6,670 research outputs found

    Adapter module for self-learning production systems

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica, Sistemas e ComputadoresThe dissertation presents the work done under the scope of the NP7 Self-Learning project regarding the design and development of the Adapter component as a foundation for the Self-Learning Production Systems (SLPS). This component is responsible to confer additional proprieties to production systems such as lifecycle learning, optimization of process parameters and, above all, adaptation to different production contexts. Therefore, the SLPS will be an evolvable system capable to self-adapt and learn in response to dynamic contextual changes in manufacturing production process in which it operates. The key assumption is that a deeper use of data mining and machine learning techniques to process the huge amount of data generated during the production activities will allow adaptation and enhancement of control and other manufacturing production activities such as energy use optimization and maintenance. In this scenario, the SLPS Adapter acts as a doer and is responsible for dynamically adapting the manufacturing production system parameters according to changing manufacturing production contexts and, most important, according to the history of the manufacturing production process acquired during SLPS run time.To do this, a Learning Module has been also developed and embedded into the SLPS Adapter. The SLPS Learning Module represents the processing unit of the SLPS Adapter and is responsible to deliver Self-learning capabilities relying on data mining and operator’s feedback to up-date the execution of adaptation and context extraction at run time. The designed and implemented SLPS Adapter architecture is assessed and validated into several application scenario provided by three industrial partners to assure industrial relevant self-learning production systems. Experimental results derived by the application of the SLPS prototype into real industrial environment are also presented

    Enterprise Search in the European Union: A Techno-economic Analysis

    Get PDF
    This Report contributes to the work being carried out by IPTS on the potential of Search, discussing, in particular, the prospects of Enterprise search as well as the main challenges and opportunities. It is part of CHORUS+, an initiative supported by the Directorate General Information Society and Media. Information about CHORUS+ is available at http://avmediasearch.euJRC.J.3-Information Societ

    Maintenance Knowledge Management with Fusion of CMMS and CM

    Get PDF
    Abstract- Maintenance can be considered as an information, knowledge processing and management system. The management of knowledge resources in maintenance is a relatively new issue compared to Computerized Maintenance Management Systems (CMMS) and Condition Monitoring (CM) approaches and systems. Information Communication technologies (ICT) systems including CMMS, CM and enterprise administrative systems amongst others are effective in supplying data and in some cases information. In order to be effective the availability of high-quality knowledge, skills and expertise are needed for effective analysis and decision-making based on the supplied information and data. Information and data are not by themselves enough, knowledge, experience and skills are the key factors when maximizing the usability of the collected data and information. Thus, effective knowledge management (KM) is growing in importance, especially in advanced processes and management of advanced and expensive assets. Therefore efforts to successfully integrate maintenance knowledge management processes with accurate information from CMMSs and CM systems will be vital due to the increasing complexities of the overall systems. Low maintenance effectiveness costs money and resources since normal and stable production cannot be upheld and maintained over time, lowered maintenance effectiveness can have a substantial impact on the organizations ability to obtain stable flows of income and control costs in the overall process. Ineffective maintenance is often dependent on faulty decisions, mistakes due to lack of experience and lack of functional systems for effective information exchange [10]. Thus, access to knowledge, experience and skills resources in combination with functional collaboration structures can be regarded as vital components for a high maintenance effectiveness solution. Maintenance effectiveness depends in part on the quality, timeliness, accuracy and completeness of information related to machine degradation state, based on which decisions are made. Maintenance effectiveness, to a large extent, also depends on the quality of the knowledge of the managers and maintenance operators and the effectiveness of the internal & external collaborative environments. With emergence of intelligent sensors to measure and monitor the health state of the component and gradual implementation of ICT) in organizations, the conceptualization and implementation of E-Maintenance is turning into a reality. Unfortunately, even though knowledge management aspects are important in maintenance, the integration of KM aspects has still to find its place in E-Maintenance and in the overall information flows of larger-scale maintenance solutions. Nowadays, two main systems are implemented in most maintenance departments: Firstly, Computer Maintenance Management Systems (CMMS), the core of traditional maintenance record-keeping practices that often facilitate the usage of textual descriptions of faults and actions performed on an asset. Secondly, condition monitoring systems (CMS). Recently developed (CMS) are capable of directly monitoring asset components parameters; however, attempts to link observed CMMS events to CM sensor measurements have been limited in their approach and scalability. In this article we present one approach for addressing this challenge. We argue that understanding the requirements and constraints in conjunction - from maintenance, knowledge management and ICT perspectives - is necessary. We identify the issues that need be addressed for achieving successful integration of such disparate data types and processes (also integrating knowledge management into the “data types” and processes)

    Software Evolution for Industrial Automation Systems. Literature Overview

    Get PDF

    Modeling 4.0: Conceptual Modeling in a Digital Era

    Get PDF
    Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for appropriate methods to support design that caters to these new demands. Conceptual modeling is an established means for this, but it needs to be advanced to adequately depict the requirements of digitization. However, unlike the actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling techniques and methods continue to fit contemporary and emerging requirements

    Knowledge re-use for decision support

    Get PDF
    Effective decision support has already been identified as a fundamental requirement for the realisation of Network Enabled Capability. Decision making itself is a knowledge-intensive process, and it is known that right decisions can only be reached based on decision maker's good judgement, which in turn is based on sufficient knowledge. It is not unusual for decision makers to make incorrect decisions because of insufficient knowledge. However, it is not always possible for decision makers to have all the knowledge needed for making decisions in complex situations without external support. The re-use of knowledge has been identified as providing an important contribution to such support, and this paper considers one, hitherto unexplored, aspect of how this may be achieved. This paper is concerned with the computational view of knowledge re-use to establish an understanding of a knowledge-based system for decision support. The paper explores knowledge re-use for decision support from two perspectives: knowledge provider's and knowledge re-user's. Key issues and challenges of knowledge re-use are identified from both perspectives. A structural model for knowledge re-use is proposed with initial evaluation through empirical study of both experienced and novice decision maker's behaviour in reusing knowledge to make decisions. The proposed structural model for knowledge re-use captures five main elements (knowledge re-uers, knowledge types, knowledge sources, environment, and integration strategies) as well as the relationships between the elements, which forms a foundation for constructing a knowledge-based decision support system. The paper suggests that further research should be investigating the relationship between knowledge re-use and learning to achieve intelligent decision support

    Towards In-Transit Analytics for Industry 4.0

    Full text link
    Industry 4.0, or Digital Manufacturing, is a vision of inter-connected services to facilitate innovation in the manufacturing sector. A fundamental requirement of innovation is the ability to be able to visualise manufacturing data, in order to discover new insight for increased competitive advantage. This article describes the enabling technologies that facilitate In-Transit Analytics, which is a necessary precursor for Industrial Internet of Things (IIoT) visualisation.Comment: 8 pages, 10th IEEE International Conference on Internet of Things (iThings-2017), Exeter, UK, 201

    Towards Automated Performance Bug Identification in Python

    Full text link
    Context: Software performance is a critical non-functional requirement, appearing in many fields such as mission critical applications, financial, and real time systems. In this work we focused on early detection of performance bugs; our software under study was a real time system used in the advertisement/marketing domain. Goal: Find a simple and easy to implement solution, predicting performance bugs. Method: We built several models using four machine learning methods, commonly used for defect prediction: C4.5 Decision Trees, Na\"{\i}ve Bayes, Bayesian Networks, and Logistic Regression. Results: Our empirical results show that a C4.5 model, using lines of code changed, file's age and size as explanatory variables, can be used to predict performance bugs (recall=0.73, accuracy=0.85, and precision=0.96). We show that reducing the number of changes delivered on a commit, can decrease the chance of performance bug injection. Conclusions: We believe that our approach can help practitioners to eliminate performance bugs early in the development cycle. Our results are also of interest to theoreticians, establishing a link between functional bugs and (non-functional) performance bugs, and explicitly showing that attributes used for prediction of functional bugs can be used for prediction of performance bugs
    • …
    corecore