2,285 research outputs found

    Bounds for algorithms in differential algebra

    Get PDF
    We consider the Rosenfeld-Groebner algorithm for computing a regular decomposition of a radical differential ideal generated by a set of ordinary differential polynomials in n indeterminates. For a set of ordinary differential polynomials F, let M(F) be the sum of maximal orders of differential indeterminates occurring in F. We propose a modification of the Rosenfeld-Groebner algorithm, in which for every intermediate polynomial system F, the bound M(F) is less than or equal to (n-1)!M(G), where G is the initial set of generators of the radical ideal. In particular, the resulting regular systems satisfy the bound. Since regular ideals can be decomposed into characterizable components algebraically, the bound also holds for the orders of derivatives occurring in a characteristic decomposition of a radical differential ideal. We also give an algorithm for converting a characteristic decomposition of a radical differential ideal from one ranking into another. This algorithm performs all differentiations in the beginning and then uses a purely algebraic decomposition algorithm.Comment: 40 page

    Canonical Characteristic Sets of Characterizable Differential Ideals

    Get PDF
    We study the concept of canonical characteristic set of a characterizable differential ideal. We propose an efficient algorithm that transforms any characteristic set into the canonical one. We prove the basic properties of canonical characteristic sets. In particular, we show that in the ordinary case for any ranking the order of each element of the canonical characteristic set of a characterizable differential ideal is bounded by the order of the ideal. Finally, we propose a factorization-free algorithm for computing the canonical characteristic set of a characterizable differential ideal represented as a radical ideal by a set of generators. The algorithm is not restricted to the ordinary case and is applicable for an arbitrary ranking.Comment: 26 page

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Approaches to the automatic generation and control of finite element meshes

    Get PDF
    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures

    The Development of Intersection Homology Theory

    Full text link
    This historical introduction is in two parts. The first is reprinted with permission from ``A century of mathematics in America, Part II,'' Hist. Math., 2, Amer. Math. Soc., 1989, pp.543-585. Virtually no change has been made to the original text. In particular, Section 8 is followed by the original list of references. However, the text has been supplemented by a series of endnotes, collected in the new Section 9 and followed by a second list of references. If a citation is made to the first list, then its reference number is simply enclosed in brackets -- for example, [36]. However, if a citation is made to the second list, then its number is followed by an `S' -- for example, [36S]. Further, if a subject in the reprint is elaborated on in an endnote, then the subject is flagged in the margin by the number of the corresponding endnote, and the endnote includes in its heading, between parentheses, the page number or numbers on which the subject appears in the reprint below. Finally, all cross-references appear as hypertext links in the dvi and pdf copies.Comment: 58 pages, hypertext links added; appeared in Part 3 of the special issue of Pure and Applied Mathematics Quarterly in honor of Robert MacPherson. However, the flags in the margin were unfortunately (and inexplicably) omitted from the published versio

    Algorithmic Semi-algebraic Geometry and Topology -- Recent Progress and Open Problems

    Full text link
    We give a survey of algorithms for computing topological invariants of semi-algebraic sets with special emphasis on the more recent developments in designing algorithms for computing the Betti numbers of semi-algebraic sets. Aside from describing these results, we discuss briefly the background as well as the importance of these problems, and also describe the main tools from algorithmic semi-algebraic geometry, as well as algebraic topology, which make these advances possible. We end with a list of open problems.Comment: Survey article, 74 pages, 15 figures. Final revision. This version will appear in the AMS Contemporary Math. Series: Proceedings of the Summer Research Conference on Discrete and Computational Geometry, Snowbird, Utah (June, 2006). J.E. Goodman, J. Pach, R. Pollack Ed

    A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations

    Get PDF
    This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (that is, a semi-explicit DAE system of differentiation index 1) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period April l, 1988 through September 30, 1988

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274
    • …
    corecore