109 research outputs found

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    Employment of artificial intelligence mechanisms for e-Health systems in order to obtain vital signs and detect diseases from medical images improving the processes of online consultations and diagnosis

    Get PDF
    Nowadays e-Health web applications allow doctors to access different types of features, such as knowing which medication the patient has consumed or performing online consultations. Internet systems for healthcare can be improved by using artificial intelligence mechanisms for the process of detecting diseases and obtaining biological data, allowing medical professionals to have important information that facilitates the diagnosis process and the choice of the correct treatment for each particular person. The proposed research work aims to present an innovative approach when compared to traditional platforms, by providing online vital signs in real time, access to a web stethoscope, to a medical image uploader that predicts if a certain disease is present, through deep learning methods, and also allows the visualization of all historical data of a patient. This dissertation has the objective of defending the concept of online consultations, providing complementary functionalities to the traditional methods for performing medical diagnoses through the use of software engineering practices. The process of obtaining vital signs was done via artificial intelligence using a computer camera as sensor. This methodology requires that the user is at a state of rest during the measurements. This investigation led to the conclusion that, in the future, many medical processes will most likely be done online, where this practice is considered extremely helpful for the analysis and treatment of contagious diseases, or cases that require constant monitoring.No quotidiano, as aplicações Web e-Saúde permitem aos médicos acesso a diferentes tipos de funcionalidades, como saber qual a medicação que o doente consumiu ou a realização de consultas online. Os sistemas via internet para a saúde podem ser melhorados, utilizando mecanismos de inteligência artificial para os processos de deteção de doenças e de obtenção de dados biológicos, permitindo que os médicos tenham informações importantes que facilitam o processo de diagnóstico ou a escolha do tratamento correto para um determinado utente. O trabalho de investigação proposto pretende apresentar uma abordagem inovadora na comparação com as plataformas tradicionais, ao disponibilizar sinais vitais online em tempo real, acesso a um estetoscópio web, a um uploader de imagens médicas que prevê se uma determinada doença está presente, através de métodos de aprendizagem profunda, bem como permite visualizar todos os dados históricos de um paciente. Esta dissertação visa defender o conceito de consultas virtuais, providenciando funcionalidades complementares aos processos tradicionais de realização de um diagnóstico médico, através da utilização de práticas de engenharia de software. O processo de obtenção de sinais vitais foi feito através de inteligência artificial para visão computacional utilizando uma câmara de computador. Esta metodologia requer que o utilizador esteja em estado de repouso durante a obtenção dos dados medidos. Esta investigação permitiu concluir que, no futuro, muitos processos médicos atuais provavelmente serão feitos online, sendo esta prática considerada extremamente útil na análise e tratamento de doenças contagiosas, ou de casos que requerem acompanhamento constante

    The importance of physiological data variability in wearable devices for digital health applications

    Get PDF
    This paper aims at characterizing the variability of physiological data collected through a wearable device (Empatica E4), given that both intra- and inter-subject variability play a pivotal role in digital health applications, where Artificial Intelligence (AI) techniques have become popular. Inter-beat intervals (IBIs), ElectroDermal Activity (EDA) and Skin Temperature (SKT) signals have been considered and variability has been evaluated in terms of general statistics (mean and standard deviation) and coefficient of variation. Results show that both intra- and inter-subject variability values are significant, especially when considering those parameters describing how the signals vary over time. Moreover, EDA seems to be the signal characterized by the highest variability, followed by IBIs, contrary to SKT that results more stable. This variability could affect AI algorithms in classifying signals according to particular discriminants (e.g. emotions, daily activities, etc.), taking into account the dual role of variability: hindering a net distinction between classes, but also making algorithms more robust for deep learning purposes thanks to the consideration of a wide test population. Indeed, it is worthy to note that variability plays a fundamental role in the whole measurement chain, characterizing data reliability and impacting on the final results accuracy and consequently on decision-making processes

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    Development Of Android Based Health Monitoring System

    Get PDF
    The large number of population within the age between 25 to 29 implied the importance of health care services to maintain their wellbeing. However, a lot of health measuring devices are only able to measure one health parameter. Besides, most of the measuring devices stored only a limited number of records. Furthermore, these measuring devices do not predict user’s health condition after health data is obtained. Therefore, this project aims to develop an improved health monitoring system. The system consists of multiple sensors. The system utilized heart rate click module to capture heart rate and oxygen saturation level, and TMP007 sensor to obtain body temperature. These sensors are integrated into Arduino microcontroller for data acquisition. The data will then be sent to Raspberry Pi 3 via serial communication. The data read by Raspberry Pi 3 will be used for health condition prediction through Support Vector Machine (SVM) classification model. After that, all the health informatic data and health condition will be stored in Microsoft Azure Cloud database. All the health parameter values and health condition are stored together in a table of six columns under Cloud database using MySQL query command. The mobile apps can be retrieved all data from Cloud database using MySQL query command as well correspond to user name. To add security to the stored health data, this project has developed an Android based app having face recognition login system for the users to view their health data. The SVM classification model achieved an overall accuracy of 93.33% from 60 testing data meanwhile FaceNet classification model for face recognition achieved an overall accuracy of 99.0%. Both classification models are accepted to be used for this project

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Deep Learning Algorithms for Time Series Analysis of Cardiovascular Monitoring Systems

    Get PDF
    This thesis investigates and develops methods to enable ubiquitous monitoring of the most examined cardiovascular signs, blood pressure, and heart rate. Their continuous measurement can help improve health outcomes, such as the detection of hypertension, heart attack, or stroke, which are the leading causes of death and disability. Recent research into wearable blood pressure monitors sought predominately to utilise a hypothesised relationship with pulse transit time, relying on quasiperiodic pulse event extractions from photoplethysmography local signal characteristics and often used only a fraction of typically bivariate time series. This limitation has been addressed in this thesis by developing methods to acquire and utilise fused multivariate time series without the need for manual feature engineering by leveraging recent advances in data science and deep learning methods that showed great data analysis potential in other domains
    corecore