281 research outputs found

    Design and optimization of optical grids and clouds

    Get PDF

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Failure Localization Aware Protection in All-Optical Networks

    Get PDF
    The recent development of optical signal processing and switching makes the all-optical networks a potential candidate for the underlying transmission system in the near future. However, despite its higher transmission data rate and efficiency, the lack of optical-electro-optical (OEO) conversions makes fault management a challenge. A single fiber cut can interrupt several connections, disrupting many services which results in a massive loss of data. With the ever-growing demand for time-sensitive applications, the ability to maintain service continuity in communication networks has only been growing in importance. In order to guarantee network survivability, fast fault localization and fault recovery are essential. Conventional monitoring-trail (m-trail) based schemes can unambiguously localize link failures. However, the deployment of m-trail requires extra transceivers and wavelengths dedicated to monitoring the link state. Non-negligible overhead makes m-trail schemes neither scalable nor practicable. In this thesis, we propose two Failure Localization Aware (FLA) routing schemes to aid failure localization. When a link fails, all traversing lightpaths become dark, and the transceiver at the end node of each interrupted ligthpath issues an alarm signal to report the path failure. By correlating the information of all affected and unaffected paths, it is possible to narrow down the number of possible fault locations to just a few possible locations. However, without the assistance of dedicated supervisory lightpaths, and based solely on the alarm generated by the interrupted lightpaths, ambiguity in failure localization may be unavoidable. Hence, we design a Failure Localization Aware Routing and Wavelength Assignment (FLA-RWA) scheme, the Least Ambiguous Path (LAP) routing scheme, to dynamically allocate connection requests with minimum ambiguity in the localization of a link failure. The performance of the proposed heuristic is evaluated and compared with traditional RWA algorithms via network simulations. The results show that the proposed LAP algorithm achieves the lowest ambiguity among all examined schemes, at the cost of slightly higher wavelength consumption than the alternate shortest path scheme. We also propose a Failure Localization Aware Protection (FLA-P) scheme that is based on the idea of also monitoring the protection paths in a system with path protection for failure localization. The Least Ambiguous Protection Path (LAPP) routing algorithm arranges the protection path routes with the objective of minimizing the ambiguity in failure localization. We evaluate and compare the ambiguity in fault localization when monitoring only the working paths and when monitoring both working and protection paths. We also compare the performance of protection paths with different schemes in regards to fault localization

    Dynamic Provisioning of Fault Tolerant Optical Networks for Data Centers

    Get PDF
    Survivability of files in data centers, when a disaster occurs, is becoming a major challenge in designing cloud-based services. When such a disaster occurs, a specific geographical area is affected and components of communication networks (e.g., nodes and fibers) within the affected area become faulty, leading to the failure of one or more on-going communication. To handle such a situation, a robust communication protocol is needed, so that provisions can be made to allocate an alternative fault-free path, when a disaster disrupts the path used for data communication before the disaster occurs. In this work we have presented a new approach to this problem, in the case of dynamic Route and Wavelength Assignment (RWA) in WDM networks. In our approach, a communication request can be handled only if it is possible to set up i) a primary lightpath that minimizes the number of disasters that may affect the lightpath and ii) (for each disaster that disrupts the primary lightpath), a backup lightpath that avoids the disaster. We have proposed, implemented and studied an efficient heuristic to solve this problem

    Transparent heterogeneous terrestrial optical communication networks with phase modulated signals

    Get PDF
    This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    Tabu Search Energy Optimization of Optical Grid Networks

    Get PDF
    The exponential growth in the Information and Communication Technology (ICT) sector has resulted in increased power consumption and there is growing recognition of the need to develop more energy efficient networks. It has been shown in the literature that energy aware routing schemes for wavelength division multiplexing (WDM) optical networks can significantly reduce the overall energy consumption on the network. Much of the recent work has concentrated on switching off the unused network components during low utilization periods. In this thesis, we present a comprehensive heuristic algorithm that performs routing and wavelength assignment (RWA) and minimizes the overall energy consumption of a set of static lightpath demands, using Tabu search principle. We consider both unicast and anycast traffic models and investigate whether the additional flexibility of anycast routing can be exploited to further reduce network energy consumption

    Inside all-optical networks

    Get PDF
    Imagine a world where lightning speed Internet is as common as telephones today. Imagine when light, the fastest moving thing in the universe, is the signal-carrying transport medium. Imagine when bandwidth no more remains a constraint for any application. Imagine when imagination is the only limit! This all can be made possible with only one technology and that is optical communication. Optical networks have thus far provided a realization to a greater extent to the unlimited bandwidth dreams of this era, but as the demands are increasing, the electro-optic conversions seem to become bottlenecks in blended optical networks. The only answer to this is a complete migration to `All-Optical Networks\u27 (AONs) which promise an end-to-end optical transmission. This thesis will investigate various aspects of all-optical networks and prove that AONs perform better than currently existing electro-optical networks. In today\u27s\u27 electro-optical networks, routing and switching is performed in electronic domain. Performance analysis of electro-optical and all-optical networks would include node utilization, link utilization and percentage of traffic routed. It will be shown through Opnet Transport Planner simulations that AONs work better under various traffic conditions. The coming decade will see a great boom in demands on telecommunications networks. The development in bandwidth-hungry applications like real-time video transmission, telemedicine, distance learning and video on demand require both an unlimited amount of bandwidth and dependable QoS. It is well understood that electrically switched networks and copper cables will not be able to meet the future network demands effectively. The world has already agreed to move towards optical communication techniques through the introduction of fiber in access parts of the networks replacing copper. Now the race is to bring optics in higher layers of OSI reference model. Optical communication is on the horizon, and new discoveries are still underway to add to the value of available bandwidth through this technology. My research thesis will primarily focus on the design, architecture and network properties of AONs and challenges being faced by AONs in commercial deployment. Optical components required in AONs will be explored. A comparison between AONs and electro-optical networks will also be shown through optical transport planner simulations
    corecore