493 research outputs found

    Exploring Data Mining Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data

    Full text link
    NASA Goddard’s LiDAR, Hyperspectral, and Thermal imager provides co-registered remote sensing data on experimental forests. Data mining methods were used to achieve a final tree species classification accuracy of 68% using a combined LiDAR and hyperspectral dataset, and show promise for addressing deforestation and carbon sequestration on a species-specific level

    Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Get PDF
    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content

    Characterizing the Impacts of the Invasive Hemlock Woolly Adelgid on the Forest Structure of New England

    Get PDF
    Climate change is raising winter temperatures in the Northeastern United States, both expanding the range of an invasive pest, the hemlock woolly adelgid (HWA; Adelges tsugae), and threatening the survival of its host species, eastern hemlock (Tsuga canadensis). As a foundation species, hemlock trees underlie a distinct network of ecological, biogeochemical, and structural systems that will likely disappear as the HWA infestation spreads northward. Remote sensing can offer new perspectives on this regional transition, recording the progressive loss of an ecological foundation species and the transition of evergreen hemlock forest to mixed deciduous forest over the course of the infestation. Lidar remote sensing, unlike other remote sensing tools, has the potential to penetrate dense hemlock canopies and record HWA’s distinct impacts on lower canopy structure. Working with a series of lidar data from the Harvard Forest experimental site, these studies identify the unique signals of HWA impacts on vertical canopy structure and use them to predict forest condition. Methods for detecting the initial impacts of HWA are explored and a workflow for monitoring changes in forest structure at the regional scale is outlined. Finally, by applying terrestrial, airborne, and spaceborne lidar data to characterize the structural variation and dynamics of a disturbed forest ecosystem, this research illustrates the potential of lidar as a tool for forest management and ecological research

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Analysis of the effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived estimations of forest structural diversity

    Get PDF
    UK legislation aims to conserve and enhance biological diversity within the UK and so accurate measurements of forest biodiversity are important to assess efficacy of management activities in this context. Forest structural diversity metrics can be used as indicators of biodiversity and airborne LiDAR data provide a means of producing these metrics. Forest structure metrics derived from LiDAR can be significantly affected by the canopy conditions the datasets are collected under. Existing studies have combined and compared leaf-on and leaf-off LiDAR datasets in existing analyses, however the majority of these utilise field sites where climate, species and terrain are very different to those found in the UK. Additionally, studies comparing leaf-on and leaf-off LiDAR over forested areas assess the changes in pulse penetration through the canopy and how this effects forest structure metrics and not the effect on modelled forest structure diversity. The novel aim of this research is to assess and compare the accuracy of forest structural diversity modelled from two LiDAR surveys collected under leaf-on and leaf-off conditions, and do so in a UK forest environment. A robust methodology for correcting the absolute and relative accuracy between datasets was adopted and comparative analysis of ground detection and return height metrics (maximum, mean and percentiles of return height) and return height diversity (L-CV, CV, kurtosis, standard deviation, skewness and variance) was undertaken. Regression models describing the field tree size diversity measurements were constructed using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Both surveys were consistently effected by growth and differing survey parameters making the isolation and assessment of the effects of seasonal change difficult. Despite this, models created using diversity variables from both LiDAR datasets were generally very similar. Both leaf-on and leaf-off LiDAR dataset models described 65% of the variance in tree height diversity (R² 0.65, RMSE 0.05, p <0.0001), however models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.68, 0.41 and 0.19 respectively and leaf-off models 0.71, 0.62 and 0.26 respectively). When diversity variables calculated from both LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity their efficacy was increased (R² of 0.77 for tree height diversity and 0.72 for DBH diversity). The results suggest strongly that tree height diversity models derived from airborne LiDAR collected (and where appropriate combined) under any seasonal conditions can be used to differentiate between single and multiple storey UK forest structure with confidence. However, leaf-off LiDAR acquisitions can generate models with the ability to better explain the diversity of crown shapes in a forest stand than leaf-on, with no improvement in model performance when the two are combined

    The Development of Regional Forest Inventories Through Novel Means

    Get PDF
    For two decades Light Detection and Ranging (LiDAR) data has been used to develop spatially-explicit forest inventories. Data derived from LiDAR depict three-dimensional forest canopy structure and are useful for predicting forest attributes such as biomass, stem density, and species. Such enhanced forest inventories (EFIs) are useful for carbon accounting, forest management, and wildlife habitat characterization by allowing practitioners to target specific areas without extensive field work. Here in New England, LiDAR data covers nearly the entire geographical extent of the region. However, until now the region’s forest attributes have not been mapped. Developing regional inventories has traditionally been problematic because most regions – including New England – are comprised of a patchwork of datasets acquired with various specifications. These variations in specifications prohibit developing a single set of predictive models for a region. The purpose of this work is to develop a new set of modeling techniques, allowing for EFIs consisting of disparate LiDAR datasets. The work presented in the first chapter improves upon existing LiDAR modeling techniques by developing a new set of metrics for quantifying LiDAR based on ecological ii principles. These fall into five categories: canopy height, canopy complexity, individual tree attributes, crowding, and abiotic. These metrics were compared to those traditionally used, and results indicated that they are a more effective means of modeling forest attributes across multiple LiDAR datasets. In the following chapters, artificial intelligence (AI) algorithms were developed to interpret LiDAR data and make forest predictions. After settling on the optimal algorithm, we incorporated satellite spectral, disturbance, and climate data. Our results indicated that this approach dramatically outperformed the traditional modeling techniques. We then applied the AI model to the region’s LiDAR, developing 10 m resolution wall-to-wall forest inventory maps of fourteen forest attributes. We assessed error using U.S. federal inventory data, and determined that our EFIs did not differ significantly in 33, 25, and 30/38 counties when predicting biomass, percent conifer, and stem density. We were ultimately able to develop the region’s most complete and detailed forest inventories. This will allow practitioners to assess forest characteristics without the cost and effort associated with extensive field-inventories

    Advances in Waveform and Photon Counting Lidar Processing for Forest Vegetation Applications

    Get PDF
    Full waveform (FW) and photon counting LiDAR (PCL) data have garnered greater attention due to increasing data availability, a wealth of information they contain and promising prospects for large scale vegetation mapping. However, many factors such as complex processing steps and scarce non-proprietary tools preclude extensive and practical uses of these data for vegetation characterization. Therefore, the overall goal of this study is to develop algorithms to process FW and PCL data and to explore their potential in real-world applications. Study I explored classical waveform decomposition methods such as the Gaussian decomposition, Richardson–Lucy (RL) deconvolution and a newly introduced optimized Gold deconvolution to process FW LiDAR data. Results demonstrated the advantages of the deconvolution and decomposition method, and the three approaches generated satisfactory results, while the best performances varied when different criteria were used. Built upon Study I, Study II applied the Bayesian non-linear modeling concepts for waveform decomposition and quantified the propagation of error and uncertainty along the processing steps. The performance evaluation and uncertainty analysis at the parameter, derived point cloud and surface model levels showed that the Bayesian decomposition could enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and trace the uncertainty propagation along the processing steps. In study III, we exploited FW LiDAR data to classify tree species through integrating machine learning methods (the Random forests (RF) and Conditional inference forests (CF)) and Bayesian inference method. Results of classification accuracy highlighted that the Bayesian method was a superior alternative to machine learning methods, and rendered users with more confidence for interpreting and applying classification results to real-world tasks such as forest inventory. Study IV focused on developing a framework to derive terrain elevation and vegetation canopy height from test-bed sensor data and to pre-validate the capacity of the upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available

    Advancing savanna structural characterization at multiple scales for enhanced ecological insights

    Get PDF

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies
    • …
    corecore