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ABSTRACT: 

To decarbonize the global energy system and replace the unidirectional architecture of existing 
grid networks, integrated and electrified energy systems are becoming more demand-
ing. Energy integration is critical for renewable energy sources like wind, solar, and hy-
dropower. However, there are still specific challenges to overcome, such as their high 
reliance on the weather and the complexity of their integrated operation. As a result, 
this research goes through the study of a new approach to energy service that has arisen 
in the shape of data-driven AI technologies, which hold tremendous promise for system 
improvement while maximizing energy efficiency and reducing carbon emissions. 
  
This research aims to evaluate the use of data-driven AI techniques in electrical 
integrated energy systems, focusing on energy integration, operation, and planning of 
multiple energy supplies and demand. Based on the formation point, the main research 
question is: "To what extent do AI algorithms contribute to attaining greater efficiency 
of integrated grid systems?". It also included a discussion on four key research areas of 
AI application: Energy and load prediction, fault prediction, AI-based technologies IoT 
used for smart monitoring grid system optimization such as energy storage, demand 
response, grid flexibility, and Business value creation. The study adopted a two-way 
approach that includes empirical research on energy industry expert interviews and a 
Likert scale survey among energy sector representatives from Finland, Norway, and 
Nepal. On the other hand, the theoretical part was from current energy industry 
optimization models and a review of publications linked to a given research issue. 
 
The research's key findings were AI's significant potential in electrically integrated en-
ergy systems, which concluded AI's implication as a better understanding of energy con-
sumption patterns, highly effective and precise energy load and fault prediction, auto-
mated energy management, enhanced energy storage system, more excellent business 
value, a smart control center, smooth monitoring, tracking, and communication of en-
ergy networks. In addition, further research directions are prospects towards its tech-
nical characteristics on energy conversion. 
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1 Introduction 

This chapter summarizes the thesis, including the background, research gap, question 

and objectives, study definition and limitations, thesis scope, and report structure with 

a description of the task. 

 

 

1.1 Background 

Energy integration is increasingly used to decarbonize energy systems and reduce CO2 

emissions to fight against climate degradation. According to an energy solution company 

(Danfoss, 2021), the most pressing concern in decarbonizing the energy industry is not 

how much renewable energy can be generated. However, it is how it can be integrated 

into the energy system. The increasing worldwide demand for energy has prompted the 

rapid development of sophisticated energy generation and distribution networks based 

on integrated energy solutions and data-driven systems. 

 

Energy integration is a concept that applies to any system that allows for real-time 

supply and demand optimization, and that may provide or consume energy from 

another industry (Business Finland, 2021). Energy integration is significant when it 

comes to distributed energy resources like wind, solar, and battery storage system. 

Energy integration enables the electrification of new industries while also providing 

much-needed flexibility. However, there are still a few issues to overcome, such as their 

strong dependency on weather and the complexity of their integrated operation. There-

fore, a new approach to energy service has emerged data-driven AI technologies that 

offer enormous promise for system improvement and maximizes energy efficiency along 

with minimizing carbon emissions. 

 

Nowadays energy world is moving toward digitalization as there are many possibilities 

for data interfacing and interaction. Digitalization enables flexibility in all parts of the 

energy system since it lowers barriers across energy sectors and enhances 
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interconnectivity, making it a critical clean energy revolutionizer. Digitalization and data-

driven system allow for more effective use of available energy resources and better 

identification of system inefficiencies. (Business Finland, 2021.) They provide successful 

integration through the real-time process and energy measurement and advanced data 

analytics technologies, such as Artificial Intelligence (AI), Machine Learning (ML), and 

Internet of Thing (IoT) (Ahmad et.al, 2021). Data-driven AI techniques have much poten-

tial in electrical and industrial engineering for system optimization. 

 

The energy industry is implementing energy efficiency solutions, with a particular focus 

on artificial intelligence and analytics approaches.  The most essential initiatives for low-

ering environmental footprints, improving efficiency, energy management, and trans-

parency is the integration of AI approaches to renewable energy systems (solar, wind, 

and battery storage system), and power plants (Ahmad et al., 2022). The emphasis is on 

data-driven AI approaches that integrate basic statistical ideas, exhibit algorithm ap-

plicability, compare improvement over traditional methods as well as provide commer-

cial value (Ning, 2021). 

 

The conventional power grid infrastructures are typically obsolete and unable to adapt 

to ever-changing and expanding energy demand due to their unidirectional nature. The 

characteristics of distributed energy resources (wind, solar, and batteries) are evolving 

and offering significant challenges in meeting the power grid's varying demands. As a 

result, new AI advancements such as machine learning, deep learning, the Internet of 

Things, big data analytics,  are transforming the energy industry. (Ahmad et al., 2022.) 

Using multiple artificial intelligence technologies, an integrated energy system is created 

that functions as a bi-directional power network that changes traditional grids into 

intuitive, auto-mated, and responsive power networks (Azad et al., 2019).  

 

The application of AI technology in integrated energy systems has not been researched 

as thoroughly as it might be. However, new research on their integration is released 

regularly. With this research, the interrelation between AI-driven techniques and 
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integrated energy systems may become more specific and broader. This thesis looks at 

how AI algorithms may be used to the growing amount of data from integrated energy 

resources to improve and boost energy efficiency. It also delves into the unique tech-

nology, emphasizing its differences from typical traditional approaches. 

 

 

1.2 Research gap, question, and objectives 

The research work goes through a series of process and follow demanding criteria for 

reviewing published papers and uncovering current research trends to determine the 

research gap. The study used a well-defined, rigorous, and trustworthy technique to 

produce objective and reproducible data, eliminating the risk of bias. Most of the journal 

articles will be found by searching Google Scholar, the Tritonia-Finna database at the 

University of Vaasa Library, IEEE, Springer, Science Direct, and Scopus. The thesis will 

use just the most recent publications as sources of information. The following are the 

study criteria: I) paper published entirely in English during timeframe between 2017 to 

2022; ii) articles devoted only to examining or investigating application of AI driven ap-

proaches in Integrated energy system. The criteria and techniques used to select the 

literature for inclusion in the research are depicts in Figure 1. 
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Figure 1. Step for the research gap analysis. 

 

The first database search engine turned up 1734 articles, authored in English and pub-

lished between 2017 and 2022. In addition, 655 were found in Scopus, 599 in ScienceDi-

rect, 425 in Web of Science, 34 in Springer Link, and 21 in IEEE Explore. By keeping search 

criteria narrower, the articles were sorted by the order they were published and their 

relevancy. 119 journals that appeared in all five databases were eliminated because 

their titles and abstracts were irrelevant. The remaining articles were studied in further 

depth, with 658 being eliminated as not fitting the required requirements. In the end, 

957 publications were found related to the current research. 

 

Table 1. Research gaps in our subject 

Title Keywords Timeline 

(2017-

2022) 

Database Hits Journal title & 

author 

AI-driven 

approaches 

for optimiz-

ing the en-

ergy effi-

ciency of in-

tegrated en-

ergy system 

• Artificial Intel-

ligences 

• Electrical Inte-

grated Energy 

system  

• Virtual Power 

Plant 

 

2021 Scopus 6 Smart contract 

for distributed 

energy trading 

in virtual 

power plants 

based on 

blockchain (Lu 

et al., 2021). 

2020 SpringLink 154 Computational 

Intelligence 

based 

optimization of 

hierarchical 

virtual power 
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plants (Rädle et 

al., 2020) 

2019 IEE 12 An Integrated 

Approach for 

Value-Oriented 

Energy 

Forecasting 

and Data-

Driven 

Decision-

Making 

Application to 

Renewable 

Energy Trading 

(Carriere et.al, 

2019). 

2020 WoS 23 Distributed en-

ergy resources 

and the appli-

cation of ai, iot, 

and blockchain 

in smart grids 

(Kumar et.al, 

2020) 

2019 ScienceDirect 40 Deep rein-

forcement 

learning–based 

approach for 

optimizing en-

ergy 
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conversion in 

integrated 

electrical and 

heating system 

with renewa-

ble energy 

(Zhang et.al, 

2019))  

2022 Scopus 1 Integrating ar-

tificial intelli-

gence and ana-

lytics in smart 

grids (Khosro-

jerdi et.al, 

2022) 

2021 ScienceDirect 5 A data-driven 

approach to 

anomaly detec-

tion and vul-

nerability dy-

namic analysis 

for large-scale 

integrated en-

ergy systems 

(Zhang et.al, 

2021). 

 

 

AI-driven technology and integrated energy systems are two independent areas. 

However, there has been progressively studied on their subsector. According to (Zhang 
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et al., 2021), fluctuation of the energy generated by the industrial subsystem has an 

impact on the functioning of an Integrated Energy System (IES). Therefore, to detect and 

assess possible threats and vulnerabilities in response to changes in its operational 

condition and each subsystem, further understanding of the system operating state 

needs to be identified for more added value, considering the high volatility of complex 

systems operations. 

 

Khosrojerdi et al. (2022) stated in their research that AI technology and data analytics 

initiatives introduce a new approach to designing intelligent grid networks in the 

integrated energy system. This type of grid requires the identification of attributes that 

identify a distinct identity. However, future research is yet to explain this fast-developing 

power grid's technical characteristics and definitions. (Rädle et al., 2020) provide an 

abstract control approach for a virtual power plant that uses computational intelligence 

to develop control configurations for various power plant types in varied compositions 

that are neutrally optimum. However, to maximize the methodology's optimization 

potential, a second abstract interface will be added in the future, allowing for the neutral 

assessment of various energy storage systems (e.g., battery storage, hydrogen storage). 

 

Exploring distributed energy resources utilizing AI, IoT, and blockchain in smart grid, the 

researcher recognizes no comparative analysis of all the protocols specified in a scenario 

spanning a more prominent architectural paradigm that encompasses IoT systems, the 

cloud transition zone, and cloud computing has been made. Therefore, interoperability 

and related interaction models may become an essential new study subject. (Kumar 

et.al, 2020.) 

 

In a technical sense, this thesis' major goal is to investigate the use of technologies that 

apply AI algorithms to the expanding quantity of data from integrated energy resources 

to optimize and increase energy efficiency. Discuss on what are the existing technical 

challenges, benefits that focuses on four key research areas of AI application: (a) Energy 

and load prediction, (b) Fault prediction, (c) AI based technologies IoT used for smart 
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monitoring grid system optimization such as energy storage, demand response and grid 

flexibility, (d) Business value creation. The research will also evaluate and synthesize 

data to define methods/concepts for adding communication capabilities, monitoring, 

analysis, and control to the electrical delivery system to increase system throughput 

while lowering energy usage. Base on the formation points research question is set as: 

 

• Rc1: To what extent AI algorithms contribute to attaining greater efficiency of 

integrated grid system? 

 

 

1.3 Defination and Limitation 

Artificial intelligence does not yet have an accurate description since the concept of 

what components form human intelligence is unclear (Simmons & Chappell, 1988). Dif-

ferent researchers have varied ideologies concerning its definition, and it has yet to be 

thoroughly investigated. AI is a vast branch of research that includes computer science 

and psychology, philosophy, linguistics, and other disciplines. Artificial intelligence aims 

to get computers to do activities that would typically need human intelligence. There 

are several perspectives on AI, as well as numerous definitions. However, some crucial 

qualities are highlighted in the definitions below. (Duin & Bakhshi, 2017.) 

 

• According to John McCarthy (1956), the pioneer of artificial intelligence, “AI is 

the science and engineering of making intelligent machines, especially intelligent 

computer programs” 

• “AI is the replication of human analytical and/or decision-making capabilities” 

(Finlay, 2018). 

• “Artificial intelligence denotes behavior of a machine which, if a human behaves 

in the same way, is considered intelligent” (Simmons & Chappell, 1988). 

 

As a limitation to AI this thesis covers only study related to machine learning and 

deep learning algorithms such as support vector machine, artificial neural network, 
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regression model. It also includes IoT technology as a subchapter describing its ap-

plication and role in energy integration. 

 

An electrical integrated energy system is a bidirectional energy flow system that 

shares interconnectivity among various electricity-producing resources such as hy-

dropower plants, solar, wind, and electric vehicles (Zhang et.al, 2019). As a limitation 

to electrical integrated system this thesis only includes essence of the electricity gen-

erating technology such as conventional, hydro, distributed energy resources, smart 

grid network, and energy storage technology. 

 

Virtual Power Plant (VPP) is a new approach technology that brings together all the 

energy networks that have controlled distributed energy sources to collaborate, 

bringing together their disparate capabilities to meet specific energy integration de-

mands (Feng & Liao, 2020). This study's limitations include uses of advanced control 

system, integration concepts, and communication technologies to mix many differ-

ent types of DERs, such as distributed power sources, energy storage systems, and 

regulated loads in VPP components. 

 

 

1.4 Scope of study 

Artificial intelligence (AI) has proliferated over the decade, becoming a critical element 

for optimizing energy industries. This study aims to assess the use of data-driven AI tech-

niques in electrical integrated energy systems, with a focus on energy integration, oper-

ation, and planning of multiple energy supplies and demand, to optimize energy effi-

ciency, reliability, security, and flexibility and ultimately to facilitate the transition to a 

decarbonized energy system. The study is exploratory and based on qualitative data and 

a literature review. The research approaches used in this study will be a literature review, 

an empirical survey, or a case study focusing on specific electrical power sectors and 

their technical characteristics rather than functioning in a socio-political vacuum. The 
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creation of analyses and syntheses will be guided by critical thinking, simplicity, and ar-

ticulation.  

 

The integrated energy system shares multiple domains of energy integration system such 

as Heating, Ventilation, and Air Conditioning (HVAC), Combined Heat and Power (CHP), 

Nuclear energy, Building materials, and Insulation systems. However, this research is 

more confined to electrical integrated systems and power generation resources. Manu-

facturers or load operators can access the user facility through artificial intelligence and 

energy-integrated systems, allowing them to investigate and optimize the performance 

of electrically powered systems while conforming to IEC and IED certification criteria. 

 

 

1.5 Report structure 

This thesis is divided into five chapters, each with its own set of characteristics. It 

contains the following list of tasks completed in the thesis. The report's structure 

provides a summary of each chapter for easy access. Each chapter contains its own topic 

description, introductions, model characteristics, tasks discussion , analysis, and 

comments, all with appropriate references. 

• Chapter 1: Introduction 

This chapter primarily covers the research's background, research gap, question, 

aim, definition, limitation, and importance of study. It also includes a generic 

development methodology for examining AI-driven techniques in integrated 

energy systems. 

• Chapter 2: Literature review 

This section contains earlier studies on AI approaches for energy efficiency 

optimization in the integrated energy system. It also highlights the fundamental 

requirement for energy integration and helps develop knowledge of artificial 
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intelligence concepts and integrated grid systems to assess the environmental 

impact. 

• Chapter 3: Methodology 

This chapter covered the study's methodology. It contains details on the review 

process and approach used to design a better-integrated energy system. The 

technological challenges of an integrated system will also be assessed by an 

empirical survey based on a preliminary article review, focusing on the four key 

research areas of AI application. 

• Chapter 4: Result and discussion 

This section is more constructive and goes through the answers to the research 

questions and the outcomes of the study will be discussed in this chapter. 

• Chapter: Conclusion and future recommendation 

The research conclusion is presented in the last portion of this chapter. The re-

search findings will be acknowledged in the written synthesis, along with a re-

view of the study for future development. 
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2 Literature review 

This part will discuss the literature relevant to the study topic and fits within the 

parameters established in the definition and limitation section. In addition, it explains 

the various subjects' concepts, features, and uses. 

 

 

2.1 Description and types of electrical integrated energy system 

An electrical integrated energy system is a regional electrical supply network that is be-

coming an inevitable trend for traditional energy systems since it is driven by a clean, 

cost-effective, efficient, and ecologically friendly energy source at the current time 

(Shuangrui et al., 2018). In electrically integrated energy systems, multi-energy comple-

mentarity, synergistic optimization, and energy cascade consumption have considerably 

increased system energy efficiency and reduced carbon footprint. Concurrently, by bal-

ancing regional energy demand inequalities, the multi-source integrated energy connec-

tion minimizes peak loads, fills troughs, and increases energy supply dependability. 

However, the complexity of the energy system, the connectivity of various energy 

sources, and the meeting of installed capacity have a direct impact on the system's op-

eration and stability. (Bo et.al, 2018.) Therefore, modifying system operations and su-

pervision through AI-driven technology have significant implications for allocating mul-

tiple energy resources optimization and helps in better-operating ways in the total en-

ergy consumption. 

 

Multiple energy supplies are connected by a standard electrical network and trans-

formed to meet terminal demands by various coupling components. The correlation and 

complementarity among diverse energy flows carry out energy storage and transfor-

mation on different temporal and geographical scales with an acceptable operation ap-

proach. (Li et.al, 2021.) Renewable energy resources such as hydropower, wind, solar, 

and battery storage systems (electric vehicles) are crucial types of electrical integrated 

energy systems. It is further investigated as Distributed Energy Resources (DERs), and 
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the smart grid energy control system shown in Figure 2 is used for driving the control 

and monitoring process. 

 

 

Figure 2. Electrical integrated energy system. 

 

The conventional centralized power generation system consists of a single-way power 

flow system that focuses on stable, reliable, and affordable power. However, with grow-

ing technology advancement, market demand, and environmental policy and regulation, 

the emerging energy trend shift towards renewable energy resources. Renewable power 

plant capacity is increasing at a higher rate than total investment capacity in all fossil 

fuels combined (Erdinc, 2017). Simultaneously, as seen in Figure 3, renewable energy 
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resources system is gaining considerable power sources. The tendency is intensified as 

the need for renewable energy sources develops.  

 

Figure 3. Average annual growth rates of world renewables (1990–2019) (IEA, 2021). 

 

Distributed energy resource systems are small-scale power generation or storage tech-

nologies; it means are generated from rooftop solar, moving electric vehicles, small wind 

farms, micro-hydro, etc., which are well sustainable and efficient in nature. Its goal is to 

provide an alternative and augmentation to the traditional electricity flow system. Dis-

tributed energy resources generate electricity with variable loads linked to a local distri-

bution system and a host facility inside the local distribution system (Ning, 2021). 

 

 DERs are a well-diversified energy system that is no longer only reliant on fossil fuels or 

natural gas for user use. In this situation, the consumer load is no longer merely a passive 

spectator but also an energy producer. When it comes to bidirectional energy flow, en-

ergy balancing is always a significant issue. While controlling a centralized power plant, 

it is easily accessible in a traditional system; on the other hand, controlling DERs is more 

complicated. Because DERs are primarily dependent on weather conditions and have 

grid uncertainty in energy balancing. Therefore, concepts of smart grid network system 

designs are developed to control each energy asset, accept feedback from the grid op-

erator, and control them all together. 
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2.2 Virtual power plant 

Renewable energy resources are currently in high demand, and they are being integrated 

into the primary power grid more and more. According to an (IEA, 2021) report, renew-

able energy sources will meet half of the world's energy needs by 2050. However, a few 

issues, such as unpredictable power generating characteristics, inflexibility, and unpre-

dictability in the power system, need to be addressed in time (Tang & Yang, 2019). The 

critical problem with renewable energy sources is their heavy reliance on weather and 

the complexity of their integrated operations. As the demand for generated energy 

grows, the energy supply will become more unstable. Therefore, the new energy service 

concept VPP in Figure 4 is a solution for maintaining the power supply's stability by ac-

curately predicting electricity demand and power generation. VPP refers to managing 

disparate energy sources, such as distributed power sources and storage batteries, con-

trolled remotely by AI-based technology IoT and operated as a single power plant.  

 

 
Figure 4. Schematic diagram of virtual power plant (Toshiba, 2020). 
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VPP is a portfolio of distributed energy resources (DERs) that includes decentralized gen-

erators, power storage providers, and sliding-load customers (Zielonka & Becker, 2019). 

VPP functions as a cloud-based control center that aggregates several dispersed power 

plants via various distribution routes and demand centers, optimizing and controlling 

them remotely (Nwauka et al., 2018). VPP model comes with multiple benefits, such as 

allowing energy production at lower cost, providing load consumers with enhanced flex-

ibility, reduced Co2 emission, and a smart energy management system. However, DERs' 

integration from numerous locations while considering essential factors such as de-

mand-side response, networking, technical model proliferation, and current technology 

dynamics necessitates a greater degree of digitization. VPP employs automated intelli-

gent distributed technologies and control interfaces, data information methodologies, 

protocols, and cloud platforms to meet these requirements. (Nwauka et al., 2018.) 

 

The integration of AI algorithms contributes significantly to all parts of the VPP mode 

(forecasting, scheduling, grid flexibility, and optimization) to attain the system's control 

capabilities (Toshiba, 2020). In addition, the capacity of the VPP controller to self-learn 

is aided by the availability of massive amounts of IoT data and artificial intelligence al-

gorithms. Figure 5 shows the VPP system operation architecture configuration model 

with artificial intelligence algorithms and IoT-enabled modules. According to the design, 

each module makes intelligent decisions based on IoT data, including improved sched-

uling, forecasting, and reliability management. (Ning, 2021.)  

 

A digitalized VPP control center retrieves the data from all interconnected system ele-

ments. All the information is visualized in the control dashboard: actual data, metered 

data, power forecast, or the status of the generating unit. Based on the derived data, 

energy traders, aggregators, or grid operators make better decisions and deliver signals, 

supplying peak load electricity or load-aware power production in short intervals. VPP 

dispatches and optimizes generating, demand-side, and storage resources in a single, 

secure web-connected system remotely and automatically using AI-driven software 

(Nwauka et al., 2018). In addition, a Decentralized Energy Management System (DEMS) 
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with bidirectional data transmission capabilities is connected to VPP in Figure 5. The 

DEMS enables DERs to operate under multiple operating regimes to fulfill specified reg-

ulatory objectives through various applications, including modeling, forecasting, sched-

uling, and real-time optimization (Nwauka et al., 2018).  

 

 

Figure 5. VPP operation system architecture. 

 

2.3 The role of AI for optimizing integrated energy system 

Artificial Intelligence (AI) has become one of the most disruptive sciences and technolo-

gies, with significant computational, perceptual, and cognitive intellectual processing 

skills (Zhang et al., 2021). As like previously stated in the introduction section, AI is de-

fined as “the replication of human analytical and/or decision-making capabilities” (Fin-

lay, 2018). According to another definition by (Jakhar & Kaur, 2019), to a field of com-

puter science dedicated to the creation of systems performing tasks that usually require 

human intelligence”. However, according to (Paschen et al., 2020), the fundamental dis-

tinction between these two definitions is that AI incorporates a computational agent in 
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the process rather than as humanlike intelligence. Human intelligence is a mental attrib-

ute that includes learning from experience, adapting to new conditions, comprehending, 

and managing abstract concepts, and influencing one's surroundings using knowledge 

(Sternberg, 2020). In contrast, computational agents refer to intelligent mediums that 

sense information from their surroundings and solve issues in practice rather than 

merely in theory and take preventive activities that increase work accuracy. 

 

AI is gaining traction and finding applications in a variety of fields. Three primary 

characteristics features are learning (the ability to continuously and automatically 

increase knowledge and algorithms based on acquired data, also known as machine 

learning), recognizing (the ability to recognize circumstances and processes based on 

resemblance to past times), and acting (take autonomous actions). (Serban & Lytras, 

2020.) According to the (Netto et al., 2019) AI technology is characterized as application 

integrates intelligent sensing and physical state, data-driven and simulation models, and 

auxiliary decision-making and operation control in electrical integrated energy systems. 

Which successfully enhances the capacity to regulate complex systems, improve 

security, and improve the business service model, while also altering the conventional 

energy usage paradigm and supporting renewable energy sources. 

 

Electrically integrated energy systems have data interfaces and create large amounts of 

high-dimensional, multi-variant data from several energy-producing resources, 

complicating the electrical power system (Jiao, 2020). As a result, AI is required to assist 

in the decision-making process. Artificial intelligence is having a significant impact on 

the global energy infrastructure. However, as renewable energy has risen in importance 

in integrated energy systems, variability in the wind or solar radiation has been a source 

of concern for grid operators or aggregators (Das et al., 2018). Therefore, precise 

weather forecasting (wind and sun) mediator is necessary to figure out how much elec-

tricity requires delivering to the power grid. In the same context, AI helps to gather and 

analyzes vast amounts of data from all the network's intelligent components and em-

ploys autonomous algorithms coupled with weather forecasting to fully exploit the 
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potential of renewable energy resources and predict the energy demand and supply 

provided by interconnected energy systems. Then it offers speedy optimizing decision-

making algorithms for the most efficient resource distribution in and out of the system. 

(Serban & Lytras, 2020.) 

 

 

Figure 6. AI application in integrated energy system (Serban & Lytras, 2020). 

 

AI can help the integrated energy system improve monitoring, operation, maintenance, 

energy storage, and timely system operations and control. The essential applications of 

AI (Das et al., 2018) depicted in the Figure 6 are related to integrating renewable energy 

resources into electrically interconnected systems. Other critical uses of AI in the renew-

able energy field, according to (Serban & Lytras, 2020) are “smart supply-demand match-

ing, intelligent storage, centralized control systems, and smart microgrids”. 
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Figure 7. Layers of artificial intelligence approaches. 

 

Artificial intelligence covers multi-layer approaches. They are basically classified accord-

ing to the techniques they employ. On broader spectrum, if AI is taken as main umbrella, 

then machine Learning is a branch of artificial intelligence that focuses on extracting pat-

terns from large data sets (Mattab, 2019). Support vector machines, regression models, 

and artificial neural networks are methods used to achieve machine learning. Artificial 

Neural Networks (ANNs) are statistical learning models inspired by natural neural net-

works. Deep learning is a subset of ML techniques that employ sophisticated neural net-

works. The next subchapters will go deeper into this topic. 

 

 

2.3.1 Machine learning and deep learning for integrated energy system optimization 

Machine learning is a data analytics technique that teaches computers to learn from 

practice data and experience with little or no human involvement, as people and animals 

do naturally. Its algorithms employ computational approaches to swiftly "learn" infor-

mation from data without the aid of a preconceived equation. (Abualigah et al., 2022.) 

The learning methodology initiated by data observation, or a training dataset; after a 

trend has been established, the learning algorithm forecasts future events based on data 
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collected in previous instances. The algorithm performs better as more training data is 

fed into it. The machine learning is divided into two learning algorithms supervised and 

unsupervised learning shown in Figure 8.  

 

 

Figure 8. Machine learning algorithms. 

 

The most prevalent machine learning algorithm is supervised learning, which is designed 

to operate with already taught datasets. It necessitates extensive data pre-processing 

and the assistance of an expert. Learning algorithms organize the training data set into 

a mathematical model based on its labels, then anticipate possible outcomes. On the 

other hand, unsupervised learning is concerned with discovering any underlying struc-

ture, similarity, or pattern in unlabeled data (Abualigah et al., 2022). Unsupervised algo-

rithms for learning do not require any input data or supervision. Instead of outputs, it 

includes a self-learning system that uses raw data to train a network and methods for 

self-organization for each project (Chen, 2021). Clustering is one of the commonly used 

methods of the unsupervised learning.  
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Figure 9. Machine learning algorithms in fault analysis (Yang et al., 2021). 

 

 

Machine learning presents a unique way for complete energy operation, management, 

and control system with the emergence of artificial intelligence technologies. Machine 

learning has sparked research into the electrical sector in fault analysis. However, com-

pared to defect detection techniques based on various machine learning (ML) algo-

rithms, supervised learning has multi-layer nonlinear features that can solve any com-

plicated function by deepening network layers. (Chen, 2021.) In this context, a complete 

energy operation management and control platform based on supervised machine 

learning is constructed around the energy service system shown in Figure 9, which is 

integrated with end-user data to enable real-time monitoring and supervision to im-

prove the overall level of energy service.  

 

“The fault diagnosis framework consists of four major processes: data collection, feature 

extraction, model learning, and diagnosis. In terms of data collection, the power system's 

monitoring sensors are continually collected various structured or unstructured data in 

the form of images, text, video, and other media. Then, different machine learning 
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algorithms extract the information characteristics based on the acquired data and appli-

cation domains. Time-domain, frequency-domain, and time–frequency-domain analysis 

of data from multi-source monitoring devices are some of the most often utilized analytic 

features. The machine learning-based diagnosis models build a link between the selected 

sensitive characteristics and the outputs that reflect the operational status of devices, 

which may be regarded as the "learning" process, depending on the sensitive features 

gathered. The diagnosis models are trained using labeled data stated in supervised learn-

ing methods. Finally, based on the predicted outcomes of the fault diagnosis, the associ-

ated protective scheme will disconnect defective portions to safeguard the remainder of 

the electrical network.” (Yang et al., 2021.) 

 

 

Figure 10. Machine learning framework in electrical power system (Farhoumandi et al., 

2021). 

 

 

Machine learning application in electrical power systems illustrated in Figure 10 has four 

central processes, data collection, feature extraction, classification, and results outputs. 

Machine learning's primary goal in power systems is to achieve model generalization 
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based on large amounts of collected data and to provide fast and accurate data-driven 

solutions for a wide range of power system applications, including forecasting and con-

trol, scheduling and electricity markets, customer participation, and distributed demand 

responses, fault detection and protection, and cybersecurity. (Farhoumandi et al., 

2021.) 

Deep learning is a machine learning discipline that works with artificial neural network 

methods inspired by the structure and function of the brain (S, 2021). The characteristics 

features of deep learning algorithms in integrated smart grid network is shown in Figure 

11. The deep learning algorithm includes multiple hidden layers that automatically ex-

tract rules from raw data and build deep network models by integrating various nonlin-

ear modules. These modules start with the initial input and improve the qualities of an 

artificial neural network into higher and more abstract traits. (Chen, 2021.)  

 

 

Figure 11. Role of deep learning in smart grid network (Pham et al., 2021). 
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According to Lu et al., 2017, various learning approaches, such as deep autoencoder, 

deep belief network convolutional neural network, deep residual network, and recur-

rent neural network are used to explain the application of deep learning in power equip-

ment monitoring and health management systems. (Yang et al., 2020) proposed a solu-

tion based on deep learning to solve uncertainties in wind power generation, involving 

the preparation of a statistics controller that maps the input findings based on fore-

casted wind availability and energy pricing, control actions, including a schedule of the 

functional energy storage unit, and the reserve buying schedule. According to computa-

tional results, the proposed technique successfully copes with hazards while also bring-

ing in considerable revenue.  

 

Machine learning and deep learning are two popular approaches for forecasting models 

in integrated energy systems, i.e., Solar and Wind energy domains (Luo et al., 2021). 

(Abualigah et al., 2022) reported that machine learning and deep learning are the fun-

damental, necessary, and powerful learning-based methodologies of Artificial Intelli-

gence. Therefore, future researchers can utilize the approaches to develop better solu-

tions for wind and solar energy vulnerability. To summarize, the development of energy 

systems may be improved and optimized by combining machine and deep learning ap-

proaches with other optimization methods. Due to precise forecasting, machine and 

deep learning approaches have higher achievements and results when dealing with in-

tegrated energy systems for predicting difficulties than a single learning method (Abu-

aligah et al., 2022). As a result, advanced machine, deep learning, and other optimization 

algorithms approaches are highly suggested for dealing with energy-generating issues. 

 

 

2.3.2 Support vector machine for integrated energy system optimization 

Power load forecasting accuracy is essential for ensuring safe dispatch and stable power 

system functioning. Therefore, the Support Vector Machine (SVM) is commonly utilized 
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in power load forecasting as an effective forecasting tool (Dai & Zhao, 2020). SVMs have 

been used in various applications, including feature identification, data categorization, 

classification, regression analysis, and prediction (Liu et al., 2018). For example, (Qin et 

al., 2021) used SVM technology to estimate energy consumption on electric bus routes, 

including bus scheduling and improving charging facility layouts. The suggested study 

also employed a grey wolf optimization approach based on a support vector machine 

regression model to find the best parameters of the proposed model. (Yang et al., 2018) 

introduced an SVM-based typhoon rainfall forecast model, with results indicating that 

rain prediction appears to be reliable, especially for long lead periods. As SVM handles 

tiny samples and nonlinear data, thus it has been chosen as the primary model for wind 

power prediction. 

 

 In the working process, SVM reduces the dimensionality of enormous data dividing it 

into two categories, green dotted and blue dotted surface by hyperplane as indicated in 

the Figure 12. SVM chooses the best hyperplane that maximizes the margin and opti-

mize the model. The point that lies exactly on the margin is support vectors. SVM re-

quires training data to find the hyperplane in the best possible plane. (Javatpoint, 2021.) 

 

 

Figure 12. SVM data set classifier (Javatpoint, 2021). 
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The generated data is gathered from several energy industries, then standardized and 

separated into three groups: train, assess, and verify. Next, feature selection and extrac-

tion go through dimensionality reduction to break data sets into smaller subsets and 

optimize the model with the most significant characteristics. The involved strategies are 

decision trees and recursive feature elimination (Nayab et al., 2019). The data is then 

sent into an SVM classifier for testing, training the network, and verifying it by regularly 

examining fresh data sets. The relearning and tuning of the network continue until the 

predicting error is kept to a minimum. Finally, the updated final model is used to predict 

the energy demand and consumption of an integrated smart grid network, based on the 

information optimizing decision is made by grid operators. 

 

 

Figure 13. SVM process mechanism for load forecasting in integrated grid system. 

 

Power demand predictions may be determined using statistical and artificial intelligence 

technologies. Statistical methods are straightforward, but they demand high time-series 

stability and are no longer precise enough to forecast smart grids. Artificial intelligence 

technologies, such as the artificial neural network (ANN) and the support vector ma-

chine (SVM), on the other hand, do not necessitate excellent stability but produce accu-

rate and stable prediction models using training data. (Dai & Zhao, 2020.) To deal with 

the difficulty of limited sample learning, they depend on a set of solid theoretical foun-

dation and regression features (Ma, 2018). As a result of the benefit of establishing a 

worldwide optimal solution, the SVM proved to be very implacable when it came to 



36 

 

forecasting building energy consumption (Ma, 2018) and yearly power usage on dairy 

farms (Shine, 2019). 

 

 

2.3.3 Role of Artificial neural network for integrated energy system optimization 

Energy forecasting is a technique for estimating energy production from various sources 

(Rahman et al., 2021). Traditional energy forecasting approaches depend mainly on 

physical model as input such as time-series, Auto regression, integrated moving average, 

and exponential smoothing, which are all linear form and have been shown to provide 

less accurate forecasts (Ning, 2021). As a result, the current energy forecasting tech-

nique is deviating further toward new modern data-driven algorithms that increase the 

predictability of all renewable energy sources through improved control and optimiza-

tion systems (Tina, 2019). 

 

Artificial neural networks (ANNs) are a widely used data-driven optimization technique 

(Abdolrasol et al., 2021) that researchers have progressively tried to improve the inte-

grated energy system by accurately predicting renewable energy generation (Debnath 

& Mourshed, 2018).  Artificial neural networks have various advantages, such as learning 

fundamental information patterns in the multi-dimensional information domain. Mod-

eling, performance estimate, forecasting electricity demand, diagnostic of PV, hydro, 

and wind generator; balancing power systems; the optimal sizing of renewable energy 

systems; energy management systems for microgrids, and many more. (Tina, 2019.) 

 

Artificial neural networks are data-modeling algorithms, and design is based on the hu-

man brain's architecture and seeks to emulate the way humans learn via the organic 

nervous system. ANNs are framed with several interconnected processing units called 

neurons. These neuron structures work together harmoniously to solve problems, 
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identify trends, and detect patterns. (Abdolrasol et al., 2021.) The artificial neural net-

work comprises three layers shown in Figure 14: input, hidden, and output layers. Input 

layers receive the input from the environment or the optimized output; the hidden layer 

performs the computational function required by the network. Finally, output layers are 

created because of optimization that predicts the final output (Chandrasekaran, 2021). 

 

 

Figure 14. The simple ANN structure (Sanchez-Huertas et al., 2018). 

 

Artificial neural networks are used in a wide range of renewable energy resource appli-

cations. For example, (Tayab et al., 2021) suggested a research project based on ANNs 

that demonstrated the superior performance and long-term durability of artificial neural 

network algorithms for load demand forecasting and scheduling. In addition, the exper-

imental findings show that the suggested forecasting method and grey wolf optimization 

(GWO) based scheduling technique provide intelligent guidance for a range of forecast-

ing tasks, including load prediction, storage availability, and supply-demand forecasting. 

According to (Heo & Lee, 2018), ANN is capable of detecting, diagnosing, and eliminating 

defects, as well as guaranteeing that process activities meet performance standards. In 

publications by (Singh & Badge, 2017), an Artificial Neural Network approach with an 

adequate number of Neurons is utilized to detect internal and exterior fault using 
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Artificial Neural Network logic. The simulation findings reveal that the proposed method 

can discriminate between internal and external fault and provides a safe, rapid, effec-

tive, and efficient protection technique. 

 

 

Figure 15. Power balancing model using ANN algorithms (Sogabe et al., 2018). 

 

The basic working principles of artificial neural algorithms to achieve load prediction for 

energy balancing is shown in Figure 15. At initial state, data from the various energy 

source such as Battery, PV, Demand, Grid is provided as input to each neuron in the first 

layer. A neuron in the first layer communicates via a channel with a neuron in the second 

layer. Each channel is given a numerical value called weight, and the input is multiplied 

by the weight allocated to it before being transferred to the hidden layer. The hidden 

layer then uses the activation function to do the mathematical computation recursively. 

The activation function's outcome determines whether a specific neuron is activated. 

Finally, the signal from the active neuron is sent to the output player. The neuron with 

the highest probability value is predicted to be the balancing system's likely output. 
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2.3.4 Role of Internet of thing for improving integrated energy system optimization 

The global energy trend is steadily expanding. Renewable and sustainable energy 

alternatives are introduced to meet rising demand and minimize carbon footprints 

(Kazmi et al., 2019). However, the addition of clean energy  technologies to the existing 

conventional grid increases complexity and dynamism (Roberts, 2019). Therefore, to 

deliver on the promise of renewable energy, the power industries started a new initiative 

called the Internet of Things (IoT), which uses the internet as a mediator to hold 

communication and control configuration among the interconnected grid system. Due 

to great advancements in wireless communications and real-time data supervision, the 

Internet of Things has acquired global attention and acceptance as a unique paradigm in 

just a few decades (Mao et al., 2021). 

 

Table 2. IoT applications in the energy industry. 

Application Description Benefits 

Integrated grid system  A platform that combines 

big data analytics and ICT 

technologies to optimize 

variable renewable energy 

resources into the standard 

electrical power network. 

Improving energy efficiency 

and integrating renewable 

energy resources allows 

infrastructure, EVs, and 

other devices to 

communicate more 

efficiently, boosting supply 

security and decreasing 

backup supply capacity and 

costs (Pal et al., 2021). 

Integrated Electric Vehicles 

(EV) 

A promising technology for 

building sustainable future 

energy because of zero 

carbon emissions, low 

Improves peak-time 

charging response; 

evaluates and estimates 

the impact of electric 
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noise, high efficiency, and 

grid operation and 

integration flexibility. 

vehicles load, and finds 

sites for new charging 

stations and distribution 

system reinforcement 

(Urooj et al., 2021). 

Demand response  Central control (e.g., 

through shedding, shifting, 

or leveling; consumers load 

by assessing load and 

appliance functioning). 

 

Automatically managing 

appliances and moving load 

from peak to off-peak hours 

manages energy 

consumption according to 

supply (Kazmi et al., 2019). 

Advanced Metering Infra-

structure (AMI)  

 

Use smart meter sensors 

and devices to collect 

power data and analyze the 

load on a consumer side. 

Facilitate peak demand 

reduction by monitoring 

the power demands over 

short periods and providing 

various ratings and 

effective management 

based on remote metering 

data (Cebe & Akkaya, 

2019). 

Battery Storage system Battery activation at the 

most opportune time is 

aided by intelligent data 

analytics. 

The ideal technique for 

charging and discharging 

the battery across various 

time scales improves 

energy efficiency while also 

assisting the grid at peak 

times and lowering the cost 
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of energy consumption 

(Motlagh et al., 2020). 

 

The Internet of Things (IoT) has a wide range of applications in the integrated energy 

system, including communication, processing, warning, self-healing, disaster recovery, 

and dependability in energy supply, transmission, and distribution, as well as demand 

side (Motlagh et al., 2020). Table 2 summarize IoT applications in the energy industry, 

ranging from integrated grids system to energy end-users. With the use of IoT-based 

technologies, an energy system can be changed from a unidirectional to a bidirectional 

integrated energy system. The Figure 16 depicted all the essential elements of an inte-

grated energy system connected through IoT-based technologies. IoT collects and ana-

lyzes real-time data using sensors and communication technologies, enabling fast com-

putation and effective decision-making (Tamilselvan & Thangaraj, 2020).  

 

 
Figure 16. IoT application in an integrated energy system (Motlagh et al., 2020). 
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Furthermore, its real-time data exchange and control architecture aids in the monitoring 

and efficient regulation of energy consumption patterns of various users and devices 

across a various time scale (Motlagh et al., 2018). The IoT plays a critical role in the tran-

sition of the energy system from a centralized to a distributed, intelligent, and integrated 

one. It is a significant component in deploying locally generated energy resources like 

micro-hydro, wind, and solar energy, transforming numerous small-scale energy end-us-

ers into prosumers by aggregating their supply and optimizing their demand whenever 

beneficial to the grid (Motlagh et al., 2020). 

 

 

2.4 Summary of theoretical framework 

The proposed theoretical advancement in the preceding section is an intelligent frame-

work for optimizing integrated renewable energy sources based on artificial intelligence 

technology. An electrical integrated energy system combines a variety of processes and 

systems into a single intelligent model for continuous development, allowing energy 

companies to meet their objectives. Furthermore, the use of AI-based technologies that 

integrate with a variety of energy resources aids in achieving a steady state of energy 

supply and demand. The goal is to maintain regular power generation distribution in the 

electrical network by precise forecasting, energy balance, and strategic planning. 
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Figure 17. The basic framework of theoretical study.  

 

With research gaps and limitations highlighted, a conceptual framework is designed 

shown in Figure 17 to improve overall performance and encourage beneficial interaction 

between AI-driven technologies and electrically integrated energy systems. The central-

ized power generation and distribution trend's obsolescence and their poor perfor-

mance in adapting to ever-changing and expanding energy demand due to their unidi-

rectional nature prompted to investigate the role of AI data-driven techniques in elec-

trically integrated system optimization. Based on the previous research study, the liter-

ature on essential aspects to increase performance is identified, and several algorithms 

required to execute the integrated renewable energy system are suggested. The dia-

grammatic elaboration of the theoretical framework is depicted in Figure 18.   
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Figure 18. Schematic diagram of theoretical framework (Ahmad et al., 2021). 

 

The literature study covers many subjects relating to artificial intelligence (AI) and data 

analytics application in integrated renewable energy systems. It delves into themes such 

as integrating various energy sources, integrated grids for energy supply and consump-

tion, and integrated renewable energy optimization approaches based on software and 

artificial intelligence algorithms. Artificial intelligence (AI) technology has been utilized 

to discover the best system configuration for changing the traditional energy use para-

digm and supporting renewable energy sources. The most common approaches used to 

optimize integrated energy systems are machine learning and deep learning algorithms 

such as Artificial Neural Network (ANN) and Vector Support Machine (VSM).  

 

Different AI algorithms offer various benefits, such as When it comes to choosing the 

appropriate parameters for a regression model, VSM uses a grey wolf optimization strat-

egy. This scheduling approach can help with various forecasting tasks such as load pre-

diction, storage availability, and supply-demand forecasting. At the same time, Genetic 

Algorithms (GA) and Particle Swarm Optimization (PSO) are two standard ANN algorithm 

optimizing strategies that accomplish the optimization in less time and with more accu-

racy. 

 

Artificial neural network optimization techniques change training parameters to acquire 

the optimal structural network pattern to resolve issues. The neural network output is 
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used to solve energy management issues, including forecasting electricity demand, di-

agnostics of PV, hydro, and wind generators, balancing power systems, the optimal size 

of renewable energy systems, energy management systems for microgrids, or virtual 

power plants. 
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3 Methodology 

This chapter lays out the general research strategy. This thesis employs qualitative re-

search methodologies primarily based on a two-way approach that includes empirical 

research on primary data collected from energy industry expert interviews and a Likert 

scale survey among energy sector representatives from Finland, Norway, and Nepal. On 

the other hand, the theoretical part is secondary data from current energy industry op-

timization models and a review of publications linked to a given research issue which 

intends to identify, evaluate, and interpret all empirical evidence that meets the pre-

specified inclusion criteria to answer a specific research question or hypothesis (Snyder, 

2019). According to (Bogner, Littig, & Menz, 2009), an expert is a technical person with 

expertise in their areas of competence and possesses more than simply systematic, or-

dered information with extensive knowledge of specific experiences arising from their 

actions, responsibilities, and obligations as members of a specific functional standing 

within an organization. The integrated energy optimization using AI environments ap-

pears to be a new beginning in the energy industry; the empirical study will be required, 

as discoveries based on structured experience and knowledge will be helpful in real-time 

operation. 

 
The expert interview and Likert scale survey are the two most common approaches in 

empirical social research. It offers unique perspectives on expert knowledge, structural 

settings, and action system change processes. According to (Rynes & Gephart Jr., 2004), 

interview research aims to learn about the meanings and concepts used by social actors 

in their everyday lives and examine how various people or groups hold different mean-

ings. The interview questions were created to investigate the research phenomenon in 

the form of an open-ended opinion to understand their work environment, culture, and 

description of AI approaches in integrated energy systems. On the other hand, using a 

5-point Likert scale survey (1—Strongly disagree, 2— disagree, 3—Neutral, 4— Agree, 

and 5—Strongly agree) as a quantitative variable presents AI implementation as part of 

their real-life experiences. The performance grading criteria for the variable are meas-

ured using the listed by (Rubaish, 2010) shown below: 
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Performance 

Grading 

Criteria 

Mean Cumulative (%) 

High Quality 3.6 & Above 80% & Above 

Acceptable 2.6-3.6 60%-80% 

Improvement Required Less than 2.6 Below 60% 

 

 

3.1 Data collection 

This study investigated the transformation process of an energy production and distri-

bution system and the evolutionary impact of AI technology on the energy industry. The 

need to move away from traditional power generation and distribution systems neces-

sitated developing a new optimized integrated model to commercialize the new system. 

The AI driven integrated energy system is a relatively new disruptive technology pre-

dicted to revolutionize the energy sector. However, not much practical deployment in 

real life or business has been witnessed as it is a new technology. Therefore, the expert 

interview on energy industries domain has been evaluated, and research is speculative 

and indicative of a possible future revolution in the energy business. 

To broaden the scope of research, a data mining framework is developed that is based 

on a two-way approach that includes primary data from energy industry expert inter-

views and a Likert scale questionnaire survey, whereas secondary data were from cur-

rent energy industry optimization models and a review of publications linked to a given 

research issue. An optimal model is formulated that answers the core research question 

and suggests potential system improvements. Figure 19 shown the complete method-

ology of the present research study. 
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Figure 19. Research methodology process design. 

 
The primary data for the empirical analysis of this study were gathered through energy 

expert interviews and a Likert scale questionnaire survey with environmental specialists 

and energy industry professionals. The empirical study entailed in-depth analysis and 

research on a specific subject to gather as much first-hand knowledge about the inves-

tigated phenomenon as possible which includes working culture, respondent experi-

ence, opinion on AI innovation, and their possible benefits and challenges in the future 

synergy. For the expert interview, data on energy industries in Finland that practice en-

ergy optimization were gathered. Then, they randomly sampled to reduce the search 

field based on inclusion criteria such as industries adopting AI technology for power so-

lutions, automation solutions, and renewable power integration. Based on that infor-

mation, ten energy companies are sort listed shown in Table 3: with their top priority, 

focus domain, expectation, and thoughts. 

 

Table 3. List of reviewed energy company in Finland. 

S. N Energy Company Priority Focuses Expection & 

Thougts 

1 General Electric (GE) digi-

tal 

Uses AI innova-

tion to build, 

Power, Renew-

able energy, 

To supply busi-

nesses and 
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move, power, 

and treat the 

world in the 

next industrial 

era. 

Aviation, and 

Health Indus-

tries 

consumers with 

various afforda-

ble and de-

pendable en-

ergy solutions 

across the elec-

trical value 

chain. 

2 Wartsilla Technologies 

innovative and 

lifecycle solu-

tions for the 

marine and en-

ergy markets 

Focuses on en-

ergy business 

and marine 

business 

The objective is 

to design the 

most efficient 

power system 

for a future 

powered en-

tirely by renew-

able energy 

sources. 

3 VEO Develop auto-

mation, drives 

and power dis-

tribution solu-

tions for the 

energy and 

process indus-

tries  

Automation 

and Power 

electrification 

solution for en-

ergy genera-

tion, distribu-

tion, and utili-

zation  

IoT and digitali-

zation are en-

ergy busi-

nesses, making 

life easier for 

employees and 

clients. 

4 Valmet Automation Distributed 

Control Sys-

tems (DCS), in-

dustrial appli-

cations, 

For the pulp, 

paper, and en-

ergy industries, 

develop and 

deliver 

Services to re-

duce emissions, 

increase opera-

tional safety 

and 
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Quality Control 

Systems (QCS), 

analyzers and 

measure-

ments, Indus-

trial Internet 

solutions and 

automation 

services. 

technology, au-

tomation, and 

services. 

dependability, 

and improve 

energy, water, 

and raw mate-

rial efficiency. 

5 EATON Energy sustain-

ability 

solutions for ef-

ficient and 

long-term en-

ergy manage-

ment 

To improve 

people’s lives 

and the envi-

ronment with 

energy man-

agement tech-

nologies that 

are more relia-

ble, more effi-

cient, safer, and 

more sustaina-

ble. 

6 Elomatic To create solu-

tions that im-

prove people’s 

and the envi-

ronment’s 

well-being. 

Energy, ma-

chinery, equip-

ment manufac-

ture, marine, 

oil&gas, pro-

cess industries   

Recognized in-

ternationally 

and highly val-

ued by our cus-

tomers as in-

dustrial engi-

neering and 

consulting 
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services, soft-

ware develop-

ers. 

7 Hitachi ABB Carbon neutral 

future, smart 

energy, resili-

ence, e-mobil-

ity, and value 

to society 

Utilities, indus-

tries, transpor-

tation, data 

center, and 

smart life 

The global tech-

nology and in-

dustrial leader 

in power grids is 

speeding up its 

journey to car-

bon-neutrality 

as part of its 

Sustainability 

2030 aim 

8 EPV With dedica-

tion and pur-

pose, focus on 

emission-free, 

reliable energy 

generation. 

CHP, Electricity 

generation 

from solar, hy-

dro, wind, nu-

clear and en-

ergy manage-

ment 

The goal is to 

generate car-

bon-free elec-

tricity by 2030. 

9 Danfoss Climate, drive, 

and power so-

lution 

Automation, 

Energy and nat-

ural resources, 

energy integra-

tion, industry, 

building com-

mercial and 

district heating 

Danfoss’ en-

ergy-efficient 

and climate-

friendly prod-

ucts were de-

signed to make 

the transition to 

green energy 

more afforda-

ble. 
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10 Etteplan software and 

embedded en-

gineering solu-

tions, and tech-

nical documen-

tation solu-

tions 

Industrial digi-

talization, en-

ergy, and 

power trans-

mission 

Assisting cus-

tomers with 

their industrial 

transformation 

solution as well 

as developing 

and testing 

novel solutions 

 

The interview respondents were chosen based on their energy background and 

contacted through email to inquire about the possibility of an interview at a convenient 

time. However, out of 10 respondents of those energy companies, only four 

respondents agreed for the interview session and all the interviewees have expressed a 

desire to remain anonymous. An interview guide was developed based on the existing 

literature and additional question were added shown in Appendix 1 if they helped an-

swer overall research question. The interviewees were sent information about the study 

in advance through email to ensure they understood the objectives. The interview took 

between 30 minutes to an hour to complete. MicrosoftTeams Meeting was used for the 

interviews. During the interviews, comments were promptly interpreted to ensure that 

the interviewer had the exact interpretation of the responses. As a result, the researcher 

learned more about the issue in depth throughout the interviews. And for the 5-point 

Likert scale questionnaire survey 20 respondent were selected from Finland, Norway, 

and Nepal basis on their energy profile. The survey questions shown in Appendix 2 were 

send to the respondents via Google Forms and information is collected and further an-

alyzed. 
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For the secondary data, several databases were used to conduct the research, including 

Scopus, Web of Science IEEE, Science Direct, Springer, and the digital library. These 

databases cover a wide range of topics, including engineering, business, management 

techniques, corporate strategies, and many others (Bhatti, 2018). In addition, energy 

industries practicing AI algorithms for energy optimization published videos and reports, 

and their application background and blog have been considered as secondary source 

of data for this study that build profound understanding of the involvement of different 

AI approaches in the energy industry optimization. The used secondary data are from 

sources, such as available research articles and reports, to compile a complete list of 

information on an interconnected grid system, renewable energy sources, disruptive 

technologies, and business models related with an integrated energy system. From 

which an overall optimized integrated model concept is developed that addresses the 

main research question and recommends optimized protocols. 

 

 

3.2 Data analysis 

The research included an in-depth analysis and study within a specific field to gather as 

much reliable information as possible about the studied phenomenon at the energy in-

tegrated system, such as optimized model development, environmental challenges, de-

mand management, customer requirements, and importance. 

 

Data can come from various sources and be analyzed in several ways. However, since 

first-hand data is inherently raw and complex, it is always necessary to transform it into 

a more understandable and concise format. According to (Bernard, 2000), content anal-

ysis, narrative analysis, grounded theory, and interpretive analysis are the commonly 

used data analysis methods in qualitative or quantitative research. The main approaches 

used in this study were content and descriptive analysis. Content analysis was employed 

consistently throughout the expert interview.  On the other hand, interpretive analysis 
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aided in examining secondary data. Most of the secondary data were gathered from 

peer-reviewed journals and online publications. Finally, descriptive analysis was used to 

describe the critical characteristics of the Likert scale survey questionnaire. 

 

The information gathered was evaluated with Microsoft Office and a Microsoft Excel 

spreadsheet. These tools calculate and present the finding as a model diagram, tabular 

data, system flow charts, histograms, decision diagrams, and simulation results. The cri-

teria for analyzing data and producing results pass via four crucial areas of AI application 

research: (a) Energy and load forecasting; (b) fault forecasting; (c) AI-based IoT technol-

ogies for smart grid system optimization, such as energy storage, demand response, and 

grid flexibility; and (d) business value creation. The analysis criteria were examined to 

determine the possibility behind the energy industry's success through implementation 

of AI algorithms in integrated electrical systems. 

 

 The data analysis involves various significant steps; information gathered through inter-

views and a Likert scale survey was first transcribed into text. Themes were then created 

based on the literature reviews, expert opinion, and survey results. Next, the themes 

were narrowed down to make them more distinct and detailed, allowing for a better-

organized presentation of the pertinent data. The essential takeaways from the inter-

view and survey were then condensed and presented clearly and concisely in the results 

section. The findings were then analyzed and reviewed, and eventually, conclusions were 

drawn for the study's central questions. 

 

 

3.3 Validity and reliability of the study  

The terms "validity" and "reliability" are widely used in the qualitative research para-

digm to assure study credibility through rigorous investigation and review. Validity re-

fers to the techniques' integrity, applicability, and accuracy with which the research con-

clusions is meaningful (Noble & Smith, 2015). On the other hand, reliability relates to 

the consistency of analytical processes, which is essential because random or systematic 
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measurement errors frequently influence the data collection during a study (Rosenthal 

& Rosnow, 1991). 

The primary and secondary data gathering methodology emphasize this study's reliabil-

ity. A huge proportion of scientific research are unreliable due to threats causes by the 

researcher bias, reactivity, and respondent bias thus it's crucial to know the difference 

between definitive and faulty evidence (R., J., N., & J, 2017). The search string is critical 

for locating relevant primary research, and as it is incorrectly generated, the review is 

likely to overlook essential information. Therefore, secondary data were selected from 

well-regarded scientific journals and publications to limit this risk. In addition, search 

phrases were derived from related work and validated using a control set of relevant 

publications. The previous subsection covers the data collecting and analysis methodol-

ogies. 

It is possible that the main research questions do not cover all components of an 

integrated energy system. Therefore, the research questions were presented well to 

cover all of the significant components of a search-based integrated energy system 

formulation. Multiple databases were employed to offset the risks associated with 

database selection to prevent any potential limits imposed by a single database. 

Databases are chosen based on their relevance to the field of energy optimization. All of 

the searched databases returned articles that have been published in prominent venues 

in the specialized area.  

 

The respondents for the interview were selected based on their expertise and 

experience in the energy industry. The energy industry in Finland was primarily focused 

on as a research site. Before the interview, the interviewees were given an interview 

guide, which assisted the researcher in brainstorming that broadened their grasp of the 

research issue. The responses from the interviews were carefully examined and used to 

reflect essential terminology employed in the research to get an accurate result. In 

addition, the various energy systems and capacity and their future prediction projections 

were also examined. 
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Furthermore, some questions were irrelevant to all respondents since their priorities 

were predefined. As a result, Likert scale questionnaires were provided to different in-

dividuals from diverse part of world engaging in energy industries to gauge their atti-

tudes about future energy innovation. This adds to the research's credibility. The re-

search objectives are also described in the findings. Proper preparation and tools were 

used in evaluating data, which contributed to the research's validity. 
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4 Result and discussion 

This chapter goes through the responses to the research questions by analyzing all rele-

vant publications from an AI-based integrated energy system optimization standpoint 

and empirical analysis of transcripts from four interviews with energy experts' opinions 

from Finland and 20 respondents to a Likert scale poll on digitalization in energy indus-

tries from Finland, Norway, and Nepal. The coding revealed the research findings in 

seven dimensions shown in Appendix 1. 

 

 

4.1 Results 

The result of empirical research included open-ended answers and Likert scale 

qualitative variables. The answers are not confined to "Yes" or "No" replies; instead, it 

include their opinion and understanding of the research topic. The research guidelines 

included a survey with nine Likert scale questions and seven open-ended interview 

questions based on the following themes: 

 

• General questions about the interviewees' background to understand his/her 

expertise area and status. 

• Questions about their view toward digitalization in energy integration, 

Challenges to the traditional energy system. 

•  The role of AI technology and the machine learning model in energy industries,  

possible challenges and solutions. 

• The final part includes the interviewee's thoughts on the future shape of the 

energy sector due to AI innovation. 

 

Based on above themes Table 4 depicts the replies of the interviewees and their opinion 

on the research topic domain. This data revealed the respondent's understanding of the 

research topic and the role of AI in future energy innovation. 
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Table 4. Outcomes of the respondent interview. 

Interviewee’s Status Experties Outcomes 

Interviewee 1 Electrical Engineer, worked 

in electrical engineering 

services for 3 years 

Electrical system in-

tegration and energy 

services 

• The 

interviewee 

says an 

integrated 

energy system 

is conducting, 

planning, and 

operating 

different 

energy 

systems, i.e., 

power, 

transport, 

building, or 

various 

industrial 

systems across 

different time 

scales and 

vectors. 

• Most 

interviewees 

Interviewee 2 Assistant Product Man-

ager, worked in the field of 

automation, drives and 

power distribution for 3 

and half years  

Energy consulting, 

energy business mar-

keting and sales 

Interviewee 3 Senior Electrical Engineer-

ing Manager, worked in in-

dustrial scale energy stor-

age system for 3 and half 

years 

Power Integration 

system, develop-

ment of electrical ve-

hicles battery 

Interviewee 4 Product Engineer, worked 

in energy management 

and product quality assur-

ance for 17 years 

Product develop-

ment and verifica-

tion, management of 

deliveries, product 

quality issues   
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believe that AI 

is the 

revolutionary 

enabler of the 

energy 

transition that 

provides 

energy 

transition of 

decentralized 

and variable 

renewables, 

ensuring 

interconnected 

networks 

reliably, 

securely, and 

efficiently. 

• Experts ex-

press that AI 

technologies 

and Machine 

learning tech-

niques will turn 

out the energy 

management 

and distribu-

tion system in 

more effective 

way through 
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accurate data 

interpretation 

for renewables 

energy fore-

casting, smart 

grid controlling 

for intelligent 

power adjust-

ment, and 

smart energy 

storage unit for 

sustainable 

and reliable 

power solu-

tion. 

• The nature of 

the interview-

ing companies 

varied; some 

were solely 

power solution 

providers, 

while others 

were both en-

ergy genera-

tors and solu-

tion providers; 

yet they shared 

common 

themes that is 
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development 

of innovative 

energy process 

technology. 

Most compa-

nies use auto-

mation solu-

tion which in-

cludes smart 

meters, IoT de-

vices for con-

necting the 

smart device 

and providing 

constant sur-

veillance and 

Machine learn-

ing algorithms 

are uses for op-

timizing and 

control of en-

ergy consump-

tion and stor-

age. 

• According to 

them chal-

lenges can be 

related to their 

flexibility to-

wards 
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renewable 

source vulnera-

bilities, energy 

efficiency 

needs to be un-

derstood 

broad, sug-

gested solution 

are predictive 

maintenance, 

creation of 

market flex, 

flexible supply 

and usage, bet-

ter utilization 

of data inter-

preter like 

ANN, VSM, and 

Regression, ex-

pansion of re-

newable en-

ergy trading.   

• They believe in 

nearby future 

we can see 

much potential 

of AI technol-

ogy in real life 

science.  They 

express those 
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digital technol-

ogies will make 

energy system 

connected, in-

telligent, effi-

cient, reliable, 

and sustaina-

ble. Mainly, 

they believe 

that it will in-

novate the ap-

plication and 

will help solu-

tion for decar-

bonizing en-

ergy system.  

 

Similarly, 20 people responded to the 5-scale Likert questionnaire survey, with 85 % of 

men and 15% of women. When the data is reviewed further, it is discovered that 75% of 

the respondents were energy industry technical professionals, while 25% came from a 

management background shown in Table 5 and Figure 20. However, according to the 

number of respondents, most of them were unambiguous in their reactions to AI inno-

vation in the energy sector's sustainability. This is because roughly 80% of respondents 

believe AI will play a key role in improving energy system efficiency and dependability, 

while 20% believe that AI technology is yet to be explored more. 

 
 



64 

 

Table 5. Respondent in Likert scale questionnaire survey. 

Status Frequency 

Percentage 

(%) Male Female 

Percentage 

(%) 

Technical expert 15 75 % 17 1 85 % 

Management expert 5 25 % 0 2 15 % 

Total 20 100 % 17 3 100 %  

 

  

Figure 20. Percentage of personnel work status, male & female respondent. 

The poll results are shown in Table 6 and Figure 21, which indicate that not all respond-

ents agree on the rise of AI technology, with a portion of respondents expressing oppo-

sition to the AI revolution in the energy sector. Respondents exhibit a high level of agree-

ment on most questions. However, 5 to 30% of respondents disagreed with some ques-

tions. Overall, it was discovered that 80% of respondents believed AI technologies with 

high quality data has a favorable impact. On the other hand, 20% of respondents have 

data improvement requirements, indicating that AI technology should be further re-

searched. 

 

75%

25%

Percentage (%) of 
Personnel Work Status 

Technical expert Management expert

85%
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Percentage (%) Male & 
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Male Female
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Table 6. Result of Likert scale questionnaire survey. 

Questions Total 

Strongly 

Agree (%) 

Agree 

(%) 

Neutral 

(%) 

Disagree 

(%) 

Strongly 

Disagree 

(%) Total 

Question 1 20 15 % 60 % 25 % 0 % 0 % 100 % 

Question 2 20 5 % 60 % 15 % 20 % 0 % 100 % 

Question 3 20 55 % 10 % 30 % 5 % 0 % 100 % 

Question 4 20 0 % 30 % 50 % 20 % 0 % 100 % 

Question 5 20 0 % 20 % 80 % 0 % 0 % 100 % 

Question 6 20 0 % 35 % 15 % 30 % 20 % 100 % 

Question 7 20 0 % 50 % 30 % 0 % 20 % 100 % 

Question 8 20 0 %  75 % 5 % 0 % 20 % 100 % 

Question 9 20 50 % 25 % 25 % 0 % 0 % 100 % 

 

 

Figure 21. Respondent responses in Likert scale survey. 

 

Question
1

Question
2

Question
3

Question
4

Question
5

Question
6

Question
7

Question
8

Question
9

Strongly Agree (%) 15% 5% 55% 0% 0% 0% 0% 0% 50%
Agree (%) 60% 60% 10% 30% 20% 35% 50% 75% 25%
Neutral (%) 25% 15% 30% 50% 80% 15% 30% 5% 25%
Disagree (%) 0% 20% 5% 20% 0% 30% 0% 0% 0%
Strongly Disagree (%) 0% 0% 0% 0% 0% 20% 20% 20% 0%
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Furthermore, for the secondary data analysis chosen publications respond to the 

research's main thematic content, whether the study is from artificial intelligence (AI) 

and its various algorithms or the perspective of energy optimization. Certain publications 

employ distinct AI-based algorithm points of view to assist the energy optimization 

technique. The majority of the articles focus on AI-driven approaches to sustainable 

energy generation, distribution, and optimization. The results from the selected 

publications are reviewed, and synthesis is created based on the information gathered. 

In the discussion section, the findings are further examined. 

 

The most recent research publication used as a primary source was published between 

2017 and 2022, and it includes current perspectives and explanations of AI implications 

in energy optimization. The new technology is released regularly, and additional 

empirical research on that topic is carried out to reflect the theory in energy optimization 

case studies. The relevance of the article publishing year is evaluated based on inclusion 

criteria because AI ideas are continually evolving, and traditional power generation and 

distribution technology is no longer considered competent as it is today. 

 

Table 7. gives an overview of the selected studies providing application areas, data 

source, used algorithms, outputs, and references. Following that, the research questions 

are answered using the information gathered. About 30% of the articles chosen are em-

pirical research, while the remaining 70% are review articles and energy business over-

views that usually summarize the available literature on a topic to describe the present 

level of understanding of the issue. This result suggests that additional empirical re-

search is required to fully understand the phenomena and its ramifications and future 

development requirements. 
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Table 7. Application of data-driven AI techniques in integrated energy system optimiza-

tion. 

S. N Application 

areas 

Data 

sources 

Algorithms Outputs References 

1 Optimize 

the range of 

possible so-

lar energy 

and power 

grid combi-

nation 

Case study 

on HIS 

Smart 

power me-

ter and radi-

ation meter 

data  

ANN/K 

means clus-

tering 

Estimate the 

amount of en-

ergy generated 

by any solar 

thermal sys-

tem 

Basurto et al. 

2019 

2 Energetics 

system im-

provement 

Review arti-

cle Sci-

enceDirect 

database 

Fuzzy logic, 

ANN, GA 

AI provides us-

ers with se-

cure, sustaina-

ble, and eco-

nomical elec-

tricity from 

complicated 

sources and 

can use their 

energy more 

efficiently. 

Ahmad et al. 

2022 
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3 Sizing inte-

grated re-

newable en-

ergy sys-

tems using 

optimiza-

tion ap-

proaches 

Evironmen-

tal technol-

ogy review 

article data 

base 

GA, ANN, 

FL, RBF 

The best sys-

tem configura-

tion for scaling 

IRES is discov-

ered using arti-

ficial intelli-

gence (AI) 

technologies. 

Kanase-Patil 

et al. 2020 

4 Improve a 

forecasting 

model and a 

trading 

strategy for 

energy. 

Case study 

on EPEX 

SPOT and 

Nordpool 

market data 

ML, SVR Demonstrates 

the viability of 

a data driven 

concept with 

significant 

implications 

for use in 

power 

management 

functions. 

 

Carriere & 

Kariniotakis, 

2019 

5 Microgrid 

(MG) man-

agement 

and sched-

uling in vir-

tual power 

plants 

(VPP). 

Experi-

mental data 

from 

real load pa-

rameteric 

device of 

northern 

Malaysia  

ANN-BBSA, 

ANN-BPSO 

ANN-based 

controllers' ad-

vantages in 

terms of cost 

reduction and 

efficiency 

G.M. 

Abdolrasol 

et al. 2021 

6 Data-driven 

model for 

estimating 

Review arti-

cle based on 

ANN 

ML, ANN Accurate pre-

diction of 

Rahman et 

al. 2021 
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renewable 

energy out-

put such as 

solar, wind, 

or hydro-

power. 

approaches 

databases  

renewable re-

sources 

7 Artificial in-

telligence 

and data an-

alytics in in-

tegrated 

smart grid 

initiatives. 

Review arti-

cles based 

on empirical 

data 

ML, DL AI-based data 

analytics initia-

tives demon-

strate the im-

portance of 

project execu-

tion and the 

complexity 

that deter-

mines project 

success. 

Khosrojerdi 

et.al, 2022 

8 Role of AI 

IoT and 

Block chain 

in Distrib-

uted energy 

resources 

Review arti-

cle data set 

AI, IoT, BC AI, IoT, and BC 

provide auton-

omous services 

to peers  

Kumar et.al, 

2020 

9 Deep rein-

forcement 

learning for 

improving 

energy con-

version in 

an 

Experi-

mental data 

set 

CNN The system op-

erator's run-

ning costs are 

reduced by us-

ing a renewa-

ble energy 

Zhang et.al, 

2019 
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integrated 

electrical 

system 

conversion al-

gorithm. 

10 Resync’s en-

egy cloud 

platform 

Data col-

lected from 

smart me-

tering de-

vice  

ML, DL Smart energy 

efficiency solu-

tion 

Resync 

Technologies 

Pte Ltd., 

2021 

 

Table 7 shows that Artificial Intelligence (AI) and Machine Learning (ML) are employed 

as major technologies to deliver real-time decision-making with large-scale data inter-

pretation. These data-driven approaches are used to address various issues, including 

picking the best group of customers to react to, understanding their characteristics and 

preferences, dynamic pricing, scheduling, and device management. As a result, AI may 

be considered to play a crucial part in enhancing the energy grid's ability to run more 

efficiently. 

 

 

Figure 22. Number of papers published per year in AI based IES optimization. 
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The fast surge in research interest in AI-based energy optimization solutions reflects the 

growing interest in this topic. The number of publications published each year is seen in 

Figure 22. According to this graph, the number of papers peaked in 2021. The number 

of scientific papers incorporating AI techniques has risen, with the majority utilizing AI 

techniques for energy optimization. 

 

 

Figure 23. Number of papers published per year in AI based IES optimization. 

 

The study was conducted based on the authors' nationalities to identify groups working 

on energy optimization challenges based on AI algorithms. Figure 23 depicts the nations 

where articles on AI-driven techniques for IES optimization have been published. Au-

thors from two or three countries collaborated on several themes, such as China and 

the United States; India and China; the United Kingdom and Spain; China and Italy; and 

China and Germany. The writers from China collaborate with other nations, and the 

most publications 14 articles. The United States and India, on the other hand, placed 

second and third in terms of paper publishing, with seven and six papers, respectively. 

China (Zhang et al., 2019) has one of the most referenced articles on AI-based energy 

optimization cited by 38 papers. 
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(Basurto et al., 2019) aimed to anticipate the energy output inside a solar thermal sys-

tem using supervised and unsupervised learning methods such as ANN and K-clustering 

in a case study. In Spain, these approaches were integrated and used in a real-world 

exhibit. The suggested model is compared and evaluated using data from the entire year 

in the case study. The result identifies that the new model machine learning algorithms 

calculate solar energy with more precision, with an error of 10-4 in 86 percent of cases. 

According to a survey (Ahmad et al., 2022) on Kuwait National Petroleum Company 

(KNPC), leveraging AI results in significant improvements in energy utilization. To reduce 

CO2 emissions and KNPC's carbon footprint, the corporation deployed AI-based simula-

tion software to reduce energy use by $15 million yearly and maximize energy efficiency 

among available utilities. 

 

According to (Kanase-Patil et al., 2020), employing artificial intelligence (AI) technologies 

is the optimal system architecture for scaling the integrated renewable energy system 

(IRES). IRES is optimally sized using AI methods like fuzzy logic and genetic algorithms. 

This method provides an intelligent coordinating layer across the power supply, moni-

tors and collects data, and analyzes it to find patterns and insights in the data. The re-

sulting forecast possible outcomes and helps to select optimal power generation solu-

tion modules. (Carriere & Kariniotakis, 2019) introduced two techniques to renewable 

energy trade forecasting and decision-making functions. Meta-optimization forecasting 

models are the first way, and data-driven decision-making is the second approach. As a 

result of case studies on energy trading on the EPEX SPOT electricity market for PV elec-

tricity and the NordPool market for wind power. It is being evaluated that the second 

data-driven strategy is more efficient for energy trading than the first, with a minor pen-

alty per imbalance. 

 

(G.M. Abdolrasol et al., 2021) used an artificial neural network (ANN) as the primary 

method for managing and scheduling microgrids (MGs) integrated into virtual power 

plants in their test experiment. Actual data from data recorders in Malaysia's northern 
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regions are used in the experimental model. The test results show that the ANN algo-

rithm generates an appropriate schedule for each DG to minimize fuel consumption and 

Co2 emissions and boost system efficiency in smart and cost-effective VPP operations 

and grid decarbonization. Similarly, article reviews by (Rahman et al. 2021) and (Khosro-

jerdi et al., 2022) found that AI-based data analytics projects such as ML and DL are 

widely used for accurate forecasts of renewable energy generation, such as solar, wind, 

and hydropower. These models can forecast short-term time series in renewable energy 

sources and use previous information to impact the future prediction value. Further-

more, according to DER research conducted by (Kumar et al., 2020), AI and its sub-com-

ponents, such as IoT and block chain, provide automated services that assure reliability, 

availability, resilience, and stability, security, and sustainability of energy system net-

works. The simplified energy network system is shown in Figure 24. 

 

Figure 24. Schematic diagram of advanced energy network system (Rahman et al. 2021).  

 

Compared to traditional energy network systems, the Integrated energy system offers 

greater flexibility in smart energy conversion since it can meet supply needs in various 

ways, enhancing overall reliability. (Zhang et al., 2019) claim that utilizing a deep 
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reinforcement learning technique can help energy system operators choose the appro-

priate energy conversion model. According to the numerical simulation results, the pro-

posed renewable energy conversion method might significantly lower the system oper-

ator's operating expenses. 

 

According to an analysis of information from energy solution firms (Resync Technologies 

Pte Ltd., 2021), employing data analytics alone, they may enhance their stakeholders' 

energy efficiency by up to 30%. Data is gathered using standard communication proto-

cols from local energy meters and energy assets (solar, wind, and grid) to enable real-

time control edge level optimization balancing to increase renewable energy while re-

ducing costs. Depending on the customers' adjustable load requirements, IoT devices 

collect data from all energy assets in real-time and calculate the optimal set point. (Re-

sync Technologies Pte Ltd., 2021) 

 

4.2 Discussion 

According to the empirical analysis and literature review presented in the preceding 

part, identify the innovative potential that data-driven AI technology gives in integrating 

renewable energy resources into current electrical power systems to build a speedy and 

cost-effective solution. The study's findings point to numerous digital technologies such 

as AI, machine learning, deep learning, and the Internet of Things (IoT) and their contri-

butions to a more efficient integrated energy system solution. In addition, the result 

shows that AI has broadened its application areas and is playing an essential role in de-

veloping integrated grid configurations.  

 

Furthermore, the proactive nature of the integrated system identifies system changes 

in function and energy consumption following timely grid operation. These IES system 
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capabilities are fully realized using AI-based data interpreters and communication me-

diums like ML, DL, and IoT.  Throughout the study, ANN is one of the most widely used 

algorithms in the literature, with most researchers attempting to utilize it for the reliable 

prediction of renewable energy output (Debnath & Mourshed, 2018). The model has a 

correlation coefficient of over 80% and is getting better every day (Ferrero Bermejo et 

al., 2019). The study discovered several advantages of AI in IES optimization, including 

improved efficiency, availability, resilience, stability, security, and sustainability (Kumar 

et.al, 2020). However, some technical challenges are yet to be addressed. The ad-

vantages, technical limitations, and main application areas of the AI approach in IES will 

be discussed in the following sub-section. 

 

 

4.2.1 Benefits and technical challenges  

A key objective of the integrated energy system is to make the energy system 

sustainable, economical, accessible, and secure. Artificial intelligence (AI) and machine 

learning algorithms have been effective methods of allocating and managing energy 

resources in recent years. They aim to increase the modeling process's accuracy and 

facilitate decision-making procedures as more reliable and efficient with fewer complex 

models (Ahmad et al., 2021). The main advantages of AI technology are its built-in smart 

control centers that provide insight into grid operations for improved control (Manoj 

Kumar, Ghosh & Chopra, 2020). It enables energy providers to adapt supply and demand 

intelligently by promoting maximizing energy asset utilization. Next, AI is being used to 

create an integrated microgrid system that balances energy flow by addressing quality 

and congestion concerns. As previously mentioned, AI increased the system's safety and 

reliability by assisting in understanding energy consumption patterns, energy leakage, 

and grid health (Kumar et.al, 2020).  
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Furthermore, AI integration aids renewable energy suppliers in expanding the market-

places by providing new service models and promoting increased involvement. AI can 

work with intelligent energy storage systems to provide a long-term and dependable, 

smart power storage and delivery solution. (Ahmad et al., 2022.) Apart from the benefits 

of introducing AI-based technology into renewable energy systems, there are several 

obstacles to overcome. According to the literature assessment of (Ahmad et al., 2022), 

artificial intelligence in renewables energy systems has revealed difficulties in energy 

integration because the weather mainly determines the availability of renewable energy 

and supply. Thus, it induced different energy assets, renewable grid deployment, and a 

surge in self-generation. Integrating those various energy assets results in greater en-

ergy network complexity, and there is a higher requirement for expanded processing 

power for AI technologies to handle those complicated challenges (Rhodes, 2020). 

 

 The highlighted hurdles by (Kuhlmann, Mehlum, & Moore, 2021) are related to the re-

liability of datasets and the balance of data privacy versus data usage. This is due to 

competitive or privacy concerns and a lack of adequate data labeling accuracy. Stand-

ardization and pooling of high-quality data have offered possible solutions to this prob-

lem. According to (Ahmad et al., 2021), additional vital challenges include efficient net-

work connectivity and interoperability with other AI technologies, quality data, trained 

specialists and data science skills, legal security, and technology functioning in the en-

ergy industry. Aside from that, the literature analysis identifies high energy infrastruc-

ture investment costs and cyber security as roadblocks. However, (Makala & Bakovic, 

2020) claims that after the energy industry has recognized the hurdles and problems, AI 

optimization will overcome energy waste, expenses, and facilities, allowing for sustain-

able contemporary energy forms development. In addition, to avoid obstacles caused 

by a lack of skills or knowledge, (Jamwal et al., 2021) proposed that continuous learning 

reduces the risk of employees in a firm lacking the necessary skillsets for energy industry 

technology. 
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4.2.2 Energy and load prediction 

AI is effectively employed in the energy sector for energy load prediction and diagnostics 

of energy consumption patterns. Load forecasting, economic dispatch, hydrothermal 

generation, and optimization scheduling are employed in AI models for operational and 

generation planning (Toopshekan et al., 2020). Efficient and accurate forecasting on both 

sides of the supply and demand curves is critical to the integrated energy system's 

optimal operation. The supply and demand balance characteristics are examined 

according to the prediction to give precise data support for the economy and energy 

savings of the complete system operation. (Ahmad et al., 2022.) 

 

The accurate prediction of solar and wind farm power generation is critical as they are 

highly venerable and weather dependent. To effectively integrate the most renewable 

electricity into the grid, AI-based approaches such as ANN, SVM, and FL (Solyali, 2020) 

are commonly used to predict the power output of solar and wind assets by learning 

from historical weather data, real-time measurements of wind speed, and global 

irradiance from local weather stations, sensor data, and images and video data. These 

short-term power supply forecasts might then be included in operational systems that 

schedule the charging and discharging of local battery storage plants, reducing solar and 

wind farm curtailment. (Kuhlmann, Mehlum, & Moore, 2021.) 

 

In terms of hydropower energy prediction, it is heavily reliant on the amount of water 

discharged and the size of the turbine. Power generation is influenced significantly by 

the changing seasonal impact. Thus, hydropower turbine size optimization and 

prediction are crucial. However, the size of the turbine and the amount of water 

discharged are nonlinear and complex (Rahman et al., 2021).  According to (Bernardes 

et al., 2022), Artificial intelligence and machine learning techniques such as SVM, GA, 

and ANN (Hammid et al., 2018) are used to predict and optimize hydropower plant 

dispatch. The hydropower forecast, like other predictions, requires continually updated 

information regarding weather data and prior energy output to achieve effective system 

control (Rahman et al., 2021). 
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4.2.3 Fault prediction 

Artificial intelligence has found its way into various applications in integrated energy 

systems. One of them is diagnostic and fault prediction in Electricals integrated grid sys-

tems. Compared to the conventional tendency, grid security and reliability are consid-

erably more ensured with the rising accessibility of intelligent sensor data and artificial 

intelligence algorithms. Fault prediction is a novel technology that uses data-driven re-

liability algorithms for the early detection of potential faults. They can analyze data and 

build machine learning (Abubakar et al., 2021) or deep learning (Teng et al., 2021) -based 

prediction models for crucial energy faults related to solar photovoltaic systems and 

power grids. 

 

Among the various renewable energy solar photovoltaics (PV) energy generation is pro-

moted as a more efficient and reliable energy source. However, it needs ongoing 

maintenance to ensure consistent generating efficiency, and AI has been demonstrated 

to be a superior alternative to traditional maintenance procedures (Abubakar et al., 

2021). The fundamental criteria that define fault detection and diagnostic approaches 

in PV systems were discussed by (Mellit & Kalogirou, 2018). The literature features ra-

pidity in detecting defects, climatic and electrical data, and the capacity to discern be-

tween distinct issues. According to the literature study, there are two techniques for 

categorizing frequent forms of PV system faults: First, visual and thermal technique 

which are used to identify discoloration, browning, surface soiling, hotspot, cracking, 

and delamination. Second, electrical detection and diagnosis methods for arc faults, 

grounding problems, and diode failures in PV modules, strings, and arrays.  

 

The I-V and P-V curve measure the capacity of the string to identify unique physical 

events associated with each type of defect. However, they are not always reliable as 

faults are mostly condition specific (Ning, 2021). Thus, appropriate artificial intelligence 

algorithms for fault detection are chosen based on fault phenomena of solar systems. 

(Abubakar et al., 2021) cited mainly used ML models, such as artificial neural networks, 
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wavelets, fuzzy logic, decision trees, support vector machines, graph-based semi-super-

vised learning, regression model as failure detection, and diagnostic strategies for solar 

PV systems. 

 

For example, Figure 25 represents a schematic diagram of proposed AI-based fault di-

agnosis techniques for the Photovoltaic system. To detect the likely faults, the difference 

between the measured and simulated PV array output power is first compared to a 

threshold (Th). The detection and localization of faults are then accomplished by analyz-

ing the primary features in each string I–V characteristic composing the PV array. 

 

 
Figure 25. Fault detection technique for PV module by ANN (Abubakar et al., 2021). 

Similarly, the integration of multiple producing units in the power grid network creates 

complexity, and the conventional fault detection approach fails to deal with the large 

amounts of data received by SCADA systems (Chai et al., 2019). Thus, AI technology is 

gaining traction as a special power grid fault allocation and rectification option. Power 

grid systems are vulnerable to faults and mistakes for various reasons. The most preva-

lent causes are power component failure due to lighting surges, human error, and 
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equipment aging. The literature (Teng et al., 2021) and (Darab et al., 2019) mentions 

several intelligent methods widely used in the field of power grid fault diagnosis, such 

as expert systems, artificial neural networks, fuzzy logic, support vector machine, ge-

netic algorithm, Petri nets, and so on, and analyzes their flaws in a practical way. 

Figure 26 depicts the general structure of the artificial intelligence-based grid fault diag-

nosis application. The structural overview contains four layers: high-performance com-

puting frame, data collection, algorithm application, and business scene. Their objective 

function is described in the following paragraph.  

 

Figure 26. Framework of the artificial intelligence-based grid fault diagnosis (Chai et al., 

2019). 

 

The first high-performance computing frame consists of computing, storage, and net-

work devices that execute computations for various algorithms to manage vast data and 

multi-level network parameters. On the other hand, Storage devices offer storage for 

the grid's vast operating data. The following layer is the data collecting layer, which 
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collects data from the source and offers real-time monitoring and control functions 

through SCADA, RPMS, and WAMS. The algorithm engine then provides support for up-

per-layer applications by encapsulating various algorithms such as expert systems, arti-

ficial neural networks, and Bayesian networks. Finally, the business scenario analyzes 

and detects the physical and electric fault, employing different artificial intelligence 

methods to diagnose the issue and establish the fault component and type. (Chai et al., 

2019.) 

 

4.2.4 Energy storage, demand response and grid flexibility 

The advancement of the energy sector is moving in the right direction; however, energy 

storage technology is still lagging (Barrett & Haruna, 2020). Energy storage systems (ESS) 

are projected to make critical leaps in the future smart grid development by employing 

AI and ML, as traditional power grid designs lack the energy storage infrastructure for 

high-efficiency energy understanding and consumption. AI approaches are being utilized 

to solve various problems, including determining the best time for a fixed energy supply, 

demand responses, grid flexibility, demand pricing, energy storage scheduling, and con-

trol, and rewarding them fairly and cost-effectively (Antonopoulos et al., 2020). 

 

The power system does not store electricity; hence it is critical to always keep the grid 

flexible to satisfy unpredictable electrical demand responses. Thus, the concept of a re-

served power plant, Energy Storage System (ESS) as Ancillary Services, is conceived to 

resolve any energy resource fluctuation or outage. Artificial Intelligence (AI) and Ma-

chine Learning (ML) are crucial technologies for making real-time decisions based on 

enormous data. First, they are utilized to forecast demand and power grid load. The data 

is then collected and analyzed by an AI-enabled system, giving insights into peak energy 

demand on the local grid and bridging the gap between renewable energy supply and 

demand to maximize power use. Using these methods, users can optimize their energy 

use habits and cost-effective flexibility to the broader power grid. 
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Figure 27. Energy optimization through solar and ESS (Ning, 2021). 

 

Artificial Intelligence algorithms make real-time decisions for charging and discharging 

of the ESS. Figure 27 depicts the integration of ESS with renewable energy supply, which 

results in peak shaving of the energy profile and lower demand charges. Through this 

optimization, financial gains are maximized. (Ning, 2021.) Artificial intelligence algo-

rithms have been used in several studies to increase ESS performance, Demand re-

sponses, Grid flexibility, and Renewable energy supply. To solve the established opti-

mum model, (Li et al., 2020) used an Artificial Neural Network (ANN) to construct a two-

stage optimization that includes a day-ahead plan and an intraday adjustment to sched-

ule the ESS and Renewable energy supply during each dispatch period, respectively. Sim-

ilarly, (Lotfi, 2020) proposes a particle swarm optimization method that optimizes en-

ergy use by combining distributed grid with energy storage devices and taking demand 

responses into account. The suggested technique successfully enhances the integration 

of distributed generators, solar, ESS, and capacitors, resulting in a 26% reduction in en-

ergy loss and a 5.9% reduction in operational cost. 

 

 

4.2.5 Business value and creation 

The rise of the worldwide commercial business has been propelled by technological 

innovation, and now artificial intelligence is only a way in which the energy sector can 
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meet up to today's innovation and boost energy business values. However, to get the 

most out of AI solutions, the energy industry must first grasp the fundamentals of AI, its 

influence on the business world, and the way to generate value and implement an AI 

strategy (Bolivar, 2022). 

 

In terms of the energy business, every energy company that wishes to maximize profits 

and establish strong business values should implement sustainable energy policies, 

maximize energy resources, provide cost-effective services, and generate revenue. 

However, it is impossible to solve these issues due to the traditional business model. As 

a result, an intelligent AI-powered business model emerges that can analyze energy 

collection data and provide insights into energy usage. This data will help companies 

refine existing services (Ahmad et al., 2022), implement new operation models, 

dispatches energy with optimized resources, anticipate demand in advance, predict 

issues, and conserve resources wherever feasible. As a result, end-users will see 

decreased electricity bills and personalized services due to AI's energy-saving efforts, 

making AI a prominent energy industry player. (Martynova, 2021.) According to the 

report by (Deloitte AI Institute, 2021), there are six ways that AI may provide business 

value.  

  

• Cost reduction: Artificial intelligence (AI) and intelligent automation 

technologies can help automate low-value, iterative procedures, resulting in cost 

savings and improved quality. 

  

• Speed execution: By reducing latency, it achieves operational and business 

results. For example, it utilizes predictive data to design and optimize energy 

models. 

 

• Simplified complexity: Analytics that are more proactive, predictive, and spot 

patterns in more complex sources improve comprehension and decision-making. 
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For example, production downtime can be reduced by forecasting equipment 

maintenance requirements. 

 

• Enhanced participation: Changing people's perspective about technology by 

meeting consumer demands better, conversational bots that can comprehend 

and respond to client sentiment might be used 

 

• Boosted creativity: Using AI to allow breakthrough new services, markets, and 

business models, for instance, depending on client demands and preferences 

proposing new service concepts and functionalities. 

 

• Increased trustworthiness: Securing a business from threats like fraud and cyber-

attacks while enhancing quality and consistency and increasing transparency to 

boost trust. Identifying and forecasting cyber assaults before they happen. 
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5 Conclusion and future recommendation 

The final research outcome is concluded in this chapter. The written synthesis will rec-

ognize key findings and review the study for future development. 

 

 

5.1 Key findings and conclusion  

The research's key findings include the drivers and advantages of the AI approach in en-

ergy optimization of integrated energy systems and their significant role in transitioning 

towards a sustainable, environmentally friendly, cost-effective, accessible, and secure 

energy system. The study was initiated by examining the current energy generation trend 

in the global energy market, emphasizing alternative energy sources for system improve-

ment and carbon emissions reduction. The study used a two-pronged approach, with 

primary data from energy industry expert interviews, a Likert scale questionnaire survey, 

and secondary data from current energy industry optimization models and a review from 

publications linked to a given research issue. 

 

The expert interview outcome indicates that renewable energy sources such as solar, 

wind, and hydropower are the most significant way to cut the price of using traditional 

energy sources while also lowering carbon emissions. However, the inconsistency of re-

newable energy supply is a problem that needs to be addressed. They also considered 

that AI technology and machine learning approaches might be the game-changing facil-

itator of the future energy transition, with immense promise in data analysis, prediction, 

intelligent grid control, power adjustment, and smart energy storage for sustainable en-

ergy. According to the Likert scale study, 80% of respondents feel AI technology com-

bined with high-quality data has a positive influence. On the other side, 20% of respond-

ents said they needed data enhancement, indicating that AI technology should be inves-

tigated further. 
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The research also goes through a variety of published literature reviews and identifies 

AI's significant potential in electrically integrated energy systems, which includes a better 

understanding of energy consumption patterns, highly effective and precise energy load 

and fault prediction, automated energy management, enhanced ESS, more excellent 

business value, a smart control center, smooth monitoring, tracking, and communication 

of energy networks.  

 

The study's findings point to numerous digital technologies such as AI, machine learning, 

deep learning, virtual power plant, and the Internet of Things (IoT) and their contribu-

tions to a more efficient integrated energy system solution. In addition, the literature 

shows that AI has broadened its application areas and is playing an essential role in de-

termining the optimum system configuration for scaling integrated energy systems. For 

identifying the optimal size of the IRES system, algorithms such as Fuzzy based model, 

Genetic algorithm (GA), Particle Swarm Optimization (PSO), and Artificial Neural Net-

work (ANN) are being employed (Kanase-Patil et al., 2020). 

 

This study has systematically investigated the rapidly developing subject of energy sector 

digitalization, providing an overview of essential characteristics of technologies, their 

applications in the integrated energy system with possible defects, and implementation 

issues. Decarbonization efforts have resulted in a high degree of decentralization in the 

power sector and a more integrated and electrified energy system. Digital AI-based so-

lutions play a crucial role in managing this increasingly complex system and maximizing 

energy efficiency while minimizing carbon emissions. Researchers have done a signifi-

cant amount of research, and all the related AI algorithms were reviewed and described 

in depth. Their application focuses on low-cost energy transition, enhanced power sys-

tem efficiency, grid flexibility, distributed monitoring and control center, electricity and 

investment markets, and renewable energy resources management. However, most of 

the present integrated energy system's difficulties are related to unpredictable energy 

demand, limited adjustment ability of renewable weather-dependent output, and sys-

tem security and stability caused by load variations. Thus, the integrated energy system 
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must promote independence and reconcile benefits to improve system flexibility and 

lessen interconnectivity issues through AI-based technology. 

 

To sum up, integrating and operating various renewable sources in a diverse energy mar-

ket environment is complicated. However, the difficulty of the system operation can be 

reduced via digitalization and AI implementation. The research findings also supported 

the focus on integrated energy systems' unique characteristics, concluding that real-time 

AI technology may emphasize the renewable energy-dominated energy structure by con-

trolling and monitoring parameters in real-time. The study delves into each part of the 

AI algorithm, exposing its possible answers to issues including carbon emissions, energy 

optimization, integration, and management. 

 

 

5.2 Future recommendation 

Incorporating AI techniques and data analytics into integrated energy systems discover 

an innovative way of defining intelligent electrical power networks. So far, electrical 

power grids have been viewed as modernized and enhanced power systems that include 

new ICT technology. However, the vast amounts of data generated by new electricity-

generating devices, such as autonomous vehicles, smart buildings, and smart cities chal-

lenge our understanding of bidirectional power transmission and distribution system. 

Therefore, it is crucial to define the qualities of these energy producing resources that 

reflect a distinct identity, and future research will need to explain the technical charac-

teristics and definitions of these fast-growing energy exchanging system models based 

on AI based IoT. In addition, another area of future research can be the energy conver-

sion methodology in the Renewable-Integrated Energy System. 

 

 

 



88 

 

References 

 
Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., 

Mohamed, R., . . . Milad, A. (2021). Artificial Neural Networks Based Optimiza-

tion Techniques: A Review. Electronics (Basel), 10(21), 2689. 

https://doi.org/10.3390/electronics10212689 

Abualigah, L., Zitar, R. A., Almotairi, K. H., Hussein, A. M., Abd Elaziz, M., Nikoo, M. R., 

& Gandomi, A. H. (2022). Wind, Solar, and Photovoltaic Renewable Energy Sys-

tems with and without Energy Storage Optimization: A Survey of Advanced Ma-

chine Learning and Deep Learning Techniques. Energies, 15(2), 578. 

https://doi.org/10.3390/en15020578 

Abualigah, L., Zitar, R. A., Almotairi, K. H., Hussein, A. M., Elaziz, M. A., Nikoo, M. R. & 

Gandomi, A. H. (2022). Wind, Solar, and Photovoltaic Renewable Energy Sys-

tems with and without Energy Storage Optimization: A Survey of Advanced Ma-

chine Learning and Deep Learning Techniques. Energies (Basel), 15(578), 578. 

https://doi.org/10.3390/en15020578 

Abubakar, A., Almeida, C. F. M. & Gemignani, M. (2021). Review of Artificial Intelli-

gence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic 

Systems. Machines (Basel), 9(12), 328. https://doi.org/10.3390/ma-

chines9120328 

Abubakar, A., Almeida, C. F. M., & Gemignani, M. (2021). Review of Artificial Intelli-

gence-Based Failure Detection and Diagnosis Methods for Solar Photovoltaic 

Systems. Machines, 9(12), 328. https://doi.org/10.3390/machines9120328 

Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y. & Chen, H. (2021). Artificial 

intelligence in sustainable energy industry: Status Quo, challenges, and oppor-

tunities. Journal of cleaner production, 289, 125834. 

https://doi.org/10.1016/j.jclepro.2021.125834 

Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., AlGhamdi, A. S., & Al-

shamrani, S. S. (2022). Energetics Systems and artificial intelligence: 



89 

 

Applications of industry 4.0. Energy Reports, 8, 334–361. 

https://doi.org/10.1016/j.egyr.2021.11.256 

Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., Flynn, D., 

Elizondo-Gonzalez, S., & Wattam, S. (2020). Artificial intelligence and machine 

learning approaches to energy demand-side response: A systematic review. Re-

newable and Sustainable Energy Reviews, 130, 109899. 

https://doi.org/10.1016/j.rser.2020.109899 

Azad, S., Sabrina, F., & Wasimi, S. (2019, November). Transformation of smart Grid us- 

ing Machine Learning. In 2019 29th Australasian Universities Power Engineering 

Conference (AUPEC) (pp.1-6). IEE  

Barrett, D. H., & Haruna, A. (2020). Artificial intelligence and machine learning for tar-

geted energy storage solutions. Current Opinion in Electrochemistry, 21, 160–

166. https://doi.org/10.1016/j.coelec.2020.02.002 

Basurto, N., Arroyo, Á., Vega, R., Quintián, H., Calvo-Rolle, J. L. & Herrero, Á. (2019). A 

Hybrid Intelligent System to forecast solar energy production. Computers & 

electrical engineering, 78, 373-387. https://doi.org/10.1016/j.compele-

ceng.2019.07.023 

Bernard, H.R. (2000). Social research methods: Qualitative and quantitative ap-

proaches. Thousand Oaks, CA: Stage Publications  

Bernardes, J., Santos, M., Abreu, T., Prado, L., Miranda, D., Julio, R., . . . Bastos, G. S. 

(2022). Hydropower Operation Optimization Using Machine Learning: A Sys-

tematic Review. AI (Basel), 3(6), 78-99. https://doi.org/10.3390/ai3010006 

Bhatti, H. J. (2018). The future of sustainable society–The state of the art of renewable 

energy and distribution systems. 

Bo, T., Gangfeng, G., Xiangwu, X., & Xiu, Y. (2018). Integrated Energy System Configura-

tion Optimization for Multi-Zone Heat-Supply Network Interaction. Energies, 

11(11), 3052. https://doi.org/10.3390/en11113052 

Bogner, A., Littig, B., & Menz, W. (2009). Introduction: Expert interviews—An 

introduction to a new methodological debate. In Interviewing experts (pp. 1-

13). Palgrave Macmillan, London. 



90 

 

Bolivar, S. (2022, February 7). Maximizing the Business Value of Artificial Intelligence. 

BairesDev. Retrieved April 22, 2022, from https://www.bairesdev.com/technol-

ogies/ai-business-value/ 

Business Finland. (2021, March). digitalisation and electrification in symbiosis. 

https://www.businessfinland.fi/496acb/globalassets/julkaisut/digitalization-

and-electrification-id-21066.pdf 

Carriere, T. & Kariniotakis, G. (2019). An Integrated Approach for Value-Oriented En-

ergy Forecasting and Data-Driven Decision-Making Application to Renewable 

Energy Trading. IEEE transactions on smart grid, 10(6), 6933-6944. 

https://doi.org/10.1109/TSG.2019.2914379 

Cebe, M. & Akkaya, K. (2019). Efficient certificate revocation management schemes for 

IoT-based advanced metering infrastructures in smart cities. Ad hoc networks, 

92(C), 101801. https://doi.org/10.1016/j.adhoc.2018.10.027 

Chai, E., Zeng, P., Ma, S., Xing, H. & Zhao, B. (2019). Artificial Intelligence Approaches to 

Fault Diagnosis in Power Grids: A Review. 

https://doi.org/10.23919/ChiCC.2019.8865533 

Chandrasekaran, K., Selvaraj, J., Xavier, F. J. & Kandasamy, P. (2021). Artificial neural 

network integrated with bio-inspired approach for optimal VAr management 

and voltage profile enhancement in grid system. Energy sources. Part A, Recov-

ery, utilization, and environmental effects, 43(21), 2838-2859. 

https://doi.org/10.1080/15567036.2021.1919790 

Chen, S. (2021). Review on Supervised and Unsupervised Learning Techniques for Elec-

trical Power Systems: Algorithms and Applications. IEEJ transactions on electri-

cal and electronic engineering, 16(11), 1487-1499. 

https://doi.org/10.1002/tee.23452 

Dai, Y. & Zhao, P. (2020). A hybrid load forecasting model based on support vector ma-

chine with intelligent methods for feature selection and parameter optimiza-

tion. Applied energy, 279, 115332. https://doi.org/10.1016/j.apen-

ergy.2020.115332 



91 

 

Danfoss. (2021, May 28). Integrated Energy Systems. Integrated Energy System. 

Retrieved February 1, 2022, from https://www.danfoss.com/en/about-

danfoss/insights-for-tomorrow/integrated-energy-systems/ 

Darab, C., Tarnovan, R., Turcu, A. & Martineac, C. (2019). Artificial Intelligence Tech-

niques for Fault Location and Detection in Distributed Generation Power Sys-

tems. https://doi.org/10.1109/MPS.2019.8759662 

Das, U. K., Tey, K. S., Seyedmahmoudian, M., Mekhilef, S., Idris, M. Y. I., van Deventer, 

W., Horan, B., & Stojcevski, A. (2018). Forecasting of photovoltaic power gener-

ation and model optimization: A review. Renewable and Sustainable Energy Re-

views, 81, 912–928. https://doi.org/10.1016/j.rser.2017.08.017 

Debnath, K. B. & Mourshed, M. (2018). Forecasting methods in energy planning mod-

els. Renewable & sustainable energy reviews, 88, 297-325. 

https://doi.org/10.1016/j.rser.2018.02.002 

Debnath, K. B., & Mourshed, M. (2018). Forecasting methods in energy planning mod-

els. Renewable and Sustainable Energy Reviews, 88, 297–325. 

https://doi.org/10.1016/j.rser.2018.02.002 

Deloitte AI Institute. (2021). The Energy, Resources & Industrials AI Dossier By Deloitte 

AI Institute. Deloitte. Retrieved April 24, 2022, from 

https://www2.deloitte.com/content/dam/Deloitte/us/Documents/deloitte-

analytics/us-ai-institute-energy-resources-industrials-dossier.pdf 

Duin, S., & Bakhshi, N. (2017, March 17). Part 1: Artificial Intelligence Defined. Deloitte 

Sweden. Retrieved February 6, 2022, from 

https://www2.deloitte.com/se/sv/pages/technology/articles/part1-artificial-

intelligence-defined.html 

Erdinc, O. (2017). Optimization in Renewable Energy Systems: Recent Perspectives. 

Farhoumandi, M., Zhou, Q. & Shahidehpour, M. (2021). A review of machine learning 

applications in IoT-integrated modern power systems. The Electricity journal, 

34(1), . https://doi.org/10.1016/j.tej.2020.106879 



92 

 

Feng, C. & Liao, X. (2020). An overview of “Energy + Internet” in China. Journal of 

cleaner production, 258, 120630. 

https://doi.org/10.1016/j.jclepro.2020.120630 

Ferrero Bermejo, J., Gómez Fernández, J. F., Olivencia Polo, F., & Crespo Márquez, A. 

(2019). A Review of the Use of Artificial Neural Network Models for Energy and 

Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy 

Sources. Applied Sciences, 9(9), 1844. https://doi.org/10.3390/app9091844 

Finlay, S. (2018). Artificial intelligence and machine learning for business: A no-

nonsense guide to data driven technologies (Third edition.). Relativistic. 

G. M. Abdolrasol, M., Hannan, M. A., Hussain, S. M. S., Ustun, T. S., Sarker, M. R. & Ker, 

P. J. (2021). Energy Management Scheduling for Microgrids in the Virtual Power 

Plant System Using Artificial Neural Networks. Energies (Basel), 14(20), 6507. 

https://doi.org/10.3390/en14206507 

Hammid, A. T., Sulaiman, M. H. B. & Abdalla, A. N. (2018). Prediction of small hydro-

power plant power production in Himreen Lake dam (HLD) using artificial neu-

ral network. Alexandria engineering journal, 57(1), 211-221. 

https://doi.org/10.1016/j.aej.2016.12.011 

Heo, S. & Lee, J. H. (2018). Fault detection and classification using artificial neural net-

works. https://doi.org/10.1016/j.ifacol.2018.09.380 

IEA. (2021, August 9). Average annual growth rates of world renewables supply, 1990–

2019 – Charts – Data & Statistics. Retrieved February 10, 2022, from 

https://www.iea.org/data-and-statistics/charts/average-annual-growth-rates-

of-world-renewables-supply-1990-2019 

IEA. (2021, May). Net Zero by 2050 – Analysis. Retrieved February 12, 2022, from 

https://www.iea.org/reports/net-zero-by-2050 

Jakhar, D., & Kaur, I. (2019). Artificial intelligence, machine learning and deep learning: 

definitions and differences. Clinical and Experimental Dermatology, 45(1), 131–

132. https://doi.org/10.1111/ced.14029 



93 

 

Jamwal, A., Agrawal, R., Sharma, M., & Giallanza, A. (2021). Industry 4.0 Technologies 

for Manufacturing Sustainability: A Systematic Review and Future Research Di- 

rections. Applied Sciences, 11(12), 1-27. https://doi.org/10.3390/app11125725 

Javatpoint. (2021). Support Vector Machine (SVM) Algorithm - Javatpoint. www.Ja-

vatpoint.Com. Retrieved February 26, 2022, from https://www.ja-

vatpoint.com/machine-learning-support-vector-machine-algorithm 

Kanase-Patil, A. B., Kaldate, A. P., Lokhande, S. D., Panchal, H., Suresh, M. & Priya, V. 

(2020). A review of artificial intelligence-based optimization techniques for the 

sizing of integrated renewable energy systems in smart cities. Environmental 

technology reviews, 9(1), 111-136. 

https://doi.org/10.1080/21622515.2020.1836035 

Kazmi, S., Javaid, N., Mughal, M. J., Akbar, M., Ahmed, S. H. & Alrajeh, N. (2019). To-

wards Optimization of Metaheuristic Algorithms for IoT Enabled Smart Homes 

Targeting Balanced Demand and Supply of Energy. IEEE access, 7, 24267-24281. 

https://doi.org/10.1109/ACCESS.2017.2763624 

Kuhlmann, A., Mehlum, E., & Moore, J. (2021). Harnessing Artificial Intelligence to Ac-

celerate the Energy Transition. World Economic Forum. Retrieved April 18, 

2022, from https://www-weforum-org.translate.goog/whitepapers/harnessing-

artificial-intelligence-to-accelerate-the-energy-transi-

tion?_x_tr_sl=en&_x_tr_tl=no&_x_tr_hl=no&_x_tr_pto=sc 

Li, J., Liu, J., Yan, P., Li, X., Zhou, G. & Yu, D. (2021). Operation Optimization of Inte-

grated Energy System under a Renewable Energy Dominated Future Scene Con-

sidering Both Independence and Benefit: A Review. Energies (Basel), 14(4), 

1103. https://doi.org/10.3390/en14041103 

Li, X., Cao, X., Li, C., Yang, B., Cong, M., & Chen, D. (2020). A Coordinated Peak Shaving 

Strategy Using Neural Network for Discretely Adjustable Energy-Intensive Load 

and Battery Energy Storage. IEEE Access, 8, 5331–5338. 

https://doi.org/10.1109/access.2019.2962814 



94 

 

Liu, T., Wei, H. & Zhang, K. (2018). Wind power prediction with missing data using 

Gaussian process regression and multiple imputation. Applied soft computing, 

71, 905-916. https://doi.org/10.1016/j.asoc.2018.07.027 

Lotfi, H. (2020). Multi-objective energy management approach in distribution grid inte-

grated with energy storage units considering the demand response pro-

gram. International journal of energy research, 44(13), 10662-10681. 

https://doi.org/10.1002/er.5709 

Lu, C., Wang, Z., Qin, W. & Ma, J. (2017). Fault diagnosis of rotary machinery compo-

nents using a stacked denoising autoencoder-based health state identifica-

tion. Signal processing, 130, 377-388. https://doi.org/10.1016/j.sig-

pro.2016.07.028 

Luo, X., Zhang, D., & Zhu, X. (2021). Deep learning-based forecasting of photovoltaic 

power generation by incorporating domain knowledge. Energy, 225, 120240. 

Ma, Z., Ye, C., Li, H. & Ma, W. (2018). Applying support vector machines to predict 

building energy consumption in China. Energy procedia, 152, 780-786. 

https://doi.org/10.1016/j.egypro.2018.09.245 

Makala, B., & Bakovic, T. (2020). Artificial intelligence in the power sector. 

Manoj Kumar, N., Ghosh, A., & Chopra, S. S. (2020). Power Resilience Enhancement of 

a Residential Electricity User Using Photovoltaics and a Battery Energy Storage 

System under Uncertainty Conditions. Energies, 13(16), 4193. 

https://doi.org/10.3390/en13164193 

Mao, W., Zhao, Z., Chang, Z., Min, G. & Gao, W. (2021). Energy-Efficient Industrial In-

ternet of Things: Overview and Open Issues. IEEE transactions on industrial in-

formatics, 17(11), 7225-7237. https://doi.org/10.1109/TII.2021.3067026 

Martynova, O. (2021, April 28). Opportunities and Challenges of Artificial Intelligence in 

the Energy Sector. Intellias. Retrieved April 24, 2022, from https://intel-

lias.com/opportunities-and-challenges-of-artificial-intelligence-in-the-energy-

sector/ 

Mattab. (2019, October 31). Artificial Intelligence, Enough of the hype! What is it? 

Hewlett Packard Enterprise Community. Retrieved February 16, 2022, from 



95 

 

https://community.hpe.com/t5/HPE-Blog-UK-Ireland/Artificial-Intelligence-

Enough-of-the-hype-What-is-it/ba-p/7046672#.Yg07Ie5Bw1I 

Mellit, A. & Kalogirou, S. A. (2018). Chapter II-1-D - A Survey on the Application of Artifi-

cial Intelligence Techniques for Photovoltaic Systems. 

https://doi.org/10.1016/B978-0-12-809921-6.00019-7 

Motlagh, N. H., Khajavi, S. H., Jaribion, A. & Holmstrom, J. (2018). An IoT-based auto-

mation system for older homes: A use case for lighting system. 

https://doi.org/10.1109/SOCA.2018.8645771 

Motlagh, N. H., Mohammadrezaei, M., Hunt, J. & Zakeri, B. (2020). Internet of Things 

(IoT) and the Energy Sector. Energies (Basel), 13(2), 494. 

https://doi.org/10.3390/en13020494 

Nayab, A., Ashfaq, T., Aimal, S., Rasool, A., Javaid, N., & Khan, ZA (2019, February). 

Load and Price Forecasting in Smart Grids Using Enhanced Support Vector Ma-

chine. In International Conference on Emerging Internetworking, Data & Web 

Technologies (pp. 247-258). Springer, Cham.     

Netto, R., Ramalho, G., Bonatto, B., Carpinteiro, O., Zambroni de Souza, A., Oliveira, D. 

& Braga, R. (2018). Real-Time Framework for Energy Management System of a 

Smart Microgrid Using Multiagent Systems. Energies (Basel), 11(3), 656. 

https://doi.org/10.3390/en11030656 

Ning, K. (2021, January). Data Driven Artificial Intelligence Techniques in Renewable 

Energy System. Massachusetts Institute of Technology. 

https://dspace.mit.edu/handle/1721.1/132891  

Noble, H., & Smith, J. (2015). Issues of validity and reliability in qualitative research. Ev-

idence Based Nursing, 18(2), 34–35. https://doi.org/10.1136/eb-2015-102054 

Nwauka, O., Telukdarie, A., & Enslin, J. (2018, July). Virtual power plant basic require-

ments for integration of distributed energy resources, driven by industry 4.0. 

In Proceedings of the International Conference on Industrial Engineering and 

Operations Management (Vol. 2018, pp. 511-525). 



96 

 

O’Leary, Z. (2020). Steps in Systematic Data Analysis | Online Resources. Sage Publis-

ing. Retrieved March 22, 2022, from https://study.sagepub.com/oleary3e/stu-

dent-resources/analysing-data/steps-in-systematic-data-analysis 

Pal, R., Chavhan, S., Gupta, D., Khanna, A., Padmanaban, S., Khan, B. & Rodrigues, J. J. 

P. C. (2021). A comprehensive review on IoT-based infrastructure for smart grid 

applications. IET renewable power generation, 15(16), 3761-3776. 

https://doi.org/10.1049/rpg2.12272 

Paschen, U., Pitt, C., & Kietzmann, J. (2020). Artificial intelligence: Building blocks and 

an innovation typology. Business Horizons, 63(2), 147-155. 

https://doi.org/10.1016/j.bushor.2019.10.004  

Pham, Q. V., Liyanage, M., Deepa, N., VVSS, M., Reddy, S., Maddikunta, P. K. R., ... & 

Hwang, W. J. (2021). Deep learning for intelligent demand response and smart 

grids: A comprehensive survey. arXiv preprint arXiv:2101.08013. 

Qin, W., Wang, L., Liu, Y. & Xu, C. (2021). Energy Consumption Estimation of the Elec-

tric Bus Based on Grey Wolf Optimization Algorithm and Support Vector Ma-

chine Regression. Sustainability (Basel, Switzerland), 13(9), 4689. 

https://doi.org/10.3390/su13094689 

R., J., N., & J. (2017). Validity and Reliability in Qualitative research – Qualitative Re-

searcher Dr Kriukow. Validity and Reliability in Qualitative Research. Retrieved 

March 26, 2022, from https://drkriukow.com/validity-and-reliability-in-qualita-

tive-research/ 

Rahman, M. M., Shakeri, M., Tiong, S. K., Khatun, F., Amin, N., Pasupuleti, J. & Hasan, 

M. K. (2021). Prospective Methodologies in Hybrid Renewable Energy Systems 

for Energy Prediction Using Artificial Neural Networks. Sustainability (Basel, 

Switzerland), 13(4), 2393. https://doi.org/10.3390/su13042393 

Resync Technologies Pte Ltd. (2021, October 8). Home. Retrieved April 5, 2022, from 

https://resynctech.com/ 

Rhodes, A. (2020). Digitalisation of Energy: An Energy Futures Lab Briefing Paper. 

Roberts, D. (2019, November 11). Renewable energy threatens to overwhelm the grid. 

Here’s how it can adapt. Vox. Retrieved March 3, 2022, from 



97 

 

https://www.vox.com/energy-and-environment/2018/11/30/17868620/re-

newable-energy-power-grid-architecture 

Rosenthal, R. and Rosnow, R. L. (1991). Essentials of Behavioral Research: Methods and 

Data Analysis. Second Edition. McGraw-Hill Publishing Company 

Rubaish, A. A. (2010). On the Contribution of Student Experience Survey Regarding 

Quality Management in Higher Education: An Institutional Study in Saudi 

Arabia. Journal of Service Science and Management, 03(04), 464–469. 

https://doi.org/10.4236/jssm.2010.34052 

Rynes, S., & Gephart, R. P. (2004). From the editors: Qualitative research and 

the. Academy of Management Journal. The Academy of Management 

Journal, 47(4), 454-462. 

S. (2021, September 18). The Best Introduction to Deep Learning - A Step by Step 

Guide. Simplilearn.Com. Retrieved February 23, 2022, from https://www.sim-

plilearn.com/tutorials/deep-learning-tutorial/introduction-to-deep-learning 

Sanchez-Huertas, W., Gómez, V., & Hernández, C. (2018). Machine Learning Tech-

niques and Smart Grid Applications: A Review. International Journal of Applied 

Engineering Research, 13(21), 14876-14885.  

Serban, A. C., & Lytras, M. D. (2020). Artificial Intelligence for Smart Renewable Energy 

Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cit-

ies. IEEE Access, 8, 77364–77377. https://doi.org/10.1109/ac-

cess.2020.2990123 

Shine, P., Scully, T., Upton, J. & Murphy, M. (2019). Annual electricity consumption pre-

diction and future expansion analysis on dairy farms using a support vector ma-

chine. Applied energy, 250, 1110-1119. https://doi.org/10.1016/j.apen-

ergy.2019.05.103 

Shuangrui, YIN, Qian, A., Shun-Qi, Z., Qiong, W., Ran, H., & Di, J. (2018). Challenges and 

prospects of multi-energy distributed optimization for energy internet. Power 

System Technology , 42 (5), 1359-1369. 

Simmons, A. & Chappell, S. (1988). Artificial intelligence-definition and practice. IEEE 

journal of oceanic engineering, 13(2), 14-42. https://doi.org/10.1109/48.551 



98 

 

Singh, N. K. & Badge, S. S. (2017). A novel fault detection and classification technique 

for double circuit transmission line using Artificial Neural Network. 

https://doi.org/10.1109/ICICICT1.2017.8342764 

Snyder, H. (2019). Literature review as a research methodology: An overview and 

guidelines. Journal of Business Research, 104, 333–339. 

https://doi.org/10.1016/j.jbusres.2019.07.039 

Sogabe, T., Malla, D. B., Takayama, S., Shin, S., Sakamoto, K., Yamaguchi, K., . . . Okada, 

Y. (2018). Smart Grid Optimization by Deep Reinforcement Learning over Dis-

crete and Continuous Action Space. 

https://doi.org/10.1109/PVSC.2018.8547862 

Solyali, D. (2020). A Comparative Analysis of Machine Learning Approaches for Short-

/Long-Term Electricity Load Forecasting in Cyprus. Sustainability (Basel, Switzer-

land), 12(9), 3612. https://doi.org/10.3390/su12093612 

Sternberg, R. J. (2020, December 10). human intelligence. Encyclopedia Britannica. 

https://www.britannica.com/science/human-intelligence-psychology 

Tamilselvan, K. & Thangaraj, P. (2020). Pods – A novel intelligent energy efficient and 

dynamic frequency scalings for multi-core embedded architectures in an IoT 

environment. Microprocessors and microsystems, 72, 102907. 

https://doi.org/10.1016/j.micpro.2019.102907 

Tang, W., & Yang, H. T. (2019). Optimal Operation and Bidding Strategy of a Virtual 

Power Plant Integrated With Energy Storage Systems and Elasticity Demand Re-

sponse. IEEE Access, 7, 79798–79809. https://doi.org/10.1109/ac-

cess.2019.2922700 

Tayab, U. B., Lu, J., Taghizadeh, S., Metwally, A. S. M. & Kashif, M. (2021). Microgrid En-

ergy Management System for Residential Microgrid Using an Ensemble Fore-

casting Strategy and Grey Wolf Optimization. Energies (Basel), 14(24), 8489. 

https://doi.org/10.3390/en14248489 

Teng, S., Li, J., He, S., Fan, B., & Hu, S. (2021). On-line Fault Diagnosis Technology and 

Application Based on Deep Learning of Fault Characteristic of Power Grid. 



99 

 

Journal of Physics: Conference Series, 2023(1), 012023. 

https://doi.org/10.1088/1742-6596/2023/1/012023 

Tina, G. M. (2019). Special Issue on Applications of Artificial Neural Networks for En-

ergy Systems. Applied sciences, 9(18), 3734. 

https://doi.org/10.3390/app9183734 

Toopshekan, A., Yousefi, H., & Astaraei, F. R. (2020). Technical, economic, and perfor-

mance analysis of a hybrid energy system using a novel dispatch strategy. En-

ergy, 213, 118850. https://doi.org/10.1016/j.energy.2020.118850 

Toshiba. (2020, March 24). VPP (Virtual Power Plant)：Systems & Solutions：Renewa-

ble Energy | TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION. Virtual 

Power Plant(VPP). Retrieved February 12, 2022, from https://www.toshiba-en-

ergy.com/en/renewable-energy/product/vpp.htm 

Urooj, S., Alrowais, F., Teekaraman, Y., Manoharan, H. & Kuppusamy, R. (2021). IoT 

Based Electric Vehicle Application Using Boosting Algorithm for Smart Cit-

ies. Energies (Basel), 14(4), 1072. https://doi.org/10.3390/en14041072 

Yang, H., Liu, X., Zhang, D., Chen, T., Li, C. & Huang, W. (2021). Machine learning for 

power system protection and control. The Electricity journal, 34(1), . 

https://doi.org/10.1016/j.tej.2020.106881 

Yang, J., Yang, M., Wang, M., Du, P. & Yu, Y. (2020). A deep reinforcement learning 

method for managing wind farm uncertainties through energy storage system 

control and external reserve purchasing. International journal of electrical 

power & energy systems, 119, 105928. 

https://doi.org/10.1016/j.ijepes.2020.105928 

Yang, T., Yu, P., Lin, K., Kuo, C. & Tseng, H. (2018). Predictor selection method for the 

construction of support vector machine (SVM)-based typhoon rainfall forecast-

ing models using a non-dominated sorting genetic algorithm. Meteorological 

applications, 25(4), 510-522. https://doi.org/10.1002/met.1717 

Zhang, B., Hu, W., Cao, D., Huang, Q., Chen, Z. & Blaabjerg, F. (2019). Deep 

reinforcement learning–based approach for optimizing energy conversion in 

integrated electrical and heating system with renewable energy. Energy 



100 

 

conversion and management, 202, 112199. 

https://doi.org/10.1016/j.enconman.2019.112199 

Zhang, L., Su, H., Zio, E., Zhang, Z., Chi, L., Fan, L., . . . Zhang, J. (2021). A data-driven 

approach to anomaly detection and vulnerability dynamic analysis for large-

scale integrated energy systems. Energy conversion and management, 234, 

113926. https://doi.org/10.1016/j.enconman.2021.113926 

Zhang, N., Zhang, W. & Shang, Y. (2021). Research on Integrated Energy System of 

Power Grid Based on Artificial Intelligence Algorithm of Machine Learning. 

https://doi.org/10.1088/1755-1315/714/4/042035 

Zielonka, B., & Becker, K. (2019, January 26). Integrated solution for virtual power 

plants. PSI. Retrieved February 12, 2022, from 

https://www.psienergy.de/en/home/energymanager/integrated-solution-for-

virtual-power-plants/ 

 



101 

 

Appendices 

Appendix 1. Expert Interview Questionnaires 

1. How long are you working in the field of energy industry? 

2. How would you define integrated energy system? How important do you think 

the AI technology has on energy integration and their optimization. 

3. In your thought, how can AI technology address the challenges faced by the 

power system industries of the present and future. 

4. How is your company functioning to attain energy sustainability? 

5.  Which AI technology or machine learning algorithm do your company uses for 

monitoring and controlling the energy synergy? 

6.  What do you think what would be the possible challenge of AI approaches in 

energy integration? How to respond those challenges. 

7. What are your thoughts on what the energy industries will be shaped in future 

by deployment of AI technology?  
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Appendix 2. 5-Scale Likert Questionnaire and collected data 

This questionnaire was developed for the Master's thesis research purpose at the 

University of Vaasa, Finland. The goal is to get input so that the research questions and 

main objectives may be answered. 

All responses and information will be treated with the utmost discretion. Filling out the 

questionnaire takes 5 to 10 minutes. Information about the respondent: i)  Gender: 

Male/Female ii) Occupation status: __________  

Question Strongly 

disagree  Disagree Neutral Agree 

Strongly 

agree 

1.    I am familiar with the concept of the digitalization in en-

ergy industries 
1 2 3 4 5 

2.  What do you think adoption of AI techniques for energy 

integration aids process optimization. 
1 2 3 4 5 

3 Are artificial intelligence (AI) and machine learning (ML) 

techniques useful in the energy industry to harvest renewable 

energy and allow businesses to run more sustainably. 

1 2 3 4 5 

4. Was the unidirectional design of convectional energy sys-

tem causes failure in adopting everchanging and expanding 

energy demand 

1 2 3 4 5 

5. Do you think AI based energy solution accelerate data value 

to drive energy business insight 
1 2 3 4 5 

6. Is the high dependence on smart access control system con-

tributes to data security breaching 
1 2 3 4 5 
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Respondent Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Mean Performance Grading
1 4 4 4 3 3 4 3 4 4 3,7 High Quality
2 3 2 3 2 3 1 1 1 3 2,1 Improve requirement
3 4 5 5 4 4 4 3 4 5 4,2 High Quality
4 4 3 3 4 3 3 3 4 4 3,4 Acceptable
5 4 4 5 3 3 2 4 4 5 3,8 High Quality
6 4 4 5 3 3 2 4 4 4 3,7 High Quality
7 4 4 5 3 3 4 4 4 5 4,0 High Quality
8 3 2 3 2 3 1 1 1 3 2,1 Improve requirement
9 4 4 5 3 3 2 4 4 5 3,8 High Quality

10 3 3 2 3 3 3 3 3 3 2,9 Acceptable
11 4 4 5 3 3 2 4 4 5 3,8 High Quality
12 5 4 5 4 4 4 4 4 5 4,3 High Quality
13 4 4 5 3 3 2 4 4 5 3,8 High Quality
14 3 2 3 2 3 1 1 1 3 2,1 Improve requirement
15 5 4 5 4 4 4 4 4 5 4,3 High Quality
16 4 4 5 3 3 2 4 4 5 3,8 High Quality
17 4 4 4 3 3 4 3 4 4 3,7 High Quality
18 3 2 3 2 3 1 1 1 3 2,1 Improve requirement
19 5 4 5 4 4 4 4 4 5 4,3 High Quality
20 4 3 3 4 3 3 3 4 4 3,4 Acceptable

7. Can standardization and pooling of high-quality data will be 

the solution to the data reliability and usage 
1 2 3 4 5 

8. Do you think machine learning model remove energy sys-

tem complexities, business cost and accelerate innovation 
1 2 3 4 5 

9.  Do interacting of AI technology with integrated energy sys-

tem leads optimization and balance in energy consumption 

patterns and improves the quality of life 

1 2 3 4 5 


