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ABSTRACT 
 

 

A typical feed forward neural network relies solely on its training algorithm, such as 

backprop or quickprop, to determine suitable weight values for an architecture chosen by 

the human operator. The architecture itself is typically a fully connected structuring of 

neurons and synapses where each hidden neuron is connected to every neuron in the next 

layer. Such architecture does not reflect the structure of the data used to train it. 

Similarly, in the case where random initial weight values are used, these initial weights 

are also unlikely to relate to the training set. Thus the job of the training algorithm is to 

adjust these weights without any initial suggestion for the structure and general trends 

present in the training data. 

 

This thesis investigates the effect of restructuring a typical fully connected architecture 

into a collection of subnets and processing modules that exhibit an application specific 

ordering. The conglomeration of these modules and subnets will be called a supernet.  

 

The processing modules use techniques such as cluster analysis to find general patterns 

within the training set – somewhat like a low-resolution representation of trends within 

the data. The subnets are then used for “drilling deeper” into examples that exhibit these 

trends to produce a higher-resolution representation of aspects within the training set. 

Additional modules, referred to as dicer and splicer agents in the text, are used to 

respectively direct training examples to certain subnets, and join outputs from different 

subnets. The resultant structure of a supernet is similar to that of a neural network, but 

instead of being made up purely of neurons and synapses, a supernet is rather an 

assemblage of processing modules and neural subnets connected with dicers and splicers. 

 

The goal of this thesis is to demonstrate practical advantages of supernets and how they 

can improve performance of standard training algorithms. A selection of supernet models 
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are reviewed and compared with a standard fully connected neural network structure.  

 

The results of this practical evaluation show that there are definite benefits to the supernet 

technique, such as the Classification Based on Subnet Error (CBSE) model that works 

well with clusters that exhibit dissimilar local behavior. Since a supernet is designed 

specifically for certain types of application, it cannot be expected to improve 

performance for general applications. Thus it is necessary to develop a specially tailored 

supernet for the particular type of application for which it will be used. Although this can 

result in more work for the neural network developer, it is possible to radically reduce 

this workload by reusing modules and having a quick and simple means to connect them. 

If similar types of applications occur frequently, then the effort in developing supernets 

for these reoccurring applications should provide long-term benefits, since in the long run 

it will be easier to acquire trained neural networks for these applications. Such an effect is 

not necessarily achieved using standard neural networks since they are designed for 

universal use and as such do not have a structure that is optimized for specific types of 

application. 
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1 INTRODUCTION 
 

Clustering is the process of grouping items together based on self-similarity. This is one 

of the most natural ways to split a large, disordered set of data into a more ordered 

collection of subsets where elements in a certain subset are more closely related to one 

another than to elements in other subsets. 

 

An everyday illustration of effective clustering is to consider how a person might 

construct a difficult, 1000-piece jigsaw puzzle. 

 

Initially all 1000 pieces are in a disorganized pile lying on a table. Some pieces are face-

up while others show only a cardboard backing. The usual strategy that most sensible 

people use when building a puzzle involves organizing the pieces before actually 

attempting to connect the pieces together. It would indeed make things far more difficult 

if this step was skipped and the person building the puzzle decided to start by selecting 

one piece from the top of the pile, putting it face-up on the table and then attempting to 

find a matching piece in the rest of the pile. Such a technique might work with very 

simple puzzles, but for larger puzzles the only outcome would be frustration and time 

wastage. 

 

The typical organizational strategy for building a puzzle (Jigsaw Puzzle, 1997/2002) is to 

first categorize the pieces according to corner and side pieces, then to arrange all pieces 

(maintaining the separation of the sidepieces) into piles of similar-colored pieces, and 

then possibly to divide these colored piles even further according to the number of 

connections each piece has. Only then, when all the pieces are organized should the 

puzzle be build, focusing on getting the sides of the puzzle completed first. The general 

strategy in connecting the pieces is to get the easy pieces connected first so that when it 
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comes to selecting more difficult pieces to join there are fewer options to try.  

 

In all these steps it is quite easy to delegate tasks to other people who are willing to help 

with the puzzle. For instance during the first step of organizing the pieces into piles 

people can be designated to look for certain types of puzzle pieces. Then, when it comes 

to connecting pieces, each person concentrates on building one or more sub-puzzles with 

the ability to add to other sub-puzzles if suitable pieces are spotted. 

 

This discussion shows that the method of solving this particular problem effectively relies 

on imposing an order on how the puzzle pieces are grouped together and on choosing the 

right set of procedures to follow when connecting the pieces. 

 

Although the act of building a puzzle is a physical task performed by a human, there are 

some parallels that can be drawn between building a jigsaw puzzle and using a collection 

of simple functions to approximate a more intricate function. The human puzzle builder is 

attempting to join a set of pieces that fit together in a specific way so that the end result 

of this construction represents a conceptual whole. In a similar way a function can be 

approximated by “fitting” together an appropriate selection of simple functions. For 

example consider how the exponential function can be approximated by the first few 

terms in its Taylor series for values of x between 0 and 1 using the basic functions 1, x, 

x2, x3 as follows: 

 

exp(x) ≈ 1 + x + x2/2 + x3/6 

 

Here these basic functions, or function kernels, have been joined together using a 

weighted sum of their outputs. This weighted sum produces the requested result 

(illustrated in Figure 1), which is an approximation to the exponential function. 
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Figure 1: Exponent Function Approximation. 
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An Artificial Neural Networks (ANN), when used for function approximation, is 

attempting to perform such an operation automatically by combining a set of function 

kernels in such a way that together they produce an approximation for a certain function. 

An ANN is also commonly referred to as a universal function approximator because it is 

meant to be capable of generating an approximation for any given function. Thus the 

problem an ANN faces when doing this can be considerably more difficult than building 

a jigsaw puzzle. 

 

Instead of being limited to two dimensions, like a jigsaw puzzle, a general ANN needs to 

be able to produce approximations for functions operating in n dimensions. And instead 

of a finite number of possible permutations in which puzzle pieces can be joined, an 

ANN has to deal with a practically infinite number of permutations in ways to connect its 

functional kernels. Thus an ANN has to deal with both the “curse of dimensionality” 

(Duda & Hart, 1973) and extreme permutations in it attempt to find a suitable solution. 

 

However, an ANN also has a few strategies that can make its task easier, choices that are 

not available for jigsaw puzzles. An ANN can choose its function kernels (or functional 

“puzzle pieces”) and how to connect them. In contrast, jigsaw puzzles have a specific set 

of pieces that can be connected together in only one way. 

 

Sigmoid functions are one of the easiest and most effective choices for function kernels. 

They are essentially a kind of smoothed step function and therefore can be used to 

approximate transitions within a data set. The output of a sigmoid is symmetric and 

bounded. The transition between these bounds can be made either gradual or sharp so as 

to better mimic transitions within in the original data. 

 

A sigmoid in 3D looks somewhat like an elastic sheet that can be stretched out to “cover” 

the training data. Although the sigmoid has what appears to be an uninteresting basic 

shape, this is probably the most powerful aspect of the sigmoid because it is usually 

easier to construct a complex structure using simple shapes that it is to use more complex 
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shapes that have many features (the features tend to get in the way and make the problem 

harder). A combination of these basic sigmoid shapes leads to far more interesting and 

detailed shapes, as shown in Figure 2. Each additional sigmoid has an effect of 

introducing additional folds to the “sheet” used to cover the data. 

 

 

1.1 Problem Statement 

 

Standard training methods for neural networks, such as backpropagation (discussed in 

Section 2.2), are excellent for “fitting” function kernels together. They generally make 

small changes to weight values in the network until the network suitably approximates 

the global behavior of its training data. But such a method does not have a means to make 

explicit use of any prior knowledge regarding the training data, such as how examples 

could be ordered, which examples have similar output behavior, which examples are 

most different from one another, etc. Using the jigsaw analogy, a standard training 

algorithm appears to be doing two things simultaneously: attempting to both organize and 

connect pieces at the same time. The normal way of using these algorithms may be the 

best way to train a neural network if no prior knowledge is available regarding the 

training data in use. However, if prior knowledge is available, it should be possible to use 

these training algorithms in a different way so that they produce better results. This is the 

hypothesis that motivated the development of this thesis.  

 
 

 

Figure 2: Combinations of Sigmoids. 
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1.2 The Supernet Concept 

 

This thesis formulates a hybrid neural network, called a “supernet”, that changes the form 

of a standard neural network so that it has separate pieces that are responsible for 

exploiting known properties of the training data. These pieces are used for the following 

high-level tasks: 

 

• Organization and separation of data 

• High- and low-level pattern discovery 

• Transmission of data to appropriate sub-processes 

• Combination of sub-process results 

 

The architecture of a supernet has significant differences, when compared to that of a 

standard fully connected feed forward neural network model. Conceptually, the ordering 

procedures (referred to as “dicers”) that are used to organize the supernet’s training data 

have an effect of dissecting the fully connected structure of a standard model into pieces 

or subnets. These pieces are separately trained, but every training example does not 

necessarily pass through the entire network. In fact some training examples may be cast 

out entirely if they are deemed redundant. This behavior is quite unlike that of the 

standard model. The outputs of subnets are then joined using “splicing” agents to produce 

a final output of the supernet itself. This concept is illustrated in Figure 3. 

 

This thesis develops a selection of supernet models that exhibit various forms of ordering 

and joining operations. These models were developed for a certain set of problems in an 

attempt to improve on the performance characteristics shown by standard neural 

networks trained on the same problems. 
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Figure 3: Conceptual Supernet Structure. 
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1.3 Critical Terminology 

 

The following points introduce terminology that is used throughout this text: 

 

• In the context of this thesis, the term “network” is used interchangeably to refer to 

the high-order operation of either a supernet or ANN. 

 

• The overseer is a human who wants to acquire a trained network by making it 

“learn” from a particular training set. 

 

• A trained network is one that has “learned” the patterns defining its training data 

and can use these patterns to predict outputs for inputs that were not given in the 

original training data, but are still within the input domain. 

 

• The input domain of a network comprises the space of all meaningful inputs that 

can produce meaningful outputs and is dependent on how well the training data 

covers this domain. 

 

• If a network is generally able to produce predictions within a certain error 

tolerance, the network is proclaimed to provide good generalizations, and no 

further training is required. 

 

• A supernet is defined to be an interconnection of subnets and modules. The high-

level behavior of a subnet, when treated as a single input-output process, is 

congruent to that of a conventional neural network since its purpose is also 

function approximation or classification. But the actual design and structure of 

supernets are not congruent to those of a conventional neural network. 
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• Subnets are standard feed forward neural networks that are trained exclusively by 

a standard training algorithm (such as backprop). The subnets used in this thesis 

have a fully connected architecture comprising an input layer, single hidden layer 

and output layer. However, subnets need not be limited to this particular structure. 

 

• Both supernets and subnets have two distinct operations: train and yield. The 

train operation is the process by which the network learns training data. The yield 

operation is the process by which a network predicts an output for a particular 

input. 

 

• Any network that classifies data yields a response that is a classification, whereas 

a network that performs function approximation yields an approximated output 

for the function.  

 

• Training sets comprise training data that is derived from a certain application (or 

process) and is used to train a network. The term “set” is used to indicate that the 

training data is organized into sets of training examples, where each example 

represents an input and consequential output derived from the application. 

 

• Validation sets contain validation examples that relate to a specific training set. 

The validation examples are used to determine the degree to which a network can 

generalize to arbitrary examples within the network’s input domain. These sets 

have the same structure as training sets, but should not contain the same examples 

as given in the training set. One or more validation sets can be used in testing the 

network, although in this thesis the validation examples for a certain training set 

are all collected into a single validation set. 

 

• An epoch refers to one complete pass through a training set where each example 

is processed by the network. 
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• The prediction error is a quantity proportional to the difference between an 

example output and the predicted output for the corresponding example input. 

 

• The mean training error (MTE) is the average prediction error that the network 

exhibits when predicting outputs for its own training set. 

 

• The mean validation error (MVE) is the average prediction error exhibited by the 

network when predicting outputs for all validation sets related to its training set. 

 

The most important performance characteristic is the MVE. Generally the overseer would 

select a certain MVE value that is adequate for the application concerned and then initiate 

the network’s training processes and continue training the network until the MVE is 

achieved. The overseer is responsible for selecting suitable parameters to accomplish this.  

 

1.4 Objectives 

 

The focus of this thesis is to perform a practical investigation into the feasibility of the 

supernet concept. The desired outcomes of this investigation are: 

 

• Determining the benefits supernets offer over standard neural network models 

• Finding what the limitations of the supernet concept are 

• Devising an effective means to develop and train supernets 

 

1.5 Thesis Structure 

 

The structure of this thesis is as follows: 

 

• Chapter 1 introduces the problem this thesis investigates and the outcomes it 
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aims to provide. 

• Chapter 2 provides a literature review that is drawn upon in the development of 

methods used in this thesis. 

• Chapter 3 develops methods for evaluating and creating supernets. 

• Chapter 4 provides detail on the reusable modules that are instrumental to the 

functioning of supernets. 

• Chapter 5 presents the design of each supernet model developed, together with 

test results and a discussion relating to possible optimizations for the models. 

• Chapter  6 evaluates the overall performance each supernet in relation to the 

other models and discusses for which types of problems these supernets are best 

designed to handle. A conclusion is provided that discussion what this thesis 

achieved together with suggestions for future research on the topic. 
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2 Background 
 

This chapter reviews some of the core theories and methods drawn on in this thesis. 

Chapter 4 provides a selection of algorithms for the methods reviewed in this chapter. 

 

2.1 Artificial Neural Networks (ANNs) 

 

An Artificial Neural Network (or ANN) is a data processing paradigm that was inspired 

by the way in which an organic (i.e. human or animal) brain functions. An ANN is an 

attempt to design a computer program that mimics the ability of the organic brain to 

estimate responses for certain stimuli based on only a small number of training examples 

(Abdi et al, 1999). 

  

An organic brain features a huge number of neurons that are traditionally assumed to be 

connected together by synapses. Each synapse is a unidirectional connection that 

transmits either excite or inhibit messages from a source neuron to a destination neuron. 

An input stimulus gives rise to a sequence of these neuron activations, often called 

“firings”, that propagates through parts of the brain at various levels of excitation or 

inhibition, finally terminating in some form of response or decision (even if this decision 

is to do nothing). This is all happening on an immense scale: the number of neurons in 

the brain is in the order of billions, while the number of synapses in a brain is many 

orders of magnitude greater than this. In fact there are as many as 10,000 synapses for 

each neuron (Haykin, 1994: 2). So even simple decisions are likely to be derived from a 

massive number of neural firings. 

 

Even though a microprocessor, which performs events in the nanosecond range, might 

appear blindingly fast compared to the operation of neurons in a brain, which typically 

 12



perform events only in the millisecond range, the vastly parallel and interconnected 

nature of the brain greatly outperforms a microprocessor for highly complex tasks such as 

image recognition and converting sounds into meaning (Kosko, 1992: 2). 

 

As in the case of an organic brain, an ANN has certain input stimuli, synapses and 

artificial neurons called nodes. But in the case of an ANN the input stimuli are numbers 

in a vector, the synapses simply pass on weighted values from one node to another, and 

the nodes themselves are mathematical functions. 

 

A typical ANN, such as the one shown in Figure 4 has at least three layers: an input 

layer, one or more hidden layers and an output layer. The input layer contains one node 

for each element of the input vector (x) and each input node is fed an element of the input 

vector (i.e. the i’th neuron is fed with xi) and passes this value on to the first hidden layer. 

 

The layers between the input and output layers are called hidden layers because the nodes 

in these layers neither receive input directly from sources, nor send values directly to 

destinations that are external to the network. 
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Input 
vector 

Output 
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 x2 
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zout

 
out 

 z2 
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Figure 4: Fully Connected Artificial Neural Network. 
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In a fully connected feed forward artificial neural network each input node passes its 

value on to every node in the first hidden layer, then every node in the first hidden layer 

passes its output to every node in the second hidden layer, and so on until the last hidden 

layer passes all its outputs to every node in the output layer. The outputs that are 

produced by the nodes in the output layer are assembled into the final output vector (zout) 

that forms the predicted output of the network. 

 

From this discussion, a feed forward network can be summarized as one that passes 

results only forward from one layer to the next and does not have any loop back 

connections. Although feedback network models do exist, such as Fuzzy Cognitive Maps 

(Kosko, 1992: 152), only feed forward networks are considered in this thesis. 

 

The actual operation of nodes within an ANN determines the overall operation of the 

ANN. The operation of input nodes is trivial since they merely pass on input values 

unchanged. However, the processing power of the neural network lies in its hidden nodes 

and output nodes. 

 

Figure 5 illustrates a typical node found in either a hidden layer or output layer. 

Generally such a node has multiple inputs represented by elements of a vector x and an 

equal number of weight values, represented by a vector w. The elements of the input 

vector x are combined using the weight values in w to form a scalar value that is then 

passed through the transfer function f. There are various ways to combine the input 

elements of x using the weights w, but the easiest and by far most common method is to 

use the dot product of w and x. The result returned by f(wT.x) is the output of the node 

and is shown on the diagram as the scalar value y. 

 

If the node is in the hidden layer then output y is passed on as an input element to the 

nodes in the next layer. If the node is in the output layer, then y is actually an element of 

the final output vector zout of the neural network. 
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Figure 5: A hidden or output node. 

 

The choice of f depends more on the training data used and the application in which the 

network is used, but generally choosing f from the family of sigmoid functions produces 

adequate results (Theodoridis & Koutroumbas, 1999: 92). 

 

From the design of a single node, it becomes apparent that the weights are in effect 

mimicking the operation of synapses in a brain, since in a neural network the weight 

values are a form of excitation or inhibition message. The weight values are also the only 

values that are not fixed by the operation of the network. So the way in which a network 

is trained is by adjusting its weight values so that the predicted output, zout, of the network 

is suitably close to the example outputs given in the training set. 

 

There are two classes of neural network training methods: either supervised or 

unsupervised methods. Supervised methods train a network using an external “teacher” 

(Haykin, 1994: 57) that tells the network what output should be given for a certain input. 

Training examples for such algorithms comprise an input part and a corresponding output 

part. The backpropagation algorithm described in Section 2.2 is an example of a 

supervised training method. 
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Unsupervised learning (or self-organization) occurs where there is no external “teacher” 

available to correct the learning performed by the network. The training examples 

therefore have only an input part and no output part. The free parameters (not necessarily 

weights) of such networks are generally tuned according to statistical regularities in the 

data (Haykin, 1994: 65). Clustering is a form of unsupervised learning and is used by 

sub-processes in some of the supernet models (see Section 4.1). 

 

An important factor regarding the operation of a neural net is the choice of how output 

from the network is used for a certain application. In the case of conditional outputs, such 

as when an ANN is controlling a system, binary or bipolar outputs may be desired 

(Kosko, 1992: 43). Binary signals are either 0 (for false) or 1 (for true). However, since 

neural nets produce fuzzy outputs, forcing these outputs to be binary would hide the 

uncertainty of these results. This could have a detrimental effect on the training of the 

network because it would be difficult to determine by how much a predicted output is in 

error when compared to a desired output (i.e. it would either be completely wrong or 

completely right). Bipolar signals are often used instead as they are real values (usually in 

the range [-1, 1]) and can provide the training algorithm with a means to determine a 

degree of “falseness” or “trueness” based on the magnitude of negative or positive 

results. 

 

As mentioned in Section 1.3, the aim of a neural network is not to produce perfect 

predictions for its training set, but rather to generalize, being able to produce suitably 

correct predictions for arbitrary examples not found in the training set. Thus the choice of 

a neural net’s architecture and the mechanism by which it is trained should be optimized 

for this concept of generalization. 
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2.2 Backpropagation 

 

Backpropagation is a supervised learning algorithm that computes the synaptic weights 

for a feed forward neural network. It is in essence a minimization process which finds 

optimal weight values that causes the output error of the network to reach a global 

minimum. 

 

There are two basic modes in which supervised training algorithms do this: either using 

batch mode or incremental mode. In the batch mode weights are changed by an averaged 

amount only at the end of each epoch, while the incremental mode changes the weight for 

each training example. The operation mode used for this thesis is incremental, as this is 

well supported by the EbTide neural network testing software discussed in Section 2.5 

 

Backpropagation is a form of gradient descent that operates in the weight space. 

Therefore each transfer function used by each node in the network must be differentiable 

(Haykin, 1994: 185). Sigmoid and gaussian functions are used in the code developed for 

this thesis; they are both differentiable functions. 

 

Generally, the choice of using sigmoids or gaussians depends on what type of training 

data is being used. Remember from Chapter 1 that sigmoids are like flexible sheets that 

are good for “stretching” over training data. So if the training data has mostly smooth 

areas and few “dips” and “peaks” then a sigmoid should be able to approximate such data 

well. The gaussian, on the other hand, is better suited to data that is more “bumpy”. 

Seeing as the shape of a gaussian is itself a “bump” these functions are expected to work 

well for approximating “bumpy” data. Gaussians can be used as a kernel function for a 

backpropagation network or as Radial Basis Functions (RBF) in RBF Networks 

(discussed in Section 2.3). 
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The formulae for the scaled sigmoid and gaussian functions are shown below together 

with their first derivative: 
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The s parameter represents a scaling factor for both functions, a changes the slope of the 

sigmoid and σ is the standard deviation for the gaussian that determines how steep its 

graph is. Figure 6 illustrates the effect of these parameters. Notice that smaller values of 

a cause the sigmoid to be become drawn out, making the transition more gradual. 

Similarly, small values of σ cause the gaussians to be steeper. The parameter s is used to 

ensure that the range of a function is sufficient to reach all the desired output levels, 

while the a and σ parameters are used to tweak the functions allowing for more 

convenient weight ranges (floating point values have a limited precision after all). 

 
 

(a) 

s = 1    σ = 1
s = 1    σ = ½
s = 1.3 σ = 2

s = 1    a = 1
s = 1    a = 2
s = 1.3 a = ½

f(
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g(
x)

 

x 
(b) 
x 

 

Figure 6: Effect of altering sigmoid and gaussian parameters.  

(a) Asymmetric sigmoids and (b) gaussians. 
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The Backpropagation algorithm is a two-stage process. In the first stage a training 

example (x) is fed forward through the network producing a predicted output vector (zout). 

The next stage computes an error vector (e) that is the vector difference between zout and 

the desired output (zdes). This error vector is transformed into an error signal (δout) using 

the derivatives of the output nodes’ transfer functions and their weights. This is explained 

in Abdi et al (1999: 74). This error signal is then propagated further backward one layer 

at a time in the same way.  

 

Once the error signal has been backpropagated through the network using the connection 

weights, the weights are adjusted so as to minimize the mean squared error between the 

desired and actual outputs. The weights are changed iteratively by a small amount. The 

amount by which the weights are changed depends on the learning rate (η) used for the 

node in question. Generally all nodes in a single layer all have the same learning rate. 

 

The backpropagation algorithm is applied for a certain number of epochs until the error is 

reduced to a desired level (to the desired mean training error). If the error value does not 

converge towards a small enough value or converges too slowly, then the training has to 

be restarted using different values for the training parameters (i.e. the learning rate or 

number of hidden nodes needs to be modified) or different initial weight values. 

 

The standard backpropagation algorithm is given in Section 4.3. Further detail regarding 

backpropagation and a detailed explanation of is implemented is given in Saarinel el al 

(1992: 31-42). 

 

 

2.3 Radial Basis Functions (RBFs) 

 

A Radial Basis Function (RBF) network is a form of neural network whose kernels 

functions are radially (i.e. spherically) symmetric around a center point. The nodes in an 
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RBF networks also have weight vectors that converts the input vector to the node into a 

scalar value. However, the weight vector is commonly called a centroid as it represents 

the point around which input vectors produce symmetric output. 

 

At a high level, the basic form of an RBF network is equivalent to that of a general neural 

network described in Section 2.1 since it is a feed forward network that has three layers 

(where the input and output layers are joined by a single hidden layer). However, its inner 

workings are slightly different. An RBF network generally uses a form of Euclidean 

distance function instead of a simple dot product as a means to map its input vector to a 

scalar value. This scalar value is then passed through a gaussian function. Thus a standard 

RBF network has the following form of function kernel: 
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−  where σ is the standard deviation of the

gaussian, and ci is a centroid  

 

A view of the output produced by an RBF kernel function operating on a grid of 2D input 

points (the x-y plane) is given in Figure 7. This illustrates the symmetric behavior of 

RBFs. 

 

The term “Radial Basis Function” thus refers to using a radial distance from a certain 

centroid to calculate the output of the function. Consequently, for a specific RBF 

function, all inputs that are an equal distance from the centroid all have the same output. 

 

The RBF network learns a dataset by moving its centers around so that the combined 

outputs of the RBF functions approximate a given training set. There are various 

implementations of such training algorithms. For instance, a simple method is to use the 

k-means clustering algorithm to determine the positions of the centroids, but there are 

more optimal methods, such as the genetic algorithms devised by Whitehead and Choate 

(1996). 
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Figure 7: 3D gaussian Surface. 

 

Another significant difference between networks that use sigmoid functions and RBF 

networks is that changing the weights used with sigmoid functions has a global effect on 

the predicted values of the network (Moody and Darken, 1989). But, changes to centroids 

that are used with gaussian functions have only a local effect on the predicted results of 

the network. This is caused by the way in which sigmoid functions are used to 

approximate training data as a combination of steps. In such a situation, each step adds or 

subtracts to the value of the other steps, thus when one of the weight values is changed in 

the network, it is necessary to adjust all the other weight values so as to compensate for 

the global change in the predicted output. 

 

When the centroids are adjusted in a RBF networks, the predicted results of the network 

are only changed locally. Thus, when a change is made to one of the centroids used in a 

RBF network, the only compensation required involves adjustment to the centroids that 

are close to the centroid that was changed. Thus RBF networks only experience a local 

change in their predicted output when a single centroid is changed. 
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A network model that exhibits local changes during each training example is likely to 

learn its data more quickly than a network that exhibits global changes for each training 

example (Dwinnell, 1998). This generally occurs because in the local case there are fewer 

updates required to compensate for changes in the weight values that in the global case. 

Thus a RBF networks generally requires fewer training epochs to learn its training data 

than is require by a standard network using sigmoids. 

 

 

2.4 The Fuzzy Membership Function 

 

A cluster is generally thought of as a grouping of elements that are gathered together 

according to self-similarity or by proximity. However, in some situations it is not always 

possible to determine if a particular element is a member of a specific cluster. When 

attempting to partition training examples according to clusters, there may be a selection 

of examples that cannot be classified with absolute certainty. In such cases it is useful to 

employ the techniques of fuzzy logic to account for ambiguities in the data. Considering 

that neural networks offer an inherent fuzzy nature as well, it seems appropriate to use 

fuzzy clustering techniques on training data. 

 

The term “fuzziness” in the field of Mathematics involves “multi-valence”, and stems 

from the Heisenberg position-momentum uncertainty principle of quantum mechanics 

(Kosko, 1992: 3). Fuzzy truths correspond to truth, falsehood or a degree of 

indeterminacy between truth and falsehood. The fuzzy membership function (also 

commonly called the multi-valued indicator function), Mfuz(x,C ), determines the degree 

of membership to which an element x belongs to a cluster C (Kosko, 1992: 6). The result 

is a value in the range [0,1], where the function is defined as: 
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If x is definitely in the cluster C , then the result of Mfuz(x, C ) is 1. If x it is definitely not 

in C the result is 0. But if x is neither definitely in nor definitely not in C , then the result 

is some value between 0 and 1. Values closer to 1 indicate a greater possibility that x 

belongs in C , and values closer to 0 indicates the lesser possibility that x belongs in C . A 

value of ½ indicates total ambiguity, meaning it is impossible to tell whether x should or 

should not be in C . 

 

The determinate (or binary) membership function Mdet( x,C ) is essentially a special case 

of the fuzzy membership function that is limited to an output of either 0 or 1. This form 

of fuzzy membership function is used for supernets that are designed to process data that 

contain non-overlapping clusters. 

 

 

2.5 EbTide (Example-Based Training Interface Definition) 

 

EbTide is a shared library developed at UTSI that provides a means to rapidly produce 

C++ prototypes for neural network models. EbTide provides a well-defined class 

interface to provide linkage between the shared library and the model prototype that is to 

be trained, fitted or adapted according to a set of examples. This interface is bi-

directional, enabling the EbTide library to call procedures (such as train) in the model, 

and the model can invoke certain EbTide procedures. Definition files form part of the 

code written for a given neural network model, these files provides a means for EbTide to 

access state variables used by the model. 

  

EbTide provides the following services: 
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• 3D Visualization for the training process 

• Statistical reports used when evaluating the performance of a certain model 

• A GUI (Graphical User Interface) for facilitating the operation of EbTide 

• Streaming of model states to/from file 

 

The 3D visualizations provided by EbTide show movement of hyper planes projected in 

3D that indicates how the weight values change. Translucent “clouds” are used to show 

cluster volumes that the model has found. The position of data points indicates the input 

part of the examples (mapped into 3D) while the labels or colors of the data points 

provide an additional dimension that show desired outputs of the examples. Figure 8(a) 

illustrates a sample view of a training set containing 5 non-overlapping clusters. 

 

A surface projection can be generated by the program that allows the user to view 

relationships between a grid of input vectors mapped into 2D and their corresponding 

predicted outputs mapped into 1D. Figure 8(b) shows an Output Prediction Surface 

(OPS) generated from the 5-cluster training data used in Figure 8(a) (notice that the 

central cluster had the highest average desired output). 

 

These visualizations are useful for debugging a particular neural network model and to 

get a “feel” for what the results produced by the model look like. The statistics are 

particularly useful when it comes to evaluating the performance of a certain neural 

network model. 

  

 24



 
 

(a) (b)  

Figure 8: EbTide Vizualization Features. 

 (a) EbTide Cluster Vizualization, (b) EbTide OPS plotted in Matlab. 
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3 EVALUATION AND DEVELOPMENT 
 

This chapter develops the design and evaluation strategies used to develop, test and 

compare supernet models. These strategies are categorized into three major parts: 1) 

evaluation techniques, 2) problem sets, and 3) techniques for accomplishing the tests 

quickly. The evaluation techniques are of particular importance since they are 

fundamental in determining the actual outcomes for this thesis. 

 

 

3.1 Evaluation methods 

 

There are three desired outcomes in the evaluation of a particular supernet model. Firstly, 

it needs to be determined whether a particular supernet can be trained more quickly and 

produce better predictions than a standard model. Secondly, it is necessary to decide if 

one supernet model is better or worse in terms of performance than an alternate supernet 

model. And thirdly, it would be useful to know which aspect of a particular supernet 

causes it to perform better or worse than an alternate model.  

 

The technique used in this thesis was to develop a base model for comparison, which 

exhibits the performance of a standard neural network. This base model will provide a 

standard with which to measure the performance of other models; this standard will be a 

minimal performance measure that supernet models must attain. If a particular supernet 

model is found to offer the same or worse performance than the base model for a certain 

collection of problems, then that supernet model can be discarded for that application 

domain, as it provides no benefit over the base model. 

 

The evaluation method comprises two sub-methods: a testing method and a comparison 
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method. The testing is performed on an individual supernet basis, with no reference to the 

base model or other supernets; it purely establishes on a statistical basis how well the 

supernet has managed to learn a specific set of problems. However, the comparison 

method is concerned with relating the performance of a certain supernet model with that 

of other models. The comparison method essentially produces a “normalized” 

performance rating in relation to the base model, and this measure is used to determine 

the success or failure of a particular supernet model. 

 

3.1.1 The Base Model 
 

The requirement of the base model is that it must be as close as possible to the most 

standard and commonly used model of fully connected feed forward neural networks. 

Since there’s only really one choice in connection architecture, using fully connected 

nodes, the biggest decisions in choosing such a model are: 1) whether to use one or more 

hidden layers, and 2) which training algorithm should be used. 

 

On the topic of choosing the number of hidden layers there is some debate as to whether 

or not a neural network with multiple hidden layers is more powerful than a network with 

a single hidden layer (Hornik et al, 1989). For ease of implementation and since most 

simple backpropagation neural networks have just one hidden layer, the base model 

chosen has a single hidden layer. 

 

The choice of training algorithm is less significant since the goal of the thesis involves 

determining how best to use a standard training algorithm when prior information 

regarding the structure of the training set is known. However the most commonly used 

training method at present is backpropagation therefore this method was chosen for 

training the base model. 

 

Thus the design of the base model is a traditional feed forward neural network that 

exhibits a fully connected architecture containing a single hidden layer. The number of 
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input nodes and output nodes are fixed according to the input and output dimensions of 

the training set. The number of hidden nodes is a free parameter, and so are the learning 

rates used to training nodes in the hidden layer and output layer.  

 

3.1.2 Testing a Model 
 

This thesis attempts to follow the validation guidelines as presented in Burke’s (1993: 20-

24) article on assessing neural networks. This article stresses the importance of using an 

error measure that is both normalized and which represents the standard deviation in 

addition to the mean of differences between a network’s results and the desired results. It 

also indicates the necessity for testing a network with a validation set that is different 

from the training set. Such a technique provides a fairer indication of how well the 

network has learned the patterns governing the process that produced the training set. 

 

Before continuing with a description of how a model is tested, a few definitions are 

required: 

 

• A sample set (S) is used to refer to either a training set or a validation set (they 

both contain a set of examples). 

• The number of examples in the sample set is Nx. 

• For an arbitrary input x to the network, the corresponding desired output for this 

input is zdes(x). 

• When a network is fed the input x it yields a predicted result zout(x).  

 

The normalized mean square error (NMSE) is a method for comparing the mean desired 

output of a sample set against the predicted outputs yielded by the network for inputs in 

the set. The NMSE is calculated in such a way that if its value is greater than 1, then the 

predictions are less accurate than the constant prediction of the sample mean. The NMSE 

is determined by dividing the root mean square (RMS) of prediction errors by the 
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standard deviation (σ) of the desired outputs. 
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During training an NMSE value will be calculated at the end of each epoch to indicate the 

Mean Training Error (MTE) present at the end of that particular epoch. These MTE 

values will show the instantaneous performance of the network for each training epoch. 

These values can then be graphed as a means to visualize the training progress. The final 

MTE value (the value calculated for the last training epoch) will indicate how well the 

model predicts its own training data at the end of training. Another NMSE measure will 

be calculated with respect to the validation set and this will be used as the Mean 

Validation Error (MVE) for the network. This MVE value (as mentioned in Section 1.3) 

indicates the level of generalization that the network has reached. 

 

Each model tested in this thesis will be provided with a table of MTE and MVE results 

that documents how well the model performed on a common collection of problem sets. 

 

3.1.3 Overfitting & Hidden Node Restrictions 
 

Generally, the purpose of a neural network is to provide, on average, the best possible 

predictions for arbitrary input data that is not explicitly contained in the training data. The 

network is supposed to approximate outputs based on the patterns learned from the 
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training data. A problem known as “overfitting” occurs when a neural network has too 

many free parameters. This may cause the network to predict the training data very 

accurately, but is likely to seriously degrade the network’s ability to generalize. This is 

caused by arbitrary inputs being predicted inaccurately due to there being too little 

restriction on the behavior of the predicted outputs in regions between the training 

examples. This problem can also occur when fitting a polynomial to a set of samples. 

Looking at the polynomial case helps to explain the problem of overfitting data. 

 

Figure 9 shows two attempts at fitting two different polynomials to the values [3, 1, ½, 1, 

3]. The underlying function from which the samples are taken is represented by the 

dashed line f(x). Figure 9(a) shows a polynomial p(x) of degree 2 (i.e. only two degrees 

of freedom) that provides a good fit for the samples. In this case the curve varies 

consistently between the sample values. Figure 9(b) shows an undesirable fit using a 

polynomial of degree 12. In this case the polynomial curve intersects the samples, but the 

curve fluctuates excessively between the samples. This fluctuation is due to the curve 

having too many turning points (i.e. too many degrees of freedom), which cannot be 

suitably controlled using the available number of samples. 
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Figure 9: Demonstration of polynomial overfitting. 

(a) Desirable polynomial fit, (b) Undesirable / Overfitted polynomial fit. 
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The weight values for the hidden nodes and output nodes are the only variables that 

change during training of a standard neural network structure (i.e. the base model). Thus 

the number of hidden nodes and output nodes used for a certain base model determines 

exactly how many degrees of freedom are apparent in that model. As in the polynomial 

case, if a neural network has too many degrees of freedom, then the network will contain 

some redundant nodes, which can potentially interfere with the way that the network 

interpolates results between training examples. Conversely, if a network has too few 

degrees of freedom, then the network become too restricted, being unable to 

accommodate anything other than the most general patterns present in a training set.  

 

As a means to reduce the problem of overfitting training data, a restriction needs to be 

imposed on the number of hidden nodes used by a particular neural network model. This 

implies that some trial and error is required to find a suitable number of hidden nodes for 

a particular model, when that model is trained with a certain training set. Therefore, the 

base model and supernet models that are tested in this thesis are limited to a certain 

number of hidden nodes for each training problem. This in turn limits the degrees of 

freedom each model has, thus lessen the likelihood of overfitting training data. 

 

3.1.4 Comparing Degrees of Freedom 
 

As mentioned in Section 3.1.3, the degrees of freedom (df) for the base model is easily 

calculated from the number of hidden nodes (Nh) the model has for a certain problem set, 

given that the problem set contains Ni inputs and No outputs. The following formula can 

be used to calculate this: 

 

( )NoNiNhdf +⋅=)(Β  

 

The degrees of freedom for a supernet are not necessarily determined just by the total 

number of nodes that the supernet has in its subnets. The degrees of freedom changes for 
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different regions of the input space: each cluster may have a different number of nodes 

used in predicting its local behavior. 

 

The processing modules used to join the subnets may provide additional degrees of 

freedom for the supernet. Therefore the calculation of the number of degrees of freedom 

required for a supernet to train a certain problem set is dependent on the number of 

clusters in the problem set, the number of nodes required in each subnet to learn the 

behavior of a certain cluster, and the sub-processing modules used in the supernet. The 

number of inputs and outputs would also affect this. 

 

The exact calculation of the degrees of freedom for a supernet may be rather complex; 

however the following procedure is a suggested means to approximate this calculation, 

using the following assumptions: 

 

• Assume that the processing operations are entirely responsible for performing 

membership selection and training set segregation. Then the subnets are used 

entirely for learning individual clusters. 

• Assume that each subnet has the same number of nodes (or use a mean value, 

calculated by dividing the total number of hidden nodes in the supernet by the 

number of subnets). 

• Assume that each subnet has the same number of input and output dimensions as 

is present in the training set. 

• Assume that clustering (i.e. the modules) adds log2(Nc) degrees of freedom to a 

supernet since a certain number of variables are required to represent the cluster 

spaces. 

 

In such a case the calculation for the number of degrees of freedom in a supernet is: 

 

( ) ( )NoNiNhNcdf +⋅+= 2log)(Μ  , 
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where: 

 

• Nh = the total number of hidden nodes in the network, 

• Ni = the average number of input dimensions, and 

• No = the average number of output dimensions for each subnet. 

 

Since the number of hidden nodes and the degrees of freedom required by a certain 

model to learn a particular training set may not be the same for other models learning the 

same training set, the number of hidden nodes and the degrees of freedom are provided as 

additional measures when testing the models. 

 

3.1.5 Comparing Models 
 

Supernets are compared by determining how well each model performs on a collection of 

problem sets. The technique chosen to do this effectively was to develop a so-called 

Model Comparison Coordinate (MCC) for each problem set that expresses a numerical 

performance rating for a network in relation to the base model. The MCC is calculated 

based on the individual test’s performance on the model using the NMSE error computed 

from the tests (as described in Section 3.1.2). 

 

The evaluation is performed in relation to a common group of problem sets p that 

represents a particular broad application domain for which an efficient supernet model is 

desired. A particular problem P ∈ p represents a specific application within the broader 

application domain p. An efficient supernet is one that generally works well for all the 

problems in application domain p. A simple heuristic for choosing an efficient supernet 

for such an application domain could be to select the supernet that has the lowest average 

MCC for problems within the domain. However, there is a potential risk in this approach 

that outlier MCC values might bias the average. This method is made more reliable by 

using a large number of problems that represent the same application domain. 
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The MCC comprises a pair of absolute valued components, MCCearly and MCCfinal, which 

express train and yield performance for a supernet M in relation to a base model B. The 

MCCfinal component is calculated according to the MVE value which the supernet 

achieved at the end of training divided by the MVE for the base model. The MCCearly 

component is calculated by dividing the MTE value obtained for the supernet after only a 

small number of training epochs have been completed by the MTE value for the base 

model after it has completed the same small number of epochs. 

 

Each network is limited to the same number of training epochs for a particular problem P. 

The number of training epochs for problem P is equal to the number of epochs that the 

base model required to reach a certain MVE value. The number of training epochs used 

in the MCCearly component is taken at 10% of this number. 

 

The MCC for a specific problem set P, a Base Model B, and a supernet model M is given 

by the coordinate ( MCCearly(P,M) , MCCfinal(P,M) ) calculated as follows: 
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The average MCC is the mean of all the coordinates for these sample problems 

representing the application domain p: 
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The intention of the MCCearly component is to indicate which model is the quickest to 

adapt to its training data when given a very limited number of training epochs. The 

MCCfinal component shows which model performs best in the general case in which the 

number of epochs are less restricted. 

 

The plot of the MCC coordinates gives a concise representation of each supernet’s 

performance in comparison to the base model. Figure 10 illustrates a general MCC plot 

in which the origin, that represents the base model B, is at position (1,1). The horizontal 

axis represents the MCCearly component while the vertical axis represents the MCCfinal 

component. Thus supermodels that show better performance than the base model in terms 

of both early and final results will be in the bottom left quadrant, while models that show 

worse performance are in the upper right quadrant. The limits on the axes prevent MCC 

points from gathering too closely in the center. An MCC coordinate of (0,0) is unlikely to 

occur for a supernet unless it produces a NMSE of zero when the base model produces a 

nonzero NMSE for the same data. 
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Figure 10: A general MCC Plot. 
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3.1.6 The 30% Relative Convergence Time 
 

In most situations, a training performance graph exhibits an initial “knee” that asymptotes 

to a certain minimum training error (see Figure 11). The learning rate in the region 

before the “knee” takes place quickly, where the network is producing an initial rough 

approximation of the training data. The asymptotic part of the graph that occurs after the 

“knee” indicates that the network is gradually refining this initial approximation, and 

shows the training error is converging towards a certain minimum value at a forever-

decreasing rate. 

 

Generally, choosing an NMSE slightly below the asymptote shown in the training 

performance graph provides a fairly close estimate for the final training error in the case 

where the number of training epochs is not limited (provided there are no further sudden 

improvements in the training performance – shown by the dotted line in Figure 11).  
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Figure 11: Convergence of training error. 
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From the estimate for the final training it is possible to determine a convergence time that 

indicates how quickly a model converges to this final training error. The convergence 

time can be calculated by determining how many epochs are required to reach a certain 

percentage of the final mean training error (for instance a value 30% above the final 

training error, where 100% above the final training error is defined to be a NMSE value 

of 1). This indicates how quickly the state of a model being trained on a certain problem 

converges to a final state. For instance, one model may take 20 epochs to reach its 30% 

point; while another model may need 30 epochs to reach it’s 30% point. Both models 

may converge to different final training error values. The convergence time merely 

indicates which model takes the least time to get to 30% of its final convergence. 

 

It is useful to compare the convergence time of a supernet to that of the base model to 

determine an indication of how much faster – or slower – a supernet is trained compared 

to the speed that the base model is trained for a particular problem set. The Relative 

Convergence Time (RCT) is an indication determined for a supernet that indicates the 

relative speed at which the supernet converges compared to the speed the base model 

converges. The RCT for a supernet is calculated from the following formula: 

 

)(
)()(

Β
Μ

Μ
CT
CTRCT = , 

 

where CT(M) is the convergence time of the supernet and CT(B) is the convergence time 

of the base model. 

 

If a supernet model is shown to have a low RCT, then the model learns its training data 

more quickly that the base model; conversely a high RCT indicates the model learns it 

training data slowly than the base model. Note that the rate that a model learns it training 

data is not necessarily indicative of how well it can generalize. 

 

The RCT value determined for the comparison of supernets is not equivalent to the 
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MCCearly component of the MCC. The MCCearly component indicates an early MTE for a 

supernet, while the RCT value shows a relative time quantity indicating a degree of how 

much faster or slower a supernet’s training occurs in comparison to the base model. 

 

3.2 Problem Sets 

 

In this text a problem set refers to a training set and its related validation sets. A 

collection of problem sets represents a broad application domain. The problem sets 

chosen for this thesis represent applications whose training data is clustered in one of the 

following ways: 

 

• Non-overlapping (determinate) clusters 

• Overlapping clusters 

• Intertwined but non-overlapping clusters 

 

The problem sets used in this thesis are listed in Table 1 together with information 

regarding the type of clusters found in the data, the number of clusters in the training set, 

the input and output dimensions and the number of training examples given. 

  

Most of the problem sets comprise 2D inputs and a 1D output, which makes it easier to 

visualize outputs as a 3D surface. A higher dimension training set is used to verify 

operation for higher dimensionality, since all the supernets must be capable of using 

multiple input and output dimensions. 

 

The ‘Scatter4’ problem set was developed as a simplistic test to determine how models 

make use of easily separable clusters. This is used as an initial test to see if the supernet 

works for the “trivial” case. As Figure 12(a) shows the ‘Scatter4’ training set contains a 

scattering of samples for each of the four clusters, where each example has as desired 

output the cluster number to which it belongs. 
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Figure 12: Plot of 2D training sets. 

(a) Scatter4, (b) Spiral, (c) Crags2. 
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Table 1: Problem Set Listing. 

Problem Set Type Clusters Inputs Outputs Examples

Scatter4 Non-Overlapping 4 2 1 63 

Spiral Intertwined 2 2 1 34 

Crags2 Overlapping 2 2 1 240 

Wine Overlapping 3 13 3 128 

 

The ‘Spiral’ problem, shown in Figure 12(b), is the classical intertwined spiral problem, 

where one spiral has positive desired outputs, the other negative. The spiral was chosen 

because it cannot be solved by a simple backpropagation network, as shown by Baum 

and Lang (1991: 904-910). The spiral is a form of “intertwined” cluster in that the 

clusters are separable yet cannot be separated into two hyper spheres as a means to 

discriminate between them, as most simple clustering algorithms would attempt to do. 

 

The ‘Crags2’ problem set was contrived from a mesh generated in MatLab. It comprises 

two “mountains” or “crags”. The data points in each crag (or cluster) follow a gradual but 

noisy decline from some maximum value. This noisy decline is not the same in each crag 

nor is it equal at equidistant points from the highest point (if it were, it would be a trivial 

problem for a radial basis network). Each training example consists of a 3D coordinate 

representing a sampled point on the surface of one of the crags. The input part of each 

training example is two-dimensional and consists of the x and y components of this 

coordinate. The output part is the z component that represents the height of the mountain 

at a given grid point. A sampling of the height values at random xy-positions on the grid 

was used to develop the training and validation sets. Figure 12(c) shows a rendering of 

the original mesh that represents the imaginary mountain range. 

 

The “Wine” problem set is multidimensional and originates form the “Wine recognition 

data” training set assembled from real data by Blake (1998) for the UCI machine learning 

database. The training data is used to predict from which winery a particular wine 
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originates using the chemical composition of the wine. There are three possible choices 

of winery. This sample was originally available only as a single sample set, so it was split 

into two parts to form separate training and validation sets. 

 

A view of the wine training set mapped onto the 2D plane is given in Figure 13. The 

dataset was applied to the distance glance algorithm (see Section 4.1.2) in order to 

determine a suitable number of clusters to partition the data into, and to approximate the 

location of these clusters. The clusters are marked C1 to C3 in the figure and the 

estimated size of the clusters, according to their density, are indicated by the circles. 

 

A three-dimensional view of the wine training set is give in Figure 14, and helps to 

illustrate the degree of overlap between the clusters. This problem is notably different 

from the Crags2 problem: For the Crags2 problem there is a small amount of overlap and 

the mountains behave similarly, but the clusters in the wine problem overlap to a higher 

degree and each cluster has different local behavior. 
 

3.3 Optimizing Development and Evaluation Time 
 

The following points were found to take the most amount of time in the development and 

evaluation for this thesis: 

 

• Finding the correct training parameters for backpropagation 

• Execution time to train the network 

• Time taken to implement the model prototypes 

 

The major problem with the standard backpropagation algorithm is the time it takes to 

train and the time spent finding appropriate training parameters. As this thesis involves 

comparing many models with a number of training sets, it was essential to find a strategy 

that could reduce the amount of human effort required to training the models without 

making any changes to the learning algorithm itself. 

 41



 

+ Winery 1 
• Winery 2 
* Winery 3 

 

Figure 13: Plot of the "Wine" training set showing clusters according to DG algorithm. 
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Figure 14: Four rotated views of a 3D representation of the wine training set. 
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3.3.1 Common Strategies 
 

The first attempt to lessen the workload on the human operator was the implementation 

of commonly used strategies that accelerate the backpropagation algorithm without 

making changes to the implementation of the algorithm itself. 

 

Joost and Schiffmann (1998) showed various strategies to optimize the traditional 

backpropagation formulation. This paper also pointed out another, more obvious fact, that 

training is further improved, without data loss, when the inputs are translated by the mean 

and scaled by the standard deviation. Therefore all the training and validation files used 

in this thesis are normalized to have a mean of zero and standard deviation of 1. The 

sigmoid functions were also suitably scaled to reach all the desired outputs in the 

normalized training data. 

 

The following formula was used to perform the normalization of problem sets used in this 

thesis and was applied to each column of input and output values independently: 
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Note that the validation and training sets should be joined for this operation and then re-

separated to ensure accurate normalization for the data. 

 

Another useful technique commonly used to improve the training accuracy (not so much 

the training speed) is to gradually reduce the learning rates for both the hidden and output 
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layers as training processes. This causes the initial rate of training to be fast but 

inaccurate, and then to become progressively slower causing increasingly more accurate 

predictions. This helps to reduce the number of permutations required in selecting 

optimal learning rates. 

 

3.3.2 Applying Computer Power: EP Scripts 
 

Since the techniques in the previous chapter did not make it significantly easier for the 

human to select suitable training parameters, an attempt was made to delegate the bulk of 

the trial and error process used in parameter selection to a cluster of computers. 

 

An “Embarrassingly Parallel” (EP) strategy was use to split-up the training workload. A 

script was developed that, given n processor nodes, n copies of the program would be 

executed simultaneously, a copy of the program executing on each processor node. Each 

node would be instructed to test a certain range of training parameters and save the 

training performance statistics together with the corresponding parameter combination to 

a log file. 

 

The parameters specified in the EP scripts were dependent on the particular type of 

network that was being tested. The human operator was still required to review each of 

the log files to determine which combination of parameters were optimal (this procedure 

could also have been automated, but the means of selecting suitable parameters was 

already suitably improved upon) 

 

3.3.3 Reusable Modules 
 

The EbTide v2 Neural Net package (discussed in Section 2.5) provides a good interface 

design that was used as a starting point for the implementation design for the supernets. 

The EbTide method of saving and restoring states of the network was applied to the 
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supernet construct. Additional data structures were designed for handling dynamic 

matrices and object lists to provide the means of adding new subnets and other processing 

constructs on the fly. 

 

As it was apparent that various classes of sub-processing modules would be reused, it 

was necessary to develop an efficient method of connecting these structures with the 

model code used to implement the high-level operation of a particular supernet. Since 

each processing class contains its own state information it was necessary to provide a 

means to serialize this state data without having to have the model code do this explicitly. 

Therefore specialized callback handlers (see terminology in Appendix D) were added to 

the EbTide library that call these modules so that they can perform serialization of 

arbitrary data structures and preprocessing tasks without having to code this explicitly in 

the model code. 

 

A simplified design of the system is shown in Figure 15. Since the software was 

developed in C++ its properties of inheritance and polymorphism could be used 

effectively. Inheritance was used to facilitate streaming of state data to and from disk. 

Polymorphism was used to quickly substitute different classes of the same superclass to 

test the effect of alternate module configurations. 

  

Using the techniques discussed in this chapter to improve the speed of backpropagation, 

to reduce the human workload of trial and error parameter selection, and to have an 

efficient means to develop supernets, it become quite possible to test and evaluate many 

different supernet configurations in a fairly short time. 
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Figure 15: System Design Overview. 
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4 The Modules 
 

 

Many of the experimental neural network models presented in this thesis are built from a 

selection of processing modules. The operation of each sub-process module is defined in 

this chapter together with a representative glyph. A glyph in the context of this work is a 

graphical representation of the model in the form of an icon with input and output links. 

These glyphs can be connected up to perform higher-level processing. They are used in 

Chapter 5 to construct Concise Description Diagrams (CDDs) that provide a visual 

means to show the composition of a supernet. A CDD is divided into two parts, showing 

the configuration of the network in train mode on the left and the configuration for yield 

mode on the right. Appendix A provides a summarized listing of the glyphs and other 

symbols used in these diagrams. 

 

4.1 Clustering Modules 

 

Clustering modules are responsible for performing cluster processing for a supernet. A 

supernet is not necessarily limited to a single cluster module, but if only one type of 

clustering is used, as is the case with all the supernets presented here, then only one 

clustering module is used. 

 

The glyph used to represent a clustering module (shown on the left of Figure 16) is 

represented as a box containing three circles meant to represent clusters. The number of 

clusters that the algorithm uses is shown in parentheses. 
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Figure 16: Cluster Module Design. 

 

Clustering models provide two methods (illustrated on the right of Figure 16). The first 

function (“find_clusters”) performs the act of funding clusters in a given training set S 

containing Nx vectors of dimension Ni. This function updates a matrix of size Nc rows by 

Ni columns, where each column (cj) represents a center for the jth cluster. 

 

The second function (“query”) determines Euclidean distances between a given data 

point and the cluster clusters. The query takes as input a vector x of dimension Ni and 

returns a vector d of dimension Nc, where each component di of d represents a distance 

value between x and center ci. These distance values are then passed to an appropriate 

membership module (MM) to decide which cluster or clusters the data point should 

belong to. 

 

The “find_clusters” function is applied to the training set before the training of subnets 

commences, this accounts for the missing input S to this module’s glyph. For this thesis 

the clustering process was chosen to be done as a simple preprocess, although it could be 

done during training instead as Zeng and Liu (2002) show in their paper that discusses an 

online clustering paradigm. 

 

The “query” function is generally used during training in conjunction with the fuzzy 

membership modules, and is also occasionally used in yield operations. 
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The following cluster algorithms were implemented and used as preprocesses in the 

supernet models: 

 

• K-means: Requiring the number of clusters to be known prior to execution 

• Distance Glance (DG): Heuristic method that iterates a small number of times 

finding cluster centers according to minimal distance between points. 

 

4.1.1 K-Means Clustering Module 
 

The k-means algorithm is probably the most commonly used clustering algorithm 

(Theodoridis & Koutroumbas, 1999: 482). The basic version of the algorithm is 

computationally inexpensive and simple to implement. The k-means algorithm is 

essentially a minimization of a performance index which is defined as the sum of all 

squared Euclidean distances between points in a cluster domain and the cluster center 

(Tou & Gonzalez, 1974: 94-96). 

 

The basic k-means algorithm needs to know the number of cluster centers (Nc) to use, 

thus this forms a parameter to supernet models that use this clustering module. The 

Isodata algorithm would be an alternate method that would not require the extra Nc 

parameter, but it would need other parameters that tells it what kind of clusters to expect. 

In the Isodata algorithm is basically the k-means algorithm with added heuristics (Tou & 

Gonzalez, 1974: 97). Since it was fairly obvious how many clusters were in the data sets 

chosen for this evaluation, it was not deemed necessary to implement the Isodata 

algorithm. 

 

“find_clusters”: Basic K-Means Clustering Algorithm 
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1. Choose Nc Initial cluster centers c1(1), c2(1) to cNc(1). These centers can be 

selected arbitrarily, but two methods were implemented for this thesis: either 



selection of the first Nc points in the training set, or distributing the centers 

uniformly through the input space. 

 

2. At the nth iteration distribute the inputs {x} amongst the Nc cluster domains using 

the relation: 
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Where Sj(n) represents the set of input vectors {x} that are within the jth cluster 

with center cj(n). Any ties are resolved arbitrarily. 

 

3. From step 2, new cluster centers cj(n+1), j=1..Nc are computed such that the sum 

of the squared distances from all points in Sj(n) to the new cluster center is 

minimized. The sample mean of Sj(n) achieves this: 
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4. If cj(k+1) = cj(k) for j=1…Nc then the algorithm has converged and the process is 

complete. 

 

 

“Query”: Distance Function 

 

During training and yield operations, the k-means clustering module is requested to 

calculate the distances between an input vector and the cluster centers. The square of the 

Euclidean distance was used so as to avoid computationally expensive square root 

operations. The formula for the distance values returned by the query function is: 
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4.1.2 Distance Glance (DG) 
 

The Distance Glance (DG) algorithm was developed for this thesis as an attempt to 

extract approximate cluster information from a data set relying only on the minimum 

density of clusters and expected distances between clusters. The method works well for 

data sets that comprise clusters of similar density and whose clusters are at fairly uniform 

distance from one another. The algorithm is able to handle low-density noise between 

clusters. This algorithm is an adaptation of the commonly known “Maximin” algorithm 

(Tou & Gonzalez, 1974: 92). This algorithm was named “Distance Glance” because it 

“glances” at a distance matrix in each iteration of the algorithm. 

 

The DG algorithm requires three parameters: 

 

• min_density : minimum density (num points) of a cluster 

• lumping factor : approximate distance between points in a cluster  

• cluster_distance_ratio : mean distance from old clusters to a new cluster divided 

by the mean distance between all old clusters. 

 

The DG method starts in the same way as the Maximin algorithm by first finding the 

most distant point (c1) from the sample mean of a particular sample set S. The point c1 is 

then selected as the first cluster prototype (where the term “cluster prototype” is a point 

representing a cluster location and is not necessarily the center of the cluster). Then 

squared distances from c1 to all other points are computed and stored in the first column 

of a matrix D. Next, the lumping process is applied to this matrix as follows: rows in 

column 1 of D that have values greater than the lumping factor are kept and all the other 

rows are removed from D and placed into a temporary matrix Ddis. The set of sample in S 
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that correspond to distance values in Ddis are removed from S and placed in a temporary 

matrix Sdis. The number of samples discarded (i.e. the number of rows in Ddis) is stored in 

d1 as the density estimate for cluster 1. The samples comprising Sdis are aggregated into 

an estimated cluster center ce1, and the matrix Sdis is deleted. The value r1 is set to the 

mean of the distance values in Ddis, and the matrix Ddis is deleted. 

  

The index of the largest value in column 1 of D is found and the point corresponding to 

this distance is assigned to the second cluster prototype (c2). Then a second column is 

added to D that stores squared distances from c2 to the all the remaining points in sample 

set S. The lumping process is then applied to column 2 of D removing more rows from 

matrices D and S. 

 

The next cluster prototype (cn+1) is found by looking at the matrix D and finding the 

maximum of the minimum squared distances between the remaining points and cluster 

prototypes (c1 to cn). Then another column is added to D and the lumping process is 

applied. This procedure is repeated until the new cluster prototype (cn+1) is too close to 

the other clusters (as determined by the cluster_distance_ratio parameter described 

below). When this happens this final prototype cn+1 is discarded, another column should 

not be added to D and neither should the lumping process be applied. At this point the 

second part of the algorithm commences. 

 

The second part of the algorithm works on only the cluster centers (ce1 to cen) and the 

density measures (d1 to dn). The first step involves discarding any density values that are 

below the min_density parameter (usually a value between 1 and 3) along with their 

corresponding centers and radii. Then the mean of the remaining densities are determined 

and any density values below 50% of this mean value are discarded together with the 

corresponding centers and radii. The remaining centers are then returned as the final 

result of the algorithm. Supernets that need an estimated size and population for each 

cluster can use the radius and density values. 
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Appendix C1 provides a complete listing for the DG algorithm in MatLab with 

explanation provided for each step. 

 

The lumping process has the following advantages: 

 

1. It helps to discard noise scattered at a density below that of the cluster density. 

2. It helps to construct an approximate center for the cluster. 

3. It reduces the amount of computation by decreasing the samples size per iteration. 

 

 

Choosing the Parameters 

 

A few heuristic methods were found in the course of testing the DG algorithm with 

different training sets. These heuristics were found to work suitably to determine the 

lumping factor and min_density parameters for the algorithm. Note that these heuristics 

have not been tested exhaustively, but the overall result of the algorithm was found to be 

fairly close to the results of the standard k-means algorithm when the number and initial 

location of centers could be determine roughly by visualizing the data (note that an 

automatic means to determine the cluster_distance_ratio was not found).  

 

 

Lumping Factor Selection: 

 

One way to choose a lumping factor is to select n sample points {x1, x2, …, xn} at random 

from the input samples S. These points can be stored in the rows of a matrix X. Then 

select the m closest neighbors to each point xi and store them in the rows of matrix Yi. 

Then calculate the mean distance to neighbors for these n points (i.e. a mean of m.n 

distance values) and set the lumping factor to about twice this value: 
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Min_Density Selection: 

 

For min_density select a new set of n points {x1, x2, …, xn} at random (i.e. do not reuse 

the points chosen for the lumping factor). Then using the lumping factor computed 

above, calculate the average number of points that are within this distance of these n 

points as follows: 
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Cluster_Distance_Ratio Selection: 

 

The cluster_distance_ratio is more difficult to determine. Due to time constraints, this 

research could not be sidetracked to solve this problem. Therefore the only 

recommendation for this parameter is to use trial and error, keeping in mind the following 

rules: 

 

1. If the cluster_distance_ratio is too big there will be dense areas that are not 

assigned to clusters. 

2. If the ration it is too small clusters will overlap. 

3. For some datasets a compromise in data points being unassigned to clusters, 
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and some data points being assigned to multiple clusters (i.e. cluster overlap) 

may be the required. 

 

 

Some Optimizations 

 

When applying the DG algorithm to a large dataset one of the critical issues is the size of 

the distance matrix D. The size of D is Nx rows by Nc columns, so if there are many 

small clusters in the input set, this could pose a problem. The lumping process helps to 

lessen this effect by reducing the number of points that need to be compared for future 

iterations. 

 

The placement of the cluster centers according to the DG algorithm can be applied to the 

basic k-means algorithm for further improvement. This is generally the case followed 

during the test scenarios in this thesis: training sets that did not have clusters easily 

determinable by eye were passed through the DG function. 

 

 

Example Run 

 

The DG algorithm was tested on a selection of data sets, both 2D and of higher 

dimension. This example shows the results from a particular data set that contains 6 

clusters where one cluster is noticeably distant from the others. Random points were 

added uniformly to the data. This file was run through the DG algorithm and the results 

plotted in MatLab. The algorithm found the six clusters as desired (Figure 17) by finding 

points that were most distant from other points, but which also had many neighboring 

points. The estimated cluster centers are labeled B1 though B6 and the circles represent 

the cluster radii. 
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Figure 17: Result of DG algorithm applied to 6-cluster problem. 

 

 

4.2 Membership Modules 

 

Three types of membership module (MM) were implemented: 1) Determinate, 2) Fuzzy, 

and 3) Hybrid. Each type is implemented as a subclass of the MM super class. 

 

A MM accepts a vector d containing n distance values where each distance value di 

represents a distance from a certain point x to cluster i. Each module returns an n 

dimensional membership vector m where each mi represents the possibility (a value 

between 0 and 1 inclusive) of the point x being in cluster i. On the left of Figure 18 the 

glyph used to represent the MM is shown (note that it is labeled according to the type of 

membership function implemented), on the right the top-level class structure of the MM 

is given. 
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Figure 18: Fuzzy Membership Module Design. 

 

The MM has one main interface function named M that implements a certain membership 

function for the subclass. The function M can access certain state parameters such as the 

size of the clusters. 

 

4.2.1 Determinate Membership Module (DMM) 
 

For a determinate membership function (Mdet), each input vector belongs exclusively to a 

single cluster. The M function for this type of MM returns a binary output vector m 

where the element mi corresponding to the maximum di value is set to true (1) and all the 

other elements of m are set to false (0) as follows: 
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4.2.2 Fuzzy Membership Module (FMM) 
 

In the truly fuzzy membership function (Mfuz), an input vector can belong simultaneously 

to multiple clusters. The query function for such a module has an output vector m of 
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dimension Nc (i.e. equal to the number of clusters) with each mi element representing a 

fuzzy possibility in the [0,1] range. The function Mfuz(x,C ) introduced in Section 2.4 is 

revised to deal arbitrarily many clusters and to operate on distance values di that represent 

squared Euclidean distances between and input x and the cluster i, with limitations as 

follows: 
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The fuzzy membership function implemented for this thesis provides a nonlinear 

mapping from distance values to fuzzy possibility values using the gaussian function: 
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where ri is a parameter for cluster i specifying its effective range of influence. 

 

4.2.3 Hybrid Membership Module (HMM) 
 

The hybrid membership function used in this thesis is a form of fuzzy membership that 

exhibits discontinuities in the membership function. This hybrid method assumes the 

clusters are hyper spheres, and each cluster i has a certain radius ri. The algorithm assigns 

fuzzy possibility values mi for a cluster i as follows: 

 

• For input points falling within the hyper sphere of cluster i only then mi=1.  
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• For input points not falling within cluster i or any other cluster the value of mi is 

assigned to the output of a gaussian. 

• For input points falling within multiple clusters excluding cluster i, mi = 0 

• For input points falling within multiple clusters including cluster i, mi is passed 

through a gaussian. 

 

The type of membership function chosen for a supernet can significantly affect its 

behavior. A membership function surface (MFS) is a useful technique that can be used to 

predict to what extent a certain clustering technique affects the yielded results of a 

supernet. This can help to determine in which way membership modules affect results of 

supernet prediction.  

 

An MFS is produced for a single cluster i selected from the available set of clusters found 

in a problem set. The MFS for cluster i is generated by producing a hyper volume of 

input points and passing these points through the membership function M(x,i) used by the 

subnet. This hyper volume is mapped into the xy-plane and the output of the membership 

function is used as a height above this plane. The surface will thus be a height between 0 

and 1 from the xy-plane.  

 

Each class of membership function has its own inherent form for of MFS. For instance, 

the determinate case produces a step of height 1 in the area of the grid within the cluster, 

while hybrid clustering has a plateau of height 1 within the cluster area that gradually 

ramps down to 0 outside the cluster space, with occasional undulations where clusters 

overlap (See Chapter 5 for examples). 

 

4.3 Subnet Modules 

 

There are two types of subnet module developed for supernets given in this thesis: 

Standard backpropagation subnets and radial basis subnets. 
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4.3.1 Standard Backpropagation Subnet 
 

The standard backpropagation method using incremental training, as described in Section 

2.2 is packaged into the subnet module that is used by all the models evaluated in this 

thesis. The glyph for this module is represented by a sigmoid-like curve with a circle in 

the center. Subnet glyphs are labeled with a number if more than one is used in a 

particular CDD (as indicated by the “i” in the glyph shown on the right of Figure 19). 

Since a CDD has two parts that separate the train and yield modes of the subnet, it is 

necessary to have a means to indicate in which mode a subnet operates for a particular 

mode in which its supernet operates. This was achieved by displaying a tilde and zdes 

input for those subnets operating in train mode, while for subnets operating in yield mode 

the tilde and zdes input is removed (shown as a dotted lines in Figure 19). 

 

The subnet module has the following methods: update, place_weights, feed and train. 

The update and place_weights methods replace the traditional initialization method as 

training parameters and weight operation change on the fly. The update method is used to 

apply a change to the training parameters, such as when a change is made to the subnets 

learning rate or number of weights in its hidden layer. 
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Figure 19: Design of the Backpropagation Subnet. 
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The place_weights method is used for initializing new weights according to a specific 

weight placement algorithm (pseudo random weights were used in this thesis). The feed 

method is used to yield a result for the network by passing an input through the network, 

while the train method is used for updating the weights according to a desired output. 

 

Two transfer functions are used in the feed algorithm, one for nodes in the hidden layer 

(fhidden) and the other for nodes in the output layer (fout). The train algorithm makes use of 

the derivative function for these transfer functions. 

 

The feed algorithm is given two input vectors: x representing an input example, and zdes 

that represents the desired output produced by the network. The output of the network is 

stored in a vector zout, and generates an error vector zerorr that stores differences between 

zout and zdes values. The intermediate vectors yout and yin are results produced from the 

hidden layer and are used by the train algorithm. The zin vector represents combined input 

weights to nodes in the output layer and is used during training. Bias values of 1 are 

assigned to the 0th entries for x and yout, this is used for shifting the hyper planes so as to 

fit the data better (Fausett, 1994: 21). The weight matrices V and W whose elements are 

referenced by vjk and wij represent the weights for the hidden layer (links between input k 

and hidden node j) and output layer (links between hidden node j and output node i) 

respectively, where the size of matrix V is Nh by Ni+1 elements and the size of W is No 

by Nh+1 elements. 

 

The subnet module has a binary enable line ‘en’, that causes the subnet to be enabled if 

en is true (1) otherwise it is disabled. During yield operations, if the subnet is enabled the 

input is fed normally though the network and yields a prediction. But if it the network is 

disabled no processing is performed and the network output a value of zero for all 

elements of its output vector. Likewise, training the subnet only occurs if the enable line 

is set to true. 
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Incremental Backpropagation Algorithm 

 

Feed: Yields a result zout from an input vector x for the network 
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Train: Adjusts the weights according to training example x and desired output zdes. 
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In the above algorithm ηout and ηout are the learning rates for the output layer and hidden 

layer respectively. The cesj value is the combined error signal for the output of the j’th 

hidden node determined from back propagating the zerror value through each of the links 

connecting the j’th hidden node to the output nodes. The yε and zε values represent error 

signals that are back propagated for the hidden and output layers. The dvjk and dwij values 

represent delta values for the amount by which a vjk or wij weight should be increased (if a 

delta value is negative its corresponding weight is decreased). 

 

4.3.2 Radial Basis Subnet 
 

A radial basis neural subnet was developed for use in separation of input examples and 

unification of subnet outputs. The glyph for this subnet is shown on the left of Figure 20. 

As for the backpropagation subnet, the RBF subnet take as input a vector x and an 

optional ‘en’ line. The subnet is enabled only if the ‘en’ line is nonzero. 

 

As described in Section 2.3 the a standard RBF network determines its output by 

converting the input x into a list of distances between x and each centroid, then it passes 

these distance values through gaussians and returns as the final output a weighted sum of 

all the results produced by the gaussians. However, the RBF subnet designed for this 

thesis is designed for cluster prediction and was therefore modified in the following 

ways: 

 

• The RBF subnet was limited to one centroid per output. Each centroid was “tied” 

to a certain output element. Each centroid had a corresponding gaussian function 

with a changeable standard deviation (σ) parameter. 

• The gaussians were used to produce membership predictions indicating the 

possibility of a certain input belonging to a certain cluster. 
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Figure 20: Design of the Radial Basis Subnet. 

 

• Each desired output was binary and only one element of the desired output vector 

was permitted to be true at a time to indicate to which cluster the input point 

belongs. 

• The elements of the output vector were limited to the [0,1] interval (as generated 

by the underlying gaussian function). 

• The network was trained by moving the centroid that was “tied” to the nonzero 

desired output element slightly closer to an input vector, and to increase its σ 

parameter if the distance to the input was not already within 50% of its range (i.e. 

if the input was at a distance for which the output of the gaussian was less than 

0.5 then the σ was increased slightly). All the other centroids were moved slightly 

away from the input and each of the corresponding gaussians for these centroids 

had their σ value slightly decreased if they were within a 50% range of the input 

point. 

 

As in the backpropagation subnet, this subnet also has train and yield methods. Since the 

RBF subnet works in either train or yield mode depending on the mode that the supernet 

is in, a tilde and zdes input is only displayed in the case where the subnet is operating in 

train mode.  

 

The RBF subnet is trained online, generally at the end of each training epoch of the 
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subnets. In this thesis the RBF subnet is used in the CBSE supernet as a means to predict 

the most optimal means to segregate training data. Then these predictions were revised at 

the end of each epoch after performance statistics regarding the subnets were gathered. 

 

4.4 Connection Operators 

 

As a means to make the CDD clearer, vector connection operators were devised. In the 

code developed for this thesis these connection operators took on the form of a 

dynamically resizable matrix class. The glyphs for these connection operators is given in 

Appendix A together with a brief description of what each operator does. 

 

From the collection of sub-processing modules that were presented in this chapter it is 

now possible to provide a clear explanation of the supernet models developed for this 

thesis in terms of these sub-processing models. 
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5 The Models 
 

 

This chapter presents the design of the base model and the supernet models together with 

their concise description diagrams and testing statistics. The motivation behind each 

supernet design is discussed and suggested improvements on the designs are given. 

 

5.1 Base Model (BM) 

 

As discussed in Section 3.1.1, the base model is a standard ANN having a three layer 

fully connected architecture comprising an input layer, a single hidden layer and an 

output layer. The performance of this base model is used to determine which supernet 

model, from a set of possible supernet models, is the most suitable design for a particular 

application. The base model is also used to compute a minimum performance measure 

that can be used to reduce the number of possibilities in choosing supernets for a 

particular application by discarding any supernet not meeting this minimum performance 

requirement. 

 

5.1.1 Design 
 

In terms of the Concise Description Diagram (CDD) schema devised in Chapter 4, the 

base model is represented by a single backpropagation subnet (see Figure 21). The 

diagram has two parts: the left side represents the training configuration while the right 

side represents the yield configuration. The input to the network is represented by “x” 

and is shown to be fed forward through the network for both train and yield operations.  
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Figure 21: CDD for Base Model. 

 

The desired output of the network, zdes, is used for training only. It is shown being fed 

backwards through the network (i.e. from right to left in the diagram) to emphasize the 

fact that the subnet is trained using backpropagation. When the network is in yield mode 

it is shown with a predicted output zout calculated from the input x. 

 

Training Parameters 

 

In addition to the number of inputs and number of outputs, the BM model has three major 

training parameters typical of a standard three layer backpropagation networks, these are 

shown in Table 2.  

 

5.1.2 Testing 
 

Separate training and validation sessions were performed for each of the problem sets 

chosen in Section 3.2. The performance results from testing the BM model are shown in 

Table 3 together with the number of degrees of freedom (df) provided by the model (the 

final MTE values are not averaged since they are not used for evaluation). 

 

The performance graphs for the base model are shown in Figure B 1 in Appendix B. The 

solid line in each graph indicates the instantaneous normalized training error after each 

epoch of training, while the dotted line is the final MVE error calculated at the end of 

training. 
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Table 2: Base Model Training Parameters. 

Parameter Name Description 

n_hidden Number of hidden nodes in the network 

lr_hidden Hidden layer learning rate 

lr_output Output layer learning rate 

 

 

From the results of these tests, it appears that the base model performs the best for the 

scatter4 problem, achieving almost a 0.1 MVE. For the other problems, it produces MVE 

values close to 0.3. The average MVE value produced by this model for the problem sets 

is 0.256, thus a supernet that outperforms this model must achieve a smaller mean MVE 

value. 

 

Denominators for MCCs 

 

The Model Comparison Coordinate (MCC) defined in Section 3.1.5 is a 2D quantity that 

represents the performance of a supernet model rated against that of the base model for a 

specific collection of problem sets. The base model’s early MTE values determined for 

each problem set is used to calculate the MCCearly part of MCC coordinates, while the 

final MVE values are used for the second component, MCCfinal. 

 

Table 3: Evaluation report for Base Model. 

Problem Final MTE Early MTE Final MVE Hidden df 

Scatter4 0. 054 0.112 0.131 6 18 

Spiral 0.311 0.966 0.279 6 18 

Crags2 0.033 0.106 0.297 16 48 

Wine 0.039 0.141 0.315 5 80 

AVERAGE  0.331 0.256   
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5.2 Cluster Clue (CC) 

 

The aim of this Cluster Clue (CC) technique is to provide the network with an additional 

input, called a “clue”, that tells it to which cluster a particular input vector belongs. The 

intent of this method is to determine if the training algorithm can pick up on this cluster 

information and use it as a rough ordering imposed on the data. If this is possible, then 

the training data would effectively be split into parts, and the training algorithm should be 

able to home in on patterns more quickly than in the case where this extra data is lacking. 

 

5.2.1 Design 
 

The main modules used in the design of the Cluster Clue (CC) model are the Cluster 

Prediction Subnet (CPS), and the Detail Extrapolation Subnet (DES). The clustering 

module is used only during training. Both the CPS and DES are standard 

backpropagation subnets as is required for this evaluation. See Figure 22 for the CDD. 

 

If this model performs successfully, then it should be possible to further increase its 

speed of training by performing the CPS and DES training separately. For example, a 

large training set could be split between two processors where one processor trains the 

CPS and the other trains the DES. Once both parts are suitably trained the weight values 

of each subnet could be combined into a single network. 

 

During yield operations, the CPS is fed an input x and its duty is to estimate which cluster 

the input belongs to. The CPS is effectively a form of dicer since it can be viewed as an 

operation that organizes the training data into parts. The vector clue that is produced by 

the CPS is appended to the original input x and this larger vector is fed into the DES. In 

an abstract sense, the DES operates like a high-level splicer since it recombines 

processed input (although part of the input is still the same as the original input). 
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Figure 22: CDD for Cluster Clue. 

 

During training, a k-means clustering module is used to train the CPS and to provide a 

clue vector input for the DES. For yield operations, an input is fed into the CPS and 

generates a predicted clue vector that is then appended with the supernet input x and this 

larger vector is fed into the DES. The output of the DES is used as the final output for the 

supernet. In this case, the dicer comprises the cluster module and the determinate 

membership module, and the DES remains as a splicing agent. 

 

This method attempts to let the backpropagation algorithm decide for itself how best to 

use the cluster information. The method is also an attempt to determine whether 

backpropagation is able to make use of the clue input as a separate cluster weighting so 

that the inputs weights can focus on providing improved accuracy for certain cluster 

weightings. 

 

Training Parameters 

 

The significant training parameters used by this supernet are shown in Table 4. The 

number of clusters (n_clusters) is ascertained from performing a cluster analysis prior to 

training the supernet. Generally, the distance glance algorithm (Section 4.1.2) can be 

used to estimate a reasonable number of clusters automatically.  
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Table 4: Cluster Clue Training Parameters. 

Parameter Name Description 

n_clusters Number of clusters in training set 

n_cps Number of hidden nodes in CPS 

n_des Number of hidden nodes in DES 

cps_out_lr Learning Rate for output layer of CPS 

cps_hidden_lr Learning Rate for hidden layer of CPS 

des_out_lr Learning Rate for output layer of DES 

des_hidden_lr Learning Rate for hidden layer of DES 

 

The number of hidden nodes in the CPS depends on how complex the cluster shapes are. 

The number of nodes depends on the number of hyperplanes required in approximating 

the Bayes decision boundary between the clusters (Lee & Landgrebe, 1993). For 

instance, two clusters that are far apart could be separated with a single hyperplane, thus 

needing only one hidden node in the CPS. 

 

The following heuristic algorithm was used for choosing the number of hidden nodes in 

the CPS subnet: 

 

1. First Let Nh = Nc-1 (where Nh is the number of hidden nodes in the CPS and Nc 

is the number of clusters in the training data) 

2. Initialize the CPS weights with small random values 

3. Train only the CPS part of the CC supernet with both the training set and clue 

values produced by the cluster module (this may require attempts using different 

learning rates) 

4. Test the accuracy of the CPS using a validation set, by passing examples through 

both the clustering module and the CPS. Alter the MVE calculation to compare 

these two results. 

5. If this MVE calculated in step 4 is suitably low (e.g. 0.1), then the value of Nh is 

acceptable and this algorithm terminates. 
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6. Either increase or decrease the Nh value, obviously not selecting a value that has 

already been tried. Then go back to step 2. 

 

The choice for the number of nodes in the DES is assumed to depend on the desired 

accuracy of approximating detail within the clusters. However, since all the patterns in 

the training set, with the possible exception of the cluster bounds, need to be predicted by 

the DES the problem reverts back to the traditional trail and error technique. It is 

anticipated that the clue input should help to reduce some of these trials if the 

backpropagation method can use it effectively. 

 

5.2.2  Testing 
 

The results of the tests carried out on the CC model are shown in Table 5. Based on the 

average MVE value, the CC model appears to perform worse than the base model. 

However, the model did produce a better MVE for the “Wine” problem achieving 60% of 

the base model’s MVE for the problem. 

 

The other models did not produce significant improvements, and the spiral problem 

achieving a comparatively high MVE of 0.787. This may indicate that the CC model is 

better suited for training sets containing overlapping clusters. But such a hypothesis 

would not be true in all cases because the Crags2 problem was not noticeably improved 

upon in comparison with the base model. The fact that the two clusters in the Crags2 

problem have a similar range of outputs for both clusters, while the Wine problem has 

totally different ranges for each cluster may account for this difference in MVE. 

 

The training performance graphs for the four problem sets comparing the CC model to 

the BM model are shown in Figure B 2 in Appendix B. These graphs show for all except 

the Crags2 problem set that the CC model obtains a lower training NMSE sooner than the 

BM model. This indicates that for some problems it appears that the clueing method does 

achieve a higher training rate than the base model. 
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Table 5: Evaluation report for Cluester Clue. 

Problem Final MTE Early MTE Final MVE Hidden df 

Scatter4 0.014 0.040 0.121 4 14 

Spiral 0.725 0.959 0.787 4 13 

Crags2 0.047 0.105 0.305 16 49 

Wine 0.032 0.100 0.189 5 81 

AVERAGE  0.301 0.351   

 

In Table 5, the results from validation indicate that although the training rate is faster, the 

accuracy of predictions is generally not any better than that achieved by the base model. 

 

The number of hidden nodes that this model required for each model was similar to that 

of the base model. This was expected since the cluster module is not using during yield 

operations, and would therefore not provide additional degrees of freedom to the model. 

Therefore it is necessary for both the CPS and the DES to have a sufficient number of 

free parameters (i.e. weights) so that they can produce suitable generalization. 

 

5.2.3 Improvements 
 

Three possible optimizations to this method were tested, but were not found to produce 

significant improvements over the basic implementation of the CC, since these methods 

focused on improving the speed of training the CPS. They are as follows: 

 

1. Training the CPS with cluster centers: This drastically reduces the number of 

training points needed to train the CPS and made training the subnet very fast. 

However, the membership prediction determined by the CPS was significantly 

less accurate for points not close to the cluster centers. This was more 

effective for clusters having simple and non-overlapping shapes, but the 

method broke down for more complicated shapes and overlapping clusters. 
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2. Using Fuzzy membership instead of Determinate membership: This method 

introduces a degree of non-determinism to the clue vector used in training the 

CPS. The effect of this is that smaller changes in the weight values were made 

for points that were not close to any cluster, appearing to make the CPS retain 

better “memory” of points that were significant in determining the cluster 

boundaries. However further research into this was not carried out as it made 

no significant change in the results for the problem sets that the supernet was 

tested on. 

 

3. Using an RBF network for the CPS: In the implementation of the CC model 

evaluated in this section, sigmoid transfer functions were chosen for both the 

CPS and DES subnets. It is more effective using an RBF network for the CPS 

as its purpose is to determine a rough partition of the input space. In such a 

case the RBF network would need no further training because the clustering 

module can assign the positions of the centroids directly. This allows the 

human operator to focus only on training the DES as there is no need to find 

suitable training parameters for the CPS. 

 

 

5.3 Multi-Prop (MP) 

 

Since the performance of the Cluster Clue model was not better than that of the base 

model it may be possible that the backpropagation algorithm cannot actually make 

beneficial use of the clue vector as a means to segregate its training data and thus 

improve training speed. It was therefore decided to develop a more rigid model that 

unconditionally forces the model to separate training examples before applying them to 

the backpropagation algorithm. This was the motivation behind the design of the Multi-

Prop (MP) supernet. 
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5.3.1 Design 
 

The design of the MP supernet comprises one subnet for each cluster in the training data. 

A clustering module (CM) is incorporated into the design and its distance outputs are 

linked to a determinate membership module (DMM) as shown in Figure 23. This implies 

that input clustering is treated as being determinate rather than fuzzy. 

 

During train operations the CM and DMM comprise the dicer component of this supernet 

as the binary output vector of the DMM is fed directly into the enable lines of the subnet 

modules. This causes each subnet to be trained on only those input vectors that are closest 

to its corresponding cluster center. The output vectors of the subnets are joined by a 

vector sum connection operator, which represents the splicer agent for this model. 

 

During yield operations the CM and DMM are again used to decide which cluster an 

input belongs to and the input is fed only into that subnet. The output of the subnet is 

again passed to a vector sum connection operator, which forms the final output for the 

network. 

 

Since there is one subnet to handle each cluster in the training data it is necessary to 

specify training parameters for each of the clusters as shown in Table 6. 

 

For training sets whose clusters are not similar (i.e. have vastly different sizes and do not 

follow the same local trends), the best strategy in training the network may be to focus on 

finding the correct training parameters for one subnet at a time. This can be done by 

setting the learning rates of all subnets but one to zero and treating the remaining subnet 

as if it were a standard network on its own. It was found that in general it is easier to find 

optimal parameters for the subnets in this way instead of guessing parameters for all the 

subnets at once. EP Scripts were used to accomplish this task more quickly (see Section 

3.3.2). 
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Figure 23: CDD for Multiprop supernet. 
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Table 6: Multi-Prop Training Parameters. 

Parameter Name Description 

n_clusters Number of clusters in training set 

n_hidden Array of n_clusters elements specifying the number of 

hidden nodes for each cluster. 

lr_hidden Array of n_clusters elements specifying the hidden 

layer learning rate for each cluster. 

lr_output Array of n_clusters elements specifying the output 

layer learning rate for each cluster. 

 

 

5.3.2 Testing 
 

The training performance results for the MP model are summarized in Table 7, and the 

training performance graphs are shown in Figure B 3 in Appendix B. The Final MVE 

results shown in the table indicates that the model managed to learn the Scatter4 and 

Crags2 problems only slightly better than the base model did, but this improvement in 

performance is minimal. On average, this model did not surpass the performance of the 

base model.  

 

An output prediction surface (OPS) for one of the problem sets was generated to gain 

better insight into possible reasons why this model did not perform any better than the 

base model. Figure 24 shows the OPS for the Scatter4 problem set. The black points 

indicate training points, and the height of the points indicates their desired output value. 

Notice that the training points are almost perfectly predicted by the model as the sigmoids 

for each cluster have been positioned so as to produce an almost flat surface throughout 

the predicated cluster area. 
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Figure 24: OPS for MP model using the Scatter4 problem set. 
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Table 7: Evaluation report for Multi-Prop. 

Problem Final MTE Early MTE Final MVE Hidden df 

Scatter4 0.002 0.030 0.120 4 14 

Spiral 0.724 0.932 0.677 6 19 

Crags2 0.043 0.104 0.295 16 49 

Wine 0.311 0.342 0.451 6 97 

AVERAGE  0.352 0.386   

 

The most likely problem with this model, as shown by the “steps” in Figure 24 is that the 

membership module does not know the actual size of the clusters. For instance an 

arbitrary input point that is meant to belong to cluster C4 may be incorrectly classified as 

belonging to cluster C1. Since there is a huge step of 3 between the average outputs of 

these two clusters, the effective prediction for such a point would have a high error value. 

Even if this problem is infrequent, the resultant MTE can be significantly degraded by 

such large prediction errors. 

 

The number of hidden nodes used by the MP model for each problem set (except the 

Wine problem) was exactly the same as the number used by the base model. This may be 

attributable to the fact that the degrees of freedom provided by two subnets each of 

containing Ni inputs and No outputs and one hidden layer of Nh hidden nodes is 

equivalent to the degrees of freedom of a single subnet also having Ni inputs and No 

outputs, but 2⋅Nh hidden nodes. 

 

The reason why the Wine problem has an additional hidden is probably due to the 

impossibility of dividing five nodes equally amongst three subnets. During testing of the 

Wine problem it was found that a minimum of two nodes were required in each subnet to 

produce MTE values below 0.4. 
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5.3.3 Improvements 
 

Possible improvements to this method include: 

 

• Extending the bounds of each cluster by some percentage so as to reduce the 

problem of cluster prediction error 

• Distance measures could be cached for each training example so that the 

Euclidean distance does not need to be calculated more than once for each 

training point (since the clustering is performed as a preprocess the cluster centers 

will not more around during training). 

• A means to lessen the effect of transient behavior at the cluster boundaries may 

reduce the effect of large cluster prediction errors close to these boundaries. 

 

The Valve-Prop Attempt and its “Forgetfulness” Problem 

 

A first attempt at solving the above cluster boundary problem was the development of a 

supernet that applied a clamping function to the desired outputs causing their value to 

drop towards zero as the distance from the cluster boundary increased. This model was 

given the name “Valve-Prop” because this clamping effect was similar to the way that 

valves operate by opening and closing to let a greater or lesser amount of fluid flow past. 

 

Valve-Prop operated by training input points that were within a cluster boundary at their 

full desired output magnitude (i.e. 1⋅zdes), and the other clusters were trained with zero 

outputs. Input points not within the bounds of any cluster were trained at a fraction of 

their output magnitude depending how far the point was from the cluster bound. During 

yield operations, a specific input was fed through all the clusters and the outputs were 

added together, thus eliminating the need to run an input through a clustering stage before 

applying it to the subnets. 
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Tests performed on this model were even less successful than the Multi-Prop model. The 

effect of the clamping action applied to the training output caused the training sets to 

increase in difficulty. This occurred because each cluster was required to learn the 

clamped outputs outside its cluster bound, and this caused the network to have a severe 

“forgetfulness problem”. 

 

A “forgetfulness problem” occurs in an ANN that is incrementally trained because it is 

forced to adapt its state according to the most recently training examples, which causes 

examples that were learned in the past to have increasingly less effect on the network’s 

state as the new examples are processed (Shinozawa & Shimohara, 1999). Thus, if a 

network is fed with a large amount of data for which the first training examples have 

significantly different desired outputs to the examples learned last, then the network 

would exhibit poor training performance because the training state would best retaining 

the patterns learned from the most recent set of examples. 

 

5.4 Fuzzy-Prop (FP) 

 

Since the previous two supernet models attempted did not produce remarkably better 

results than the BM it was deemed necessary to attempt an alternate approach. This led to 

the development of the Fuzzy-Prop (FP) supernet. This supernet uses a Fuzzy 

Membership Model (FMM) or Hybrid Membership Model (HMM) to separate training 

data instead of a Determinate Membership Module (DMM). This helps to eliminate the 

problem of assuming that training sets have distinct clusters, and of assuming that the 

bounds of these clusters are well represented in the training data.  

 

5.4.1 Design 
 

The Fuzzy-Prop model uses one subnet per cluster as in the MP model. But, instead of 

strictly assigning each input to only one subnet, it provides for some indeterminacy in 
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this separation process by allowing one input to belong to more than one subnet. 

 

The design of the FP model is shown in Figure 25. The cluster module is linked directly 

to the HMM, but the membership possibility (m) values that the HMM generates is not 

fed directly to the enable lines of the subnets but rather to a “M-E MAP” custom module 

that performs a mapping from membership possibilities (represented by the “M” in the 

name) to enable lines (hence the “E” in the name). The CM, HMM, and “M-E MAP” 

modules together perform the dicer agent for the supernet.  

 

The outputs generated by the subnets are fed into a “Weighted Sum” custom module that 

use the membership possibility values from the HMM to produce a final output equal to 

the weighted sum of the outputs from the subnets. 

 

The “M-E MAP” module is a special module used only in this supernet and is responsible 

for deciding which mi components of the vector m have a sufficiently large value to merit 

training the subnet i with the input that generated the m vector. The output of this module 

is a set of enable lines (e1 to eNc) that have value equal to either 1 or 0. Each ei value is 

thus used to enable or disable the i’th subnet depending on whether or not the module 

decided that subnet should or should not be trained. The “M-E MAP” module implements 

the following function: 



 ≥

=
otherwise

probmin_mif
e i

i 0
1

 

 

The min_prob parameter (generally a value around 0.1) disables training of any subnets 

whose inputs have a small possibility of actually belonging to the cluster that the subnet 

is associated with. The “weighted sum” module implements the following function: 
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Figure 25: CDD for Fuzzy-Prop Supernet. 
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The training parameters for the FP model are shown in Table 8. Note that the number of 

hidden nodes and learning rates need to be specified for each subnet. 

 

The “mm_id” training parameter specified which type of fuzzy membership model to 

use. The FP model was tested with both the continuous fuzzy membership function (see 

Section 4.2.2) and the hybrid membership function (Section 4.2.3). However, the results 

from the hybrid method were found to be consistently better than that of the continuous 

version. 

 

 

5.4.2 Testing 
 

The summary of the training performance for the FP is given in Table 9. The number of 

hidden nodes required for each problem set learned by this model was the same as the 

Multi-Prop model. As before, the Wine problem required one additional node than was 

needed by the base model. 

 

The Final MVE values show a marked improvement over the base model’s results for the 

Scatter4 and Wine problem sets. However these was no marked improvement for the 

Crags2 problem, and the Spiral problem performed considerably worse for this model 

than for the base model (see Figure B 4 in Appendix B for training performance graphs). 

 

In comparison to the final MVE value for the Wine and Scatter4 problem sets, the Crags2 

problem set produced a notably higher MVE. This is surprising because the Crags2 

problem produced a final MTE value that was almost a tenth below of the MTE 

calculated for the Wine problem. 
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Table 8: Fuzzy-Prop Training Parameters. 

Parameter Name Description 

N_clusters Number of clusters in training set 

N_hidden Array of n_clusters elements specifying the number of 

hidden nodes for each cluster. 

Lr_hidden Array of n_clusters elements specifying the hidden 

layer learning rate for each cluster. 

lr_output Array of n_clusters elements specifying the output 

layer learning rate for each cluster. 

mm_id ID number of membership function to use (0 = FMM, 

1 = HMM) 
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Table 9: Evaluation report for Fuzzy-Prop. 

Problem Final MTE Early MTE Final MVE Hidden df 

Scatter4 0.002 0.039 0.117 4 14 

Spiral 0.751 0.822 0.758 6 19 

Crags2 0.001 0.264 0.244 16 49 

Wine 0.011 0.022 0.123 6 97 

AVERAGE  0.287 0.311   

 

A membership function surface (MFS) for the first cluster of the Crags training set was 

generated in an attempt to determine why the MVE value for the Crags2 problem was 

worse than the MVE values for the Wine and Scatter4 problems (see Figure 26). From 

this figure, it appears that the size of the intersection between of the two clusters in the 

Crags2 problem is too small, causing the drop-off in the possibility values to become 

very sharp. This is likely to cause highly inaccurate prediction results for inputs in this 

area of intersection. 

 

The MFS generated for the Scatter4 and Wine problem sets did not exhibit such steep 

transition between clusters. Using a continuous FMM for training the Crags2 problem 

instead of a discontinuous HMM did not produce noticeably better results. The likely 

reason for this is that in the FMM case the transition in membership possibilities in the 

overlap was still too sudden. 

 

 

5.4.3 Improvements 
 

In addition to the problem of small intersections, there were more noticeable problems 

caused by excessive overlap in the hyper sphere volumes representing the cluster 

domains. This causes the model to fail in situations where the clusters exhibit too much 
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overlap. This overlap causes an excessive degree of interference between the overlapping 

clusters making a reappearance of the “forgetfulness problem” discussed in Section 5.3.3 

with regard the Valve-Prop model. This problem of hyper sphere overlap is illustrated in 

Figure 27. This figure shows that even clusters whose membership of points are 

unambiguous can cause overlap of the hyper spheres used to classify them. In the clusters 

shown in the figure the cluster centers (each marked with an “X”) were found to be close 

to one another since the points were most dense in those parts. But the scattering of 

points around the centers caused the radii of the clusters to become too large causing a 

high degree of cluster overlap. 

 

A possible solution to this problem is to revise the clustering algorithm used by the CM 

so that hyper spheres are attracted by its data points but also repelled by clusters that are 

too close by. Figure 28 shows the result of such a technique applied to the data set used 

in Figure 27. 

 

Another means to improve the FP module would be to allow for more complex cluster 

shapes. For instance, using a polygon to define the cluster bounds instead merely a 

radius. Naturally, such a method would come at a price, such as making the procedure 

more computationally intensive since the arithmetic cost in computing whether or not an 

input is within a cluster would be more complex. There could still be the possibility of 

predicting cluster bounds inaccurately, causing the overlap problem to reoccur. 

 

 

5.5 Classification Based on Subnet Error (CBSE) 

 

The “Classification Based on Subnet Error” (CBSE) is a radically different approach to 

the previously discussed supernets. It uses a RBF network as a form of dicer agent, but 

this RBF network is only enabled after the input space has been partitioned. 
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Figure 26: MFS for cluster 1 of Crags2 produced using HMM. 
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Figure 27: Overlapping Hypercube Problem. 
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Figure 28: Effect of Cluster Repulsion. 
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The learning process of the CBSE model has two stages. The first stage causes a certain 

subnet’s learning to converge to particular input regions. The second stage fixes the input 

regions for the subnets as found in the first stage, and continues training each subnet on 

only those training examples that belong to that subnet’s input regions until suitable error 

levels are reached. 

 

The algorithm for the first stage works is as follows: 

 

1. Initialize: 

a.  Nc subnets each with random initial weight vectors (note the number of 

nodes for each subnet is a parameter, and needs to be chosen by the user). 

b. An RBF dicer network containing at least Nc randomly positioned 

centroids. 

2. For each training example in the training set: 

a. Feed the input (x) of the training example through each subnet and 

determine an error value using the desired output for the training example. 

b. Train only the subnet with the smallest error value with that training 

example. 

c. Train the RBF dicer network with the input (x) and the desired output 

equal to a bit pattern representing which subnet had the smallest error 

value for this input. This bit pattern can be represented as an binary array 

[b1, b2, … bj, …, bn] where the values bi = 0 ∀i, i ≠ j, and value bj = 1 

(where subnet j has the smallest error for the input x). 

3. If the centroids in the RBF network moved significantly, then repeat step 2 (i.e. 

input space converges has not settled). 

4. Proceed to stage 2. 

 

This method was inspired from the k-means algorithm, and exhibits a similar behavior to 

the k-means algorithm for the following reasons: 1) both are competitive learning 

algorithms – for each training example, there is a competition to best represent that 
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training example, and only the winner of the competition is adjusted. 2) Both the k-means 

and the CBSE methods can start with an initially random state (the k-means algorithm 

has randomly placed centers, while the subnets in the CBSE model have randomly placed 

weights). 3) Both the methods cause convergence to a certain partitioning of the input 

space by repeatedly making small changes to their states: the k-means method makes 

small changes to the position of the winning center, while the CBSE method makes small 

changes to the winning subnet. 3) The position of the centers modified by the k-means 

algorithm converge to cluster centers that represent the centers of clusters in the input 

data (i.e. the location of these centers represent a partitioning of the input space), while 

the CBSE method partitions its input space according to which subnet has the minimum 

error value for a particular region. 

 

Thus the first stage of the CBSE learning method uses a form of implicit clustering that 

clusters inputs based on both the input and output space (it includes the output space 

because the desired outputs affect the partitioning of the input space). This step 

effectively generates a mapping form input space to subnet number, and trains an RBF 

network to approximate this mapping.  

 

The second stage of the CBSE learning method fixes the mapping of input space to 

subnet number, using only the RBF network to predict which subnet should be trained for 

a particular training example. The algorithm for this stage is simply: 

 

1. For each training example with input (x) and desired output (zdes): 

a. Feed x into the RBF network to predict which subnet should be trained 

with this training example. 

b. The RBF network returns a vector [y1, y2, …, yj, …, yn] where each yi is a 

non-negative real value for i=1 to n. Find the index j of the first maximum 

value yj in this array, i.e. yj >= yi ∀i≠j. 

c. Train only subnet j with the given training example. 

2. Repeat step 1 until the MVE reaches a low enough value. 
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Each step in the first stage of this method takes considerably longer than each step in the 

second stage. This happens because the first stage has to feed each training example into 

every subnet (i.e. if there are Nc subnets there will be Nc feed operations for each training 

example in this stage), then the RBF network has to be trained with the subnet activation 

bitmap, and finally the winning subnet (i.e. the subnet that exhibited the lowest error 

value for the training example) has to be trained. In contrast, the second stage merely 

passes each example through the RBF network, and then through one subnet. Thus this 

method starts slowly by developing the input partitioning, and then suddenly speeds up 

once the input partitioning has converged sufficiently. 

 

5.5.1 Design 
 

The design of the CBSE is given in Figure 29. The supernet contains Nc subnets, where 

Nc is the number of clusters in the training set (this number needs to be calculated by the 

user). In train mode, each subnet is fed an input value x and produce an error value err1 to 

errNc for subnets 1 to Nc. The error value errj for subnet j is calculated from the vector 

difference between the predicted output (zout) generated by subnet j for the input x and the 

desired output (zdes) given in the training example as follows: 
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1 ∑
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These error values are then fed into a minimum index operator, which enabled training of 

only that subnet that produced the smallest error value. 

 

Note that although there appear to be two sets of subnet modules in the train part of the 

CDD, there is in fact only one set because the subnets have the same index numbers 

shown on the bottom left corner of their glyphs. This was done to illustrate the sequence 

of operations more clearly (the operations start from the left and proceed right). 
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Figure 29:  CDD for CBSE subnet. 
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During training a RBF subnet is instructed to learn the combination of enable lines for a 

particular input and desired output. This is used later for predicting which inputs belong 

to a certain cluster. 

 

The CBSE model relies on the fact the subnets are initialized with highly dissimilar initial 

weights. An input is fed through each subnet and a set of error values is produced. The 

subnet that produced the smallest error value is trained with the input, now favoring 

inputs similar to the one just trained. This effectively causes each subnet to prefer certain 

characteristic inputs. 

 

The training parameters used for the CBSE model are listed in Table 10. Note that that 

an “n_rbfs” parameter is required to specify the number of centroids in the RBF subnet. 

 

5.5.2 Testing 
 

The results from testing the CBSE model are summarized in Table 11. Graphs of the 

training performance are shown in Figure B 5 in Appendix B. 

 

A form of Membership Function Surface (MFS) can be generated during training to 

determine which subnet is being trained with which input examples. An example of such 

a surface generated for the first subnet (representing cluster 1) when training the Spiral 

problem is shown in Figure 30. Notice that the surface has two levels (at 1 and 0) that 

represent the possibilities of inputs being in subnet 1 or subnet 2. The shape that these 

levels make is similar to that of a spiral, which would cause each subnet to learn only one 

of the two spirals (i.e. to always output a 0.5 if it learns the upper spiral or –0.5 for the 

lower spiral). The shape of this cluster is different from that shown in the other models, 

because the CBSE method uses both the input and output space when partitioning the 

input space amongst its subnets. 
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Table 10: CBSE Training Parameters. 

Parameter Name Description 

n_clusters Number of clusters in training set 

n_hidden Array of n_clusters elements specifying the number of 

hidden nodes for each cluster. 

lr_hidden Array of n_clusters elements specifying the hidden 

layer learning rate for each cluster. 

lr_output Array of n_clusters elements specifying the output 

layer learning rate for each cluster. 

n_rbfs Number of nodes to use in the error prediction RBF 

subnet. 
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Table 11: Evaluation report for CBSE. 

Problem Final MTE Early MTE Final MVE Hidden df 

Scatter4 0.002 0.009 0.056 8 24 

Spiral < 0.001 < 0.001 < 0.001 6 18 

Crags2 0.171 0.250 0.511 12 36 

Wine 0.015 0.027 0.041 6 96 

AVERAGE  0.072 0.152   
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Figure 30: MFS generated during training CBSE model with Spiral Problem Set. 
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For each problem set, the CBSE required additional nodes to learn the problem when 

compared to the number of nodes needed by the base model to learn the same problem. 

This may be due to the supernet requiring additional free parameters for each subnet so 

that each subnet can define its input bounds. This is different from the base model and the 

other supernet models, since the base model has no need to define its input bounds (it 

does not need to decide which subnet to activate) and the other supernet models have 

their input bounds predefined by their clustering and membership modules. Here log2(Nc) 

degrees of freedom have not been added to the total number of degrees of freedom for the 

supernet as a clustering module is not used. 

 

5.5.3 Improvements 
 

An interesting phenomenon was observed during testing of the CBSE. It was found that if 

too few subnets are provided for the number of clusters in the training set, then the 

clustering performance deteriorates and tends to favor all subnets similarly (i.e. each 

subnet producing nearly the same error), or only one of the subnets is favored and the rest 

are not used (i.e. one subnet is doing all the work). 

 

From this observation it may be possible to automatically select the number of subnets to 

use in a CBSE supernet. Such a method would undoubtedly still require some trial and 

error, but an indication as to whether the number of subnets is correctly selected would 

help to improve the speed of this process. 
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6 RESULTS & CONCLUSION 
 

This chapter compares the supernet designs given in Chapter 5 and discusses which 

types of problems the models are best suited to solving according to the selection of 

problem sets that they were tested on. The conclusion reviews the findings of this thesis 

and suggests further work on the topic. 

 

6.1 Evaluation Results 

 

The tests performed in Chapter 5 determined the training speed and generalization 

accuracy for each model tested in relation to a collection of problems sets. These 

statistics were tabulated in the form of Final MVE and Early MTE values for each 

problem tested by a particular supernet model. From this data it is possible to generate 

model comparison coordinates (MCCs) that can be used to visualize the training 

performance of each supernet compared to other supernet models. This provides some 

insight into which supernet models are best suited to solve particular types of problems. 

 

6.1.1 Average MCC Plot 
 

Determining the average MCC coordinate for a certain supernet model indicates an 

average performance rating in comparison to the base model for a given collection of 

problem sets. The average MCC for a supernet M and problem set p is determined from 

the average MCCfinal and MCCearly values as shown in Section 3.1.5. 

 

A graph of the average MCC coordinates for each model is shown in Figure 31 from 

which certain conclusions can be inferred regarding the average performance of each 

supernet model tested. 
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Figure 31: MCC Average Plot. 

 

It is easy to see in Figure 31 that the CBSE model on average outperforms the other 

models by a noticeable amount. Since the horizontal position of the CBSE point is much 

further left than the other models this indicates that the CBSE on average achieves a 

considerably lower MCCearly value than the other models, implying that it learns its 

training data more quickly than the other models do. The vertical position of the CBSE 

point is further from zero implying that it does not achieve generalization as quickly as it 

learns to predict its own training data. Since the CBSE point is noticeably lower than that 

of the other models the CBSE in general still noticeably outperforms the other models’ 

ability to generalize. 

 

Looking further at Figure 31 it is apparent that all the points, except the one representing 

the CBSE model, are at a higher position than that of the base model. This indicates that 

these models in general produce worse generalization than the base model does. The CC 

and FP models may learn their training data more quickly that the base model, but this 

does not seem to imply that they will produce better generalization. 
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6.1.2 MCC Plots For Each Problem Set 
 

Although some of the models do not appear to exhibit improvements in general with 

regard to all the problem sets considered, some of the models are still better suited to 

certain types of problem. Figure 32 shows plots of MCC values for each of the four 

problem sets for which the supernets were tested. From these plots, the following 

conjectures were made as to which types of problem a specific supernet model is best 

suited to solve: 

 

• The CBSE model performed well for all problem sets, except the Crags2 problem 

set. The clusters in the Crags2 problem have similar output ranges and their 

governing functions are almost identical. This strengthens the argument that the 

CBSE model is best suited to training data that contain clusters that exhibit 

dissimilar local behavior. 

• The Fuzzy-Prop model showed improvement over the base model for all except 

the spiral problem. This indicates that this model can handle partly overlapping 

and non-overlapping clusters but cannot handle intertwined clusters. 

• The Cluster Clue model performs similarly for both the Scatter4 and Wine 

problems, but does not perform well for the Spiral or Crags2 problem. This is an 

indication that this model works best for clusters that have distinct behavior and at 

most only slightly overlapping (i.e. there can be some overlap of the hyper 

spheres used to partition the clusters but too much overlap – as occurs in the spiral 

problem – causes the supernet to fail).  

• The Multi-Prop model shows improved performance only for the Scatter4 

problem, which implies that it is only suited to learning problems that exhibit non-

overlapping clusters. 
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Figure 32: MCC plots for the individual problem sets. 
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6.1.3 RCT Plots 
 

As discussed in Section 3.1.6, the Relative Convergence Time (RCT) of a supernet 

indicates how quickly the supernet learns its training data compared to the base model. 

The Convergence Time (CT) for each model are shown in Table 12 expressed using the 

number of training epochs required to achieve a MTE that is 30% above the convergent 

MTE. Figure B 7 in Appendix B illustrates the way that these values were calculated 

using the training performance graphs that were produced during testing of the models 

(Figure B 8 shows a zoomed-in view). 

 

From this table, the RCT values were calculated by dividing the number of epochs 

required for every model for a given problem set by the number of epochs required by the 

base model. 

 

Average RCT values (shown in Figure 33) were generated for each model, and expresses 

on average how quickly a particular supernet learns its training data. From this it is 

possible to see that the CC and CBSE models on average produce faster convergence 

than the base model, with the CC model achieving the fastest convergence on average. 

The MP and FP models on average produce a slower convergence than that of the base 

model. 

 

Table 12: Number of epochs required to achieve a MTE 30% above final MTE. 

Problem BM CC MP FP CBSE 

Scatter4 90 120 290 120 90 

Spiral 1804 1170 2180 390 80 

Crags2 35 30 90 170 110 

Wine 270 160 110 50 60 
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Figure 33: Barchart of average RCT values. 
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The RCT values for each problem are shown in Figure 34. This figure shows which 

models achieve the fastest convergence for certain problem sets: 

 

• The CBSE model converges most quickly for Spiral and Scatter4 problems 

compared to all the other supernet models, but it converges comparatively slowly 

for the Crags2 problem. 

• The CC model converges most quickly for the Crags2 problem, and is shown to 

converge more quickly than the base model for all the problems. 

• The FP model exhibited faster convergence than the base model for all problems 

except the Crags2 problem. 

• The MP model exhibited slower convergence that the base model for all the 

problems with the exception of the Wine problem. 

 

6.1.4 Crags2 Compared To Gaussian Humps 
 

The MCC plot for the Crags2 problem set shows that none of the supernet models 

produced significantly improved training results for the Crags2 problem. The two crags 

in this problem have many discontinuous due to the sharp edges that make up the sides of 

the crags (see Figure 12). 

 

The discontinuous feature of the Crags2 training set can have a detrimental effect on 

networks trying to learn it using backpropagation and sigmoid functions, because: 1) 

backpropagation uses differentiation, and therefore works best if the underlying function 

it is attempting to approximate is smooth, and 2) sigmoid functions are essentially smooth 

functions (when they are used for interpolating a transition between multiple points), and 

therefore would not be ideal functions to approximate training data containing many 

sudden jumps (a unique sigmoid would be needed for every large jump in the data). It is 

therefore expected that the models presented here would have some difficulty in learning 

the Crags2 training set since they all rely on the backpropagation training algorithm and 
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Figure 34: RCT values calculated for each model arranged according to problem set. 
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use sigmoid functions. As a means to verify this hypothesis, a simplified version of the 

Crags2 problem was generated that comprises two smooth gaussian humps (shown in 

Figure 35) instead of discontinuous crags. The expected result of training the base model 

on this gaussian humps problem should be a reduced mean validation error, because the 

smooth sigmoids used to approximate the surface should do a better job of approximating 

smooth gaussians than the rough crags. 

 

Figure B 6 in Appendix B shows the training performance of the base model when 

learning the gaussian humps problem and the Crags2 problem. Both problems have the 

same size training and validation sets. As can be seen in the diagram, the mean training 

error for both problem sets are similar. However the mean validation error for these 

problems were significantly different. The MVE value for the Crags2 problem was 0.297, 

while the MVE for the gaussian humps problem was 0.073. This shows that the 

discontinuous property of the Crags2 problem set is at least partly responsible for the 

poor training results obtained for this problem set. 

 

 

6.1.5 Consistent Behavior 
 

The model that produces the most consistent behavior can be determined by finding the 

standard deviation in the list of MVE values for each problem that the model was tested 

on. The bar chart shown in Figure 36 illustrates the standard deviation of MVE values 

calculated for each model. The base model (BM) has the most consistent behavior since 

its standard deviation is the lowest. The standard deviations for the supernets were 

noticeably higher than that of the base model, indicating that they each exhibited a certain 

amount of inconsistency in their training performance. This result is expected since 

supernets are not designed to solving arbitrary problems, while the base model is. 
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Figure 35: Smooth Gaussian Humps. 
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6.2 Conclusion 

 

The objectives of the thesis discussed in Section 1.4 were achieved, namely: 

 

• A practical feasibility study of the supernet paradigm was investigated and found 

to be a suitable technique for specific types of applications. 

• The benefits of supernets over the standard model were shown to be improved 

training rates and generalization, but only for problems that were suited to the 

specific supernet design 

• The performance of supernets is limited to the capability of the training algorithm 

that it attempts to enhance (in this case backpropagation). Since a supernet is not 

designed for solving arbitrary problem it can result in degrading the performance 

of the training algorithm when processing training data for which it is not 

designed. 

• The thesis presented an effective means to develop, train and evaluate supernet 

models in related to a base model. 

 
From the findings of this thesis, further research into the application and design of 

supernet models is merited. Recommendations for further research on this topic include: 

 

• Evaluation of the supernets using a larger selection of real-world problem sets. 

• Other techniques aside from clustering should be tested to determine how they 

could improve the performance of standard training methods. 

• Using different training algorithms to train different subnets could be tested to 

determine if such a technique improves the overall prediction performance of a 

supernet. 

• Further research into the heuristics for choosing parameters required by the 

Distance Glance algorithm could help to solve the problem of selecting the 

number and placement of clusters in training sets.  
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• Development of an online version of the Distance Glance algorithm for training 

RBF subnets used in cluster membership prediction could eliminate the clustering 

preprocessing step, making the supernet method more compatible with online 

learning requirements. 

• Since the CBSE method only works well for training sets that have dissimilar 

behavior for each cluster, there may be some means to make it perform better for 

similarly behaving clusters by combining the CBSE model with a standard 

clustering algorithm such as k-means.  

• Further investigation of methods that use clustering of the input and output space. 

 

The effectiveness of supernets depends on the number of times a particular supernet 

design can be reused for different applications. If a supernet is designed for one-time use, 

then the development time inherent in the design of a specific model for the application 

concerned may exceed the improvement gained from implementing such a model. 

However, if a supernet design is found to be effective for certain types of application 

which commonly occur, then the supernet approach is likely to offer long-term savings in 

human time as it would help to decrease the amount of time the time taken for the human 

operator to train a standard neural network to provide the same performance. 
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Appendix A: Glyphs 
 

Clustering And Membership Modules 

 

 
Membership Module (Section 4.2) Determinate Clustering (Section 4.1) 

d 

type 
x 

(Nc) 

 
m d  

 

Subnet Modules 

 

 
Backprop Yield (Section 4.3.1) Backprop Training (Section 4.3.1) 

i 
zdes 

x 
en 

(Nhi) 

 

i 
en
x 

(Nhi) 

 
zout

 

 

 

 

 
RBF Yield (Section 4.3.2) RBF Training (Section 4.3.2) 

RBF 
zdes 

x 

 

x 
RBF 

 zout

 

 

 

Notes: The ‘en’ input is the enable line. Only if en is nonzero during training is the subnet 

trained, otherwise no operation is performed. During yield only if en is nonzero does the 

input x passed through the network producing a predicted output, otherwise the subnet 

merely returns zero. 
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Connection Operators (See Section 4.4) 

 

 Vector Append Vector Sum 

 

∑
=

N

i
iv

1… 

vn 

v1 
v2 

… 

vn 

v1 
v2 

 

 [v1, v2,…, vn] 
 

 

 Joins the vectors v1 to vn into a larger

vector.  

 

Produces an element-by element vector sum

of the vectors v1 to vn. 

 Max Index Duplicate 

 

 

 

 v 

v 

vn = max(v)

v1 = max(v)
v2 = max(v)

v 
v 

 

 

 

 

 

This “T-Junction” is used to copy the

results of one vector to several places.

Generally the lines are just split into two

sections as shown on the right. 

Returns a binary vector where the index

corresponding to the maximum element of v

is true. 

Min Index 
 

vn = min(v) 

v1 = min(v) 
v2 = min(v) 

v 

 

 

 

 Returns a binary vector where the index

corresponding to the minimum element of v

is true. 

 

 

 

Note: All the connection links between modules are vectors. 
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Appendix B: Performance Graphs 
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Figure B 1: Performance graphs for BM. 

 

Note: The graphs in solid black represents the instantaneous mean training error of the 

model, and the dotted line provides a reference for the mean validation error (MVE) 

computed by the model. 
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Figure B 2: Performance graphs for CC. 

 

 

Note: The graphs in solid black represents the instantaneous mean training error of the 

supernet, the dashed line indicates the BM’s instantaneous mean training error for the 

problem, and the dotted line provides a reference for the mean validation error (MVE) 

computed by the supernet. 
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Figure B 3: Performance graphs for MP. 

 

 

Note: The graphs in solid black represents the instantaneous mean training error of the 

supernet, the dashed line indicates the BM’s instantaneous mean training error for the 

problem, and the dotted line provides a reference for the mean validation error (MVE) 

computed by the supernet. 
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Figure B 4: Performance graphs for FP. 

 

 

Note: The graphs in solid black represents the instantaneous mean training error of the 

supernet, the dashed line indicates the BM’s instantaneous mean training error for the 

problem, and the dotted line provides a reference for the mean validation error (MVE) 

computed by the supernet. 
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Figure B 5: Performance graphs for CBSE. 

 

 

Note: The graphs in solid black represents the instantaneous mean training error of the 

supernet, the dashed line indicates the BM’s instantaneous mean training error for the 

problem, and the dotted line provides a reference for the mean validation error (MVE) 

computed by the supernet. 
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Figure B 6: Comparison of Gaussian Humps and Crags2. 
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Figure B 7: Graph of instantaneous training error per problem set used for calculation of 

convergence times. 
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Figure B 8: Zoomed view of instantaneous training error graphs shown in Figure B 7. 

 

Note: the starts on the curves indicate the 30% convergence positions.  
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Appendix C: MatLab Code 
 

A free online reference guide to MatLab code is available from the MathWorks website 

(MatLab Documentation, 1994/2002).  

 

Distance Glance Algorithm 

 

The explanation of this algorithm is divided into: 

 

• Inputs, 

• Sub functions, 

• Part I: Finding Cluster Prototypes, and 

• Part II: Density Analysis of the prototypes 

 

Inputs:  

• S is set of input vectors of Ni dimensions for which clusters are to be determined. 

• Lumping factor γ represents the minimum number of points in a cluster. This is 

used to combine points that are close to a given center. 

• Min_density, the minimum density parameter of a cluster. 

• Cluster distance ratio µ, used in deciding which clusters are too close together. 

 

Sub-functions: 

 

Define the function furthest (y, S) that determines the point x furthest from y in the set S: 

 

zxQzxyzyxxSyfurthest ≠∈∀−>−= ,,:),( 22  

AOCfurthest = Nx·(3·Ni+1) (same as the query function for K-means clustering) 
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Define the function closest (y, S) that determines the point x closest to y in set S: 

 

zxQzxyzyxxSyclosest ≠∈∀−<−= ,,:),( 22  

 

Any ties in the above functions are resolved arbitrarily. 

 

Define the function sqrdist (S, y) that returns a column vector of squared distance values 

between all remaining points in S and the point y: 

 

SxxyySsqrdist ∈∀−= 2),(  

 

Define the lumping function [D, S, r, ce, d] = lump (j, D, S, γ) that investigates the 

squared distances of column j in D and returns new D and S matrices together with a 

radius (r), approximated center (ce) for the newly found cluster, and the approximated 

density for this cluster (d). This is function operates as follows:  

 
 [D, S, r, ce, d] = lump ( j, D, S, lumping ) 
  % Lumping function as described in Section 4.1.2  
  % j == the column of D to glance at 

above = find(D(:,j) > lumping); 
  below = setdiff ([1:size(S,1)], above); 
  d = size(below,1); % the density 
  r = mean(D(below,j)); % squared radius for this cluster 
  ce = mean(S(below,:)); 

D = D(above,:); 
S = D(above,:); 
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PART I : Finding Cluster Prototypes 

 

1. Determine the mean m of the dataset: 

∑
∈

=
Sx

x
Nx

m 1  

2. Find the point c1 furthest from m: 

),(1 Smfurthestc =  

3. Determine the first column of distances for D: 

D = sqrdist (S, c1) 

4. Apply the lumping for Nc = 1. 

5. Determine the point c2 that is furthest from c1 by looking through the matrix D. 

,...},...,{,...},,{, : 212111112 ikii xxxSddDddxc ==>=  

6. Compute a new column for D containing the distances from all points in S to c2: 

D = [ D , sqrdist (D,c2) ] 

7. Apply lumping for Nc = 2. 

8. Find the distance between first two clusters: 

dc1 = sqrdist(c1,c2) 

9. Find the minimums for distances between samples and clusters: 

min_dst = min(D); 

10. Find the maximum of these minimums: 

new_idx = find(min_dst == max(min_dst)) 

11. Generate the new prototype: 

cNc+1 = S(new_idx,:) 

12. Determine the mean distance between this new cluster and the other clusters: 

d_cnew = mean(sqrdist(c,c1)+sqrdist(c,c1)+…+sqrdist(c,cNc)) 

13. IF d_cnew/DC(Nc-1) > µ THEN go to step 16 ELSE Nc = Nc + 1 

14. Manage the new cluster prototype: 

a. Compute new distances: 

D = [ D , sqrdist (D,ci) ] 

b. Perform Lumping. 
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c. Compute the new mean distance between prototypes: 

DC (Nc-1) = mean(sqrdist(ci,cj)) for i=1..Nc, j=1:Nc, i≠j 

15. Go back to Step 9. 

16. Proceed to Part 2. 

 

At the end of this part the following variables contain information regarding the clusters: 

 

• r is a column vector of squared radius values. 

• ce is a matrix with center coordinates along the columns. 

• c is a matrix containing the cluster prototypes. 

• dc is a vector of mean distances between clusters 

 

PART II : Density analysis 

 

1. Find all points with a density above or equal to min_density: 

above = find(d ≥ min_density) 

2. Keep only the corresponding rows from the ce matrix and the d and r vectors. 

ce = ce(above,:) 

r = r(above) 

d = d(above); 

3. Now determine the half mean of the remaining densities and keep only those clusters 

with densities above this value: 

half_mean = 0.5*mean(d) 

above = find (d > half_mean) 

ce = ce(above,:) 

r = r(above) 

d = d(above) 

4. The algorithm is complete. 
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Appendix D: Terminology 
 

 

TERM DESCRIPTION 

Activation When used with a network the term “activation” refers to the 

process of performing some action to a network or subnet. 

During training of a network activation refers to the process of 

updating the weights in the network. During classification it 

refers to feeding an input to the network, the process of the 

neurons “firing” and producing an output. 

ANN Abbr. Artificial Neural Network. 

Callback A callback is a pointer to a function, which makes it possible for 

one segment of code to invoke a function whose name is not 

known. A callback handler is the function that is called when the 

callback pointer is invoked. 

CDD See Concise Descriptive Diagram 

Concise Description 

Diagram (CDD) 

In the scope of this thesis a CDD is a diagram constructed from 

sub-process glyphs and is a clear representation of a CANN. 

Convergence Time 

(CT) 

The number of training epochs needed to reach a training error 

that is a certain percentage above the convergent (i.e. final) 

training error. 

Dicer/Dicer Agent The set of processing modules responsible for organizing and 

splitting of training data amongst subnets. 

Distance Glance 

(DG) 

A heuristic determinative clustering algorithm that automatically 

determines the number of clusters in a given dataset based on the 

minimum distance between points. 

Epoch One cycle trough the training set 

Feed / Fed The process of applying an input to a feed-forward network, 
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causing the neurons to be activated and a response to be yielded. 

Firing The process by which a neuron receives input stimuli and 

computes an output response. 

Forgetfulness 

Problem 

This refers to the problem of neurons forgetting previously 

learned trends by being exposed to greatly differing training 

examples. For instance, training a neuron on small values and 

large values makes it approximate neither particularly well. 

Fuzzy Membership 

Value 

A value between 0 and 1 that indicates the possibility of a given 

entity belonging to a certain set. 

Generalization The process by which a network produces suitable accurate 

predictions for arbitrary points within its input domain. 

Input Domain The space of all meaningful inputs to a network that yield 

meaningful results. 

Kernel Functions A pool of functions from which transfer functions are selected. 

Combinations of kernel functions are used as building blocks to 

construct an approximation function. 

Mean Training Error 

(MTE) 

The mean prediction error calculated for predicting outputs for a 

training set during training. 

Mean Validation 

Error (MVE) 

The mean prediction error calculated for predicting outputs for a 

validation set at the end of training. 

Metadata Data about data. Metadata is definitional data that provides 

information about data related to a specific application. For 

example Nx, the number of examples in a training set, can be 

considered an element of metadata as it documents information 

related to data of which the training set comprises. 

Model Comparison 

Coordinate (MCC) 

The Model Comparison Coordinate is a 2D coordinate that 

represents the performance of a certain network in comparison to 

a base model. A small MCI value that is closer to (0,0) is 

considered better to one that is further from (0,0). 
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Network In the context of this thesis, the term “network” refer to either a 

supernet or ANN. 

Neuron An information-processing unit that is fundamental to the 

operation of a neural network (Haykin 1994: 8) 

Overfitting Giving a neural too many degrees of freedom that causes 

predicted outputs to become inaccurate due too there being 

insufficient restriction on the behavior of inputs in regions of the 

input space between training examples. 

Overseer Human wanting to obtain a training network. 

Prediction Error An error measurement proportional to the difference between a 

network’s predicted output and the desired output. 

Relative Convergence 

Time (RCT) 

A ratio between the convergence time of a supernet and the 

convergence time of the base model 

Response The output calculated from a feed operation 

Splicer/Splicer Agent The set of processing modules responsible for combining outputs 

from a set of subnets to produce a final output for the supernet. 

Stimulus An input to a network or subnet 

Subnet A component of a network that is in its own right a ANN. 

Supernet A set of subnets joined together with dicer and splicer agents. 

Synapses Elementary structural and functional units that mediate the 

interaction between neurons. 

Transfer Function A function is used in an artificial neuron to map the weighted 

sum of inputs to an output. 

Yield The process by which a network generates a predicted output. 
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