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ABSTRACT 

Wind and solar irradiance are promising renewable alternatives to fossil fuels due to 

their availability and topological advantages for local power generation. However, their 

intermittent and unpredictable nature limits their integration into energy markets. 

Fortunately, these disadvantages can be partially overcome by using them in 

combination with energy storage and back-up units. However, the increased complexity 

of such systems relative to single energy systems makes an optimal sizing method and 

appropriate Power Management Strategy (PMS) research priorities. 

This thesis contributes to the design and integration of stand-alone hybrid renewable 

energy systems by proposing methodologies to optimise the sizing and operation of 

hydrogen-based systems. These include using intelligent techniques such as Genetic 

Algorithm (GA), Particle Swarm Optimisation (PSO) and Neural Networks (NNs). Three 

design aspects: component sizing; renewables forecasting; and operation coordination, 

have been investigated. The thesis includes a series of four journal articles.  

The first article introduced a multi-objective sizing methodology to optimise stand-

alone, hydrogen-based systems using GA. The sizing method was developed to 

calculate the optimum capacities of system components that underpin appropriate 

compromise between investment, renewables penetration and environmental footprint. 

The system reliability was assessed using the Loss of Power Supply Probability (LPSP) 

for which a novel modification was introduced to account for load losses during 

transient start-up times for the back-ups.  

The second article investigated the factors that may influence the accuracy of NNs 

when applied to forecasting short-term renewable energy. That study involved two 

NNs: Feedforward; and Radial Basis Function in an investigation of the effect of the 

type, span and resolution of training data, and the length of training pattern, on short-

term wind speed prediction accuracy. The impact of forecasting error on estimating the 

available wind power was also evaluated for a commercially available wind turbine.  

The third article experimentally validated the concept of a NN-based (predictive) PMS. 

A lab-scale (stand-alone) hybrid energy system, which consisted of: an emulated 

renewable power source; battery bank; and hydrogen fuel cell coupled with metal 

hydride storage, satisfied the dynamic load demand. The overall power flow of the 

constructed system was controlled by a NN-based PMS which was implemented using 
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MATLAB and LabVIEW software. The effects of several control parameters, which are 

either hardware dependent or affect the predictive algorithm, on system performance 

was investigated under the predictive PMS, this was benchmarked against a rule-

based (non-intelligent) strategy.  

The fourth article investigated the potential impact of NN-based PMS on the economic 

and operational characteristics of such hybrid systems. That study benchmarked a 

rule-based PMS to its (predictive) counterpart. In addition, the effect of real-time fuel 

cell optimisation using PSO, when applied in the context of predictive PMS was also 

investigated. The comparative analysis was based on deriving the cost of energy, life 

cycle emissions, renewables penetration, and duty cycles of fuel cell and electrolyser 

units. The effects of other parameters such the LPSP level, prediction accuracy were 

also investigated.  

The developed techniques outperformed traditional approaches by drawing upon 

complex artificial intelligence models. The research could underpin cost-effective, 

reliable power supplies to remote communities as well as reducing the dependence on 

fossil fuels and the associated environmental footprint.  
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1 CHAPTER 1: GENERAL INTRODUCTION 

1.1 BACKGROUND  
Energy is an essential part of modern life. By converting it into different forms, energy 

sources help power all the important utilities, such as electricity and water. In the past 

century, the rapid increase in the world’s population plus a high standard of quality of 

life has increased global energy demand and it is expected to grow even faster and 

more significantly in the near future. To secure continuous energy supply, the world 

depends mostly on the use and existence of fossil fuels. Since electricity is the most 

common energy carrier, a considerable part of energy resources is used to generate 

electricity. According to the International Energy Agency (IEA), in 2012 fossil fuels were 

used to generate more than 67% of total electricity (Figure 1-1) [1]. The remaining 

electricity generation comes from hydro, nuclear and renewable energies. The 

projections for the future energy demand of most nations in the world show that 

economic growth is highly dependent on whether the ever-increasing energy demand 

can be met. The Australian electricity demand is projected to grow from 180,390 

gigawatt hours (GWh) in 2014–15 to 192,131 GWh in 2017–18, an average annual 

increase of 2.1% [2].  

 

Figure 1-1: Shares of energy sources used for electricity generation in 1973 and 2012 

[1]. 
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The electricity demand is generated mainly by thermal power plants that use fossil 

fuels such as coal, natural gas and oil. Australia relies more heavily on coal for 

electricity generation than global and Organization for Economic Co-operation and 

Development (OECD) averages [3]. Australia has 9% of the world's black coal reserves 

and 80% of the nation’s electricity demand is generated by coal-fired power stations 

[3]. Owing to its low price and relatively abundant reserves, it is expected that coal will 

continue to be the main electricity generation source, regardless of the pressure to 

reduce greenhouse gas and other air-pollutant emissions. Natural gas power-

generation technology is another option for electricity generation because of its 

operation flexibility, fuel efficiency and lower installation costs compared to other 

conventional generation technologies. Oil is not a major source for electric power 

because the major petroleum products are used mainly for transportation purposes, 

such as car fuel and aviation fuel. While the demand for oil keeps increasing, the 

shortage and uneven distribution of its reserves are some of the major problems for 

using oil as a power source.  

Electricity can be generated by technologies other than the widely used ones 

mentioned above; for example, nuclear, hydropower energy. Nuclear energy is an 

important source of electricity generation in many developed countries, but the 

contribution of nuclear energy to the world’s electricity generation is very small because 

of the limitations on the access of nuclear technology for emerging and developing 

nations, concerns about the safety of nuclear power plants and the environmental 

impact of nuclear waste. In addition, public perception of nuclear energy has changed 

after the severe and long-term damage that happened because of the Chernobyl 

disaster (1986), and the Japanese nuclear plant catastrophe (2011) [4].  

Nowadays, hydropower is the largest renewable source for electricity generation in the 

world. In 2012, more than 16% of the world electricity was supplied by hydropower, and 

this percentage is expected to grow slightly owing to large hydropower electricity 

generation projects in the regions with emerging economies. Although hydropower is 

clean and renewable, there are some negative and unavoidable environmental and 

social side effects resulting from the dams and reservoirs needed to build the 

hydropower plants. In addition, hydropower is not as abundant as other renewable 

energy sources. Alternative power generating technologies such as wind generators, 

solar-photovoltaic (solar-PV) panels, fuel cells, biomass power plants and, geothermal 

power stations have also been used for electricity generation, but the contributions of 

these technologies to the total world’s electricity generation is relatively small. In 
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Australia, for instance, statistics show that renewable energy provided only 14.76% of 

the nation’s electricity demand in 2013 [5]. The main reason is that renewable power 

plants are more costly to build compared to traditional power stations. 

The dependence on fossil fuels as the main energy source comes with major negative 

effects. Fossil fuel resources are finite and are not distributed evenly around the world. 

As a result, the price of these resources is continuously increasing as they are 

depleted, as well as a result of coincidental geopolitical factors which, in turn, affect the 

long-term energy security of many nations. Moreover, the emissions resulting from 

fossil fuels have a negative effect on the environment, with the result that both climate 

change and increases in world temperature are believed to be a result of the extensive 

use of fossil fuels. All the aforementioned drawbacks have increased awareness of the 

environmental impact of using fossil fuels and the risks associated with nuclear energy. 

These have motivated the attempts to develop electricity generation technologies that 

use sustainable and environmentally friendly energy resources.  

1.2 ALTERNATIVE POWER GENERATION 
Alternative energy and renewable energy are often used interchangeably to refer to 

energy resources that are replenished naturally and can be used to generate power in 

an environmentally friendly way. There is a broad range of energy resources that can 

be classified as a renewables, such as wind, solar irradiance, hydrogen, biomass and 

geothermal energy. Although the majority of the world electricity nowadays is still 

generated by conventional power sources, many nations are moving towards reducing 

the dependence on fossil fuels by using alternative energy resources for electricity 

generation. The main motivations are the cost of non-renewably generated electricity 

and the environmental impact of fossil fuels. According to the US Energy Information 

Administration, the world crude oil price has increased from around $18 per barrel in 

1987 to $114 in 2014 [6]. Since fossil fuels are not renewable, it is expected that the 

price of these fuels will rise as the world reserves are depleted. Coal and natural gas 

are relatively cheaper than crude oil. However, the cost of electricity generated by 

these two sources would be much higher if the cost for reducing emissions were taken 

into account. On the other hand, alternative energy resources are not only renewable 

but also abundant. For instance, the earth’s surface receives around 100 times more 

solar energy than the all fossil consumption [7]. Moreover, some renewable resources 

such as wind and solar energy are available almost everywhere, which allows the 

installation of renewable power-generation systems close to load centres, thus avoiding 

costly energy transmission lines, which may exceed  $AU 1 million per kilometre [8], to 
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connect loads to centralised power-generation plants. This also makes renewable 

power systems suitable for supplying electricity to isolated inhabited areas, where there 

is no access to a large-scale public grid for electric power. Finally, unlike fossil fuels, 

renewables have no negative environmental impacts and no disposal costs are 

associated with them [7].  

In general, alternative/renewable power-generation systems have recently attracted 

increased interest because they are abundant, environmentally friendly and have 

modular structure, which make them very good candidates to improve energy security 

for nations that have no, or limited fossil fuel reserves. 

1.3 RENEWABLE ENERGY TECHNOLOGIES 

1.3.1 Wind energy conversion system  
The Wind Energy Conversion System (WECS) converts kinetic energy of the wind 

speed into electrical energy. Typically, a WECS consists of wind turbine blades, an 

electric generator, a power-conditioning and a control system. Different configurations 

of WECS are available based on the electrical generator used (synchronous or 

asynchronous), and the power-regulation mechanism employed (stall-regulated or 

pitch-regulated). The wind turbines can be classified according to the orientation of the 

rotors into vertical axis wind turbines and horizontal axis wind turbines as shown in 

Figure 1-2 [9]. Vertical axis wind turbines use a simple and low-cost blade design. Also, 

they are easy to maintain because the generator and gearbox are mounted on the 

ground. In addition, they require no yaw control because the wind can be received from 

any direction. However, this type has some disadvantages, such as low efficiency, 

difficulty in controlling blade over-speed and high oscillatory components in the 

aerodynamic torque [10, 11]. The horizontal axis wind turbine is mounted on a tower, in 

order to receive stronger winds. They are more efficient compared to vertical axis ones, 

and have lower cost-to power ratio but their design is more complex and more difficult 

to maintain, because the generator and gearbox are mounted on a tower [11].  
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Figure 1-2: Typical vertical axis and horizontal axis wind turbines [12]. 

The generator converts the mechanical torque from the wind rotor to electrical power. 

Different types of generators are used with wind turbines. DC generators of up to a few 

kilowatts in capacity are usually used with small wind turbines, while three-phase AC 

generators are used with modern wind turbines. Several types of AC generators are 

used with wind turbines including a Squirrel Cage rotor Induction Generator (SCIG), a 

Wound Rotor Induction Generator (WRIG), a Doubly Fed Induction Generator (DFIG), 

a Synchronous Generator (SG) and a Permanent Magnet Synchronous Generator 

(PMSG). The SCIG and WRIG are popular in commercial wind turbines because of 

their low price, robust structure, mechanical simplicity and resistance to disturbance 

and vibration [13]. The design of the DFIG allows it to operate at variable speeds with 

small and cheap converters [14], while the SG is favourable with respect to lifetime and 

maintenance, because it is connected directly to wind turbines with no gearbox [15]. In 

the PMSG, the magnetisation of the generator windings is provided by a permanent 

magnet pole system or DC supply. This feature provides a self-excitation property to 

the generator, which allows it to operate at high power factors and high efficiencies. 

The gearbox mechanically connects the wind turbine’s rotor and the electrical 

generator, and allows matching the generator speed to that of the turbine’s rotor. 
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However, the WECS with a gearbox is less efficient and, in some cases, less reliable 

[11].   

Beside the aforementioned main components, speed controllers are used with modern 

WECSs. The speed controlling methods are usually divided into constant-speed control 

and variable-speed control. Although the constant-speed control is easier to implement, 

variable-speed control has many more advantages, including reducing acoustical noise 

at lower wind speeds, minimising mechanical stress and reducing variations in the 

generated electrical power [16-18]. In addition, WECSs with variable-speed control use 

power converters to change the variable-amplitude and variable-frequency power 

resulting from the AC generator into constant-frequency and constant-amplitude power 

which can be used by useful loads, and attain maximum power transfer from the wind 

turbine to the load [19].        

1.3.1.1 Modelling wind energy conversion system 
In order to analyse performance and estimate the output power of wind turbines, 

different mathematical models of WECSs have been developed in the literature [20-22]. 

The operational performance of the wind turbine is usually modelled numerically using 

the following commonly used aerodynamic equation [11]: 

                          1.1 

where  is the wind speed and  is the mass of air passing the turbine blades at time 

period , given by: 

       1.2 

In this regard,  is the air density (kg/m3) and  is the swept area of the blades. Based 

on the above equations, wind power can be expressed as follows: 

                          1.3 

From this equation, it can be observed that the specific power of the wind is 

proportional to the cube of the wind speed. However, the actual power extracted by the 

wind turbine from the wind is less than the available power, and proportional to the 

difference between the upstream wind speed,  , at the entrance of the wind turbine’s 

rotor, and the downstream wind speed, , at the exit of the rotor according to the 

following formula: 

                          1.4 

The variable  represents the mass flow rate and can be expressed as: 

                          1.5 
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From equations 1.3 and 1.4, the mechanical power extracted by the turbine is given by: 

                          1.6 

where  is the power coefficient of the wind turbine and 

has a theoretical maximum value of 0.59, but in practice its value ranges between 0.4 

and 0.5 [23]. In relation to the electrical generators, the Thevenin equivalent circuit 

model [24] and  model [25] are commonly used to study the dynamic performance 

of induction and PMSG generators respectively. However, the aforementioned models 

are computationally expensive. To reduce the computational cost, other models, based 

on the polynomial fitting of the practical characteristic curves of the wind turbines, such 

as the one shown in Figure 1-3, are widely used in the literature [26, 27]. These types 

of wind turbine models can be represented by equation 1.7 where the values of   

and  are usually provided by manufacturers.   

                    
1.7 

 

Figure 1-3: Power-vs-wind speed curve of 2kW off-grid wind turbine [28]. 

Since wind speed near to ground changes with height according to the power law and 

as wind power is proportional to the cube of wind speed, the hub height has a great 

influence on the output of the wind turbine. Therefore, the wind-speed data should be 

converted to their corresponding values at the hub height when calculating the output 

of the wind turbine [29]. 
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1.3.2 Solar-PV panels 
The photovoltaic effect is a basic physical process through which solar energy is 

converted into electrical energy directly. The structure of a basic solar-PV cell, 

illustrated in Figure 1-4, is similar to a classical bipolar p-n junction diode [23]. When a 

solar-PV cell receives solar irradiance, the photon energy frees electrons from the 

semiconductor material which results in the creation of electron-hole pairs. The 

generated electrons are then dragged by the electric field through an external circuit to 

provide the electrical power to a load. Generally, there are two types of solar-PV cells, 

namely: non-concentrating and concentrating cells. The Non-concentrating solar-PV 

cells usually have the same interception and absorption area whereas concentrating 

solar-PV cells usually have concave reflecting surfaces to receive and concentrate 

solar irradiance to smaller areas, in order to get higher radiation flux. A solar-PV panel 

is formed by connecting several individual cells in series. 

 

Figure 1-4: Block diagram of a basic solar-PV cell [30].  

1.3.2.1 Modelling solar-PV panels 
A mathematical model of a solar-PV panel is useful in studying the behaviour of solar 

panels under different conditions of solar irradiation and temperature. It is also helpful 

in estimating the output power and studying the maximum power point-tracking 

algorithms of solar energy systems. The basic equation that describes the current-

voltage characteristics of an ideal single solar-PV cell is [31]: 

                     1.8 

where,  is the current generated by incident solar irradiance,  is the reverse 

saturation current of the diode,  is the thermal voltage (Boltzmann 
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constant, ;  is the operation temperature of the  junction and  

electron charge, ) and  is the forward resistance of the junction. 

Figure 1-5 shows a diagram of a single-diode model of a practical solar-PV cell. 

 

 

  

 

 

Figure 1-5: Single-diode model of practical solar-PV cell. 

As shown in Figure 1-5, a practical solar-PV cell includes a shunt resister, , in 

addition to the series resistor. To represent the practical solar-PV cell, additional 

parameters that take into account the effect of shunt resistor should be included into 

equation 1.8.The following equation represents the current-voltage characteristics of a 

practical solar-PV cell [31, 32]. 

                                 1.9 

The parameters of equation 1.9 can be determined using the data provided by the 

solar-PV panel manufacturers. Datasheets provided by the manufactures usually 

provide the following information: maximum output power, ; nominal short-circuit 

current, ; nominal open-circuit voltage, ; maximum power point voltage, ; 

maximum power point current, ; open-circuit voltage-temperature coefficient, ; 

and the short-circuit current-temperature coefficient, . These parameters are usually 

calculated under standard test conditions for temperature and solar irradiance. Apart 

from resisters, the required parameters can be retrieved directly from the datasheet. 

The effect of   is very small compared with , and determining the 

value of the shunt resister  involves iterative numerical calculations. Therefore, the 

shunt resister is usually ignored [33, 34]. However, considering that the biggest effect 

of the shunt resister on the current-voltage characteristics of solar-PV cell occurs at its 

minimum value, the minimum value of  can be estimated as follows [31]: 

                                                1.10 
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The resistor, , can be estimated roughly by calculating the slope of the linear region 

of the current-voltage curve provided by the manufacturer. 

The current of the solar-PV cell depends linearly on the solar irradiance and the cell’s 

temperature according to the following equation [35, 36]: 

                          1-11 

In the above formula, is the generated current (A) at nominal conditions (usually 

25° and 1000W/m2),  is the difference between the actual, , and nominal, , 

temperatures (K).  (W/m2) is the solar irradiance on the cell surface, and  is the 

nominal irradiance.  

The diode saturation current, , is also dependent on the temperature and may be 

expressed as follows [37, 38]: 

                          1-12 

Where,  is the bandgap energy of the semiconductor and  is the nominal 

saturation current which is calculated as [31]: 

                      1-13 

with  being the thermal voltage at nominal temperature. Solar panels have a 

negative temperature coefficient which means that their performance declines as 

temperature rises. The temperature coefficient dependence of solar-PV panels has 

been studied by many researchers in order to estimate the annual output of a solar-PV 

system in an actual operating environment [39, 40]. It is found that an improvement of 

the temperature coefficient by 0.1%/C° results in around 1%  increase of the annual 

output [41]. This highlights the importance of considering the effect of environment on 

the solar-PV panels’ performance. However, many studies that focus on sizing 

renewable energy systems have ignored this aspect maybe for simplicity reasons [42-

45].   

1.3.3 Hydrogen energy system (fuel cells, hydrogen storage, electrolyser) 

Hydrogen is the most abundant element in the universe in the form of water and 

hydrocarbons, and exhibits the highest heating value per mass of all chemical fuels. 

Hydrogen is also regenerative and environmentally friendly. However, hydrogen is not 

the major fuel for today’s energy consumption because is just an energy carrier. 
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Therefore, in order to use it in energy systems, hydrogen has to be produced, stored 

and converted to a useful energy form. A hydrogen energy system can provide a 

sustainable and eco-friendly backup power source for renewable energy systems. This 

type of energy system usually consists of fuel cells, electrolysers and hydrogen 

storage. Fuel cells, which convert the chemical energy of hydrogen and oxygen into DC 

electrical energy [46, 47], may become the power source of the future because they 

have many advantages over traditional power sources such as diesel generators. Fuel 

cells generate zero or low pollutant emissions, have higher efficiency and flexible 

modular structure. The basic structure of a fuel cell (see Figure 1-6) consists of a 

negatively charged electrode (anode) and a positively charged electrode (cathode) and 

an electrolyte layer in the middle. In general, there are five major types of fuel cells, 

differentiated by the electrolyte used in the cells, and they are: proton exchange 

membrane fuel cell (PEM); alkaline fuel cell (AFC); phosphoric acid fuel cell (PAFC); 

molten carbonate fuel cell (MCFC); and solid oxide fuel cell (SOFC). Although they are 

different, they all work in the same general manner. Among the aforementioned types 

of fuel cells, PEMFC is widely used for stand-alone hybrid renewable energy system 

applications [48-51]. One of the advantages of the PEMFC is its high power density 

and high efficiency (40-45%). This makes the technology competitive in transportation 

and stationary applications. Another benefit is its lower operating temperature (between 

60°C and 80°C). 
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Figure 1-6: Schematic diagram of a PEM fuel cell [30]. 

An electrolyser breaks down water to produce hydrogen and oxygen. Water electrolysis 

was firstly discovered by Nicholson and Carlisle at the beginning of the nineteenth 

century, when they observed the development of hydrogen gas during experiments to 

replicate the voltaic pile [52]. There are two main categories of water electrolysis: high-

temperature water electrolysis; and low temperature water electrolysis [46]. PEM 

electrolysers and alkaline electrolysers fall into the low-temperature category and are 

well established and readily available on the market [53]. The PEM electrolyser shares 

a number of similarities with its PEM fuel cell counterpart. Alkaline electrolysers are a 

well-proven technology and more favourable than their PEM counterpart because they 

do not use expensive catalysts, and their unit cost is much lower. Both Alkaline and 

PEM technologies have the ability to deliver pressurised hydrogen without a 

compressor, 99.999% pure, dry and carbon-free hydrogen [46]. These features make 

Alkaline and PEM electrolysers well suited to couple with energy sources such as wind 

and solar for on-site hydrogen production.  

Hydrogen can be stored using six different methods, which are high-pressure gas 

cylinders; liquid hydrogen in cryogenic tanks; adsorbed hydrogen on materials with a 

large specific surface area; absorbed on interstitial sites in a host metal at ambient 

pressure and temperature; chemically bonded in covalent and ionic compounds at 

ambient pressure; and through the oxidation of reactive metals [54]. Although high-

pressure gas cylinders are the most common storage method, the interest in using 

metal hydrides for hydrogen storage in stationary and small-scale fuel cell applications 

has increased recently owing to advantageous characteristics such as high volumetric 

density, large number of charge-discharge cycles and better safety compared to 

conventional methods [55]. In addition, metal hydride storage canisters store hydrogen 

at moderate and relatively easy-to-handle pressures between 8 and 30 bar, which is 

typically the outlet pressure of electrolysers [56]. Therefore, a costly and difficult-to-

operate hydrogen compressor can be avoided.   

1.3.3.1 Fuel cell modelling 
Mathematical models of fuel cells are useful tools to predict their performance. Many 

models have been proposed in the literature that aim to accurately simulate the 

performance of different types of fuel cells, ranging from one-dimensional non-

isothermal models to three-dimensional non-isothermal and non-isobaric models [57-

61]. However, some of the presented models emphasise material structure parameters 
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which may not be suitable for studying the performance of fuel cells in the context of a 

complete hybrid energy system. Among the available models, the ones that consider 

voltage-current characteristics are considered more suitable for long-term performance 

simulation, because they are not computationally expensive. The reactions that take 

place at the anode and cathode of a PEM fuel cell are as follows: 

Anode:                           1.14 

Cathode:                           1.15 

The following equation describes the voltage-current characteristics that take into 

account the activation overvoltage, the ohmic overvoltage from the resistances in the 

cell as well the mass transport limitations [47, 62]: 

                          1.16 

where,  ( ) is the open circuit voltage for the PEM fuel cell;  ( ) is the Tafel slope 

for the PEM fuel cell;  ( ) is the current density for the PEM fuel cell; ( ) is a 

parameter for the overvoltage owing to mass transportation limitations for the PEM fuel 

cell; and ( ) is the parameter for the overvoltage as a result of mass 

transportation limitations for the PEM fuel cell. The open circuit voltage of a PEM fuel 

cell is given as follows: 

                          1.17 

where,  ( ) is the theoretical reversible voltage for the PEM fuel cell and  

( ) is the Tafel parameter for the PEM fuel cell.  

1.3.3.2 Electrolyser modelling 
The opposite reactions that occur in a fuel cell take place in an electrolyser. The 

reactions that take place at the anode and the cathode of a PEM electrolyser are as 

follows [45]: 

Anode:                           1.18 

Cathode:                           1.19 

Through this reaction, water is broken down and hydrogen evolves in the cathode, 

whereas oxygen evolves in the anode, and at the same time, water is regenerated. In 

order to model the voltage-current characteristics of the PEM electrolyser, the 

overvoltage that occurs at the cathode and anode, as well as the ohmic resistance, 

must be taken into account. The voltage-current characteristics of a PEM electrolyser 

cell are given as follows [45]: 
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1.20 

where,  ( ) is the reversible cell voltage at standard conditions; ( ), 

( ) are the parameters of ohmic resistance of each cell;  ( ),  ( ), 

 ( ),  ( ) are the overvoltage parameters for each cell;  is the 

area of the cell ( ); and  is the cell temperature ( ). The reversible voltage is the 

maximum voltage that can be applied across the electrolyser’s electrodes. The above 

formula is also applicable for alkaline electrolysers, and the hydrogen production rate 

for PEM and Alkaline electrolysers can be estimated by Faraday’s Law [47]. 

1.4 HYBRID RENEWABLE ENERGY SYSTEMS 
Several methodologies have been used to overcome the drawbacks of renewable 

energy resources. Utilising more than one renewable energy source to serve the same 

load is one of the methodologies used to improve reliability. In addition, energy storage 

devices and/or diesel generators are used to supplement power during the failure of 

renewable resources [63]. These kinds of multisource power systems and storage 

facilities are known as ‘hybrid renewable energy systems’ and there are several viable 

configurations [64]. Examples include: wind-battery; wind-diesel [65]; photovoltaic-

battery [66]; photovoltaic-diesel; wind-battery-diesel [67]; photovoltaic-battery-diesel 

[68, 69]; and wind-photovoltaic-battery-diesel [70]. Among the aforementioned 

configurations, only the ones that have no diesel generator can be considered totally 

renewable. In addition, a wind, solar and hydrogen fuel cell combination may be 

considered the most suitable for small scale stand-alone applications. Unlike ocean 

and hydropower energy, which are considered renewable, wind and solar energy are 

available almost everywhere. Another advantage is that wind and solar energy are 

totally pollution-free compared to biomass energy, for example, which is also 

considered renewable but still produce some greenhouse gases, and also needs some 

pre-processing before being converted to electric power [71]. Hydrogen fuel cells are 

another power-generation technology that uses chemical reactions, like batteries, to 

produce electricity. On the other hand, hydrogen fuel cells are similar to diesel 

generators in the sense that they can generate electricity as long as a fuel (hydrogen 

and air) is supplied, but with no greenhouse emissions. Moreover, hydrogen fuel cells 

are less expensive and require less space compared to flywheels and are more reliable 

alternatives than batteries [72]. Therefore, a stand-alone wind/solar/hydrogen 

configuration could be a good candidate to provide clean and relatively inexpensive 

power supply for small remote communities.  
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1.4.1 Design of hydrogen-based renewable energy systems 
Three main interrelated challenges face designers to achieve reliable, efficient and 

cost-effective hydrogen based renewable energy systems for stand-alone applications. 

Prolonged profiles, typically of one year, of renewable resources at the project’s 

location are needed to assess the feasibility of using renewable energy technologies 

for power generation. The issue is that measured wind and solar energy profiles for 

rural and remote regions are not usually available. Therefore, accurate methodologies 

to forecast the availability of renewable energy resources in remote and rural regions 

must be developed. Accurate long-term estimation of the available renewable 

resources is very important as it helps to avoid over-estimating the energy system, 

which results in extensive investment in a power system that is not fully used, and 

underestimating the energy system, which results in designing a power system that is 

not able to satisfy the load demand. In addition, the short-term prediction of the 

available renewable energy is also important as it is needed to support wiser power 

management decisions in hybrid systems. Another challenge is related to considering 

multiple conflicted objectives when designing hybrid renewable energy systems. 

Nowadays, objectives such as minimising greenhouse emissions, maximising 

efficiency and reliability are as important as minimising the cost of energy generation. 

Unfortunately, these are conflicting objectives and it may not be possible to realise 

them at the same time. Therefore, design methodologies are needed to design energy 

systems that possess an optimal compromise between several conflicting objectives. 

Moreover, a proper coordination between the subcomponents is vital for a hybrid 

energy system to serve the load, while keeping the operation of each component within 

an acceptable range of technical constraints. The failure of properly controlling the 

system may result in degrading the operation and lifetime of the components, as well 

as not satisfying the load demand. This introduces another challenge for designers to 

find power management strategies that guarantee optimal system operation.  

1.4.1.1 Reliability analysis 
The intermittent nature of renewable energy resources such as wind and solar, greatly 

influences the ability of a hybrid system to generate power continuously. Therefore, 

power-reliability assessment is an important step in the design of hybrid renewable 

energy systems. Several reliability analysis methods are used to assess the reliability 

of hybrid systems such as: Loss of Energy Expected (LOEE); Loss of Load Expected 

(LOLE); Loss of Load Probability (LOLP); System Performance Level (SPL); and Loss 

of Load Hours (LOLH) [44, 73, 74]. The most common method is the Loss of Power 
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Supply Probability (LPSP) index [75], which represents the probability that an 

insufficient power supply results when the hybrid system is not able to satisfy the load 

demand over a particular time period [76]. The values of LPSP vary between 0 and 1, 

with LPSP=1 meaning the load is never satisfied, while LPSP=0 indicates a load will 

always be satisfied. To apply the LPSP reliability analysis when designing hybrid 

renewable energy systems, chronological and probabilistic techniques are used. The 

chronological technique is easy to implement but computationally onerous, and 

requires the availability of data spanning a certain period of time. In contrast, the 

probabilistic technique uses probability methods to incorporate the renewables and 

load intermittency, thus eliminating the need for time-series data.  

1.4.1.2 System cost analysis 
Several cost analysis models exist, such as the Levelised Cost of Energy (LCOE) [26], 

Life Cycle Cost (LCC) [77] and Net Present Cost (NPC) [78], and are available in the 

literature. The LCOE is defined as the ratio of the total annual cost of the system to the 

annual electricity delivered by the system [79], and has been widely used to evaluate 

the economics of hybrid renewable energy systems [64]. The NPC is the total present 

value of a time series of cash flow, which includes the initial cost of all system 

components, the cost of any component replacements that occur within the project 

lifetime and the cost of maintenance. The NPC also takes into account any salvage 

costs of the components at the end of the project lifetime. The system lifetime is usually 

considered the life of the component that has the longest lifespan. More details about 

the calculation of NPC can be found in [78, 80].  
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2 CHAPTER 2: OPTIMISATION OF HYBRID RENEWABLE ENERGY SYSTEMS 

Optimisation has been applied to several aspects of renewable energy systems 

including. Optimally designing hybrid energy systems is necessary to utilise the 

renewable resources efficiently, and obtain the lowest investment with the maximum 

usage of the system subcomponents. Researchers developed many methods and 

techniques to optimise the sizing and operation of different configurations of renewable 

energy systems as well as forecasting the availability of renewable resources. This 

chapter reviews methods and techniques used to optimise the system sizing and 

resources forecasting. Identifying research gaps is rendered to the ensuing chapters.      

2.1 Component sizing   
Various optimisation methods have been used for sizing hybrid renewable energy 

systems such as graphic construction methods, probabilistic methods, iterative 

methods and intelligent methods [1-7]. Sizing methods which are based on worse 

scenarios or average values of solar or wind resources are simple [8, 9], but designs 

obtained by this methods tend to be oversized because the worst case has a low 

occurrence probability and the average values are not constant all the time. In this 

sense, methodologies that use long time series of weather and electrical load profiles 

are developed, and the most common tool that uses this approach is HOMER software 

[10-13]. However, as the complexity of the system increases, the number of 

simulations also increases exponentially, with a consequent increase in the time and 

effort required. In addition, these methods cannot be helpful if the design involved more 

than one objective (multi-objective optimisation) and the optimisation time rapidly 

increases as the design variables grow. 

Intelligent optimisation methods have been used extensively for sizing hybrid 

renewable energy systems, because of their ability to handle complex problems with 

multi-linear or non-linear cost objectives [14]. These techniques generally mimic the 

natural biological evolution and/or the social behaviour of species. Such algorithms 

have been developed to arrive at near-optimum solutions to large-scale optimisation 

problems, for which traditional mathematical techniques may fail. Various intelligent 

optimisation techniques for hybrid energy systems sizing are reported in the literature 

[15-18]. Various intelligent techniques such as Genetic Algorithms (GAs) [19], Particle 

Swarm Optimisation [6], Fuzzy Logic (FL), Simulated Annealing (SA) [20, 21], Harmony 

Search (HS) [22, 23], Artificial Bee Swarm (ABS) [24] and Tabu Search (TS) [25] have 

been utilized by researchers to design hybrid renewable energy systems in a cost 
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effective way. Combinations of the aforementioned techniques have also been used by 

researches to size hybrid renewable energy systems optimally [22, 26-28]. For more 

information about the intelligent techniques used for designing and sizing hybrid 

renewable energy systems, readers are referred to the following two review articles 

[29, 30]. Among the abovementioned techniques, GAs and PSO has extensively been 

used for optimising the size of hybrid renewable energy systems. GAs owes more 

complex structure which makes it relatively harder to code compared to PSO, and the 

time required to reach an optimal solution significantly increases as the number of 

optimisation variables increase [30-33]. GAs has the advantage of being able to jump 

easily out of a local minimum and find the global optimum efficiently [30]. In addition, 

GAs can be used to code infinite number of parameters which makes them suitable for 

sizing studies. Although both GA and PSO algorithms have excellent efficiency with 

similar iterative searching methods, the PSO has some advantages over GA. The 

computation time of PSO is shorter and requires lower memory capacity which makes 

it suitable for real-time optimisation applications, where the speed at which the search 

tool finds an optimal solution is important. However, the reliability for finding the global 

solution of a search area is lower than GA. In addition, the PSO is less suitable than 

GA for problems consisting of more than three parameters as PSO is based on a 

coordinate definition of particles and the mentioned coordinates can only be defined on 

the x, y, z plane. Therefore, in this research GA will be applied for optimising the 

component sizing of the proposed stand-alone hydrogen-based renewable energy 

systems while PSO will be employed for optimising the real-time components 

coordination. The following subsections briefly describes The GA and PSO techniques. 

The identification of research shortfalls in the sizing of stand-alone hydrogen-based 

renewable energy systems is rendered to Chapter 3.     

2.1.1 Genetic algorithm 
Genetic Algorithm (GA) is an adaptive heuristic search technique based on the 

evolutionary ideas of natural selection and genetics. As such, it represents an 

intelligent exploitation of a random search used to solve non-linear optimisation 

problems. GAs have been applied to solve difficult optimisation problems because of its 

suitability for problems with non-continuous, non-differentiable and highly non-linear 

objective functions. The basic GA consists of five components: an initial random 

population generator; a fitness evaluation unit; genetic operators for selection; 

crossover; and mutation operations [34]. To solve any optimisation problem, a GA 

initially generates random solutions and evaluates them according to the defined 
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objective function. The selection operator selects the predefined percentage of initial 

solutions based on their fitness value [35]. The selected solutions are then utilised by 

the crossover operator to provide new possible solutions with the aim of achieving 

higher fitness values. A typical constrained optimisation problem that can be solved 

using a GA is in the following form: 

                           2.1 

Subject to the constraint: . To solve such a problem using a GA, the 

variable  is formed in an array structure that contains all the problem variables. In 

addition, a fitness function must be defined as an input to the GA. Moreover, the values 

for GA operators should be provided before the GA-based optimisation process.  

2.1.2 Particle swarm optimisation 

PSO is also a population-based stochastic search technique inspired by the social 

behaviour of flocking birds, schooling fish and swarm theory, and was first presented 

by Kennedy and Eberhart in 1995 [36]. PSO is similar to other evolutionary optimisation 

techniques such as GAs. However, unlike GA, PSO is simple in concept and has no 

evolution operators such as crossover and mutation.  

The original PSO maintains a population of particles ( ) which represents 

possible solutions to the optimisation problem and are initially distributed uniformly 

around the search space. The position of each particle, , in the swarm is updated as 

follows [37]: 

                          2.2 

Each particle in PSO is associated with a pseudo-velocity , 

which represents the rate of the position change for the particle [37]. The new velocity 

for each particle, , is defined based on its previous velocity, , and the distances 

of its current position, , from its own best, as well as the best experienced position of 

its own informants, , according to the following [37]: 

                          2.3 

where the subscripts  and  indicate a pseudo-time increment and the number of 

particles, respectively, and  represent uniform random numbers between 0 and 1 

and are regenerated at each iteration, whereas  and  are cognitive and social 

parameters, respectively.  
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2.2 Renewable resources forecasting   
Time-series meteorological data are important for the design and feasibility studies of 

renewable energy systems. The global whether data could be obtained from internet or 

local meteorological station, but these data are not always available and may not be 

suitable for deciding the best feasible solutions for energy systems. Satellite data can 

be used for estimating renewable resources such as solar irradiance. However, these 

data may not be easily accessible especially in emerging or non-developed nations. 

Instead, site-to-site basis weather data (typically hourly resolved solar irradiance, wind 

speed and temperature) are usually needed. Measured records of meteorological 

variables for extended periods of time are not available for many locations [38]. When 

measured weather data do not exist, two ways can be mainly used to estimate these 

data for any location. Firstly, the necessary data may be synthetically generated from 

monthly-average values of the meteorological data. Secondly, measurements from 

nearby sites may be extrapolated by making necessary adjustments [39]. While 

accurate models are needed for the first, the second approach may not be useful in 

locations with rough earth topology. A lot of research have been done on solar and 

wind energy resource estimation and analysis [40, 41]. The following subsections 

review some of methods developed for solar irradiance and wind speed forecasting.   

2.2.1 Solar irradiance forecasting 

Various computational models are available in the literature including linear regression 

models [42, 43], satellite-data-based models [44, 45] and NN models [46-49], for solar 

irradiance forecasting. However, the abovementioned models require the availability of 

meteorological data or detailed information of atmospheric conditions. As neither 

developing methodology for forecasting solar irradiance data nor studying the accuracy 

of existing models are among the objectives of this PhD thesis, a well-known and 

simple method for estimating solar irradiance is used for solar power estimation 

purposes. This method was developed by the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) algorithm [50], and is widely 

used by engineering communities, especially for renewable energy applications [51]. 

This model is simple to implement and can be used to forecast solar irradiance data for 

any location.   



28 

 

2.2.1.1 ASHRAE model 

In the ASHRAE model, the hourly global irradiance ( ), hourly beam irradiance in the 

direction of rays ( ) and the hourly diffusion radiation ( ) on the horizontal surface of a 

clear sky are calculated by using the following formulas [52]:       

                          2.4 

                          2.5 

                          2.6 

where  is the apparent solar irradiance constant,  is the atmospheric extinction 

coefficient and  is the diffuse sky factor. The  shown in equations 2.4 and 2.5 is the 

zenith angle and its cosine is given as follows:   

                         2.7 

In the above equation,  is the latitude of the location,  is the hour angle and  is the 

solar declination, whose value can be obtained by the following formula [53]:  

                          2.8 

where  is the number of days of the year starting from January. The hour angle ( ) is 

an angular measure of time and is equivalent to 15°h-1. It is measured from noon-based 

Local Apparent Time ( ).  

                          2.9 

The value of the  can be obtained from the Standard Time (ST) by using the 

following equation: 

                          2.10 

In this regard,  is the standard meridian for the local time zone,  is the longitude of 

the location and  is the equation of time correction (in minutes).   

                          
2.11 

where,   and  day of the year. 

2.2.2 Wind resource forecasting 
The intermittency of wind energy is one of the biggest challenges to integrating wind 

power into modern electricity systems. The power generated by a wind turbine 

depends on the variation of wind speed which affects the reliability and quality of the 

electricity supply [54]. The ability to accurately predict the availability of wind energy 

resources is known to be efficient tool to overcome the aforementioned problems and 
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others [55-57]. Several prediction methods are employed to forecast the availability of 

wind energy, which include persistence, physical, statistical and hybrid methods. In the 

persistence method, the prediction of wind speed is set equal to the last available 

measurement. In other words, the last measured value is assumed to persist into the 

future without any change [58]: 

                          2.12 

where  is the measured value at time step  and  is the prediction for the 

next step. The physical methods use meteorological data such as temperature, 

pressure, surface roughness and obstacles along with wind-speed measurements to 

forecast future wind speed. In the physical wind speed forecasting methods, complex 

models are used to perform the predictions which make these methods computationally 

expensive. However, the accuracy of the physical methods is affected by the variations 

of wind speed, which limit their usefulness [59]. The statistical methods do not use any 

predefined mathematical models and rather rely on training with past measurements, 

using the difference between the predicted and the actual wind measurements in the 

immediate past to tune model parameters [59, 60]. Numerical Weather Prediction 

(NWP) model is an examples of statistical prediction methods that are fast and 

inexpensive to implement. However, NWP usually exhibit systematic errors in the 

forecast of some meteorological parameters especially near the surface [61]. A 

methodologies to improve the accuracy of NWP model are proposed in the literature 

[61]. However, the performance of these models substantially varies between seasons 

[62]. This highlights the importance of considering the seasonal effect on the accuracy 

of renewable resources forecasting methods. In addition to Neural Networks (NNs), 

Auto-Regressive Moving Average (ARMA) models including seasonal-ARMA, Auto 

Regressive Integrated Moving Average (ARIMA), seasonal- ARIMA and fractional-

ARIMA, ARMA with exogenous models are popular time-series based approaches to 

predict wind speed [63-70]. Generally, NNs outperform ARMA models though this is 

not necessarily universal, and the NNs prediction accuracy can be further improved by 

diversifying the training data [63]. Therefore, NNs will be used in this research for wind 

speed forecasting and the accuracy of this tool will be investigated. Chapter 4 contains 

further analysis to current studies on the forecasting of wind energy resources. 

Identifying the research gaps in the forecasting of wind energy resources will also be 

considered in Chapter 4.  
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2.2.2.1 Neural Networks 
A Neural Network (NN) is a collection of interconnected computational units (nodes) 

which mimic the structure of the human brain. Each node has many inputs and a single 

output that connects it to other nodes. Figure 2-1 shows the basic structure of an NN 

unit. 
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Figure 2-1: Diagram of single artificial neural network unit. Input arrows are from other 

units and each one is associated with a quantity called weight. The unit has only one 

output value.  

The unit output is a function of the summation of the input values multiplied by their 

corresponding weights. A typical NN consists of several layers of single units, each of 

which is connected to other units in the ensuing layer. Data are presented to the NN via 

an input layer, while an output layer holds the response of the network. One or more 

hidden layers may also exist. To perform any task, the network must first be trained 

with respect to input-output data-sets until it learns the relationship between the training 

data. After that, new input data sets may be presented to the network for prediction or 

classification. The fact that NNs can be trained to recognise the relationships in data 

from real systems or from physical models, computer programs or other sources,  gives 

them a great advantage over other techniques for modelling complex and non-linear 

processes without having to assume the form of the relationship between input and 

output variables.  

2.3 Power management strategy 
Power management strategy controls how hybrid energy system components work 

collaboratively to satisfy load requirements. It is also responsible for keeping the 

system components work within their technical constraints to ensure safe and 

prolonged operation. Several power management strategies that use reactive 

algorithms to control the system operation are available in the literature [71-73]. These 
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strategies use if-else approaches to passively react to the changes of renewable 

resources and load demand changes. The main conclusion from these studies is that 

power management strategy strongly affect the components lifetime. There are also 

studies propose applying optimisation based energy management strategies [74, 75] 

which operate the system while continuously minimise or maximise a particular cost 

function using intelligent techniques such as GA [76]. Other strategies use other 

intelligent techniques such as fuzzy logic [77-79] and NNs [80] for controlling the 

switching of the system subcomponents. However, many of the proposed “intelligent” 

power management strategies, especially the ones based on NNs, have not been 

experimentally validated. Therefore, this research will introduce a methodology for 

validating NN-based “intelligent” power management strategy. More analysis of the 

current literature and identifying the research gaps regarding power management 

strategies for hybrid renewable energy systems are rendered to Chapter 5 and Chapter 

6.  

2.4 RESEARCH OBJECTIVES 
The main focus of this research was on using intelligent techniques to improve the 

reliability and cost-effectiveness of a hydrogen-based stand-alone renewable energy 

system. To archive this, research was undertaken focusing on three main aspects 

involved with the design and operation of stand-alone hydrogen-based renewable 

energy systems.  

The first investigated the effectiveness of using probabilistic (intelligent) search 

techniques to improve the efficiency of stand-alone hydrogen energy systems, by 

including design objectives related to the level of renewables penetration alongside 

cost and environmental footprint objectives. The research did not involve the effect of 

the system’s operation strategy nor compare different types of intelligent search 

techniques. The second investigated the effectiveness of using prediction (intelligent) 

techniques for forecasting renewable energy resources in remote areas, where 

measured profiles are not available and the accuracy of such techniques for 

forecasting the available renewable power was assessed. The last investigated the 

effectiveness of using prediction techniques to control the operation of hydrogen-based 

renewable energy systems.  

The primary objectives of the research project were to develop: 

1- A multi-objective sizing methodology for a stand-alone hydrogen energy system 

that considers the reliability, renewables utilisation, environmental impact, as 
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well as the system cost using Genetic Algorithms. Such a sizing methodology 

may help designing more efficient, environmentally friendly and cost-effective 

hybrid energy system. 

2- A neural networks training methodology that uses readily available 

meteorological data at remote location for short-term wind energy and wind 

power forecasting. Such a methodology may help improve the neural network 

prediction accuracy and mitigate the effect of seasonal variations of renewable 

resources on wind power predictions.   

3- Validate an NN-based (Predictive) power management strategy to control the 

operation of a stand-alone hydrogen based renewable energy systems. And, 

4- Investigate the impact of NN-based (predictive) power management strategies 

on the economic and operational aspects of the system. An intelligent power 

management strategy based on NNs may help improve renewables utilisation 

and in turn reduce the hybrid renewable energy systems cost.  

Although the conducted research is in the context of Western Australian conditions, the 

specific objectives of the research project were intended to be generic and applicable 

to other regions and hybrid energy system configurations.  

2.5 RESEARCH SCOPE 
 Although there are several types of renewable energy resources, the energy resources 

in this research are confined to wind, and solar energy, when used in conjunction with 

a hydrogen energy system to supply electric power to remote areas in a stand-alone 

mode. The main focus is to use intelligent techniques to improve the design and 

operation of Wind/Solar/Hydrogen systems. The hydrogen energy system used in this 

research consists of a PEM fuel cell, a PEM electrolyser and near-atmospheric-

pressure hydrogen canisters. Except for the PEM fuel cell, which has a relatively slow 

response, the transient characteristics of the sub-components are ignored. In addition, 

the dynamic characteristics of the power-conditioning units (DC/DC, DC/AC and 

AC/DC converters), and the dynamics and efficiencies of hydrogen storage, are 

beyond the scope of this research. Studying the forecasting accuracy of solar 

irradiance will also not be considered. The optimal sizing and control of the stand-alone 

power systems studied in this research are investigated on a system operation level. 

2.6 RESEARCH SIGNIFICANCE 
The research outcomes have significance for the feasibility of stand-alone renewable 

energy systems to supplying electric power to remote communities, as well as reducing 
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dependence on fossil fuels. The methodologies reported in this research contribute 

towards improving the design and operation of hydrogen-based stand-alone renewable 

energy systems that have less environmental footprint, more efficient renewables 

utilisation and a higher investment return. 

2.7 ORGANISATION OF THE THESIS 
The ensuing four chapters of the thesis are formed of journal articles, which are either 

published or under review in peer-reviewed journals followed by a general discussion 

and conclusions chapters. Brief summaries for these chapters are as follows: 

Chapter 3 presents a multi-objective methodology to optimise stand-alone hydrogen 

systems. The methodology considers three objective functions: minimising net present 

cost; whole life cycle emissions; and dumped/excess energy. The presented 

methodology incorporates a novel reliability assessment index that considers start-up 

transients of back-up power devices. 

Chapter 4 investigates factors that can affect the accuracy of short-term wind speed 

and wind-power predictions when done over long periods, spanning different seasons.    

Chapter 5 presents the methodology and experimental validation of a lab-scale 

(desktop) energy system controlled by an intelligent power management strategy. The 

tested methodology uses (real-time) neural network predictions to manage the power 

flow of hydrogen-based stand-alone renewable energy systems. 

Chapter 6 investigates the possible impact of intelligent power management strategies 

of the economic and operational characteristics of stand-alone hydrogen energy 

systems. 

A general discussion for the research methodologies and results followed by general 

conclusions are presented in chapter 7 and chapter 8 respectively. 
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3 CHAPTER 3: THE INTERPLAY BETWEEN RENEWABLES PENETRATION, 
COSTING AND EMISSIONS IN THE SIZING OF STAND-ALONE HYDROGEN 
SYSTEMS 

A. Brka, Y. M. Al-Abdeli, and G. Kothapalli 

This chapter was published as an article in the International Journal of Hydrogen 

Energy, 2015 vol. 40, Issue 1, pp 125-135. Whilst all efforts were made to retain the 

original features of this article, minor changes such as the layout, number formats, and 

font size and style were implemented in order to maintain consistency in the formatting 

style of the thesis. 

3.1  ABSTRACT 
Multi-objective Genetic Algorithms are used to optimise three stand-alone hydrogen 

systems (WG-H2, WG/PV-H2 and PV-H2) under three different objective functions: 

minimising (hardware) Net Present Cost – NPC ($), whole Life Cycle Emissions – LCE 

(CO2-eq/yr) and dumped/Excess Energy –EE (%) at low demand. Optimisations 

considering Excess Energy haven’t been reported before. Simulations are implemented 

using MATLAB, incorporate experimentally resolved fuel cell start-up transients, and 

dynamic profiles for wind speed, solar irradiance as well as electric load demand. 

Results indicate the significance of integrating fuel cell start-up into the LPSP when 

optimising systems, another aspect not reported before and a modified LPSP is 

introduced. Furthermore, when sizing energy systems by reducing LCE, EE, and NPC, 

the favoured hybrid architecture appears to be WG-H2 over the others studied. For the 

same LPSP, an interesting finding is that increased renewables penetration (reduced 

dumped loads) affects the optimised solution but comes at a cost.    

3.2 INTRODUCTION 
Because renewable energy resources are unpredictable and intermittent in nature, 

research has been conducted to better forecast renewables (wind, solar-PV) and their 

integration into stand-alone [1] and hydrogen systems [2]. Consequently, these 

technologies are sometimes perceived as having poor reliability compared to traditional 

decentralised power such as diesel generators [3, 4]. Although there are no 

greenhouse gases generated by hardware during renewable energy conversion, these 

devices are still responsible for greenhouse gas emissions during their lifetime (cradle-

to-grave) [5-7]. Other problems cited with adopting renewable energy systems relate to 
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the high cost of conversion technologies and the need to sometimes dump “excess” 

power generated [8].  

Several approaches have been followed to tackle the drawbacks of renewable energy 

systems. Combining more than one energy source (hybridising) and incorporating 

means of energy storage are used to increase system reliability [9, 10] and provide 

limited excess storage. In this regard, batteries, capacitors and hydrogen technology 

(electrolyser, hydrogen storage and fuel cell) are amongst the most cited (non-

thermally based) energy storage means. Lead-acid batteries are traditionally used as 

short-term energy storage because of low capital cost. However, there are many 

environmental concerns with using batteries [8] in addition to having relatively small 

lifespans and appreciable operational and maintenance costs [11]. In contrast, 

hydrogen storage is perceived as being more eco-friendly and more easily expandable 

but suffers from relatively high capital cost [12] as hybridisation of storage technologies 

can increase overall system complexity and, in turn, the cost of the energy system. In 

addition, a well-founded compromise between the cost of energy storage (battery-vs-

hydrogen) and their associated lifetime environmental impact must be made. This 

makes it important to choose a combination of components which results in a 

systematic compromise between design objectives, operational reliabilities and 

environmental considerations. 

Studies have been conducted to optimally size hybrid renewable energy systems with 

the (sole) objective of minimising system cost. In this regard, Particle Swarm 

Optimisation (PSO), Tabu Search (TS), Simulated Annealing (SA), Harmony Search 

(HS) and Artificial Bee Swarm Optimisation (ABSO) have been recently used to 

minimise energy system cost [13-15]. These good works do not however account for 

transient device characteristics and only use single objectives. Even so, PSO is found 

to be the most robust between the aforementioned techniques [14], but its performance 

subject to the choice of acceleration parameters [16]. Additionally, comparative studies 

between PSO and Genetic Algorithms (GA’s) applied to hydrogen energy systems are 

not widespread in the literature. The reliability of the system in [13] was evaluated 

using several indices such as the Loss of Load Expected (LOLE) and Loss of Power 

Supply Probability (LPSP), both considering only steady state (nominal) power 

characteristics. A hybrid sizing (Net Present Cost) procedure that combines PSO and 

Harmony Search has also been proposed by Dehghan et al. [17] to optimally size a 

hydrogen-based energy system and the resulting reliability evaluated via the Equivalent 

Loss Factor (ELF) index. Other research [18] has used battery storage and diesel 
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generators with solar-PV and wind turbines to build small-scale stand-alone hybrid 

renewable energy systems for remote regions in India, but only considered life cycle 

cost and environmental impact. 

Although cost is an important aspect in the sizing of any energy system, other 

considerations such as consequential emissions or the reliability of meeting external 

(electric) loads are also important. To design hybrid energy systems which consider 

more than one sizing objective (i.e., not just cost, $/kW-hr), multi-objective optimisation 

based Genetic Algorithms (GAs) have been used. Examples include sizing a small 

autonomous renewable energy system with a diesel generator [7] by considering 

economic and environmental objectives. In such cases, economic objectives are 

generally to minimise the Cost of Energy (COE, $/kW-hr) whereas environmental 

objectives may be to minimise the CO2 (equivalent) emissions over the project lifetime. 

In addition to the economic and environmental objectives, Dufo-Lopez and Bernal-

Agustin [19] have considered reducing the unmet load as a third objective, thereby 

including operational (reliability) into their design objectives. However, they only 

considered steady state characteristics of primary movers (e.g fuel cells) and did not 

include maximising renewable energy penetration in their optimisation algorithm. The 

output of multi-objective optimisation algorithms is however not a single solution, but a 

group of non-dominant solutions where each individual solution cannot be optimised 

towards one objective without detracting from at least one of the other objectives. This 

constitutes the third aspect which Dufo-Lopez and Bernal-Agustin and others [7, 19, 

20] have not addressed and have left these decisions to system designers to choose. 

Such optimisation methodologies may not only be considered subjective, but also do 

not guarantee consistency or that selected solutions are indeed optimal. The approach 

used in the present paper overcomes these earlier limitations by applying a fuzzy 

membership function [21, 22] to decide which of the non-dominant solutions represents 

the optimal compromise between all system design objectives. Moreover, the solutions 

reached also analyse the effects of integrating experimentally resolved transient start-

up characteristics of fuel cells. 

Additionally, the percentage of waste converted (renewable) energy diverted to dump 

loads could reach 50% of total power generated [23]. Excess energy conversion may 

not only indicate oversized devices (e. g fuel cells, solar-PV panels and wind turbines) 

but also has flow-on effects onto operational, maintenance and decommissioning costs 

and a systems associated lifetime environmental impact. All these factors affect the 

techno-economic viability of stand-alone (hybridised) energy systems. This paper also 
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addresses such shortfalls by investigating the sizing of hydrogen based renewable 

energy systems in the context of multiple objectives. For a pre-determined reliability of 

meeting a load, the factors considered are Net Present Cost (NPC, $), Excess Energy 

delivered to dump loads (EE, %) and Life Cycle Emissions (LCE, CO2-eq/yr). The 

relative impact of the above optimisation is studied using a Multi-objective Genetic 

Algorithm in the context of three stand-alone hybrid renewable energy system 

configurations. These configurations also consider two energy storage technologies 

namely, hydrogen and battery. For the first time, a modified formula for the Loss of 

Power Supply Probability (LPSP) index, which considers load losses during fuel cell 

transient start-up, is also introduced to assess its effect on system reliability and its 

significance if the transient (start-up) characteristics of fuel cells are ignored. This is 

developed with practical testing to resolve fuel cell (transient) characteristics. 

In summary, the contributions of the present work focus not only on applying multi-

objective optimisation (i.e., the consideration of emissions, cost and renewables 

penetration) to stand-alone hydrogen systems, but go further. Specifically, the impact 

of transient fuel cell characteristics on the loss of power supply is seen to be significant 

in systems which had been sized with these transients neglected. Additionally, a 

modified LPSP measure is presented and the effects of battery storage, in the context 

of multi-objective optimisations, are studied for three types of hydrogen systems.   

The paper is structured as follows: Section 3.3 presents a description of the energy 

system components. Section 3.4 describes the Power Management Strategies used 

and Section 3.5 explains the optimisation algorithm. The results are presented and 

discussed in Section 3.6 followed by the conclusions in Section 3.7. 

3.3  SYSTEMS MODEL 
A block diagram of hydrogen based hybrid renewable energy system with (and without) 

battery is shown in Figure 3-1. The key hardware related considerations in the 

optimisation algorithm are described below. 
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Figure 3-1: Block diagram of the overall hydrogen based energy systems tested (with 

and without battery) when interfaced with (i) solar-PV only (PV-H2), (ii) wind only (WG-

H2) or (iii) wind and solar-PV (WG/PV-H2). 

3.3.1 External Load and Fuel Cell Transient Characteristics 
The highly dynamic electric load demand profile, used to guide the sizing process, has 

a temporal resolution of 15min, covers a one year time span (525,600min) and 

amounts to a total annual demand of 7,896kW-hr.  

The sizing methodology uses LPSP as a reliability index denoting the likelihood of 

meeting the external (electric) load demand. In stand-alone (not grid connected) 

systems, LPSP is the ratio of energy deficits (kW-hr) at any time step ( 15min) at 

which part of the load demand is unmet relative to the total energy demand (kW-hr) 

over the year. An LPSP=1 means the annual load was never satisfied while LPSP=0 

indicates a load will always be satisfied. The commonly used formulation for LPSP over 

a given time period min (i.e., a single year) is as follows [24]:  

                            3.1 

In this regard,  is the loss of the power supply (unmet load) at the 

(15min) time interval  (not current dependant) and  is the load demand (kW-hr) 

during that time interval. In this study, the value of the LPSP constraint is chosen to be 

equal to  which corresponds to a nominal total unmet load of 79kW-hr (1%) 

over an annual demand of 7,896kW-hr which corresponds to around 21.63kW-hr per 

day.  

In the system analysed (Figure 3-1), a backup Proton Exchange Membrane (PEM) fuel 

cell is used to supply the deficit power (total renewables minus requested load) if the 

renewable power generators (and battery bank) are not sufficient to meet the demand. 
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The power and hydrogen consumption characteristic curves of a 1.2kW fuel cell (Make: 

Ballard; Model: Nexa 1.2kW) are used to simulate the performance of the fuel cell [25]. 

These characteristic curves can be retrieved from the unit’s user manual [25]. The 

LPSP is a key performance indicator to assess the reliability of stand-alone energy 

systems [8]. However, if only the steady state characteristics of backup power devices 

(the PEM fuel cell) are assumed to prevail over an entire time step (15min), as is 

commonly done [13, 26, 27], this formula (Equation 3.1) for calculating the LPSP does 

not consider the loss of load supply which may arise during the transient start-up of the 

fuel cell from stand-still. Steady state models assume fuel cells instantly supply the 

power which is unrealistic. In this research, the transient response of the fuel cell is 

integrated into the LPSP and experimentally investigated. Figure 3-2 shows a diagram 

of the experimental setup. 

 

Figure 3-2: Laboratory based set-up to resolve the transient characteristics of the PEM 

fuel cell. 

The transient performance of the PEM fuel cell is studied by measuring the output 

voltage from the entire stack for step changes in load (currents) between 0-3A and 0-

45A. Figure 3-3 shows the load current and the stack voltage measured during the 

transient operation of the PEM fuel cell. The transient start-up time is the duration for 

the fuel cell voltage to rise to 98% of the (nominal) steady state voltage. In Figure 3-3, 

the output voltage and power are observed to take minutes (not seconds) before 

stabilising. This demonstrates fuel cells cannot respond instantly to load changes and 

during transient start-ups loads may not be fully satisfied. As a result, an LPSP which 

relies on only nominal power characteristics will be insensitive to deficits which will 

actually occur in the field during transient start-up.  
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Figure 3-3: PEM fuel cell (voltage) response to a step change of load (current). The 

nominal voltage and current are shown. 

The experimentally derived transient times, corresponding to several step current 

changes, are then used to derive data for the start-up characteristics of the fuel cell 

(versus load). In turn, this also means start-up time in an energy system will be affected 

by fluctuating electric loads. This provides a valuable opportunity to investigate the 

relative impact associated with integrating these transient characteristics into 

calculating the system’s LPSP under a strongly dynamic electric loads. 

To account for any loss of power supply over the fuel cell’s transients, Equation 3.1 

which only considers steady state (nominal) characteristics  but is commonly used in 

the literature [13, 26, 27] to calculate the LPSP, is modified:  

                  
3.2 

The additional term on the right side of Equation 3.2 quantifies loss of power during 

transient fuel cell start-ups:  

                                                        3.3 

In this regard,   is the instantaneous fuel cell power at time interval during its 

transient start-up ,  is the fuel cell’s transient start-up time at a current . 

Finally, it is evident from Equation 3.2 that if the transient start-up time of the fuel cell 

represented by the right hand term is ignored ( ), the modified LPSP 

reverts back to the commonly used (and smaller valued) LPSP as represented by 

Equation 3.1. 
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3.3.2 Solar-PV Module  
In the simulations undertaken, the characteristics of a commercially available solar-PV 

module (Make: Heckert Solar; Model: HS-PL 135) consisting of 36 cells are used [28]. 

The conversion of solar irradiance (kW/m2 ) into solar-PV power is mathematically 

modelled [29] and based on a single diode equivalent circuit with the solar-PV cell’s 

current defined by Equation 3.4 [30]: 

                                  3.4 

Here,  is the photon current,  (8.33A) is the diode reverse saturation current, 

 is the thermal voltage (Boltzmann constant, ; Operating 

temperature, ; Electron charge, ). The value of the series 

resistance is estimated by calculating the slope of the characteristic curve of the solar-

PV module ( ). Regarding the shunt resistance   , its value is calculated 

as follows [30]:  

                                                3.5 

 where  and  are the maximum power point voltage (18V) and 

maximum power point current (7.48A). The nominal open circuit voltage and 

short circuit current are   (22.3V) and  (7.95A), respectively. The 

DC/DC converter shown in Figure 3-1 represents a maximum power point 

tracker connected to the solar-PV module and is simulated by assuming the 

module always works at its maximum power point. Model parameters are 

retrieved from the module datasheet [28] and the output current and voltage 

of a single cell are  and , respectively.  

A time-series of solar-PV module power conversion is established over the entire year 

by feeding a 15min resolved solar irradiance profile into the models. The solar 

irradiance profile used in this study is predicted using the well-known ASHRAE clear 

sky model [31] and has been presented by us earlier [1]. This is done because 

meteorological data for the location corresponding to the Australian wind data site 

(latitude: −31.75⁰, longitude: 115.8⁰) are not available. The incorporation of measured 

irradiance data can however be easily done if available [2]. 

3.3.3 Wind Turbine 
A commercially available wind turbine (Make: Hummer, Model: 2kW-off grid) is 

integrated into the energy system simulations. Its power characteristic curve can be 

retrieved from the literature [1]. To accurately estimate the wind turbine’s output power 
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relative to wind data (acquired at 10m), the effect of the turbine hub height (18m) is 

considered using the following expression:  

                                                                                              3.6 

 In this regard,  is the wind speed at the hub height  and  is the wind speed at the 

reference height , whilst  is the wind shear exponent coefficient and its value is 

assumed to be constant over the whole rotor swept area of the turbine ( 1/7 for open 

land) [32]. This assumption [33] is valid as there are no significant differences between 

 and . Otherwise, ignoring the variation of wind speed shear could lead to 

erroneous estimations of wind energy [34]. The AC/DC converter shown in Figure 3-1 

represents a built-in rectifier and its characteristics are included into the turbine’s power 

curve since it represents the relationship between wind speed and net output power. 

The output power of the wind turbines is estimated using 15min resolved wind speed 

data, also studied in an earlier work by us [1]. These data are recorded by the 

Australian Bureau of Meteorology [35].  

3.3.4 Electrolyser and Hydrogen Storage 
The electrolysers hydrogen production rate is governed by the Faraday’s law as follows 

[36]: 

                                                                            3.7 

In this regard,  is efficiency and taken as 0.7 [36],  is a conversion coefficient 

(8,604Ahl-1) and  is the electrolyser’s current at time . The electrolyser (Make: 

Hydrogen Energy Co., Ltd., Model: QL-2000) operates over various powers within its 

maximum rated power 1kW. For the metal hydride storage in this study, its 

state of charge is calculated in equivalent energy units per single cylinder (1kg = 

141,900 kJ) and by balancing the consumption and production rates of the fuel cell and 

electrolyser, respectively, according to the following formula [36]: 

                                      3.8 

Where,  is the initial ( 15min) state of charge stored in each hydrogen cylinder 

(14,190kJ),  is the electrolyser hydrogen production rate (ls-1),  is the fuel cell 

hydrogen consumption rate (ls-1),  is a conversion constant (22.4lmol-1), and  is 

hydrogen’s enthalpy (286kJmol-1). The hydrogen storage state of charge at any time 

interval beyond the first ( 15min) is therefore [36]: 

 (%)                                                  3.9 
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In this regard,  is the maximum capacity whereby the limits of 

charging/discharging are set to  (14,190kJ) and  (141,900kJ), 

respectively. 

3.3.5 Battery 
The energy stored in the lead acid battery used in this study is modelled as follows 

[37]: 

                                                           3.10 

Where  is the initial battery charge (0.66kW-hr per battery). In addition,  

and  are the battery voltage and current at time . The state of charge of the 

battery at each time step is defined as follows: 

   (%)                                                     3.11 

In this regard,  is the maximum battery capacity and the minimum and 

maximum states of battery charge are   and , respectively.  

3.3.6 DC/AC Inverter 
An inverter converts DC electrical power to an AC form and is modelled with its 

efficiency as follows: 

                                                                                    3.12 

Where  is the power delivered to the load from the inverter,  is the 

inverter’s input power and the inverter efficiency is expressed by . 

3.4 POWER MANAGEMENT STRATEGY  
Power Management Strategies (PMS) control the switching of various energy system 

devices and therefore impact the overall energy balance. Typically, power produced by 

solar-PV module(s) and wind turbine(s) is compared with load demand and determines 

the switching of the fuel cells and energy flows between hydrogen storage. For the 

PMS used in this research, the simulation time interval is 15min during which the 

output power of the primary power sources and load demand are assumed to be 

constant. The two PMS’s employed in this study are presented in Figure 3-4. It should 

be noted, that at each time step (15min), the power generated by the primary sources 

(wind turbine and solar-PV), , is calculated and compared to load demand: 

                                                                                 3.13 

Where  is the sum of the power generated by the wind turbines and the solar-PV 

modules and   is the load demand. The comparison result  is used to manage 
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the operation of the fuel cell and affects the system response based on the energy 

storage media used. 

 

Figure 3-4: Power Management Strategy for a hydrogen based renewable energy 

system. The battery-less architecture is formed by only the interconnected (shaded) 

blocks whereas the system with battery is constituted by the entire diagram. 

3.4.1 PMS 1: Battery and Hydrogen Storage 

If   over any 15min time interval, the necessary power to satisfy the load is 

provided by the lead-acid battery if the battery state-of-charge ( ) is higher than the 

lower limit, =40%, and the battery is able to supply the requested power. If the 

battery state-of-charge is less than  or the power requested exceeds that in the 

battery, the required energy is drawn from the hydrogen storage through the fuel cell. If 

, any surplus renewable power is used to charge the battery but when its state-

of-charge is at the higher limit ( =100%), surpluses are directed to electrolysis for 

hydrogen production. If the electrolyser cannot handle the entire surplus power, 

, or the hydrogen storage is fully charged , the excess power, , 

is typically dumped in the literature. 
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3.4.2 PMS 2: Hydrogen Storage (only) 

If  and the hydrogen storage state-of-charge is higher than the lower limit , 

the power necessary to satisfy the load is drawn from the fuel cell (hydrogen storage). 

If  , surplus power is routed to the electrolyser for the hydrogen production but 

when hydrogen storage is full ( ) or the electrolyser cannot handle all the 

surplus power, , excess power, , is again directed to the dump load. 

With both energy storage media above, the amount of excess energy dumped is 

analysed as part of this study. 

3.5 OBJECTIVE FUNCTIONS AND CONSTRAINTS 
The sizing methodology employs a multi-objective Genetic Algorithm which iteratively 

searches for the optimal system configuration (number of each energy system 

component) that satisfies three objectives. These objectives are minimising the 

system’s NPC, EE and LCE:  

                              3.14 

3.5.1 Minimisation of NPC 
The system Net Present Cost (NPC) is the present value of all energy system 

components which are incurred over a lifetime, and includes capital, replacement, and 

operation and maintenance costs, minus the salvage value of components at the end 

of the projected lifetime. 

                                                                                              3.15 

To derive the NPC for each type of component within the energy system ( ), 

Equation 3.16 may be used [13]. In this regard,  is the number of units for that type of 

component,  is the capital cost per unit,  is the replacement cost per unit, and 

 is the operation and maintenance cost per unit. Additionally,  is the monetary 

interest rate (if applicable), and  years is the projected lifetime of the entire 

system (in this research taken equal to the lifetime of the solar-PV module). The 

parameters which help define the salvage worth of the system at its end of lifetime are 

expressed by  and   which are the Capital Recovery Factor and single payment 

present worth, respectively: 

                                3.16 

                                                     3.17 

                                                                  3.18 
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In addition to the above,  is the component’s lifetime and  is number of 

replacements of the component during the project lifetime ( ). The costs, 

lifetime and size for the components used in the sizing process are presented in 

Table 3-1 and derived from values in the literature [13, 38-40]. The replacement cost is 

less than capital cost for some components because not all the (initial) commissioning 

infrastructure is replaced at the end of the component’s lifetime. 

Table 3-1: Data for the hardware parameters used in the optimisation: Costs, assumed 

component lifetimes [13, 38-40] , equivalent CO2 life cycle emissions [7] and the limit 

on how many multiples of each component can feature in the energy system sized. 

Component 
 

Single 
unit size 

Capita
l 

($) 

Repla-
cemen

t 
($) 

O&M 
($/year

) 

Lifetim
e 

(year) 

LCE 
(kg 

CO2-
eq/kWh

) 

 

 

 

 

Wind 
turbine 
(WG) 

2kW 10,200 7,000 140 15 0.011 1 5 

Solar-PV 
module 

(PV) 
135W 310 310 0 25 0.045 1 100 

Fuel cell 
(FC) 

1.2kW 10,850 9,300 270 5 0.020 1 10 

Electrolyse
r (ELC) 

1kW 2,000 1,500 100 5 0.011 1 10 

H2 storage 1kg 1,300 1,200 15 20 0.011 4 200 

Lead-acid 
battery 

55Ah,12

V 
120 120 20 5 0.028 1 200 

Inverter 1kW 800 750 8 15 0 5 10 

3.5.2  Minimisation of Excess Energy (EE) 
The excess (dumped) energy is renewable energy that is converted by wind turbines or 

solar-PV modules but not consumed by the useful load or diverted to storage devices 

(battery or hydrogen). Although wind and solar resources are “free”, conversion to a 

useful power is costly. Minimising the amount of excess energy can be done by 

reducing the capacity of the primary generation units and hence increasing renewables 

penetration. This in turn reduces overall system cost when meeting the same specific 



54 

 

load demand but means the system’s ability to meet external load demand becomes 

more susceptible to uncertainties in wind speed or solar irradiance. The total excess 

energy produced by the system is the sum of the excess energy at each time step , 

and can be expressed as follows: 

                                                                                   3.19 

In this regard,  is the amount of excess power diverted to dump loads over the 

length of time interval . The percentage of excess energy, from that originally 

(renewably) derived, is then calculated as: 

     (%)                                                    3.20 

3.5.3 Minimisation of Life Cycle Emissions (LCE) 
The life cycle emissions of the stand-alone renewable energy systems considered are 

calculated relative to amount of energy converted (or stored) by the system 

components [7]. Estimating the greenhouse gas emissions (normalised by energy units 

converted) is preferable because some components are used for most of the year, 

such as wind turbines and solar-PV, whereas others are used less frequently such as 

fuel cells and electrolysers [7]. Because the environmental impact of renewable energy 

technologies in the Australian context is not available, the data of equivalent CO2 

emissions over the lifetime of several system components are retrieved from the wider 

literature [7] and used in the simulations and listed in Table 3-1. The total life cycle 

emissions are calculated as the sum of the emissions by the system components over 

their lifetime and can be expressed as follows: 

                                                                                         3.21 

Where,  (kg CO2-eq/kW-hr) is the equivalent CO2 emission over the lifetime of a 

component per kW-hr (Table 3-1) and (KW-hr) is the amount of energy converted 

(applies to wind turbines, solar-PV modules, electrolysers, and fuel cells with their 

DC/DC converters) or stored by components (applies to batteries and metal hydrides). 

3.5.4 Constraints  
The optimisation problem is subject to the following constraints: 

                                                                                      3.22 

                                                                                     3.23 

Where  and  are minimum and maximum allowable number of units from 

each component, as hereby the limits used in this research are shown in Table 3-1. The 

last constraint (comparing the hydrogen storage state of charge at the beginning and 
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end of the year) is set to ensure preserving enough hydrogen inventories at the end of 

each calendar year.   

3.5.5 Selection of the Optimal Solution 
The result of solving the optimisation problem described above is not a single solution, 

but a set of non-dominant solutions called Pareto optimal solutions. For each of these 

solutions, any of the objective functions cannot be improved without deteriorating at 

least one of the other objectives (Section 3.5.1-3.5.3). In this study, a fuzzy 

membership function is used to rank the entire set of solutions and then help select the 

optimal (compromise). The value of the fuzzy membership function of the  objective 

function,  , is defined as [22]: 

                            3.24 

Where  and  are the minimum and maximum value of the  objective 

function. For each non-dominant solution, the normalised membership function  is 

calculated as: 

                                                                        3.25 

In this regard,  is the number of non-dominated solutions and   is the number of 

objective functions.  The best compromise solution is the one that has the maximum 

value of the normalised membership function. The optimisation variables are the 

numbers of wind turbines, solar-PV modules, fuel cells stacks, electrolysers, hydrogen 

storage cylinders, batteries and DC/AC inverter capacity. The optimisation algorithm 

repeatedly updates the values of these optimisation variables and simulates the 

performance of the proposed energy system. It does so by calling a Simulink model of 

the system (Figure 3-1) and taking into considerations device switching according to the 

relevant PMS. 

3.5.6 Implementation of the Optimisation Algorithm 
The MATLAB optimisation toolbox (v.R2012b) is used to implement the multi-objective 

Genetic Algorithm. To use the optimisation toolbox, a MATLAB code representing the 

fitness function, which calculates the values of all objectives (fitness value), has been 

written as an M-file. To account for the LPSP and the other constraints (Equations 3.22 

and 3.23), the algorithm is adopted to eliminate all solutions that do not satisfy those 

constraints. The constraints related to the bounds on the number of components 

(Table 3-1) are entered directly into the optimisation toolbox. Because the number of 
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wind turbines, solar-PV modules or fuel cells, etc., selected by the optimisation 

algorithm is an integer but the multi-objective Genetic Algorithm under this version of 

MATLAB does not support solving integer problems, three other M-files representing 

the creation, mutation and crossover functions that generate integer numbers (to 

satisfy the problem constraints) have also been considered. The settings used in the 

multi-objective tool are four subpopulations with 100 individuals (solutions), the 

crossover probability is 80% and the number of generations is 100.  

3.6 RESULTS AND DISCUSSION 
The multi-objective sizing methodology described in Section 3.5 is applied to the sizing 

and optimisation of three types of hydrogen based stand-alone energy systems 

powering a (remote) residential household. These three configurations are Solar-

PV/Hydrogen (PV-H2), Wind/Hydrogen (WG-H2) and Wind/Solar-PV/Hydrogen 

(WG/PV-H2), with or without battery storage. To show the effect on system reliability 

(expressed through LPSP) from not considering loads during a fuel cell’s transient 

start-up, LPSP’s of the optimal solution based on the common (Equation 3.1) and 

modified (Equation 3.2) are compared. Results show that for the PV-H2, WG-H2, and 

WG/PV-H2 configurations, the LPSP values derived when neglecting fuel cell transients 

are 0.005, 0.006 and 0.005, compared to much higher values at 0.018, 0.012 and 

0.011 when these transients are included, respectively. The fact that LPSP values 

more than double if experimentally resolved (device specific) transients are included 

shows the need to include these when undertaking optimisations. This has largely been 

overlooked in the literature published to date. It should be noted here that a higher 

LPSP means less system reliability to meet an external load. Hence, all reported LPSP 

values beyond this point are based on Equation 3.2. 

For each of the hardware configurations considered (Figure 3-1), the optimisation 

algorithm finds a range of solutions, whereby each solution defines the number of 

system components (e. g. fuel cells, batteries, etc.) under two different (sizing) 

methodologies. These plausible solutions are then refined over time (multiple 

generations) to arrive at the optimal solution under each design methodology. 

Figure 3-5 shows a sample result demonstrating the improvement in objectives versus 

generations. The first sizing methodology termed Design Methodology-1, optimises 

system size whilst considering three objective functions (minimising NPC, EE, and 

LCE). Alternatively, Design Methodology-2 only considers a single objective function 

(minimising NPC). The hardware components under each optimal solution are shown 
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in Figure 3-6. Additionally, Figure 3-7 presents the resulting NPC, EE and LCE for each 

of these hardware configurations, with and without battery. 

 

Figure 3-5: Convergence of the optimisation algorithm. 

 

Figure 3-6:  Optimal solutions resulted from both design methodologies for: (a) PV-H2; 

(b) WG-H2 and (c) WG/PV-H2 systems at LPSP=0.01±0.005. Solutions are for without 

battery storage (solid) and with battery storage (dashed  

From these results, it can be observed that for similar LPSP targets (0.01±0.005), 

optimal solutions achieved from Design Methodology-1 (min NPC, EE, and LCE) have 

more hydrogen storage capacity and greater NPC ($) compared to the Design 

Methodology-2 (min NPC). This leads to an improved and smaller LCE (kg CO2-eq/yr) 

but at the expense of a higher COE ($/kW-hr). It can also be observed that as the 

number of battery units increases, it does so at the expense of fewer units related to 

the hydrogen (fuel cell, electrolyser and hydrogen storage). The reason is because for 

a given LPSP, the system's NPC ($) with lead-acid batteries is by far cheaper than 

integrating fuel cells, electrolyser and hydrogen storage. This however does not 
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manifest itself when systems are optimised with Design Methodology-1 which 

considers LCE (kg CO2-eq/year) and EE (%) in addition to NPC ($). 

From the sizing results, it is observed that Design Methodology-2 (min NPC) results in 

solutions with relatively higher excess energy (Figure 3-7b) and greater life cycle 

emissions (Figure 3-7c) compared to Design Methodology-1 (min NPC, EE, LCE). 

Furthermore, the excess energy from these solutions (without battery) are at 32% 

(11,277kW-hr), 45% (13,122kW-hr) and 59% (20,404kW-hr) for PV-H2, WG-H2 and 

WG/PV-H2, respectively and exceed those with battery. This implies the generation 

capacity of battery-less systems which are optimised for NPC and designed to meet a 

specific LPSP, only may be oversized.   

Furthermore, the least excess energy is generated by PV-H2 system (Figure 3-7b) but 

the life cycle emissions of this system is the highest compared to the other systems 

when wind is added. This attributed to the much greater LCE associated with solar-PV 

modules compared to other devices (Table 3-1). In contrast, the highest percentage of 

excess energy is generated by WG/PV-H2 system. Among the three systems (with or 

without battery), WG-H2 represents the system that results in the optimal compromise 

between the EE and LCE.  

Design Methodology-1 includes minimising the percentage of excess energy (EE) 

along with economic (NPC) and environmental (LCE) objectives. Hypothetically, one 

may anticipate that reducing the amount of excess energy would decrease 

simultaneously the Cost of Energy (COE) because lower dumped power means fewer 

(smaller) primary movers (wind turbines or solar-PV panels). For the same level of 

reliability (LPSP), less dumped power also means a greater relative contribution 

(penetration) from renewable energy in meeting actual load. However, results show 

that systems whereby lower excess energy is sought (whilst meeting a specific LPSP) 

are consistently more expensive. To investigate the reason behind this result, the 

annual cost associated with generating surplus energy which is then dumped as 

excess is further analysed for one system configuration without battery (WG-H2). The 

optimal solution from Design Methodology-1 (min NPC) contains only two wind turbines 

compared to design Methodology-2 (min NPC, EE, LCE) which has 3 wind turbines 

(Figure 3-6b). 

Due to the high cost of hydrogen pathway components (fuel cells, electrolyser and 

hydrogen storage), the cost savings gained from reducing the number of primary 
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movers (wind turbines) is less than the cost of the extra units associated with the 

hydrogen energy pathway. In this case, the capital cost of the generation units (wind 

turbines) is reduced by $10,200, when using Design Methodology-1 while the capital 

cost of the hydrogen energy pathway (Fuel cell, electrolyser and hydrogen storage) is 

increased by around $50,000.  This explains why systems designed to meet less 

dumping of excess energy have a higher COE at 2.29$/kW-hr (Design Methodology-1) 

compared to 1.67$/kW-hr (Design Methodology-2). 

Among all systems sized in this study, results show that WG-H2 with battery provides 

the optimal compromise between economic, efficiency and environmental objectives. In 

this instance, the optimised system (WG=2units, FC=1units, ELC=4units, 

Battery=120units, H2 storage=5units, Inverter=8kW, NPC=$192,485 and EE=26%) 

delivers a cost of energy at 1.78 $/kWh with an associated environmental footprint of 

274kg CO2-eq/yr. However, systems that consider increasing renewables penetration 

for the same reliability (i.e., less power is diverted to dump loads) combined with a 

small environmental impact (life cycle emissions) have no cost advantage over 

systems sized using economic objectives only (min NPC). The overall results agree 

with previous findings which show that stand-alone PV-H2 systems are not 

economically competitive compared to WG-H2 systems [27, 41]. The present research 

goes further and points out that a PV-H2 system is also not favourable from an 

environmental point of view compared to WG-H2 or WG/PV-H2. Beccali et al [42] have 

shown that grid connected large scale WG-H2 systems have the lowest Cost of Energy 

(COE) and lowest greenhouse gas emissions.  

 

Figure 3-7: Comparisons between NPC, EE and LCE (a, b and c respectively) for 

three configurations of hydrogen based energy systems, without battery storage (solid) 

and with battery (dashed). For all configurations shown, LPSP=0.01±0.005. 
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Results also show that hydrogen based renewable energy systems can benefit 

economically from including some battery storage. On the other hand, the present 

research also indicates the impact of battery storage on the LCE is limited for the 

hybrid systems studied. Finally, the findings of this study reveal that for the time being, 

considering minimising the excess energy as an objective during the design of stand-

alone hydrogen based renewable energy systems is not favourable due to the high 

cost of hydrogen energy devices. This outcome may be worth revisiting in the future if 

the prices of hydrogen energy devices are reduced [42].        

3.7 CONCLUSIONS 
Several hybrid renewable energy systems are sized to minimise Net Present Cost 

(NPC), the Excess Energy (EE) and the Life Cycle Emissions (LCE). Sizing is 

formulated as a multi-objective optimisation problem and solved using a Genetic 

Algorithm. Loss of Power Supply Probability (LPSP) is used to measure load meeting 

reliability in the optimised solutions. In addition, experiments have been conducted to 

practically resolve the transient start-up time of PEM fuel cell stacks. It is believed such 

data is used for the first time to modify the LPSP formula in order to provide a more 

accurate estimate of load meeting reliability. Results show the proposed methodology 

can help systems designers to more accurately assess the reliability of stand-alone 

energy systems in meeting a target demand. The techno-economic feasibility and 

optimisation of renewable energy systems is however very location specific. As such, 

even though sizing results drawn from this paper are valid only for the location and the 

load demand profiles employed, more importantly, the sizing methodology used (multi-

objective Genetic Algorithms) and techniques derived (modified LPSP) are believed to 

be more valuable as they are generic and adaptable to other scenarios.  

The following specific outcomes have been drawn from this research: 

 Ignoring the transient response of fuel cell stacks results in hydrogen energy 

systems which are sized but overestimate their load meeting reliability. 

 A modified index to evaluate the load meeting reliability of energy systems is 

introduced. This accounts for the transient start-up characteristics of fuel cells. 

 If the optimisation of a hydrogen system aims to reduce EE and LCE (in 

addition to NPC), the solutions obtained favour more hydrogen energy 

pathway equipment at the expense of battery storage.  

 Because of the high cost of energy storage devices, a stand-alone energy 

system with greater renewables penetration (less dumped or excess energy) 

is more expensive than a system with high excess energy.   
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 Including limited battery storage, within hydrogen based stand-alone 

renewable energy systems, reduces the total cost and life cycle 

(environmental) impact.  

 For the considered location and load profile, the WG-H2 has the best 

compromise between the objectives tested, compared to PV-H2 and WG/PV-

H2. 
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4 CHAPTER 4: INFLUENCE OF NEURAL NETWORK TRAINING PARAMETERS 
ON SHORT-TERM WIND FORECASTING 

A. Brka, Y. M. Al-Abdeli, and G. Kothapalli 

This chapter was published as an article in the International Journal of Sustainable 

Energy, vol. 35, pp. 115-131, 2016. (DOI:10.1080/14786451.2013.873437). Whilst all 

efforts were made to retain the original features of this article, minor changes such as 

the layout, number formats, and font size and style were implemented in order to 

maintain consistency in the formatting style of the thesis. 

4.1 ABSTRACT 
This paper investigates factors which can affect the accuracy of short-term wind speed 

prediction when done over long periods spanning different seasons. Two types of 

Neural Networks are used to forecast power generated via specific horizontal axis wind 

turbines. Meteorological data used is for a specific Western Australian location.   

Results reveal that seasonal variations affect the prediction accuracy of the wind 

resource, but the magnitude of this influence strongly depends on the details of the 

Neural Network deployed. Factors investigated include the span of the time series 

needed to initially train the networks, the temporal resolution of this data, the length of 

training pattern within the overall span which are used to implement the predictions and 

whether the inclusion of solar irradiance data can appreciably affect wind speed 

prediction accuracy. There appears to be a relatively complex relationship between 

these factors and the accuracy of wind speed prediction via Neural Networks. 

Predicting wind speed based on Neural Networks trained using wind speed and solar 

irradiance data also increases the prediction accuracy of wind power generated, as can 

the type of network selected.  

4.2 INTRODUCTION 
Wind represents a clean and sustainable energy source which makes it a promising 

alternative to fossil fuels. On average, global wind power generation capacity has 

increased by 25% over the last years to reach 238 Gigawatts (GW), but is expected to 

grow by another 255 GW by 2016 [1].  Combining wind with other renewable energy 

resources, such as solar energy and an energy storage means like hydrogen, can help 

build a 100 precent renewable energy system for small applications [2, 3]. However, 

increasing wind power penetration requires a number of major challenges to be 

addressed, including the use of realistic models to determine techno-economic 
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feasibility as well as utilising accurate wind speed predictions to better assess overall 

viability and the impacts on ancillary service requirements [4]. As with other renewable 

sources such as solar irradiance, the intermittent and seasonal nature of wind speed is 

a major hurdle against the utilisation of wind energy systems. For these reasons, wind 

speed prediction can play an important role in determining the overall feasibility of a 

renewable energy system and the scale of energy storage media such as batteries or 

hydrogen [5-8]. In this regard, wind power forecasts can be classified based on the 

prediction timescale into four categories, namely: very short-term (few seconds to 30 

minutes ahead); short-term (30 minutes to 6 hours ahead);  medium-term (from 6 hours 

to one day ahead); and long-term (one day to one week ahead) [5]. 

Among several methods, Neural Networks (NN) are excellent for predicting variables 

which are nonlinear or stochastic in nature and have therefore been used to forecast 

wind speed. The advantage of Neural Networks is that there is no need to base the 

predictions on preconceived mathematical models. Instead, the methodology relies on 

samples of training data (historical records of wind speed) to predict patterns of future 

wind power availability using an “intelligent” self-iterating numerical process which is 

presented as data intensive. The literature cites numerous investigations into the use of 

Neural Networks for wind speed prediction [9-16] but the majority of the work done to 

date uses historical wind speed data as the only (meteorological) parameter to train the 

networks. Very few exceptions exist to this with some adding other parameters such as 

ambient temperature and humidity when predicting wind speed [17]. 

When basing predictions (largely) on wind speed data, several attempts have been 

made to perform very short-term wind energy forecasting using “intelligent” techniques 

such as Neural Networks [13, 18-20]. Ricalde et al. used Neural Networks for wind 

speed forecasting and compared between different networks [18]. However, limited 

wind speed data covering five hours (only) was used to train and test the networks 

which raise questions on the sensitivity of this methodology in predicting wind speed 

over longer periods of time. The current study will show that deploying networks over 

longer periods (like one year) is paramount in order to capture seasonal variations 

which have an impact on the accuracy and will address this shortfall by applying short-

term predictions (1 hour ahead) over an extended period spanning multiple seasons. 

Welch, Ruffing and Venayagamoorthy similarly trained three types of Neural Networks 

to predict (fifteen minutes ahead) wind speed using wind speed, temperature and 

humidity as training data [21]. Their results showed that although some Neural 

Networks outperform others, this improved accuracy comes at the expense of longer 
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training time. Similarly, the use of training data spanning only one week may not allow 

an analysis against long-term (seasonal) effects. Reikard also used Neural Networks 

for short-term wind speed forecasting with both wind speed and temperature used for 

training [10]. The use of additional meteorological data (i. e. temperature) in the training 

was found to reduce the forecast error for wind speed but the methodology applied also 

showed that Neural Network  prediction accuracy decreases as the temporal prediction 

range grows (for longer periods ahead). The current paper will show that seasonal 

effects should be factored in with long-term predictions but the prediction accuracy is 

strongly affected by the length of (historical) data used for training the Neural Network 

(varied between 5 hours and 168 hours). Alternatively, long-term wind power 

forecasting has been conducted by Cali at al. [17] using a multi-model approach with 

wind speed, wind direction, ambient pressure, temperature and humidity as training 

data. However, the predictions were implemented for relatively large time-steps which 

render the wind power predictions at a much longer temporal resolution than typically 

expected variations in load (demand) that wind energy systems need to meet. As such, 

investigating seasonal parameters which have the propensity to affect short-term 

forecasts when applied over prolonged periods, spanning many seasons, is important.  

In addition to research undertaken into the effect of meteorological parameters on the 

accuracy of Neural Network predicted wind speed, the effects of temporal resolution for 

time steps and the size of data used to train a Neural Network has also been done and 

the results showed that only one year training data can provide satisfactory prediction 

accuracy of monthly wind energy [22] . However, prediction of long-term (monthly) wind 

energy was only investigated. Additionally, other studies have applied Neural Networks 

to wind power predictions of up to 30 hours ahead [23], but the effect of including other 

meteorological parameters such as solar irradiance, to help refine wind power 

predictions, was not done. More importantly, the impact of changing the Lengths of 

Training Pattern (LTP) on the prediction accuracy was also not investigated. A 

combination of Neural Network and Genetic Algorithm (GA) has also been used for 

short-term wind power predictions [24] where it has been found that combining GA with 

Neural Networks improves the prediction accuracy. However, results also showed that 

prediction accuracy is affected during periods of strong variation in wind speed.  This 

suggests that more investigation into the effect of seasonal variations on the accuracy 

of Neural Network predictors may also be warranted whereby parameters, such as 

temporal resolution of training data, are investigated if they have an effect on the 
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accuracy of wind speed prediction. In this regard, the current research also investigates 

this issue with different time steps of wind speed data (0.5 hour to 3 hours). 

With the above in mind, there have been no studies which the present authors are 

aware of that investigate the effect of seasonal variations onto the prediction accuracy 

of wind speed using Neural Networks. Moreover, the current research also investigates 

the significance of simultaneously including location-specific solar irradiance data 

(W/m2) on the accuracy of wind power predictions. This work is done across seasons 

and also investigates the effect of the LTP and temporal resolution on the accuracy of 

short-term wind energy predictions. Measured wind speed data for a Western 

Australian location are used to implement the predictions and the power characteristics 

of two wind turbines (2kW, 30kW). The paper is divided as follows: Section 4.3 

describes the methodology including the wind data, wind turbines, solar irradiance data 

and Neural Networks used; Section 4.4 presents the results followed by the discussion 

in Section 4.5 and finally the conclusions in Section 4.6. 

4.3 METHODOLOGY 
Wind speed is stochastic in nature, but once predicted, the available wind energy can 

be estimated to reasonable accuracy using a suitable wind turbine model. In this paper, 

short-term wind energy forecasting is performed using two types of Neural Networks, 

namely: Feed Forward (FF) and Radial Basis Function (RBF) Neural Networks. These 

two techniques are categorised as supervised networks because the training algorithm 

is initially developed using known pairs of input-output patterns (i.e, a historical time 

series of calendar date versus wind speed, wind speed and direction, or wind speed 

and solar irradiance). The forecasting process is tested over a prolonged period (one 

year) so as to identify the effect of seasons on prediction accuracy. Although the 

forecasting is done over one year period, the prediction step where mainly an hour-

ahead, i.e., 8760 predictions are done to forecast the wind speed over one year.  

4.3.1 Wind data and wind turbine models 
The available time series consists of half hourly resolved wind speed and direction data 

measured by the Bureau of Meteorology (BOM) at a height of 10 meters at the Ocean 

Reef meteorological station (Western Australia, latitude: -31.75o, longitude: 115.8o ) 

[25]. These data cover a period from January 2001 to December 2009. Data spanning 

either a single year (2001) or six years (2001-2006, around 70% of the available data) 

are used to first formulate and train the Neural Networks while data for the years 2007-

2009 is subsequently used for testing accuracy. In this study, the temporal resolution of 
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the (source) training data is half hour based. However, to help study the effects of 

using other resolutions such as hourly, two hours and three hours are also investigated 

by binning the half hourly data and deriving average wind speeds over the binned 

periods. Lower resolutions such as weekly or monthly are not considered because 

these time steps will unnecessarily smooth much of the intermittency characteristics of 

wind speed as well as impact the ability of the Neural Networks to resolve seasonal 

effects. To convert the kinetic energy of wind speed to wind power, the power 

characteristic curves of commercially available wind turbines are used. In this research, 

the characteristics of 2kW and 30kW off-grid wind turbines are considered and 

Figure 4-1 gives the power-vs-wind speed curves for both turbines with basic operating 

data being available [26].  

 

Figure 4-1: Power curve of off-grid wind turbines [26]. Power generated has been 

normalised by the respective (peak) power capacity.  

The hub height of a wind turbine affects the generated wind power [27]. To accurately 

estimate the power extracted by the wind turbine, the effect of wind shear, which 

represents the variation of wind speed with elevation, is typically considered. In most 

studies, the wind speed shear is described by the shear exponent coefficient ( ) shown 

in equation (4.1). Because the modelled wind turbines operate at a height of 18m, but 

the meteorological wind data is originally measured at 10m, each data point for wind 

speed is revised to the operating height of the wind turbine [28]: 

                                 4.1 

In this regard,  and are the wind speed at and , respectively, whilst  is the 

wind shear exponent coefficient. The value of this coefficient has been taken equal to 

1/7 commensurate with the value for open land because the location for which the wind 

power modelling is being undertaken is an unobstructed costal land spot [28]. It is 

worth noting that whilst the value of the shear exponent coefficient for a particular area 
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is not constant along the whole rotor swept area of the wind turbine, ignoring the effect 

of the wind shear coefficient is proven to result in overestimating the wind power 

extracted from a wind profile for large turbines. This is particularly evident for the cases 

where the hub height is much greater than the height of the meteorological 

anemometer used to measure wind speed [29, 30]. Previous studies have also shown 

variations of wind shear coefficient is insignificantly changed across seasons (summer 

and autumn compared to winter and spring) [31].  Therefore, in this study a single wind 

shear coefficient is considered across all seasons. 

4.3.2 Solar irradiance data 
In order to train the Neural Networks on both wind speed and solar irradiance at the 

relevant geographical location, solar irradiance data has been derived using the 

ASHRAE clear-sky model [32]. The parameters of the ASHRAE model are retrieved 

from the literature [33]. Before the ASHRAE derived (hourly) solar irradiance data was 

used in the Neural Networks, its accuracy was checked against daily total measured 

solar irradiance data [34]. This process can be undertaken when no well resolved (e. g. 

hourly) exists. Figure 4-2 shows these comparisons whereby the data derived using the 

ASHRAE model (for each day) has been formed by summing the hourly resolved 

predictions over 24 hours. The figure shows the irradiance predictions based on the 

clear sky model are able to accurately follow the peak solar irradiance values. It should 

be noted here that any other reasonably accurate model (or even measured data) 

could have also been used to demonstrate the validity and effects of coupling wind 

speed predictions with representative solar irradiance data.    

 

Figure 4-2: A comparison of daily (cumulative) total solar irradiance derived using the 

ASHRAE model compared to measured (meteorological) daily totals data. (latitude: -

31.750, longitude: 115.80, 2004). 



72 

 

4.3.3 Neural Networks 
Neural Networks consist of interconnected computational units which imitate the 

structure of biological neurons. These neurons are independent processing units and 

the connections between these units (weights) are used to store the acquired data. In 

this paper, FF-NN and RBF-NN are used to forecast wind speed (only) using different 

combinations of meteorological training data. The general structure of these networks, 

shown in Figure 4-3, comprises of an input layer, a hidden layer, and a linear output 

layer. The function of the input layer is to distribute input data in order to initiate the 

computations. Typically, the span of the time series used to train a Neural Network, for 

example a single year which can be hourly resolved to yield 8760 data points, is further 

subdivided into batches. The number of data points in each batch dictates the number 

of neurons in the input layer. For example, an LTP of 10 hours when half hourly 

resolved wind speed data is used will result in 20 neurons in the input layer, for both 

FF-NN and RBF-NN. The output of any neuron in the hidden layer of a FF-NN is a 

result of activating a sigmoid function using the weighted sum of the input signals. The 

sigmoid activation function has the following form [35]:  

                     4.2 

In this regard,  is the slope parameter of the sigmoid function and  is the weighted 

sum of neuron inputs which is given as: 

                  4.3 

In the above equation,  is the input signal, is the connection weight and  is the 

number of values in the input pattern. The connection weights are dictated by the 

learning algorithm which the Neural Network uses when being training on historical 

data. In this study, three different algorithms were trialled (the gradient decent 

algorithm, Levenberg-Marquardt algorithm and adaptive gradient decent algorithm). 

Based on preliminary testing, it was observed the adaptive gradient decent algorithm 

yielded the best accuracies and, as such, was deployed in the FF-NN throughout the 

results which appear in this paper. The output of the sigmoid function is only positive 

numbers between 0 and 1. Each neuron in the Neural Network compares the output of 

its activation function against a predefined threshold to decide whether to produce an 

output or not. In this research, the number of hidden neurons in the FF-NN was taken 

to be 10 in agreement with the literature [30, 36]. The design of a Feed Forward 

Neutral network also usually involves the selection of many control parameters. As 

there is no commonly agreed upon consensus (in the published literature) in relation to 

the specific rules for nominating these parameters, an iterative process was 
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undertaken to resolve the best set of these which satisfy a pre-set convergence criteria 

(the performance goal). Table 4-1 lists the value of these control parameters.  

The difference between FF-NN and RBF-NN lies mainly in activation function as well 

as the role and number of neurons in the hidden layer.  The activation function of FF-

NN is a sigmoid function whereas for the RBF-NN its activation function for the hidden 

neurons is a Gaussian function and expressed as [6]: 

                              4.4 

In this regard,  and  are the centre and the mean square deviation of the Gaussian 

function and  is the  input pattern whereby the Gaussian function is bell-shaped 

with a maximum of 1. Neurons are activated (produce an output) based on how close 

the net input is from a chosen value of averaged inputs. While FF-NN acts as a global 

approximation network, since the network’s output is decided by all neurons of the 

hidden layer, RBF-NN acts as local approximation network. This means the hidden 

layer in RBF-NN redistributes the input data and each output is determined by specified 

hidden units [37]. Further details on the training algorithm of RBF-NN are also available 

in the literature [6, 37]. 

 

Figure 4-3: General structure of FF-NN and RBF-NN: (a) training phase (2001-2006); 

(b) test phase (2007-2009). 

The other difference between a FF-NN and RBF-NN is the former uses a fixed number 

of neurons in the hidden layer whereas the latter uses a variable number of neurons in 

the hidden layer (self-defined by the Neural Network). Training coefficients of Radial 

Basis Function Neural Network are also listed in Table 4-1. The consequences of the 
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above are that RBF-NN trains itself over different ranges of the training data (e. g. 

different ranges of wind speed) where FF-NN is trained on the total range. 

Table 4-1: Training coefficients of the Neural Networks used. 

Network type Training coefficient Value 
 
 

FF-NN 

Momentum constant 0.6 
Learning rate 0.8 
Performance goal 1e-4 
Number of hidden neurons 10 

 
RBF-NN 

Spread of radial basis function 20 
Performance goal 1e-5 

4.3.4 Accuracy 
The accuracy of hourly wind speed and wind power predictions is expressed as the 

Absolute Percentage Error (APE) which is calculated as follows: 

                           4.5 

The Mean Absolute Percentage Error (MAPE) is used to assess the overall accuracy of 

the used Neural Networks and it is calculated as follows: 

                                 4.6 

In the above equations,  is the measured wind speed over a time interval , is 

the predicted wind speed (over the same time interval) and is the number of data 

points in each year. The time interval represents the resolution of the training and 

test data (0.5, 1, 2 or 3hours). In the plots and tables which follow, the overall 

prediction accuracy is expressed by calculating the median value of  and the 

median value of  for the test data (2007, 2008, and 2009).  

4.4  RESULTS 
In this research, the effect of four training parameters on the prediction accuracy of FF-

NN and RBF-NN when applied to wind energy prediction is investigated, namely the 

span of training data, the resolution of training data, the Length of Training Pattern 

(LTP) and the type of training data.  

4.4.1 Span of training data 
 To demonstrate the effect of the span of training data on the prediction accuracy of 

FF-NN and RBF-NN, Both Neural Networks are trained using hourly resolved data 

which spans either a single year (2001) or six years (2001-2006) with the LTP fixed at 

10 hours. The prediction error corresponding to each set is shown in Figure 4-4. Whilst 

the length of training history does not appear to affect the errors qualitatively, the 



75 

 

results do reveal that using six years data set to train the FF-NN provides a marginal 

improvement in the prediction accuracy, compared to one year training data sets. 

Quantitatively, no appreciable improvement occurs with RBF-NN, which the results 

also show already has an accuracy of about one order of magnitude better than FF-

NN. This also indicates that RBF-NN may be more accurate than FF-NN for the same 

span (size) of data set.  

 

Figure 4-4: The effect of the span of training data on the prediction accuracy. Wind 

speed training data (only) are used: (a) FF-NN; (b) RBF-NN. 

4.4.2 Resolution of training data 
The effect of temporal resolution of the historical training data is also investigated 

whereby hourly, two hours and three hours’ time series are formed by averaging the 

original (measured) half hourly meteorological data. Figure 4-5 shows a comparison 

between the prediction accuracy related to using different temporal resolutions over a 

single season. A single season is used in this analysis (Figure 4-5) because, as will 

become evident from this study, strong seasonal effects can manifest themselves. The 

results show that prediction error for Neural Networks appears best for hourly 

resolution compared to the others. One distinctive feature from these results is that 
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using half hourly resolution appears to provide the least accuracy compared to 1-3 

hours resolution. This may be due to the fact that half hourly wind speed data more 

realistically represents the variability of wind speed which results in a greater degree of 

uncertainty when the Neural Networks attempt to resolve the wind speed over the next 

time period. More comment and data analysis in relation to this is given within the 

Discussion section. With the above in mind, the ensuing results were all derived for 

Neural Networks trained using (hourly resolved) six years training data set. 

 

Figure 4-5: The effect of different training data resolutions of the prediction accuracy of 

Neural Networks: Wind speed training data (only) are used: (a) FF-NN; (b) RBF-NN. 

4.4.3 Type of training data and LTP 
To further study the effect of the LTP on the prediction accuracy of the employed 

Neural Networks, both FF-NN and RBF-NN are trained with four different Lengths of 

Training Patterns (5, 10, 60 and 168 hours).  This is an important consideration 

because even if the networks are trained using hourly resolved historical data, the LTP 
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dictates how far back in the time-series should the network consider when predicting 

each next (hourly) time step. A shorter LTP may be hypothesised to yield better 

predictions if applied to a stochastic parameter such as wind speed. An additional 

hypothesis to test is, in addition to LTP, what impact on the accuracy of predicted wind 

speed is associated with using different combinations of (historical) meteorological 

data. To resolve this question, the training data is also made up of three different 

combinations of meteorological data: wind speed (only), wind speed and direction, or 

wind speed and solar irradiance. Figure 4-6 presents the overall trends for the 

prediction error in both FF-NN and RBF-NN when predicting hourly resolved wind 

speed averaged over three years ahead (2007-2009). In the results shown, the Neural 

Network is trained using wind speed data (alone) and the different seasons are also 

denoted according to the Australian Bureau of Meteorology (BOM) [25]. In this regard, 

the national summer season is made up of the three (hottest) months of December, 

January and February. These results show that for both FF-NN and RBF-NN, the 

accuracy is not consistent throughout the year but experiences a relative trough (low 

range) during autumn and winter. Outside this period, errors increase and reach their 

highest values during summer and spring. These results clearly indicate that prediction 

accuracy for wind speed varies across the year. Moreover, when wind speed data 

(only) is used to train the Neural Network, the accuracy of both networks tested in this 

study remains prone to seasonal influences, even though in this instance RBF-NN is 

clearly more accurate than FF-NN. These results also demonstrate that more research 

is needed into the veracity of different prediction methodologies which are undertaken 

over only relatively short periods (e.g., over a week or few months only) as these may 

fail to resolve longer seasonal trends. This also exemplifies the need for the accuracy 

of wind speed prediction methods to be tested over prolonged periods (e. g. one year 

or more) so as to capture such seasonal influences. Unfortunately, it would appear that 

research into predicting wind speed (and power) over prolonged periods (to account for 

seasonal influences) is not always apparent in the published literature. 
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Figure 4-6: Prediction errors using 168 hour input data of wind speed (only) for the 

years 2007-2009: (a) FF-NN; (b) RBF-NN. The first day in the figure corresponds to 1st 

January. 

Figure 4-7 shows the effect of changing LTP on the prediction accuracy of FF-NN and 

RBF-NN. Results indicate the performance of both Neural Networks is improved by 

decreasing the LTP but the gain achieved in accuracy is not linear and appears to 

diminish as LTP is reduced from 168 hours to 10 and 5 hours. No considerable 

improvement is achieved by going lower than LTP=10. The results also show that RBF-

NN remains more accurate than FF-NN. The more important observation is that 

although using a shorter LTP appears to improve the prediction error for both networks, 

it also appears to be less effective as a strategy to smooth out the seasonal influence 

for FF-NN. In comparison, the performance of RBF-NN not only becomes much better 

when reducing LTP but seasonal influences on the error of prediction are also damped. 
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Figure 4-7: The effect of LTP on the prediction accuracy over the years 2007-2009: 

FF-NN; (b) RBF-NN. Hourly resolved data is used in training the Neural Network. 

Figure 4-8 shows the effect of using different combinations of meteorological data at 

the input layer when predicting wind speed. Results show that combining wind speed 

training data with other meteorological parameters (e.g. wind speed and solar 

irradiance) appears to improve predictions and reduce seasonal effects.  
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Figure 4-8: The effect of prediction parameters on the accuracy of wind speed 

predicted via FF-NN over the years 2007-2009 (LTP=10 hours). Different combinations 

of (historical) meteorological data are used as inputs when attempting to predict wind 

speed. Hourly resolved data is used in training the Neural Network. 

4.5 DISCUSSION 
Five main observations can be drawn from this study. Firstly, increasing the size of the 

historical training data set has an insignificant impact on the prediction accuracy of FF-

NN and RBF-NN. While the performance of FF-NN minimally improves by using wind 

speed training data of multiple years, RBF-NN gains no benefit from using more than 

one year of training data. The reason behind this may be because even a single year 

(well resolved) wind speed data captures the seasonal effects. 

Secondly, FF-NN and RBF-NN both exhibit better performance when trained using 

hourly wind speed, compared to 0.5, 2 or 3hours. This unexpected behaviour indicates 

that an intermediate temporal resolution should be targeted, rather than very small or 

large time resolution. This is believed to indicate that low temporal resolutions (e. g. 2 

or 3 hourly) unnecessarily smooth the data and make it harder for the Neural Networks 

to be adequately trained.  Similarly, extremely high resolutions (e. g. 0.5 hours) are 

inherently susceptible to much variation which also negatively impacts prediction 

accuracy. To confirm this hypothesis, the standard deviations of the training sets used 

in this study are calculated and the results depicted in Figure 4-9. The data shows that 

half hourly resolved data has a significantly higher variability compared to the other 

data. This relationship was similarly reflected in predictions (Figure 4-5). Further 

statistical analysis is performed on the differently resolved wind speed data using an F-

test. Results, not shown here, indicate that half hourly resolved wind speed data and 

the other temporal resolutions (1, 2 and 3 hours) do come from normal distributions but 
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with different variances indicating significant spread between the different data. This 

result highlights the significance of appropriately selecting (temporal) resolution.      

 

Figure 4-9: Standard deviations of the wind speed training data with different 

resolutions.  

Thirdly, the seasonal variation of wind speed affects the prediction accuracy of a 

Neural Network, but the severity of this effect is dependent on the prediction 

methodology deployed. In this regard, the superiority of RBF-NN in wind speed 

prediction could be attributed to its “architecture”. RBF-NN has the capacity to allocate 

specific hidden neurons to different ranges of wind speed which span the entire 

dynamic range represented through meteorological data (in this study mostly 3 to 9 

m/s). This allows RBF-NN to map finite ranges within the data (e.g., wind speed) to 

specific neurons in the hidden layer. However, because these allocations are done in 

the hidden only (not the input layer), this does not affect the time-series nature in the 

data.. In contrast, the hidden layer of FF-NN tries to find a global approximation that fits 

the entire dynamic range of input data which is difficult to achieve because of the high 

nonlinearity in wind speed. As can be seen from Figure 4-10, the magnitude of wind 

speed varies between 3 m/s and 9 m/s during summer season while this range reduces 

during winter between 3 m/s and 7 m/s. Also notable here is the striking resemblance 

between the seasonal variations of wind speed (Figure 4-10) and the errors in the 

predicted wind speed already presented.  



82 

 

 

Figure 4-10: Measured hourly wind speed for the years 2001-2009. 

The fourth outcome of this research is that reducing the LTP initially increases the 

prediction accuracy of the wind resource (Figure 4-7), for both Neural Network 

methodologies used, but the degree of improvement in accuracy appears to plateau as 

LTP is reduced. Table 4-2 also presents the training time for each methodology used 

when the LTP is varied between 5 and 168 hours. This data indicates that another 

merit associated with using a shorter LTP is to improve the time needed to train a 

Neural Network when predicting the wind resource. This behaviour results because 

decreasing the LTP reduces the number of neurons in the input layer (Figure 4-3) 

which means less time is needed to update the connection weights between the input 

and hidden layer. The physical significance of this is the network is also better able to 

predict seasonal variations.  

Table 4-2: Training time for different Neural Networks based on different lengths of 

training data for wind speed: 5, 10, 60 and 168 hours. 

Network Time to train Neural Network (seconds) 

LTP=1hours LTP=10 hours LTP=60 hours LTP=168hours 

FF-NN 2,025 2,689 8,003 22,095 

RBF-NN 19 21 94 306 

 

The fifth outcome is that incorporating (historical) solar irradiance data along with wind 

speed, during the training phase, can reduce the prediction error of wind speed in 

some, but not all, Neural Networks (Figure 4-8) and that as shown in Table 4-3 this 

improvement comes with no negative consequences on the training time of both Neural 

Networks tested. The physical explanation of this is the Neural Network is better able to 

discern an (hourly) relationship between the wind speed and the solar irradiance which 
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then allows the Neural Network to better learn the behaviour of wind speed over 

prolonged periods spanning multiple seasons. To demonstrate the improvements in 

prediction accuracy which results from including solar irradiance data, the Absolute 

Percentage Error (Equation 4.5) is first derived for each (hourly) data point by 

comparing between the predicted and real value of wind speed. The median of APE’s 

of all the test data (2007-2009) is then derived to show the overall prediction accuracy. 

Table 4-3 shows the MAPE for both Neural Networks. These results indicate that for 

FF-NN, incorporating solar irradiance data when predicting wind speed improves the 

overall accuracy of the network. Regarding RBF-NN, the overall accuracy is not much 

affected but this maybe because this network has already reached “high” accuracy and 

there is no further improvement in accuracy in accuracy when historical training data 

includes both wind speed and solar irradiance. 

Table 4-3: Training time and MAPE for different Neural Networks based on the 

selection of various parameters for the input layer (LTP=10 hours) over years 2007-

2009. 

 

 

Network 

Data input (historical) 

Wind speed Wind speed and 
direction 

Wind speed and solar 
irradiance 

Time 

(seconds) 

Median 
of MAPE 

Time 
(seconds) 

Median of 
MAPE 

Time 
(seconds) 

Median of 
MAPE 

FF-NN 2689 2.25% 2134 1.5% 2631 1.36% 

RBF-NN 21 0.16% 18 0.33% 21 0.24% 

 

The impact of Neural Network training methodology (type of Neural Network and LTP) 

on the predictions, resolved over different bands across the dynamic range of wind 

turbine cut-in (2.5 m/s) cut-out speed (11 m/s), is given in Figure 4-11 for two wind 

turbines (2kW and 30kW). These results indicate that using smaller LTP (10 hours) 

significantly reduces the prediction error of the generated power across all wind speeds 

and that more than a 30% improvement in wind power prediction accuracy can be 

achieved when 10 hours LTP is used instead of 60 or 168 hours. Figure 4-11(a and b) 

also show that for all LTPs, the power prediction accuracy appears to improve at the 

higher wind speeds. The reason behind that may be because of the nonlinear shape of 

the wind turbine power curves (Figure 4-1). According to Lange [38], the shape of the 

wind turbine’s power curve influences  the power prediction error. In the steep part of 
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the wind turbine characteristic curve, a small difference in the wind speed is transferred 

to relatively larger difference between the corresponding predicted and measured 

power due to the power law dependency between wind speed and convertible kinetic 

energy.  

 

Figure 4-11: The power prediction error via FF-NN using different LTP over the years 

2007-2009: (a) 2kW turbine; (b) 30kW turbine. Hourly resolved data is used in training 

the Neural Network. 

Figure 4-12 similarly shows that incorporating wind direction or solar irradiance adds 

further improvement to the prediction accuracy of the generated wind power particularly 

as the rated speed of each wind turbine is approached (9-11 m/s). At low wind speeds, 

the improvement in prediction accuracy is either negligible or low compared to higher 

wind speeds. This indicates that the prediction accuracy of Neural Networks can also 

be affected by the type of input parameters used and the relative improvement also 

changes with wind speed. 

Since solar irradiance can be predicted to some extent for any location via models such 

as the ASHRAE [29], the use of multi-parameter predictions using Neural Networks 

have an advantage over those based solely on wind speed. Solar irradiance 
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incorporated into wind speed predictions could also be a reasonable alternative to 

other meteorological data which must be measured such as humidity, temperature and 

pressure.  

 

Figure 4-12: The power prediction error via FF-NN using different training parameters 

over the years 2007-2009 (LTP=10 hours). Hourly resolved data is used in training the 

Neural Network. 

4.6 CONCLUSIONS 
In this paper, the impact of the Neural Network training methodology employed to 

forecast short-term wind energy is investigated. The research has analysed the effects 

on prediction accuracy as a consequence of using different size and resolution of 

training data as well as the LTP employed. In addition, the effects of these parameters 

on improving the seasonal prediction error for wind speed and the inclusion of solar 

irradiance (as a training parameter) on prediction accuracy have also been analysed. 

Two Neural Networks (FF-NN and RBF-NN) have been trained using one and six 

years’ worth of meteorological wind speed data with half hourly, hourly, two hours and 

three hours temporal resolution to span the training history (5, 10, 60, and 168 past 

hours). The research has also looked at the effects of predicting wind speed using only 

wind speed data as well as wind speed with direction and wind speed with solar 
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irradiance. To assess the impact of Neural Network training methodology on the total 

power predicted, the power characteristic curves of two commercially available wind 

turbines have been used.  

This paper has found that provided historical meteorological data already spans all 

seasons (i. e., at least a single year), no significant improvement is achieved by training 

the networks over more than one year. The results also reveal that seasonal variations 

can appreciably affect the accuracy of short-term wind speed predictions. The severity 

of this detrimental influence depends very much on the methodology used. This 

research has also shown that reducing the length of training data used in Neural 

Networks improves the accuracy of wind speed prediction and also reduces training 

time. However, this benefit appears to diminish below a certain value of LTP. The last 

finding of this study is that incorporating solar irradiance data can improve the 

prediction accuracy of wind speed with no significant consequences on the training 

time. This improvement in accuracy appears to be more effective at higher speeds 

compared to low (cut-in) speeds of the wind turbines. More work is warranted to 

determine if the outcomes from this research, which are based on the specific Neural 

Network architectures used (e.g., types, temporal resolution of data, etc), are also 

applicable to other data sets of wind speed and geographical locations.  Unlike other 

meteorological data, solar irradiance can be easily predicted for geographical locations 

using well established models such as ASHRAE. This approach of including solar 

irradiance data when predicting wind speed can help improve estimates of generated 

wind power at any particular location, especially for remote areas where a record of 

other meteorological data may not be available. Accurately predicting power generated 

can help reduce the intermittency associated with wind energy through appropriate 

sizing and optimisation of energy system component selection. This may also help 

better size energy storage media such as batteries or hydrogen. Further work needs to 

be undertaken to explore the effect of using multiple input parameters on the prediction 

of other renewable resources (such as solar-PV) as well as the impact of using Neural 

Networks on the ability to meet load requirements in wind energy systems. 
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5 CHAPTER 5: PREDICTIVE POWER MANAGEMENT STRATEGIES FOR STAND-
ALONE HYDROGEN SYSTEMS: LAB-SCALE VALIDATION 

A. Brka, G. Kothapalli, and Y. M. Al-Abdeli  

This chapter was published as an article in the International Journal of Hydrogen 

Energy, vol. 40, pp. 9907-9916, 2015. Whilst all efforts were made to retain the original 

features of this article, minor changes such as the layout, number formats, and font 

size and style were implemented in order to maintain consistency in the formatting style 

of the thesis. 

5.1 ABSTRACT 
Power Management Strategies (PMSs) to control stand-alone energy systems affect 

the reliability of meeting load demand as well as the cyclic operation of various 

subsystems. The hybridisation of sources through the integration of hydrogen fuel cells 

with energy storage means optimising the PMS should be “intelligently” done unless 

relying on rule-based PMSs which are simplistic to use but subject to lack of 

optimisation. This paper presents the methodology and validation of a lab-scale 

(desktop) energy system controlled by a predictive PMS. Validation of the intelligently 

based PMS can be done in the lab-scale before (costly) full deployment in the field, but 

experiments to support this have not been reported in relation to hydrogen systems. 

The experimentally tested hybrid energy system consists of an emulated renewable 

power source which can represent solar-PV and/or wind generators, battery bank and 

PEM fuel cell integrated with metal hydride storage. Experimental testing as well as the 

use of real-time predictions using Neural Networks is utilised. The effects of several 

control parameters which are either hardware dependant or affect the predictive 

algorithm are investigated with system performance, under the predictive PMS, 

benchmarked against a rule-based PMS. The results reveal that a predictive PMS is 

impacted by the prediction horizon used to forecast the availability of renewables or 

load, the decision time interval used for updating the PMS as well as time lags resulting 

from hardware sensors used to convey system status to the decision algorithm 

responsible for updating the PMS. The maximum thresholds of the abovementioned 

control parameters are 120, 15 and 3 seconds, respectively. Beyond these limits, the 

ability of the predictive PMS to effectively control the system degrades significantly. 

This study demonstrates the feasibility of using real-time predictions of renewable 
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resources and load demand to optimise a PMS in a stand-alone energy system and 

experimentally validates this, which has not been previously reported.            

5.2 INTRODUCTION 
Rapidly growing power consumption, climate change and depletion of fossil fuel 

reserves has increased interest in renewable power generation.  In localities where 

connection to a public power grid may be unavailable or infeasible, wind, solar power, 

or even diesel generators are options for supplying electric power [1]. If renewably 

powered, typical application scenarios for such stand-alone (off-grid) systems include 

serving remote communities [2], powering water desalination [3] and supplying 

telecommunication stations [4]. However, due to the intermittent and unpredictable 

nature of wind and solar power, these systems also include energy storage media to 

ensure reliable and continuous power supply. Recent hydrogen and other hybrid 

system designs [5-7] rely on batteries for short-term energy storage whilst hydrogen 

can also be used for long-term energy storage.  

The use of hydrogen fuel cell technology in stand-alone applications as a back-up, 

which provides instant and uninterruptible power when the main power sources are not 

available or unable to meet the power demand has found a remarkable area in the 

literature. Mezzai et al presented the modelling of Solar-PV/Wind/Fuel cell hybrid 

system [8]. A performance analysis of Solar-PV/Fuel cell and Solar-PV/Fuel cell/Battery 

hybrid systems has been performed by Rekioua et al [9] and Bruni et al, respectively. 

Behzadi and Niasati analysed different PMSs for stand-alone Solar/PV/Fuel cell/Battery 

system [10]. Sizing and economic analysis of Wind/Fuel cell [11, 12], Wind/Solar-

PV/Fuel cell [11, 13],  Solar-PV/Fuel cell [14-16], Solar-PV/Fuel cell/Battery [17] and 

Wind/Solar-PV/Fuel cell/Battery [18] hybrid systems are also conducted by 

researchers. However, the above mentioned studies include simulation based analysis 

with the effect of fuel cells transients ignored, and none of them presents the 

experimental application of the analysed system. 

The hybridisation of renewable power technologies and energy storage complicates the 

system architecture and increases the cost to design, build and operate these systems. 

To design reliable and cost-effective (renewably powered) systems, historical time 

series of resources such as solar and wind as well as load demand profiles are 

needed. Whilst consideration of total power demand and the availability of renewables 

can assist in deploying effective methodologies to meet power requirements, an 

optimised PMS can also help reduce overall cost ($/kW-hr) [19] as well as improve load 
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meeting reliability. A PMS typically affects overall performance via determining the 

control set points to activate/deactivate various energy system components. Because 

measured profiles of renewable energy resources such as wind may not always be 

available, especially for remote locations, a PMS that is able to predict (in real-time) the 

availability of renewables and load demand is highly desirable but challenging to 

obtain. Therefore in most instances, recourse to several (off-line, not real-time) 

methods is used to forecast renewable resources using techniques such as Neural 

Networks (NNs) [20]  or the ASHRAE clear-sky model [21].  

In relation to sizing of hybrid renewable energy systems, probabilistic [22-24], analytical 

[25, 26], iterative [27] and hybrid [28] methods have been used. Optimisation of rule-

based PMSs [17, 29-31] using algorithms based on if-else statements has also been 

coupled with intelligent search techniques such as Genetic Algorithm [32, 33] and 

Particle Swarm Optimisation [34]. However, in most studies the control parameters 

used in the rule-based PMS have predefined thresholds. This makes rule-based PMSs 

rigid and not able to adapt to real-time system conditions. Although research into rule-

based PMSs is well established in the context of stand-alone systems, little work has 

been reported to evaluate the performance of intelligent PMSs used for the real-time 

operation of hybrid renewable energy systems. An intelligent PMS uses techniques 

such as fuzzy logic [35]  and NNs [36, 37] to further predict process parameters and 

then control the switching of the energy system components such as batteries and fuel 

cells.  

Additionally, whilst simulations have been extensively used to evaluate the 

performance of PMS applied to hydrogen and other hybrid energy systems, most 

studies do not include an experimental validation (or real-time testing) due to the 

challenges involved with the construction of a hybrid power system and the 

developments of suitable power electronic interfaces [38]. Moreover, no validation of a 

NN-based predictive PMS has been reported which includes the forecasting of 

renewables such as wind, and electric loads.  

The contribution of this paper focuses on the validation of a NN-based PMS whereby 

the NN is used to predict the future levels of the controlling parameters. The paper also 

demonstrates this predictive methodology via experimental validation when the 

intelligent PMS uses real-time predictions of load demand and renewable power as 

decision variables. To help benchmark this predictive PMS, results are compared to a 

rule-based PMS. Moreover, the effect of software related parameters such as the 
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Prediction Horizon (PH) used by the NN to forecast renewables or load demand, as 

well as the Decision Interval (DI) used by the algorithm to update the control set points 

within the PMS and hardware related parameters (such as sensor response speed 

delay) are evaluated. The experimental validation of the (NN) predictive PMS is 

demonstrated by applying it to a lab-scale (desktop) hybrid energy system. This system 

consists of an emulated renewable power primary source, energy storage (batteries) 

and fuel cell (primary mover) for providing back-up during periods where a mismatch 

appears between renewables and load. Real-time testing is done using a lab-scale fuel 

cell rather than relying on representative models which is the approach previously 

reported [39].   

This paper is organised as follows. Section 5.3 presents a description of the 

experimental setup. Section 5.4 explains the predictive and rule-based PMSs tested 

and Section 5.5 explains the employed reliability index. The results and discussion are 

presented in Section 5.6 while conclusions are drawn in Section 5.7.   

5.3 SYSTEM DESCRIPTION 
A typical stand-alone hybrid energy system, shown in Figure 5-1, may consist of a wind 

turbine, solar-PV panels and other power sources such as fuel cell (or diesel generator 

set) and battery storage. In such a scenario, the wind turbine and solar-PV panels 

constitute the primary power source whereas batteries are used for storing the possible 

excess energy during low demand periods or where excess renewables exist and to 

absorb short-term fluctuations of the renewable sources so as to avoid frequent 

start/stop cycles for the fuel cell system [31].  
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Figure 5-1: A typical (real) stand-alone hydrogen energy system which uses a PMS. 

The role of the prime mover fuel cell system (or diesel generator set) is to then supply 

additional loads beyond the capacity of renewables and batteries. The necessary 

hydrogen for operating the fuel cell is stored in hydrogen canisters. On-site hydrogen 

production, using excess power production of primary renewable sources, has drawn 

significant attention recently [40, 41] and even coupled with renewably powered 

desalination [34]. In a hybrid renewable energy system, a monitoring and control 

system is also used and typically comprises a data-acquisition unit and set of sensors 

needed to real-time monitor and measure both meteorological data (e.g. humidity, 

temperature, wind speed, solar irradiance, etc.) and operational parameters (voltages 

and currents of the power generation components) [42]. The number of sensors 

needed to monitor and control the operation of hybrid energy system depends on the 

structure and complexity. Studies reported in the literature indicate that the minimum 

number of sensors needed corresponds to the number of main decision variables 

involved in the PMS [43-45]. In a lab-scale setup, such (real-time) hybridised energy 

system may be assembled as shown in Figure 5-2. The setup consists of a total 0.14kW 

(emulated) renewable power source, 1.2kW fuel cell unit and 0.408kWh battery bank. 

The system components are collaboratively supplying a dynamic DC load through a 

common DC bus in a stand-alone mode. The renewable sources (will be referred as 

primary power source) and fuel cell unit are connected to the DC bus via DC/DC 
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converters while the battery bank is directly connected to the DC bus through a power 

relay. The load module is directly connected to the DC bus. The LabVIEW and 

MATLAB software are used to code the implemented predictive PMS on a laptop 

computer which has been connected to the energy system via National Instruments 

(NI) controller interface. Eight sensors are used for the operational parameters of the 

system setup which include the currents and voltages of the primary power source, 

battery bank, fuel cell unit and load module. In the following subsections, the hardware 

components of the considered system are described. 

 

 

Figure 5-2: The lab-scale (desktop) stand-alone hydrogen energy system used to test 

the (NN) predictive PMS. 

5.3.1 Primary power source (renewables) 
Due to the limitations on solar and wind energy availability in a laboratory environment, 

the renewable power source that used for the stand-alone system tested is emulated 

using a DC power supply. To simulate the fluctuations of real renewable power source, 

the output power is steeply changed between zero and full capacity levels of the 

available DC power supply.   

5.3.2 Hydrogen energy system (fuel cell, hydrogen canisters) 
In this study, the Nexa 1200 Proton Exchange Membrane (PEM) fuel cell system from 

Heliocentris [46], is used as a backup. This fuel cell is designed as an air cooled stack 

equipped with all the necessary peripheral components (fan, compressor, etc.) to 

ensure stable and safe operation. The rated capacity of stack is 1.2kW and the output 

voltage varies between 20 and 36V with 65A maximum. The purity of the hydrogen 

used to operate the PEM fuel cell stack should be 99.95% or better [47]. The hydrogen 
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gas needed for the operation of the fuel cell system is stored in metal hydride canisters 

which is an ideal choice for stand-alone applications [48]. A set of three hydrogen 

canisters of Ovonics Company are utilised for the test bench. Each canister has a 

weight of 6.5kg and a volume of 760STD litres. 

5.3.3 Lead acid battery bank and model 
A battery bank consisting of two lead acid batteries is used for absorbing short-term 

fluctuations of the renewable power source. Each battery has electrical specifications 

of 12V and 17Ah. The Battery State-Of-Charge (BSOC) is an important parameter for 

systems that include batteries as an energy storage not only to estimate the amount of 

energy stored, but also to avoid over charging/discharging to protect the battery from 

damage [49]. The BSOC is also important for implementing effective PMSs for hybrid 

renewable energy systems [50, 51]. However, the measurement of the BSOC is a 

challenging task because of the complexity determining the battery’s available energy 

[52]. Several methods have been proposed to monitor the BSOC. Examples include 

open-circuit voltage, specific gravity and constant load methods [52]. The 

aforementioned methods are not suitable for online and continuous monitoring, as 

required in hybrid renewable energy systems, because they require long stabilisation 

period [52]. For lead acid batteries, BSOC is linearly proportional to its discharge voltage 

[49, 53]. Therefore, in this work, the battery’s terminal voltage is used as an 

approximation of the BSOC. The predictive PMS uses a model for the utilised battery 

bank to estimate (future) charging/discharging dynamics. While many models are 

available in the literature [54, 55],  a simple model for a rechargeable lead acid battery 

is used. The model is based on the following equation [56]: 

                                         5.1 

In this regard,  is the battery’s terminal voltage (V),  is the battery’s constant 

voltage (V),   is the polarisation resistance ( ) and  is the voltage drop during 

discharging expressed as a fraction of the battery constant voltage. When the battery is 

charging, the voltage drop ( ) is zero. The BSOC is computed by the integration of the 

battery current, , according to the following: 

                                                                    5.2 

In the above equation,  is the battery’s maximum capacity (Ah). To incorporate the 

battery model into the predictive PMS, the model is simulated using 

MATLAB/SIMULINK software and its parameters are firstly optimised (using measured 

data) with the help of Simulink Design Optimisation toolbox. For this purpose, 
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charging/discharging experiments at three constant currents (4, 7 and 12 A) have been 

conducted on the battery bank described earlier. The optimised battery model is then 

converted into a Dynamic Link Library (DLL) in order to incorporate it into the predictive 

PMS which is coded in the LabVIEW software environment, thanks to the LabVIEW 

Model Interface Toolkit (MIT).  

5.3.4 Load module and power conditioning units 
An electronic DC load unit, which is supplied by Heliocentris [46], is utilised in the 

system. This electronic load can work in variable current and power modes and can be 

controlled manually or by a computer. The employed load module has a maximum 

power of 1.5kW, maximum current of 100A, and operating voltage ranges from 1 to 

75V. As the available load is a DC load, a DC/AC inverter unit is not used for power 

conditioning. An inverter should be included if the system is integrated to supply an AC 

load. Because the implemented test bench has one common 24V DC bus, two DC/DC 

converters, which are power electronic devices that enable matching the output 

voltages of different energy sources to work together on the same DC bus, are used to 

regulate the output voltage of the primary power source and PEM fuel cell stack. The 

specifications of the utilised converters are listed in Table 5-1 [57].   

Table 5-1: Technical characteristics of the DC/DC converters 

DC/DC converter Primary power source side PEM fuel cell side 

Rated power (W) 100.8 504 

Input voltage (V) 36-72 19-72 

Output voltage (V) 24 24 

Maximum current (A) 4.2 21 

5.3.5 Data acquisition, controller and sensors 
The NI reconfigurable embedded monitoring and control system (NI cRIO-9047) is 

used to acquire measurements from and send control signals to the system. This unit is 

programmed with LabVIEW programming tools and can be used in a variety of 

applications by using several input and output modules. In this work, the NI-9477 digital 

output module is employed to transfer the control signals from the laptop computer to 

the power relay used to connect/disconnect the battery bank to the DC bus, and to 

start/stop the fuel cell unit. The NI-9221 analogue input module is used for voltage 

measurements while NI-9205 analogue input module along with four Hass-100s Hall-

effect current transducers are used for current measurements. The signals sensed by 
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the current transducers are calibrated to correspond to their original physical units 

using the following calibration equation [42]: 

                                                                                               5.3 

In this regard,  is the  sensor output in physical units,  is the  measured 

sample.  and  are calibration coefficients and their values are experimentally 

derived. The speeds at which the sensors respond to the changes of the system status 

control how fast the PMS reacts to these changes. If there is a delay in the sensor’s 

response, this may affect the ability of the PMS to properly control the stand-alone 

system. In this study, the effect of the Sensor Delay (SD) on the performance of the 

predictive PMS is investigated by imposing an artificial time lag on the measured 

voltages and currents across some of the system components.  

5.3.6 Renewables and load demand prediction 
As mentioned earlier, the predictive PMS uses real-time predictions of load demand 

and renewable power to decide the switching of the battery bank and fuel cell unit. NNs 

are widely used for prediction applications such as wind energy [20], electric loads [58] 

and solar irradiance [59]. A previous study by the authors of this paper has proven that 

Radial Basis Function Neural Networks (RBF-NNs) are good forecasting tools for 

nonlinear time series dynamics [20]. Therefore, a RBF-NN is used in this work for real-

time prediction of the load demand. The load profile used to test the experimental setup 

is used to train RBF-NNs to perform 30, 40, 50, 60 and 120seconds ahead PH. The 

procedure that is used to train the RBF-NNs has been explained by the author in an 

earlier work [20]. More details about the structure, activation function and advantages 

of RBF-NN can also be found in the mentioned work. Because the renewable power 

source is emulated using DC power supply, predictions of (future) renewable power are 

assumed available. The load demand prediction error is expressed as the difference 

between the measured and predicted values as follows: 

                          5.4 

In the above equation,  is the measured load demand and   is the predicted 

load demand. The NN toolbox under MATLAB/SIMULINK software is used to realise 

and train the used RBF-NNs because LabVIEW software, unfortunately, has no NN 

toolkit. As with the battery model, the trained NN is converted to a DLL and then 

incorporated into the predictive PMS using the LabVIEW MIT.   
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5.4 POWER MANAGEMENT STRATEGIES 
In stand-alone hybrid energy systems, the objective of PMS is to control the switching 

of the energy system components in order to satisfy the load demand while maintaining 

the operation of each component within an acceptable range of technical limitations. In 

this study, two PMSs have been used for the lab-scale (desktop) stand-alone energy 

system. Namely: predictive PMS and rule-based PMS. A description for each one is 

given below.  

5.4.1 Predictive PMS 
In the predictive PMS employed in this study, the decision to switch the batteries power 

relay or activate the fuel cell unit is taken prior to an actual power deficit occurs based 

on predicted (future) value of the load demand and (future) estimation of the output 

power of the primary power source, and BSOC. The inputs of the PMS are the measured 

power of the primary power source and measured load demand at time . The 

measurements of the load demand are sequentially passed to the RBF-NN to predict 

the expected load demand at . The difference between the estimated (future) 

output of the primary power source and predicted load demand is then calculated as 

follows: 

                                           5.5 

where  is the estimated net power and  and  

are the future estimation of the output power of the primary power source and the 

predicted load demand, respectively, at . The estimated net power is then used 

by the battery model to estimate the future BSOC,  which is used along with 

the estimated net power to define the charging/discharging of the battery bank and the 

start/stop of the fuel cell unit. Figure 5-3 describes the decision mechanism of the 

predictive PMS. Minimum and maximum BSOC limits (  and   respectively) are 

imposed on the operation of the battery bank for protection against overcharging as 

well as over discharging. In this regard, the battery bank is allowed to be discharged to 

no less than  and charged to no more than . In addition, to protect the fuel cell 

unit against frequent start/stop cycles, which may harm the fuel cell stack [29], once the 

stack is activated, it would not be deactivated unless a pre-defined timespan has 

elapsed (5min in this experiment).  
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Figure 5-3: A flowchart of the PMSs used for the stand-alone hydrogen energy system 

setup. The rule-based PMS is formed by only the interconnected (shaded) blocks (with 

PH=0) whereas the predictive PMS is constituted by the entire flowchart. 

5.4.2 Rule-based PMS 
The decision variables for the rule-based PMS are the measured output power of the 

primary power source, load demand and the BSOC. In this PMS, the output power of the 

primary power source and the load demand are measured at each time step  and the 

system’s net power, , is calculated according to the following: 

                                                                       5.6 

where  and  are the measured power of the primary power source and 

load module respectively. The value of the net power and the measured BSOC are then 

used by the rule-based PMS to generate the proper control signals for the battery bank 

and the fuel cell unit. As in the predictive PMS, constraints (  and  

respectively) are imposed on the operation of the battery bank, and the fuel cell unit is 

kept operating for at least 5 minutes after receiving a start command to avoid frequent 
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start/stop cycles. The decision mechanism for the rule-based PMS is also shown in 

Figure 5-3. 

5.5 RELIABILITY INDEX 
To evaluate the reliability of hybrid renewable energy systems, several reliability 

indices are introduced in the literature [41, 60, 61]. Loss of Power Supply Probability 

(LPSP), Loss of Energy Expected (LOEE) and Loss of Load Expected (LOLE) are 

examples of the used indices. Among the aforementioned indices, LPSP has been 

widely used to evaluate stand-alone (off-grid) renewable energy systems. In this study, 

a Loss of Load Period (LOLP) index which represents the sum of time steps during 

which the system cannot supply the whole load demand, is adopted and it is defined as 

follows:   

                        5.7 

In the above equation,  is the number of time steps in which the system’s reliability is 

evaluated (here, ).  and  are the battery and fuel cell 

output power, respectively, at time step .  

5.6 RESULTS AND DISCUSSION 

Each test run (operating condition) on the energy system (Figure 5-2) lasted 65minutes 

so as to capture system performance and stability across both transient and steady 

state operation and when subject to the rule-based PMS (Figure 5-3). Figure 5-4a shows 

the load demand profile applied across test conditions. Whilst this load profile can be 

varied, it was used throughout this study so as to provide a common basis for 

comparing between a rigid PMS and predictive PMS. To simulate the intermittency of 

real renewable energy sources (Figure 5-1), the power from the emulated renewable 

source (DC power supply) is changed between zero and full capacity levels. The initial 

conditions for the PMS controlling the power system (at time ) are as follows: 

 (corresponds to battery terminal voltage of 23 V) and  

(corresponds to measured battery voltage at full charge). The initial state of the fuel cell 

unit (primary mover) is off and the hydrogen canisters (energy storage) are fully 

charged. Figure 5-4b shows a comparison between the measured and estimated BSOC 

(measure as terminal voltage of the battery bank). As can be seen from Figure 5-4, the 

implemented predictive PMS successfully controls the switching of the power system 

components and the lab-scale stand-alone energy system able to meet demand over 
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both transient and steady state stages. It can also be seen that the battery model used 

to predict future BSOC levels closely follows the measured BSOC.  

 

Figure 5-4:  Stand-alone hydrogen energy system responses when controlled by the 

predictive PMS (DI=1 second, PH=30 seconds and =1.2kW). (a) Measured Power 

profiles. (b) Measured and NN predicted battery terminal voltage.  

To further evaluate the predictive PMS’s performance, software controlling parameters 

such as the (i) NN Prediction Horizon (PH) and (ii) PMS Decision Interval (DI) are 

varied and their effect on the reliability for the system to meet the load demand 

(Figure 5-4a) is analysed. Another controlling parameter investigated is the role of the 

(iii) Sensor Delay (DS) to respond to changes in power system status which is 

hardware related. The PH represents the prediction step (in seconds) used by the NN 

to forecast load demand or available renewable power. The DI represents the time 

interval (in seconds) at which the predictive PMS makes device switching decisions. In 

addition, the behaviour of the power system when controlled by the predictive PMS is 

compared to the same system if controlled by a rule-based PMS. Four main results can 

be drawn from varying parameters (i)-(iii) from this study.  
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Firstly, the DI has a gradual effect on the system’s reliability to meet the load demand 

(measured as a LOLP) while the PH has a threshold effect. Figure 5-5 shows a fit of the 

measured LOLP versus several combinations of DI and PH. Here, the considered 

values of DI are 1, 15, 30, 45 and 60seconds while PH values are 30, 40, 50 and 

60seconds. From this figure it can be seen that for DI less than 15seconds, the stand-

alone power system has a maximum reliability and no LOLP has been recorded. As the 

DI exceeds around 15seconds and up to 60seconds, system reliability gradually 

decreases even though the predictive PMS is still able to maintain stable operation for 

the energy system. For up to 60seconds, the PH seems to have no direct influence on 

system capacity to meet the load demand. However, when the PH is increased to 

120seconds, the system becomes unstable with total loss of the load supply. These 

results do highlight that parameters PH and DI do affect the performance (LOLP) for 

the system or its overall stability. Whilst some of these parameters have a steady effect 

(DI), others appear to have more abrupt influence (PH).  

 

Figure 5-5: The effect of the Decision Interval (DI) and Prediction Horizon (PH) on the 

LOLP of the stand-alone hydrogen energy system. Negative LOLP refers to total loss 

of supply.  

Secondly, the results show that a predictive PMS is highly sensitive to the speed at 

which the measurement sensors respond to changes in status of the power system. To 

assess the effect of delays in sensors response, a time lag has been imposed on the 
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measurements of the decision variables involved in the predictive PMS and its effect on 

the load meeting reliability (LOLP) is analysed. Figure 5-6 shows the variation in LOLP 

when 1, 2 and 3seconds time lags are imposed on the SD for the primary power 

source, load demand and the BSOC. The time lags are applied to the sensors connected 

to the emulated renewable power source, electronic load and the battery bank. These 

results show that LOLP increases with increase the SD. Whilst LOLP changes 

gradually with SD in the range SD=1-3, when SD>3 the predictive PMS failed to control 

the system with total loss of supply. These results indicate that synchronisation 

between the PMS and the system hardware has a significant impact on the 

performance of a predictive PMS. An increased SD means data used to update the 

status of the predictive PMS via the Neural Network becomes less representative of the 

dynamics and status of renewable power and load demand. Therefore, it is important to 

consider the sensor measurement delay when implementing a predictive PMS. 

  

Figure 5-6: The effect of the Sensor Delay (SD) on the LOLP of the stand-alone 

hydrogen energy system. (PH=30seconds, DI=1second). 

Thirdly, the results show that the stability of a predictive PMS is affected by the 

forecasting error. Figure 5-7 (a and b) shows the prediction error of the load demand 

and the control signal of battery power relay, respectively. From this figure it can be 

seen that the NN prediction error is relatively higher at the load demand transient 

periods (Here, the load transient refers to the instances when the load demand 

changes from one level to another). The increase of the prediction error during the load 

transients makes the predictive PMS sends a frequent open/close commands to the 
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battery power relay as shown in Figure 5-7b. This makes the system unstable during 

load transients.    

 

Figure 5-7: The effect of prediction error on the performance of the predictive PMS. (a) 

Load demand and Prediction error profiles. (b) The control signal of the battery bank 

power relay. ( =1.2kW). 

Finally, this study has shown that the predictive PMS can help prevent the loss of 

power supply during the transient start-up time of back-up prime movers (e.g. a fuel 

cell). Figure 5-8 shows the measured load demand when predictive and rule-based 

PMSs are used for the energy system. As for the rule-based PMS, 20 seconds LOLP 

have been observed at the instance when the strategy activated the fuel cell unit to 

supply the deficit instead of the battery bank. This LOLP has not been observed when 

predictive PMS is used. The reason may be because the fuel cell has a relatively slow 

transient response as it is experimentally proven in an earlier work by the authors [41]. 

Unlike the rule-based PMS, the predictive PMS has the advantage of anticipating the 

future level of the BSOC and makes an early start of the fuel cell unit which allows the 

transient start-up time to pass before the fuel cell unit is actually requested to supply 

power to the load. This advantage of predictive PMSs can be useful in scheduling the 

operation of the components of the hybrid renewable power systems based on future 

0 10 20 30 40 50 60

-20

0

20

40

Time (minutes)

(P
Lo

ad
, E

rr
or

)/P
m

ax
 (%

)

 

 

0 10 20 30 40 50 60
0

0.5

1

Time (minutes)

O
pe

n/
cl

os
e 

co
m

m
an

d

 

 

Prediction error
Load power

(a)

(b)



107 

 

availability of renewable resources which may help designing more efficient, reliable 

and cost-effective hybrid renewable energy systems.  

 

Figure 5-8: Measured load power profiles of the stand-alone hydrogen energy system 

when rule-based (solid) and predictive (dashed) PMSs are used. ( =1.2kW).  

The results of this study verify the effectiveness of using NN-based PMSs for managing 

the power flow of stand-alone hybrid power systems and investigated the effect of 

some software and hardware related controlling parameters that affect the performance 

of this type of intelligent PMSs. Using NNs for controlling the operation of hybrid power 

systems may allow implementing much more advanced intelligent PMSs that are able 

to schedule the operation of the power generation components of hydrogen and other 

hybridised renewable energy systems beforehand based on (future) predictions of the 

availability of renewable resources. This may result in designing hybrid renewable 

energy systems less susceptible to the intermittency of renewable resources and able 

to efficiently utilise the available resources which in turn may increase the reliability and 

reduce the cost of power generation.    

5.7 CONCLUSIONS 
This paper presents the construction of a lab-scale (stand-alone) hybrid energy system 

featuring a hydrogen fuel cell coupled with metal hydride storage satisfying a dynamic 

load demand. The experimental setup consists of an emulated renewable power 

source which is considered as a primary source, battery bank and PEM fuel cell unit 

which is used to supply the deficit power during periods the primary source cannot 

meet the whole load demand. Besides, an intelligent PMS based on NNs (termed as 

predictive PMS) is employed to control the overall power flow within the system. In 
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addition, the performance of the implemented predictive PMS is evaluated by 

assessing the effect of some software and hardware related controlling parameters. 

Moreover, a comparison to a rule-based PMS to control the same system is conducted. 

The Loss of Load Period (LOLP), which represents the sum of time periods during 

which the setup cannot supply the load demand, is used as an assessment criterion. 

Results not only validate the use of a predictive PMS to manage the switching of the 

components in a hydrogen or hybridised energy system but also shed light on how 

several parameters influence the effectiveness of this approach. The following specific 

outcomes have been drawn from this study: 

 The decision interval of the predictive PMS has a gradual effect on the reliability 

of the energy systems to meet the load demand while the prediction horizon 

has a threshold effect. The maximum limits of the decision interval and 

prediction horizon are 60 and 120seconds, respectively.   

 The accuracy of the prediction tool employed to realise the predictive PMS 

affect the stability of the controlled energy system. 

 The predictive PMS is sensitive to the delays of sensors response to the 

changes of the system conditions. Results showed that more than 3seconds 

delay will lead to a total loss of load. 

 Unlike rule-based ones, predictive PMSs can help prevent the loss of power 

supply that may occur during the transient start-up time of the back-up power 

units of hybridised renewable energy systems. 

 

Whilst this study has focused on demonstrating a lab validation and analysis of using 

predictive PMS with a stand-alone system, further research is warranted into the 

techno-economic or environmental impact (net present cost, cost of energy, lifetime 

CO2 emissions) of using a predictive PMS on a hybrid renewable energy system.   
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6 CHAPTER 6: PREDICTIVE POWER MANAGEMENT STRATEGIES FOR STAND-
ALONE HYDROGEN SYSTEMS: OPERATIONAL IMPACT 

A. Brka, Y. M. Al-Abdeli and G. Kothapalli  

This chapter is under review in the International Journal of Hydrogen Energy.  

6.1 ABSTRACT 
This paper compares the operational impacts of both predictive and reactive Power 

Management Strategies (P-PMS and R-PMS). The study is implemented for a stand-

alone hybrid system based on wind turbines (WG), batteries (BAT) and hydrogen 

technology. The P-PMS uses real-time Neural Network (NN) predictions of wind speed 

and load demand to adjust the control set points affecting the switching of devices. The 

study also analyses the effects of using another intelligent technique, Particle Swarm 

Optimisation (PSO), for the real-time optimisation of fuel cell operation. Genetic 

Algorithms (GA) are used to optimally size the hydrogen system.  The research 

presented in this study is an extension of an earlier work in which the concept of P-

PMS was experimentally validated and the effects of some software and hardware 

related controlling parameters assessed. This paper however goes further by analysing 

the impact of using P-PMS on the economic and operational characteristics of stand-

alone hydrogen systems by benchmarking it against an R-PMS. 

Results reveal that a hybrid system operating under a Predictive PMS outperforms that 

with a reactive PMS in terms of cost, renewables penetration and environmental 

footprint. However, these merits are realised only if a particularly high reliability of load 

satisfaction is required. Results also show that a P-PMS highly depends on the 

accuracy of the employed (NN) prediction tool. The methods employed include 

MATLAB simulations to implement the three intelligent techniques (GA, NN and PSO) 

and integration of experimentally derived fuel cell characteristics as well as highly 

dynamic electric load and wind speed profiles.    

         

6.2 INTRODUCTION 
Solar-PV and wind energy systems are hybridised by adding backup prime movers and 

energy storage media so as to reliably meet electric power even during higher demand 

periods [1]. Diesel generators [2] and batteries [3] are traditionally used in this context 

but these are expensive to operate and maintain at remote locations [4], as well as 

having undesirable environmental impact [5]. Batteries can also suffer from short 
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lifetime and poor reliability [6] which can affect their application in remotely located 

hybrid systems.  

Regardless of the choice for prime movers, designing reliable and cost-effective stand-

alone energy systems is challenging because it often requires considering trade-offs 

between different performance measures. An effective operational strategy, commonly 

known as a Power Management Strategy (PMS), is also needed to control device 

switching and power supply during operation. All these considerations affect the 

operational impact of the systems (costs, load meeting reliability, CO2 footprint) 

Numerous studies have been undertaken to optimally size different configurations of 

stand-alone renewable energy systems [7-11]. These sizing methods span single-

objective function methodologies (i.e. minimising only cost [12, 13]) or multiple-

objective function methodologies which may consider minimising cost and also 

reducing environmental footprint [14, 15], shrinking unmet load [16] or dumped excess 

energy [17, 18]). In this regard, a multiple-objective sizing procedure to optimise 

hydrogen systems has already been presented by us in a previous work [18]. The main 

performance measures  of a PMS are to provide load satisfaction and optimal 

operation of energy system components under a set of technical (hardware) constrains 

[19]. However, the choice of control set points affects overall reliability, device 

intermittency (switching on/off), and ultimately system scale as well as cost.  In this 

context, several PMS strategies which use if-else statements have been proposed [20-

23]. However, results confirm that adjusting the control set-points significantly affects 

overall system performance [24-26]. Optimising the controlling set-points [27] or 

imposing hysteresis bands on their thresholds [26] are methodologies traditionally used 

to improve the robustness of a PMS. However, the vast majority of research to date 

considers a PMS which utilises manually preset (rigid) control set-points that do not 

adapt to real-time variations of renewables, electric load or battery state of charge. 

Such Power Management Strategies are essentially ‘passive’ in their response to 

fluctuations of forcing parameters (e.g. electric load, renewables availability).    

To realise a PMS which ‘actively’ adapts its controlling set-points to operating 

conditions, techniques such as Particle Swarm Optimisation (PSO) [28-30], Genetic 

Algorithms (GA) [20] and fuzzy logic [19, 31] have been used. However, such 

approaches optimise the design of the PMS at the starting state ( ), rather than 

dynamically (and intelligently) by continuously re-aligning its control set-points over 

every time step ( ), so as to lead to a more effective operation of the energy system. In 
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addition, a few works have also integrated forecasting techniques, such as persistence 

methods [32, 33], to implement a ‘predictive’ PMS (P-PMS) by using forecasts of load 

demand and renewable resources since they are decision variables which affect the 

operational impact. In addition to the scarcity of such works, it appears these P-PMS’s 

have only been researched in the context of systems using diesel generators (only). 

Moreover, the effectiveness of integrating more advanced forecasting techniques such 

as Neural Networks (NNs) do not appear to have been tested within a predictively 

optimised PMS. The integration of a P-PMS into hydrogen systems, which are 

renewable powered, also has additional complicating factors because predicting 

renewables (e.g. wind speed) does not only affect the reliability of meeting external 

electric load, but additionally influences the ability to use surplus energy to generate 

hydrogen fuel stocks via electrolysis. As such the integration of a P-PMS into hydrogen 

fuel cell systems is more complex, compared to stand-alone systems fuelled by 

conventional diesel generators. As such, there are no reported studies in the published 

literature into the effectiveness of using both predictive control and intelligent real-time 

optimisation in the context of stand-alone hydrogen systems. 

This paper presents a sizing method which involves an ‘intelligent’ PMS that initially 

sizes systems (at ) using GA’s but more importantly, then integrates NNs and a 

third intelligent technique (PSO) to continually predict forcing parameters (wind speed 

and load demand) to optimise the PMS (in-real time) as well as the operation of 

supplemental prime movers (fuel cells). The present paper is a continuation of an 

earlier study by us whereby a lab-scale (desktop) validation for a P-PMS which 

integrated a single fuel cell, but no electrolysis or wind turbines [34]. However, the 

objectives of this paper go further by comparing between a reactive PMS (termed R-

PMS) and its predictive counterpart (termed P-PMS) as well as studying the effects of 

real-time fuel cell optimisation when applied in the context of the P-PMS. The role of 

integrating real-time predictions and fuel cell optimisation into a stand-alone system are 

also analysed for their operational impact (Cost of Energy $/kW-hr, CO2 footprint and 

device cyclability). These strategies are tested when simulating the control of a 

conceptual off-grid wind/battery/ hydrogen system which integrates (real) load and wind 

speed profiles. In this regard, the fuel cell (PSO) optimiser will seek to operate the PEM 

stack in the vicinity of its peak efficiency (resolved through lab testing). The 

comparative analysis between reactive and predictive PMS’s (applied to the same 

system) will be based on deriving the Cost of Energy (COE, $/kW-hr), Excess Energy 

dumped (EE, %) when a full state-of-charge exist for both batteries and hydrogen 
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canisters (Ah and kg, respectively). The paper will also compare the systems’ Life 

Cycle Emissions (LCE, kg CO2-eq) when a R-PMS or P-PMS are used. The duty factor 

of the fuel cell and electrolyser, which expresses the total power generated (or 

consumed) per total number of start/stop cycles (kW-h/start-stop) under a similar load 

meeting reliability, will also be considered. This paper is organised as follows: 

Section 6.3 presents the system architecture and methods used to size and derive life 

cycle emissions. Section 6.4 describes the employed reactive and predictive PMSs and 

fuel cell optimiser followed by the results which are presented and discussed in 

Section 6.5. The conclusions are summarised in Section 6.6.                                

6.3 SYSTEM ARCHITECTURE, SIZING AND LIFE CYCLE EMISSIONS  
The layout of the considered stand-alone wind/battery/hydrogen (WG/BAT/H2) system 

is shown in Figure 6-1. The main components of the energy system simulated in this 

study are wind turbines (WG), fuel cells (FC), electrolysers (ELC), hydrogen canisters 

(H2), batteries (BAT) and Inverter (INV). The system considered serves an external 

dynamic load of 23,688kW-hr/year whereby power demand is to be primarily satisfied 

by wind turbines. Due to the intermittent nature of renewably generated power, 

batteries and fuel cells are used to supplement any deficits during periods of 

mismatched availability or higher load demand. Batteries are however not used for 

seasonal storage but rather to cover transient start-up periods of the supplemental 

prime movers (fuel cells). A dump load is then connected to the DC bus to handle any 

remaining surplus power if batteries and hydrogen canisters are fully charged. The 

simulations utilise device capacities, unit costs, operational lifetime, and equivalent CO2 

emissions over the lifetime of the system which have been listed in an earlier work 

published by us [18]. The following subsections are dedicated to describing the 

modelling methodology in this paper. For each optimisation run, the system behaviour 

is simulated over one year period (8,760hours) in order to capture seasonal variations 

of wind speed which have an impact of the accuracy of NN predictions [35].  
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Figure 6-1: The hydrogen stand-alone system used to test the effects of the R-PMS, 

P-PMS and fuel cell optimisation. 

6.3.1 Wind turbines 
The time resolved power generated by the wind is simulated using the characteristic 

curve of a commercially available 2kW off-grid wind turbine [36]. Wind data used in the 

simulations are obtained from the Australian Bureau of Meteorology and measured at a 

hub height of 10m for the Ocean Reef meteorological station (Western Australia, 

latitude: -31.75o, longitude: 115.8o). The measured wind speed data has a resolution of 

one hour [37]. The effect of wind shear, which represents the variation of wind speed 

with hub height, is also considered by recalibrating each data point of wind speed 

(measured at a reference height =10m) to the hub height of the wind turbine in the 

simulations ( ) using the following equation: 

                                                                                 6.1 

In this regard,  and  are the wind speed at  and , respectively, whilst  is the 

roughness coefficient of the earth surface, and taken in this study at  corresponding 

to open land [38]. The AC/DC converter shown in Figure 6-1 represents a built-in 

rectifier and its characteristics are included into the turbine’s power curve since it is 

absorbed in the relationship between wind speed and net output power. The excess 

(dumped) energy is renewable energy that is converted by primary movers (wind 

turbines) but not consumed to meet the useful load or diverted to storage devices. The 

total excess energy produced by the system is the sum of the excess energy at each 

time step , and can be expressed as follows [18]: 

                                                                      6.2 
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In this regard,  is the amount of excess power diverted to dump loads over the 

length of any time interval . The percentage of excess energy, from that originally 

(renewably) derived, is then calculated as: 

       (%)                                     6.3 

6.3.2 Fuel Cells and Electrolysers 
Supplementary power is provided by hydrogen fuel cells in this study which focuses on 

comparing between a R-PMS and P-PMS. However, the simulations can also be 

modified and tested with other prime movers. The nominal characteristic curve for a 

Ballard Nexa 1.2kW Proton Exchange Membrane (PEM) fuel cell stack [39] is used to 

model each fuel cell in operation. Although it allows an accurate estimation of the 

hydrogen consumption over the power range defined, the characteristic curve does not 

include the transient start-up dynamics which are important for a more realistic 

integration into a dynamically responding stand-alone energy system [34]. The 

transient start-up characteristics of this Ballard Nexa 1.2kW PEM fuel cell stack have 

already been experimentally derived and presented by us in an earlier work [18] but are 

also incorporated into the present study so as to accurately simulate fuel cell behaviour 

over both the R-PMS and P-PMS.  

The hydrogen production rate of an electrolyser  is given by Faraday’s Law [25, 40]: 

    (L/s)                                                                                 6.4 

In this regard,  is the number of cells for the electrolyser,  is the conversion 

coefficient (8,604 Ah-1) [40, 41] and  is a utilisation factor which is taken as 0.7 [40]. 

Each PEM electrolyser unit is rated at 1kW ( ) in this research. Equation 

(6.4) has been extensively used in published research to estimate the hydrogen 

production rate of electrolysers given their power and conversion efficiencies. However, 

this model does not include transients such as the start-up time which also ultimately 

constrain the utilisation of the electrolyser [22]. Therefore, the transient start-up 

dynamics for the employed electrolyser are also incorporated into simulations within 

the present study [22]. In this study, the duty factor of the fuel cell (or electrolyser) is 

calculated as the total power generated (or consumed) per total number of start/stop 

cycles (kW-h/start-stop) under a similar load reliability.     

6.3.3 Energy Storage 
Transient Storage: Lead acid batteries are used for short-term transient energy 

storage in this study and can be represented by the following mathematical model [42]: 

                                                   6.5 
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In this regard,  is the assumed battery charge (7.92kW-hr) over the very first time 

interval ( ). Beyond that interval,  as well as  dictate the battery 

voltage and current at any time interval . The percentile Battery State of Charge ( ) 

at each time step ( ) is defined according to the following: 

   (%)                                             6.6 

The state of charge limits are =40% and =100% whilst  is the 

maximum battery storage capacity.  Over each time step ( ),  the maximum allowable 

charging and discharge rate of the battery bank (  and , 

respectively) are calculated to determine whether each battery can absorb a fraction of 

the surplus in the case of charging (or contribute to serving the load in the case of 

discharging) and given as follows [33, 43]: 

                                                   
6.7 

  
6.8 

In the above equations,  is the time interval (1hour) whilst the capacity ratio 

 and the rate constant  are technical parameters for the employed 

lead-acid battery [44].  is the total energy available in the battery at the beginning of 

each time interval and  is the amount of energy (kW-hr) above the  limit. More 

details about the calculation of maximum charging and discharging rates can be found 

in [43].  

Long-Term Storage: The integrated system under investigation is assumed to store 

hydrogen in metal hydride canisters. At each time step, the amount of hydrogen in the 

canisters is given as follows [40]: 

                                6.9 

In the above formula,  is the energy stored in each hydrogen canister (14,190kJ) 

over the very first time interval ( ),  is the electrolyser hydrogen production rate 

(L/s),  is the fuel cell hydrogen consumption rate (L/s),  is a conversion constant 

(22.4 l/mol) and  is hydrogen’s enthalpy (286 kJ/mol). The hydrogen canister’s 

percentile state-of-charge ( ) at any time step ( ) is therefore given as follows: 

 (%)                                                    6.10 
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In this regard,  is the maximum capacity of the hydrogen canister (141,900kJ). 

The minimum and maximum limits are set to =10% and =100%, respectively. 

6.3.4 DC/AC Inverter 
An inverter converts electrical power from direct (DC) to alternating form (AC). In this 

study, the DC/AC inverter at the load side is modelled using its efficiency as follows:  

                                                                                            6.11 

In this regard,  is the inverter’s conversion efficiency [18] and  as well as 

 are the inverter’s input (DC) and output power (AC), respectively. 

6.3.5  Sizing 
System sizing is formulated as a single objective function designed to optimise 

(minimise) the Cost of Energy (COE).  

                                                     6.12 

To solve this, GA’s are applied using the MATLAB optimisation toolbox (v.2012b), with 

settings as follows: four subpopulations with 100 individuals; scattered crossover 

function with 0.8 crossover fraction; the elite count is 2; rank, constraint dependent 

function are used for the scaling and mutation and; the number of generations is set to 

100.  The algorithms seek to identify the number of wind turbine units, fuel cells, 

electrolysers, batteries, hydrogen canisters and capacity of DC/AC inverter as decision 

variables. The COE may be expressed as [14]: 

                                                                             6.13 

Here,  is the total annual cost ($) and  is the total annual energy (kW-hr) 

delivered to the useful load (does not include excess load which is dumped). Costs 

which contribute to  include capital costs, replacement costs, operation and 

maintenance costs, and the discount rate utilised [45]. In this study, a value of 6% 

discount rate has been used for a project lifetime of 25 years. For the WG/BAT/H2 

system, sizing is also subject to the following constraints being satisfied: 

                                                                                6.14 

             6.15 

In this context,  and  are the  at the beginning ( ) and end 

( hours) of each calendar year,  and  are minimum and maximum 

allowable number of units from each component, respectively. Although the constraints 

can be varied, the limits used to guide the optimisation algorithm in this research are 

shown in Table 6-1.  
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Table 6-1: Initial values (at ) for system operational parameters and optimisation 

constraints 

Parameter 
Value,  

Ref 
Parameter 

Value, 
 Ref 

 100%  100% 

 40%  [1,25] 

 100%  [1,25] 

 30%  [1,25] 

 0.2  12 

) 30%  [1,25] 

 10%  [10,20] 

  

In hybrid energy systems, the reliability of meeting an external load can be expressed 

by the Loss of Power Supply Probability (LPSP) [10, 46-55]. The LPSP index used in 

this study is slightly different from the commonly used one and been presented by us in 

an earlier work [18]. The formulation used in our studies takes into account load losses 

during transient start-up time of supplementary prime movers (PEM fuel cell) which is 

usually ignored in the commonly applied definition for LPSP [10, 46-55] . This is 

important to consider particularly if a predictive PMS which also integrates device start-

p transients is being employed. An intelligently optimised PMS should consider such 

transients if determining device switching and integrated with time resolved predictions 

of wind speed and load demand. 

 

             
6.16 

                                            6.17 

In the above equations,  is the loss of power supply during fuel cell 

transient start-up,  (kW) is the loss of power during low generation periods and 

 (kW) is the load demand. The term  represents the commonly used 

LPSP equation [46] and ( ) is the simulation time interval (1hour). 

The fuel cell transient start-up time ( ) is estimated using the following experimentally 

derived formula where,  is the fuel cell current [18]: 

                      6.18 
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To estimate the load losses due to transient start-ups, which vary based on load and 

may span up to two minutes for the fuel cell used in this study [18], the hourly averaged 

fuel cell’s response is divided into one-minute resolved time slots and the output power 

over the transient time is summed up and considered as a loss. The same approach is 

used to incorporate the electrolyser start-up transients, which spans four minutes [22],  

though they have no direct impact on the LPSP calculations but affect the amount of 

hydrogen produced. It should be noted here that wind power and load demand are 

assumed constant during each simulation interval (1hour). In order to consider the 

LPSP, the following constraint is also considered during the optimisation process: 

                                                                                        6.19 

Where,  is the maximum allowable LPSP. Two values are used for the LPSP, 

0.05 and 0.0015 which corresponds to an annual loss of 1,184kW-hr and 35kW-hr, 

respectively, from the total annual demand (23,688 kW-hr) 

6.3.6 Life Cycle Emissions 
Life cycle (cradle-to-grave) emissions generated during the manufacturing, 

transportation, operation and decommissioning of the system are calculated relative to 

amount of energy converted (or stored) by each system component [14]. Estimating 

greenhouse gas emissions (normalised by energy units converted) is preferable 

because some components are used for most of the year, such as wind turbines, 

whereas others are used less frequently such as fuel cells and electrolysers [14]. Data 

for equivalent CO2 emissions attributed to each system component is retrieved from the 

literature [14, 18]. The annual life cycle emissions are calculated from the sum of the 

emissions by the system components using the following expression: 

                                                                                         6.20 

Where,  (kg CO2-eq/kW-hr) is the equivalent CO2 emissions of a component and  

(KW-hr) is the amount of energy converted by (or drawn from) each component. 

6.4 POWER MANAGEMENT STRATEGIES 
In this paper, a single PMS for controlling component switching is tested, but under 

both reactive and predictive modes of operation. The main objective of any PMS is the 

satisfaction of load requirements while maintaining operation of system components 

within an acceptable range of technical constraints. So, to provide a valid basis of 

comparison, the baseline architecture of the two PMSs tested are the same in this 

study. The difference between the two however lies in the use of NNs to predict 

important governing variables (wind speed, load demand) in the P-PMS. Both versions 



125 

 

of the PMS (reactive and predictive) are tested using hourly resolved wind speed and 

load demand data. A general overview of the logic behind either PMS is given in 

Figure 6-2. Whether under a R-PMS or P-PMS, the algorithm update its status by 

reading the input data at a single time interval ( )(wind speed and load demand) so as 

to calculate the net power over that time step ( ) as the difference between the 

renewably generated power, , and load demand, :  

                                                                           6.21 

The next step for the algorithm is to decide if any net excess power exists ( ). If 

so, these surpluses are handled through the ‘battery charging and electrolysis’ mode of 

operation (Figure 6-2a), with the logic of the ‘battery charging and electrolysis’ mode 

explained in the Appendix 6.8. If the renewably generated power is less than the load 

demand, , one of three operation modes can be used to satisfy the load. 

Although the general architecture of all three modes (Figure 6-2- blocks b, c, or d) 

remains the same, if NN’s are used to predict (one time step ahead), this infers a P-

PMS is used. Without the NN’s, the algorithm reverts to a R-PMS. Both are explained 

later. The first mode under both R-PMS or P-PMS is the Wind/Hydrogen mode 

(Figure 6-2b) which uses the hydrogen system for supplying the whole power deficit. 

The second is the Wind/Battery mode (Figure 6-2d) where only the battery 

recompenses the power deficit. The third is a Wind/Battery/Hydrogen mode 

(Figure 6-2c) where the deficit is shared by the battery and fuel cell. The decision as to 

which operation mode is used to provide the baseline (wind) and supplemental power 

to satisfy the load demand is determined via a switching algorithm (R-PMS or P-PMS). 

It is this switching algorithm which is the focus of the present study and which features 

two scenarios. The first is a reactive algorithm whereas the second is a predictive 

algorithm. When the reactive algorithm is used the PMS is termed R-PMS whereas P-

PMS is a term used to refer to the PMS when the predictive switching algorithm is 

employed.  
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Figure 6-2: Baseline algorithm for the PMS (predictive and reactive modes) whether 

optimised or non-optimised for fuel cell efficiency. 

6.4.1 Reactive PMS (R-PMS) 
The logic of the reactive switching algorithm is shown in Figure 6-3. If  

 and the maximum power can be drawn from the battery ( ) is at 

least a certain percent ( ) more than the requested power , then the whole deficit 

is supplied by the battery. The parameter ( ) represents a threshold which is used to 

account for the fact that renewables can fluctuate during the time in which the load is 

being met and a safety margin ( ) is advantageous so as to limit excessive switching 

ON/OFF. On the other hand, ( ) is a ( ) margin (above ) beyond which the 

battery is considered more likely to serve the load over the current time step. In case 

, the battery is considered able to only supply part of the 

requested power and therefore the Wind/Battery/Hydrogen mode is activated in order 

to allow the battery and the fuel cell to share the supplementary load. The 
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Wind/Battery/Hydrogen mode is also activated if the battery charge lies between 

 and . In the Wind/Battery/ Hydrogen mode and if the 

fuel cell optimiser is not engaged, the deficit is met by operating the fuel cell at its 

maximum capacity and any additional shortage augmented by battery storage unless 

the battery is considered fully discharged .  

 

Figure 6-3: Reactive switching algorithm. 

6.4.2 Predictive PMS (P-PMS) 
The predictive switching algorithm is shown in Figure 6-4. This algorithm is similar to its 

reactive counterpart except that decisions as to which operation mode should apply to 

supplement the power deficit are taken one step earlier. In this case, deficits are 

forecast through predictions of both the wind speed (m/s) and load demand (kW). The 

merits of a predictive PMS are believed to allow the early activation of energy system 

components with slow transient responses, thereby no loads are missed during the 

transient period. Testing the effectiveness of the P-PMS thus requires the simulations 

integrate device start-up (transient) characteristics. In this switching algorithm, the 

expected renewable power ( ) and load demand ( ) at the next time step ( ) 

are forecasted and the system’s expected net power, , is calculated as follows: 

                                                    6.22 
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The system’s expected net power ( ) is used to estimate the battery state of 

charge at the next time step,  which is then used to assign an operation 

mode for supplementing the generation deficit during the next time interval (Figure 6-2- 

blocks b, c or d). In the predictive switching algorithm, the spinning reserve factor ( ) 

plays slightly different role since it accommodates the short-term renewables 

fluctuations as well as forecasting errors. Besides testing the passive power sharing, 

the Wind/Battery/Hydrogen mode is tested when the power deficit is actively distributed 

between the fuel cell and battery storage via real-time optimisation process with the 

objective to maximise the fuel cell efficiency whenever it is possible.   

 

Figure 6-4: Predictive switching algorithm. 

Compared to other NNs, the Radial Basis Function NN (RBF-NN) is proven to have 

better approximation ability for highly dynamic and nonlinear applications [35, 56]. 

Therefore, RBF-NNs are used to perform the forecasting of wind speed and load 

demand. The training and prediction accuracy for the RBF-NN when applied for one 

hour ahead wind speed forecasting has been already studied by us in a previous 

research [35] when hourly resolved wind speed data along with solar irradiance data 

(belongs for the same location) applied Length of Training Pattern (LTP) spanning 

10hours (which is also used in this study). For the short-term load demand forecasting, 

the same training methodology has been used where only hourly resolved load 

demand data are used for training (no solar irradiance data are used). The accuracy of 
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wind speed and load demand forecasting is expressed as the Absolute Percentage 

Error (APE) and Mean APE (MAPE) which are calculated as follows:  

                                                          6.23 

                                                                          6.24 

In the above equation,  is the measured wind speed (or load demands) over a time 

step ( ) and  is the predicated wind speed or load demand over the same time 

step. The prediction errors derived during the training (Stage 1, Figure 6-4) for both to 

wind speed and load demand are shown in Figure 6-5. The operational profiles for the 

actual and predicted  for the same time period (two weeks) are also shown in 

Figure 6-5. From this figure, it can be seen that the prediction error of the employed 

RBF-NN is very small and the estimated  closely follows the actual one. The initial 

values of the controlling parameters for the tested PMSs as well as the values for 

optimisation constraints are listed in Table 6-1. 

 

Figure 6-5: Operational profiles for the NN which is integrated into P-PMS over two 

weeks starting 1st Jan. The prediction accuracy of the load demand (solid red) and wind 

speed (dashed blue) are shown. The actual and predicted profile for the battery state of 

charge is also shown.    

6.4.3 Fuel cell efficiency optimiser 
To examine the effects of using PSO to optimise fuel cell efficiency, the P-PMS also 

operates with (and without) the fuel cell optimiser. To seek the optimal power setting, 

PSO considers the following local optimisation problem which is solved at the 

beginning of each time interval ( ) and for a duration  [57]:  
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                      6.25 

The real-time optimisation problem is subject to the following constraint: 

                                                                                  6.26 

                                                                         6.27 

                                                                            6.28 

                                                                          6.29 

                                                                                                                                                        

Where,   is the battery bank conversion efficiency and  is the fuel cell 

efficiency which dynamically varies as a function of the generated power and is shown 

in Figure 6-6. 

 

Figure 6-6: The efficiency characteristics curve (line) and power density distribution 

over one year operation span for the Ballard 1.2kW PEM fuel cell stack when non-

optimised (red bar) and optimised (green bar) operation applied.  

Fuel cell efficiency may be derived by measuring the output voltage and hydrogen 

consumption rates at loads (currents) over the fuel cell dynamic range (2A and 50A). 

Figure 6-6 shows the measured efficiency characteristics. When the fuel cell efficiency 

optimiser is activated alongside the P-PMS, the real-time optimisation problem is 

solved by PSO at the beginning of each time step in order to determine the optimal 

power sharing between the battery bank and fuel cells (when the battery/hydrogen 

mode is selected). The main objective is to operate the fuel cell at its maximum 
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efficiency whenever possible. Since the described real-time optimisation problem 

needs to be solved at the beginning of each time interval, the speed at which the 

employed search tool reaches an optimal solution is very important. Compared to many 

other well-known optimisation techniques, PSO is proven to be more efficient and 

faster for finding optimal solutions especially for problems that involve three or less 

optimisation variables [28, 58]. Hence, PSO solves the real-time optimisation problem 

shown by equation (6.13) where the optimisation variables are fuel cell power, , 

and battery discharge power, . The PSO’s cognitive ( ) and social ( ) 

parameters are both set to 1.5, and the maximum number of iterations is set to 50 [28]. 

   

6.5 RESULTS AND DISCUSSION 

6.5.1 Cost of Energy 
Table 6-2 summarises the sizing results when a reactive PMS (R-PMS) verses a 

predictive PMS (P-PMS) is applied to control the operation of the stand-alone 

WG/BAT/H2 system. The optimum numbers of components and the corresponding 

COE have been derived when targeting two levels of load meeting reliability: 

LPSP=0.05 and 0.0015. The data presented in Table 6-2 also shows the effects of 

considering device start-up transients (fuel cell, electrolyser) verses scenarios when 

only nominal (steady-state) characterises are used. All the simulations are undertaken 

for a fixed battery capacity (12 units) so as to restrict batteries to only meeting 

transients, and not long-term energy shortage.  

These results show that ignoring the transient start-up time of the prime back-up affects 

system sizing, especially if the targeted reliability (LPSP) is relatively high (0.0015). 

The COE for the system sized with the transients of the fuel cell included, is 23% 

higher than without including the fuel cell transients. The cost increment is mainly 

because a greater capacity (i.e. number of units) for prime movers are need when 

transients are considered. The sizing of systems which used only steady-state device 

characteristics obviously assumes no load loss during the start-ups. As such, when 

transients are included, the capacity of other prime movers (primarily wind turbines) 

needs to increase so as to bridge the gap during fuel cell start-ups. This highlights the 

importance of considering transient start-up time of back-up components which is 

unfortunately overlooked by the majority published sizing studies [11, 46, 59]. 
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Table 6-2: Summary of optimal solutions by the R-PMS, P-PMS and P-PMS (+ FC 

optimiser) for a NN (wind speed) prediction accuracy of MAPE=0.528%. 

PMS  
WG 

(Unit) 
FC 

(Unit) 
ELC 

(Unit) 
BAT 
(Unit) 

H2 
(Unit) 

INV 
(kW) 

COE 
($/kW-

hr) 

 R-PMS 

With 
device 

transients 

0.05 10 3 6 12 16 12 1.13 

0.0015 14 13 5 12 20 18 2.35 

Without 
device 

transients 
0.0015 11 9 8 12 22 18 1.86 

 
P-PMS 

With 
device 

transients 

0.05 10 4 6 12 19 14 1.27 

0.0015 12 9 7 12 21 18 1.88 

 
P-PMS  
(+ FC 

optimiser) 

With 
device 

transients 

0.05 10 4 6 12 14 12 1.23 

0.0015 11 11 8 12 20 18 2.06 

 

For sizing methods which do integrate device transients, another observation is that a 

stand-alone hybrid energy system controlled by P-PMS has a cost advantage over that 

controlled by R-PMS, but only if the sizing method targets high reliability. For a lower 

load meeting reliability target ( ), the predictive PMS results in a COE of 

1.27$/kW-h which is slightly higher than that for the R-PMS (1.13$/kW-h). On the other 

hand, when a higher reliability target is set ( ) for the sizing algorithm, 

the P-PMS results in 1.88$/kW-h COE which is 22% lower compared to that resulted 

from the R-PMS (2.35$/kW-h). These cost savings mainly come from the predictions 

which reduce the number of wind turbines are by 2 units (15%) and fuel cells by 4 units 

(36%). These results further highlight that including predictive PMS’s into hydrogen 

systems can lead to appreciable reductions in the cost of energy, compared to only 

running those systems with reactive PMS’s.   

The third observation is that the superiority of P-PMS strongly depends on the 

accuracy of the tool employed to perform the renewables and load demand predictions. 

Table 6-3 shows the optimal solutions achieved when NNs with two different wind 

speed prediction accuracies (MAPE= 0.528% and 0.213%) are used for the P-PMS. 
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For both listed solutions, the load demand prediction accuracy is MAPE=1.528%. From 

this table it can be observed that a significant increase in the system COE (more than 

67%) has occurred because of using NN with 0.3% more prediction error. This 

indicates that P-PMS is extremely sensitive to the performance of the forecasting tool.  

 

Table 6-3: The effect of wind speed prediction error on the optimal sizing of 

WG/BAT/H2 controlled by P-PMS; load prediction error  and 

 

Wind speed 
prediction error 

MAPE (%) 

WT 
(Unit) 

FC 
(Unit) 

ELC 
(Unit) 

BAT 
(Unit) 

H2 
(kg) 

INV 
(kW) 

COE 
($/kW-hr) 

0.528 12 9 7 12 21 18 1.88 

0.213 20 18 22 12 17 18 3.79 

 

To show the effects of applying the PSO real-time optimisation of the fuel cell, the 

power density distribution, which is calculated as the percentage of power delivered by 

the fuel cell at each power level (0.1kW, 0.2kW,…., 1.2kW) to the total power delivered 

over one year, in relation to the fuel cell efficiency with and without the real-time fuel 

cell efficiency optimiser is shown in Figure 6-6. From this figure it can be seen that 

when the real-time optimisation algorithm is applied, the output power density of the 

fuel cell (green bars) 0.3kW and 0.46kW, which correspond to the highest efficiency, 

are increased by 7% and 11%, respectively, compared to the case when no real-time 

optimisation is applied (red bars). In the other hand, the power density at the other 

power levels is reduced. This shows the applied PSO real-time fuel cell efficiency 

optimiser operates of the fuel cell unit more often when it is closer to its peak efficiency. 

AS such, applying a fuel cell efficiency optimiser positively impacts system sizing. 

Results also show that systems sized with the fuel cell optimiser activated have 13% 

less COE, when high load meeting reliability targets are considered (

), compared to the case where the optimiser is not activated. 

6.5.2 Life Cycle Emissions, Excess Energy and Device Intermittency 
Further investigations are undertaken into the impact of PMSs on the percentage of 

Excess Energy (EE; %), Life Cycle Emissions (LCE; kg CO2-eq) as well as duty factor 

(kW/start-stop) for the fuel cell and electrolyser units and are listed in Table 6-4.  
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Table 6-4: Annual operational characteristics when R-PMS, P-PMS and P-PMS (+ FC 

optimiser) are applied for the hydrogen system.  

Operation parameter R-PMS P-PMS 
P-PMS (+ FC 

optimiser 

Excess Energy (%) 55.56 46.25 44.02 

CO2 LCE (kg CO2-eq/year) 1,296 1,189 1,133 

FC duty factor (kW/start-stop) 0.68 0.98 0.69 

FC Start/Stop (cycles/year) 597 630 649 

ELC duty factor (kW/start-stop) 6.28 4.9 4.58 

ELC start/stop (cycles/year) 610 609 505 

 

Data reveals that systems controlled by a predictive PMS results in less excess 

(dumped) energy and environmental footprint compared to that controlled by a reactive 

PMS. When the R-PMS is used for the WG/BAT/H2 system, 55.56% of the renewably 

generated power is diverted to a dump load which is around 9% and 11% higher than 

that for systems controlled by P-PMS and P-PMS (+ FC optimiser), respectively. Power 

generated by wind turbines but dumped is undesirable because although it helps 

achieve high load meeting reliability during some periods, it leads to excessive costs. 

Regarding the environmental footprint, around a 8% and 13% reduction in the LCE is 

achieved when P-PMS and P-PMS (+ FC optimiser) are used, respectively. A further 

comparison of the duty factor for the fuel cell shows that a hybrid system controlled by 

P-PMS or P-PMS ( +FC optimiser) acquires higher fuel cell duty factor (0.98kW/start-

stop and 0.69kW/start-stop, respectively) compared to that for R-PMS (0.68kW/start-

stop). In contrast, the system controlled by R-PMS possesses a higher electrolyser 

duty cycle (6.28kW/start-stop) compared to that for P-PMS (4.9kW/start-stop) and OP-

PMS (4.58kW/start-stop). Regarding the start-stop cycles, results show that a hydrogen 

system controlled by predictive strategies relies more on the long-term back-up units 

(fuel cells) to satisfy the load requirements. The annual rate of start-stop cycles of the 

fuel cell has increased 5% and 8% when P-PMS and P-PMS (+ FC optimiser), 

respectively, are used for controlling the system. Excessive intermittency of fuel cell 

units can cause a performance degradation [26]. For R-PMS, the start-stop cycles rate 

(597 cycles/year) would sum up to 2,985 cycles over the fuel cell’s lifetime (5 years). 

However, a recent study has shown that a PEM fuel cells can undergo up to 1,562 

start/stop cycles without a significant performance degradation if a proper start/stop 
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procedure is followed [60]. This highlights the importance of considering the start-stop 

cycles of commercially available hydrogen technologies into the sizing methodologies 

of stand-alone energy systems. 

Finally, results have shown that an optimised predictive strategy P-PMS (+ FC 

optimiser) outperforms the non-optimised one (P-PMS) in terms of renewables 

penetration and environmental footprint. The hydrogen system controlled by the P-PMS 

(+ FC optimiser) generates 44.02% excess energy and 1,133kg CO2-eq greenhouse 

emissions which are both lower than for the P-PMS. This is however at the expense of 

the overall cost of energy (COE) where the COE for the system controlled by P-PMS (+ 

FC optimiser) is around 9% higher than for the system controlled by the P-PMS. This 

comes mainly from increasing the number of fuel cells which may be because the 

employed real-time optimisation algorithm forces the fuel cell to operate at its higher 

efficiency which occurs at low power levels (around 0.3kW). This limits the contribution 

of each fuel cell to the total load demand which means more units are required to 

satisfy greater demand levels.  

  

6.6 CONCLUSIONS 
In this paper, the application of NN-based (predictive) PMS in the context of sizing 

stand-alone hydrogen systems has been tested and analysed. The predictive PMS 

uses real-time NN predictions of renewable resources (wind speed) and load demand 

for controlling the switching of the system components, and PSO real-time optimisation 

of the fuel cell operation. Genetic Algorithm (GA) is used for the components sizing and 

the reliability of the archived optimal solutions is assessed using a modified LPSP 

index which has been presented by the authors is a previous work. The effects of some 

parameters such as the transient start-up time of the fuel cells, NN accuracy, LPSP 

level and fuel cell optimisation are investigated. In addition, the performance of the 

predictive PMS has been compared to rule-based (reactive) PMS based on the Cost of 

Energy (COE, $/kW-hr), Excess Energy (EE, %), Life Cycle Emissions (LCE, kg CO2-

eq) as well as the duty factor (kW/start-stop) of the hydrogen components. The main 

outcome of this study may be summarised as follows:  

 Ignoring the transient response of the fuel cell and electrolyser considerably 

impacts the optimal solutions achieved when sizing stand-alone hydrogen 

systems. This impact appears more pronounced if the desired load meeting 

reliability (LPSP) is higher.    
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 Using a predictive PMS to control the operation of a stand-alone hydrogen 

system results in an operational impact which can be more cost-effective, 

efficient and environmentally friendly, compared to a reactive PMS. However, 

these improvements are attained only if the GA used for sizing targets a higher 

reliability level and device transient dynamics are incorporated. 

 Because the highest efficiency of the fuel cell occurs at low power levels, a 

stand-alone hydrogen system controlled by predictive power management 

strategy which is additionally optimised for fuel cell efficiency, has no cost 

advantage compared to a PMS that features no fuel cell efficiency optimisation. 

More work is however warranted in this area.  

 The performance of predictive PMS extremely depends on the accuracy 

(MAPE) of the NN predictions of renewables (wind speed). 
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6.8 Appendix 

6.8.1 Mode – Battery Charging and Electrolysis 
 

If the batteries are not fully charged, , net excess power is used to 

increase . If the surplus is more than the absorption capacity of the battery 

, excess power is then diverted to the dump load, . In case the 

battery storage is fully charged ( ) but the hydrogen canisters are not 

fully charged ( ), the surplus is used to operate the electrolysers for 

hydrogen production if  is less than or equal to the electrolysers rating. If the 

electrolysers cannot handle the whole surplus, , then the electrolyser is 

operated at its maximum capacity for hydrogen production and the excess is diverted 

to the dump load. In case both the battery storage and hydrogen canisters are fully 

charged, then the whole surplus is diverted to the dump load.  
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Figure 6-7: Algorithm for ‘battery charging and electrolysis’ mode. 

 

6.8.2 Mode – Battery Charging and Electrolysis 
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7 CHAPTER 7: GENERAL DISCUSION  
 

As stated in Section 2.5, the studies presented in this thesis were focused on the 

system level issues, which are inherited from the intermittent and unpredictable nature 

of wind and solar energy resources, when used as primary source in stand-alone 

hydrogen-based energy systems. The ultimate aim of this research project is 

investigating methodologies that use intelligent techniques to optimise the performance 

of such systems.  

The central aim of the study presented in Chapter 3 was to develop a sizing 

methodology for stand-alone hydrogen systems. Studies on the design of renewable 

energy systems are readily available in the literature [1-15]. However, at the time that 

study undertaken, there was no study that uses maximising renewables penetration as 

an objective function when sizing stand-alone hydrogen systems. In addition, the 

impact of transient start-up time of fuel cells on system reliability has not been 

investigated. In Chapter 3, therefore, a multi-objective sizing methodology that 

incorporates maximising renewables penetration along with cost and environmental 

impact was proposed.  

The overall objective of the research presented in Chapter 4 was to study the impact of 

training parameters on the accuracy of Neural Networks (NNs) when applied to short-

term renewable energy forecasting. The application of NNs to predict short-term and 

long-term wind speed is one of the topics that attracted extensive research [16-21]. 

However, at the time this research was undertaken, there was no study that 

investigated the effect of using solar irradiance along with wind speed data for short-

term wind speed forecasting. Moreover, there was no study that investigated the effect 

of wind speed seasonal variations on the NNs prediction accuracy. The findings of this 

study were later, in the work reported in Chapter 5 and 6, used to help realise a NN-

based operation strategy for stand-alone hydrogen systems.  

The third and fourth studies, described in Chapter 5 and Chapter 6, respectively, were 

focused on developing and experimentally validating a NN-based (intelligent) Power 

Management Strategy (PMS) for stand-alone hydrogen-based renewable energy 

systems. A PMS is crucial for the operation of a hybrid energy system and its ability to 

reliably meet load demand. Many comparisons and analysis of several Power 

Management Strategies (PMSs) for renewable energy systems can be found in the 
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literature [22-27]. However, the integration of predictive (intelligent) techniques into 

PMSs for renewable energy systems was rarely introduced. At the time this study was 

conducted, only two simulation studied have presented operation strategies that use a 

forecasting technique (persistence method) for controlling the power flow of hybrid 

renewable energy systems [28, 29] and no experimental validation was reported. 

Therefore, the validation and assessment of NN-based PMS for controlling stand-alone 

hydrogen-based renewable energy system is introduced in the third and fourth studies 

(Chapter 5 and Chapter 6, respectively) included in the thesis. The central research 

aim of the third study was to experimentally validate the NN-based PMS while the 

objective of the fourth study was to identify the possible impact of using such a strategy 

on the economic and operational aspects of stand-alone hydrogen systems.             

7.1 DISCUSSIONS WITH REGARD TO THE RESEARCH OBJECTIVES 

7.1.1 Research objective 1 
To develop a multi-objective sizing methodology for stand-alone hydrogen systems that 

consider the reliability, renewables utilisation, environmental impact as well as the 

system cost using Genetic Algorithms (Chapter 3). 

The finding of this study showed that ignoring the transient response of the prime 

mover (fuel cell) results in an overestimation of the reliability to meet an external 

electric load in stand-alone hydrogen-based renewable energy systems. Experiments 

showed that the fuel cell has a transient start-up time during which it cannot either 

totally or partially supply the requested demand. This start-up period may last for up to 

2 minutes depending on the requested power. In stand-alone energy systems, the 

transient start-up time will appear as an interruption of the power supply whenever the 

fuel cell system is activated to supply power as it has been experimentally proven in 

the study presented in Chapter 5 (see Figure 5-8). Bearing in mind the intermittency of 

renewable resources, these interruptions may occur more often. Before this study was 

undertaken, all the proposed sizing methodologies of stand-alone hydrogen systems 

ignore the fuel cell transients [30-32] which questions their effectiveness. In fact, the 

results of this study showed that the reliability (expressed as the LPSP) of stand-alone 

hydrogen systems when neglecting the prime mover transients is more than double 

compared to when the transients are included. This highlights the necessity for a 

reliability index that considers the load losses during the transients of the system 

components. This study, therefore, contributes to the field by introducing a modified 

LPSP reliability index which accounts for the transient start-up characteristics of fuel 
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cells which will help researchers to more accurately assess the reliability of stand-alone 

hydrogen-based renewable energy systems. The mathematical formula of the modified 

LPSP index is shown in equation (3.2).        

The multi-objective sizing methodology described in Chapter 3 including the modified 

LPSP reliability index was used to optimise three different configurations of stand-alone 

hydrogen systems when conjugated with and without battery storage and benchmarked 

against a single objective optimisation methodology that consider minimising the 

system cost only. The findings showed that unlike the ones consider cost only [33-35], 

sizing methodologies that minimise excess (dumped) energy does result in optimal 

solutions with higher renewables utilisation levels. For the wind/hydrogen, solar-

PV/hydrogen and wind/solar-PV/hydrogen configurations optimised in this research, 

the amount of excess energy is 59%, 45% and 32%, respectively, when the 

optimisation aims to reduce the cost only. This finding, which is in agreement with 

previous published results [36], shows that the renewables utilisation levels are very 

low (less than 50% in some cases) and the systems are actually oversized. Yet no 

study had considered maximising renewables utilisation in the context of optimising 

stand-alone renewable energy system before this research was conducted. This study 

has proven that a significant improvement in renewables penetration levels can be 

achieved if the optimisation does not only aim to reduce the cost but also minimising 

the excess energy (in addition to cost). In addition, the results of this study agree with 

previous findings which show that stand-alone PV-H2 systems is not economically 

competitive compared to WG-H2 systems which acquire the best compromise between 

cost, renewables penetration and environmental footprint [37-39]. However, in order to 

increase renewables penetration, the sizing methodology presented in Chapter 3 tends 

to increase the capacity of the (costly) storage components which in turn increases the 

overall cost of the system. This result has led to a conclusion that in order to 

simultaneously improve the both the renewables utilisation and cost, a research for 

efficient strategies to manage the power flow within the stand-alone renewable energy 

systems is needed. In this regard, the literature indicate PMSs based on predictive 

techniques may help designing an efficient and cost-effective stand-alone renewable 

energy systems [28, 29]. Therefore, further research has been conducted to study the 

application of (intelligent) predictive techniques for improving the design and operation 

of stand-alone hydrogen-based renewable energy systems.          
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7.1.2 Research objective 2 
To develop a methodology that uses readily available data at remote location for short-

term wind energy and wind power forecasting (using NN) and study the effect of 

seasonal variations of renewable resources on wind power predictions (Chapter 4). 

The results presented in Chapter 4 are a determination of the best architecture and 

training parameters that allow higher accuracy of NNs when applied to short-term wind 

speed forecast. The impacts of four parameters: the span, resolution and type of 

training data as well as the Length of Training Pattern (LTP), on the performance of 

Feedforward (FF-NN) and Radial Basis Function (RBF-NN) were analysed. The results 

indicated that only one year span of hourly resolved wind speed and solar irradiance 

data are needed to achieve high accuracy of an hour-ahead wind speed predictions. 

No significant improvement can be achieved either by increasing the span or 

resolution. As with other types of NN models [40] , this study proved that the prediction 

accuracy of the FF-NN and RBF-NN are also affected by their structure. The results 

have shown RBF-NN has prediction accuracy about one order of magnitude better than 

FF-NN which agrees with the finding of a previous research [41].  

Another observation was that the accuracy of NN predictions is prone to seasonal 

variations of wind speed across the year if (only) wind speed data are used for training. 

One of the contributions of this research was proposing methodology to reduce the 

impact of seasonal variations on wind speed predication accuracy. The study 

presented in Chapter 4 proved that using solar irradiance along with wind speed data 

can help mitigate the seasonal influences. Unlike other meteorological data, solar 

irradiance can be easily predicted for geographical locations using well-established 

models such as ASHRAE [42]. This approach of including solar irradiance data when 

predicting wind speed can help accurately estimating the available wind power at any 

particular location, especially for remote areas where a record of other meteorological 

data may not be available. In addition, this approach may be useful for applications that 

involve series of short-term wind energy predictions span over several seasons such 

as predictive operation strategies for stand-alone renewable energy systems [28, 43].       

7.1.3 Research objective 3 
To develop and validate a NN-based (predictive) power management strategy for 

controlling the operation of stand-alone hydrogen based renewable energy systems 

(Chapter 5). 
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The experiments presented in Chapter 5 have provided an exploration into the 

effectiveness of using NN-based (predictive) Power Management Strategy (PMS) for 

controlling stand-alone renewable energy systems and the factors that influence the 

performance of such strategies which has not been previously reported. The key point 

of the examined predictive PMS is using predicted values of load demand and 

renewable power to estimate the future battery’s state of charge based on which the 

activation/deactivation of the fuel cell unit is decided. Radial Basis Function Neural 

Network, which was proven to have high prediction accuracy by the study presented in 

Chapter 4, was used as a prediction tool to perform 30, 40, 50, 60 and 120 seconds 

ahead load demand and renewable power. Generally, the results of this study proved 

that predictive PMS can be used for controlling the operation of stand-alone hydrogen-

based renewable energy systems over both transient and steady state stages. 

However, factors such as the accuracy of the prediction tool, prediction horizon, 

decision making interval of the PMS and measurement speed of the system variables 

must be carefully considered in order to effectively employ this type of operation 

strategies. This highlights the importance of choosing the right prediction tool when 

studying the incorporation of predictive operation strategies into renewable energy 

applications. It is well proven that NNs outperform other forecasting techniques such as 

persistence method [44]. This suggests that all studies that reported simulations of 

predictive operation strategies and employed persistence methods as prediction tools 

[28, 43] should be revisited by analysing the impact of the accuracy of the tool on the 

achieved results.   

The results of this study also showed that the predictive PMSs can help avoid load 

supply interruptions that occur during the transient start-up time of back-up units. This 

can be attributed to the ability of predictive strategies to activates/deactivates the 

system components based on future anticipations of the system status which allows 

transient start-up times pass before an actual power is requested from the back-up 

units. PMSs that include forecasting techniques may be useful not only for avoiding 

load interruptions during transients of back-ups but also it may allow implementing 

operation strategies that make wiser decision by planning or scheduling the operation 

of the system components beforehand based on the forecasted values of the 

renewable resources and load demand which in turn may help increase the reliability 

and efficiency as well as reduce the system cost.  
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7.1.4 Research objective 4 
Investigate the impact of NN-based (predictive) power management strategies on the 

economic and operational aspects of the system (Chapter 6). 

The results of this study showed that NN-based (predictive) Power Management 

Strategy (PMS) impacts the system and operational characteristics of stand-alone 

hydrogen-based renewable energy systems. For sizing under the same load demand 

profile and reliability requirements, a stand-alone hydrogen system controlled by a 

predictive strategy was proven to possess lower cost of energy, less environmental 

footprint and higher renewables penetration compared to that controlled by rule-based 

(reactive) strategy. However, the advantages of the predictive PMS are pronounced 

only if the sizing algorithm targets high reliability levels and the transient dynamics are 

considered in the component models. The superiority of the predictive strategy may be 

rendered to its ability to mitigate the load losses during the transient-start-up time by 

activating the back-up units before an actual demand is requested. Unlike the results of 

the sizing methodology presented in Chapter 3 which used reactive strategy and 

showed that increasing renewables penetration comes at a cost [45], employing 

predictive PMS is proven to help maximise renewables penetration without 

compromising the system cost. The results also showed that predictive PMSs highly 

depend on the accuracy of the prediction tool employed to forecast the load demand 

and renewable energy resources which agreed with results reported in Chapter 5.  

 In conclusion, this thesis developed novel methodologies for optimising the size, 

integration and operational efficiency of hybrid, off-grid, renewable energy systems 

incorporating hydrogen-based technology. These techniques outperformed traditional 

approaches by drawing upon complex artificial intelligence and genetic models and 

included forecasting of renewable energy sources, such as wind speed, and energy 

storage. The proposed methodologies could underpin cost-effective, reliable power 

supplies to remote communities as well as reducing the dependence on fossil fuels and 

the associated environmental footprint 
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8 CHAPTER 8: GENERAL CONCLUSIONS 

Power supply reliability under varying weather conditions and the cost of energy 

conversion technologies as well as the environmental impact are major concerns in 

designing modern hybrid renewable energy systems. In order to utilise the available 

wind and solar energy efficiently and economically, a multi-objective optimal sizing 

methodology is developed in this thesis based on Genetic Algorithm, which has the 

ability to obtain the global optima of complex non-linear problems with relative 

computational simplicity compared to conventional optimisation methods. The multi-

objective sizing methodology is used to evaluate hydrogen-based hybrid renewable 

energy systems for off-grid applications, and to attain the system configuration which 

underpins the desired reliability with optimal compromise between cost, renewables 

penetration and environmental impact. A modified Loss of Power Supply Probability 

(LPSP) index, which account for load losses during transient start-up time of fuel cell 

units, is used to assess the reliability of meeting load requirements.  

An effective operation strategy is a necessity for hybrid renewable energy systems to 

coordinate, and ensure stable and safe operation of the power generation, energy 

storage and backup units. This thesis has investigated the effectiveness of a Neural 

Network based Power Management Strategy (NN-based PMS) for controlling the 

power flow within stand-alone hydrogen-based renewable energy systems. As 

preparation for the implementation of NN-based (intelligent) PMS, an analysis of the 

prediction accuracy of Feed Forward and Radial Basis Function Neural Networks (FF-

NN, RBF-NN), when applied for short-term renewable energy (wind) foresting, is 

presented. The research investigated the influences of the type, span and resolution of 

training data; and the Length of Training Pattern (LTP), on short-term wind speed 

prediction accuracy. The impact of the NN forecasting error on the estimation of 

renewable power generated by commercially available wind turbines is also studied. 

Then, the concept of NN-based PMS is validated experimentally by applying it to 

control (desktop) stand-alone hydrogen-based renewable energy system which has 

been specifically assembled for this purpose. The constructed (desktop) system 

consists of an emulated renewable power source, battery bank and fuel cell unit 

coupled to metal hydride hydrogen canisters. Following the experimental validation, the 

impact of NN-Based PMS on the economic and operational aspects of hydrogen-based 

renewable energy system is investigated.      

The outcomes of the research reported in this thesis are summarised below: 
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 Sizing methodologies that ignore the start-up transients of back-up units 

overestimate the reliability to meet the load requirements. This research has 

introduced a modified LPSP index which may help researchers to more 

accurately evaluate the reliability of hydrogen-based stand-alone renewable 

energy systems. 

 If the system is controlled by rule-based (reactive) PMS, sizing methodology 

that considers optimise renewables penetration and environmental footprint 

along with cost, of stand-alone hydrogen-based energy system results in 

configuration more expensive than that considers minimising cost only. The 

main reason is the high cost of energy storage devices. 

 Wind/Hydrogen system configuration has the best compromise between the 

cost, renewables penetration and life cycle footprint compared to Solar-

PV/Hydrogen and Wind/Solar-PV/Hydrogen configurations and incorporating 

limited battery storage within stand-alone hydrogen-based renewable energy 

systems reduces the total cost as well as the life cycle environmental impact.  

 PMSs that depend on predictions of renewable resources and load demand 

(predictive PMSs) can effectively control the operation of hydrogen or 

hybridised energy systems and outperform rule-based strategies. However, 

the performance of such strategies is strongly influenced by the prediction 

horizon of load demand and renewable resources, accuracy of the prediction 

tool and the speed at which the system status is conveyed to the control unit.  

 NNs are a good candidate to be used as a prediction tool for predictive PMSs 

as they can acquire high and consistent prediction accuracy regardless of the 

seasonal variations of renewable resources especially if a proper data and 

training methodology are used.  

 Given the forecasting tool is highly reliable, using predictive PMS to control 

the operation of stand-alone hydrogen-based renewable energy system can 

help design more cost-effective, efficient and environmentally friendly system 

compared to reactive strategy.  

Further investigations are warranted to study the impact of using NNs with multiple 
input parameters on the prediction of other renewable resources such as solar 
irradiance. Studies on the impact of using NNs on the ability to meet load requirements 
as well as the techno-economic and environmental impact of using a predictive PMS in 
Solar-PV or Wind/Solar-PV renewable energy systems are also needed.  
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9 APPENDICES 

9.1 APPENDIX A 
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9.2 APPENDIX B 
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9.3 APPENDIX C 
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9.4 APPENDIX D 
 

Estimation of transient time of PEM fuel cell stack 

 

Fuel cells use electrochemical reaction to produce electricity by combining hydrogen 

fuel with oxygen. The fuel cells have the advantages generating electricity by using 

combustion engines since they can generate electricity as long hydrogen fuel is 

supplied and because of the absence of the burning process, which happening in 

diesel generator, there are no harmful emissions. On the other hand, fuel cells are like 

batteries since they generate electricity from the interaction between chemical 

substances and the waste product is pure water. The efficiency of fuel cell technology 

is the double compared to combustion engines and use hydrogen as a fuel which is 

one of the simplest and most abundant elements on earth. Such a wealth of fuel 

represents an almost unlimited clean energy source.  

There are several types of fuel cell. The most common types are the Proton Exchange 

Membrane Fuel Cell (PEMFC) and Solid Oxide Fuel Cell (SOFC). There are many 

literatures that describe the advantages of each type. This document considers the 

furthest developed and most commonly used fuel cell systems to experimentally test its 

transient dynamics (i. e. PEMFC). 

PEMFC has an efficiency of around 50% and work at a moderate temperature of 80°. It 

has a compact design and achieves a high energy-to-weight ratio. However, limitations 

such as managing the operating temperature, freezing water and slow start-up when 

cold introduce some challenges to employ fuel cell in many applications. In the 

following, an experiment to estimate the cold start-up time of PEMFC stack is 

described. 

 Experimental set-up description 

A diagram of the experimental set-up used to experimentally estimate the cold start-up 

time of PEMFC stack is shown in Figure. The set-up consists of Nexa 1200 PENFC 

stack, Power diode, electronic load, three metal hydride hydrogen canisters and PC for 

monitoring. The rated power of the used stack is 1.2kW and can supply 60 amperes 

maximum. The stack is equipped with cooling fan to maintain the operating 

temperature at an acceptable limit. The power diode is connected between the fuel cell 
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and the load. It is used as a safety device to protect the fuel cell from the reverse 

currents.  The Heliocentris EL 1500 electronic load is used to draw a DC current from 

the fuel cell. This electronic load can be controlled manually or by software. The user 

can choose from three different operation modes, namely constant power mode (P-

Mode), constant resistance (R-Mode) and constant current mode (I-Mode). The 

constant current operation mode (I-Mode) has been used in the experiment under 

consideration. Figure 2 shows the electronic load panel on which the duty of switches 

and displays are explained.  

 

Figure A-1: The experimental set-up used to estimate the cold start-up time of Nexa 

1200 fuel cell stack. 
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Figure A-2: External safety connection of Nexa 1200 fuel cell module without an 

external hydrogen sensor. 

To operate the Nexa 1200 fuel cell module, a safety chain which includes an external 

hydrogen sensor must be accomplished at the safety chain connectors on the back of 

the module. To establish an external safety chain without an external H2-sensor, two 

bridges between pin 1 & 2 and 3 & 4 of the “Safety Chain” connector must be 

established as shown in Figure 4. 

To estimate the cold start-up time of PEMFC, the transient performance of Nexa 1200 

PEMFC is studied by measuring the output voltage from the entire stack for step 

changes in load currents between 0-3A, 0-6A, 0-12A, 0-15A, 0-20A, 0-25A, 0-30A, 0-

35A, 0-40A and 0-45A. The following figures show the load current and the stack 

voltage measured during the transient operation of the stack. For each step change 

current, the fuel cell stack is left to cool down first for at least two hours before 

conducting the next measurements.   
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9.5 APPENDIX E 
 

Optimising Renewables Utilisation in Sizing Stand-alone Power Systems with 
Batteries 

Adel Zayd Brka1 

School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia 

ABSTRACT 

This paper examines the size optimisation of stand-alone renewable power systems 

with battery storage in the context of maximising renewables penetration. The systems 

assessed use wind turbines and/or solar panels for power generation and batteries as 

backup. The sizing process is formulated as a multi-objective problem and solved using 

the Genetic Algorithms optimisation technique (GA). Loss of Power Supply Probability 

(LPSP) is used to assess the reliability of the considered systems. In addition, a 

comparison to a single objective sizing method (minimising Net Present Cost only) is 

established. The results indicate that incorporating an objective function to increase 

renewables penetration during the sizing of renewable energy systems supported by 

batteries improves the overall system efficiency but the total cost is increased. 

Furthermore, the systems designed by considering minimising excess energy are more 

susceptible to the intermittency of renewable resources compared to the sizing using 

an economic objective only. The yields also indicate that Wind/PV-Battery represents 

the most economic and efficient configuration to supply the target load at the location 

considered.    

1- INTRODUCTION 

Renewable energy resources such as solar and wind are abundant and minimise 

environmentally harmful emissions when generating electric power. Wind and solar 

energies are promising solution to supply electricity for remote and rural communities 

[1]. They can also reduce public power grid infrastructure. Unfortunately, renewable 

energy resources particularly wind and solar irradiance can be intermittent and 

unpredictable [2] leading to poor reliability compared to traditional ones. Several 

approaches have been followed to tackle the drawbacks of renewable energy sources. 

Accordingly, wind and solar power sources are often combined with energy storage 

devices such as batteries to improve power supply reliability albeit with higher system 
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cost and complexity. Conversely, appropriate system size can help optimise reliability 

and cost. 

Numerous studies have explored optimal sizing of renewable energy systems, on the 

basis of cost and reliability, by using intelligent techniques such as Particle Swarm 

Optimisation (PSO) [3], Simulated Annealing (SA) [4] or Genetic Algorithms (GA) [5]. 

For example, Kaviani et al [6] employed PSO to minimise the annual cost of a hybrid 

wind-PV-hydrogen renewable energy system. The reliability to meet demand was 

evaluated using Loss of Load Expected (LOLE) and Loss of Power Supply Probability 

(LPSP). PSO was also used in combination with Harmony Search (HS) for optimally 

sizing hydrogen based renewable energy system [7] as indicated by Net Present Cost 

(NPC) and Equivalent Loss Factor (ELF) for system reliability. Although cost is an 

important design constraint, other aspects such as minimising life cycle greenhouse 

gas outputs through using renewable energy systems are also important. Multi-

objective optimisation of renewable energy systems has been attempted by many 

researchers, including Katsigiannis et al [8] who minimised Cost of Energy (COE) and 

Life Cycle Emissions (LCE) concurrently for small hybrid power systems. Dufo-Lopez 

and Bernal-Agustin [9] enhanced the optimisation objectives by minimising the unmet 

load to size a stand-alone PV–wind–diesel system, with battery storage, efficiently.  

The above studies have not considered system conversion efficiency and associated 

design issues when optimising stand-alone hybrid renewable energy systems [10]. 

Generally, researchers assume a dump load is connected to stand-alone renewable 

energy systems in order to dispose of excess energy (kW-hr) [11, 12] which may reach 

50% of the generated power [10]. Although wind and solar energy resources are free, 

converting these resources into useful electric power is costly. Therefore, minimising 

the excess (dumped) power is important because it may reduce energy conversion 

cost. This paper investigates the effectiveness of incorporating minimisation of the 

percentage of excess (dumped) energy, along with related system costs, to design an 

efficient and cost effective stand-alone renewable energy system with battery storage. 

The sizing optimisation problem is formulated as a multi-objective problem and solved 

using Genetic Algorithm optimisation technique.  

The paper is outlined as follows. Section 2 presents a description of system component 

models. Section 3 describes the energy management strategy. The sizing optimisation 

problem is explained in Section 4 while the results and conclusions in Section 5 and 

Section 6 respectively. 
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2- MODELLING OF SYSTEM COMPONENTS 

In order to evaluate the effect of considering minimising the excess energy during 

sizing renewable energy systems, three different configurations of renewable energy 

systems have been modelled. These configurations are:  

Wind/Photovoltaic-Battery (WG/PV-BAT) 

Photovoltaic-Battery (PV-BAT) 

Wind-Battery  (WG-BAT)   

Figure 1 shows block diagrams of the considered hybrid renewable energy system 

followed by the models of the system components. 

 

Figure 1: Block diagram of the considered renewable energy systems. (a) WG/PV-

BAT. 

(b) PV-BAT. (c) WG-BAT. 

 

2-1 Wind turbine 

The output power of the wind turbine is determined by the wind speed at the hub height 

and the output characteristics curve provided by the manufacturer.  The wind speed at 

the hub height is commonly calculated through exponent law [13]: 
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                                                                                                       (1) 

Where,  is the wind speed at the desired height ,  is the wind speed at the 

reference height ,  is the shear coefficient and its typical value for low roughness 

land is 1/7 [13].   

 

Figure 1: Wind turbine power curve [14]. 

The characteristics equation can be derived from the power curve using binomial fitting. 

The power curve of the wind turbine that used in this study is extracted from the 

manufacturer datasheet and it is depicted in Figure 1. The technical characteristics of 

the wind turbine that is used in this work are listed in Table 1. 

Table 1: Technical characteristics of 2kW wind turbine [15] 

Parameter Value 

Rated power 2 (kW) 

Cut-in speed 3 (m/s) 

Rated speed 9 (m/s) 

Generator efficiency >80 (%) 

Tower height 18 (m) 

 

 2-2 Solar panel 

In this study, a single photovoltaic cell is modelled using a single diode circuit as shown 

in Figure 2. 
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Figure 2: Single-diode model for photovoltaic cell. 

The following equation represents the current-voltage characteristics of a practical 

photovoltaic device [16]: 

                                                                   (2) 

Where  is the current generated by incident light,  is the reverse saturation 

current of the diode,  is the electron charge,  is Boltzmann constant, and  is the 

temperature. Apart from the two resisters, the parameters of solar model can be 

determined directly from the datasheet. The resister  can be estimated from I-V 

curve provided by the manufacture. Solar radiation data are predicted using the well-

known ASHRAE model [17] and the effect of the ambient temperature is neglected. 

Finally, the solar module consists of 36 cells connected in series and the output power 

of the panel can be expressed as follows: 

                                                                                                    (3) 

where,   is the number of the cells connected in series. The technical characteristics 

of the solar module used in this research are depicted in Table 2 [18]. 

Table 2: Technical characteristics of the solar panel module [18] 

Parameter Value 

Rated power PMAX 135 (W) 

Temperature (TCELL ) 48.2 (0C) 

Short circuit current (ISC) 8.33 (A) 

Reverse current (IR) 15 (A) 

Open circuit voltage (VOC) 21.56 (V) 

Number of cells 36 

Efficiency ( ) 13.61 (%) 
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 2-3 Lead acid battery 

The battery plays the role of an energy buffer to absorb the short-term fluctuations of 

the renewable sources. Different models for batteries are available in the literature [11, 

19].  The model described in [20] uses data from the manufacturer’s datasheet to 

simulate the dynamic performance of the lead-acid battery. In the state of charge, the 

battery voltage is given by the following equation: 

                                                    (4) 

On the other hand, in the state of discharge, the battery voltage can be expressed as: 

                                         (5) 

where,  is the battery voltage,  is the battery constant voltage,  is the 

polarisation constant,  is the battery capacity,  is the battery’s internal resistance. To 

prolong the battery lifetime, the battery should not be overcharged or over discharged. 

This means that the state of charge of the battery must be kept into predefined upper 

and lower limits. The State Of-Charge (SOC) of the battery can be calculated as [20]: 

                                                          (6) 

The technical characteristics of the battery module used in this work are listed in Table  

Table 3: Technical characteristics of the battery module 

Parameter Value 

Nominal voltage 12 (v) 

Nominal capacity 55 (Ah) 

Internal resistance 3.5 Ω 

Efficiency 80 (%) 

 

Lead-acid battery has been modelled assuming depth of discharge equal to 60% [19].  

 2-4 DC/AC Inverter 

An inverter converts DC electrical power to an AC form. In this study, the DC/AC 

inverter is modelled using its efficiency (  ) as follows: 
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                                                                                  (7) 

where,  is the power delivered to the load from the inverter and  is the 

inverter’s input power. 

3- ENERGY MANAGEMENT STRATEGY 

The energy management strategy is developed based on the energy balance 

throughout the year. The energy produced by the renewable sources (Wind and/or PV) 

is compared with the load demand to determine the flow of energy between the load 

and the battery. If the battery bank is fully charged, the surplus is dumped on a dummy 

load. In case there is a deficit; it will be drawn from the battery bank. A flow chart for 

the employed energy management strategy is shown in Figure 4. 

 

Figure 4: A flow chart of the energy management strategy. 

4- OPTIMISATION PROBLEM FORMULATION 

The sizing methodology employs multi-objective genetic algorithm technique which 

dynamically searches for the optimal configuration that satisfies two objectives among 

several commercially available components. These objectives are minimising the 

system’s Net Present Cost (NPC) and minimising the excess (dumped) energy. The 

optimal system must also satisfy some constraints as explained in the following. 

                                                                                   (8) 
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Where,  and  are the total NPC and excess energy respectively and are 

calculated as follows: 

 4-1 Minimisation of total NPC 

The NPC of a system is the present value of all the costs that incurs over their 

lifetimes, which include the capital, replacement, operation and maintenance costs, 

minus the salvage value of the system components at the end of the project lifetime. 

The net present cost for the system components can be expressed as [6, 21]: 

                       (9) 

In this regard,  is the number of units,  is the capital cost,  is the replacement 

cost, and  is the annual operation and maintenance cost of the component.  is 

the interest rate (here, 6%), and  is the project lifetime.  and  are capital 

recovery factor and single payment present worth which are defined as follows: 

                                                  (10) 

                                                                (11) 

Where,  is the component’s lifetime and  is number of replacements of the 

component during the lifetime of the project which is a simple function of lifetime of the 

component and the project. The total net present cost is the sum of the net present 

cost of the system components.  

                                                                                       (12) 

The cost, lifetime and size for the components used in the sizing process are presented 

in Table 4.   

Table 4: The costs and lifetime of the system components [22, 23] 

Component 
 

Size Capital Replacement O&M Lifetime 

Wind turbine 2kW $10200 $7000 $140 15yr 

Solar panel 135W $310 $310 0 25yr 

Lead-acid battery 55Ah,12V $120 $120 $20 5yr 

Converter 1KW $800 $750 $8 15yr 
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 4-2 Minimisation of excess energy  

The amount of excess (dumped) energy that the system produces is the energy that is 

not consumed by the useful load or stored in the storage devices. The total excess 

energy generated by the system can be expressed as follows: 

                                                                          (13)    

The percentage of excess energy from that originally (renewably) derived is then 

calculated as: 

     (%)                                               (14)  

Where,   is the power generated by the renewable source and can be calculated as 

follows: 

                               (15)                           

 4-3 Problem Constraints 

The optimisation problem is subject to the following Constraints: 

                                                                                      (16) 

                                                                                          (17) 

LPSP measures the reliability of the energy system and can be defined as the ratio of 

all energy deficits to the load demand during the considered period where an LPSP of 

1 means the load will never be satisfied while LPSP of 0 means the load will be always 

satisfied.  The LPSP index can be expressed by the following [11].  

                                                            (18) 

Where,  is the deficit of the power supply at hour  and  is the load demand. 

In this study, the LPSP constraint is chosen to be 0.1±0.005 for all considered stand-

alone systems. This range has been chosen to ensure that all the resultant solutions 

have the same reliability. 
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 4-4 Optimal compromise solution 

Fuzzy membership function is used to determine the best compromise solution among 

the Pareto front solutions. The value of the membership function  is defined as [24]: 

                                                        (19) 

Where  and  are the minimum and maximum value of the  objective 

function. For each non-dominant solution, the normalised membership function  is 

calculated as: 

                                                                                           (20) 

In this regard,  is the number of non-dominated solutions and   is the number of 

objective functions.  The best compromise solution is the one that have the maximum 

value of the normalised membership function. 

4-5 Genetic Algorithm implementation 

Multi-objective genetic algorithm toolbox (MATLAB R2012b) is used to solve the 

previous optimisation problem. A MATLAB code represents the fitness function, which 

calculates the values of all objectives, has been written as an M-file. In addition, the 

algorithm is adopted to eliminate all solutions that do not satisfy the reliability 

constraint. Bounds on the number of components are entered directly in the dedicated 

position in the toolbox. Because the optimisation problem in and is an integer problem, 

three other M-files represent the creation, mutation and crossover functions that 

generate integer numbers satisfy the problem constraints are also incorporate into the 

optimisation algorithm. The used settings in the multi-objective tool are 4 

subpopulations with 100 individuals each for the population size, the crossover 

probability is 80% and the number of generation is 100. The optimisation variables are 

the numbers of solar modules, wind turbines and batteries. The optimisation algorithm 

repeatedly changes the values of the optimisation variables and simulates the system 

performance by calling a Simulink model for the stand-alone renewable energy system. 
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5- RESULTS AND DISCUSSION 

Hourly resolved wind speed, solar irradiance data, which belong to a remote location in 

Western Australia (latitude: −31.75◦, longitude: 115.8◦),. The wind speed data, Figure 

5, are measured by the Australian Bureau of meteorology [25] while solar irradiance 

data, Figure 6, are estimated using the well-known ASHRAE clear sky model [26] 

because measured data are not available. The optimisation process is led by measure 

load demand of a Western Australian household. 

 

Figure 5: Hourly wind speed data with t=0 corresponding to 00:00 on 1st Jan. 

 

Figure 6: Hourly solar irradiance with t=0 corresponding to 00:00 on 1st Jan. 

Three different configurations are optimally sized, namely WG/PV-BAT, PV-BAT and 

WG/PV-BAT renewable energy systems. Two design methods named Design Method-

1 and Design Method-2 are used to size the considered configurations. The first 

optimises the NPC only while the second optimises NPC and EE. The reliability 

constraint (LPSP) is set equal to 0.01±0.005 for all considered configurations. For each 
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configuration, the optimisation algorithm is run to find the optimal number of system 

components that satisfies the reliability constraint. 

 

Figure 7: Fitness function convergence for WG/PV-BAT optimised with Design 

Method-1. 

 

Figure 8: Fitness function convergence for WG/PV-BAT optimised with Design 

 Method-2. 

The corresponding fitness function optimisation of Design Method-1 (NPC optimisation) 

and Design Method-2 (NPC and EE optimisation), for WG/PV-BAT configuration, along 

the successive generations of the GA are shown in Figure 7 and Figure 8 respectively. 

These figures indicate that the system sized with one objective only is optimised faster 

than the one with multi-objective sizing which reveal that Design Method-2 is more 

complicated than Design Method-1.   

The sizing results for WG/PV-BAT, PV-BAT and WG/PV-BAT configurations are listed 

in Table 5, Table 6 and Table 7, respectively.  It can be observed that energy storage 
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units (battery) in PV-BAT system are highest compared to WG-Bat and WG/PV-BAT 

system. This may rendered to the fact that solar energy is not available at night-time 

and more energy storage capacity is needed to supply power during this period. On the 

other hand, the optimal solutions for WG/PV-BAT have least energy storage capacity 

perhaps because wind and solar energy resources complement each other therefore 

batteries are used to supply the load for less time periods. Another observation is that 

the number of power generation units (Wind turbines and solar modules) resulted from 

Design Method-1 is more than the corresponding units resulted from Design Method-2. 

In contrast, energy storage units in the solutions resulted from Design Method-1 is less 

compared to Design Method-2.  

Table 5: Optimal solution for a WG/PV-BAT renewable energy system, 

LPSP=0.01±0.005 

Design method Wind turbine 
(units) 

PV 
(units) 

Battery 
(units) 

Converter 
(kW) 

Design Method-1: min(NPC) 1 49 48 5 

Design Method-2: min(NPC, EE) 1 35 76 7 

 

Table 6: Optimal solution for a PV-BAT renewable energy system, LPSP=0.01±0.005 

Design method PV 
(units) 

Battery 
(units) 

Converter 
(kW) 

   Design Method-1: min(NPC) 95 56 5 

Design Method-2: min(NPC, EE) 65 116 7 

 

Table 7: Optimal solution for a WG-BAT renewable energy system, LPSP=0.01±0.005 

Design method Wind turbine  
(units) 

Battery (units) Converter 
(kW) 

Design Method-1: min(NPC) 4 56 5 

Design Method-2: min(NPC, EE) 3 100 5 
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Figure 9: The percentages of excess (dumped) energy for the optimal solutions from 

Design Method-1. 

Figure 9 shows the percentages of excess (dumped) energy for optimal solutions 

resultant from Design Method-1.  This figure reveals that when a renewable energy 

system is optimised by cost only optimisation methodology (Design Method-1), a 

considerable amount of the renewably generated power is not consumed by the useful 

load. This implies that the generation units are oversized and part of the system's cost 

is actually "dumped". Figure 10 shows a comparison between the annual NPC and 

Annual Cost of Excess Energy (COEE) for the optimal solutions of the systems sizing 

results from Design Method-1. 

 

Figure 10: Comparison between the Annual COEE and annual NPC for systems 

optimised with Design Method-1. 
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Figure 11: Comparison between costs of excess energy for the optimal solutions 

Hypothetically, it may be anticipated that reducing the COEE will reduce the total cost 

of the energy system. To assess this hypothesis, Design Method-2 which considers 

minimising EE along with NPC of the energy system is employed. By reaching a 

solution with less excess (dumped) energy, this sizing methodology may lead to 

designing less expensive renewable energy systems.   

Figure 11 shows a comparison between the total NPC of the optimal solutions from 

Design Method-1 and Design Methd-2.  Although Design Method-2 results in systems 

with less excess (dumped) energy (43%, 47%, and 55% for WG/PV-BAT, PV-BAT and 

WG-BAT respectively), the total NPC of optimal solutions archived by this method are 

more expensive than optimal solutions of Design Method-1. To investigate the reason 

behind this unexpected result, capital cost of primary generation units ($), capital cost 

of batteries ($) and percentage of Excess Energy (%) of WG/PV-BAT are compared 

and depicted in Figure 12. 
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Figure 12: Comparison between the capital cost of generation units, capital cost of 

batteries and the percentage of excess energy of WG/PV-BAT configuration. 

 

As can be observed, while Design Method-2 results in a slight reduction of the capital 

cost of energy generation units (wind turbines and solar modules), the capital cost of 

storage units (batteries) is significantly increased. Consequently, savings gained from 

reducing energy generation movers are significantly less than the increment of energy 

storage cost. This is because solutions from Design Method-2 have more storage units 

compared to Design Method-1. This result reveals that minimising excess energy is not 

preferable option when optimising stand-alone renewable energy systems with battery 

storage due to the high cost of energy storage units. Moreover, solutions from Design 

Method-2 are more susceptible to the changes of the renewable energy resources. 

Figure 13 shows the effect of reducing the amount of solar irradiance (by 5%, 10% and 

15%) on the reliability of PV-BAT system sized by Design Method-1 and Design 

Method-2. It is clear that for the solution from Design Method-2, the LPSP increases 

when the level of solar irradiance decreases while no considerable change happens to 

the system designed using Design Method-1. It should be noted here that higher LPSP 

means less system reliability.    
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Figure 13: The effect of renewable resource reduction on PV-BAT system reliability 

By comparing the achieved optimal solutions, it has been found that renewable energy 

system that uses solar panels with battery storage (PV-BAT) is not economically 

favourable compared to the other configurations. The most favourable configuration 

from economic point of view is the system consists of hybridisation of wind turbines and 

solar panels with battery storage. This result agrees with previously published results 

[11].This study has shown that considering minimising the excess energy when 

designing renewable energy system with battery storage is not preferable for the time 

being because of the high cost of energy storage units.   

6-  CONCLUSIONS 

This paper presents a comparison between single and multi-objective sizing methods 

of three stand-alone renewable energy systems incorporating battery storage (Wind 

turbine/Solar panel-Battery, Solar panel-Battery and Wind turbine-Battery) in the 

context of optimising renewables penetration. The first sizing method (Design Method-

1) considers minimising Net Present Cost (NPC) only while the second considers 

minimising the Excess (dumped) Energy (EE) along with NPC. The concept of Loss of 

Power Supply Probability (LPSP) is used as a measure of load supply reliability. The 

results yield that Wind/PV-battery is the most economically preferable configuration 

with the least percentage of dumped energy given the specific load and location 

considered in this study. The results yield, also, incorporating an objective to minimise 

excess energy during the sizing of renewable energy systems with battery storage 

increases renewables penetration. However, the resulted system is more expensive 

and more susceptible to the variations of renewable resources. 
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9.6 APPENDIX F 
 

Sizing of an equivalent fuel cell/hydrogen system matching wind power 

Adel Z. Brka, Yasir M. Al-Abdeli, and Ganesh Kothapalli 

 

This appendix was published as an article in the thirteenth postgraduate electrical 

engineering & computing  symposium, 2012. Whilst all efforts were made to retain the 

original features of this article, minor changes such as the layout, number formats, and 

font size and style were implemented in order to maintain consistency in the formatting 

style of the thesis. 

 
Abstract— Hydrogen is an energy carrier which provides one means of mitigating 

against the intermittent nature of renewable sources, such as wind and solar energy, 

by providing a media for seasonal energy storage. This paper presents an analysis for 

the sizing of hydrogen storage capacity model to match the wind energy potential in a 

stand-alone fuel cell/hydrogen energy system. The research uses Matlab/Simulink to 

help build a (steady-state) model for the hydrogen storage capacity and fuel cell 

equivalent needed to offset an annual wind energy yield. Using actual hourly resolved 

wind speed data and a manufacturer’s power curve for a wind turbine, the annual wind 

power profile is simulated. The resultant profile is used to determine the number of fuel 

cell units needed and the volume of hydrogen consumed. Results show that a fuel 

cells/hydrogen energy system outweighs the equivalent wind power system in terms of 

conversion efficiency.    

Index Terms— Sizing; Wind energy;  Fuel cells; Hydrogen.  

INTRODUCTION 

Energy availability has become an important part of modern life. In this regard, the 

issues of consumption and emissions related to using fossil fuel stimulate extensive 

research for possible substitutes. Wind and solar energy represent a clean and 

abundant alternative energy source to fossil fuels. However, their intermittent and 

seasonal nature makes them unreliable. To meet the reliability requirements, storage 

systems have been used to store surplus energy during the low demand hours, provide 

long-term storage capacity or simply augment instantaneous power generated where a 

mismatch exists between renewable energy and total load. Several devices can be 
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used as energy storage such as batteries, flywheels and hydrogen tanks. The size of 

the storage device should be carefully chosen to ensure supplying any partial shortage 

of power, but also to provide sufficient power during power outage periods of the main 

source such as occurs at nighttime if solar-PV systems are relied upon.  

Several studies have been published on sizing energy storage devices for hybrid power 

systems. Optimal size of battery storage for wind-diesel power system has been 

investigated by Elhadidy and Shaahid [1]. Results from this study showed that the 

operational time of a diesel generator can be reduced by more than 50% if one day of 

battery storage is used.  Loss of Power Supply Probability (LPSP) techniques have 

also been used for sizing batteries [2] and adopted by Nelson et al. [3] to determine the 

number of hydrogen storage tanks required for wind/PV/fuel cell power generation 

system. The proposed approach is easy to implement but it depends on the availability 

of time series data of the renewable resources (wind and PV).  

The aim of this paper is to size fuel cells/hydrogen system capable of producing the 

same power generated by an equivalent wind turbine over one year. The paper is 

divided as follows: Section II describes the methodology; Section III simulates results 

and section IV gives the overall conclusions.   

METHODOLOGY 

Wind data and wind turbine model  

The wind data used in this study consists of one year hourly resolved data measured 

by the Bureau of Meteorology (BOM) at a height of 10 meters at the Ocean Reef 

meteorological station (Western Australia, Latitude: -31.750, Longitude: 115.80) [4]. 

Fig. 1 shows the wind speed profile.  

 

Fig. 1.  Hourly averaged wind speed (Ocean Reef, Western Australia for 1997) [4]. 
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The maximum available wind power from a wind turbine can be calculated using the 

following equation [5]: 

                                                                            (1) 

Where is the air density, is the swept area and is the wind speed.  However, the 

actual generated power is less due to the efficiency of the wind power conversion 

system. To obtain the actual output power, a polynomial fit to the power characteristics 

of a wind turbine can be used. In this paper, a 2.4 kW wind turbine is considered [6] 

and the characteristics power-vs.-wind speed curve is depicted in Fig. 2. Table I also 

shows the basic operating parameters of this turbine.  

 

Fig. 2.  Wind turbine manufacturer’s power curve [6]. 

Table I: Basic parameters of the wind turbine [6]. 

Rated capacity 2.4 KW 

Swept area 10.87 m2 

Cut-in wind speed 3.5 m/s 

Turbine height 10 m 

Rated wind speed 13 m/s 

 

Fuel cell model 

A Proton Electrolyte Membrane (PEM) fuel cell uses hydrogen fuel and is capable of 

yielding electric power through electrochemical process. In this study, the Ballard 1.2 

kW Nexa fuel cell has been considered and all parameters for this fuel cell are listed in 

35.0 AVPW

A V
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Table 1. A dynamic model of the aforementioned fuel cell system is retrieved from the 

literature [7]. The equations of the used model are rewritten below and more details 

can be found in [8]. The output voltage of the fuel cell is given as: 
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where the current density j is given by 

fcst AIj /                                                                                               (11) 

where stI  is the stack current. kip and kvp ( )4,...,1k are the currents and voltage 

experimental points used to model the fuel cell and there values are presented in [8]. 

stT  and 0
stT  are the fuel cell stack and the ambient temperature respectively. The stack 

power is given by 

ststst IVP .                                                                                                                    (12) 
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Matlab/Simulink is used to simulate the performance of the fuel cell system under 

different load currents.  Fig. 3 shows a comparison between the polarization curve of 

the model and the Ballard 1.2 kW Nexa fuel cell module [9].  Table I lists the basic 

operating parameters of the module.   

Table I: Basic parameters of the fuel cell system [9]. 

Parameter Value 

Rated power 1.2 KW 

Operating voltage 22-50V 

Voltage at rated power 26 

 

 

Fig 3.  Polarization curve of Ballard 1.2 KW Nexa module [9] 

Fuel cell/Hydrogen sizing 

A simplified procedure for determining the number of fuel cells needed to offset a wind 

turbine and the amount of hydrogen consumed has been used. Two 1.2 kW fuel cells 

are considered to generate the same peak power generated by the 2.4 kW wind turbine 

(2x1.2 kW=2.4 kW). The amount of hydrogen consumed by a fuel cell (in kWh) can be 

calculated as follows: 

                                                                 (13) 

where )(tEGen is the energy generated by the fuel cell at time t , is the efficiency of 

the inverter (0.95) and is the efficiency of the fuel cell system which depends on the 

fcinv

Gen
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current drawn by the load. At standard conditions, 1 kg of hydrogen produces 33.3 kWh 

of energy [10]. This ratio is used to calculate the volume of hydrogen consumed. 

Block diagrams of the wind system and the hydrogen/fuel cell system are depicted in 

Fig. 4 and Fig. 5 respectively. 

 

Fig 4. Block diagram of wind energy system 

 

Fig 5.  Block diagrams of hydrogen/fuel cell system 

RESULTS 

The wind power has been calculated using the manufacturer’s curve model of 2.4 KW 

wind turbine. Sample window of the power generated by the wind turbine is shown in 

Fig. 6 (Dotted line). 

 

Fig. 6.  Wind turbine power profile 

From this figure, it can be seen that the wind power is highly fluctuating. To define the 

equivalent fuel cell/hydrogen system that is able to produce the same power generated 

by the wind turbine, the output power profile of the wind turbine is considered as a 

demand for the fuel cell/hydrogen system. However, Due to its slow dynamics, fuel 

cells system cannot supply highly fluctuating demand. For that reason, the one year 

hourly resolved wind power profile is averaged over 10 hours interval. The fuel cell 

system is considered to generate constant power during each 10 hours interval equal 
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to the calculated average. The new profile is called normalized power profile and it is 

shown in Fig. 6 (solid line).    

The amount of hydrogen in kWh consumed by the fuel cell system over one year is 

depicted in Fig. 7. The figure shows the hydrogen consumed by two fuel cells. The total 

annual amount of hydrogen is 253Kg. 

 

Fig. 7.  Hydrogen consumption of the fuel cells/hydrogen system. 

To compare the performance of the wind energy system and fuel cell energy system, 

the conversion efficiency of each system is calculated by dividing the actual power 

generated and the maximum available power. Results show that wind energy system is 

less efficient than fuel cell system. Table III shows a comparison between the 

performances of both systems.  

Table III: Comparison between the performance of the wind power system and fuel 

cells/hydrogen system. 

      Fuel cell Wind turbine 

Rated power 1.2 KW 2.4 KW 

Number of 

components 

2 1 

Efficiency 0.4039 0.3246 

Hydrogen 

consumption 

253 Kg/year Not 

applicable 
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CONCLUSIONS 

In this paper, fuel cell/hydrogen energy system is sized to offset the power generated 

by wind energy system. Actual wind speed profile for one year is fed into wind turbine 

model based on the manufacturer’s power curve to simulate the annual wind power 

yield. The resultant power profile is used to determine the number of fuel cell devices 

and the amount of hydrogen needed. Results show that fuel cell/hydrogen energy 

system has higher energy conversion efficiency compared to wind energy system. 
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9.7 APPENDIX G 

 

 

Figure 1: The fit of measured and predicted wind speed. Predictions made using RBF-

NN with LTP=10 hours. The training data are wind speed and solar irradiance. 

 

Figure 2: The fit of measured and predicted load demand. Predictions made using 

RBF-NN with LTP=10 hours. The training data are load data only. 
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