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Abstract: 

Digitization provides entirely new affordances for our economies and societies. This leads to previously unseen 
design opportunities and complexities as systems and their boundaries are re-defined, creating a demand for 
appropriate methods to support design that caters to these new demands. Conceptual modeling is an established 
means for this, but it needs to advance to adequately depict the requirements of digitization. However, unlike the 
actual deployment of digital technologies in various industries, the domain of conceptual modeling itself has not yet 
undergone a comprehensive renewal in light of digitization. Therefore, inspired by the notion of Industry 4.0, an 
overarching concept for digital manufacturing, in this commentary paper, we propose Modeling 4.0 as the notion for 
conceptual modeling mechanisms in a digital environment. In total, 12 mechanisms of conceptual modeling are 
distinguished, providing ample guidance for academics and professionals interested in ensuring that modeling 
techniques and methods continue to fit contemporary and emerging requirements. 
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1 Introduction 

Conceptual modeling is a critical activity in systems analysis and design. IS professionals develop 
graphical representations to describe relevant aspects of a real-world domain for understanding, 
communicating, and reasoning about it (Mylopoulos, 1992). These representations are called conceptual 
models. They are developed using modeling grammar, methods, and tools (Wand & Weber, 2002). 
Several studies have shown that IS professionals use conceptual modeling for various purposes related to 
gaining a better understanding of current systems and articulating new design options (Bourque & Fairley, 
2014; Brambilla et al., 2017; da Silva, 2015). In particular, conceptual models are deployed for large-scale 
software engineering (Hutchinson et al., 2014; Whittle et al., 2014); open-source software development 
(Robles et al., 2017); in agile projects (Moyano et al., 2022); as well as to assist with business analytics 
(Moyano et al., 2022); and big data initiatives (Storey & Song, 2017). More recently, conceptual models 
are also used in professionals’ work with AI (Lukyanenko, Castellanos, et al., 2019; Nalchigar et al., 
2021); to describe the Internet of Things (IoT) solutions (Yuan et al., 2019); or to conceptualize robotic 
process automation (Völker and Weske, 2021). 

Formal or semi-formal representations have been used by system designers, business analysts, process 
analysts, and software developers to design and analyze systems and visualize datasets or processes. 
However, traditional conceptual models provide static representations of focal real-world phenomena and 
are explicitly specified at design time (Benslimane et al., 2009). Their maintenance is challenging in terms 
of the costs and time of change management and often inadequate in terms of version and release 
management so that evolutions of these models are not represented appropriately.   

Digitization provides new affordances for our economies and societies. This includes, among others, the 
ability to access and analyze real-time data of large scale, advanced sensing capabilities providing access 
to new data sets, sophisticated forms of visualization that facilitate advanced comprehension, and the 
ability to personalize cost-effectively. As a result, new frameworks and entire paradigms, such as smart 
manufacturing with personalized batch size one production or the metaverse with its digital twinning and 
engagement opportunities, are emerging.  

As such, digital technologies reinstate and combine manufacturing practices, industrial platforms, 
production planning, and control with the affordances of digital technologies and smart automation. 
Various digital technologies converge to build and empower intelligence, connectivity, and cognitive 
automation in a contemporary manufacturing and industrial landscape using advanced machine-to-
machine interactions, the Internet of Things (IoT), sensors, smart systems, and actors. New levels of 
sophisticated communication and self-monitoring arise and change the nature of current information 
systems (Lasi et al., 2014). For example, hybrid, i.e., physical-digital manufacturing systems emerge, and 
existing manufacturing systems are becoming decentralized, integrated, and autonomous, whereas 
product and service development become individualized (Dalenogare et al., 2018; Lasi et al., 2014). 

Conceptual modeling still remains relevant to represent essential features of highly intertwined digital 
technologies (Recker et al., 2021). However, digital technologies are changing the domains and context of 
modeling, which requires a new modeling paradigm. For instance, agile technologies challenge the utility 
and efforts needed to develop models (Erickson et al., 2005), and the constantly changing nature of digital 
technologies challenges the maintenance and accuracy of conceptual models (Frisendal, 2016; Hills, 
2016). We, therefore, argue that conceptual modeling requires a new set of capabilities tailored to the 
affordances of digital technologies (Jabbari et al., 2018). For example, digital technologies need to be 
comprehended in terms of their scale and continuous change, catalyze new environments that need to be 
modeled (e.g., intelligent systems), and provide new ways to model (e.g., augmented modeling). Thus, 
digitalization affects why we model, what we model, and how we design and use models. Therefore, 
future research on conceptual modeling needs to consider the emerging technology adoption to address 
the evolving requirements of information systems developers and users (Storey et al., 2023). In light of 
this context, our commentary proposes new design principles and mechanisms that reflect these 
requirements. Our proposed design principles depict fundamental assumptions of modeling in the digital 
age, and our mechanisms capture modeling requirements in digital environments. Our proposed principles 
and mechanisms can act as a foundational reference for researchers delving into the dynamic landscape 
and evolving nature of conceptual modeling. Moreover, they offer guidance in formulating essential 
requirements for tool providers and process analysts when developing and configuring new concept 
modeling environments. 
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To achieve these aims, we first provide a longitudinal conceptualization of the core stages of conceptual 
modeling to derive what we call the notion of Modeling 4.0. Then, we draw on the main principles of 
Industry 4.0, i.e., modularity, interoperability, real-time capability/response, virtualization, decentralization, 
and service orientation. We argue that an analogous adoption of the capabilities of a digital environment is 
required for conceptual modeling. Consequently, we call this “Modeling 4.0”, an umbrella term used to 
capture the mechanisms of conceptual modeling needed to deal with a digitalized, smart, and 
autonomous environment. Modeling 4.0 suggests that traditional models should be adapted to be 
interoperable, virtual, decentralized, real-time, service-oriented, and robust to cope with the changes 
induced by the uptake of digital technologies.  

2 The Four Stages of Conceptual Modeling 

Conceptual models are defined as representations of an individual’s or group’s understanding of a real-
world domain and the features or phenomena in that domain (Kung & Sølvberg, 1986; Mylopoulos, 1992; 
Wand & Weber, 2002). Information Systems (IS) professionals such as systems designers, software 
developers, and business and process analysts use conceptual models to develop integrated data 
schemas, design current and intended models of business processes, or conceptualize entire information 
systems. They use semi-formal graphical representations, which are developed using conceptual 
modeling grammar. Grammars provide a set of constructs and the rules by which to use the constructs to 
represent real-world phenomena (Wand & Weber, 2002).  

Before conceptual modeling was introduced to capture conceptual structures of a domain in notations that 
a programmable computer can manipulate, humans were using graphical representations to model 
systems and relevant elements of their environment. Such models were considered some of the earliest 
universal characteristics of human activity (Funkhouser, 1937). The ideographic drawings of the cave 
dwellers indicate that humans - from the early stages – employed graphical representations to 
communicate their thoughts. The communication languages of Babylonian, Mayan, and Egyptian 
civilizations were essentially graphical symbols (Funkhouser, 1937). As the sciences emerged and 
developed, graphical aids continued to be used to facilitate better understanding, and their application 
evolved to manage a series of tasks required to achieve a particular objective. For instance, 
harmonograms – the early root of Gantt charts – were used as graphical solutions to production problems 
as they were used to present diagrams of workflow networks (Marsh, 1975). We call this era “Modeling 
1.0”. In this stage, the basic fundamentals of modeling emerged; models were not formally structured, and 
modeling grammars were not yet formally defined to be used as a standard in developing models.    

Modeling 2.0 was the era between the 1970s and 1980s marked as a golden age of invention in 
programming languages and databases. It was when information systems developers recognized the 
importance of conceptual modeling in eliciting and articulating user mechanisms, understanding the 
different properties of domains, and providing insights into data and design processes. In this era, 
conceptual modeling as we know it today was invented, and structured grammars such as the Entity 
Relationship Diagram to present static aspects (e.g., things and their properties) (Chen, 1976) or Petri 
Nets to represent dynamic aspects (e.g., events and processes) (Petri, 1962) were invented. Their syntax, 
semantics, and notations were formally specified (e.g., in the form of meta-models), and formal 
approaches to represent different aspects of phenomena and ontologies as meta-theories evolved (Wand 
& Weber, 2002). Based on this foundation and the rising need for a shared language, more formal 
modeling methods were proposed (Mylopoulos, 1992, 1998). In the mid-1990s, practices like object-
oriented analysis and design created another wave of conceptual modeling research in which new 
methods and grammar were developed (Vessey & Conger, 1994). Modeling 2.0 is therefore characterized 
by the existence of well-defined, meta-model grammars that facilitate the representation of a specific 
aspect of the real-world (e.g., data, objects, processes). 

Modeling 3.0 is the era when the previously separate grammars were consolidated into overarching, 
integrated frameworks. Advanced modeling techniques such as Unified Modeling Language (OMG, 2011), 
Model Driven Architecture (MDA) (Kleppe et al., 2003; Soley, 2000), ArchiMate (The Open Group, 2012), 
or the Architecture of Integrated Information Systems (ARIS) (Scheer, 1994) emerged by combining 
different conceptual modeling grammars to provide a holistic and cohesive view of the domain in interest. 
These modeling frameworks enabled designing, storing, exchanging conceptual models, and integrated 
modeling-in-the-large on distinct levels of abstraction. Entire enterprise architectures were populated, and 
the interplay between elements, such as data being input and output of processes became a focus of 
models. Moreover, advanced modeling tools enforced the grammatical correctness of these models and 
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facilitated the developing and testing of conceptual models. Modeling 3.0 involved the development of 
conceptual modeling tools and grammars for broader purposes covering business analysis, organizational 
redesign, or risk and compliance assessments in addition to systems development. This era also involved 
the development of domain-specific grammars that incorporated concepts to represent domain-specific 
knowledge (Van Deursen & Klint, 2002) as well as the design of comprehensive, domain-specific 
reference models such as ITIL (IT management), eTOM (telecommunication), or SCOR (supply chain 
management). Modeling 3.0 is, to a large extent, the current state of conceptual modeling. 

However, Modeling 3.0 often resulted in rather complex integrated models that required a high cognitive 
load to interpret, create, and update a plethora of integrated models manually. While in this era, some 
computer tools were developed to manage the process of designing and using conceptual models, they 
still raised concerns with regard to practicability and efficiency, such as the lack of tool interoperability and 
integration with emerging technologies (e.g., AI, blockchain, etc.) and methods (e.g., agile and rapid 
development). Furthermore, the increased capabilities and sophistication of digital technologies meant 
that the models available as part of Modeling 3.0 are no longer able to cater adequately to the changing 
demands. For example, conceptual models can now be developed, maintained, and consumed by digital 
agents, artifacts like algorithms, autonomous tools, bots, APIs, and generative engines (Recker et al., 
2021). Current modeling grammars and tools cannot capture machine-to-machine communication 
channels, human and machine safety, collaboration regulations, digital models of manufacturing 
execution, and constraints (Rehse et al., 2018). For performance and conformance reasons, organizations 
are expected to monitor, control, and evaluate activities, their interdependencies, and performances; 
enable timely decisions based on big data analytics; learn from experiences and propose solutions; be 
flexible and adapt to the changes in agile environments. Integrating agile and model-driven development 
approaches emphasizes making modeling easier and faster (Karagiannis et al., 2022).  

As digital technologies transform how we work, communicate, organize, and live, the capabilities of 
Modeling 3.0 are no longer sufficient. No longer is the manual design of integrated, large-scale, and rather 
static models conforming to enterprise architecture and digitalization-specific concepts adequate (Rehse 
et al., 2018). Rather, new levels of agility, real-time capabilities, finer levels of granularity, and new real-
world phenomena require a set of conceptual modeling capabilities. We call this stage Modeling 4.0. 
Before we describe its core mechanisms in Section 4, we will introduce the well-defined and widely 
deployed principles of Industry 4.0 as a point of reference for our development of Modeling 4.0 principles.  

3 Main Principles of Industry 4.0  

The fourth industrial revolution expedites a new fundamental paradigm shift in industrial production. It 
provides a consolidating framework for various digital technologies and their use in the context of 
manufacturing. Thus, we argue that the uptake and success of Industry 4.0 serve as a compelling 
benchmark and provide rich stimuli to develop an analog Modeling 4.0. In the following, we briefly review 
the main principles of Industry 4.0 before deploying these in the context of Modeling 4.0. Detailed reviews 
of these principles are provided by (Hermann et al., 2016; Lasi et al., 2014).  

Interoperability: The seamless flow of contextual information is a crucial principle of Industry 4.0. In the 
factories of the future, smart systems and things, human workers, internal and external data sources, 
external ecosystem participants, and objects are integrated (Hermann et al., 2016). Therefore, seamless 
interoperability and continuously exchanging information are important for the entire system to perform. 
Different components of cyber-physical systems need to be integrated and aggregated to read and 
transform data to derive meaningful information (Thuemmler & Bai, 2017).  

A seamless flow of information across systems requires information consistency and completeness. This 
ensures consistent representations of data throughout. Solutions such as interworking proxies have been 
used to enable interoperability between two communication domains. At each point, a server maintains a 
set of information. The interworking proxy guarantees the consistency of this information between two 
servers. Each time information is updated in one domain (e.g., in the manufacturing operating system of a 
producer), the same update must be reflected in the other domain (e.g., the scheduling system of the 
supplier) and vice versa (Cavalieri, 2021).  

Another important element of interoperability across heterogeneous sources of information is 
expandability. The expandability of information is the ability to access any or all related information across 
multiple servers (Barata et al., 2018). Expandability in Industry 4.0 supports tracing and tracking and 
enables controlling products (Bougdira et al., 2020). It allows to recall reactions and supports adaptable 
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systems with flexible lines in which machines perform necessary actions through information exchange 
and sensors embedded into them (Frank et al., 2019). 

Virtualization: Developing a virtual copy of the physical world (e.g., a digital twin) based on data collected 
from various sensors is important to monitor the physical processes as well as presenting conditions of all 
cyber-physical systems. Virtualization technologies are based on Augmented and Virtual-Reality tools that 
enable the integration of a computer-supported representation of a real-world situation with additional and 
valuable information (Salkin et al., 2018). Industry 4.0 relies on the cooperation of humans with leading 
virtualization technologies. Virtual reality flourishes this collaboration by representing a virtual model of a 
real-life situation representing all necessary information (Hermann et al., 2016). This facilitates 
modifications and customizations and helps to detect flaws during the production lifecycle without needing 
physical prototypes (Fei et al., 2018; Frank et al., 2019). In other words, virtual information can be 
encompassed in real-world presentations to enrich the human perception of reality with virtual objects and 
elements.  

Virtualization includes developing a digital twin of the physical world and augmenting the physical world 
with digital information. Unlike virtual reality, augmented reality extends the physical world without 
replacing it (Masood & Egger, 2019). Augmented-reality (AR)-based systems support collaborators with 
interactive and real-time guidance to improve decision-making (Scurati et al., 2018). It can be used in a 
different range of applications such as operation, manufacturing, guidance and training systems, quality 
assurance, or maintenance. In all these applications, AR can intuitively display real-time information when 
operators depend on this information. It enables workers to be smoothly integrated into the digital 
environment. 

Decentralization: In the evolving digital environments, faster decision-making procedures are necessary 
to ensure specific conditions are immediately attended (Lasi et al., 2014) and to address individualization 
requirements (Smit et al., 2016). Therefore, organizational hierarchies need to be reduced. Embedded 
computers enable cyber-physical systems to make decisions on their own. Therefore, central planning 
and controlling are no longer needed, and decision authority can be delegated to the edges. Distributed 
cyber-physical systems work independently and make autonomous decisions. However, they remain 
aligned toward a single ultimate goal (Napoleone et al., 2020). Distributed systems autonomously process 
information for decision makings using technologies such as data mining, artificial intelligence, or machine 
learning. Thus, decentralization enables more reactive approaches and eliminates the long-time span of 
feedback loops in centralized approaches (Lasi et al., 2014; Meissner et al., 2017).  

Decentralization also positively impacts production quality as data is gathered immediately where it occurs 
on the shop floor. For design and customization, that means modifications can be made based on the 
information collected to reach customer needs and wants (Brettel et al., 2017). The autonomous decision 
within the system or process enables the product to be manufactured without the need for central 
interference. Therefore, control is moved towards the edges of the system, i.e., the lowest levels of 
decision making to ensure minimal decision latency (Lasi et al., 2014). Unlike traditional structures where 
decisions are made centrally and often based on experience, knowledge, and ultimately confidence, in the 
decentralized approach, decisions are made evidence-based using information gathered from the shop 
floor. This decision process is further assisted by self-optimizing and knowledgeable systems (Atzeni et 
al., 2010). 

Real-Time Capability: It refers to zero-latency capabilities that allow an immediate reaction to changes, 
customizations, or product failures (Smit et al., 2016). Data are collected and analyzed in real-time. 
Therefore, the status of products, business operations, and changes are permanently tracked to manage, 
and any response strategies or alternative actions can be activated immediately (Gattullo et al., 2019). 
Technical documents such as product specifications need to be kept updated in real-time to drive insights 
immediately (Hofmann & Rüsch, 2017). Therefore, the system is able to detect any changes and reacts 
with minimum latency, ensuring the functionality and quality of the production (Napoleone et al., 2020).     

Sensors and smart devices gather real-time data, and advanced analytical tools enable monitoring and 
forecasting of potential failures, problems, and capabilities to provide predictive maintenance to avoid 
downtimes (Frank et al., 2019). This real-time recognition of individualized mechanisms in a distributed 
manner is a key success factor of industry 4.0.  

Service Orientation: Customer-centered service aggregation is an important component of smart 
factories where smart devices, things, and objects add to a set of individualized aggregated services. 
Hermann et al. (2016) give a high-level overview of “customer-centered” service aggregation where the 
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IoT, the Internet of Service (IoS), and the Internet of People (IoP) add to a set of individualized aggregated 
services in smart factories. On the product level, services are closely interlinked with customization and 
other services to “predict product degradation” (Liu and Xu, 2017). Examples of these services include on-
demand manufacturing (Zhong et al., 2017) or manufacturing-as-a-service (Xu et al., 2018). At its core, 
Industry 4.0 strategies empower organizations to evolve from manufacturers to service providers, allowing 
growing amounts of individualization and personalization in customer service. The industrial production of 
high-tech products must be leveraged between the satisfaction of heterogeneous customer needs through 
individualization and the realization of scale effects along the value chain. The related dilemma between 
the economies of scale and scope can be addressed by the concept of Mass Customization (MC) 
(Fogliatto et al., 2012). MC is a strategy that focuses on the affordable production of personalized mass 
products (Barata et al., 2018). Recent developments in Industry 4.0 have heightened the need for mass 
customization in a wide range of industries. Mass personalization is provisioned by key technologies, 
including Cloud, IoT, AR, and AM, through an iterative, incremental process enabling an affordable 
personalization that was previously unattainable (Aheleroff et al., 2020).  

Modularity: Modular systems can flexibly adapt to changing requirements by replacing or expanding 
individual modules. For that reason, modular systems can be easily adjusted in case of seasonal 
fluctuations or changed product characteristics. Modularity is the capability to flexibly change and 
reconfigure in response to rapidly changing customers’ requirements and product changes through 
modularized systems. Thus, modularity allows system independence, making it capable of adopting more 
flexibility (Napoleone et al., 2020). Modularity reduces the impact of changes to a minimal level, the level 
limited to the impacted module. By flexibly adjusting the combination of standardized modules, the speed 
of new product development drastically increases, and as a result, time-to-market can be shortened 
significantly (Baldwin et al., 2000; Brettel et al., 2017). 

These six main principles of Industry 4.0 are a rich source of inspiration for a contemporary 
conceptualization of the future of modeling in a highly digitized environment. Labeled Modeling 4.0, we 
will, in the following, use these six principles to present a total of twelve mechanisms, two per principle, to 
finally derive a new framework for Modeling 4.0. 

4 Design Principles and Mechanisms for Modeling 4.0  

Based on the six principles of Industry 4.0, we propose twelve mechanisms for Modeling 4.0 to articulate 
the new set of requirements for conceptual modeling in the digital world. Figure 1 represents these 
mechanisms.  

 

Figure 1. Principles and Mechanisms of Modeling 4.0 
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4.1 Design Principle 1: Interoperability 

In the digital world, seamless interoperability is important to enable different systems and their 
components to exchange information and use the functionality of one another continuously (Chen et al., 
2008). In the context of Modeling 4.0, interoperability refers to the capability of conceptual models to be 
aggregated and integrated and to be able to communicate with each other. Therefore, standardization is 
required because different models have to interact with each other (Napoleone et al., 2020; Ruppert et al., 
2018). Interoperability enables accessibility to the representations of diverse and heterogeneous systems 
components, application solutions, business processes, and the business context (Berre et al., 2007; Lu, 
2017). Thus, we define two mechanisms, consistent and expandable models, as part of the 
interoperability principle.   

4.1.1 Mechanism 1: Consistent Models 

Interoperability between conceptual models requires consistency. Consistency refers to faithful and 
coherent representations of different components of systems throughout multiple conceptual models. Due 
to modern systems' evolving complexity and multi-dimensionality, multiple, complementary, and 
overlapping models are required to represent different aspects of the systems holistically. Consistent 
models ensure that changes in one model are reflected in other models that are impacted by this change.   

Prior studies have focused on controlling model consistencies (Boufares & Bennaceur, 2004; Klare et al., 
2021), and some tools developed the capabilities to check the accuracy of the models1 by validating 
relationships and verifying connectivities or enable consistency checking between two models2 such as 
between process models and enterprise architecture diagrams. However, existing tools fail to ensure that 
changes in one model are reflected in other models. Consistent models consistently correct, adjust and 
update their constructs to reflect variations in any system aspect. Such consistency requirements can 
vary. For example, an update in one entity type (e.g., change the name from ‘customer’ to ‘client’) requires 
immediate updates in corresponding process models (e.g., change ‘Contact customer’ to ‘Contact client’). 
Another request for consistency would be that business rules in a process model (e.g., the use of an 
exclusive or split) align with the corresponding decomposition in the related data model (needs to be 
disjunct and not overlapping) (Boot et al., 2022). As these two examples have shown, ensuring that 
modeling systems support this type of advanced consistency is not always easy to implement, as complex 
grammatical and semantic rules must be interrelated across different models. However, the integrity, 
overall quality, and trust in these integrated models are compromised without such consistency 
mechanisms. As a result, mechanisms to ensure consistent models attract substantial attention. Earlier 
studies proposed rules (Liu et al., 2002) and methods such as transformational languages (Bergmann et 
al., 2015) to deal with inconsistencies. But they have focused on detecting inconsistency.  

Consistent models in Modeling 4.0 emphasize the need to preserve consistency across multiple models. 
For instance, research methods such as the Vitruvius approach propose using reaction and mapping 
languages to ensure consistency across different models in developing software-intensive systems (Klare 
et al., 2021), and the Agile Modeling Method Engineering (AMME) approach proposes consistency 
preservation to deal with Multi-view consistency challenges in Enterprise Modelling (Karagiannis, 2022).  

4.1.2 Mechanism 2: Expandable Models 

Interoperability requires an entire set of models to be correlated with each other. This enables users to be 
able to access corresponding information across multiple models. Different models represent distinct 
perspectives of a domain. Expandable models integrate these different perspectives and provide a holistic 
domain view. This is important, as model users usually find it complicated to have a complete view of a 
complex domain as they can only process partial information about the domain. This aspect is partially 
supported by existing tools3 as they offer the capabilities to create links and dependencies between 
different models and elements in the models or to add hyperlinks4 to give access to external resources. 
However, expandable models enable users to navigate more seamlessly through a set of models, mine 
deeper into specific elements and search for additional information, view different perspectives of the 
domain, and integrate information to form a whole understanding of the domain. For example, users can 

 
1 e.g., Sparxsystems and IBM Rational Software Architect 
2 e.g., ARIS and Astah 
3 e.g., Visual Paradigm, ARIS, Lucichart or Astah 
4 e.g., Draw.io 
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navigate from a data model capturing the taxonomy of customers to those business processes that deal 
with a selected sub-type of customers (e.g., seeing only those processes that are unique to international 
customers). This way, the data analyst expands their data-centric view with a process view. In return, a 
process analyst might want to identify and better understand the data (entity types and their attributes) 
that trigger the need for a specific business process variant. This might point to the cost drivers of the 
process, and dealing with these will be one way of streamlining the process. Numerous studies and 
findings highlighted the necessity of developing multi-view models (Cicchetti et al., 2019; Jabbari & 
Recker, 2017). However, prior studies mainly focused on detecting and avoiding inconsistencies between 
models (Feldmann et al., 2019; Spanoudakis & Zisman, 2001; Van Der Straeten et al., 2003), integrating 
and identifying correspondences between models (Jabbari et al., 2022; Kim et al., 2000; Persson et al., 
2013), or evaluating the capability of multiple models to present a complete and clear representation of a 
domain (Recker & Green, 2019). Expandable models in Modeling 4.0 extend the capabilities of multi-view 
modeling by enabling users to navigate through multiple models without changing the modeling tool, 
platform, or environment. This requires new methods and tools to enable horizontal and vertical 
integration of multiple models in a unified modeling environment. Early steps for expandable models have 
been suggested by SUM-based approaches (Atkinson et al., 2013; Sztipanovits et al., 2014).  

4.2 Design Principle 2: Virtualization  

Virtualization is an inseparable and conjoined part of the digital world as it enables the simulation of 
processes and digital manufacturing (Fei et al., 2018). In the context of Modeling 4.0, virtualization allows 
the developing virtual assistants to model and virtual simulation of the behavior of the system, for 
example, to stress-test it or to anticipate emerging challenges in light of changing demand patterns 
(Babiceanu & Seker, 2016; Napoleone et al., 2020). Digital models enable virtual simulation of the system, 
merging the physical and the corresponding digital world. Digital models have various benefits and have 
already been shown to reduce error rates and completion time (Masood & Egger, 2019). Virtual assistants 
use digital technologies to automate modeling processes. Therefore, we define two mechanisms, digital 
models and augmented models, as part of the virtualization principle.     

4.2.1 Mechanism 3: Digital Models 

Current tools support the digital creation of conceptual models. However, the developed models are 
mainly static or, in a few cases, can simulate a predefined scenario to identify bottlenecks, inefficiencies, 
and potential improvements5. Digital models extend these capabilities and argue the need to develop 
context-aware, autonomous, and adaptive models that allow traceability, adjustability, and communication 
feedback from the digital world back to the physical world. Similar concepts have been developed in the 

manufacturing field, where digital models provide representative behavior of an equipment’s status 
based on context acquired from the condition of the working equipment (Aivaliotis et al., 2023). 

Digital models provide a semi-realistic view of a system to check and evaluate system behavior in a digital 
world. They allow all system elements to be fully traceable throughout their lifecycle, from design to 
operational and improvement phases (Negri et al., 2020). These models are connected to the real 
physical world and allow traceability, adjustability, and communication feedback from the digital world to 
the physical world. Digital models represent the physical systems and monitor and perform on physical 
systems based on the simulation results (Cimino et al., 2019). Digital models are connected to various 
data sources to support context-aware model generation, such as using IoTs to simultaneously capture 
the system data, e.g., a change in temperature and trends of these changes, and visualize systems 
transitions in response to these changes, e.g., transitions in the thermostat’s status in response to the 
environment temperature. These models enable designing digital representations that can simulate 
corresponding real-world artifacts. For instance, digital models can highlight non-compliant elements or 
how external changes (such as an upcoming tropical storm) affect internal arrangements (e.g., demand 
patterns for the call center for an insurance company). Unlike traditional models that represent static 
aspects, digital models represent stream semantics of the physical world (Siau et al., 2022) and enable 
digital channels to interact with the model, e.g., voice-embedded capabilities. 

Initial efforts have been made to adopt conceptual modeling to emerging contexts such as digital twins, 
self-regulating and adaptive systems, and AI-based cognitive systems (Lukyanenko et al., 2022). Digital 
models are required to be adequately accurate to be trusted and, at the same time, require the minimum 

 
5 Bizagi, Signavio, ARIS BPM 
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possible effort for development, as well as for operation and maintenance. Digital models represent an on-
the-fly view of the system using data from smart devices, various hardware, and services and rely on 
continuous synchronization between the physical world and virtual models (Qiu et al., 2019). Digital 
models are used to represent the varying parameters of systems or disturbances acting on the system. 
For instance, to represent the system’s behavior and tolerance level against external turbulences.  

4.2.2 Mechanism 4: Augmented Models 

Augmented models are virtually assisted models involving humans and machines in the act of modeling. 
Advanced technologies such as machine learning, natural language processing, and artificial intelligence 
can be used to (semi)automate designing and implementing models. A few of the existing tools6 offer 
automation through scripting and plugins. However, augmented modeling involves a smart and even 
autonomous modeling process. For instance, AI could help discover “design references” and provide a 
new form of content experience (e.g., by changing the size of model elements based on their context-
specific significance), comprehend models in their physical context (e.g., by projecting a conceptual model 
of passenger flows to the real-world environment of an airport), to guide the analyst in the design of the 
model (e.g., by adding recommendations such as how to overcome a bottleneck in a process) and to 
communicate the model to a broader audience (e.g., by adding an animated narrative on top of the model 
such a customer with all related experiences along a sales process) (Nee et al., 2012). 

Emerging deep learning algorithms and artificial intelligence offer great potential to identify users’ needs, 
analyze mechanisms, generate content, and evaluate designed artifacts (Buchmann & Karagiannis, 2017; 
Tang et al., 2019). These powerful computing models enable non-human (artificial) intelligence to co-
create novel and meaningful content (Oh et al., 2018) and promote inspiration (Chen et al., 2019). 
Implementing AI could help discover “unexpected design references” and provide a new form of content 
experience (Liao et al., 2020). Emerging studies motivate the development of new AI-based tools to assist 
existing conceptual modeling tools in targeting a specific problem and suggesting new conceptual 
modeling approaches to be combined with the emerging automated solutions (Bork, 2022; Feltus et al., 
2021; Wu et al., 2021). Conceptual modeling by nature requires creativity and different contextual and 
individual factors such as thinking patterns, working styles, or tool literacy. Accordingly, assisted modeling 
needs to take into account the difference between individual preferences and contextual variations. 

A few methods have been proposed as virtual assistants to evaluate conceptual model quality 
automatically. For instance, emerging approaches propose using machine learning and image processing 
to extract features from UML class diagrams to automate quality assurance (Bergström et al., 2022) and 
suggest that assisted models can be integrated with DevOps toolchain. Gupta and Poels (2022) propose 
that agile methodologies use auto-generated conceptual models from user stories. They proposed 
assisted modeling that enables automatic requirements elicitation and dealing with complexity managing 
and understanding user stories.  

4.3 Design Principle 3: Decentralization 

In Industry 4.0, decentralization refers to the shift away from centralized control systems to self-organized 
and decentralized control entities (Lasi et al., 2014). Decentralized entities autonomously process 
information and make decisions. In the organizational context, decentralization refers to distributed 
production systems and processes, connected materials with plug-and-play capabilities, and adaptability 
(Sanders et al., 2016; Sommer, 2015). Decentralization refers to replacing traditional top-down structures 
with more distributed and collaborative models. Pre-requisites for decentralization are distributed, 
autonomous entities with connected goals, goods, and materials (Beier et al., 2020). Therefore, for 
Modeling 4.0, we define two mechanisms, autonomous models and categorized models, as part of the 
decentralization principle.   

4.3.1 Mechanism 5: Autonomous Models 

Unlike the traditional approach of modeling, which follows a top-down approach by presenting a domain in 
general (e.g., in the form of a value chain) and decomposing it into smaller models (e.g., fine-granular 
process models in the BPMN notation) that present specific aspects of the domain, autonomous models 
start from bottom-up with specialized aspects of a domain before aggregating and generalizing these. The 

 
6 e.g., Visual Paradigm or ARIS 
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existing studies have proposed bottom-up modeling (e.g., Grau et al., 2008; Pijpers et al., 2012; 
Pohjalainen, 2011). Some tools7  support model repositories and version control, but they don’t offer 
merging sub-models into a single model. Autonomous modeling refers to modeling specific components 
and parts of a more complex whole that share common characteristics to assemble all models into a 
larger model. Each model represents specific aspects of a system, and all models combine to represent 
the overall system. This could be a particular sequence of tasks for a certain type of purchase order or a 
highly specialized entity type (e.g., a narrowly defined customer category) that can be composed of more 
general entity types (customer categories). Thus, decentralized autonomous models represent specific 
operations and structures of an organization but, at the same time, are designed for generalization 
(Turetken & Demirors, 2011). 

The decentralization of models and modeling creates new user experiences. Autonomous models 
facilitate adoption and change management by allowing changes to be performed on the individual model 
rather than on a central system. The concept of bottom-up and decentralized modeling was proposed a 
while ago. For instance, methods such as “viewpoints” or “role-based modeling” (Cicchetti et al., 2019; 
Turetken & Demirors, 2011) describe approaches to develop decentralized models, each with a partial 
representation of the overall domain. However, these models are outdated once they are merged into a 
general model and are usually not maintained as separate entities from then on. Any changes in the 
system are supposed to be presented in the integrated model. In these approaches, tools and automated 
support for bottom-up modeling and their maintenance are mostly missing (Töpel & Kaczmarek-Heß, 
2022). Process mining is an emerging example of decentralized, bottom-up modeling. Process mining 
uses event logs, i.e., data related to an activity performed in a system, such as data elements, 
timestamps, sequence, and resources, to discover and produce a model without using any a priori 
information (Van Der Aalst, 2012). The concept of process mining provides capabilities to mitigate some 
of the problems with traditional model-driven approaches. It offers a semi-automated approach to 
discovering models without having predefined directions. But still, the important aspects of autonomous 
models, the ability to facilitate adaptation and change management, are missing in current modeling tools 
and methods.  

Autonomous models extend the existing bottom-up modeling approaches and propose new modeling 
capabilities to develop decentralized autonomous representations that independently represent different 
bottom-up aspects of the domain at the lowest level of detail but facilitate autonomous change 
management and adaptation and can be integrated with other models. The integrated model can be at the 
lowest level of detail or the highest level, but any updates or changes are managed independently in the 
decentralized models.  

4.3.2 Mechanism 6: Categorized Models  

Categorized models address the need to identify applicable models for a specific context that share the 
same goals, goods, and materials. For instance, to identify where smart contracts can be used (e.g., as 
part of a human resources process) and what series of actions and set of conditions are required to be 
met in that context (e.g., geo-specific identification of those relevant COVID policies that guide sick leave). 
Categorized models are standalone but context-dependent, i.e., they exist in isolation but are categorized 
based on the same context they share. For instance, models can be categorized based on the resources 
they share. Therefore, categorized models enable the identification of otherwise independent models 
(e.g., process models) that are dependent on the same resource. Categorized models provide capabilities 
for model users and decision-makers to answer what-if scenarios; for example, which processes will be 
affected if a certain resource needs to be maintained or upgraded? 

Emerging methods such as business process repositories (Leyer et al., 2020) enable categorizing models 
based on their activities (e.g., labels) and behavioral and structural features, creating packages, 
organizing models into folders, or grouping models based on users' preferences8 . However, these tools 
are limited to process models, are manual, or are not context-based. Other model repositories have been 
proposed to enable model reuse in model-driven system development and support the specifications, 
definitions, and packaging of a set of modeling artifacts (Hamid, 2017). However, existing techniques 
enable the retrieval and reusing of model components from repositories and the preparation of new 
models based on their similarities and dependencies  (Liu et al., 2017). Categorized modeling extends the 

 
7 e.g., Sparx Systems Enterprise Architect, Visual Paradigm or ARIS 
8 e.g., Sparx Systems Enterprise Architect, Visual Paradigm, ARIS, Lucidchart, Astash 
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current approaches and specifies the need to categorize different independent models based on specific 
contexts. Modeling 4.0 tools support the context-dependent categorization of various models, such as 
relevant processes, their related data, and customer journey map. This capability allows the smart 
utilization of models, identifies integrable models, and suggests relevant models address emerging 
inquiries.      

4.4 Design Principle 4: Real-time Capability 

The capability to acquire and analyze real-time data is a key requirement of cyber-physical systems that 
detect changes in the physical world and react in real-time to ensure the systems' functional and safe 
operation (Napoleone et al., 2020). For Modeling 4.0, real-time capability refers to the capability of models 
to represent the domain's real-time state and predict the system's future behavior or state.  

4.4.1 Mechanism 7: Zero latency models 

Zero latency models address the time-to-model issue and eliminate the delay between the occurrence of a 
change in the real world and its representation in the conceptual model. Existing debates on conceptual 
modeling question the speed and quality with which conceptual models can be developed and stress the 
issues with the maintainability of conceptual models. Traditional conceptual modeling, especially in 
realistic large-scale settings, requires a lot of time and cost (Indulska et al., 2009). Studies identified the 
effort and time required to understand and use complex conceptual modeling tools as a barrier to 
conceptual modeling (Fettke, 2009). While tools play an important role in improving the efficiency of 
conceptual modeling through the complete modeling lifecycle, existing tools struggle with flexibility when it 
comes to customizing the modeling processes (Davies et al., 2006). There is a lack of integration. While 
some tools provide limited capabilities to handle collaborative modeling 9, there is limited support for 
concurrent editing, real-time collaboration (David et al., 2021; Jiang et al., 2016), or version control. 
Current modeling tools lack comprehensive validation capabilities or advanced analysis features, making 
it difficult to identify modeling errors, inconsistencies, or potential design flaws on a real-time basis during 
the modeling process.  

Zero latency models reduce the time to model and enable representing relevant information as fast as 
possible to the users who need to act quickly to emerging information and modifications of the 
requirements. Using computational intelligence, integrated with big data analysis, business informatics, 
and communication technologies in self-organizing modeling methods, can be used to develop and 
maintain zero latency models. For example, during COVID, frequently changed policies for airports have 
meant that airport providers had to frequently and quickly update their processes (e.g., check-in or 
security procedures) – the lower the latency of these updates, the lower the risk and the costs of non-
compliance (Yuan et al., 2019). 

4.4.2 Mechanism 8: Predictive models 

Predictive models refer to models that represent future aspects of a domain. Unlike traditional modeling, 
where modelers use approaches such as process mining to derive the current state of the domain (Van 
Der Aalst, 2012) and use process reengineering techniques to improve this current state (Mohapatra, 
2012), predictive models build on weak signals and emerging trends and anticipate the future model 
before it materializes in the real world (Poll et al. 2018). Thus, predictive models have a negative latency, 
i.e., the model is ahead of reality, whereas, under the previous mechanism, we referred to the real world 
being ahead of the model.  

For instance, predictive models present where a new activity (e.g., check eligibility) can be added to the 
process when new requirements are emerging in the physical world (e.g., policies to encourage triple 
vaccination). Predictive models require gathering experts' knowledge about the domain being modeled, 
understanding the inherent variation in the response and taking steps, collecting relevant data to address 
desired requirements, and utilizing a variety of solutions to have the best chance of uncovering 
possibilities (Kuhn & Johnson, 2019). Recent studies for predictive process analytics are often 
underpinned by deep learning techniques (Wickramanayake et al., 2022). In Modeling 4.0, predictive 
models suggest new modeling approaches that enable representations of predictions. For example, 

 
9 For example, Lucidchart, Visual Paradigm, and Draw.io offer collaborative modeling features that enable teams to work together. 
Other more general tools such as Conceptboard, Cacoo, and MURAL are online collaboration platforms that can also facilitate 
creating and editing visual diagrams. 
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predictive models represent the domain knowledge and objects shared across distributed and 
heterogonous systems and show how processes can change if the behavior of other system components 
changes, e.g., a predictive process model can represent how the process of flight allocations can change 
if new requirements have emerged for international travelers.  

4.5 Design Principle 5: Service-Orientation 

Customer-oriented service aggregation is another design principle of Industry 4.0, where products and 
services are created based on the customer’s specifications. This design principle provides significant 
economic potential (Lu, 2017) and allows flexible and lean production systems to produce different 
varieties, i.e., in small lots, of affordable customized products (Aheleroff et al., 2020; Brettel et al., 2017). 
For Modeling 4.0, service orientation refers to personalized and affordable models. 

4.5.1 Mechanism 9: Personalized Models 

Personalized models are customized to individual needs. In personalized models, individuals are able to 
add meaningful constructs to the available constructs of the models to address specific and temporary 
scenarios. For instance, individuals are able to comprehend specific features they are interested in from 
the information presented in a model, such as features of COVID-safe processes, how to address a 
deviation, or how to handle evolutions that may require occasional or permanent modifications in the 
schemas. 

Traditionally, models were developed to be used by a group of stakeholders with specific individual 
characteristics such as their roles, level of experience, domain knowledge, or familiarity with modeling 
concepts. However, individuals with different interests (e.g., software development versus quality 
assurance) use models. Thus, model readers should be able to personalize the model's contents (e.g., 
refer to quality standards). Therefore, personalized models increase their usefulness and lead to high 
model acceptance (e.g., Bouwers et al., 2014).   

Personalized models can also enable personalized model conversion. So, people with different 
capabilities, knowledge, and skills can use models in different formats. For instance, model users should 
be able to convert large and complex business process models to simple pictorial flowcharts that are 
understandable by managers. Similarly, visually impaired people should be able to convert visual models 
to audible models. These increase ease-of-script use and, with this, a second essential factor of model 
acceptance. 

4.5.2 Mechanism 10: Affordable Models 

Conventional conceptual modeling approaches often suffer from drawbacks such as high cost or time of 
modeling. Conventional conceptual modeling grammars, methods, and tools typically require highly skilled 
developers/designers and, therefore, are highly dependent on advanced modeling skills. These 
drawbacks limit the opportunities to draw useful insights about the system from domain experts and 
become less useful for smaller projects because of time and money restrictions. For instance, process 
models were typically made by hand by trained modelers. However, new techniques such as process 
mining use data trails, so-called event logs, to analyze, discover, and model business processes (Van Der 
Aalst, 2012). Therefore, the cost of developing a high-quality model can be reduced.  

In addition to the cost of creating new models, the cost of changing, updating, and maintaining an 
established model tends to be high. Developed models may require changes due to emerging 
mechanisms and the evolution of technologies. New techniques, such as process query (Polyvyanyy et 
al., 2017), can be developed to decrease the cost of maintaining developed models in a model repository 
and improve the efficiency of updating or changing models in the repository in terms of time and money. 
However, process modeling is still considered an expensive task. Despite emerging automated 
technologies, process modeling remains a manual, cognitively demanding task, making it time-consuming, 
labor-intensive, and error-prone (Beerepoot et al., 2023). Besides, it is expensive to train expert modelers, 
and it is not reasonable to expect that models are developed by experts only (Recker et al., 2021). This is 
where new technologies such as AI can be used as an enabling technology to support non-experts in 
modeling (Feltus et al., 2021).  

Affordable models require adequate and usable modeling tools to adapt modeling languages efficiently. 
Advanced modeling tools that provide a feature-rich, feature-proof, and efficient foundation for state-of-
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the-art interaction and visualization methods can speed up the model development process and improve 
the ease of use of the tools (De Carlo et al., 2022).  

4.6 Design Principle 6: Modularity 

Modular systems have the capability to adapt to changing requirements, for example, in case of changes 
in product characteristics or contextual factors such as seasonal fluctuations (Gattullo et al., 2019). 
Modular systems adapt themselves by exchanging or altering discrete modules (Smit et al., 2016), and 
this makes dealing with the uncertainties that lie ahead easier. For Modeling 4.0, modularity refers to 
robust and agile models.  

4.6.1 Mechanism 11: Robust Models 

Robust models are decoupled and standalone models that are focused on internal robustness rather than 
interaction with other models. Decoupled models are robust models that do not change with changes in 
other models representing the system or the external changes in the real world, as their level of 
granularity is higher than the level of real-world change. A robust model stays valid and provides correct 
and relevant information under various conditions. A decoupled representation of physical products can 
help more effectively capture product-related information, thereby preventing clean production defects 
(Preuveneers et al., 2018). Decoupled robust models ensure acceptable representations under ordinary 
conditions and conditions not anticipated in advance (Schuster, 2008). 

In a digital world, any system is inevitably subject to uncertainty. Robust models represent the uncertainty 
of alternative scenarios and provide information and potential solutions with acceptable quality for all 
scenarios (Marla et al., 2020). Different robust modeling methods have been developed based on existing 
design theories. For example, using principles of axiomatic design (Suh, 1998) for robustness (Kuo & 
Wang, 2019) where axiom independence is applied to develop high-quality designs. Once multiple high-
quality designs are developed, the robustness concept is employed to select the most appropriate design 
by the information axiom (Duan, 2021; Park et al., 2006). In a similar way, a method can be applied in 
robust models to provide a robust representation of a changing domain.  

4.6.2 Mechanism 12: Agile Models 

Agile models adapt and update their constructs and behavior in response to unexpected changes (Rezk & 
Gamal, 2019). Agile models are iterative, incremental, self-organizing, and adaptive, and the structure, 
constructs, and behavior adapt according to the situation. They permit cost-effective responses to 
unpredictable requirement changes and support rapid and responsive systems development tailored to 
meet changing users’ desires. Agile models represent real-time interaction between physical and 
cyberspace (Aheleroff et al., 2021). These models are inductive, similar to agile design and manufacturing 
in Industry 4.0, and they stress simultaneous leading-edge solutions that surpass emerging changes with 
real-time responses (Lu, 2017; Shafiq et al., 2015).  

One of the main characteristics of Industry 4.0 is to have responsive systems (ElMaraghy et al., 2017). 
Responsive systems often comprise many units that can be highly heterogeneous (Sanderson et al., 
2015). These systems are deductive, and their heterogeneous units can be replaced to enable different 
operations and behavior in such a way that they can respond to emerging perturbations. For models to be 
responsive, similar characteristics such as scalability and convertibility should be comprised, enabling 
models to be context-aware. Frameworks have been proposed to adhere to agile principles in conceptual 
modeling10 (Gupta et al., 2022; Moyano et al., 2022) or to use domain-specific conceptual modeling to 
obtain a diagrammatic view in Jira projects (Floruț & Buchmann, 2022).  

Agile models in Modeling 4.0 focus on conceptual models' agility and argue that agile models consist of a 
set of alternative models. Depending on the real-world change, the relevant model is activated. Such 
context-aware models require tight coupling between the external state and the metadata of the models. 
For example, a process model might only be activated during the state of a pandemic when online 
interactions (for retailing or lecturing) need to be in place while physical processes are hibernated. 

 
10  For example, Sparx Systems Enterprise Architect, Visual Paradigm, or Lucidchart enable iteratively creating and refining 
conceptual models 
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5 Discussion and Conclusion  

Our society now functions in an ever-expanding digital world, with many human activities mediated or 
shaped by digital technologies (Recker et al., 2021). Conceptual models are no exception, but so far, the 
impact of digitization on conceptual modeling has not been sufficiently captured. Thus, this paper 
proposes six design principles and describes twelve mechanisms for conceptual models in a digital world. 
In themselves, some of these mechanisms are not entirely new. For instance, the concept of collaborative 
conceptual modeling (Recker et al., 2013), applying agile principles in conceptual modeling (Floruț & 
Buchmann, 2022), or using computational tools such as natural language processing to automate 
conceptual modeling (Gupta et al., 2019) have been proposed by previous studies that explored some of 
these principles in detail. Motivated by the principles of Industry 4.0, the twelve mechanisms provide 
opening premises for how the next generation of conceptual models needs to adapt to the new 
requirements of the digital world and meet the challenges of developing and understanding smart, 
automated, and highly personalized systems.   

Previous studies have used different theories to provide the fundamental basis for conceptual modeling – 
modeling grammars. For instance, different ontologies, a branch of philosophy that studies what exists in 
reality, have been used to evaluate the quality of conceptual models, such as clarity, comprehensiveness, 
and completeness (Saghafi & Wand, 2020). Our proposed mechanisms call for further measurements to 
evaluate the capabilities of conceptual modeling grammars and developed models based on those 
grammars, such as their expandability, robustness, agility, and zero latency. These may require new or 
expansions of current ontological foundations of conceptual modeling (Eriksson & Ågerfalk, 2022; 
Lukyanenko et al., 2021).  

Our proposed characteristics also target the costs of modeling and call for a new generation of conceptual 
modeling grammars that make conceptual modeling the development, deployment, and entire model 
lifecycle management more efficient. The new generation of modeling grammars should make conceptual 
modeling accessible and understandable for people with minimum or no pre-required training and skills. 
Traditionally, conceptual models were developed and used by IT professionals (Recker et al., 2021); 
however, more and more socially developed conceptual models are used to understand and develop 
information systems. The new generation of conceptual modeling grammars needs to allow those not 
familiar with predefined modeling rules to develop and use conceptual models (Lukyanenko, Parsons, et 
al., 2019). This also requires more flexible conceptual modeling grammars that enable the use of new 
formats or tentative components to represent digital and social world characteristics. Our principles also 
suggest affordable and augmented models, which ultimately highlight the need to use more advanced 
computational techniques to generate conceptual models, automatically or semi-automatically, based on 
user inputs in a variety of formats (Storey et al., 2023).  

Our proposed principles and mechanisms can guide the development of new conceptual modeling tools. 
Existing modeling tools are mature and established applications. Research over a long period actively 
contributed to their fundamental basis, extensions, and features (De Carlo et al., 2022; Rittgen, 2009). 
However, these tools are not compatible with state-of-art technologies such as decentralized 
collaboration, data-driven platforms, or cyber-physical systems. We argue that our proposed mechanisms 
for Modeling 4.0 can be used as a basis to explore requirements for designing advanced modeling tools 
that could speed up the model development process, facilitate their maintainability, and improve usability 
and ease of use of the tools and comprehension of conceptual models by humans (De Carlo et al., 2022). 
Future modeling tools should enable timely model development based on big data analytics, learn from 
experiences and propose solutions, be flexible, and adapt to the changes in agile environments. We argue 
that next-generation conceptual models are not limited to static artifacts representing predefined 
characteristics of the physical world but rather also allow ongoing adaptation and interaction with users, 
developers, and their context. Weber (2020) suggests that the next generation of modeling tools will 
provide specific and personalized support adaptable to users’ needs. For instance, modeling 
environments can collect multi-modal data and constantly analyze the collected data to adapt models 
based on emerging insights or assess the users’ cognitive load and adapt the difficulty of the materials 
provided accordingly (Weber, 2020). With the emerging computation techniques, conceptual models can 
offer a variety of new capabilities that will enhance the current limitations of generic and non-personalized 
conceptual models.  

Systems analysis and design methods and tools are evolving with emerging technologies, their new 
affordances and capabilities (Siau et al., 2022), and, therefore, the role of conceptual modeling. The 
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majority of studies on conceptual modeling have focused on developing and evaluating conceptual 
modeling grammars and tools (Recker et al., 2021). Our proposed mechanisms trigger the need for 
research on modeling pragmatics, such as their construction and use. For example, future research 
requires investigating how conceptual models should be designed and used in dynamic and 
heterogeneous contexts if traditional modeling is applicable in the current digital setting. There is also a 
need to meet the requirements of evolving systems analysis and design methods and expectations. We 
argue that future conceptual modeling should follow dynamic and iterative approaches, as we explained in 
our proposed mechanisms for agile, autonomous, zero-latency, and robust models. Emerging 
technologies, their affordances, and capabilities, such as AI and machine learning, can aid, facilitate, and 
automate conceptual design modeling, as explained in the mechanisms for autonomous, augmented, 
digital, and affordable models. Future conceptual models should enable the use of models for different 
purposes and by different users, including human and digital agents, as we explained in our machinimas 
for expandable, personalized, categorized, and predictive models. As emerging systems' requirements 
and complexity continue to grow, we propose mechanisms for consistent, agile, and robust models to 
ensure that systems are well-designed and well-executed.   

In summary, we have proposed twelve mechanisms for conceptual modeling to capture and adequately 
design tomorrow’s digital environments. Our mechanisms facilitate a type of modeling that can deal more 
appropriately with the current affordances of a digital environment. What we did not provide, though, is the 
detailed requirements of how these mechanisms can be applied. Future research, therefore, is 
encouraged to use our Modeling 4.0 framework to develop detailed functional and non-functional 
requirements to ensure that conceptual modeling remains a relevant and contemporary approach, helping 
us to understand and shape the world we live in. 
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