different modes of charging influences not only the statement 

of the charging scheduling problems, but also the routing of electrical vehicles. For in-

stance, in [47] a double layer smart charging algorithm for electrical vehicles (EVs) is pre-

sented, having the objective of allowing the single vehicle to reach the more suitable re-

charging station, limiting the transformer load and the total energy costs. In [48] the au-
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thors study different routing strategies to smooth microgrid’s power fluctuations, caused 

by intermittent renewables and load, ensuring at the same time the grid power quality 

and the optimality of logistics services. Wang et al. [49] study the configuration of a sys-

tem wherein EVs are connected to the smart grid as mobile distributed energy storage. 

Bracco et al. [50] present an overall EMS, based on a dynamic optimization model to min-

imize operating costs and carbon emissions considering different technologies as micro 

gas turbines, photovoltaic, concentrating solar systems, storages based on batteries tech-

nology. 

Stochastic approaches are widely adopted to model the integration between elec-

trical vehicles and power networks.  In [51] a real case study is proposed, namely the dis-

tribution network from Zaragoza in Spain. The authors formulate a stochastic problem for 

energy resource scheduling including uncertainties of renewable sources, electric vehi-

cles, and market prices. Also in [52] the scheduling problem is addressed, with the objec-

tive of maximizing the profit by charging the plugin electric vehicles within the low price 

time intervals as well as participating in ancillary service markets using stochastic pro-

gramming. V2G technology could be integrated within a stochastic problem formulation 

as in [53], where uncertainties in the power flow are taken into account. The problem is 

solved by developing an algorithm based on bat metaheuristics.  

Energy aggregators represent an effective tool that helps in the management of 

multiple devices connected together. In this connection, [54] formulates a stochastic 

model for day-ahead energy resource scheduling, integrated with the dynamic electricity 

pricing for electrical vehicles, to address the challenges brought by the uncertainty affect-

ing demand and energy from renewable sources. 

This type of problems includes models with many nonlinearities, and thus it is 

quite difficult to solve. As an example, [55] proposes three metaheuristic optimization 

techniques to solve the plug-in electric vehicle charging coordination problem in electrical 

distribution systems. These algorithm  are based on tabu search, greedy randomized 

adaptive search procedure, and hybrid optimization. Such algorithms are developed with 

the objective of minimizing the operational costs, taking into account the objective of 

charging the electric vehicle batteries within a specific time interval. Similar approaches 

are followed in [56] and [57] for the same kind of problems. In particular, the application 

of genetic algorithms and particle swarm optimization techniques is described. 

World organizations are encouraging national authorities to arrange more and 

more electric or hybrid vehicles. Mass deployment of EVs (Electrical vehicles) could be a 

good solution, but, unfortunately, a widely usage of EVs may cause technical problems 

[58]. 

The integration of a fleet of EV into an electric power grid introduces new issues in 

terms of the sustainability of the growing energy demand. Thiat is sufficient to conjecture 

that one day, with such an increasing demand, the available energy might become insuffi-

cient to host the recharge processes of too many EVs. Moreover, the adoption of many 

renewable energy sources (such as photovoltaic and wind) increases the unpredictability 

and the variability of the power production, leading to destabilize the grid [59], [60].  
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The interaction between microgrids and electrical charging stations could be a 

feasible solution to this problem [61], as smart microgrids have the capability to generate, 

distribute, and regulate the flow of electricity to consumers. In this connection, in [62] the 

authors consider a power system with an aggregator and multiple customers with EVs 

and propose novel electricity load scheduling algorithms, which, unlike what has been 

presented in previous works, jointly consider the load scheduling for appliances and the 

energy trading using EVs. In case of shortage of power generation, they automatically 

switch to use the energy stored in backup batteries or import electricity from neighboring 

microgrids or the power grid.  

Electric power can be stored into storage systems and used later. For example, in 

[63] excess renewable power generation is used to produce hydrogen, which is stored in a 

refilling station. Instead, the authors of [64] presents a day-ahead scheduling framework 

for virtual power plant in a joint energy and regulation reserve markets. Impact of carbon 

dioxide emission of generators is taken into account by introducing a suitable penalty cost 

function. The presence of different uncertain parameters, regarding wind generation, EV 

owners’ behavior, energy and market prices, and regulation up and down probabilities is 

considered using a point estimate method. 

The overall load profile of the power grid, as well as of the microgrid, may change 

due to the introduction of EVs. Charging a large population of EVs has a significant impact 

on the power grid [65]. On the other hand, the introduction of EVs in the microgrid opens 

up opportunities to store and regulate power generated from highly intermittent energy 

generators. 

Charging stations provide power supply for EV batteries. The deployment of com-

plete infrastructures with complex equipment is unavoidable for promoting EVs. EVs need 

often many hours for charging. This means that the time spent for charging is long and 

consequently provokes long queues within these stations as well as intolerable waiting 

times. Thus, it is fundamental to develop and apply effective charging stations manage-

ment policies. For instance, in [66], scheduling of EVs over charging stations is ap-

proached as an optimization problem, formulated as a linear programming problem. The 

paper proposes a decentralized control scheme for scheduling the flexible charging de-

mand of plugin electric vehicles in residential distribution networks. This control scheme 

is designed for execution, by a multi-agent system, with two consecutive stages (first stat-

ic and then dynamic scheduling).  

Parking lots for EVs are increasing, in response to the growing number of this type 

of vehicles. Non-optimal operation of distributed generation sources and ineffective 

scheduling of EV charging stations can cause heavy economic problems for the lot owner 

and serious technical problems for the operator of the distribution network. In [68] the 

authors propose a fuzzy optimization model that aims at maximizing the PL’s profit while 

satisfying EV owners’ charging requirements. In [69] the EV-charge project is presented, 

with the objective of providing an effective solution by combining autonomous valet park-

ing with e-mobility, introducing improved parking and charging comfort, thus simplifying 

the life of the customer and making more attractive the use of EVs. In [70] the vehicle 

scheduling problem is addressed following a discrete-event simulation approach.  In par-



 

23 

 

ticular, the car sharing model is treated by using a modeling approach based on the UML 

formalism for large systems.  

Vehicle routing problem for EVs is dealt with in [71], where the authors consider a 

grid-connected microgrid model that consists of a logistic distribution system, where EVs 

depart from the depot, deliver the goods to multiple demand stations, and then return to 

the depot. On the basis of this model, the paper studies the coordinated dispatch strate-

gies of EVs in order to smooth renewable energy and load fluctuations of the microgrid 

while ensuring the overall quality of logistics services. 

In the recent literature, event driven approaches to EV-microgrids interactions, 

charging stations and parking lots management are presented in many works. In [72], the 

possibility of controlling the recharge processes of the vehicles’ batteries in order to 

smooth the peak energy demand during critical periods has been investigated using an 

event driven optimization. In [73] the concept of park and-charge system is introduced. 

That allows the customers to park their electric vehicles at a parking lot, where the vehi-

cles are charged during the parking time.  

In this framework, another approach followed by some authors is that based on 

the development and application of model predictive control schemes. As an example, in 

[74] the authors seek for a suitable trade-off between the conflicting  objectives of mini-

mizing the net cost of buying energy and the error in the tracking of a reference aggre-

gated charging power profile (following IEC 61851 standard). The same authors, in [75] 

and [76], consider the same problems in more complex scenarios. In particular, resources 

are coordinated according to the needs of maximizing self-consumption and minimizing 

the cost of energy consumption, within a contractual framework characterized by de-

signed or market indexed pricing models. 

In [77], a dual coordination mechanism is considered, which controls a cluster of 

devices at two different operational levels: market operation and real-time operation. In 

[78] the authors propose a hierarchical event driven multi-agent system framework to 

coordinate the scheduling of the charging process of electric vehicles. Finally, in [79] the 

authors propose a solution for the distributed dynamic assignment of a set of electric ve-

hicles to a network of charging stations. 

 

2.4 Residential Demand Response 
 

Another important research topic about the microgrid management is that rele-

vant to the so called smart buildings. Interconnected buildings can be seen as microgrids 

or districts that can share thermal and electrical power to satisfy comfort, economic and 

technical exigencies. Microgrid technology provides an opportunity and a desirable infra-

structure to improve the efficiency of energy consumption in buildings, as assessed by 

[80] and [81]. Recent research shows that 20%–40% of building energy consumption can 

be saved through optimized operation and management, without changing the building 

structure and the hardware configuration of the energy supply system. Power consump-
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tion related to thermal appliance operation in a building, such as heating, ventilating, and 

air conditioning (HVAC) systems, represents a very important portion in load demand. The 

key to improve operation efficiency of building energy consumption is the coordination 

and the optimization of the operations of the various energy sources and loads. To attain 

these objectives, the development and the application of a suitable approach is required, 

which has to integrate dynamic models, intermittent renewables, active response mech-

anisms, real-time control of the distribution network, management of storage systems, 

and automatic measurement of energy consumption.  

In this connection, in the recent literature, several works can be found related to 

BASs (Building Automation Systems) and EMSs (Energy Management Systems). However, 

very few of them, to the best of the authors’ knowledge, are related to interconnected 

buildings. The scheduling problem of energy supply in buildings is considered in [82]. In 

this work, the objective is the minimization of the overall cost of electricity and natural 

gas necessary to satisfy the energy demand of a building, over a given time horizon, while 

satisfying the energy balance and  complex operational constraints relevant to energy 

supply for equipment and devices. In many papers, approaches based on Model Predic-

tive Control (MPC) are used for the management of buildings’ energy consumption (see, 

e.g.,[83],[84],[85],[86] and [87]). MPC-based algorithms can be efficiently implemented 

and adapted to buildings of different sizes. Some papers consider a single element of the 

building, as in [88], where MPC strategies are developed  to control the climate of a build-

ing where the room temperature has to satisfy comfort constraints. MPC is also applied in 

connection with building cooling systems and thermal energy storage systems. In these 

cases, it is proposed to optimally store the thermal energy in a tank by using predictive 

knowledge of building loads and weather conditions. In [89], the authors propose a model 

for the optimal design of distributed energy generation systems that satisfy the heating 

and power demand inside a small neighbourhood.  
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3. Distributed Energy Resources In Microgrids 
This chapter focus on the MG components. Each component is modelled separate-

ly and the MG results from the combination of these components. The components that 

are considered in the model presented in ths thesis are: the  photovoltaic energy source, 

the energy storage, the non-renewable sources for energy generation (e.g., a micro tur-

bine), and the deferrable demand (for instance, the charging station for the electrical ve-

hicles). In general, there is also a non-deferrable demand, but this does not require any 

specific model. 

3.1 Introduction 
The management of MGs requires the intelligent exploitation of power and infor-

mation by leveraging new technologies. The MG manager is no more a passive consumer 

of energy, but is capable of interacting with the real-time market by purchasing and sell-

ing energy on the basis of the results obtained by solving suitable optimization models. 

An efficient MG management system has the following objectives: 

 Combined Heat / Power (CHP) generation 

 Coordination of supply and demand 

 Minimization of transmission losses 

 Integration of renewable energy sources 

 Resilience to failures 

The external issues that encourage the development of efficient MGs are: 

 The necessity of reducing gaseous emissions (mainly CO2). 

 The necessity of developing rational approaches to generation and exploitation of 

energy. 

 The deregulation and the competiotion in the energy market. 

 The increasing diversification of of energy sources. 

 National and international regulations that favour the distributed generation of 

energy and the integration of heterogeneous sources.  
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3.2 The photovoltaic energy source 
Photovoltaic (PV) electricity generation represents an attractive source of renew-

able energy, for distributed urban power generation,  owing to the relatively small size  

and noiseless operation. Its application is expected to significantly grow all over the 

world. 

PV generators are intrinsically modular; in other terms, they offer the advantage 

of allowing the possibility of adding further units in order to meet a possible increasing 

demand. The photovoltaic cell is a small size current generator. The most widely used ma-

terial for its construction is silicon, which can be, depending on its molecular structure, 

monocrystalline, polycrystalline amorphous power, in descending order of conversion ef-

ficiency. 

 

Figure 8 Cells Photovoltaic transformation 

The Solar Cell is the basic building block of Solar PV technology. These cells are wired to-

gether to form a module (PV Solar Panel). The PV Modules gather solar energy in the 

form of sunlight and convert it into direct current (DC) electricity. An inverter can convert 

this DC power into alternating current (AC power). Figure 8 shows the basic process of 

photovoltaic convection. 

The performance of the photovoltaic cell depends on a set of context-specific variables, 

operating conditions and climatic conditions in which the device is acting. The productivi-

ty of the cell is strictly correlated by its capability of intercepting solar radiation and the 

temperature it reaches, which, in turn, is influenced by various atmospheric issues that 

will be discussed in chapter 4. Note that the relation of energy with radiation is directly 

proportional, instead the relation with temperature is inversely proportional.   
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Clearly, electrical power production is not constant over time. Besides to intermittency,  

the additional difficulty of forecasting PV power production represents a real challenge as 

regards the development of efficient and reliable MG management systems.  

 

3.3 Energy Storage  
 

The function of the storage is that of accumulating energy in high production peri-

ods in order to satisfy the demand in low production periods. In case of excess produc-

tion, the system charges the batteries, while in the absence of power, the network is ei-

ther powered by the energy drawn from the batteries or by the energy bought from the 

grid. 

More specifically, the energy storage in a micro grid has the following functions: 

 To allow the storage of energy (within a range of a few MWh) 

 To attenuate the load power ramp 

 To allow for peak shaving  

 

 

Figure 9 Energy storage example 

 

  

3.4 Microturbines 
 

Micro turbines (MTc) are small high-speed gas powered generation systems.  The 

World’s first turbine was set at Neuchatel in 1939 by Brown-Boveri. The thermal efficien-

cy in 1939 was 18%, whereas today is ranges from 47% to 60%. The maximum shaft post-

war power was 4MW, whereas today is 450MW. 
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The micro turbines have lower efficiency in respect to the normal ones, for the 

blade and for construction technical aspect. In Figure 10 a schematic reprersentation of a 

MTc is provided, showing the following elements: 

 Compressor 

 Generator 

 Combustion chamber 

 Radial turbine 

 Diffuser 

 Recuperator. 

The compressor increases the pressure of the air which passes through the recu-

perator, and the combuster, where it is superheated; then it is finally delivered to the 

turbine casing. Then, the exhaust product exiting from the turbine passes through a recu-

perator, where further heat is extracted to be used in the preheating process of air enter-

ing the combuster chamber. This reduces the fuel needed in the combuster. Finally, the 

generator converts mechanical energy into electrical energy. 

 

 

Figure 10 Micro tubina gas 
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Figure 11 A cogeneration micro-turbine system package example 

 

3.4.1 Turbines Modelling 

 

In this thesis the model adopted for the microturbine is that reported in [5].  

3.5 Deferrable demand: Electrical vehicle charging  
 

In the last decades, the investment on the electric batteries produce an increase 

of the hybrid and electrical vehicles, which represent for a micro grid an external unpre-

dictable but deferrable demand. From this arises the importance of the research as re-

gards, for instance, optimal scheduling and smart charging of vehicles. 

 

3.5.1 How the electrical vehicle works 

The electric vehicles uses the electric motor for the traction using energy from a 

system of electric batteries with considerable advantages in terms of reliability, safety, 

quietness and emissions reduction. Some years ago, the most used technologies were 

lead acid batteries and DC brush motors. Today, ignoring the most exotic technologies, 

lead has been replaced by lithium and DCbrush motors by either DC brush-

less or induction motors. 

The main parameters that describe the characteristics of an electrochemical ac-

cumulator are: 

 Capacity: It is measured in Ampere-hours [90] and represents the amount of ener-

gy that can be stored. The capacity is given by the product of the current intensity 

and the time required for the battery to become discharged. For example, a bat-
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tery with capacity of 1 Ah can deliver a current of 0.1 amps for ten hours before to 

discharge. However the real capacity is dependent on the rate of discharge, capac-

ity decreases with increasing current demand, for this reason, a 1 Ah battery usu-

ally fails to provide 1 Amp for one hour. 

 Rated voltage: it is the average voltage between the positive and negative termi-

nals when the battery delivers current. To get the energy in Watt-hours multiply 

the capacity  for the rated voltage. 

 Specific energy: it is the energy that can be supplied from the accumulator per 

unit of mass (Wh/kg) or per unit of volume (Wh/dm3). 

 Rated power: value obtained by multiplying the rated voltage and the discharge 

current. A significant parameter of the batteries for the electric vehicle is the spe-

cific peak power, which identifies the ability of acceleration of the electric vehicle. 

It is defined as the power per unit of weight that the storage system is capable to 

support for 30 seconds with a value of the DOD (see below) by 80%, that is, with 

low battery. 

 Depth Of Discharge (DOD): is the amount of energy that has been withdraw from 

the battery, it is expressed as a percentage in relation to the nominal capacity of 

the battery. For instance if 30 Ah has been consumed from a battery of 100 Ah, 

DOD is 30%.  

 State Of Charge (SOC):  represents how much energy is stored in the battery. It is 

the complement of DOD, as the one increases the other decreases, DOD = 30% 

then SOC = 70%.  

 Energy efficiency: is the ratio between the energy absorbed during the recharging 

phase and the energy delivered during the discharge. 

Lead acid batteries have always been the cheapest and most common traction 

batteries available. However, they have a too low specific energy (20-40 Wh/kg) and thus 

they cannot guarantee a sufficient autonomy to the vehicle.  Medium-long recharging 

times are also required and environmental conditions may change rated features10.  

The nickel-cadmium batteries are the most prevalent after the lead. They are ro-

bust and with higher performances than lead. In particular, the specific energy can be up 

to 50 Wh/kg. However, the presence of cadmium has severely limited the spread due to 

his high toxicity. In fact, the disposal of cadmium requires a very accurate process of re-

                                                      

10 David Linden, Thomas Reddy – Handbook of batteries  
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covery and recycling in order to avoid the contamination of the environment. 

In order to reduce the environmental impact of such batteries, recently cadmium was re-

placed by metal hydrides. In this way, it is also possible to attain higher values of the spe-

cific energy, about 80 Wh/kg. Such batteries are nowadays used on hybrid vehicles but 

the high cost of the raw material and the poor performance in the plug-in vehicles limit 

their penetration in the market. 

Among the newest technologies of accumulation (that are continuously under de-

velopment) one of the most promising are the lithium-ion accumulators. These batteries 

can be built in a variety of shapes and sizes, in order to efficiently fill the available space 

in the devices that make use of them. The specific energy can be more than 200 Wh/kg, 

that is, very high in comparison to the other technologies. Thanks to this high energy den-

sity they are one of the most popular types of rechargeable batteries for portable elec-

tronics, land and aerospace applications.  

 In the general configuration of a Li-ion rechargeable battery the cathode receives 

electrons during discharge and vice versa supplies them during charging, the anode in-

stead provides electrons during discharge and vice versa receives them during charging.  

 

Figure 12: Li-ion battery 

When the cell is completely discharged all the lithium is present is in the cathode. 

During the charging process a lithium ion is extracted from the metal oxide constituting 

the cathode and transferred to the anode through the external circuit. The metal of the 

cathode is then oxidized. At the anode, lithium ions are trapped and reduced to lithium 

when they acquire electrons provided by the external circuit.   

Instead, during the discharging process, the Li placed in the matrix of graphite at 

the anode is oxidized, releasing electrons while the lithium ions migrate through the elec-

trolyte to the cathode  

A good point of Li-ion batteries is the small memory effect. This effect describes 

the specific problem affecting batteries that gradually lose their maximum energy capaci-

ty if they are repeatedly recharged after being only partially discharged. The battery ap-
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pears to remember the smaller capacity causing them to hold less charge and it is a prop-

er characteristic of lead acid and nickel based batteries. 

Apart from the high price, one of the main disadvantages of this kind of batteries 

is that are subject to aging, even if not in use. Anyway those are not considered fully ma-

ture since manufacturers are constantly improving lithium-ion batteries.  

The battery storage opened up infinite possibilities and is fundamental for electric 

vehicles. All these types of batteries are carefully managed through the system of moni-

toring and management (BMS). A Battery Management System  is used to check the bat-

teries during charge and discharge. When the vehicle requires power, the BMS manages 

the discharging phase of the battery.  

Among the basic variables monitored by the BMS, the main ones there are:  

 the voltage, significant for feeding the loads, 

 the state o charge (or the depth of discharge), necessary to evaluate the autono-

my of the vehicle,  

 the cells temperature, in order to avoid failures. 

-  

 

Figure 13 Storage kit in EV 
 

In the charging phase BMS  continuously controls power and current flows. Charg-

ing each cell is like filling a glass of water without spilling. As the glass fills up, the flow is 

reduced to catch every last drop. In battery terms, this means reducing current in order to 

balance cell voltage, ultimately tapering down to a trickle as it nears full. In fact, even us-

ing fast charging systems, it is quick to reach up to 80% of the SOC, while from 80% to 

100% the charging time increases because the current delivered to batteries is reduced. 

As regards propulsion, newest EVs can be motorized by two types of engines: DC 

brushless or AC induction motor. DC brushless motors are also known as electronically 

commutated motors. The machine is made by a stator and a rotor. The rotor includes two 

or more permanent magnets that generate a DC magnetic field. In turn, this magnetic 

field enters the stator core that is made up of thin stacked laminations and interacts with 

currents flowing within the windings to produce a torque interaction between the rotor 

and stator.  
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Figure 14 comparison between brushed and brushless motor 

 

BLDC (Brushless DC electric motor  )motors are synchronous machines that are 

powered by a DC electric source via an integrated control device called inverter.  By 

switching the power supply, the inverter commutates the DC signal in the stator windings 

producing an AC electric signal to drive the motor. In this context, AC is not a sinusoidal 

waveform, but rather a bi-directional current with no restriction on waveform. In this 

way, the magnets on the rotor follows the magnetic field generated by the controller in 

the stator windings. The controller in DC motors changes the orientation of the DC cur-

rent in the stator windings (that is why the motor is also called electronically commutated 

motor). The rotor’s speed is synchronized to the speed of the commutation thanks to the 

magnets. Additional sensors and electronics control the inverter output amplitude and 

waveform (and therefore percent of DC bus usage/efficiency) and frequency (i.e. rotor 

speed). As the rotor rotates, it is necessary that the magnitude and polarity of the stator 

currents be continuously varied in order to keep the torque constant and make the con-

version of electrical to mechanical energy efficient.  

In an AC induction motor the stator is virtually identical to that in a DC brushless 

motor. In fact, both have three sets of “distributed windings” that are inserted within the 

stator core. The essential difference between the two machines is the rotor. Unlike the 

DC brushless rotor, the induction rotor has no magnets, just stacked steel laminations 

with buried peripheral conductors that form a shorted structure.  

 

Figure 15 AC induction motor 

Currents flowing in the stator windings produce a rotating magnetic field that en-

ters the rotor. In turn, the frequency of this magnetic field is seen by the rotor as equal to 

the difference between the applied electrical frequency and the rotational frequency of 

the rotor itself (that is why the machine is called asynchronous). Accordingly, an induced 
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voltage exists across the shorted structure that is proportionate to the speed difference 

between the rotor and electrical frequency. In response to this voltage, currents are pro-

duced within the rotor conductors that are approximately proportionate to the voltage, 

hence to the speed difference. Finally, these currents interact with the original magnetic 

field to produce forces components that yield desired rotor torque.  

While 3-phase induction motors have great utility, they also have some severe 

limitations as they cannot operate in DC. Only by making use of an inverter, it becomes 

possible to power an induction machine from a battery or other DC source.  Moreover, 

since shaft speed is proportionate to line frequency, speed regulation becomes possible 

simply by adjusting the inverter frequency. 

Both DC brushless and induction drives use motors having similar stators. Both 

drives use 3-phase modulating inverters. The only differences are the rotors and the in-

verter controls. When making use of digital controllers, the only differences are related to 

control. In fact, DC brushless drives require an absolute position sensor, while induction 

drives require only a speed sensor. 

 

Figure 16 DC brushless motor and AC induction motor 

One of the main differences between the two motors is that considerably less ro-

tor heat is generated with the DC brushless drive. Thus, rotor cooling is easier and peak 

point efficiency is generally higher for this drive. The DC brushless drive can also operate 

at unity power factor, whereas the best power factor for the induction drive is about 85 

percent. This means that the peak point energy efficiency for a DC brushless drive will 

typically be a few percentage points higher than for an induction drive. 

Induction machines are more difficult to control. The control laws are more com-

plex and difficult to manage. Achieving stability over the entire torque-speed range and 

over temperature is more difficult with induction than with DC brushless. Also torque per-

formance is low compared with DC machines. 
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Anyway for manufacturing the permanent magnets of the rotor the so called rare 

earth are required, for this reason rotors are really expensive and the also difficult to 

handle due to very large forces that come into play when anything ferromagnetic gets 

close to them. This means that induction motors will likely retain a cost advantage over 

permanent magnet machines. Also, due to the field weakening capabilities of induction 

machines, inverter ratings and costs appear to be lower, especially for high performance 

drives.  

Back in the 1990s most of all the electric vehicles were powered by DC brushless 

drives. Today all hybrid cars are powered by DC brushless drives. The reason is that the 

hybrid usually don’t need to be plugged-in but the battery are charged directly by an in-

ternal engine. Thus, they don’t need any inverter to convert the AC current from the grid 

to feed the battery that needs DC voltage and then those feed the motor that requires DC 

as well.  

The manufacturers offer different solutions, often related to the economic feasi-

bility or special requirements. DC brushless drives will likely continue to dominate in the 

hybrid markets and that induction drives will likely maintain dominance for pure electrics.  

Proving that the electric drive is technically reliable, environmentally friendly and 

affordable, possible solution available on market are Figure 17:  

 Hybrid Vehicle (HV) 

 Electric Vehicle (EV) 

 Plug-in Hybrid Vehicle (PHV) 

 Fuel Cell Hybrid Vehicle (FCHV) 

 

 
Hybrid Vehicle (HV) 
   
 
Electric Vehicle (EV) 
   
 
Plug-in Hybrid Vehicle (PHV) 
   
 
Fuel Cell Hybrid Vehicle 
(FCHV) 
 

 
 

 

Figure 17 Types of EV on market 
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3.5.2 Electrical vehicle models 

To model the EV charging we define the following terms: 

 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) is the state of charge a t time t 

 𝑃𝐺→𝑣,𝑖(𝑡) the power flow to vehicle i (unrestricted in sign) during time interval (t, 

t+1), 

 𝛥𝑡 the length of the time discretization interval  

 𝑐𝑎𝑝𝑣𝑒ℎ,𝑖 is the battery capacity of vehicle i. 

 

Then, the following equation can be used to represent the dynamics of the state 

of charge of each vehicle in percent, express the result as a percentage: 

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡 + 1) = (𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) + 𝑃𝐺→𝑣,𝑖(𝑡)
𝛥𝑡

𝑐𝑎𝑝𝑣𝑒ℎ,𝑖
100)       𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇 − 1          (3.1) 

 

Then, the following constraint must be introduced to impose that the value of the 

state of charge of each vehicle is between a minimum and a maximum value 

 

𝑥𝑠𝑣𝑒ℎ 𝑚𝑖𝑛 ≤ 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) ≤ 𝑥𝑠𝑣𝑒ℎ 𝑚𝑎𝑥  𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇      (3.2) 
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4. PV Production NowCasting 

4.1 Introduction 
As previously mentioned, the forecasting (and nowcasting) of the variables affect-

ing and conditioning the behaviour of the microgrid is of extreme importance to ensure 

acceptable performances for the entire system. In this chapter, specific methodologies 

will be mentioned and their application to data useful to predict the power from renewa-

bles (PV) within a microgrid will be discussed. The purpose of this chapter is not that of 

presenting the developmente of new methodologies, but rather that of clarifying which 

methods, among those available in the literature, have been adopted in order to provide 

forecasts of the variables of interest. Actually, the forecasting of the production of power 

from PV is of utmost importance for the statement of the problems considered in the 

next three chapters of this thesis. For details about the methods mentioned here, the 

reader can refer to the paper by Oneto, Laureri et al. [106] which presents and compares 

the various approaches that have been used.  

4.2 Data Driven NowCasting and Forecasting 
For the development of a model for the PV nowcasting and/or forecasting, it is 

necessary to consider a a variable 𝑣1(𝑡) (the solar power generation) which can be meas-

ured at a particular frequency , and other possible correlated variables 

{ 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡), … } (for instance, external temperature, solar radiation, etc.) which 

can be measured generally  at different frequencies,  from time t0  onwards. The goal is to 

predict the value of 𝑣1(𝑡), from 


t t   to   t t (with    being the length of the future 

horizon like 1 day, 2 days ect., that will be referred to as prediction horizon). Besides, for 

some of the correlated variables (external temperature, humidity, etc.) forecasted se-

quence of values {  𝑣2̂(𝑡), 𝑣3̂(𝑡), … } (e.g. from the national weather services) may be 

available over the considered prediction horizon. Note that here and in the following we 

use the notation 𝑣1(𝑡) to represent the whole sequence of values of variable 𝑣1, from the 

present time instant 


t till the end of the prediction horizon.  The considered problem 

may be put within the classical framework of multivariate regression problems [90], [91]. 

In the conventional regression framework [93], a set of data Dn = {(x1; y1); … ; (xn; 

yn)}, with xi  X ℝ and yi  Y  ℝ, are collected from the field. Then, the goal is to identi-

fy the unknown model 𝔊: 𝑋 → 𝑌 through a model 𝔐: 𝑋 → 𝑌 chosen by an algorithm 

𝒜ℋdefined by its set of hyperparameters ℋ[106]. The accuracy of the model 𝔐 in repre-

senting the unknown system 𝔊 can be evaluated using different measures of accuracy 

[94], [95]. In particular, given a set of fresh data Tm = {(x1; y1),…,(xm; ym)}, the model will 

predict a series of outputs {  𝑦1̂, … , 𝑦𝑚̂} given the inputs {x1; …; xm}. Based on these out-

puts it is possible to compute these performance indicators [95]: 

 Mean Absolute Error: 𝑀𝐴𝐸 =
1

𝑚
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑚

𝑖=1  

 Mean Absolute Percentage Error: 𝑀𝐴𝑃𝐸 =
100

𝑚
∑ |(𝑦𝑖 − 𝑦̂𝑖)/𝑦𝑖|

𝑚
𝑖=1  

  Mean Square Error: 𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚

𝑖=1  
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 Normalized Mean Square Error: 𝑁𝑀𝑆𝐸 =
1

𝑚∆
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚

𝑖=1  𝑤𝑖𝑡ℎ ∆=
1

𝑚
∑ (𝑦𝑖 − 𝑦𝑖̅)

2𝑚
𝑖=1  and 𝑦𝑖̅ =

1

𝑚
∑ 𝑦𝑖

𝑚
𝑖=1  

 Relative Error Percentage:𝑅𝐸𝑃 = 100√∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚
𝑖=1 / ∑ 𝑦𝑖

2𝑚
𝑖=1  

 Pearson Product-Moment Correlation Coefficient: 

𝑃𝑃𝑀𝐶𝐶 =
∑ (𝑦𝑖 − 𝑦̅)(𝑦𝑖̂ − 𝑦̅)𝑚

𝑖=1

√∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚
𝑖=1

√∑ (𝑦𝑖 − 𝑦̂)
2

𝑚
𝑖=1

 𝑤𝑖𝑡ℎ 𝑦̂ = ∑ 𝑦𝑖̂

𝑚

𝑖=1
 

These measures of accuracy canbe used for testing and comparing the effective-

ness of the different models. Actually, the MAPE will not be adopted since the true value 

of the energy production is zero during the night and so it leads to a division by zero that 

is not possible to handle smootly.  

In our case, in order to map the PV nowcasting and forecasting problems into a 

regression model, the  input space X is assumed to  be composed by: 

 𝑣1(𝑡) for t [𝑡0 − 𝛿−,  𝑡0) ( a sequence of the past values of the variable of interest) 

 {  𝑣2(𝑡), 𝑣3(𝑡), … } for t [𝑡0 − 𝛿−,  𝑡0) 

 for the possible correlated variables for which we have also the forecasted values 

we add {  𝑣2̂(𝑡), 𝑣3̂(𝑡), … } for t [𝑡0,  𝑡0 + 𝛿+] 

For what concern instead the output space Y , two different scenarios must be dis-

tinguished. 

In the nowcasting scenarios  𝑌 = 𝑣1(𝑡0). This model can be useful for detecting 

anomalies in the behavior of the power generating units. For example at certain time 𝑡0 

with a given external conditions (external temperature, solar radiation, etc.) they should 

generate, based on the nowcasting model, a certain amount of power and instead the ac-

tual generation is lower; this may indicate the presence of some failure in the system.  

In the forecasting scenarios,  𝑌 = 𝑣1(𝑡0 + 𝛿+) with 𝛿+ > 0. This model can be 

useful to predict the amount of energy that the solar power generation system will gen-

erate. This information is extremely important in order to properly set the management 

optimization problem for the micro grid.  

The mapping of the the solar power generation problem into a multivariate re-

gression problem is depicted in Figure 188.  
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Figure 18: Mapping of the solar power generation problem into a multivariate regression problem. 

We have compared the performances of  three differente “state of art” data driv-

en techniques (Kernel Methods, Extreme Learning Machine, and Random Forests) over 

different time horizons.The considered methos are briefly mentioned below.  

A.  Kernel Methods 

Kernel methods are a family of machine learning algorithms. They represent the 

solution in terms of pairwise similarity between input examples [78]. Kernel methods 

consistently outperform previous generations of learning techniques. They provide a flex-

ible and expressive learning framework that has been successfully applied to a wide range 

of real world problems even though, recently, novel algorithms, such as Deep Neural 

Networks [80] and Ensemble Methods [82], have become increasingly interesting [78].  

B.   Extreme Learning Machine 

The Extreme Learning Machine approach [106] was introduced to overcome prob-

lems posed by the back-propagation training algorithm [108]: potentially slow conver-

gence rates, critical tuning of optimization parameters, and the presence of local minima 

that call for multi-start and re-training strategies. ELM was originally developed for the 

single-hidden-layer feedforward neural networks [109] and then generalized in order to 

cope with cases where ELM is not neuron alike.   

C. Random Forests 

Random Forests (RF)  was proposed in [97], where Breiman tried to give an an-

swer to these questions: How do we build these simple classifiers? How many simple clas-

sifiers do we have to combine? How can we combine them? Is there any theory which can 

support us in making these choices? Actually, combining the output of several classifiers 

may result in a much better performance than using any one of them alone [97, 112]. In-

deed, many state-of-the-art algorithms search for a weighted combination of simpler 

classifiers [113]: Bagging [97], Boosting [114] and Bayesian approaches [115] or even NN 

[116] and Kernel methods such as SVM [95].  

Random Forests (RF) of tree classifiers is one of the state-of-the-art algorithm for 

classification which has shown to be one of the most effective tool in this context [117]. 

RF combines bagging to random subset feature selection. In bagging, each tree is inde-
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pendently constructed using a bootstrap sample of the dataset. The RF algorithm adds an 

additional layer of randomness to bagging. In addition to constructing each tree using a 

different bootstrap sample of the data, RF changes the way how the classification trees 

are constructed. In standard trees, each node is split using the best division among all var-

iables. In RF, each node is split using the best among a subset of predictors randomly cho-

sen at that node. Eventually, a simple majority vote for clarification task or the average 

response for the regression ones is taken for prediction. In [97] it is shown that the accu-

racy of the final model depends mainly on three different factors: how many trees com-

pose the forest, the accuracy of each tree and the correlation between them. The accura-

cy for RF converges to a limit as the number of trees in the forest increases, while it rises 

as the accuracy of each tree increases and the correlation between them decreases. RF 

counterintuitive learning strategy turns out to perform very well compared to many other 

classifiers, including NN and SVM, and is robust against overfitting [97]. 

 

4.3  Forecasting and Nowcasting Models: the Savona Campus Smart Polygeneration 

Microgrid: Case Study 
The Savona Campus SPM is a low voltage grid with a ring topology. It is character-

ized by an EMS that includes a monitoring system communicating with devices in field 

and local controllers, and an optimization model that, on the basis of renewable re-

sources forecasts, provides the optimal schedule of plants. The SPM of the University of 

Genoa (Figure 19) includes:  

o three gas turbines with high efficiency cogeneration (160 kWe, 284 kWth) powered 

with natural gas;  

o one photovoltaic plant (80 kWp); three thermodynamic solar systems equipped with 

Stirling engines (3kWe, 9 kWth);  

o one absorption chiller (H2O/LiBr) with buffer tank;  

o one electric storage system based on the Na-NiCl2 (capacity 100kWh);  

o two charging stations for electric vehicles;  

o a supervisory software that manages all production plants and storage systems.  

This solar farm provides between 17% and 20% of the power consumed in the ar-

ea. The Campus is spread over an area of approximately 50000 m 2  and hosts a canteen, a 

cafe, a library, some residence halls, offices, classrooms, laboratories, a tennis court, a 

football field, a gym and some green areas. Specifically, different kinds of demands are 

present: electrical power for lights, instrumentation, and heat pumps, thermal power for 

heat and cool. The necessary power is provided by all the above reported technologies 

and by the external grid. The energy consumptions of the Savona University Campus are: 

962 MWh/year (electricity consumption), 1426 MWh/year (thermal consumption). The 

primary energy consumption is 299 ton/year and the annual CO
2
 emission are 714 ton CO

2
/year. The energy bill is about 275 kW/year. During the day, the PvPP  (Photovoltaic 

Production Power) varies according to the season and weather conditions.  

We have made use of data collected from Savona Campus SPM PvPP System, 

which has a peak power of around 80 kW and comprises a number of equal PvPP modules 
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of about 170 W. This solar farm provides between 17% and 20% of the power consumed 

daily by the Campus. The analyses and forecasts here presented are based on the availa-

ble measurements from May 2014 and September 2015. 

The following kinds of data are collected every minute:  

 true power delivered by the PvPP system to the grid;  

 solar radiation;  

 the temperature of the PvPP panel;  

 the predicted PvPP by the SPM’s EMS (1 hour and 1 day ahead).  

Instead, the external temperature is registered every 15 minutes. 

Moreover, from the Nautical Institute [121], the following parameters are regis-

tered at each hour:  

 relative humidity;  

 wind speed;  

 wind direction;  

 sea level atmospheric pressure.  

Regarding the weather forecast, the climate data were provided by the [112], the 

forecast data are:  

 solar radiation;  

 external temperature;  

 relative humidity;  

 wind speed;  

 wind direction;  

 sea level atmospheric pressure.  
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Figure 19: Savona Campus of the University of Genoa: the SPM 

 

This means that, according the above general formalization, our variable of inter-

est is represented by PvPP, while, for all the other variables, we possess both the actual 
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value and the forecasted one and we can therefore map all these variables into a regres-

sion problem based on the model (nowcasting or forecasting) we want to build.  

Finally we also run the optimization model described in [5] by using both the fore-

casts obtained by the above described method and by the presently available method 

used in the EMS of the SPM (as regards the values of renewable power). In particular, we 

have used data relevant to March 24, 2015. Regarding loads, for the specific case study, 

the daily consumes have a peak power of 280 kW for electrical demand and of 940 kW for 

the thermal demand.  

Namely, we have considered the application of the predictive control scheme de-

veloped in [5] using three different data sets: a) the real data for PvPP collected on the 

field, a posteriori; b) the forecasts provided by the presently used model; c) the forecasts 

provided by the above described model. In this way, we can compare the energy cost and 

the CO
2
 emissions obtained in the three cases. 

The control variables of the optimization problem are represented by the power 

production from fossil fuel plants (i.e. gas microturbines), power exchange with the stor-

age, and the external grid. Instead, the state variable is the state of charge of the battery.  

The objective function is represented by costs due to operational management 

and emissions, while constraints include production technologies and storage system’s 

models, as well as the models for electrical and thermal power distribution. All equations 

are detailed in [5].  

4.4  Results 
The experiments have been run within two different scenarios:  

I. Nowcasting: we make the nowcast of the PvPP in the next 1 hour;  

II. Forecasting: we make the forecast of the PvPP 1, 2, 3, 4, 5, 6 and 7 days ahead.  

Moreover, two methodologies have been exploited for nowcasting and forecast-

ing purposes:  

 Present Model (AM): in this case, the presently used prediction system [123], 

which is based on a physical model of the microgrid, has been exploited;  

 Data Driven Model (DDM): in this case, the data driven techniques described in 

Section 4.3 have been exploited and aim at improving the AM  

 

In Figure 20 the patterns of the three sequence of values (real data, predictions 

provide by the AM model, and predictions provided by the DDM model) are repre-

sented. 
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Figure 20: Comparison of the AM with DDM 1-day ahead forecasting performance in a week of 2015. 

The performances of the two prediction models have been compared by analysing 

the differences, for the two considered performance objectives, between what is ob-

tained by using each of the prediction models, and what is obtained by using real data, 

when applying the considered control optimization scheme.  

In Table 1, the above differences are shown, as regards the application of the two 

prediction models, referring to the data for March 24, 2015.  

 

Table 1: Additional costs and CO_2
2

 emissions due to the use of the AM PvPP or the DDM PvPP with respect to ideal 

case when the True PvPP is available for March 24, 2015. 

 

  AM PvPP DDM PvPP 

Additional Costs [Euro/day] 15.61 1.70 

Additional CO
2
 emissions [Kg] 33.4 3.5 

  

From Table 1 it is possible to see an appreciable save in costs and CO
2
 emissions 

due to the use of the DDM with respect to the AM. 
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5. Optimal control in a microgird: Electrical vehicles charching  de-

mand response discret time model  
A tipicaly external electrical demand in a microgrid is the charging demand of elec-

trical vehicles. Indeed EVs market is growing and the charging infrastructure too, often 

supported by local governments. Some of the “future” problem can be the peak of de-

mand and the case for charging management. In fact, “demand response can rappresent 

an opportunity for consumers to play a significant role in the operation of the electric grid 

by reducing or shifting their electricity usage during peak periods in response to time-

based rates or other forms of financial incentives. Demand response programs are being 

used by some electric system planners and operators as resource options for balancing 

supply and demand." 11 

 

5.1 Energy Management System 
The proposed optimization model can be used within a general Energy Manage-

ment System for the optimal operation of a portion of a grid (i.e, microgrids, districts, 

etc.) in which EVs are integrated both as a shift-able load (for demand response pro-

grams) and as a power generator (when the V2G option is activated). Data in field and 

meteorological forecasting are stored in a monitoring system that is linked to the pro-

posed optimization model, which in turn provides the optimal schedule for plants in the 

microgrid that is automatically sent to hardware in field. Specifically, a new model is pro-

posed in which the state of charge of the vehicles is included in the microgrid optimiza-

tion problem and it is linked with the decisions related to the desired arrivals and depar-

tures. Electric vehicles recharge their batteries by drawing electricity from the grid by 

means of appropriate charging systems. The charging infrastructure can be used if  the 

power necessary for charging is available and it is possible due to the interaction through  

vehicles and distribution network and defining the best compromise between the power 

required by the customers and the power available at stations. To allow the optimization 

of the charging process, it is required that the distributor be in charge of directly monitor-

ing, managing and controlling the charging of electric vehicles by the use of appropriate 

devices and algorithms. In the present work, the users’ preferences as well as grid’s con-

straints are managed by the proposed EMS as shown in the sequel. 

Specifically, in this thesis, the vehicles’ owners (i. e., the customers) communicate 

to the microgrid’s decision maker their desires of charging vehicles within a specific time 

window. The microgrid manager has the responsibility of satisfying the customers’ re-

quests (both in terms of the amount of recharge and of service timeliness) while avoiding 

to spend too much to produce or acquire the necessary energy. The task of the microgrid 

manager has thus to be conveniently formalized as an optimization problem to be solved 

in real time, using all available information. Figure 24 shows the considered system: a 
                                                      

11 U.S. Department of Energy https://energy.gov/oe/activities/technology-development/grid-
modernization-and-smart-grid/demand-response 
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central controller has to manage production from fossil fuels, power exchange with bat-

teries, EVs and the external grid, on the basis of the forecasting of renewable power pro-

duction and (non-deferrable) electrical demand. 

The formalized decision problem requires the knowledge of a considerable 

amount of information (daily load curve, production from renewable resources) and re-

fers to the determination of several decision variables. Such variables must specify the 

power production from production plants, storages and electric vehicles charg-

ing/discharging processes and power purchase exchange with the external grid. In fact, 

the model is representative of a decision maker that has a complete control on the con-

sidered grid and that has to satisfy several demands, aiming at optimizing his/her own 

revenues/costs.  

 

 

As regards the scheduling of the charging of the EVs, with respect to the existing 

literature, the original contribution of this work is the formalization of an optimization 

problem for a smart grid with a deferrable demand represented by the charging process 

of electrical vehicles. The cost to be optimized for the considered problem includes the 

economic cost of energy production/acquisition (energy can be acquired from the main 

grid) and the cost relevant to the delay in the satisfaction of the customers’ demand. The 

latter cost is represented as a tardiness cost. We will consider two different models: in 

the first one, the demand of any electrical vehicle is considered as determined, whereas 

in the second model,  the vehicle electrical demand is considered as a function of the 

charging cost (that is, the demand is assumed to be elastic). 

 

5.2 The first model (rigid energy demand) 
The system model and the optimization problem will be developed in the follow-

ing within a discrete-time setting. For this reason, a constant time discretization interval 

has been selected, equal to 15 minutes.  The length of the optimization horizon is equal 

to T  time discretization intervals. 

Figure 21:  Smart Grid scheme 
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A generic power flow variable P(t) will represent a power flow within time interval 

(t, t+1), whereas a generic state variable x(t) will represent the value of that variable just 

at time instant t. 

5.3.1 The constraints affecting the system behavior 

It is assumed that there is a single charging facility, and that only a vehicle can be 

served by this facility in each time interval. 

Thus, there is the basic need to introduce a set of binary variables, each of them 

referring to a certain vehicle and to a certain time interval. Namely, we define 

 

𝛿𝑐𝑜𝑙𝑖(𝑡) = {
1                              𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑖𝑠 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

                                     𝑖𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑡, 𝑡 + 1) 
0                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

  𝑖 = 1, . . . , 𝑁; 𝑡 = 1, . . . , 𝑇 − 1 

 

Where N is the number of vehicles. 

 

At this point, a first set of constraints has to be introduced to represent the dy-

namics and the behavior of the vehicle charging system. 

Let 𝑇𝑖𝑛𝑖 and 𝑇𝑓𝑖 represent the time intervals in which the charging process of ve-

hicle i begins and is concluded, respectively. 

Then, the following constraints are introduced in order to impose that the charg-

ing process of each vehicle is accomplished within a given time window. 

 

𝑇𝑖𝑛𝑖 ≥ 𝑇𝑟𝑒𝑙𝑖                            𝑖 = 1, . . . , 𝑁                                                                         (5.1) 

 

𝑇𝑓𝑖 ≤ 𝑇 − 1                             𝑖 = 1, . . . , 𝑁                                                                           (5.2) 

Constraint (5.1) imposes that the time interval at which the recharging process of 

the generic vehicle i begins is not lower than the release time (interval) of that vehicle, 

that may be thought as the time interval in which the vehicle arrives at the recharging fa-

cility.  

Constraint (5.2) imposes that the recharging process is completed within the con-

sidered time horizon. Note that no deadline is introduced for the recharging of vehicles, 

apart for the common constraint represented by (5.3). 

The following constraint is introduced to prevent that more than a single vehicle is 

charging at the same time (this is equivalent to say that only a single charging facility is 

present in the system, and that this facility can charge only one vehicle at a time). 
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∑ 𝛿𝑐𝑜𝑙𝑖(𝑡)𝑁
𝑖=1 ≤ 1 ,              𝑡 = 1. . 𝑇 − 1                                              (5.3) 

 

Another constraint to be introduced is  

 

𝛿𝑐𝑜𝑙𝑖 = {
0         𝑖𝑓 𝑡 ≤ 𝑇𝑖𝑛𝑖 𝑜𝑟  𝑡 ≥ 𝑇𝑓𝑖

1                                           𝑒𝑙𝑠𝑒
          𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇 − 1                               (5.4) 

 

Constraint (5.4) links the decision variables 𝛿𝑐𝑜𝑙𝑖,  𝑇𝑖𝑛𝑖, 𝑇𝑓𝑖  so that their meaning 

is consistent with the statement of the problem. In other words, constraint (5.4) does not 

allow the vehicle charging before the initial time 𝑇𝑖𝑛𝑖 and after the final time 𝑇𝑓𝑖 . 

Additional constraints that is necessary to introduce are 

 

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑇𝑖𝑛𝑖) = 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
      𝑖 = 1. . 𝑁                                              (5.5) 

 

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) = {
𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡

        𝑖𝑓   𝑡 ≥ 𝑇𝑓𝑖

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡)                    𝑒𝑙𝑠𝑒
𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇                                                 (5.6) 

 

In (5.5) and (5.6) 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) represents the state of charge of vehicle i at time in-

stant t. Constraint (5.5) imposes that the  energy storage level of vehicle i remains at the 

same (initial) level, 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
 (that is assumed known), until the charging process begins. 

Constraint (5.6) imposes that the energy level must be, at any time  𝑡 ≥ 𝑇𝑓𝑖, equal to 

(𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡
 ), that is, the energy level required for that vehicle.  

Then, the following constraint represents the dynamics of the state of charge of 

each vehicle express the result as a percentage of the sample: 

 

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡 + 1) = (𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) + 𝑃𝐺→𝑣,𝑖(𝑡)
𝛥𝑡

𝑐𝑎𝑝𝑣𝑒ℎ,𝑖
100)       𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇 − 1          (5.7)   

 

being 𝑃𝐺→𝑣,𝑖(𝑡) the power flow to vehicle i (unrestricted in sign) during time inter-

val (t, t+1), 𝛥𝑡 the length of the time discretization interval and 𝑐𝑎𝑝𝑣𝑒ℎ,𝑖 is the battery ca-

pacity of vehicle i.  

The following constraint imposes that the value of the state of charge of each ve-

hicle is between a minimum and a maximum value 
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𝑥𝑠𝑣𝑒ℎ 𝑚𝑖𝑛 ≤ 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡) ≤ 𝑥𝑠𝑣𝑒ℎ 𝑚𝑎𝑥  𝑖 = 1. . 𝑁; 𝑡 = 1. . 𝑇              (5.8) 

 

A further constraint is required in order to limit the value of the power flow to (or 

from) each vehicle 

 

−𝑃𝑚𝑎𝑥 ∗ (𝛿𝑐𝑜𝑙𝑖(𝑡)) ≤ 𝑃𝐺→𝑣,𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥 ∗ (𝛿𝑐𝑜𝑙𝑖(𝑡)). 𝑁; 𝑡 = 1. . 𝑇 − 1          (5.9)                

 

Note that the power exchange with the vehicle is bi-directional. That is to say, 

each vehicle can be used also as an additional storage element. 

In addition to the constraints relevant to the vehicles, further constraints are to be 

taken into account in order to represent the dynamics of the rest of the microgrid. 

A power constraint bounds the power flow that can be obtained from non-

renewable sources (mainly, fossil fuels) 

  

0 ≤ 𝑃𝑁𝑅𝐼𝑁(𝑡) ≤ 𝑃𝑀𝑎𝑥
𝑁𝑅𝐼𝑁(𝑡);   𝑡 = 1. . 𝑇 − 1                                                                    (5.10) 

Another constraint is used to bound the (bi-directional) power exchange of the microgrid 

with the main grid 

−𝑃𝑀𝐴𝑋
𝑀𝐺→𝐺 ≤ 𝑃𝑀𝐺→𝐺(𝑡) ≤ 𝑃𝑀𝐴𝑋

𝑀𝐺→𝐺   ;   𝑡 = 1. . 𝑇-1                                                    (5.11) 

 

In (5.11) 𝑃𝑀𝐴𝑋
𝑀𝐺→𝐺 is absolute value of the maximum power flow and 𝑃𝑀𝐺→𝐺(𝑡) is 

the power flow within time interval(t, t+1)from the main grid to the microgrid.  

A constraint is introduced in order to bound the (bi-directional) power flow to 

(from) the storage element in the microgrid: 

−𝑃𝐺→𝑆
𝑀𝐴𝑋 ≤ 𝑃𝐺→𝑆(𝑡) ≤ 𝑃𝐺→𝑆

𝑀𝐴𝑋  𝑡 = 1. . 𝑇 − 1                                                            (5.12) 

where, 𝑃𝐺→𝑆
𝑀𝐴𝑋 is absolute value of the maximum power flow within time inter-

val (t, t+1).  

The following constraint on the energy level of the storage element has also to be 

taken into account 

𝑥𝑠
𝑚𝑖𝑛 ≤ 𝑥𝑠(𝑡) ≤ 𝑥𝑠

𝑚𝑎𝑥        𝑡 = 1. . 𝑇                                        (5.13)   

where 𝑥𝑠(𝑡) is  the energy level of the storage element at time instant t. 

The following storage state equation has to be taken into account in the state-

ment of the optimization problem: 

 

𝑥𝑠(𝑡 + 1) = 𝑥𝑠(𝑡) + 𝑃𝐺→𝑆(𝑡)∆𝑡      𝑡 = 1. . 𝑇            (5.14) 
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Finally, the power balancing constraint has to be fulfilled, namely  

 

𝑃𝑅(𝑡) − 𝑃𝐺→𝑆(𝑡) + 𝑃𝑀𝐺→𝐺(𝑡) − ∑ 𝑃𝐺→𝑣,𝑖(𝑡)

𝑁

𝑖=1

+  𝑃𝑁𝑅𝐼𝑁(𝑡) − 𝑃𝐸𝑋𝑇(𝑡) = 0  

  𝑡 = 1. . 𝑇 − 1                                                                                                                           (5.15) 

 

where 𝑃𝐸𝑋𝑇(𝑡) is the non-deferrable (external) power demand that has, in any 

case, to be satisfied in time interval (t, t+1). 

 

5.3.2 The overall optimization problem 

The following cost function must be minimized 

𝑚𝑖𝑛{∑ 𝛽𝑃𝑁𝑅𝐼𝑁(𝑡)∆𝑡 + ∑ 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡) ∙ max{𝑃𝑀𝐺→𝐺(𝑡), 0} ∆𝑡 − 𝑇−1
𝑡=0

𝑇−1
𝑡=0 ∑ 𝛽𝑆𝐸𝐿𝐿(𝑡) ∙𝑇−1

𝑡=0

max{−𝑃𝑀𝐺→𝐺(𝑡), 0} ∆𝑡 + ∑ α 𝑖 max{ 𝑇𝑓𝑖 − 𝑇𝑑𝑑𝑖 , 0}𝑁
𝑖=1 }                                                (5.16) 

 

where: 

 𝛽 is the unit cost for producing power from non-renewable sources; 

 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡) is the unit purchase prize from the main grid, in time interval (t, 

t+1); 

 𝛽𝑆𝐸𝐿𝐿(𝑡) is the unit selling prize from the main grid, in time interval (t, t+1); 

 𝑇𝑑𝑑𝑖 is a given value providing the due-date of vehicle i, that is, the time interval 

within which the charging of the vehicle should be completed; 

 α 𝑖  is a tardiness weighting coefficient for vehicle i. 

Note that the overall cost to be minimized is composed by the sum of economic 

costs and tardiness costs.  

The optimization problem thus consists in the minimization of (5.16) under con-

straints from (5.1) to (5.15). 

 

5.3 Case Study for the first model. 
In this section, we present a case study in order to show the benefits obtained by 

the use of optimal vehicle scheduling. Real data have been used for a portion of the Sa-

vona Municipality. The vehicle demand is composed by 4 electrical vehicles (N=4) con-

nected to a grid-connected microgrid, with PV and wind power production, residential 

demand, production from natural gas, electrical batteries and charging stations.  The four 

case study considers a large time horizon of T=95 time units (for a time interval of 15 
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minutes) 24 hours. In the Figure 22 there are show Electrical Demand  and PV Energy 

Production that are the data used in the following scenarios. 

The optimal schedule of production plants, storage systems and EVs is obtained by 

solving the optimization problem (5.1)-(5.16) by the use of Lingo optimization software 

tool [10], computational time 20 miutes.  

Four cases have been considered with the aim of testing the proposed model and 

comparing different possible scenarios that may occur when dealing with EVs. The follow-

ing parameters have been changed for the i-th vehicle: 𝐶𝑣𝑒ℎ,𝑖 (vehicle capacity), Treli (re-

lease time: when the vehicle arrives), 𝑇𝑑𝑑,𝑖  (due-date: when the user wishes to receive 

the vehicle charged), 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
 state of charge of the vehicle that is arriving), 𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡

 (fi-

nal state of charge that the user wishes for the vehicle). Specifically:  

Scenario 1. 

In this scenario, all vehicles have the same capacity, release time and desired state 

of charge. In fact, attention is here focused on the different state of charge of the vehicles 

that arrive. That is: Cveh,i ={52,52, 52, 52}; 𝑇𝑟𝑒𝑙,𝑖={30,30, 30, 30}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
 = {10, 15, 20, 25}; 

𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡
 = {80, 80, 80, 80}; 𝑇𝑑𝑑,𝑖={ 55, 55, 55, 55}. The optimal solution, as it is shown in                                                        

Figure 24, corresponds to charging first the EV battery with a lower request of energy. 

The resulting state of charge for all vehicles is reported in Figure 23. 

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

kW PV_TOT

Electrical
Demand
[kWe]

Figure 22:PV Power Prudution and Electrical Demand 



 

52 

 

 

                                                       Figure 24: Vehicle power profile in Scenario 1 

Scenario 2. 

in this scenario, the only parameter that is different for the four vehicles is the due-

date, while the other ones are considered the same. That is: 𝐶𝑣𝑒ℎ,𝑖 ={52,52, 52, 52}; 𝑇𝑟𝑒𝑙,𝑖= 

{30, 30, 30, 30}; 𝑇𝑑𝑑,𝑖={55, 45, 40, 35}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
 =  {20, 20, 20, 20}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡

 = {80, 80, 80, 

80}. The optimal “schedule” is reported: the EV battery with the nearest due date is 

charged as first. 

Figure 25: Vehicle power profile in Scenario 2 

Figure 23: Vehicles’ state of charge in Scenario 1 
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Figure 26 reports the corresponding state of charge.  

 
Figure 26: Vehicles’ state of charge in Scenario 2 

Scenario 3. 

In this scenario, the only different parameter (with respect to case I and case II) among 

vehicles is the release time. That is: 𝐶𝑣𝑒ℎ,𝑖 ={52, 52, 52, 52}; 𝑇𝑟𝑒𝑙,𝑖={50, 45, 35, 30}; 𝑇𝑑𝑑,𝑖={ 

55, 55, 55, 55}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
 =  {20, 20, 20, 20}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡

 ={ 80, 80, 80, 80}. As shown in Figure 

27, the vehicle with the lowest release time is served as first. The corresponding state of 

charge for each vehicle is shown in Figure 28. It can be noted than, in this case study, the 

vehicle 1 gives back energy to the grid (as it is possible this  model).   

Figure 27: Vehicles’ power profile in Scenario 3 
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Figure 28: Vehicles’ state of charge in Scenario 3 

Scenario 4. 

In this case both release times and due-dates are different. That is: 𝐶𝑣𝑒ℎ,𝑖 ={52, 52, 

52, 52}; 𝑇𝑟𝑒𝑙,𝑖={45, 40, 35, 30}; 𝑇𝑑𝑑,𝑖={45, 45, 40, 55}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛
={20, 20, 20, 20}; 𝑥𝑠𝑣𝑒ℎ,𝑖𝑜𝑢𝑡

 ={ 

80, 80, 80, 80}. The optimal schedule, shown in Figure 29, is the same as in Scenario 3. 

Thus, the most influencing parameter is the release time as compared with the due-date. 

The state of charge of each vehicle is shown in Figure 30.  

 

Figure 29: Vehicles’ power profile in Scenario 4 
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Figure 30:  Vehichles’ state of charge in Scenario 4 

It is important to note that, in this chapter, attention is focused on EVs. However, 

since the chosen decision variables are also related to production levels, and power ex-

change with the batteries and the external grid, each optimal solution includes also an 

optimal schedule for such components. As an example, Figure 31 shows the active power 

flows of the overall microgrid in Scenario 2. 

 

Figure 31: Microgrid power flows 

 

 

 

 

5.4 The second model (elastic demand) 
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In this section a second model will be considered in which the demand is a func-

tion of the prices. To improve the readability, the problem will be completely reformulat-

ed, with respect to the case of rigid demand, even if some of the variables will have an 

analogous meaning. 

 

5.4.1 The considered variables  

The state variables. 

The state of the considered system is made of the following information: 

- the state of charge of the two storage systems [kWh] (i.e., 𝑥𝑠𝑙(𝑡𝑘) related 

to a lithium battery and 𝑥𝑠𝑠(𝑡𝑘) for a sodium battery, both with capacity of 40[kWh]); 

- the state of charge of vehicle 𝑖 [kWh] 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑘)   for i=1,…, N. 

Here again, all variables are considered in discrete time instants 𝑡𝑘, k=0, 1, 2,… The 

length of the discrete time interval will be denoted as ∆𝑡, while the overall optimization 

horizon is (𝑡0, 𝑡𝑇) and consists of T time intervals. 

 

Variables and data relevant to the set of vehicles. 

The charging process of a vehicle has an integer duration, namely 

 (𝑡𝑐𝑖
, 𝑡𝑐𝑖+1) is the time interval in which vehicle i begins its charging process; 

 (𝑡𝑓𝑖
, 𝑡𝑓𝑖+1) is the time interval in which vehicle i concludes its charging process. 

In Figure 33 an example, concerning the charging of two different vehicles is rep-

resented. 

 

Figure 32: Microgrid design 
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  Each vehicle i, i=1, ..., N,  is characterized by the following a-priori information: 

 𝐷𝑖,𝑚𝑎𝑥 [kWh] is the aspiration level of the amount of energy to be acquired by the 

vehicle e; this is the maximum amount of the energy request by the vehicle; 

 (𝑡𝑟𝑒𝑙𝑖
, 𝑡𝑟𝑒𝑙𝑖+1) is the release time interval (this may be thought as corresponding to 

the time interval in which the vehicle is made available for the charging state pro-

cess); 

 (𝑡𝑑𝑑𝑖
, 𝑡𝑑𝑑𝑖+1), that is, the time interval at which the charging process of the vehicle 

should be concluded. In particular, 𝑡𝑑𝑑𝑖+1 is the due-date of the charging of vehi-

cle i. A tardiness with respect to a due date induces the payment of a penalty cost; 

 α 𝑖  [€/h] is the unit (tardiness) penalty cost.   

In the formalization of the problem, the possible reduction is considered of the ac-

tual energy demand by vehicle i (from the value 𝐷𝑖,𝑚𝑎𝑥 down to zero), depending to the 

prices for the charging service. 

More specifically, it is assumed that the actual demand of vehicle i, namely Di, is 

determined on the basis of the unit charging cost  𝐺𝑟𝑖𝑐𝑖 [€/kWh] through the application 

of the elastic demand function represented in Figure 34. 

 

 

Charging of  
the j-th vehicle 

ci=9 fi=10 cj=16 fj=18 

Charging of  
the i-th vehicle 

9       10       11       12       13       14       15       16       17       18       19       20         k 

Figure 33: Charging of two different vehicles 
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The function expressing the actual is given by the following expression where 𝐺1 

and 𝐺2are given constants, assumed independent from i.  

 

𝐷𝑖 = {

𝐷𝑚𝑎𝑥,𝑖                          𝑖𝑓  𝐺𝑟𝑖𝑐𝑖 ≤ 𝐺1 
𝐷𝑚𝑎𝑥,𝑖

𝐺1−𝐺2
(𝐺𝑟𝑖𝑐𝑖 − 𝐺2)               𝑖𝑓  G1 < 𝐺𝑟𝑖𝑐𝑖 ≤  𝐺2

0                                   𝑖𝑓 𝐺𝑟𝑖𝑐𝑖 >  𝐺2

              𝑖 = 1, . . . , 𝑁               

 

Obviously, it may turn out that the actual number of vehicles requiring the charg-

ing service is reduced, with respect to the initial number of N, as some of them require 

zero demand. The charging cost 𝐺𝑟𝑖𝑐𝑖 for vehicle i is determined as the product between 

of the unit cost for purchasing energy from the main grid in the time interval 

(𝑡𝑟𝑒𝑙𝑖
, 𝑡𝑟𝑒𝑙𝑖+1) and the value of a function 𝜃(𝑡𝑟𝑒𝑙𝑖

), namely 

 

𝐺𝑟𝑖𝑐𝑖 =  𝜃(𝑡𝑟𝑒𝑙𝑖
 )  ∙ 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡𝑟𝑒𝑙𝑖

 )                  𝑖 = 1, … , 𝑁                                        (5.17)    

 

The values of function 𝜃(𝑡𝑟𝑒𝑙𝑖
), for any possible (discrete) value 𝑡𝑟𝑒𝑙𝑖

, are deter-

mined in order to smooth service request peaks. 

 

Here again, we use the notation: 

 

 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡𝑘) = unit purchase price from the main grid, in time interval (𝑡𝑘, 𝑡𝑘+1); 

 

 𝛽𝑆𝐸𝐿𝐿(𝑡𝑘) is the unit selling price to the main grid, in time interval (𝑡𝑘, 𝑡𝑘+1). 

 

The sequences 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡𝑘) and 𝛽𝑆𝐸𝐿𝐿(𝑡𝑘), 𝑘 = 0,1, . . 𝑇 − 1   are considered as given, 

whereas the sequence   𝜃(𝑡𝑘) ,  𝑘 = 0,1, . . 𝑇 − 1   consists of decision variables whose 

value has to be determined through the solution of an optimization problem.                                                             

Di 

Dmax,

i 

G1 G2 Gric,i 

Figure 34: The elastic demand function 
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The decision variables of the problem. 

In the problem formulation, we introduce the possibility that the decision maker 

(that is, the microgrid manager) declares the impossibility of providing service to a certain 

vehicle. This possibility is modelled through the introduction of the binary decision varia-

bles 𝜀𝑖  , where 𝜀𝑖  = 1 means that the service is provided, whereas in case 𝜀𝑖  = 0 the vehi-

cle is not served. In addition, we have to impose that 𝜀𝑖  = 0 when 𝐷𝑖=0, that is, when the 

actual demand of the customers corresponding to vehicle i becomes equal to zero, that is, 

when 𝐺𝑟𝑖𝑐𝑖 ≥  𝐺2.  

In addition, for each time interval (𝑡𝑘, 𝑡𝑘+1), k=0,1,2,…T-1, the decision maker has 

to find the optimal value of the following variables [kW]: 

 

 𝑃𝐺→𝑣,𝑖(𝑡𝑘) , the power flow from the microgrid to the  i-th vehicle, unrestricted in 

sign, i=1,2,3,…N; 

 𝑃𝑒𝑛𝑔1 (𝑡𝑘), 𝑃𝑒𝑛𝑔2 (𝑡𝑘), the power flows from the  two engines to the microgrid; 

 𝑃𝑠𝑙→𝐺  (𝑡𝑘), the power flow from the lithium storage to the microgrid, unrestricted 

in sign; 

 𝑃𝑠𝑠→𝐺 (𝑡𝑘), the power flow from the sodium storage to the microgrid, unrestricted 

in sign; 

 𝑃𝑀𝐺→𝐺  (𝑡𝑘), the power flow from the main grid to the microgrid, unrestricted in 

sign. 

 

In the above notation, the orientation of the arrow in the subscript relevant to the 

variables representing power flows identifies the direction in which the power flow (if un-

restricted in sign) is considered as positive. 

Besides, in addition to the above variables, it is worth defining the set of the bina-

ry variables 𝛿𝑖(𝑡𝑘) , k=0,1,2,…,T-1, i=1,2,…, N, where 𝛿𝑖(𝑡𝑘) = 1 if vehicle i is connected to 

the charging station in time interval (𝑡𝑘, 𝑡𝑘+1) and 0 otherwise.  

 

Summing up, the decision variables of the problem are: 

 𝑃𝐺→𝑣,𝑖(𝑡𝑘) ,𝑃𝑒𝑛𝑔1(𝑡𝑘) , 𝑃𝑒𝑛𝑔2(𝑡𝑘),𝑃𝑠𝑙→𝐺(𝑡𝑘), 𝑃𝑠𝑠→𝐺(𝑡𝑘), 𝑃𝑀𝐺→𝐺(𝑡)   𝑘 = 0,1, . . 𝑇 − 1    

 𝜀𝑖                                                     i=1,2,…,N 

 𝑐𝑖, 𝑓𝑖                                                i=1,2,…,N 

 𝛿𝑖(𝑡𝑘)                                              𝑘 = 0,1, . . 𝑇 − 1; i=1,2,…,N 

 𝜃(𝑡𝑘)                                               𝑘 = 0,1, . . 𝑇 − 1    
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5.4.2 The constraints affecting the system behavior 

Constraints representing the system state evolution. 

The following storage state equations have to be taken into account in the statement 

of the optimization problem: 

 

𝑥𝑠𝑙(𝑡𝑘+1) = 𝑥𝑠𝑙(𝑡𝑘) − 𝑃𝑠𝑙→𝐺(𝑡𝑘) ∙ ∆𝑡                    𝑘 = 0,1, . . 𝑇 − 1                                (5.18) 

𝑥𝑠𝑠(𝑡𝑘+1) = 𝑥𝑠𝑠(𝑡𝑘) − 𝑃𝑠𝑠→𝐺(𝑡𝑘) ∙ ∆𝑡                   𝑘 = 0,1, . . 𝑇 − 1                               (5.2.3)    

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑘+1) = 𝑥𝑠𝑣𝑒ℎ(𝑡𝑘) + 𝑃𝐺→𝑣,𝑖(𝑡𝑘) ∙ ∆𝑡        𝑖 = 1. . 𝑁;    𝑘 = 0,1, . . 𝑇 − 1     (5.19) 

 

Constraints affecting the vehicle charging process. 

Next, we consider the constraints relevant to the dynamics of the charging pro-

cess. First, it is necessary to prevent that more than a single vehicle is connected to the 

charging station, in the same time interval, namely 

 

∑ 𝛿𝑖(𝑡𝑘)𝑁
𝑖=1 ≤ 1                        𝑖 = 1. . 𝑁;    𝑘 = 0,1, . . 𝑇 − 1;                                         (5.20) 

 

Moreover, we must impose that the time interval at which the charging starts 

should be greater than or equal to the release time interval: 

 

𝑐𝑖 ≥ 𝑟𝑒𝑙𝑖                                        𝑖 = 1. . 𝑁;                                        (5.21) 

 

Besides, we have to impose that the charging process (if any) must finish before 

the end of the time horizon 

 

𝑓𝑖 ≤ 𝑇 − 1                                        𝑖 = 1. . 𝑁;                               (5.22) 

 

A further constraint has the function of relating the state of the charging station 

with the time interval during which the charging of a vehicle i takes place: 

 

𝛿𝑖(𝑡𝑘)  = {
0         𝑖𝑓 𝑡𝑘 ≤ 𝑡𝑐𝑖−1,   𝑜𝑟  𝑡𝑘 ≥ 𝑡𝑓𝑖+1  𝑜𝑟  𝑖𝑓 𝐷𝑖 = 0

𝜀𝑖                                           𝑒𝑙𝑠𝑒
       

 𝑖 = 1. . 𝑁;    𝑘 = 0, . . 𝑇 − 1;                                       (5.23) 

 

The above constraint allows the connection of a vehicle only when the demand 

expressed by the vehicle is not zero and the microgrid manager agrees for the service. In 

this case, the vehicle is connected only during time interval (𝑡𝑐𝑖
, 𝑡𝑓𝑖+1). 

Another constraint prevents the service with no demand, that is 

𝜀𝑖 = 0  when 𝐷𝑖=0, that is, when 𝐺𝑟𝑖𝑐𝑖 >  𝐺2                        𝑖 = 1. . 𝑁                          (5.24) 

 

Besides, it is necessary to introduce a constraint that prevents that a vehicle de-

parts from the station before reaching the desired state of charge (that is, without having 

received an amount of energy equal to its demand  𝐷𝑖. To this end, it is sufficient to en-

force 
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𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑘) = {
𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛 

+     𝐷𝑖         𝑖𝑓   𝑡𝑘 ≥ 𝑡𝑓𝑖+1        𝑎𝑛𝑑 𝜀𝑖 = 1  

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑘)                   𝑒𝑙𝑠𝑒
            

𝑖 = 1. . 𝑁; 𝑘 = 1, . . 𝑇                                (5.25) 
At time instant 𝑡𝑘 =  𝑡𝑟𝑒𝑙𝑖

, the state of charge has to be equal to the given initial 

value, that is  

𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑟𝑒𝑙𝑖
) = 𝑥𝑠𝑣𝑒ℎ,𝑖𝑖𝑛

                 𝑖 = 1. . 𝑁;                                                              (5.26) 

 

Constraints expressing upper and lower bounds. 

The evolution of the system state variables is constrained by upper and lower 

bounds, namely 

𝑥𝑠𝑣𝑒ℎ 𝑚𝑖𝑛,𝑖 ≤ 𝑥𝑠𝑣𝑒ℎ,𝑖(𝑡𝑘) ≤ 𝑥𝑠𝑣𝑒ℎ 𝑚𝑎𝑥,𝑖                                 𝑖 = 1. . 𝑁;    𝑘 = 1, . . 𝑇                 (5.27) 

where 𝑥𝑠𝑣𝑒ℎ 𝑚𝑖𝑛,𝑖  and 𝑥𝑠𝑣𝑒ℎ 𝑚𝑚𝑎𝑥,𝑖  are lower and upper bounds, respectively, for 

the state of charge of vehicle i. 

Similarly, constraints bounding the value of the state of charge of the storage el-

ements have to be taken into account: 

 

𝑥𝑠𝑠
𝑚𝑖𝑛 ≤ 𝑥𝑠𝑠(𝑡𝑘) ≤ 𝑥𝑠𝑠

𝑚𝑎𝑥        𝑘 = 1, . . 𝑇                                  (5.28) 

𝑥𝑠𝑙
𝑚𝑖𝑛 ≤ 𝑥𝑠𝑙(𝑡𝑘) ≤ 𝑥𝑠𝑙

𝑚𝑎𝑥        𝑘 = 1, . . 𝑇                                                             (5.29) 

where symbols have an obvious meaning. 

In addition, a series of constraints has to be considered in order to bound the val-

ues of the power flows which are considered as decision variables in the model: 

−𝑃𝑚𝑎𝑥
𝐺→𝑣,𝑖𝛿𝑖(𝑡𝑘) ≤ 𝑃𝐺→𝑣,𝑖(𝑡𝑘) ≤ 𝑃𝑚𝑎𝑥

𝐺→𝑣,𝑖𝛿𝑖(𝑡𝑘)   

𝑖 = 1. . 𝑁;    𝑘 = 0, 1, . . 𝑇 − 1                                                                                      (5.30) 

−𝑃𝑀𝐺→𝐺
𝑚𝑎𝑥 ≤ 𝑃𝑀𝐺→𝐺(𝑡𝑘) ≤ 𝑃𝑀𝐺→𝐺

𝑚𝑎𝑥                𝑘 = 0, 1, . . 𝑇 − 1                         (5.31) 

0 ≤ 𝑃𝑒𝑛𝑔1(𝑡𝑘) ≤ 𝑃𝑚𝑎𝑥
𝑒𝑛𝑔1                                        𝑘 = 0, 1, . . 𝑇 − 1                         (5.32) 

0 ≤ 𝑃𝑒𝑛𝑔2(𝑡𝑘) ≤ 𝑃𝑚𝑎𝑥
𝑒𝑛𝑔2                                       𝑘 = 0, 1, . . 𝑇 − 1                          (5.33) 

−𝑃𝐺→𝑠𝑠
𝑚𝑎𝑥 ≤ 𝑃𝐺→𝑠𝑠(𝑡𝑘) ≤ 𝑃𝐺→𝑠𝑠

𝑚𝑎𝑥                                    𝑘 = 0, 1, . . 𝑇 − 1                          (5.34)  

−𝑃𝐺→𝑠𝑙
𝑚𝑎𝑥 ≤ 𝑃𝐺→𝑠𝑙(𝑡𝑘) ≤ 𝑃𝐺→𝑠𝑙

𝑚𝑎𝑥                                      𝑘 = 0, 1, . . 𝑇 − 1               (5.35)  

where all symbols have a straightforward meaning. Note that we have taken into 

account that some of the power flows are bi-directional. 

Finally, the power balancing constraint has to be fulfilled for any time instant, 

namely 

𝑃𝑅(𝑡𝑘) + 𝑃𝑆→𝐺(𝑡𝑘) + 𝑃𝑀𝐺→𝐺(𝑡𝑘) − ∑ 𝑃𝐺→𝑉𝑖(𝑡𝑘)𝑁
𝑖=1 − 𝑃𝐸𝑋𝑇(𝑡𝑘) + 𝑃𝑒𝑛𝑔1(𝑡𝑘) +

𝑃𝑒𝑛𝑔2(𝑡𝑘) = 0     𝑘 = 0, 1, . . 𝑇 − 1                                                         (5.36) 

where 𝑃𝐸𝑋𝑇(𝑡𝑘) is the non-deferrable (external) power demand that has, in any 

case, to be satisfied in time interval (𝑡𝑘, 𝑡𝑘+1) and 𝑃𝑅(𝑡𝑘) is the forecasted power flow 

from renewable sources in the same interval. 

 

5.4.3 The overall optimization problem  

The overall cost to be minimized is composed by the sum of economic production 
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costs plus net energy buying costs (from the grid) and the overall weighted tardiness cost. 

Thus, the optimization problem consists in the following minimization of (5.37) 

under constraints from (5.16) to (5.36). 

𝑚𝑖𝑛 {∑ 𝛾𝑃𝑒𝑛𝑔1(𝑡𝑘)∆𝑡𝑇−1
𝑘=0 + ∑ 𝛾𝑃𝑒𝑛𝑔2(𝑡𝑘)∆𝑡𝑇−1

𝑡=0 + ∑ 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡𝑘) ∙𝑇−1
𝑡=0

max{𝑃𝐺→𝑀𝐺(𝑡𝑘), 0}∆𝑡 − ∑ 𝛽𝑆𝐸𝐿𝐿(𝑡𝑘) ∙ max{−𝑃𝑀𝐺→𝐺(𝑡𝑘), 0}∆𝑡𝑇−1
𝑡=0 +

∑ 𝜀𝑖  ∙ α 𝑖  ∙  max{ 𝑡𝑓𝑖
− 𝑡𝑑𝑑𝑖

, 0}𝑁
𝑖=1 − ∑ 𝜀𝑖  ∙  𝜃(𝑡𝑟𝑒𝑙𝑖

)  ∙ 𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡𝑟𝑒𝑙𝑖
)  ∙ 𝐷𝑖

𝑁
𝑖=1 }         (5.37) 

where 𝛾 is the unit cost for producing power from engines (this cost is assume to be equal 

for the two engines).  Note that the last term in the cost function to be optimized corre-

sponds to the revenue for the microgrid manager coming from the service provided to 

the customers. 

 

5.5 Case Study: second model  
 

First, let us provide, in Table 1, the values of the parameters of the elements of 

the microgrid. 

Plant [kW] 

Engine 1 𝑃𝑀𝑎𝑥
𝑒𝑛𝑔1 = 30 

Engine 2 𝑃𝑀𝑎𝑥
𝑒𝑛𝑔2 = 65 

Storage (Na-Ni) 𝑃𝐺→𝑠𝑠
𝑚𝑎𝑥 = 40 

Storage (Li-Ion) 𝑃𝐺→𝑠𝑙
𝑚𝑎𝑥 = 40 

Electric vehicle storage 𝑃𝑚𝑎𝑥
𝐺→𝑣,𝑖 = 22 

Main grid 𝑃𝑀𝐺→𝐺
𝑚𝑎𝑥 = 1000 

γ 0,237 

Table 1: Power flow data 

We have considered an optimization horizon consisting of 96 time intervals, each 

ones of 15 minutes, that is, on the whole, corresponding to 24 hours. Thus Δt =0.25h . 

In Figure 35, the patterns (obtained by real field-sensors measurements) of the 

known non-deferrable demand and of the renewable energy power are represented, over 

the whole optimization horizon. Unit cost (𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(∙) ) and benefit (𝛽𝑆𝐸𝐿𝐿 (∙)) for the 

power exchanged with the external grid are the following. 

𝛽𝑃𝑈𝑅𝐶𝐻𝐴𝑆𝐸(𝑡) = {
0.2

€

𝑘𝑊ℎ
 0 ≤ 𝑡 ≤ 36 𝑜𝑟 81 ≤ 𝑡 ≤ 95 

0.26€

𝑘𝑊ℎ
                             37 ≤ 𝑡 ≤ 80

 

𝛽𝑆𝐸𝐿𝐿 (𝑡) = 0.15
€

𝑘𝑊ℎ
       for any t 
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Figure 35: Electrical demand, PV power production 

Several demand scenarios are considered in connection to the above described 

system. 

For all cases, the optimization problem presented in the previous section has been 

solved by using Lingo optimization software tool [10]; the run times are about 60 

minutes.  

Scenario 1 

In this case, we consider different 3 vehicles. All related data are summarized in 

Table 2.  

Vehicle data Vehicle 1 Vehicle 2 Vehicle 3 

𝒓𝒆𝒍𝒊 40 35 65 

𝒅𝒅𝒊 65 59 79 

Dmax,i [kWh] 30 30 30 

𝒙𝒔𝒗𝒆𝒉,𝒊,𝒊𝒏 [kWh] 5 5 5 

𝜶 𝒊 [€/h] 0.1 0.3 0.1 

G1, G2 [€/kWh] 0.5, 0.6 0.5, 0.6 0.5, 0.6 

Table 2: Data for the first scenario 

The results obtained are shown in Figure 36. 
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Figure 36: The evolution of the state of charge of the three vehicles (Scenario 1) 

 

Specifically, Figure 36 shows the state of charge of the three vehicles. It can be 

noted that vehicle 1 is not charged at all (i.e., the state of charge remains the same), 

while the other two vehicles are both charged and discharged (i.e., vehicle to grid is per-

formed and the EVs serve also as temporary energy sources). 

The values of the most relevant decision variables are reported in Table 3. 

Table 3: First scenario output 

 

 

 

 

 

 

We can note from these results that in this scenario no vehicle reduces its demand 

with respect to Dmax,i, and that all  services are provided by the microgrid manager. Be-

sides, the charging process of each vehicle is completed without going beyond the corre-

sponding due-date. 

The plot of the state of charge of the two storage elements is provided in Figure 

37. 

Vehicle output Vehicle 1 Vehicle 2 Vehicle 3 

𝜽(𝒕𝒓𝒆𝒍) 2 2 2 

𝒄𝒊 56 44 80 

𝒇𝒊 61 54 96 

Di [kWh] 30 30 30 

𝜺𝒊 1 1 1 
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Figure 37:The evolution of the state of charge of the two microgrid storages 

 

Finally, the various power flows in the system are represented in Figure 38. 

 

Figure 38: Power flows in the microgrid (Scenario 1). Ps is the sum of P_(sl→G)  (t_k ) and P_(ss→G)  (t_k ). Pvehicles  is 
the sum of power flows P_(G→v,i) (t_k ) for all i. 

Note that in the time intervals 25-35 the microgrid buys energy from the grid, to 

be able to satisfy a large energy demand in intervals 30-60. This anticipation is due to the 

fact that time intervals 36-80 are characterized by the highest purchase cost of energy 

from the main grid. 
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Scenario 2. 

Let us consider now a second scenario in which only the parameter reli of vehicle 

3 has been changed with the previous basic scenario. 

Vehicle data Vehicle 1 Vehicle 2 Vehicle 3 

𝒓𝒆𝒍𝒊 40 35 67 

𝒅𝒅𝒊 65 59 79 

Dmax,i[kWh] 30 30 30 

𝒙𝒔𝒗𝒆𝒉,𝒊,𝒊𝒏[kWh] 5 5 5 

𝜶 𝒊 [€/h] 0.1 0.3 0.1 

G1, G2 [€/kWh] 0.5, 0.6 0.5, 0.6 0.5, 0.6 

Table 4: Vehicle data Second scenario 

In this case, the demands of the three vehicles are all equal to 30 KWh, as in the 

previous scenario. However, the micro grid manager decides against servicing vehicle 3. 

In Figure 39 the patterns of the state of charge of the three vehicles are reported. 

 

Figure 39: The evolution of the state of charge of the three vehicles (Scenario 2) 

 

The values of the most relevant decision variables are reported in Table 5. 

Vehicle output Vehicle 1 Vehicle 2 Vehicle 3 

𝜽(𝒕𝒓𝒆𝒍) 2 2 0 

𝒄𝒊 38 89 - 

𝒇𝒊 46 95 - 

Di[kWh] 30 30 0 

𝜺𝒊 1 1 0 

Table 5: Second scenario output 

Scenario 3. 

In the third scenario, the maximum demand of vehicle 1 is changed with respect 

to the Scenario 2, as reported in Table 6. 

Vehicle data Vehicle 1 Vehicle 2 Vehicle 3 

𝒓𝒆𝒍𝒊 40 35 67 

𝒅𝒅𝒊 65 59 79 
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Dmax,i[kWh] 10 30 30 

𝒙𝒔𝒗𝒆𝒉,𝒊,𝒊𝒏[kWh] 5 5 5 

𝜶 𝒊 [€/h] 0.1 0.3 0.1 

G1, G2 [€/kWh] 0.5, 0.6 0.5, 0.6 0.5, 0.6 

Table 6: vehicles data Third scenario 

In Figure 40, the patterns of the state of charge of the three vehicles are reported. 

 

Figure 40:The evolution of the state of charge of the three vehicles (Scenario 3) 

Note that, with a lower demand from vehicle 1, the micro grid manager accepts to 

charge even vehicle 3.  

The values of the most relevant decision variables are reported in Table 7. 

Vehicle output Vehicle 1 Vehicle 2 Vehicle 3 

𝜽(𝒕𝒓𝒆𝒍) 2 2 2 

𝒄𝒊 48 54 74 

𝒇𝒊 53 60 95 

Di[kWh] 10 30 30 

𝜺𝒊 1 1 1 

Table 7: Third scenario Output 

Scenario 4. 

Let us consider now a fourth scenario in which the parameters  

𝑟𝑒𝑙𝑖have been changed with respect to the first scenario, for all vehicles, reducing the 

time intervals allowed  for charging. 

All data concerning vehicles, for the fourth scenario, are summarized in Table 8. 

Vehicle data Vehicle 1 Vehicle 2 Vehicle 3 

𝒓𝒆𝒍𝒊 50 55 67 

𝒅𝒅𝒊 65 59 79 

Dmax,i[kWh] 30 30 30 

𝒙𝒔𝒗𝒆𝒉,𝒊,𝒊𝒏[kWh] 5 5 5 

𝜶 𝒊 [€/h] 0.1 0.3 0.1 

G1, G2 [€/kWh] 0.5, 0.6 0.5, 0.6 0.5, 0.6 

Table 8: Data vehicles Fourth scenario 
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In Figure 41 the patterns of the state of charge of the three vehicles are reported. 

 

Figure 41: The evolution of the state of charge vehicles of the three vehicles (Scenario 4) 

Note that the demands of vehicles 1 and 2 are reduced, with respect to Dmax. Be-

sides vehicle 3 is not served. 

 

Vehicle output Vehicle 1 Vehicle 2 Vehicle 3 

𝜽(𝒕𝒓𝒆𝒍) 2 2 3 

𝒄𝒊 72 65 - 

𝒇𝒊 95 61 - 

Di[kWh] 26.4 26.4 0 

𝜺𝒊 1 1 0 

Table 9: Fourth scenario output 
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6. Optimal control in a microgird: Electrical vehicles charching  de-

mand response discrete event model 

6.1 Introduction 
The formalization of the problem provided in the previous chapter, within a dis-

crete-time setting, suffers from a serious drawback, since the number of decision varia-

bles grows as the number of the time intervals increases. Thus, in order to keep the prob-

lem tractable, it is necessary, in discrete-time modelling, either to limit the number of the 

time intervals by adopting a suitably large discretization step (thus giving rise to a rough 

approximation of the dynamics of the real system) or to limit the length of the optimiza-

tion horizon (thus leading to possible “myopic” control schemes, unable to make use of 

all available forecasts). Actually, none of these choices is satisfying and for this reason one 

is led to consider the possibility of a discrete event approach, in which events (which are 

responsible of the changes of the state of the system) are exactly tracked at the time in-

stants at which they take place, without any approximation. 

In fact, in the literature concerning the sequencing and scheduling of services, a 

discrete event formalization is mostly preferred to a discrete-time one. However, there is 

an intrinsic difficulty in following this approach in the case of problems, like the one con-

sidered in the previous chapter, whose statement is basically conditioned by forecasted 

information (power coming from renewables and non-deferrable demand) that is intrinsi-

cally provided in discrete time. In this case, the forecasted information is typically repre-

sented in discrete-time, so it is necessary to find some way to convert these forecasts in 

some information that is dependent on the time instants at which the discrete events af-

fecting the systems behavior (customer arrivals, completion of services, etc.) occur. This 

point will be detailed in the following. 

6.2 The  Model 
The problem considerec in this section falls within the broad class of scheduling 

problems. Such problems refer to the assignment, sequencing and timing of a given set of 

jobs (or customers) to a given set of resources (or machines) that have to provide a cer-

tain service for these jobs. There is a great variety of scheduling models in the literature. 

For most of them, the solution of the scheduling problem requires to specify three kinds 

of  decisions:  

Assignment decisions (i.e., which jobs are assigned to the various available resources); 

Sequencing decisions (i.e., once assignment decisions are taken, how to order the services 

of the jobs assigned to each of the resources);  

Timing decisions (i. e., in which time intervals the various services are accomplished).  

 It is worth noting that for nonregular optimization objectives (i.e., those corre-

sponding to the case in which some advantage may be obtained by delaying some com-

pletion time) the last decisions (timing) are not trivial.  
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 Besides, it is apparent that the three kinds of decisions are strictly interconnected, 

as the optimization (scheduling) problem has to be solved as a whole and cannot be de-

composed into three separate decision phases. 

 When dealing with the specific scheduling problem considered in this chapter, 

since one single service station is considered (which is assumed to be capable of charging 

a single vehicle at a time), it is apparent that the assignment decisions are trivial, since all 

jobs (vehicles) are assigned to the same resource. In addition, it is assumed that the ser-

vice sequence is given , that is, the vehicles are charged following the order of their arri-

vals. Thus, the only decisions that have to be taken are those concerning the timing of 

services. However, the problem is not trivial, as the service (charging) time intervals are 

themselves decision variables, as clarified in the following. 

The following pictures represent the scheme of the considered system and define 

the considered power flows.  

 

Figure 42: System related power flows 
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Figure 43: Microgrid 
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As the service sequence is given, the vehicles can be identified according to their 

order of arrivals 

 

 

 

The model is assumed as non-preemptive (that is, the service cannot be interrupt-

ed and resumed). Moreover, the power flow is only towards vehicles (that is, no vehicle 

can be used as a temporary storage). The time interval between the completion time in-

stants (= the instants at which the charging is completed) of two subsequent jobs  

(=vehicles) can be partitioned as follows: 

 

 

 

 

where:  

 Ci = completion time (of the charging) of the i-th vehicle; 

 CHi = charging time (interval) for the i-th vehicle; 

 IDLEi = idle time interval before the charging of the i-th vehicle. 

 

It is assumed that, in any case IDLEi must be greater than or equal to a minimum 

value. This minimum value can be considered as equal to the minimum necessary set-up 

time. 

It is also assumed that, for each vehicle Vi, the following information is given a pri-

ori: 

 Release time rti: time instant at which the vehicle becomes availa-

ble for service; 

 Due date ddi: time instant at which the service for the vehicle 

should be completed; it serves to define and evaluate the tardiness cost; 

 Dead line dli: time instant at which the service must be completed. 

It serves to define a constraint of the problem; 

0 t 

V1 V2 V3 ….VN-1 VN 

Vi-1 

Ci-1 Ci 

CHi IDLE

i 



 

72 

 

 Energy request ERi: amount of energy required for charging the ve-

hicle; 

 Penalty coefficient αi for unitary tardiness: it is the cost paid for a 

unit delay (with respect to the due date ddi) in providing the required energy to 

vehicle Vi (per unit of energy required). It is expressed in [€/(kWh*hDELAY)]. 

 

In addition to what has been previously specified, the following assump-

tions are made: 

 the values of the powers (t), (t)
G NR

f f  are kept constant within each 

time interval (Ci-1,Ci). Such constant values are denoted as 
, ,
(t), (t)

G i NR i
f f , respec-

tively. 

 the value of the power (t)
L

f  is kept constant within each time in-

terval (Ci-1-CHi,Ci), that is, during the charging of vehicle Vi. This constant value is 

denoted as 
L,

(t)
i

f , respectively. 

 the selling and buying prices (to and from the main grid, respective-

ly) are given functions SP(t) and BP(t), for  0,t t . However, such prices are 

considered as “frozen” at time instant Ci-1, for the whole time interval (Ci-1,Ci). That 

is to say, the formulation of the cost to be minimized will be provided in the as-

sumption that 

 

 

 

  

  

1 1

1 1

( ) ( )

( ) ( )
i i i

i i i

SP t SP C for C t C

BP t BP C for C t C  

On the basis of the previous assumptions and considerations, the basic state 

equation of the system, describing the dynamics of the state of charge of the storage el-

ement x(t) is 

  (t)
S

x f  

That can be represented, within a discrete-event setting, as    


  

1 1, 2,
( ) ( )

i i S i i S i i
x C x C f IDLE f CH                                                                         6.1) 

where  

1,S i
f : the average value of (t)

S
f  within time interval (Ci-1,Ci-1+IDLEi);  
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2,S i
f : the average value of (t)

S
f  within time interval (Ci-1+IDLEi, Ci).  

In the following, ( )
i

x C will be denoted as simply 
i

x , for the sake of brevity. 

The power balance equation 

   ( ) ( ) ( ) ( ) ( )
L G S R NR

f t f t f t f t f t                                                                                     (6.2) 

cannot be imposed as a constraint for every time instant. The only way to impose a bal-

ance equation constraint is that of considering two integral constraints (for each vehicle), 

namely 

   
, 1, 1, ,

0 ( ) ( ) ( ) ( )
G i S i R i NR i

f t f t f t f t     within time interval      (Ci-1,Ci-1+IDLEi)           (6.3)   

   
, , 2, 2, ,
( ) ( ) ( ) ( ) ( )

L i G i S i R i NR i
f t f t f t f t f t  within time interval    (Ci-1+IDLEi, Ci)         (6.4)   

The average value of the power coming from the renewable source within the in-

terval (Ci-1,Ci-1+IDLEi) is given by: 










1

1

1,

( )

( )

i i

i

C IDLE

R
C

R i

i

f t dt

f t
IDLE

                                                                                            (6.5) 

Instead, the average value of the power coming from the renewable source within 

the interval (Ci-1+IDLEi, Ci) is given by: 







1

2,

( )

( )

i

i i

C

R
C IDLE

R i

i

f t dt

f t
CH

                                                                                          (6.6) 

Obviously, ( )
R

f t  is assumed as known, thus terms 
1,

( )
R i

f t , 
2,

( )
R i

f t  can be easily 

expressed as a function of Ci-1,Ci,IDLEi, which are among the decision variables of the 

problem. 

The cost function to be minimized is 

min ∑ {𝐵𝑃(𝐶𝑖−1)(𝐶𝑖 − 𝐶𝑖−1)𝑓𝐺,𝑖
+ − SP(𝐶𝑖−1)(𝐶𝑖 − 𝐶𝑖−1)𝑓𝐺,𝑖

− + 𝐶𝑁𝑅 ∙ 𝑓𝑁𝑅,𝑖
𝑖=1 ∙𝑁

𝑖=1

(𝐶𝑖 − 𝐶𝑖−1) + 𝛼𝑖 ∙ 𝑡𝑎𝑟𝑑𝑖 ∙ 𝐸𝑅𝑖}                                                                                                              

(6.7) 

 

 where CNR is the unit cost [€/kWh] for generation of not-renewable energy. 

The minimization in (6.7) has to be carried out taking into account constraints 

(6.1), (6.2), (6.3), (6.4), (6.5), (6.6) (written for i=1,…,N), and the following further con-

straints: 
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  
, , ,G i G i G i

f f f                      i=1,…,N                                                                        (6.8) 


i i

C dl                                    i=1,…,N                                                                      (6.9) 

 
i i i

C CH rt                         i=1,…,N                                                                      (6.10) 


i

IDLE                              i=1,…,N                                                                        (6.11) 


  

1i i i i
IDLE C CH C       i=1,…,N                                                                        (6.12) 


,L i i i

f CH ER                         i=1,…,N                                                                        (6.13) 

 
i i i

tard C dd                      i=1,…,N                                                                       (6.14) 

 
,

MAX

G i g
f F                             i=1,…,N                                                                         (6.15) 

 
,

MAX

G i g
f F                             i=1,…,N                                                                         (6.16) 

 
MIN i MIN

x x x                      i=1,…,N                                                                      (6.17) 

  
,MAX 1, ,MAXS S i S

F f F         i=1,…,N                                                                          (6.18) 

  
,MAX 2, ,MAXS S i S

F f F         i=1,…,N                                                                          (6.19) 

 
L,MIN L, L,MAXi

f f f              i=1,…,N                                                                            (6.20) 


NR, NR,MAXi

f f                        i=1,…,N                                                                         (6.21) 

Note that in the above formulation C0 is assumed equal to 0, and also x0 is as-

sumed as given. 

All variables are understood to be not negative, but ( )
G

f t  and ( )
S

f t , which have 

to be declared as free in the statement of the optimization problem. 

 

6.2 Application 
In this section, we present a case study in order to show the result obtained by the 

use of a dicrete event formulation of the problem. Real data have been used for a portion 

of the Savona Municipality. The vehicle demand is relevant to 4 electrical vehicles (N=4) 

connected to a grid-connected microgrid, with PV and wind power production, produc-

tion from natural gas, electrical batteries and charging stations.   

The optimal schedule of production plants, storage systems and EVs is obtained by 

solving the optimization problem (6.1)-(6.11) by use of Lingo optimization software tool 

 [10], run time less than 2 minutes. 
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6.2.1 Case study  

In the case study the power coming the renewable source is assumed as known, 

but time-varying over the optimization horizon.  

We consider system (data reporting in Table 12) with 4 different vehicles, all related data 

are summarized in Table 11.  

Table 11: Vehicle Event driven Datas Casa Study 

 

 

 

 

 

 

 

 

Table 12: System Event driven Datas Casa Study 

 

 

 

 

 

 

 

 

 

 

 

 

In the following Figure 44 the original (piece-wise linear) pattern of the power from 

renewable is represented. This pattern comes from some forecasting technique. A dotted 

line represents the best third-order polynomial interpolation, obtained by standard tools, 

which can be used to compute the definite integral over a given time interval. Claearly, 

other kinds of interpolating functions could have been used, but, in our opinion, the qual-

ity of the proposed approximation is fairly acceptable.  

Vehicle data Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

dd 1.5 2 2.5 1.5 

dl 1.5 3 4 5 

ER 100 80 100 100 

tard 0 0.2 0.7 1.2 

Cnr 0.13 
0.13 0.13 0.13 

Xin (0) 20 20 20 20 

System data  

Xmax 100 

Xmin 10 

fGmax 100 

fSmax 50 

fLmax 100 

fLmin 150 

FNRmax 50 

C0 
0 

α 0.1 



 

76 

 

 

Figure 44:  Renewable Power Function per point and its polynomial approximation  

Using the third-order approximation  

𝑓𝑟(𝑥) = 𝑎0𝑥3 + 𝑎1𝑥2+𝑎2𝑥 + 𝑎3 

it is possible to express the two average values in (6.5) and (6.6) as functions of the deci-

sion variables of the problem. 

Where 𝑎0 = 0,0557 kWh/t^3 𝑎1 = 1,1294 kWh/t^3 𝑎2 = −17,881 kWh/t^3 𝑎3 =

120,5 kWh/t^3. 

 

The aim of the algorithm is still to minimize to cost of a charging station. The optimal cost 

obtained is 23.94 euros.  

The results obtained are summarized in Table 13. 

 

Table 13: Event driven Resluts  Case study 

 

 

 

 

 

 

 

Vehicle output Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 

Idle 0,23 0,27 0,26 0,33 

C 0,90 1,70 2,70 3,70 

rt 0,05 0,33 0,50 1,00 

CH 0,67 0,53 0,74 0,67 

X 10,00 10,00 10,00 10,00 

fG -12,77 0,00 0,00 0,00 

fs1 -100,00 -100,00 -100,00 -100,00 

fs2 50,00 50,00 34,41 50,00 

Fnr 0,00 0,64 12,65 23,19 

fl 150,00 150,00 134,41 150,00 

Optimal Value 23,9476       
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In Figure 45 the vehicle charging scheduling is represented. The due dates are not always 

fulfilled, because it is more convenient to pay a penalty for the tardiness than to buy en-

ergy from the grid. 

 

Figure 45: Time horizon results  for Charging Vehicle case study 

 

 

Figure 46 fG Power flow in the time intervals 

Figure 46 rapresents the power flow from the microgrid to main grid. Instead, Fig-

ure 47 shows che power flow fNR over the optimization horizon. 

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50

IDLE(i)+CH(i)
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Idle(4)
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Figure 47 fNR Power flow in time intervals  
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7. Optimal integration of interconnected buildings 

7.1 Introduction 
In this chapter, another kind of problem is faced. In this case, a system is consid-

ered that is composed by different buildings connected to the same grid that has a unique 

connection with the external grid. Each building is supposed to have access to some indi-

vidual intermittent production from renewable resources (wind and photovoltaic). Be-

sides, each building includes a storage system and can exchange power with the other 

buildings. Heat pumps are used to produce the thermal power that it is necessary to 

guarantee the desired temperature necessary to ensure a certain comfort level. In fact, 

each building can be seen as a microgrid like in [36]. In the present tratment, the thermal 

model of each building is also considered, by introducing a state equation to represents 

the temperature variation of that building over time.  

Two decision levels are here considered because of the presence of different in-

teracting decision makers with different objectives and different information.  In the con-

sidered scheme, an Upper level Decision Maker (UDM) is responsible for all decisions re-

garding the interaction with the main grid. The UDM  has the objective of minimizing  

costs (or maximizing benefits) due to the purchase (sales) of electrical energy from (to) 

the external grid, and power losses. Besides, the presence of several Lower Level Decision 

Makers (LDM) is assumed, each of which is responsible of a single building (for any LDM, 

the objective is that of optimizing the behavior of the corresponding building). In this 

scheme, the UDM emulates the behavior of the LDMs, to obtain a satisfactory solution for 

the whole system. Then, the LDMs try to track the optimal results provided by the UDM 

while maintaining a reasonable comfort and containing costs. It is important to note that 

the aim of this work is not that of modelling in detail the technologies and the distribution 

systems. For example, storage systems and temperature variation inside buildings are de-

scribed through the use of simple linear dynamic models drawn from the literature 

([124],[5]). For the solution of the UDM decision problem, an approach similar to the ones 

presented in ([122],[123]) is here applied to the case of interconnected buildings. Results 

have been derived for a case study in the Genoa Municipality (Italy).  

7.2 The bi-level control scheme  
The considered control architecture is depicted in Figure 48. The UDM defines and 

solves a decision problem in order to provide reference values to local users, minimize 

costs and losses, and respect power flow constraints.  

Before the process starts, the UDM receives data from the LDMs (i.e., pres-

 

UDM 

   

Figure 48: The proposed architecture. 
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ence/absence of storage systems, renewables, inhabitants, etc.), analyzes and collects 

other available data (local users behaviour in the previous days, forecasts of external 

temperature and renewables availability, structural data on buildings coming from a GIS-

based database, etc.). Instead, the LDMs receive reference values from the UDM, do not 

have information on the electrical grid and on other users, and have more detailed infor-

mation on the rooms inside the buildings, occupancy, possibility to perform demand re-

sponse programs, etc. Each LDM tries to track its own pattern determined by the UDM, 

and to minimize its own costs. If both UDM and LDMs are satisfied from the solution, the 

procedure stops. Otherwise, a further interaction between the UDM and the LDMs is re-

quired.  

 Figure 49 The considered system 

 

The considered physical system is characterized by three interconnected buildings, 

whose energy demand has to be satisfied  by renewable resources and power taken from 

the external grid, as represented in  Figure 49. 

Thermal power is produced through heat pumps by using electrical power. The 

objective of the UDM is to minimize costs (benefits) due to the purchase (sales) of electri-

cal energy  𝑃𝑔𝑟𝑖𝑑,𝑡from (to) the external grid, and power losses 𝑃𝑙𝑜𝑠𝑠,𝑡. More specifically, 

the considered objective function is  

 




   
 

1

, , , , u, ,
0

max( ,0) min( ,0)
T

u t grid t u t grid t t loss t
t

J C P B P C P                                           (7.1)      

being the power exchange with the external grid in time interval (t, t+1), t=0,…,T-

1, ,  the electrical losses due to the exchange of power in the network 
,u t

C  unit costs for 

buying energy from the external grid, and 
,u t

B  the unit price for selling power to the ex-

ternal grid.  

The State of Charge (SOC) dynamics of the storage systems of the various buildings 

can be represented in percente by the following equations: 





 

, ,

, 1 , ,

j S j t

j t j t j t

j

P t
SOC a SOC

CAP
 j=1,..,B, t=0,…,T-1                                                      (7.2) 
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



 


 



, S, ,

,

0

1 /
c j j t

d jj

if P

otherwise                         j=1,…B                                                            (7.3) 

Where CAPj is the capacity of the storage in building j, B is the number of build-

ings,  
, ,

,
c j d j

 are efficiency  parameters in charging and discharging modes 
,t j

a  is a loss 

coefficient due to the internal losses and   is time interval (hr). Instead, 
, ,S j t

P is the pow-

er (unrestricted in sign) drawn by the storage (kWel)  of the j-th building , and SOCj,t is the 

building battery state of charge. 

The power balance equation of each building is given by 

  
, , , , , ,RES j t S j t j t j t

P P L D     1,j B    t=0,…,T-1                                                         (7.4) 

 
, , , ,j t j t f j t

L q D             1,j B     t=0,…,T-1                                                                     (7.5) 

where
, ,RES j t

P  is the power from renewables for each building j, 
,j t

L is the electrical load 

for the j-th building, 
,j t

q  the electrical power provided to heat pumps in the j-th buildind, 

, ,f j t
D  the forecasted electrical load of each building, and 

,j t
D

 
the power exchanged be-

tween each building and the main grid. 

 It is now necessary to take into account the power flow equations, for active and 

reactive power, which affect the power exchanges between nodes connected within the 

same grid. These equations for low voltage AC grids are here expressed in per unit values 

because (as suggested by literature) this method offers computational simplicity by elimi-

nating units and expressing system quantities as dimensionless ratios: 


, ,

, ,

h k t

h k t

b

P
p

S
       h ,k =1,…,N, h k , t=0,…,T-1                                                                     (7.6) 


, ,

, ,

h k t

h k t

b

Q
q

S
      h ,k =1,…,N, h k , t=0,…,T-1                                                                              (7.7) 

being h, k two generic nodes within the node set N. One or more building can be con-

nected to the same node of the grid. In (7.7) 
b

S  is the power base, that is, a constant 

power with respect to which all powers are expressed, N  is the number of nodes, 
, ,h k t

p  

and 
, ,h k t

q  are the active and reactive powers, respectively, expressed in p.u..  Active and 

reactive power between nodes (h, k) are given by  

   

 

   

 
 

 

2
, , , , , , , ,, ,

, , 2 2 2 2

, , , ,

ˆcos( ) sin( )( )

ˆ ˆ

h t k t h k h k t h k h k th k h t

h k t

h k h k h k h k

v v r rr v
p

r r r r
  h, k =1,…,N, h k , 

t=0,…,T-1                                                                                                                                        (7.8) 
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   

 

   

 
 

 

2
, , , , , , , ,, ,

, , 2 2 2 2

, , , ,

ˆ cos( ) sin( )ˆ ( )

ˆ ˆ

h t k t h k h k t h k h k th k h t

h k t

h k h k h k h k

v v r rr v
q

r r r r
       h, k=1,…,N, h k , 

t=0,…,T-1                                                                                                                                       (7.9)  

where    
, , , ,h k t h t k t

, 
,h k

r  and 
h,k

r̂  are resistance and reactance parameters 

for the link (h, k), respectively, 
,h t

v  and 
,h t

 are the voltage and the phase at node h, re-

spectively. The balance equation for active power at each node inside the main grid is 

given by: 

 







hAj

N

kh
k

tkhtj PD

1

,,, 0        h=1,…,N , t=0,…,T-1                                                                                    (7.10) 

where Ah is the set of buildings connected to the node h. It is important to note that an 

equation similar to (7.10) is valid for the node of connection with external grid. At this 

node, no buildings are connected and the contribution 
tjD ,  

is substituted with ,grid t
P

.
 

Equations similar to those expressed by (7.4), (7.5) and (7.10) are formalized for reactive 

power but they are here not reported for the sake of brevity. The power losses at each 

branch could be evaluated as follows 

 

 
 
 
 

 

2
2 2

h,k, , ,

, h,k

,

t h k t

loss t
h N k N h t

Q P
P R

v
h k , t=0,…,T-1                                                         (7.11) 

Moreover, the following bounds must be imposed: 

  
, , , , , ,h k t h k t h k t

Y P Y  h, k=1,…,N, , t=0,…,T-1                                                           (7.12)

 
min,j, j, max,j,t t t

SOC SOC SOC  j=1,…,B   t=0,…,T-1                                                           (7.13) 

 
,

MIN MAX

h h t h
v v v                  h=1,…,N    t=0,…,T-1                                                           (7.14) 

      
2 2 2

, ,

MAX

grid t grid t grid
Q P S                t=0,…,T-1                                                           (7.15) 

      
2 2 2

j, j, ,j

MAX

t t load
QD L S     j=1,…,N   t=0,…,T-1                                                          (7.16) 

      
2 2 2

, , ,j

MAX

RES t RES t RES
Q P S  j=1,…,B   t=0,…,T-1                                                        (7.17) 

      
2 2 2

, j, ,j

MAX

j t t STO
Qs Ps S    j=1,…,B    t=0,…,T-1                                                        (7.18) 

    
2 2

, , , , ,

MAX

h k t h k t h k
Q P S h,k=1,…,N, h k ,t=0,…,T-1                                                (7.19) 

where: 

 
, ,h k t

Y  is the power limit for power that flows in the grid; 

h k
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 
min,j, max,j,

,
t t

SOC SOC  are bounds related to storage systems capacity; 

 MIN

h
v  and MAX

h
v  are lower and upper bounds for voltage at node h; 

 
,j

MAX

grid
S , 

,j

MAX

RES
S , 

,j

MAX

load
S , 

,j

MAX

STO
S , 

h,k

MAXS  represent maximum apparent power for produc-

tion, grid connection, renewables, load, power exchange with storage, and power 

flows, respectively; 

 
,grid t

Q ,
j,t

QD ,
,RES t

Q ,
,j t

Qs ,
, ,h k t

Q  are reactive powers. 

 

It is supposed that the UDM has no detailed information about the temperature in 

the rooms in each building. Thus, a single variable 
,j t

T is used to represent the tempera-

ture of the overall building j. The dynamics of such a temperature is simply represented as 

in Yao et al. (2015) 

 



   

, 1 , , , ,

, ,

1
[ ( )]

j t j t s j t j t ext t

j th ext j

T T q T T
C R

           j=1,…,B, t=0,…,T-1                     (7.20)    

where
j

C is the thermal capacitance in building j (J/K), 
,ext t

T is the external temper-

ature (K), 
,j t

q  the thermal power provided by heat pumps, 
, ,th ext j

R is the resistance be-

tween building j and the external environment, and 
s

 is a known conversion parameter. 

The following upper and lower bound constraints have to be fulfilled: 

 
, , ,j MIN j t j MAX

T T T            j=1,…,B,   t=0,…,T-1                                                    (7.21) 

The UDM must provide reference values to buildings in order to minimize the 

costs of the whole system. To this end, it emulates the local users behaviour, on the basis 

of its available information. Then, an analytical solution for the LDMs’ decision problem is 

obtained and inserted as a constraint in the UDM decision problem. 

Local users are supposed to follow references given by the UDM. In particular, 

their objective function is given by 

   


 

         
1

2 2 * 2 2

, , , , , , , ,
0 1

ˆmin ( ) ( ) ( ) (D D )
JT

j t j t j t j t j t j t j t j t
t j

J T T q Q SOC SOC   (7.22) 

where 
,j t

Q  are the reference patterns for the power to building j to satisfy thermal de-

mand (kWth); *

,j t
SOC  is the reference value for the state of charge of the storage system 

in building j; 
,j t

T  is reference value for temperature, 
,

D
j t

is the reference value for power 

exchanged between the main grid and building j; α, β, λ, σ  are weighting factors. All other 

symbols have been already defined.  

The following equations must be taken into account in the UDM optimization 
problem: 
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



 

, ,

, 1 ,

j S j t

j t j t

j

P
SOC SOC

CAP
            j=1,…B,   t=0,…,T-1                                          (7.23) 

   
, , , , , , , ,RES j t S j t j t f j t j t

P P q D D        j=1,…B,t=0,…,T-1                                          (7.24) 





   

, 1 , , , ,

, ,

1
[ ( )]

j t j t s j t j t ext t

j th ext j

T T q T T
C R

       j=1,…B, t=1,…,T-1                  (7.25) 

where 
j

C is the thermal capacitance in building j (J/K), 
,ext t

T is the external tem-

perature (K), 
, ,th ext j

R is the resistance between building j and the external environment.  

The optimization problem given by equations (7.22)-( 7.25) can be expressed in 

the following form: 



 



     
1

* * * *

1 1
0

1ˆmin [( )' ( ) ( )' ( )]
2

T

t t t t t t t t
t

J x x Q x x u u R u u                                   (7.26) 

s.t. 

   1t t ttx Ax Bu C z                                t=0,…,T-1                                        (7.27) 

where   

  
, , ,

[ , 1,..., , 1,..., ]t j t j t
x col T j B SOC j B       t=0,…,T-1                                     (7.28) 

   


, , 1,..., , , 1,..., , 1,..., , 1,...,
[ , , , , , ,D , ]t S j t j B grid j t j B j t j B j t j B

u P P q    t=0,…,T-1                       (7.29) 

 
, , , , ,

[ ,D , 1,..., , ]t RES j t f j t ext t
z P j B T         t=0,…,T-1                                                (7.30) 

 
 
 

* *

, 1,..., ... 1,...,
;t j j B j j B

x T SOC                  t=0,…,T-1                                                   (7.31) 

 


*

1,..., 1,...,
[ , ,D , ]t j j B j j B

u Q                      t=0,…,T-1                                                     (7.32) 

and where matrices Q and R are suitably defined positive definite (diagonal) matrices, de-

fined through the weight coefficients in the expression (7.22) of the cost. Besides, the 

structure and parameters of matrices A, B and C in (7.27) can be derived from the dynam-

ical equations representing the behaviour of the state of charge of the storage in the 

buildings and the (average) temperature for each building. 

The optimal control law for this control problem can be found using an approach 

like the one in [36] 
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

 

  

  



 



 

  

  

  

 

1

1 1

1 1 1

1 1 1

1

1 1

1

1 1

( ' ) '

(( ' ) ' ' ' )

( ' ) '

( ' ) '

kk k k

k k k

kk k

kk k k

u R B K B B K Ax

R B K B B K BR B R B g

R B K B B K B u

u R B K B B K C z

 k=0,…,T-1                                      (7.33) 

where 
k

K  and 
k

g , k=0,…,T-1, can be found through the following backward recursions 



   
    1

1 1 1 1
( ( ' ) ' )

k k k k k
K Q A K K B R B K B B K A  k=0,…,T-1                                    (7.34) 

 

 

   



   

   

 

   

1 1

1 1

1 1 1 1

1

1 1 1 1

( (

' ) ' ) '

( ( ' ) ' )( )

k k k

k k k k

kkk k k k i k

g A K K B R

B K B B K BR B g Ag

A K K B R B K B B K Bu C z Q x

k=0,…,T-1                      (7.35)  

initialized with 
T

K Q and  
T

g Q x .    

Thus, the solution to the UDM optimization problem is given by equations (7.33)-( 7.35). 

 

 7.2.1 The Local User Optimization Problem 

The local users have more information on the buildings and may decide to apply 

demand response programs. Each consumer follows the references coming from the 

UDM, has more detailed information, system and decision problem. The storage state 

equations (7.2) have to be taken into account as constraints to the optimization problem. 

The dynamics of the temperature is in this case given by: 








   

 

, , 1 , , , , , , , , ,

, , , ,

, , , , , ,
1 , , ,

1
[ ( )

1
( )]

i j t i j t s i j t i j ext i j t ext t

i j th ext i jI

i j r i j t r j t
k th i j r
k i

T T q A T T
C R

A T T
R

  

              i=1,…I,  j=1,…,B, r=1,…I, t=0,…,T-1                                               (7.36) 

where 
,i j

C is thermal capacitance of room i in building j (B/K);
,ext t

T is the external temper-

ature (K);
, , ,th ext i j

R is the resistance between room i in building j and the external environ-

ment;
, , ,th i j r

R is the resistance between room i and room r in building j. 
, ,i j r

A is the generic 

element of the adjacency matrix: it is equal to 1 if room i of building j is adjacent to room 

r and 0 otherwise;
, ,i j ext

A is a coefficient equal to 1 if room j is adjacent to external envi-

ronment, and 0 otherwise;
, ,i j t

q is the thermal power (kWth) (unrestricted in sign) provid-

ed by heat pumps to room i in building j. Clearly, 


, , ,
1

I

j t i j t
i

q q , where I is the number of 

rooms);
, ,i j t

T is temperature (K) in room i of building j at time instant t.   
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The power balance equation is given by: 

  
, , , , ,RES j t S j t j t j

P P L D        j=1,…,B, t=0,…,T-1                                                     (7.37) 

    
, , , , , , , , ,j t b t veh j t wash j t j t loss j t

L L P P q P       j=1,...,B, t=0,…,T-1                        (7.38) 

where 
, ,veh j t

P , 
, ,wash j t

P , 
, ,loss j t

P are the power of electrical vehicles, washing machines and 

the electrical losses inside the house, which, for the sake of simplicity, is a percentage of 

the brown goods load 
,b t

L .   

It is important to note that local users can shift the power demand of their devic-

es, while following reference values for power exchange with the external grid. The fol-

lowing constraints hold for the scheduling of electrical vehicles and washing machines 






1

, , ,
0

T

veh j t ev j
t

P P
       

                       j=1,…,B                                                     (7.39) 


, , , ,wash j t j t wash j

P P
   

           j=1,…,B, t=0,…,T-1                                                (7.40) 






1

, , ,
0

T

wash j t washTOT j
t

P P
      

                  j=1,…,B                                                 (7.41) 



 

 






  


  
 




, , , ,

, 1 , , , ,

, 1 ,

1 1

0 1

0

j t wash j t washTOT j

j t j t wash j t washTOT j

j t j t

if and P P

if and P P

if

 
        

                      j=1,…,B,  t=0,…,T-1                                                                      (7.42) 

where 
,ev j

P , 
,wash j

P ,
,washTOT j

P  are  daily electrical demands for electrical vehicles and 

washing machines. 

The total cost for a building is given by: 






1

,j , , ,
0

T

TOT j t u j t
t

C D C
                  j=1,…,B                                                            (7.43) 

 
,Min,j ,j ,Max,jTOT TOT TOT

C C C
 
    j=1,…,B                                                              (7.44) 

where are the
,Min,jTOT

C and 
,Max,jTOT

C the minimum and maximum cost, respectively, that 

the LDM j considers to be sustainable, and tjuC ,,  
the unit cost for power in building j. 
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The LDMs’ objective function tracks values coming from the aggregator. That is, 

 


  
2

,
0

ˆmin D
T

j t j
t

J D                   j=1,…,B                                                  (7.45) 

7.3 Case Study 
The proposed two level architecture has been applied to a case study: 3 buildings 

in the district of Sampierdarena (Municipality of Genoa) have been selected. All buildings 

have been divided in five rooms (or thermal zones, i.e., areas with homogeneous thermal 

characteristics). The developed decision models for UDM and LDMs have been solved by 

the use of the optimization package Lingo (www.lindo.com) [10], computation time 20 

minutes. 

The UDM decision problem is nonlinear while the LDMs decision problems are 

quadratic with binary and continuous decision variables. Thus, different initializations 

have been used to solve the optimization problems. The external temperature (°C) and 

renewables availability (kW) are reported in Figure 50 and Figure 51, respectively.  

 

 

Figure 50: External Temperature 

http://www.lindo.com/
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7.3.1 Solution of the UDM decision problem 

First, the UDM decision problem has been solved and the reference patterns for 

local users have been found. The overall objective function is equal to 636 €. 

 

Figure 52: Electrical Demand from UDM. 

Figure 52 reports the optimal values for the power Dj,t that the UDM provides to 

the three buildings. Instead, Figure 53 shows power flows at nodes A (connection point to 

the main grid) and B (connected to building 1), by using the notation of Figure 49. Specifi-

cally, PAB is power from node A to node B, PBA and PBC are power flows from node B (to 

node A and node C, respectively). It is important to note that the power exchanged be-

tween these two nodes (PAB and PBA) are approximately equal but opposite in sign. This 

means that power losses are very low and that the power flow equations are solved in a 

correct way.  

Figure 51: Renewables availability in the three buildings (RES1, RES2, RES3) 



 

89 

 

 

Figure 53. Power exchange at nodes A and B. 

7.3.2 Solution of the LDM decision problem 

Then, the LDMs’ optimization problems have to be solved, taking into account ref-

erence patterns from the UDM. For the sake of brevity, in the following, only results for 

building 1 are reported. The value of the objective function of the LDM is equal to zero. 

This means that the obtained solution satisfies both the UDM and the LDM. The evolution 

of the state of charge of the battery is represented in Figure 54. Such a behavior mainly 

depends on the UDM reference values, on fixed demands, and, consequently, on when it 

is better to schedule the deferrable demand. 

 

Figure 54. Battery state of charge. 

 

Figure 55. Temperature over time for rooms in building 1. 
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Finally, the temperature variation for the rooms in building 1 is shown in Figure 

55. It can be seen that all rooms stay within temperature upper and lower bounds and 

that they have a similar behaviour, even though around a different average temperature. 
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Conclusions 
Optimization and control problems related to the management of smart grids 

cover a wide range of possible topics. In this thesis, some of them have been considered 

in some detail, and possible approaches for the solution of such problems have been de-

veloped.  

A considerable attention has been devoted to the analysis of problems relevant to 

optimal scheduling of the charging of electric vehicles. This problem has been analyzized 

within two different settings: discrete-time and discrete-event. 

In the discrete-time case, the dynamics of the system has been represented by 

representing, for each sampling interval, the change in the values of the state variables 

determined by the power flows in the microgrid. In this way, it is possible to precisely 

track the patterns of the (forecasted) renewable power and exterenal nondeferrable de-

mand. It is also possible to model the demand of the vehicles as an elastic demand (i. e., 

the quantification of the demand depends on the current prices of energy). The behav-

iour of the microgrid manager (that has the responsibility of providing the required ser-

vice to the vehicle owners) can also be represented with several degrees of freedom. 

Namely he/she can adjust prices, in order to discourage high recharging demands, and 

even refuse service to some vehicle. More important, the service sequence is not deter-

mined in advance, but it is a result of the solution of the overall optimization problem 

(whose formulation takes into account the due dates of the various service requests, and 

thus the tardiness costs). In this way, the determination is allowed not only of the optimal 

timing, but also of the optimal sequencing of the services. 

On the whole, the interest of the discrete-time problem formulation is that of al-

lowing to follow an approach within which the vehicle charging scheduling problem and 

the optimal management of the entire microgrid are viewed in an integrated framework. 

Hovever, a serious difficulty arises when the number of the discretization intervals be-

comes too high and then the number of decision variables of the problems reaches values 

that prevent determining the solution within acceptable computational times. 

For the above reason, a further approach has been introduced for the scheduling 

problem referred to the charging of the electrical vehicles, still integrated with the man-

agement of the overall microgrid. This second approach is characterized by the adoption 

of a discrete-event modelling of the dynamics of the considered system. This choice allow 

to greatly reduce the number of decision variables (thus yielding more acceptable compu-

tational times), but requires to know in advance the service sequence of the vehicles. This 

sequence may be, for instance, a priori determined on the basis of the First-Come-First-

Served rule. Thus, the scheduling problem that is considered within this approach refers 

only to timing optimization, as the service sequence has already been fixed.  

Further research in this direction should be oriented towards the development of 

approaches allowing a discrete-event formulation of the problem, but letting the service 

sequence be a part of the solution of the optimization problem. 

Anaother class of problems considered in this thesis is that relevant to the inte-

grated management of a set of buildings connected within the same grid and capable of 
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exchanging power among them and with the main grid. For this kind of problem, a two-

level approach has been developed in which, at the highel level, an “upper-level” decision 

maker solves a problem in which each building is taken into account by means of a simpli-

fied model. Instead, at the lower level, the “local” controllers (one for each building) try 

to track the reference behaviour obtained (for each of them) by the upper level control-

ler, by use of a mode detailed model for the building. 

All approaches have been applied to real case studies in the Provinces of Genoa 

and Savona. In both cases, satisfactory results have been obtained, as regards the quality 

of the obtaind performances, as well as with reference to the required computational 

times. 
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