2,741 research outputs found

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    Developmental Flight Test of a Powered Approach Stability Augmentation System on the U.S. Navy\u27s E- 2C Hawkeye 2000 Aircraft

    Get PDF
    The E-2C aircraft is a Navy carrier based high-wing, twin engine turboprop powered aircraft used for the Airborne Early Warning (AEW) mission. In the power approach configuration, the aircraft displays strong adverse yaw, weak directional stability, and excessive rudder control power. These antagonistic characteristics, when coupled together, result in an extremely high workload for the pilot during both carrier and field landings. Although the aircraft has a yaw axis stability augmentation system, it is currently only applicable to cruise conditions. Engaging the stability augmentation in the power approach configuration results in a 1 Hz directional oscillation due to the system’s high gain schedule. Additionally, another attribute of the existing system design results in extremely high rudder pedal forces while maintaining sideslip in crosswind conditions. Northrop Grumman developed Flight Control Computer (FCC) software patches designed to improve the handling qualities on landing approaches. These patches are designed to change the rudder control gain schedule to allow the use of stability augmentation in the power approach configuration and suppress the divergent Phugoid characteristic throughout the flight envelope. The system is a directional axis controller only and termed the Powered Approach Stability Augmentation System (PASAS). Initial flight tests on a developmental system provided the design parameters for the production system, which was eventually installed in the Navy’s newest E-2C variant, termed Hawkeye 2000. The ensuing flight test program consisted of land based test flights during the summer of 2001, and culminated in a ship trial consisting of multiple landings on the USS Truman in March of 2002

    Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images

    Full text link
    We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context leading to context sensitive inferencing. To realize context sensitive inferencing we used a softmin operator with a tunable parameter. The proposed scheme is tested on several multispectral satellite image data sets and the performance is found to be much better than the results reported in the literature.Comment: 23 pages, 7 figure

    Scalar Quantization as Sparse Least Square Optimization

    Full text link
    Quantization can be used to form new vectors/matrices with shared values close to the original. In recent years, the popularity of scalar quantization for value-sharing applications has been soaring as it has been found huge utilities in reducing the complexity of neural networks. Existing clustering-based quantization techniques, while being well-developed, have multiple drawbacks including the dependency of the random seed, empty or out-of-the-range clusters, and high time complexity for a large number of clusters. To overcome these problems, in this paper, the problem of scalar quantization is examined from a new perspective, namely sparse least square optimization. Specifically, inspired by the property of sparse least square regression, several quantization algorithms based on l1l_1 least square are proposed. In addition, similar schemes with l1+l2l_1 + l_2 and l0l_0 regularization are proposed. Furthermore, to compute quantization results with a given amount of values/clusters, this paper designed an iterative method and a clustering-based method, and both of them are built on sparse least square. The paper shows that the latter method is mathematically equivalent to an improved version of k-means clustering-based quantization algorithm, although the two algorithms originated from different intuitions. The algorithms proposed were tested with three types of data and their computational performances, including information loss, time consumption, and the distribution of the values of the sparse vectors, were compared and analyzed. The paper offers a new perspective to probe the area of quantization, and the algorithms proposed can outperform existing methods especially under some bit-width reduction scenarios, when the required post-quantization resolution (number of values) is not significantly lower than the original number

    A support vector-based interval type-2 fuzzy system

    Get PDF
    In this paper, a new fuzzy regression model that is supported by support vector regression is presented. Type-2 fuzzy systems are able to tackle applications that have significant uncertainty. However general type-2 fuzzy systems are more complex than type-1 fuzzy systems. Support vector machines are similar to fuzzy systems in that they can also model systems that are non-linear in nature. In the proposed model the consequent parameters of type-2 fuzzy rules are learnt using support vector regression and an efficient closed-form type reduction strategy is used to simplify the computations. Support vector regression improved the generalisation performance of the fuzzy rule-based system in which the fuzzy rules were a set of interpretable IF-THEN rules. The performance of the proposed model was demonstrated by conducting case studies for the non-linear system approximation and prediction of chaotic time series. The model yielded promising results and the simulation results are compared to the results published in the area

    A support vector-based interval type-2 fuzzy system

    Get PDF
    In this paper, a new fuzzy regression model that is supported by support vector regression is presented. Type-2 fuzzy systems are able to tackle applications that have significant uncertainty. However general type-2 fuzzy systems are more complex than type-1 fuzzy systems. Support vector machines are similar to fuzzy systems in that they can also model systems that are non-linear in nature. In the proposed model the consequent parameters of type-2 fuzzy rules are learnt using support vector regression and an efficient closed-form type reduction strategy is used to simplify the computations. Support vector regression improved the generalisation performance of the fuzzy rule-based system in which the fuzzy rules were a set of interpretable IF-THEN rules. The performance of the proposed model was demonstrated by conducting case studies for the non-linear system approximation and prediction of chaotic time series. The model yielded promising results and the simulation results are compared to the results published in the area
    • …
    corecore