329 research outputs found

    Lossless compression of images with specific characteristics

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA compressão de certos tipos de imagens é um desafio para algumas normas de compressão de imagem. Esta tese investiga a compressão sem perdas de imagens com características especiais, em particular imagens simples, imagens de cor indexada e imagens de microarrays. Estamos interessados no desenvolvimento de métodos de compressão completos e no estudo de técnicas de pré-processamento que possam ser utilizadas em conjunto com as normas de compressão de imagem. A esparsidade do histograma, uma propriedade das imagens simples, é um dos assuntos abordados nesta tese. Desenvolvemos uma técnica de pré-processamento, denominada compactação de histogramas, que explora esta propriedade e que pode ser usada em conjunto com as normas de compressão de imagem para um melhoramento significativo da eficiência de compressão. A compactação de histogramas e os algoritmos de reordenação podem ser usados como préprocessamento para melhorar a compressão sem perdas de imagens de cor indexada. Esta tese apresenta vários algoritmos e um estudo abrangente dos métodos já existentes. Métodos específicos, como é o caso da decomposição em árvores binárias, são também estudados e propostos. O uso de microarrays em biologia encontra-se em franca expansão. Devido ao elevado volume de dados gerados por experiência, são necessárias técnicas de compressão sem perdas. Nesta tese, exploramos a utilização de normas de compressão sem perdas e apresentamos novos algoritmos para codificar eficientemente este tipo de imagens, baseados em modelos de contexto finito e codificação aritmética.The compression of some types of images is a challenge for some standard compression techniques. This thesis investigates the lossless compression of images with specific characteristics, namely simple images, color-indexed images and microarray images. We are interested in the development of complete compression methods and in the study of preprocessing algorithms that could be used together with standard compression methods. The histogram sparseness, a property of simple images, is addressed in this thesis. We developed a preprocessing technique, denoted histogram packing, that explores this property and can be used with standard compression methods for improving significantly their efficiency. Histogram packing and palette reordering algorithms can be used as a preprocessing step for improving the lossless compression of color-indexed images. This thesis presents several algorithms and a comprehensive study of the already existing methods. Specific compression methods, such as binary tree decomposition, are also addressed. The use of microarray expression data in state-of-the-art biology has been well established and due to the significant volume of data generated per experiment, efficient lossless compression methods are needed. In this thesis, we explore the use of standard image coding techniques and we present new algorithms to efficiently compress this type of images, based on finite-context modeling and arithmetic coding

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE

    Improving minimum rate predictors algorithm for compression of volumetric medical images

    Get PDF
    Medical imaging technologies are experiencing a growth in terms of usage and image resolution, namely in diagnostics systems that require a large set of images, like CT or MRI. Furthermore, legal restrictions impose that these scans must be archived for several years. These facts led to the increase of storage costs in medical image databases and institutions. Thus, a demand for more efficient compression tools, used for archiving and communication, is arising. Currently, the DICOM standard, that makes recommendations for medical communications and imaging compression, recommends lossless encoders such as JPEG, RLE, JPEG-LS and JPEG2000. However, none of these encoders include inter-slice prediction in their algorithms. This dissertation presents the research work on medical image compression, using the MRP encoder. MRP is one of the most efficient lossless image compression algorithm. Several processing techniques are proposed to adapt the input medical images to the encoder characteristics. Two of these techniques, namely changing the alignment of slices for compression and a pixel-wise difference predictor, increased the compression efficiency of MRP, by up to 27.9%. Inter-slice prediction support was also added to MRP, using uni and bi-directional techniques. Also, the pixel-wise difference predictor was added to the algorithm. Overall, the compression efficiency of MRP was improved by 46.1%. Thus, these techniques allow for compression ratio savings of 57.1%, compared to DICOM encoders, and 33.2%, compared to HEVC RExt Random Access. This makes MRP the most efficient of the encoders under study

    Sparse inversion of Stokes profiles. I. Two-dimensional Milne-Eddington inversions

    Full text link
    Inversion codes are numerical tools used for the inference of physical properties from the observations. Despite their success, the quality of current spectropolarimetric observations and those expected in the near future presents a challenge to current inversion codes. The pixel-by-pixel strategy of inverting spectropolarimetric data that we currently utilize needs to be surpassed and improved. The inverted physical parameters have to take into account the spatial correlation that is present in the data and that contains valuable physical information. We utilize the concept of sparsity or compressibility to develop an new generation of inversion codes for the Stokes parameters. The inversion code uses numerical optimization techniques based on the idea of proximal algorithms to impose sparsity. In so doing, we allow for the first time to exploit the presence of spatial correlation on the maps of physical parameters. Sparsity also regularizes the solution by reducing the number of unknowns. We compare the results of the new inversion code with pixel-by-pixel inversions, demonstrating the increase in robustness of the solution. We also show how the method can easily compensate for the effect of the telescope point spread function, producing solutions with an enhanced contrast.Comment: 13 pages, 8 figures, accepted for publication in A&

    Taking the bite out of automated naming of characters in TV video

    No full text
    We investigate the problem of automatically labelling appearances of characters in TV or film material with their names. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking. In addition, we incorporate complementary cues of face matching and clothing matching to propose common annotations for face tracks, and consider choices of classifier which can potentially correct errors made in the automatic extraction of training data from the weak textual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin
    corecore