300 research outputs found

    Algorithmic analysis and hardware implementation of a two-wire-interface communication analyser

    Get PDF
    This paper discusses the development of an algorithm for the data analysis to monitor Two-Wire-Interface operation in order to improve the reliability of communication. This algorithm is designed to improve code-efficiency with regards to hardware modelling. An algorithm for the protocol used in the Standard-Mode, Fast-Mode, Fast-Mode Plus and High-Speed-Mode was developed. The proposed algorithm has been derived using the bus protocol specification and implemented in hardware via a hardware description language. The correct operation of the algorithm was proofed by applying the hardware system on a sample communication. The paper also describes the development process of embedded systems and provides information on aspects regarding hardware modelling including a mathematical description of the TWI protocol is provided

    Intelligent AGV with navigation, object detection and avoidance in an unknown environment

    Get PDF
    Thesis (M.Tech.) - Central University of Technology, Free State, 2007The latest technological trend worldwide, is automation. Reducing human labour and introducing robots to do the work is a pure business decision. The reason for automating a plant can be some, or all, of the following: Improve productivity Reduce labour and equipment costs Reduce product damage System reliability can be monitored Improves plant safety When the automation process is started, Automatic Guided Vehicles (AGVs) will be one of the first commodities that can be used. The reason for this is that they are so versatile. They can be programmed to follow specific paths when moving material from one point to another and the biggest advantage of all is that they can operate for twenty four hours a day. Automatic Guided Vehicles are developed for many different applications and therefore many different types of AGVs are available. All AGVs are equipped with sensors so that they are able to “see” what is happening around them. Since the AGV must be able to function without any human help or control, it must be able to navigate through the work environment. In this study a remote control car was converted to an AGV and thorough research was done on the different types of sensors that can be used to make the AGV more intelligent when it comes to navigating in an unknown environment

    Digital System Design - Use of Microcontroller

    Get PDF
    Embedded systems are today, widely deployed in just about every piece of machinery from toasters to spacecraft. Embedded system designers face many challenges. They are asked to produce increasingly complex systems using the latest technologies, but these technologies are changing faster than ever. They are asked to produce better quality designs with a shorter time-to-market. They are asked to implement increasingly complex functionality but more importantly to satisfy numerous other constraints. To achieve the current goals of design, the designer must be aware with such design constraints and more importantly, the factors that have a direct effect on them.One of the challenges facing embedded system designers is the selection of the optimum processor for the application in hand; single-purpose, general-purpose or application specific. Microcontrollers are one member of the family of the application specific processors.The book concentrates on the use of microcontroller as the embedded system?s processor, and how to use it in many embedded system applications. The book covers both the hardware and software aspects needed to design using microcontroller.The book is ideal for undergraduate students and also the engineers that are working in the field of digital system design.Contents• Preface;• Process design metrics;• A systems approach to digital system design;• Introduction to microcontrollers and microprocessors;• Instructions and Instruction sets;• Machine language and assembly language;• System memory; Timers, counters and watchdog timer;• Interfacing to local devices / peripherals;• Analogue data and the analogue I/O subsystem;• Multiprocessor communications;• Serial Communications and Network-based interfaces

    Decoupling User Interface Design Using Libraries of Reusable Components

    Get PDF
    The integration of electronic and mechanical hardware, software and interaction design presents a challenging design space for researchers developing physical user interfaces and interactive artifacts. Currently in the academic research community, physical user interfaces and interactive artifacts are predominantly designed and prototyped either as one-off instances from the ground up, or using functionally rich hardware toolkits and prototyping systems. During this prototyping phase, undertaking an integral design of the interface or interactive artifact’s electronic hardware is frequently constraining due to the tight couplings between the different design realms and the typical need for iterations as the design matures. Several current toolkit designs have consequently embraced component-sharing and component-swapping modular designs with a view to extending flexibility and improving researcher freedom by disentangling and softening the cause-effect couplings. Encouraged by early successes of these toolkits, this research work strives to further enhance these freedoms by pursuing an alternative style and dimension of hardware modularity. Another motivation is our goal to facilitate the design and development of certain classes of interfaces and interactive artifacts for which current electronic design approaches are argued to be restrictively constraining (e.g., relating to scale and complexity). Unfortunately, this goal of a new platform architecture is met with conceptual and technical challenges on the embedded system networking front. In response, this research investigates and extends a growing field of multi-module distributed embedded systems. We identify and characterize a sub-class of these systems, calling them embedded aggregates. We then outline and develop a framework for realizing the embedded aggregate class of systems. Toward this end, this thesis examines several architectures, topologies and communication protocols, making the case for and substantial steps toward the development of a suite of networking protocols and control algorithms to support embedded aggregates. We define a set of protocols, mechanisms and communication packets that collectively form the underlying framework for the aggregates. Following the aggregates design, we develop blades and tiles to support user interface researchers

    DESIGN MODULAR COMMAND AND DATA HANDLING SUBSYSTEM HARDWARE ARCHITECTURES

    Get PDF
    Over the past few years, On-Board Computing Systems for satellites have been facing a limited level of modularity. Modularity is the ability to reuse and reconstruct the system from a set of predesigned units, with minimal additional engineering effort. CDHS hardware systems currently available have a limited ability to scale with mission needs. This thesis addresses the integration of smaller form factor CDHS modules used for nanosatellites with the larger counterparts that are used for larger missions. In particular, the thesis discusses the interfacing between Modular Computer Systems based on Open Standard commonly used in large spacecrafts and PC/104 used for nanosatellites. It also aims to create a set of layers that would represent a hardware library of COTS-like modules. At the beginning, a review of related and previous work has been done to identify the gaps in previous studies and understand more about Modular Computer Systems based on Open Standard commonly used in large spacecrafts, such as cPCI Serial Space and SpaceVPX. Next, the design requirements have been set to achieve this thesis objectives, which included conducting a prestudy of system alternatives before creating a modular CDHS hardware architecture which was later tested. After, the hardware suitable for this architecture based on the specified requirements was chosen and the PCB was designed based on global standards. Later, several functional tests and communication tests were conducted to assess the practicality of the proposed architecture. Finally, thermal vacuum testing was done on one of the architecture’s layers to test its ability to withstand the space environment, with the aim to perform the vibration testing of the full modular architecture in the future. The aim of this thesis has been achieved after going through several tests, comparing between interfaces, and understanding the process of interfacing between different levels of the CDHS. The findings of this study pave the way for future research in the field and offer valuable insights that could contribute to the development of modular architectures for other satellite subsystems

    Digital System Design - Use of Microcontroller

    Get PDF
    Embedded systems are today, widely deployed in just about every piece of machinery from toasters to spacecraft. Embedded system designers face many challenges. They are asked to produce increasingly complex systems using the latest technologies, but these technologies are changing faster than ever. They are asked to produce better quality designs with a shorter time-to-market. They are asked to implement increasingly complex functionality but more importantly to satisfy numerous other constraints. To achieve the current goals of design, the designer must be aware with such design constraints and more importantly, the factors that have a direct effect on them.One of the challenges facing embedded system designers is the selection of the optimum processor for the application in hand; single-purpose, general-purpose or application specific. Microcontrollers are one member of the family of the application specific processors.The book concentrates on the use of microcontroller as the embedded system?s processor, and how to use it in many embedded system applications. The book covers both the hardware and software aspects needed to design using microcontroller.The book is ideal for undergraduate students and also the engineers that are working in the field of digital system design.Contents• Preface;• Process design metrics;• A systems approach to digital system design;• Introduction to microcontrollers and microprocessors;• Instructions and Instruction sets;• Machine language and assembly language;• System memory; Timers, counters and watchdog timer;• Interfacing to local devices / peripherals;• Analogue data and the analogue I/O subsystem;• Multiprocessor communications;• Serial Communications and Network-based interfaces

    An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection

    Get PDF
    Pharmaphil Inc. manufactures two-part gelatin capsules for the pharmaceutical industry. Their current methods of quality control of their product is by performing manual inspection of every carton of capsules prior to shipment. In today\u27s modern manufacturing world, more efficient and cost-effective means of quality control exist. It is Pharmaphil\u27s desire to develop a custom machine vision system to replace manual inspection with a potential opportunity in the capsule manufacturing quality control market. In collaboration with the Electrical and Computer Engineering Department at the University of Windsor, a novel system was developed to achieve this goal. The objective was to develop a system capable of inspecting 1000 capsules per minute with the ability to detect holes, cracks, dents, bubble, double caps and incorrect colour or size. Using an antiquated machine vision system for capsule inspection from the mid-nineties as a base, a modern inspection system was developed that performed faster and more thorough inspections. As a measure to minimize the overall system cost as well as to increase flexibility, a full custom design was undertaken. The resulting system follows a traditional machine vision system whereby the main components include an image acquisition component, a processing unit and machine control. The designed system uses custom USB2.0 cameras to acquire images, a standard desktop PC to process image data and a custom machine control board to perform machine control and timing. The system operates with four identical quadrants operating in parallel to increase throughput. The final system developed provided a proof-of-concept for the approach taken. The machine control and image acquisition component of the system yielded a maximum throughput of 1200 capsules per minute. After incorporating image inspection, the final result was a system that was capable of inspecting capsules at a rate of about 800 capsules per minute with high accuracy. With optimizations, the system throughput can be further improved. The findings throughout the development of the prototype system provide an excellent basis from which the first generation commercial unit can be designed

    A smart mechatronic base isolation system using earthquake early warning

    Get PDF
    Earthquake is one of the most devastating natural disasters. In the last few decades, many seismic mitigation techniques have been developed. They include passive, semi-active and active control which have been proven their effectiveness in events of earthquakes. Among them, base isolation has been regarded as a mature technology and commercialisation is common in earthquake-prone countries. This technology decouples the main structure from its foundation and effectively lengthens the natural period of vibration, away from resonance vibration. However, the lateral stiffness of base isolation devices is generally too low to resist serviceability lateral forces such as wind and flood which may cause unacceptable lateral movements of the structure. Added lateral stiffness and/or damping is usually required. On the other hand, the Earthquake Early Warning (EEW) system which uses different arrival time of seismic P and S waves is readily available in Japan, Taiwan, parts of China and Europe. This technology offers more possibilities for improvement of earthquake mitigation technique. This project develops a smart mechatronic base isolation system which can be triggered by the EEW system. It uses the earthquake early warning signals and nearby monitoring signals to determine the situation and automatically switches to the appropriate anti-seismic mode. In the first phase of research, a one-dimensional system is developed and tested on an electrical shake table. A prototype smart mechatronic base isolation system is developed. In this prototype design, electromagnetic shear keys which lock the base isolator are released either by simulated EEW signals or on-site accelerometers. The advantage of this design gives the main structure a very strong stiffness under in-service condition (i.e. when there is no ground motion) while maximizing the effectiveness of base isolation when ground motion is anticipated. The system is fully automated, and the main structure is re-entered once ground motion ceases. In the second stage, a two-dimensional base isolation, created by low-friction linear bearings is developed and activation of base isolation is carried out by linear actuators. In the third stage, the system is developed further. Light Detection and Ranging (LIDAR) sensors are added to monitor position of base isolator in real-time, an active control strategy is added into the microcontroller and actuation is carried out by stepper motors. Using the feedbacks provided by the sensor the active base-isolation system re-position the main structure in real-time. The research presented in this thesis opens up new opportunities in future seismic risk mitigation of civil structures. By connecting the EEWS and mechatronic devices, the performance of traditional base isolation system can be enhanced

    The Design of an IEEE 1588 End-to-End Transparent Ethernet Switch

    No full text
    In measurement and control systems there is often a need to synchronise distributed clocks. Traditionally, synchronisation has been achieved using a dedicated medium to convey time information, typically using the IRIG-B serial protocol. The precision time protocol (IEEE 1588) has been designed as an improvement to current methods of synchronisation within a distributed network of devices. IEEE 1588 is a message based protocol that can be implemented across packet based networks including, but not limited to, Ethernet. Standard Ethernet switches introduce a variable delay to packets that inhibits path delay measurements. Transparent switches have been introduced to measure and adjust for packet delay, thus removing the negative effects that these variations cause. This thesis describes the hardware and firmware design of an IEEE 1588 transparent end-to-end Ethernet switch for Tekron International Ltd based in Lower Hutt, New Zealand. This switch has the ability to monitor all Ethernet traffic, identify IEEE 1588 timing packets, measure the delay that these packets experience while passing through the switch, and account for this delay by adjusting a time-interval field of the packet as it is leaving the switch. This process takes place at the operational speed of the port, and without introducing significant delay. Time-interval measurements can be made using a high-precision timestamp unit with a resolution of 1 ns. The total jitter introduced by this measurement process is just 4.5 ns through a single switch
    • …
    corecore