
Journal of Symbolic Computation 44 (2009) 333–357

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Algebraic transformation of differential characteristic
decompositions from one ranking to anotherI

Oleg Golubitsky a, Marina Kondratieva b, Alexey Ovchinnikov c,1
a University of Western Ontario, Department of Computer Science, London, Ontario, Canada N6A 5B7
bMoscow State University, Department of Mechanics and Mathematics, Leninskie gory, Moscow 119991, Russia
c University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science, 851 S. Morgan Street, M/C 249,
322 Science and Engineering Offices, Chicago 60607-7045, IL, USA

a r t i c l e i n f o

Article history:
Received 3 April 2007
Accepted 27 July 2008
Available online 3 September 2008

Keywords:
Differential algebra
Canonical characteristic sets
Radical differential ideals
Bounds for orders

a b s t r a c t

We propose an algorithm for transforming a characteristic
decomposition of a radical differential ideal from one ranking
into another. The algorithm is based on a new bound: we show
that, in the ordinary case, for any ranking, the order of each
element of the canonical characteristic set of a characterizable
differential ideal is bounded by the order of the ideal. Applying
this bound, the algorithm determines the number of times one
needs to differentiate the given differential polynomials, so that
a characteristic decomposition w.r.t. the target ranking could
be computed by a purely algebraic algorithm (that is, without
further differentiations). We also propose a factorization-free
algorithm for computing the canonical characteristic set of a
characterizable differential ideal represented as a radical ideal by
a set of generators. This algorithm is not restricted to the ordinary
case and is applicable for an arbitrary ranking.
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1. Introduction

The main result of this paper is an algorithm, which inputs a characteristic decomposition of a
radical differential ideal I w.r.t. one ranking and computes a characteristic decomposition of I w.r.t.
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another ranking. Previously, the problem of efficient transformation of differential characteristic sets
from one ranking to another has been addressed in Boulier (1999), Boulier et al. (2001) and Golubitsky
(2004) in the case of prime differential ideals. Our algorithm is different from these approaches in
that its most computationally expensive part is performed by a purely algebraic algorithm. Another
difference is that the proposed algorithm does not assume that the ideals in the given characteristic
decomposition are characterizable w.r.t. the target ranking.
More precisely, the algorithm first applies a bound (described below), in order to determine the

number of times one needs to differentiate the given polynomials, so that the target characteristic
decomposition could be computed using only algebraic operations. In other words, at the first step,
the algorithm reduces the given differential-algebraic problem to a purely algebraic one. The latter
problem can be solved using efficient modular methods, e.g. Dahan et al. (2006), which are not
directly generalizable to the differential case due to the difficulties ofworking over differential fields of
positive characteristics. Moreover, in the algebraic case, the complexity of computing a characteristic
decomposition (or transforming it to a different ordering on variables) is known to be polynomial
in the maximal degree of input polynomials and exponential in the number of variables (Szántó,
1999, Theorem 4.1.7), while for the differential case no complexity bounds are known. Our reduction
‘‘almost’’ allows us to obtain a complexity bound for the ordinary differential case. It remains to
estimate the complexity of the following algebraic problem: given a characterizable algebraic ideal
w.r.t. one ranking, and another ranking, decompose it into ideals that are characterizable w.r.t. both
rankings. We propose an algorithm for computing such a bi-characteristic decomposition but do not
estimate its complexity.
The bound, on which the above reduction is based, is the following: In the ordinary case,

for any ranking on derivatives, the orders of the elements of the canonical characteristic set
of a characterizable differential ideal do not exceed the order of the ideal. Here the order of
a characterizable differential ideal is defined as the maximum of orders of its minimal prime
components. In turn, the order of a prime differential ideal is defined as the sum of orders of
the elements of any characteristic set of this ideal w.r.t. an orderly ranking. The order of a prime
differential ideal is independent of the choice of the orderly ranking and the characteristic set w.r.t.
this ranking.
This bound is the main technical tool of the paper. We prove it in three steps. First, we prove that,

for any prime differential ideal and an arbitrary ranking, there exists a characteristic set, such that the
orders of its elements are bounded by the order of the ideal (this is the main step, see Theorem 27).
Second, we generalize this existence statement to the case of characterizable differential ideals (see
Theorem29). Finally, in Theorem31we show that the bound actually holds for canonical characteristic
sets of characterizable differential ideals.
The problem of bounding the orders of elements of a differential characteristic set has been

previously addressed in Sadik (2000, 2006). Our result generalizes Sadik (2000, Theorem 24), which
gives the same bound for elimination rankings. The bound for arbitrary rankings has been stated in
Sadik (2006, Theorem1)without proof, as a consequence of the results of Sadik (2000). Itwould indeed
easily follow from Sadik (2000, Theorem 25), yet the latter theorem turned out to be incorrect, as
we show by giving a counter-example (see Example 28). It appears that the case of general rankings
does not reduce immediately to the case of elimination rankings and requires a detailed proof (see
Theorem 27).
The paper is organized as follows. In Section 2, the necessary differential-algebraic notation is

introduced. In Sections 3 and 4, the algebraic algorithm for converting characteristic decompositions
from one ranking to another is presented. In Section 5, we prove some basic properties of canonical
characteristic sets, preparing for the proof of the bound in Section 6. Finally, in Section 7we show how
to compute the canonical characteristic set from any other known representation of a characterizable
differential ideal.

2. Preliminaries

Differential algebra studies systemsof polynomial differential equations from the algebraic point of
view. The approach is based on the concept of differential ring introduced by J.F. Ritt. Recent tutorials
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on the constructive theory of differential ideals are presented in Hubert (2003b) and Sit (2002). The
classical references for the basic notions we are using are Kolchin (1973) and Ritt (1950).
A differential ring is a commutative ring with unity endowed with a set of derivations ∆ =

{δ1, . . . , δm}. The case of m = 1, that is, ∆ = {δ}, is called ordinary. If R is an ordinary differential
ring and y ∈ R, we denote δky by y(k). Construct the multiplicative monoid

Θ =

{
∂
k1
1 ∂

k2
2 · · · ∂

km
m

∣∣ ki > 0}
of derivative operators. Let Y = {y1, . . . , yn} be a set whose elements are called differential
indeterminates. The elements of the set ΘY = {θy | θ ∈ Θ, y ∈ Y } are called derivatives. Derivative
operators fromΘ act on derivatives as θ1(θ2yi) = (θ1θ2)yi for all θ1, θ2 ∈ Θ and 1 6 i 6 n.
The ring of differential polynomials in differential indeterminates Y over a differential field k is

a ring of commutative polynomials with coefficients in k in the infinite set of variables ΘY . This
ring is denoted by k{y1, . . . , yn}. We consider the case of char k = 0 only. Let u be a derivative
in k{y1, . . . , yn} and u = θyi for a derivative operator θ = δ

k1
1 δ

k2
2 · · · δ

km
n ∈ Θ and a differential

indeterminate yi ∈ {y1, . . . , yn}. The order of u is defined as ord u = ord θ = k1 + · · · + km. If f is
a differential polynomial then ord f denotes the maximal order of derivatives appearing effectively
in f .
A ranking is a well-order≤ on the set of derivatives compatible with differentiation, that is, for any

derivatives u, v and derivation δ ∈ ∆, u ≤ v implies δu ≤ δv and u < δu (Kolchin, 1973). A ranking
≤ is said to be orderly iff ord u < ord v implies u < v for all derivatives u and v. A ranking≤ is called
an elimination ranking iff yi < yj implies θ1yi < θ2yj for all θ1, θ2 ∈ Θ .
For a fixed ranking ≤ and a differential polynomial f , denote its leader, rank, initial, and separant

by uf = ld f , rk f , if , and sf , respectively. For a set F of differential polynomials, the sets of leaders,
ranks, initials, and separants of the elements of F are denoted by ld F , rk F , IF , SF , respectively. Also let
HF = IF ∪ SF . For the differential and radical differential ideals generated by F in k{y1, . . . , yn}, we use
notations [F ] and {F}, respectively.
In this paper, we often treat a differential polynomial f as an algebraic polynomial over the field

k, whose variables are derivatives effectively present in f . We say that a differential polynomial
f is algebraically reduced w.r.t. a differential polynomial g , if degug f < degug g; polynomial f
is called differentially reduced w.r.t. g , if f is algebraically reduced w.r.t. g and does not contain
proper derivatives of ug . Algebraically autoreduced and differentially autoreduced sets of differential
polynomials are defined accordingly. The differential analogue of an algebraically triangular set
(which is a set of differential polynomials with distinct leaders) is a weak d-triangular set (Hubert,
2003b, Definition 3.7): a set C of differential polynomials is called weakly d-triangular, if C is
algebraically triangular and ldC is differentially autoreduced.
For an algebraically triangular set A, the algebraic pseudo-remainder of f w.r.t. A is denoted by

algrem(f ,A); for aweak d-triangular setC, the differential pseudo-remainder of f w.r.t.C, defined via
Hubert (2003b, Algorithm 3.13), is denoted by d-rem(f ,C). Since, in this paper, differential versions of
the above definitions occurmore often than the algebraic ones, wewill sometimes omit the descriptor
‘‘differential’’ for brevity.
A ranking on derivatives induces well-orders on the set of ranks and on the set of all finite sets

of ranks (Kolchin, 1973). Given that every autoreduced set is finite (Kolchin, 1973), this implies that
every family of autoreduced sets has one of the least rank. For a differential ideal I , its autoreduced
subset of the least rank is called a characteristic set of I (Kolchin, 1973, page 82).
An algebraically autoreduced set in k{y1, . . . , yn}may be infinite. A ranking induces a total order

on the set of all sets of ranks (including the infinite ones), which is not necessarily a well-order.
Consequently, not every family of algebraically autoreduced sets has one of the least rank. However,
every set of differential polynomials does have an algebraically autoreduced subset of the least rank.
For an algebraic ideal J in k{y1, . . . , yn}, an algebraically autoreduced subset of J of the least rank is
called an algebraic characteristic set of J . An algebraic characteristic set of a finitely generated algebraic
ideal is finite.
Let I be an ideal in a commutative ring R and S be a multiplicative subset of R \ {0} and containing

1. Then I : S∞ is defined as {a ∈ R | ∃s ∈ S∞ : sa ∈ I}. If I is a differential ideal then I : S∞ is
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also a differential ideal (see Kolchin (1973)). For a finite set S of differential polynomials denote by S∞
the multiplicative set containing 1 and generated by S. A differential ideal I is called characterizable
(Hubert, 2000, Definition 2.6), if there exists a characteristic set A of I such that I = [A] : H∞A . Any
such characteristic set A is called a characterizing set of I . Algebraic characterizable ideals and their
algebraic characterizing sets are defined accordingly. Characterizable ideals are radical (Hubert, 2000,
Theorem 4.4).
A characteristic set of a characterizable differential ideal may not be unique. Summarizing (Boulier

and Lemaire, 2000, Section 2.2.6), we define the canonical characteristic set of a characterizable
differential ideal. This construction also follows from Hubert (2003a, Section 5.4) and Hubert (2003b,
Theorem 5.5).
Let A be an autoreduced set in k{y1, . . . , yn} = k{Y }, and let k[N][L] be the polynomial ring

associated with A, where L is the set of leaders of polynomials in A and N is the set of non-leaders,
that is, N = ΘY \ΘL. Note that the set N may be infinite when∆ 6= ∅.

Definition 1. A characteristic set C = C1, . . . , Cp of a differential ideal I is called canonical if the
following conditions are satisfied for every i = 1, . . . , p:

(1) the initial iCi depends only on non-leaders N of C;
(2) the polynomial Ci does not have factors in k[N, L] belonging to I , other than Ci itself;
(3) the leading coefficient of Ciw.r.t. the induced lexicographic ordering<lex onmonomials overN∪L
is equal to 1.

The above definition is slightly different from that of Boulier and Lemaire (2000). In Section 5, we
will prove correctness of the above definition and some properties of canonical characteristic sets. The
interested reader can also find in Section 7 an algorithm for computing the canonical characteristic
set from any other known representation of a characterizable differential ideal.

3. Transformation of characteristic sets of prime differential ideals

As above, let k{Y } be a ring of ordinary differential polynomials in n indeterminates with the
derivation δ. Let C be a characteristic set of a prime differential ideal I in k{Y } w.r.t. a ranking≤. We
propose an algorithm that computes a characteristic set of I w.r.t. any other ranking ≤′ algebraically.
More precisely, using a bound on the orders of derivatives occurring in the canonical characteristic
setD of I w.r.t. the target ranking, we find a sufficient differential prolongation ofC (described below),
which defines a prime algebraic sub-ideal Ī in I containing D . After that, it remains to compute an
algebraic characteristic set of Ī w.r.t. the target ranking and extract from it a differential characteristic
set of I .

3.1. A bound for characteristic sets of prime differential ideals

First, given a characteristic set C of a prime differential ideal I w.r.t. an arbitrary ranking ≤, we
would like to obtain a bound on the orders of derivatives occurring in a characteristic set of I w.r.t.
another given ranking ≤′. For ≤ orderly and ≤′ arbitrary, such a bound is given in Section 6. If ≤ is
not orderly, we first obtain a bound for the orders of the elements of an orderly characteristic setD
of I , and then apply the bound from Section 6.
Indeed,D can be computed from C with the help of the Rosenfeld–Gröbner algorithm applied to

the system F0 = C, H0 = HC (where the initials and separants of C in HC are taken w.r.t. ≤). Since
I is prime, one of the regular components (A,H) computed by the Rosenfeld–Gröbner algorithm will
coincide with I , and the characteristic set of the corresponding regular ideal [A] : H∞ w.r.t.≤′ can be
extracted from the lexicographic Gröbner basis of the algebraic ideal (A) : H∞ via the algorithm given
in Boulier et al. (1995, Theorem 6). A more efficient algorithm, which uses the fact that the given ideal
is prime and thus avoids the computation of redundant regular components, is presented in Boulier
et al. (2001).
Let M be the maximal order of derivatives occurring in C. The only place where the Rosenfeld–

Gröbner algorithm differentiates polynomials is the computation of differential pseudo-remainders.
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However, for an orderly ranking, the order of a polynomial cannot increase as a result of pseudo-
reduction. Thus, the orders of derivatives occurring in the characteristic set D do not exceed M . In
fact, the same applies to any other characteristic set of I w.r.t. the same orderly ranking: the leading
derivatives of all characteristic sets of I w.r.t. the same ranking coincide, and the orders of non-leading
derivatives occurring in a polynomial f cannot exceed the order of the leader of f w.r.t. an orderly
ranking.
Now we will use the following:

Lemma 2. The number of elements in a characteristic set C of a prime differential ideal I in the ring of
ordinary differential polynomials k{y1, . . . , yn} does not depend on the ranking.

Proof. If d is the differential dimension of P then the number of elements of C is equal to n − d
by Cluzeau and Hubert (2003, Theorem 4.11) which does not depend on the choice of a differential
ranking. �

Remark 3. The above lemma does not hold in the partial differential case. For example (borrowed
from Boulier et al. (2001)), a characteristic set of the prime differential ideal

[u2x − 4u, uxyvy − u+ 1, vxx − ux]

in k{Y }with derivations∆ = {∂/∂x, ∂/∂y}may have 3 or 4 elements, depending on the ranking.

For the above example, it takes a while to compute the characteristic set of the ideal w.r.t. the
elimination ranking u > v using the Rosenfeld–Gröbner algorithm in Maple (Golubitsky, 2006).
Consider another example that requires less computational effort.

Example 4. Consider the following prime differential ideal:

P =
[
uyy, vxx + y · ux + u

]
.

This set of generators forms a characteristic set of P w.r.t. the elimination ranking with v > u.
However, if we change the ranking to u > v, then the following set containing 3 elements will be
a characteristic set of P :

vxxyyy,

y2 · vxxxxyy − 2y · vxxxxy + 2y · vxxxyy + 2vxxxx − 2vxxxy + vxxyy,

2u− y3 · vxxxyy + 2y2 · vxxxy − 2y · vxxx + 2vxx.

Applying Lemma 2, we obtain the following bound on the order of I (see Section 6):

ord I :=
∑
D∈D

ordD 6 |C| ·max
C∈C
ord C . (1)

This bound is likely to be non-optimal. As in Golubitsky et al. (2008, Section 4), for a differential
indeterminate yi ∈ Y and a set of differential polynomials F , mi(F) = myi(F) denotes the highest
order of a derivative of y occurring in F , or zero, if yi does not occur in F . It is possible that the results
of Ritt (1950, Chapter VII), together with Lemma 2, imply the following bound, which is better: let
m1 > m2 > · · · > mn be the numbersmy(C), y ∈ Y , arranged in non-increasing order, then

ord I 6
|C|∑
i=1

mi.

For this bound, which so far is a conjecture, one needs to verify that Ritt’s proof holds for non-
elimination rankings and also adapt it for ideals specified by characteristic sets, rather than sets of
generators.
According to Theorem 31 (see Section 6.4), the orders of derivatives occurring in the canonical

characteristic set of I w.r.t. any ranking do not exceed the order of I . Thus, the number

M1 = |C| ·max
C∈C
ord C
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Algorithm 1. Differentiate&Autoreduce(C, {mi})
Input: a weak d-triangular set C = C1, . . . , Ck with ldC = y(d1)1 , . . . , y(dk)k ,

and a set of non-negative integers {mi}ki=1,mi > mi(C)
Output: setA =

{
Aji
∣∣ 1 6 i 6 k, 0 6 j 6 mi − di} satisfying

• rk Aji = rk C
(j)
i

• Aji are reduced w.r.t. C \ {Ai}
• mi(A) 6 mi, i = 1, . . . , k
• mi(A) 6 mi(C)+

∑k
j=1(mj − dj), i = k+ 1, . . . , n

• A ⊂ [C] ⊂ [A] : H∞A
• HA ⊂ H∞C + [C], HC ⊂ (H∞A + [A]) : H

∞
A

or {1}, if it is detected that [C] : H∞C = (1)

bounds the orders of derivatives occurring in the canonical characteristic set of I w.r.t. any (not
necessarily orderly) target ranking≤′. Let

M(F) =
∑
y∈Y

my(F).

Note that the bound (n− 1)! ·M(C) obtained in Golubitsky et al. (2008, Section 4) is also a bound for
the orders of derivatives occurring in the characteristic set of I w.r.t. ≤′ computed by the Rosenfeld–
Gröbner algorithm. In fact, invariant I5 in the proof of Golubitsky et al. (2008, Proposition 13), together
with Lemma 2, yields a better bound

M2 =
(n− 1)!

(n− |C| − 1)!
·M(C).

Inmost cases,M2 > M1, but in some, especially for small values of n, itmay happen thatM2 < M1. This
again suggests that none of the two bounds is optimal. Leaving the important problem of obtaining
an optimal bound for future research, we summarize the bounds obtained so far in the following

Lemma 5. Let C be a characteristic set of an ordinary prime differential ideal I w.r.t. a ranking ≤. Then
ord I and the orders of derivatives occurring in the canonical characteristic set of I w.r.t. another ranking
≤
′ do not exceed

MC := min(M1,M2) = min
(
|C| ·max

C∈C
ord C,

(n− 1)!
(n− |C| − 1)!

·M(C)
)
.

3.2. Differential prolongation: The prime case

Assume that ld≤ C =
{
y(d1)1 , . . . , y(dk)k

}
. Letmi = MC , 1 6 i 6 k. Compute the set

A = Differentiate&Autoreduce
(
C, {mi}ki=1

)
(for the algorithm Differentiate&Autoreduce, see Golubitsky et al. (2008, Algorithm 2, Section 4.1)).
Informally speaking, the set A can be thought of as a result of an autoreduction of a differential
prolongation of the input set C = {C1, . . . , Ck}, i.e., of the set

C̃ =
{
δjCi | 1 6 i 6 k, 0 6 j 6 mi − di

}
.

In particular, we have rkA = rk C̃. See Algorithm 1 for the formal specification of
Differentiate&Autoreduce.
Let D be the canonical characteristic set of I w.r.t. ≤′. Every polynomial in D , as an element of I ,

reduces w.r.t. C and≤ to zero. Since the orders of derivatives occurring inD do not exceedMC , every
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polynomial in D algebraically reduces to zero w.r.t. A. That is, D ⊂ (A) : H∞A . The algebraic ideal
Ī = (A) : H∞A is equal to the intersection of I with the ring

R = k
[
ΘY \Θ ld≤ C ∪ ld≤A

]
.

Indeed,A ⊂ R. Vice versa, every element of I ∩ R algebraically reduces w.r.t.A to zero and therefore
belongs to (A) : H∞A .
Since I is prime, so is Ī . Applying one of the existing efficient algorithms (for instance, see Boulier

et al. (2001) or Dahan et al. (2006)) to the set A, we compute the canonical algebraic characteristic
set B of Ī w.r.t. the target ranking ≤′. We know that the algebraic ideal Ī contains the canonical
characteristic set D of the differential ideal I w.r.t. ≤′. In the following section, we will show that,
in fact,D ⊆ B.

3.3. Extracting a differential characteristic set

The following two lemmas hold in the partial differential case. We assume that a ranking is fixed.
Lemma 6. Letk{Y } be a ring of partial differential polynomials, and let K be an arbitrary subset ofk{Y }\k.
Let C be a differential characteristic set of K and A an algebraic characteristic set of K . Let T be a weak
d-triangular subset ofA of the least rank. Then rk T ≤ rkC.
Proof. Suppose that a polynomial 0 6= f ∈ C is differentially reducedw.r.t. T . Then, since T is a weak
d-triangular subset ofA of the least rank, f is algebraically reducedw.r.t.A. Due to the fact thatA is an
algebraic characteristic set of K , we have f = 0, contradiction. Thus, no element of C is differentially
reduced w.r.t. T , which implies that rk T ≤ rkC. �
Lemma 7. Let I be a prime differential ideal, let C be the canonical characteristic set of I, and let J =
I ∩ k[V ], where V ⊂ ΘY , be an algebraic ideal containing C. Then the canonical algebraic characteristic
set (as in Definition 1) D of J contains C; more precisely, C is the weak d-triangular subset of D of the
least rank.
Proof. SinceD is triangular, its weak d-triangular subset of the least rank is unique. Let T be theweak
d-triangular subset ofD of the least rank. SinceD is an algebraic characteristic set of the prime ideal
J , we have HD ∩ J = ∅. Moreover, HD ⊂ k[V ], therefore HD ∩ I = ∅ and, hence, HT ∩ I = ∅. Since
T ⊂ I and I is prime, this implies

[T ] : H∞T ⊂ I. (2)
Let

A = {d-rem(f , T \ {f }) | f ∈ T }.

We haveA ⊂ [T ] ⊂ I; we will show that setA is differentially autoreduced and rkA = rk T .
First, show that rkA = rk T . Indeed, suppose that for some f ∈ T and g = d-rem(f , T \ {f }), we

have rk g < rk f . Since T is a weak d-triangular set, ld f 6∈ Θ ld(T \{f }). Thus, Lemma 4 in (Golubitsky
et al., 2008) applies and tells us that if ∈ [T ] : H∞T . Hence, according to (2), if ∈ I . This contradicts
with the fact that HT ∩ I = ∅.
Now, since g is reduced w.r.t. T \ {f }, rk g = rk f , and rkA = rk T , g is also reduced w.r.t.A \ {g}.

That is, the set A is autoreduced. By Lemma 6, rk T ≤ rkC. Therefore, rkA ≤ rkC. Since A is an
autoreduced subset of I , while C is an autoreduced subset of I of the least rank, we have rkA ≥ rkC.
Thus, rkA = rk T = rkC.
Let D̄ = (D \T )∪C. Set D̄ is algebraically autoreduced, has the same rank asD , and satisfies the

requirements of canonicity: for every f ∈ D̄ , the initial of f does not depend on the leaders of D̄ , f is
monic and has no factors in k[N(D̄)], where N(D̄) = N(D) = V \ ldD is the set of non-leaders ofD
(or D̄). Since the canonical characteristic set is unique, we have D̄ = D and C = T . This concludes
the proof. �
Returning to the notation from the previous section and applying the above lemma, we obtain

that the canonical characteristic set D of I is equal to the weak d-triangular subset of B of the least
rank w.r.t. ≤′. This concludes the computation of the canonical characteristic set of I w.r.t. the target
ranking, which we summarize in Algorithm 2.
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Algorithm 2. Convert_Prime (C,≤,≤′)
Input: a prime differential ideal P = [C] : H∞C ⊂ k{y1, . . . , yn}

with a characteristic set C w.r.t. the input ranking≤
with leading variables y1, . . . , yk and
a target ranking≤′.

Output: canonical characteristic set of P w.r.t.≤′.

MC := min
(
|C| ·max

C∈C
ord C, (n−1)!

(n−|C|−1)! ·M(C)
)

mi := MC , 1 6 i 6 k
A := Differentiate&Autoreduce

(
C, {mi}ki=1

)
D := Canonical_Algebraic_CharSet ((A) : H∞A ,≤

′)
return minimal d-triangular subset (D,≤′)

4. Transformation of characteristic decompositions of radical differential ideals

We generalize the algebraic method for transforming characteristic sets of a prime differential
ideal from one ranking to another to the case of a characterizable differential ideal. Since an
ideal characterizable w.r.t. one ranking may not be characterizable w.r.t. another one, we need
to reformulate the problem: given a characterizable differential ideal I with a characteristic set
C w.r.t. a ranking ≤, compute a characteristic decomposition of I w.r.t. another ranking ≤′
algebraically. By analogywith the prime case, an algebraic computation heremeans finding a sufficient
differential prolongation of C, which defines a characterizable algebraic sub-ideal Ī in I , such that a
differential characteristic decomposition of I w.r.t.≤′ can be extracted froman algebraic characteristic
decomposition of Ī w.r.t.≤′.
We note that, given a characteristic decomposition of a radical differential ideal w.r.t. one ranking,

we can obtain its characteristic decomposition w.r.t. another ranking algebraically by solving the
above problem for each characterizable component.
All results of this section hold in the partial differential case, except for the bound in Section 4.2,

which so far is known only for the ordinary case.

4.1. Differential prolongation

Definition 8. Let F be a (possibly infinite) subset in a ring k{Y } of partial differential polynomials
with a set of derivations ∆. A set G ⊂ ΘF is called a differential prolongation of F , if F ⊂ G and the
complement ofG,ΘF\G, is invariantw.r.t. differentiation, i.e., for all f ∈ ΘF\G and δ ∈ ∆, δf ∈ ΘF\G.

A particular case of a differential prolongation of a weak d-triangular set F is F itself. If F = C is
autoreduced and coherent then, according to Kolchin (1973, Lemma 6, page 137) and Hubert (2000,
Lemma6.1 and Theorem6.2), the differential ideal I = [C] : H∞C is prime, respectively characterizable
iff the algebraic ideal J = (C) : H∞C is prime, respectively characterizable. The ideal J can be considered
either as an algebraic ideal in the ring of differential polynomials k{Y } or as an ideal in the polynomial
subring k[ZC], where ZC = L∪N , L = ldC, N = ΘY \ΘL, since the fact that C is autoreduced implies
C ⊂ k[ZC]. The Rosenfeld Lemma states that

[C] : H∞C ∩ k[ZC] = (C) : H∞C ,
where the latter ideal is considered in k[ZC]. Moreover, a setD is a differential characteristic set of I
iff D is an algebraic characteristic set of J (if the latter is considered in k[ZC], otherwise we need to
impose an additional requirement that D is differentially autoreduced). In particular, the canonical
characteristic sets of I and J (differential and algebraic, respectively) coincide (for this statement, it
does not matter in which ring to consider J , since the canonical characteristic set of an ideal is the
same regardless of the ring in which the ideal is considered).
Now, if we consider a differential prolongationD of C and the corresponding polynomial subring

k[ZD ], where ZD = L̄ ∪ N , L̄ = ldD , N = ΘY \ΘL = ΘY \Θ L̄, thenD is not necessarily a subset of
k[ZD ]:
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Example 9. Let C = y′, x+ ywith the elimination ranking y < x and a prolongation

D = y′, x+ y, x′ + y′, x′′ + y′′.

Then

L̄ = y′, x, x′, x′′, N = y.

Hence, we have that x′′ + y′′ /∈ k[ZD ]. Also,

[C] : H∞C ∩ k[ZD ] =
(
y′, x+ y, x′, x′′

)
and x′′ /∈ (D) : H∞D .

Therefore, we need to distinguish between two ideals ID := (D) : H∞D in k{Y } and ĪD := I ∩k[ZD ] in
k[ZD ]. The algebraic ideal ĪD depends only on the set of leaders L̄ of the differential prolongation
of C. In other words, for any characterizing set C̃ of I and its differential prolongation D̃ with
ld D̃ = ldD = L̄, we have ĪD̃ = ĪD . We call ĪL̄ := ĪD a prolongation ideal of the ideal I .
Next, we study properties of prolongation ideals. The following lemma gives a criterion for a

prolongation ideal to be prime or characterizable.

Lemma 10. Let C be a coherent autoreduced set, and let D be a differential prolongation of C. Then
the differential ideal 1 /∈ I = [C] : H∞C is prime, respectively characterizable, iff the corresponding
prolongation ideal ĪD is prime, respectively characterizable.

Proof. If I is prime then its restriction I ∩ k[ZD ] = ĪD is also prime. If ĪD is prime than its restriction
ĪD ∩ k[ZC] = (C) : H∞C is prime and, thus, I is prime. Let I be a characterizable differential ideal. We
will show that the set A given by formula (3) in Lemma 11 characterizes the prolongation ideal ĪD .
We have

ĪD ⊂ (A) : H∞A .

Indeed, by Golubitsky et al. (2008, Lemma 4), the sets A and D have the same ranks, whence they
have the same sets of reduced polynomials. In particular, sinceD is a differential prolongation of the
characteristic set C, the ideal ĪD has no non-zero polynomials reduced w.r.t.D , and hence w.r.t.A.
Now note that (A) : H∞A ⊂ I andA ⊂ k[ZD ]. Hence, ĪD = (A) : H∞A andA is a characteristic set

of ĪD . Thus, ĪD is characterizable. Since C ⊂ k[ZD ] and (C) : H∞C = I ∩ k[ZC], we have

(C) : H∞C = (A) : H
∞

A ∩ k[ZC]. �

The next lemma establishes a relation between characteristic sets of a characterizable differential
ideal I and algebraic characteristic sets of its prolongation ideals.

Lemma 11. Let C be a characteristic set of the differential ideal 1 /∈ I = [C] : H∞C , let L̄ be a differential
prolongation of L = ldC, and let ĪL̄ be the corresponding prolongation ideal. Then a characterizing set A
of ĪL̄ can be obtained from C as

A := {algrem(f ,B \ {f }) | f ∈ B, ld f ∈ L̄}, (3)

whereB is any triangular subset ofΘC satisfying ldB = ld L̄.
Vice versa, given a characterizing setA of ĪL̄, let T be a weak d-triangular subset ofA of the least rank.

If T is differentially autoreduced, then it is a characterizing set of I. In particular, if A is the canonical
characteristic set of ĪL̄, then T is the canonical characteristic set of I.

Proof. Since I is characterizable, ĪL̄ is also characterizable by Lemma 10 andA is its characteristic set.
The other way follows from Lemma 6. �
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In the ordinary case, the triangular setB considered in the above lemma is unique. Moreover, the
setA can be equivalently obtained as

A := Differentiate&Autoreduce(C, {mi}),

where the numbers {mi} are the maximal orders of derivatives of the leading differential
indeterminates ofC occurring in the prolongation L̄. It is preferable to computeA in this way, because
Differentiate&Autoreduce provides a bound on the orders of non-leading derivatives occurring in A,
which can be used for establishing complexity estimates for the entire transformation algorithm.
A generalization of Algorithm Differentiate&Autoreduce to the partial case is an interesting open

problem.Moreover, in the partial case, theremay be uncountably infinitelymany triangular subsets of
ΘC whose leaders coincidewith ldΘC. Thus, not every such set can be enumerated by an algorithmic
procedure. However, it is easy to write a procedure that would enumerate a particular subset ofΘC,
given C; this procedure makes computation of the set of algebraic pseudo-remainders algorithmic as
well. If one would like to choose the subset B in a systematic way, we suggest using the ideas from
the theory of monomial involutive divisions (Gerdt and Blinkov, 1998).
According to Hubert (2003b, Theorem 4.13), there is a one-to-one correspondence between the

minimal prime components of a characterizable differential ideal [C] : H∞C and the minimal prime
components of the corresponding algebraic ideal (C) : H∞C . The following lemma generalizes this
result to prolongation ideals.

Lemma 12. Let C be a characteristic set of the differential ideal I = [C] : H∞C , let L̄ be a differential
prolongation of L = ldC, and let ĪL̄ be the corresponding prolongation ideal. Let

I = P1 ∩ · · · ∩ Pk

be the minimal prime decomposition of I, and let (P̄i)L̄ be the prolongation ideals corresponding to Pi,
i = 1, . . . , k. Then

ĪL̄ =
(
P̄1
)
L̄ ∩ · · · ∩

(
P̄k
)
L̄

is the minimal prime decomposition of ĪL̄.

Proof. Since ĪL̄ = I ∩ k[ZL̄],

ĪL̄ =
(
P1 ∩ k[ZL̄]

)
∩ · · · ∩

(
Pk ∩ k[ZL̄]

)
=
(
P̄1
)
L̄ ∩ · · · ∩

(
P̄k
)
L̄

is a prime decomposition of the ideal ĪL̄. Suppose that it is not minimal. Then, since (C) : H
∞
C =

ĪL̄ ∩ k[ZC],

(C) : H∞C =
((
P̄1
)
L̄ ∩ k[ZC]

)
∩ · · · ∩

((
P̄k
)
L̄ ∩ k[ZC]

)
is a prime decomposition of the ideal (C) : H∞C , which is also not minimal. But the latter contradicts
the fact that (P̄i)L̄ ∩ k[ZC] = Pi ∩ k[ZC], 1 6 i 6 k, and

(C) : H∞C = (P1 ∩ k[ZC]) ∩ · · · ∩ (Pk ∩ k[ZC])

is the minimal prime decomposition. �

4.2. A bound for characteristic sets of prime components

Let I = [C] : H∞C be a characterizable differential ideal with a characteristic set C w.r.t. a ranking
≤. Let L = ld≤ C, and let L̄ be a differential prolongation of L. From the previous section we know that
the prolongation ideal ĪL̄ is characterizable (Lemma10) and itsminimal prime components correspond
to the minimal prime components of I (Lemma 12). We would like to find a sufficient differential
prolongation L̄ such that the minimal prime components of ĪL̄ contain differential characteristic sets
of the corresponding minimal prime components of I w.r.t. any other ranking≤′.
First of all, according to Hubert (2003b, Theorem 4.13), a differential characteristic set of aminimal

prime component of I coincides with an algebraic characteristic set of the corresponding minimal
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prime component of the ideal (C) : H∞C . This implies that every minimal prime component P of I
has a characteristic set CP satisfying the bound my(CP) 6 my(C) on the orders of derivatives of any
differential indeterminate y ∈ Y occurring in CP .
For the ordinary case, as was shown in Section 3.1, we thus have a bound MC on the orders of

derivatives occurring in the canonical characteristic sets of the minimal prime components of I w.r.t.
any other ranking ≤′. For the partial differential case, such a bound is not known, but let us assume
that we can compute such a boundMC also for the partial case.2We need to assume thatMC > my(C)
for all y ∈ Y .
Let

L̄ = {θu | u ∈ L, ord θu 6 MC} (4)

be the differential prolongation of L up to the order MC . According to Lemma 12, the minimal prime
components of ĪL̄ contain all polynomials of the correspondingminimal prime components of I of order
less than or equal toMC . Thus, they also contain the canonical characteristic sets of the corresponding
minimal prime components of I w.r.t. any other ranking≤′. In what follows, we will denote the above
differential prolongation ĪL̄ simply by Ī . Applying Lemma 11, we compute a characteristic set of Ī
w.r.t.≤.

4.3. Algebraic bi-characteristic decomposition

So, we have the differential ideal I which is characterizable w.r.t. the ranking≤ and would like to
give a characteristic decomposition of I w.r.t. ≤′ . We have constructed the prolongation algebraic
ideal Ī which is characterizable w.r.t.≤with a characteristic setA given by formula (3). Let

Ī = J̄1 ∩ · · · ∩ J̄k (5)

be a bi-characteristic decomposition of Ī w.r.t. ≤ and ≤′. That is, each component J̄i, 1 6 i 6 k, is an
algebraic ideal characterizable w.r.t. both rankings with the canonical characteristic sets Ai and Bi
w.r.t.≤ and≤′, respectively.
Let us discuss how one can construct such a decomposition. Algorithm 3 does the following. Given

a characterizable algebraic ideal I with the characterizing setC w.r.t.≤s, it first computes its (possibly
redundant) algebraic characteristic decomposition w.r.t.≤t via the procedure

Algebraic-characteristic-decomposition(C,≤s,≤t).

This procedure can be performed, for example, by applying the Triade algorithm (MorenoMaza, 1999),
which is implemented in the RegularChains library in Maple (Lemaire et al., 2005). A parallel
implementation of this algorithm, on a sharedmemorymachine in Aldor is also in progress (Moreno
Maza and Xie, 2006).
If one of the characterizable components turns out to be equal to I (note that equality of

characterizable algebraic ideals can be checked, e.g., by computing their Gröbner bases), then I is bi-
characterizable; in this case the algorithm terminates and outputs T consisting of a single pair (C,D)
of characterizing sets of I w.r.t.≤ and≤′, respectively. If all characterizable components of I contain it
strictly, then, for each characterizable component, we compute its characteristic decomposition w.r.t.
≤ and repeat the above strategy.
Correctness of the algorithm follows from the fact that, at each iteration of the while-loop, C ∪ T

provides a characteristic decomposition of I w.r.t. ≤s and T satisfies the requirements of the output.
Termination follows from the Noetherian property of the polynomial ring, i.e., that every sequence of
strictly nested polynomial ideals is finite.
Wenote that the components J̄i, forwhich ld≤Ai 6= ld≤A, are redundant, i.e., they can be excluded

from the right-hand side of (5) without affecting the intersection. Indeed, if

Ī = P̄1 ∩ · · · ∩ P̄l

2 Of course,MC can be obtained by computing characteristic sets of the prime components w.r.t. the target ranking, but this
would clearly defeat our purpose: we need a bound that can be computed from C relatively easily.
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Algorithm 3. Algebraic-Bicharacteristic-Decomposition (C,≤,≤′)
Input: characterizing set C of a characterizable algebraic ideal I

w.r.t. an ordering≤ on variables and another ordering≤′
Output: a finite set T = {(Ci,Di) | i ∈ I}, where

for every i ∈ I, Ci andDi are algebraic characterizing sets
of the same ideal Ii w.r.t.≤ and≤′, respectively, and
I = ∩i∈IIi

≤s:=≤,≤t :=≤′
C := {C}, T := ∅
while C 6= ∅ do
U := C, C := ∅
for C ∈ U do
J := (C) : H∞C w.r.t.≤s
D :=Algebraic-characteristic-decomposition(C,≤s,≤t)
if ∃ D ∈ D such that J = (D) : H∞D w.r.t.≤t then
if≤s=≤ then T := T ∪ {(C,D)} else T := T ∪ {(D,C)}

else C := C ∪D

end if
end for
if≤s=≤ then≤s:=≤′,≤t :=≤ else≤s:=≤,≤t :=≤′

end while
return T

is the minimal prime decomposition of Ī , and

J̄i = Q̄i,1 ∩ · · · ∩ Q̄i,li

are the minimal prime decompositions of J̄i, 1 6 i 6 k, then a component J̄i is redundant, if none of P̄j,
1 6 j 6 l, can be found among Q̄i,t , 1 6 t 6 li. But this is the case if ld≤Ai 6= ld≤A, since by Hubert
(2003b, Theorem 4.13) the characteristic sets of P̄j have leaders ld≤A, while the characteristic sets of
Q̄i,t have leaders ld≤Ai. Therefore, we can assume that for all i, 1 6 i 6 k,

ld≤Ai = ld≤A.

We prove then that everyminimal prime component of J̄i is a minimal prime component of Ī . Indeed,
every Q̄i,t is a prime ideal containing Ī . Suppose that Q̄i,t is not minimal, i.e., there is a minimal prime
component P̄j of Ī such that P̄j ( Q̄i,t . But the latter strict inclusion is impossible according to the
following Lemma 13 and Remark 14.

Lemma 13. Let P and Q be two prime differential ideals whose characteristic sets w.r.t.≤ have the same
sets of leaders. Then P ⊆ Q implies P = Q .

Proof. Let C1 and C2 be these characteristic sets. We have P = [C1] : H∞C1 and Q = [C2] : H
∞
C2
.

Consider the restricted ideals p = (C1) : H∞C1 and q = (C2) : H∞C2 in the Noetherian ring
k[L,N(C1,C2)], where N(C1,C2) is the set of non-leading variables appearing in both C1 and C2.
From Hubert (2000, Theorem 3.2) it follows that both p and q are of dimension |N(C1,C2)|.
Take any f ∈ p. It is partially reduced w.r.t. both C1 and C2 (which are coherent and autoreduced)

and belongs to P ⊂ Q . By the Rosenfeld lemma f ∈ q. Hence, p ⊂ q. Since the ideals p and q are prime
and their Krull dimensions are equal to the same number |N(C1,C2)|,we obtain p = q.
Thus, C2 ⊂ p ⊂ P . Moreover, the elements of HC2 do not belong to Q ⊇ q = p; since they are

partially reducedw.r.t.C2 (and, thereforew.r.t.C1, given that ldC1 = ldC2), by the Rosenfeld Lemma,
the elements of HC2 do not belong to P . Thus,

Q = [C2] : H∞C2 ⊆ P : H
∞

C2
= P,

which, together with the given inclusion P ⊆ Q implies P = Q . �
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Remark 14. In the above lemma, one can assume that the set of derivations is empty, hence the
statement also holds for algebraic ideals.

To summarize, for every bi-characterizable component J̄i, there exists a subset Ti ⊂ {1, . . . , l} such
that

J̄i =
⋂
j∈Ti

P̄j

is the minimal prime decomposition of J̄i. Moreover, equality (5) implies that
l⋃
i=1

Ti = {1, . . . , l}.

4.4. Constructing differential characterizable components from the algebraic ones

Fix any of the above algebraic bi-characterizable components J̄ = J̄i, where 1 6 i 6 k; we have a
set of indices T = Ti ⊂ {1, . . . , l} such that

J̄ =
⋂
j∈T

P̄j.

As above, let A = Ai and B = Bi be the canonical characteristic sets of J̄ w.r.t. ≤ and ≤′,
respectively. According to Lemma 12, eachminimal prime component P̄j of Ī is a prolongation ideal of
the corresponding minimal prime component Pj of I , that is,

P̄j = Pj ∩ k
[
L̄ ∪ N

]
,

where I =
⋂l
j=1 Pj is the minimal prime decomposition of I . SinceB is a characterizing set of J̄ w.r.t.

≤
′, the initials and separants ofB w.r.t.≤′ are not zero-divisors modulo J̄ , that is, they do not belong
to the minimal prime components P̄j, j ∈ T . Since B, as well as HB , is a subset of k

[
L̄ ∪ N

]
, we have,

therefore,

HB ∩ Pj = ∅

for all j ∈ T . Let T ⊂ B be theweak d-triangular subset ofB of the least rankw.r.t.≤′. SinceHT ⊂ HB ,
we also have

HT ∩ Pj = ∅

for all j ∈ T . Thus, we have

[T ] : H∞T ⊂ Pj
for all j ∈ T . In particular, this implies that

[T ] : H∞T 6= (1).

LetD be the result of differential autoreduction of T w.r.t.≤′, that is,

D = {d-rem(f , T \ {f }) | f ∈ T }.

The set D is differentially autoreduced. We will show that, in fact, D = T . By the definition of
differential remainder, D ⊂ [T ]. By Golubitsky et al. (2008, Lemma 4), since [T ] : H∞T 6= (1), we
have rk≤′ D = rk≤′ T and, moreover, HD ⊂ H∞T + [T ]. Therefore,

[D] : H∞D ⊂ [T ] : H
∞

T ⊂ Pj, j ∈ T . (6)

We will show that D is a characteristic set of the ideal [D] : H∞D w.r.t. ≤′ by proving that every
polynomial in the intersection

⋂
j∈Ti
Pj reduces w.r.t.D to zero. Given (6), this will also imply that

[D] : H∞D =
⋂
j∈T

Pj. (7)
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Take any polynomial f ∈
⋂
j∈T Pj, and let f̄ = d-rem(f ,D), where the pseudo-remainder is computed

w.r.t.≤′. SinceD ⊂ [T ] ⊂ Pj, j ∈ T , we have

f̄ ∈
⋂
j∈T

Pj.

Let Fj be the canonical characteristic set of Pj w.r.t. ≤′, and let F̄j be the canonical algebraic
characteristic set of the corresponding prolongation ideal P̄j. We have shown in Section 4.2 that P̄j
contains Fj. Thus, from Lemma 7 it follows that Fj is the weak d-triangular subset of F̄j of the least
rank w.r.t. ≤′. On the other hand, since P̄j is a minimal prime component of J̄ , according to Hubert
(2003b, Theorem 4.13), ld≤′ F̄j = ld≤′ B. This implies that

ld≤′ Fj = ld≤′ T = ld≤′ D.

That is, the fact that f̄ is reduced w.r.t.D implies that it is partially reduced w.r.t. Fj. By the Rosenfeld
Lemma,

f̄ ∈ (Fj) : H∞Fj ⊂ (F̄j) : H
∞

F̄j
= P̄j, j ∈ T

i.e., f̄ ∈ J̄ . Now, the fact that f̄ is reducedw.r.t.D implies that it is algebraically reducedw.r.t.B. Since
the latter is a characteristic set of J̄ , we obtain f̄ = 0 and the required equality (7).
Now we see that the ideal [D] : H∞D is characterizable w.r.t.≤

′. The canonical characteristic set of
this ideal w.r.t. ≤′ is contained in each minimal prime component of the ideal (D) : H∞D , therefore
it is also contained in every P̄j, j ∈ T , and hence in J̄ . The ideal J̄ is contained in [D] : H∞D . Thus, by
Lemma 7, the canonical characteristic set of [D] : H∞D is equal to the weak d-triangular subset of B
of the least rank w.r.t.≤′. That is, we have

D = T

which is (w.r.t. the ranking≤′) the canonical characteristic set of the characterizable differential ideal

[D] : H∞D .

4.5. The final characteristic decomposition

In the previous section, we have shown that for each bi-characterizable component J̄i, 1 6 i 6 l,
of Ī with the canonical characteristic setBi w.r.t.≤′, ifDi is the weak d-triangular subset ofBi of the
least rank, then it is the canonical characteristic set of the ideal [Di] : H∞Di . We have also shown that

[Di] : H∞Di =
⋂
j∈Ti

Pj.

Thus, since
⋃l
i=1 Ti = {1, . . . , l}, the following intersection

l⋂
i=1

[Di] : H∞Di

is a characteristic decomposition of I = P1∩· · ·∩Plw.r.t.≤′. This concludes the algebraic computation
of a characteristic decomposition of I w.r.t. the target ranking, which we summarize in Algorithm 4.
Now, in order to convert a characteristic decomposition

I =
p⋂
i=1

[Ci] : H∞Ci

of a radical differential ideal I w.r.t. ≤ to a ranking ≤′, one just applies Algorithm 4 to each
characterizable component [Ci] : H∞Ci and then collects all the results together in a single intersection.
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Algorithm 4. Convert_Characterizable (C,≤,≤′)
Input: set C which characterizes the ideal [C] : H∞C w.r.t. the input ranking≤

and has leading variables y1, . . . , yk and a target ranking≤′.
Output: characteristic decomposition of [C] : H∞C w.r.t.≤

′.

MC := min
(
|C| ·max

C∈C
ord C, (n−1)!

(n−|C|−1)! ·M(C)
)

mi := MC , 1 6 i 6 k
A := Differentiate&Autoreduce

(
C, {mi}ki=1

)
D := Bi-characterizable_Canonical_Decomposition ((A) : H∞A ,≤,≤

′)

C :=
{
minimal d− triangular subset (D,≤′) | D ∈ D

}
return C

5. Canonical characteristic sets

In this section, we prove correctness of the definition of the canonical characteristic set (see
Definition 1) and list some properties of this set, preparing ourselves for the proof of the bound in
the next section. Throughout this section we assume that a ranking is fixed.
The difference of our definition from that of Boulier and Lemaire (2000) is that we did not require

the canonical characteristic set to be a characterizing set of the differential ideal. Thus, Boulier
and Lemaire (2000) implies the existence of the canonical characteristic set (for characterizable
differential ideals) in the sense of Definition 1. Its uniqueness is shown in Boulier and Lemaire (2000,
Theorem 3). We prove this below for arbitrary differential ideals.
We have also replaced the set NC of non-leaders effectively occurring inC by the set N = ΘY \ΘL

of all non-leaders (where L is the set of leaders ofC). This replacement yields an equivalent definition,
which is more convenient, because it provides the ring k(N)[L] independently of the choice of the
characteristic set C, while the field of coefficients k(NC) of the polynomial ring k(NC)[L] depends
on C.3

Proposition 15. Let C be a characteristic set of a characterizable differential ideal I, whose initials do not
depend on the leaders of C. Then C characterizes the ideal I, that is, I = [C] : H∞C .

Proof. By Hubert (2000, Theorems 3.2 and 4.5), for every minimal prime component P of I , the set of
leaders of any characteristic set D of P coincides with ldC. Since the initials of C do not depend on
the leaders of C, they are reduced w.r.t. D and, hence, do not belong to P . Thus, the initials of C are
not zero-divisors modulo I .
Hence, the initials of C are not zero-divisors modulo the algebraic ideal Ī = I ∩ [N ∪ L], that is,

Ī : I∞C = I . By the Rosenfeld Lemma, Ī ⊆ (C) : I
∞
C . Since C ⊂ Ī , we obtain therefore

Ī ⊆ (C) : I∞C ⊆ Ī : I
∞

C = Ī.

Since I is characterizable, it is radical, whence so is Ī = I∩k[N∪L]. Thus, by Hubert (2000, Proposition
3.3), we have

Ī = (C) : I∞C = (C) : H
∞

C ,

that is, Ī = (C) : H∞C is a characterizable algebraic ideal characterized by C. According to Hubert
(2000, Lemma 6.1), the latter implies that the differential ideal [C] : H∞C is also characterizable and
characterized by C.
LetA be a characterizing set for I , that is,A is a characteristic set of I such that [A] : H∞A = I . Since

C is a characteristic set of I , we have

I ⊆ [C] : H∞C .

3 The idea of constructing a canonical field of coefficients by considering the infinite set of all non-leading derivatives was
communicated to the first author by E. Hubert.
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In particular,

A ⊂ I ⊆ [C] : H∞C .

Thus, for all f ∈ [C] : H∞C , we have

f̄ = d-rem(f ,A) ∈ [C] : H∞C .

Since C characterizes [C] : H∞C , either f̄ = 0, or f̄ is reducible w.r.t. C. But the latter is impossible,
because rkA = rkC (since both are characteristic sets of I), and f̄ is reducedw.r.t.A. Therefore, f̄ = 0,
which means that every f ∈ [C] : H∞C reduces w.r.t.A to zero and

[C] : H∞C ⊆ [A] : H
∞

A = I.

This concludes the proof. �

The following statement can be obtained by combining Lemmas 3.5 and 3.9 from Hubert (2000),
yet it appears to be easier to prove it directly.

Proposition 16. Let C be a characteristic set of a differential ideal I, whose initials do not depend on the
leaders ofC. ThenB = {f /if | f ∈ C} is the reduced Gröbner basis of the zero-dimensional algebraic ideal
J generated by I ∩ k[N ∪ L] in k(N)[L] w.r.t. the lexicographic ordering on monomials over L induced by
the ranking.

Proof. Every element of the ideal I ∩ k[N ∪ L] algebraically pseudo-reduces w.r.t. C to zero. Since
the initials of C are in k(N), the ideal J is generated by B in k(N)[L]. Also, the leading monomials
of B w.r.t. the induced lexicographic ordering are elements of rkC, whence B is autoreduced w.r.t.
the induced lexicographic ordering, B is a Gröbner basis (since its leading monomials are pairwise
relatively prime), and the ideal J in k(N)[L] is zero-dimensional by Adams and Loustanau (1996,
Theorem 2.2.7). �

Corollary 17. Let C be a characteristic set of a differential ideal I, whose initials do not depend on the
leaders of C. Then any other characteristic set of I, whose initials do not depend on the leaders, can be
obtained via multiplying/dividing the elements of C by some polynomials from k[N].

Corollary 18. If a canonical characteristic set C exists for a differential ideal I, it is unique, and every
other characteristic set of I, whose initials do not depend on the leaders, can be obtained via multiplying
the elements of C by some polynomials from k[N].

The following property of canonical characteristic sets will be used further in Lemma 26 and will
help us to obtain the bound on the orders of the elements of canonical characteristic sets. The next
section will explain this in detail.

Proposition 19. Let C = C1, . . . , Cp be the canonical characteristic set of a characterizable differential
ideal I. Let v be a derivative appearing in some Ci, 1 6 i 6 p. Then,

∂Ci
∂v

/∈ I.

Proof. Suppose that ∂Ci
∂v
∈ I. Then v appears effectively in the initial iCi . Indeed, suppose that v is not

in iCi , then
∂Ci
∂v
is not reducible w.r.t. C. This contradicts the fact that C is a characteristic set of I and

∂Ci
∂v
∈ I. Now, since v appears effectively in iCi , the set

C ′ = C \ {Ci} ∪
{
∂Ci
∂v

}
is autoreduced and has the same rank as C, hence C ′ is a characteristic set of I . Moreover, the initial of
∂Ci
∂v
is equal to

∂iCi
∂v
, hence it does not depend on the leaders of C. Yet ∂Ci

∂v
is not a multiple of Ci, which

contradicts Corollary 18. �
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6. Main tool: Bounds for the orders of characteristic sets

Here are themain steps towards the bound for the orders of elements of the canonical characteristic
set of a characterizable differential ideal:

• existence of a bounded characteristic set for prime differential ideals (Section 6.2),
• extension of the existence result to characterizable ideals (Section 6.3),
• reduction to canonical characteristic sets (Section 6.4).

The first step is the most technically difficult one and requires preparation. The last two steps are
easier.

6.1. Preparation

Let R = k{y1, . . . , yn} with ∆ = {δ}. So, we are in the ordinary case. Differential dimension of a
differential ideal I is the maximal number q such that I ∩ k{yi1 , . . . , yiq} = {0}. Recall that the order
of a differential polynomial f is the maximal order of derivatives appearing effectively in f . Fix any
differential ranking. LetA = A1, . . . , Ap be an autoreduced set. Define the order ofA by the following
equality:

ordA = ord A1 + · · · + ord Ap.

Let an orderly differential ranking be fixed. If C is a characteristic set of a prime differential ideal P
then, by definition, the order of the ideal P equals ordC and is denoted by ord P .
Denote by P(s) the set of elements of P whose order is less than or equal to s. The set P(s) is a

prime algebraic ideal in the corresponding polynomial ring. According toKolchin (1973, II.12, Theorem
6) or Kondratieva et al. (1999, Theorems 5.4.1, 5.4.4) the dimension of P(s) is a polynomial in s for
s > h = ord P . More precisely,

dim P(s) = q(s+ 1)+ ord P,

where q is the differential dimension of the ideal P . Moreover, q = n − p, where p is the number of
elements of a characteristic set of the ideal P w.r.t. any orderly ranking. Thus, the numbers ord P and p
donot depend on the choice of an orderly ranking.We are going to define the order of a characterizable
differential ideal, and we should be very careful because of the following example.

Example 20. Consider the radical differential ideal {x(x + y′)} = I characterizable w.r.t. the
elimination ranking x >el y. While I = [x]∩[x+y′] and the leaders of x and x+y′ w.r.t. the ranking are
the same, the orders of the components are different. This is because the ideal I is not characterizable
w.r.t. any orderly ranking.

Hence, we give the following definition.

Definition 21. For a characterizable differential ideal I =
⋂k
i=1 Pi, where Pi are minimal differential

prime components of I , define

ord I = max
16i6k

ord Pi.

Remark 22. The theory of differential dimension polynomials is due to Johnson (1969) and Kolchin
(1973). Carrà Ferro and Sit continued to develop this subject (Carrà Ferro, 1987, 1989; Sit, 1978). Many
of the results concerning differential dimension polynomials are summarized in Kondratieva et al.
(1999). The latter book also presents algorithms for computing these polynomials.

Lemma 23 (Sadik, 2000, Proposition 17). Consider a prime differential ideal P of differential dimension q
and order h. For every subset {yi1 , . . . , yiq+1} of {y1, . . . , yn}, the ideal P contains a differential polynomial
in the indeterminates {yi1 , . . . , yiq+1} of order less than or equal to h.

It is not possible to bound the orders of elements of an arbitrary characteristic set. For example,
consider the ideal [x] ∈ k{x, y} and the elimination ranking with x > y. Then the set y(q)x is a
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characteristic set of the ideal [x] for any q > 0. In order to avoid this problem, the concept of irreducible
characteristic set is introduced in Sadik (2000) right before Lemma 19 for prime differential ideals:

Definition 24. Let A = A1, . . . , Ap be an autoreduced set and Vi−1 be the set of all derivatives
appearing in the polynomials A1, . . . , Ai−1, Ii−1 := IA1,...,Ai−1 , and Ui be the set of derivatives from
Ai that are not in Vi−1. Consider the unique factorization domain

Ri = Quot(k[Vi−1] / (A1, . . . , Ai−1) : I∞i−1)[Ui],

where Quot means the total ring of quotients. The setA is called irreducible if Ai is irreducible in Ri
for all i, 1 6 i 6 p.

The key property of irreducible characteristic sets, which we need for the proof of our bound, is
formulated in Sadik (2000, Lemma 20). In addition, our proof of the bound will require existence
of a characteristic set satisfying the statement of Proposition 19, which is a property of canonical
characteristic sets. Lemma 26 provides the necessary combination of the two properties. Note that it
does not imply that the canonical characteristic set must be irreducible, which, in fact, is not always
the case:

Example 25. Consider the ideal I = {x2 − t, (zx+ 1)y+ 1} ⊂ k{x, t, z, y} and any ranking such that
y > z > x > t . The set x2 − t, (zx + 1)y + 1 is an irreducible characteristic set of I . The canonical
characteristic set of I , which is equal to x2 − t, (z2t − 1)y+ zx− 1, is not irreducible because

(z2t − 1)y+ zx− 1 = (z2x2 − 1)y+ zx− 1
= (zx− 1)(zx+ 1)y+ (zx− 1)
= (zx− 1)((zx+ 1)y+ 1)

in the polynomial ring Quot
(
k[x, t]/(x2 − t)

)
[y, z].

Lemma 26. Let A = A1, . . . , Ap be an irreducible characteristic set of a prime differential ideal P in
k{y1, . . . , yn}. Let i ∈ {1, . . . , p}, and let y

(s)
t be a derivative appearing in Ai and not appearing in

A1, . . . , Ai−1. Then

∂Ai
∂y(s)t

/∈ P.

Proof. Suppose that the second condition fails to hold for an irreducible characteristic set A1, . . . , Ap,
which exists by Sadik (2000, Lemma19). Let z be a derivative that does not appear inA = A1, . . . , Ai−1
but does appear in Ai and satisfies

∂Ai
∂z ∈ P . Take the canonical characteristic set C1, . . . , Cp of the ideal

P . Consider the unique factorization domain (see Definition 24):

Ri = Quot(k[Vi−1] / (A1, . . . , Ai−1) : I∞i−1)[Ui].

The derivative z is an indeterminate in this ring. SinceA is irreducible, the polynomial Ai is irreducible
in Ri. The polynomial Ci is reducible to zero w.r.t.A. Hence Ci is reducible to zero w.r.t. Ai in Ri, since
A1, . . . , Ai−1 is a characteristic set of the prime ideal

(A1, . . . , Ai−1) : I∞i−1.

Then, there exists a polynomial Di ∈ Ri such that

iAiCi = DiAi,

because Ci and Ai have the same rank. Since DiAi is divisible by Ci, Ai is irreducible, iAi does not depend
on the leading variable of Ai, and, again, Ai and Ci have the same rank, we have Ci = EiAi for some factor
Ei ofDi. Thus, the polynomial Cimust contain the derivative z. Since the polynomial f = iCiAi−iAiCi ∈ P
is reduced w.r.t. Ai, we have

f ∈ J := (A1, . . . , Ai−1) : I∞i−1.
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Since z does not appear in A1, . . . , Ai−1, there exist generators g1, . . . , gk of the ideal J not containing
this derivative. Then there exist polynomials a1, . . . , ak such that

f = a1g1 + · · · + akgk.

Hence, ∂ f
∂z ∈ J ⊂ P . On the other hand,

∂ f
∂z
=
∂Ai
∂z

iCi −
∂Ci
∂z

iAi +
∂iCi
∂z
Ai −

∂iAi
∂z
Ci ≡

∂Ai
∂z

iCi −
∂Ci
∂z

iAi (mod P).

Thus, from ∂Ai
∂z ∈ P and Proposition 19, we have iAi ∈ P . But the initials of a characteristic set of a

prime ideal cannot belong to it which is a contradiction. �

6.2. Bound for prime differential ideals

The theorem below generalizes Sadik (2000, Theorem 24) to arbitrary rankings. The induction
carried out in Sadik (2000) appears to be applicable only in the case of elimination rankings. Instead
of proving the statement by induction, we construct the set C̃ and choose a special element Ci ∈ C̃.
Both statements are related to the Jacobi bound (Kondratieva et al., 1982), but deducing them from
the bound does not seem to be easier than the elementary proof below. After Theorem 27 we give a
counter-example (Example 28) to Theorem 25 in (Sadik, 2000), from which the bound could easily
follow.

Theorem 27. Let P be a prime differential ideal of order h in k{y1, . . . , yn} and ≤ be any differential
ranking. Then there exists a characteristic set C = C1, . . . , Cp of the ideal P w.r.t. the ranking≤ such that
the order in yt of each Ci does not exceed h for all 1 6 t 6 n.

Proof. For a characteristic set C of P denote the set{
yk | θyk is not a leader of any Cj, 1 6 j 6 p, θ ∈ Θ

}
byN. If for some θ ∈ Θ and t, 1 6 t 6 n, the derivative θyt is the leader of some Cj then we will show
that ord (Cq, yt) 6 h for all 1 6 q 6 p using Lemma 23. Indeed, since C is autoreduced, we have

ord(Cq, yt) 6 ord θ, (8)

for all q, 1 6 q 6 p. Since dim P = #N, by Lemma 23 there exists a polynomial

0 6= f ∈ k{yt ,N} ∩ P

of order not greater than h. This polynomial depends only on non-leading differential indeterminates
N and the leading differential indeterminate yt .Moreover, f is reducible to zero w.r.t. C. Hence,

ord θ = ord(Cj, yt) 6 ord(f , yt) 6 h. (9)

Inequalities (8) and (9) give us

ord(Cq, yt) 6 h

for all q, 1 6 q 6 p.
Now let yt ∈ N and C be an irreducible characteristic set (see Lemma 26). Also let yCj denote the

differential indeterminate such that θyCj is the leader of Cj for some θ ∈ Θ , that is, yCj is the leading
differential indeterminate of Cj. The main idea is to reduce the polynomial of the smallest order with
respect to yCj

fj ∈ k{yCj ,N} ∩ P

given by Lemma23w.r.t.C. Letu = y(r)Cj be the derivative of yCj of the highest order in fj. Ifwe represent
fj as a univariate polynomial in u then denote by Ifj its leading coefficient. Notice that Ifj does not have
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to be the initial of fj w.r.t. our ranking, but we still use this notation for convenience. For instance, Ifj
would be the initial of fj w.r.t. the elimination ranking yCj > N.We emphasize that

Ifj /∈ P.

Suppose that for some j, 1 6 j 6 p, we have

ord(Cj, yt) > h. (10)

Since fj is reducible to zero w.r.t. C, we must have

ord
(
fj, yCj

)
> ord

(
Cj, yCj

)
. (11)

Denote by ‘‘argmax ord’’ the set of all elements which provide the maximum of the order. Consider

C̃ = argmax
Cj∈C

ord(Cj, yt)

and then choose Ci ∈ C̃ of the lowest possible rank. We can have many elements in C̃. But we take the
special one, Ci. Let ui = θiyi for some θi ∈ Θ and ui be the leader of Ci for simplicity. From (10) and
(11) we have

s = ord(Ci, yt) > h (12)

and

rf = ord(fi, yi) > ord(Ci, yi) = rC ,

where

fi = fi(yi,N) = Ifi
(
y
(rf )
i

)nf
+ a1

(
y
(rf )
i

)nf−1
+ · · · + anf .

Let us reduce each term (coefficients aj, ‘‘initial’’ Ifi , and its ‘‘leader’’ y
(rf )
i ) of fi first by Ci. We need

to differentiate Ci q times and get the remainder f̃ ,where 0 6 q 6 rf − rC . Remember that fi depends
only on yi,N, and their derivatives. By reduction here we mean the following. Any proper derivative
θ of Ci is linear in θui and its initial is equal to the separant of Ci.We simply multiply fi by a sufficient
power (say, nf ) of the separant and replace y

(rf )
i and the derivatives of yi of lower order in fi by the

corresponding tails.
Hence, applying further steps of reduction to the terms of f̃ w.r.t. all Cj we need to differentiate

them less than q times if Cj ∈ C̃. Indeed, the fact that Ci < Cj, as Ci has the smallest rank in C̃, implies

ord
(
Ci, yCj

)
< ord

(
Cj, yCj

)
.

We need to differentiate them at most q times if Cj /∈ C̃. Indeed, the set C is autoreduced, so

ord
(
Ci, yCj

)
6 ord

(
Cj, yCj

)
.

In addition, the variables to reduce can come just from derivatives of variables from Ci.
In the case of rf = rC the polynomial fi can be algebraically reduced to zero using just Ci and

elements C ∈ C \ C̃ because of our choice of Ci.Moreover, the elements of C \ C̃ do not contain y(s)t .
Hence, we can apply (Sadik, 2000, Lemma 20) to get the inequality

ord(fi, yt) > ord(Ci, yt). (13)

Since ord(fi, yt) 6 h, inequality (13) contradicts to inequality (12).
Consider the other case of rf > rC .Here, afterwe reduce all leaders ofC from fiwe get a polynomial

depending effectively on y(s+q)t and s+ q > s. Its leading coefficient w.r.t. the derivative y(s+q)t is equal
to

ii1C1 · . . . · i
ip
Cp · s

j1
C1
· . . . · sjpCp · Ĩfi ·

(
∂Ci
∂y(s)t

)nf
, (14)
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where i1, . . . , ip, j1, . . . , jp ∈ Z>0 and Ĩfi is the remainder of Ifi w.r.t. C. Remember that P is a prime
ideal. Hence,

ii1C1 · . . . · i
ip
Cp · s

j1
C1
· . . . · sjpCp /∈ P, (15)

because iCj and sCj /∈ P for all j, 1 6 j 6 p. Moreover, P = [C] : H
∞
C and C is a characteristic set of

[C] : H∞C . Also,

Ĩfi /∈ P, (16)

because Ifi /∈ P due to our choice of fi. By the Rosenfeld lemma, the remainder of fi we are computing
belongs to the prime algebraic ideal (C) : H∞C . Thus, according to Sadik (2000, Lemma 22), its
leading coefficient given by (14) is reducible to zero w.r.t. C. For a prime differential ideal the fact
that an element is reducible to zero w.r.t. a characteristic set means that the element belongs to the
ideal. Using (15) and (16) we conclude that the polynomial ∂Ci

∂y(s)t
belongs to P. Finally, this contradicts

Lemma 26. �

Example 28. Consider the prime differential ideal

P =
[
x+ z ′, y+ x′

]
in the ring k{x, y, z}. Since the characteristic set of P w.r.t. the orderly ranking with x > y > z is equal
to z ′ + x, x′ + y, the order of P is 2. On the other hand, the set

x+ z ′, x′ + z ′′, x′′(y− z ′′), y′ + x′′

is an algebraic characteristic set of the prime ideal

P(2) := P ∩ k
[
x, x′, x′′, y, y′, y′′, z, z ′, z ′′

]
with respect to the ranking on these variables induced by the elimination differential ranking z < x <
y.We note that according to Sadik (2000, Theorem 25) the set

C = x+ z ′, x′′(y− z ′′)

must be a characteristic set of P with respect to the elimination ranking z < x < y, but this is not
correct since C is not autoreduced.

6.3. Characterizable ideals: Estimate for the bound

We do not need the ordinary case for the following result. Fix a ring of differential polynomials
k{y1, . . . , yn}.

Theorem 29. Suppose a function h from the set of prime differential ideals to the set Z>0 is such that for
any prime differential ideal P there exists its characteristic set C1, . . . , Cp with the property ord Ci 6 h(P)
for all i, 1 6 i 6 p. Then for any characterizable differential ideal I there exists its characteristic set
B = B1, . . . , Bk characterizing this ideal (I = [B] : H∞B ) such that

ord Bi 6 max
16j6n

h(Pj) =: h(I)

for all i, 1 6 i 6 k, where the set of ideals {Pj | 1 6 j 6 n} is the minimal prime decomposition of I.

Proof. Take the minimal prime decomposition I =
⋂t
j=1 Pj and choose a characteristic set Cj =

Cj,1, . . . , Cj,pj ⊂ Pj with ord Cj,i 6 h(Pj) 6 h(I) for all i, 1 6 i 6 pj, and j, 1 6 j 6 n. We have

I =
t⋂
j=1

[Cj] : H∞Cj .

Let B be any characteristic set of I characterizing this radical differential ideal, that is, I = [B] :
H∞B , and L be the set of its leaders which is uniquely determined by I and does not depend on the
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choice of B. Let N be the (infinite) set of all other variables from k{y1, . . . , yn}. From Hubert (2000,
Theorem 4.5) we know that

J = (B) : H∞B =
t⋂
j=1

(Cj) : H∞Cj

in the ring k[N, L] and B is an algebraic characteristic set of J which can be computed, e.g., from the
reduced Gröbner basis G of the ideal J . We just need to notice that G can be computed from all Cj
without involving extra variables from the set N . To conclude that I = [B] : H∞B we use the lemmas
in Hubert (2000, Lemmas 3.5, 3.9, and 6.1). �

Let us switch to the ordinary case and see what Theorem 29 gives us.

Corollary 30. In the ordinary case for a characterizable differential ideal I there exists a characteristic set
C = C1, . . . , Cp with the following properties:

• I = [C] : H∞C .
• ord Ci 6 ord I (see Definition 21) for all i, 1 6 i 6 p.

Proof. Follows from Theorems 27 and 29 setting h(P) = ord P . �

6.4. Bounding orders in canonical characteristic sets

We need the ordinary case for the following assertions about bounds.

Theorem 31. Let C = C1, . . . , Cp be the canonical characteristic set of a characterizable differential ideal
I. Then

ord Ci 6 ord I

for all i 6 i 6 p.

Proof. Let B = B1, . . . , Bp be a characteristic set of I given by Corollary 30. We have ord Bi 6 ord P
for all i, 1 6 i 6 p. Take the canonical characteristic set C of the algebraic ideal (B) : H∞B in the
ring k[U], where U is the set of derivatives effectively present in B. Then rkC = rkB, and C is a
differentially autoreduced subset of I . That is, C is a characteristic set of I . Moreover, C satisfies the
requirements of Definition 1. Thus, C is the canonical characteristic set of I . The fact that C ⊂ k[U]
implies the statement. �

7. Computation of the canonical characteristic set

We do not assume the ordinary case now. Fix a differential ranking. Given any characteristic set
A of a characterizable differential ideal I , it is easy to compute the canonical characteristic set. In
Boulier and Lemaire (2000, Section 5), the canonical characteristic set is computed by inverting the
initials. Alternatively, by the remark after (Hubert, 2000, Lemma 3.9), the reduced Gröbner basisB of
(A) : H∞A in k(N)[L]w.r.t. the lexicographic monomial ordering induced by the ranking has the same
rank as A. By clearing out the denominators of B, we thus obtain a characteristic set C of (A) : H∞A ,
whose initials do not depend on the leaders. By Corollary 18,C satisfies the properties required for the
canonical characteristic set by Definition 1. Thus, due to the uniqueness of the canonical characteristic
set, C must be this set. Moreover, elements of C do not have factors in k[N].
Note that an idealwhich has a canonical characteristic setmay not be characterizable. For example,

such is the algebraic ideal generated by the polynomial xy, where x < y. However, the polynomial xy,
which constitutes the canonical characteristic set of this ideal, has a factor x ∈ k[N]. It is not known
whether a non-characterizable radical differential idealmay have a canonical characteristic set whose
elements do not have factors in k[N].
Algorithm5 computes the canonical characteristic set, given a set of generators of a characterizable

differential ideal. Alternatively, one can assume that the characterizable differential ideal is given as
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Algorithm 5. Characteristic Set of a Characterizable Differential Ideal
Input: a finite set F of differential polynomials such that

the radical differential ideal {F} is characterizable.
Output: the canonical characteristic set of {F}.
let C = Rosenfeld_Gröbner(F) and C = C1, . . . ,Cq
let [Cij ] : H

∞
Cij
be the components whose characteristic sets have sets of leaders

of the highest possible rank in C and 1 6 j 6 k

let I ′ =
k⋂
j=1

(
Cij
)
: H∞Cij

L := Leaders
(
Ci1
)

N := ΘY \ΘL
GB := Reduced_Gröbner_Basis(I ′) in k(N)[L]
N ′ := {x ∈ N | x appears in GB}.
D := Clear_out_denominators(GB) in k(N)[L]
divide each element ofD by its leading coefficient from k
return D

an intersection of other characterizable differential ideals—in that case, start the algorithm from the
second line.
It may seem that Algorithm 5 allows one to check whether a radical differential ideal is

characterizable (by computing the canonical characteristic set). But this is not the case. As we
have seen above, there exist non-characterizable radical differential ideals, which have canonical
characteristic sets.

Remark 32. Note that in the second line of Algorithm 5 it would not be sufficient to consider only the
characterizable components having characteristic sets of the highest rank in C. Indeed, let x > y > z,
and consider the following algebraic characterizable ideal and its decomposition into characterizable
components:

I = (y2 + z, x3 + x2y+ xy− z) = (y2 + z, x+ y) ∩ (y2 + z, x2 + y).

Characteristic sets of both components have the same set of leaders, {x, y}. The component of the
highest rank is (y2 + z, x2 + y) and, clearly, I 6= (y2 + z, x2 + y).

Proposition 33. Algorithm 5 computes the canonical characteristic set of a given characterizable
differential ideal {F}.

Proof. Let C be the canonical characteristic set of the characterizable ideal I = {F}. First, let us prove
an auxiliary:

Lemma 34. Let P be a prime differential ideal with a characteristic set A whose set of leaders coincides
with that of C, where C is a characteristic set of [C] : H∞C = I . Assume also that I ⊆ P. Then
(C) : H∞C ⊂ (A) : H

∞
A .

Proof. Let f ∈ (C) : H∞C . Then f is partially reduced w.r.t. C. Since the leaders of A and C coincide,
f is partially reduced w.r.t.A. Since f ∈ I and I ⊆ P , we have f ∈ P . Hence, by the Rosenfeld lemma,
f ∈ (A) : H∞A . �

Consider the prime decomposition I =
⋂
Pi, where Pi’s are theminimal prime components of I . Let

Ai be a characteristic set of Pi, then, according toHubert (2000, Theorem4.5), the ideal P ′i = (Ai) : H
∞
Ai

is a minimal prime component of the algebraic ideal (C) : H∞C . Consider also the minimal prime
decompositions Jl =

⋂
Qlj of the characteristic components Jl = [Cl] : H∞Cl of I . The intersection

of these decompositions is a finite prime decomposition of I . According to Ritt (1950, Section I.16),
every minimal prime component appears in every finite prime decomposition of the radical ideal I ,
which implies that every Pi can be found among Qlj. Moreover, according to Hubert (2000, Theorem
3.2), the leaders of Ai coincide with the leaders of C, hence Pi can be found among those Qlj whose
characteristic sets have leaders coinciding with the leaders of C.
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Applying Theorem 3.2 of (Hubert, 2000) again, we obtain that Pi can be found among the minimal
prime components of those Jl whose characteristic sets Cl have leaders coinciding with the leaders of
C. Now, since for each l, I ⊆ Jl, the rank of the set of leaders of Cl is lower than or equal to the rank of
the set of leaders of C. Hence, Pi can be found among the minimal prime components of those Jl, for
which the set of leaders of Cl has the highest rank, that is, among the minimal prime components
of Ji1 , . . . , Jik . Thus, by Hubert (2000, Theorem 4.5), every minimal prime P

′

i of the algebraic ideal
(C) : H∞C can be found among the minimal primes of the algebraic ideals(

Ci1
)
: H∞Ci1 , . . . ,

(
Cik
)
: H∞Cik ,

and we obtain

(C) : H∞C ⊇
k⋂
j=1

(
Cij
)
: H∞Cij = I

′.

The inverse inclusion follows from Lemma 34. Hence, I ′ = (C) : H∞C , and the canonical characteristic
setD of I ′ computed by the above algorithm coincides with that of (C) : H∞C and of I . �
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