University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

An Integrated Control and Data Acquisition System for
Pharmaceutical Capsule Inspection

Neil E. Scott
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Scott, Neil E., "An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection”
(2008). Electronic Theses and Dissertations. 8120.
https://scholar.uwindsor.ca/etd/8120

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8120?utm_source=scholar.uwindsor.ca%2Fetd%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Integrated Control and Data Acquisition
System for Pharmaceutical Capsule Inspection

by

Neil E. Scott

A Thesis
Submitted to the Faculty of Graduate Studies through the
Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2008

Bibliothéque et
Archives Canada

Library and Archives
Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street
Ottawa ON K1A ON4

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-70596-4
Our file Notre référence
ISBN: 978-0-494-70596-4
NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques

formulaires secondaires ont été enlevés de

cette theése.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manguant.

(© 2008 Neil E. Scott

All Rights Reserved. No part of this document may be reproduced, stored or otherwise retained in
a retrieval system or transmitted in any form, on any medium by any means without prior written

permission of the author.

Declaration of Co-Authorship

I hereby declare that this thesis incorporates material that is the result of joint research as follows:

This thesis incorporates the outcome of joint research undertaken in collaboration with Anthony
C. Karloff and Mohammed J. Islam under the supervision of Dr. Roberto Muscedere. The
collaboration contributions are outlined in Chapter 1. The personal contributions, design work and

development performed by the author are the focus of this thesis.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have
properly acknowledged the contributions of other researchers to my thesis, and have obtained

written permission from the co-authors to include the above materials in my thesis.

I certify that with the above qualification, this thesis, and the research to which it refers is the

product of my own work.

iv

Abstract

Pharmaphil Inc. manufactures two-part gelatin capsules for the pharmaceutical industry. Their
current methods of quality control of their product is by performing manual inspection of every
carton of capsules prior to shipment. In today’s modern manufacturing world, more efficient, and
cost-effective means of quality control exist. It is Pharmaphil’s desire to develop a custom machine
vision system to replace manual inspection with a potential opportunity in the capsule manufacturing
quality control market. In collaboration with the Electrical and Computer Engineering Department,
at the University of Windsor, a novel system was developed to achieve this goal. The objective was
to develop a system capable of inspecting 1000 capsules per minute with the ability to detect holes,
cracks, dents, bubble, double caps and incorrect colour or size.

Using an antiquated machine vision system for capsule inspection from the mid-nineties as a base,
a modern inspection system was developed that performed faster and more thorough inspections. As
a measure to minimize the overall system cost as well as to increase flexibility, a full custom design
was undertaken. The resulting system follows a traditional machine vision system whereby the main
components include an image acquisition component, a processing unit and machine control. The
designed system uses custom USB2.0 cameras to acquire images, a standard desktop PC to process
image data and a custom machine control board to perform machine control and timing. The system
operates with four identical quadrants operating in parallel to increase throughput.

The final system developed provided a proof-of-concept for the approach taken. The machine
control and image acquisition component of the system yielded a maximum throughput of 1200
capsules per minute. After incorporating image inspection, the final result was a system that was
capable of inspecting capsules at a rate of about 800 capsules per minute with high accuracy.
With optimizations, the system throughput can be further improved. The findings throughout the
development of the prototype system provide an excellent basis from which the first generation

commercial unit can be designed.

To my family for their perpetual support and to Brianne for her patience, support and advice.

vi

Acknowledgments

I would like to express my gratitude towards my generous and supportive supervisor Dr. Roberto
Muscedere for his guidance and devotion to the project. I would like to thank my colleagues Anthony
Karloff and Mohammed Islam for their contributions to the project. I would also like to thank my
committee members Dr. Mohammed Khalid and Dr. Walid Abdul-Kader.

Contents

Declaration of Co-Authorship
Abstract

Dedication

Acknowledgments

List of Figures

List of Tables

List of Abbreviations

1 Introduction

1.1 Current Quality Control Methods
1.2 Automated Vision Solution
1.3 Typical Manufacturing Defects L Lo
1.4 Stateof the Art e
1.5 Motivation e e
1.6 Design Strategy e e e e

2 Background

2.1 OptiSorter e e e
2.1.1 Mechanical Design oL
2.1.2 Electrical Design L L

2.2 Universal Serial Bus (USB)
221 OVerview e e e e
2.2.2 Enumeration oL

iv

vi

vii

Xiv

xvi

xviil

W W W NN =

© o ot ¢

viii

CONTENTS

2.2.3 Host Controller Interface 13
224 Device Classes L 15
225 DataFlow Types L . e 16
2.2.6 USB Connectors and Cabling 17
227 BusPower. e 18
2.2.8 USB Device Drivers e 18
2.3 T2C . . e 19
2.4 Machine Vision e 21
Design Methodology 24
3.1 Design Approach L 25
3.2 Design Considerations L e 26
3.2.1 Data Transfer Medium o 26
3.2.2 Image Sensor Lo e e e 27
3.2.3 Inspection Environment e 27
3.24 System Control 28
3.25 Power Supplies L 29
3.2.6 Inspection PCs 29
USB 2.0 Camera 31
4.1 Hardware Level Design e 34
4.2 Cypress EZZUSB FX2 e 35
4.2.1 ReNumeration 35
4.3 FX2Firmware e e 37
4.3.1 Universal Serial Radio Project FX2 Library 37
4.3.2 Bulk Transfers e 37
4.3.3 MI Sensor Configuration L e 38
4.3.4 FPGA Register Configuration 39
4.3.5 FPGA Loader Firmware e 39
4.3.6 Slave-Serial FPGA Loading Technique 39
4.4 Control Board Communication 40
4.5 EEPROM Memory Map e 41
4.6 USB2.0 Camera Linux Device Driver 42
4.6.1 LibUSB e 42
462 pmecam Class. L 42
4.6.3 1mgUSB e e e 46

CONTENTS

5 System Control Board 48
5.1 Hardware Design L 48
5.1.1 Isolation Circuits L 49
5.1.2 Driving Circuits oL e 51
51.3 MCU Selection o 51
5.1.4 Power Regulation Circuit 54
5.1.5 Electrically Controlled Pneumatic Valve Control Circuit 54
5.1.6 Stepper Motor Controller Control Circuit 56
5.1.7 LED Lighting Control Circuit 57
5.1.8 Proximity Sensor Input Circuit oL 58
5.1.9 Camera Triggering Circuit 59
5.1.10 I?C Expansion Circuit o o v i 59
5.1.11 PC Soft Power and Sense Circuits 61
5.1.12 I2C Bus Switch Circuit 61
5.1.13 Emergency Stop Input Circuit 64
5.1.14 RS-232 Communication L 64

5.2 System Control Board PCB Layout 65
5.2.1 gEDA Open-Source Tools oo 66
5.2.2 PCB Fabrication e 66
5.2.3 PCB Population 67

53 I2C I/O Expansion Board oo vvii i 67
5.4 Firmware Development e 71
5.4.1 Functional Requirements o 73
5.4.2 Motor Control L e 73
5.4.3 Motor Ramping Control oo oo 76
5.4.4 Camera Trigger Control 77
545 T2C Master o . v v i i e 78
5.4.6 T2C Slave o 80
5.4.7 T2C Bus Switch 80
54.8 Job Queue 81
5.4.9 12C I/O Expansion Board Control 84
5.4.10 12C Expansion Interrupt Control 85
54.11 I2C LCD Control v it e 86
54.12 UART Handler 87
5.4.13 Soft PC Power Control 89

CONTENTS

5.4.14 Capsule Tracking and Counts 0

5.4.15 Heartbeat Timer e 90

5.4.16 Debug Mode Timer o e 90

6 Host PC 92
6.1 Operating System Selection 92
6.2 Hardware Selection e 93
6.3 Software 94
6.4 Inspect e e e e e e e e e e 94
6.4.1 POSIX Threads ittt et e 95

6.5 fpgaloader_ss e 101
6.6 camoanit e e e e e 102
6.7 pyWindowConfig e 103
6.8 pyCamCal e e e e 104
6.9 W32 Control Panel Application o 104
6.10 Data Collection 105
6.11 File Organization e e e e e 106
6.12 Start Up e 107
6.12.1 inittab Lo 107

6.12.2 Firmware Loading Scripto 107

7 Assembling the Prototype 109
7.1 WIKIng o e e e e 109
7.1.1 USB2.0 Camera i e e e e e 111

7.2 Firmware L L 111
7.3 Host PCs . . . o o 111
7.3.1 Operating System 111

7.3.2 Software 113

8 Recommendations and Conclusions 114
References 119
A Control Board Design Reference 122
A.1 Control Board Schematics 122
A.2 I?°CI/O Expansion Board Schematics 138

Xi

CONTENTS

B USB2.0 Camera FX2 Firmware
B.1 Cypress EZ-USB FX2 Vendor Requests

B.2 Micron Image Sensor Register Definitions

B.21 miregsh oo oo
B.3 FX2Firmware
B.3.1 Makefile Lo
B.3.2 fx2cam_common.ho
B33 fx2camidsh 00000
B.3.4 fx2cam.i2caddr.h . ..o
B35 fx2cam_usb.h oL
B.3.6 startup.abl
B.3.7 usb._descriptors.abl L.
B.3.8 wvectors.abl
B.3.9 eepromregs.h L.
B.3.10 x2cam_common.c
B.3.11 fx2cam main.c L.

C USB2.0 Camera Linux Driver

C.1 IMGUSB Fast USBClass
C11 imgusb.h
C1.2 imgusbecco

C.2 PM.CAM USB Primatives
C21 pmoprimsh
C.22 pmprims.cC. . . . v v v v vt

C.3 PM_CAM USB2.0 Camera Driver Class
C31 pmecamh o
C.3.2 pmecam.cC e

D System Control Board Firmware

D1 commonh L
D2 jobidsh oo
D3 mainc . ..o
D4 i2cslaveh . . . oo
D.5 i2cslaveco
D.6 i2ccommandsh.
D.7 i2¢2ho

140

.............. 221

xii

CONTENTS

D.8 12¢c.2.c . . . o e e e e e e e e e 223
D.9 i2cioexp.h . . . L e e 227
DI0i2¢cioexp.c e e e e 227
Dilledii2c.h . . . 0 0 o 228
D.121edi2c.c L 229
D.13vart_.commands.h L L oL e 233
Dlduart2.h 0 0 o e 234
DaAbuart2.c o e 234
E Host PC Software 237
El dnspect e e e e e 237
E.1.1 Makefile e 237
E.1.2 inspect.h 238
E.1.3 inspect.cc L e e 239
E.14 inspect.conf 261

E.2 testip o e 261
E.2.1 testip.cC o o e e e e e e 261

E3 camiinit e e e e 263
E3.1 Makefile o e 263
E.3.2 caminit.cc Lo 263

E4 fpgaloaderss 271
E41 Makefile e 271
E.4.2 fpgaloaderss.cc 271

E.5 pyWindowConfig e 279
E.5.1 pyWindowConfig.py« o e 279

E.6 pyCamCal e e 285
E6.1 pyCamCalpy e . 285

E.7 Human Machine Interface (w32) 290
E.7.1 frmMainfrm 290
E.7.2 modGUIConsts.bas. o o e e 312
E.7.3 modCSVParser.bas. 312
E.7.4 modUARTCommandsbas 313
VITA AUCTORIS 315

xiii

http://test_ip.cc

List of Figures

21
2.2
2.3
2.4
2.5
2.6

3.1

OptiSorter o e e e e e

OptiSorter Quadrant Birds-Eye View 7
USB Bus Topology« . o e 12
USB Standard Connectors 0 e 17
I2C Sample Schematic 20
I2C Timing DIagramot v vt 21
Conceptual block-diagram of the PharmaSorter 25
Micron Evaluation Board Block Diagram 33
USB2.0 Camera High Level Block Diagram 35
System Controller Block Diagram 49
Typical Optocoupler Circuit Symbol 50
Common Isolation Circuito 50
Isolation Driving Circuit - Sinkingo oo 52
Isolation Driving Circuit - Sourcing o 52
Counter Electromotive Force Protection Circuit 55
Pneumatic Valve Control Circuit 55
Motor Control Circuit e 56
LED Lighting Control Circuit 58
Proximity Sensor Input Circuit L oL L Lo 58
Camera Trigger Driver Circuit i 59
I2C Buffered Expansion Circuit 60
I°C Buffered Expansion Interrupt Circuit 60
Inspection PC Soft Power Circuit o 61
Inspection PC Power Sense Circuit 62

Xiv

LIST OF FIGURES

5 12C Bus Switch Circuit
E-Stop Input Circuit
RS-232 Transceiver Circuit
Populated System Control Board PCB
I/0O Expansion Board Input Circuit
I/O Expansion Board Output Circuit
1/O Expansion Board I2C Address Select Circuit
I/0 Expansion Board Input Circuit
I/O Expansion Board
Motor Pulse Control flow diagram
Proximity Sensor Interrupt flow diagram

Flow Diagram of Bus Switch Interrupt Service Routine

PC Mounting Scheme
Inspect Software Scheduling Scheme
Inspect Main Flow Diagram
Inspect Image Acquisition Flow Diagram
Inspect Image Processing Flow Diagram
Inspect HTML Output File
pyWindowConfig Screen Shot
pyCamCal USB Device Selection Screen Shot
pyCamCal Main Window Screen Shot
W32 Control Panel Application Screen Shot

Panel Layout (Front)
Panel Layout (Rear)
High-Level Wiring Diagram

Camera Views of Bubble Defect 115

System Control Board Soft PC Power Fix

XV

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

6.1

6.2
6.3

USB Control Request Setup Packet L. 13
USB Control Request bmRequestType BitMap 13
USB Control Requests e 14
USB Device Classes o . v i v i i e e e e 15
USBpinout. o e e e e e 17
Frequently Uses libUSB Functions 19
Digital Interface Comparisono . e 26
Cypress CO Load - Descriptor ValuesOnly 36
Cypress C2 Load - Descriptor Values and Firmware 36
USB2.0 Camera EEPROM Memory Map 41
pm_usb Class Functions e 44
pm_prims Primitive USB Functions 45
imgUSB Class Functions e 47
System Control Board MCU Requirements 53
dsPIC I2C Master Functions o vt i vttt e e 79
UART Command Format i 88
UART Commands0 v e e 89
Host PC Hardware e 93
USB2.0 Camera Position Identifiers 103
Host PC TP Addresses et e e 105

xvi

List of Abbreviations

CCD Charge Coupled Device.

CMOS Complimentary Metal Oxide Semiconductor.
DID Device ID.

FOV Field of View.

FPGA Field Programmable Gate Array.
GNU GNU’s Not Linux.

GPL General Public License.

1°C Inter-Integrated Circuit.

LCD Liquid Crystal Display.

LED Light Emitting Diode.

Mbps Mega-bits Per Second.

MCU Microcontroller.

0S Operating System.
PAL Phase Alternating Line.
PC Personal Computer.

PCB Printed Circuit Board.
PID Product ID.

URB USB Request Block.
USB Universal Serial Bus.
VID Vendor ID.

xvii

Chapter 1

Introduction

The manufacturing of two-part gelatin capsules requires a highly controlled process to ensure the
resulting product is of optimal quality. The customer expectation is that the product is free of
functional as well as of aesthetic defects. It is not possible however, to have absolute control over
every aspect of the manufacturing process and as a result, defects are inevitable. To ensure the
end-product is free of flaws, some means of quality control are required. Although, one of the most
influential facets for quality control is cost. The profit made from the sale of an individual capsule
is very small and thus the cost and time devoted to the inspection of each individual capsule should

reflect this.

1.1 Current Quality Control Methods

Pharmaphil Inc. currently uses manual inspection to ensure the quality of their product. This
involves a worker monitoring a conveyor belt of capsules and removing any defective product. Human
inspection provides an immediate solution for quality control as humans can be trained to look for
a set of various flaws in products deeming them unacceptable. A human can also quickly adapt to
changing environments and different products. However, manual inspection has several drawbacks:
First, human inspection is not consistent. The inevitability of human error eliminates the certainty
of an ideal inspection. Also, it is certainly not reasonable to expect that congruency exists between
workers. Second, the attention span of human workers is limited, making it impossible for a worker
to provide accurate results for the entire duration of a given shift. Although a human worker may

have a low initial cost and produce reasonable results, human inspection is ultimately exceedingly

1. INTRODUCTION

more expensive than a high-quality, reliable automated inspection system.

1.2 Automated Vision Solution

In contrast, automated vision systems require significant start-up costs and development time. A
vision system needs to be planned out, built and tested before it can be used in a quality control
situation with confidence. Once built and verified, however, an automated vision system can provide
consistent, objective inspection. It can also run indefinitely without breaks, aside from regular
scheduled maintenance or downtime for repairs. However, a vision system does require a consistent,
environment to perform inspection, unlike humans that can easily adapt to changes in lighting or
product. Even slight environmental changes can be detrimental in the performance of an automated
vision system. For the inspection of two-part gelatin capsules, which are produced in various sizes
and colours, specific inspection algorithms and parameters must be tailored to each specific capsule
type. Although, once developed, an automated inspection system is a much more cost, effective and
accurate means of quality control than manual inspecting.

The cost devoted to the inspection of each individual capsule is very small and this must be
considered for a machine vision system to replace a human worker, this must be considered. Devel-
oping nations clearly have an advantage in ensuring their product is of high quality since the cost
of manual inspection is a very small component of the overall cost of the product. Thus for North
America to compete, where labour costs are substantially higher, an automated inspection system
is a practical solution to quality control. Automated inspection systems exist. for the inspection of

two-part gelatin capsules, however the expense of such a unit cannot always be warranted.

1.3 Typical Manufacturing Defects

Inconsistencies in the manufacturing of two-part gelatin capsules and equipment, problems result in
several common flaws. This includes dents, bubbles, holes, strings, cracks, dirt, double caps and
incorrect, colour or size. Some defects are classified as more severe over others. For example, a hole
or a crack is a functional flaw as once the capsule is filled, it is possible for product to spill out. This
is a critical defect for if received by an end-user, but also can cause machine failure at the filling
stage. Other flaws such as bubble do not pose immediate functional failure, although the region of
a bubble is a much thinner than that of the rest capsule and can easily turn into a hole. Dents and
double caps can cause failure at the filling stage since they have an irregular shape. Incorrect colour
or sized capsules can cause serious problems if they reach an end-user, resulting in possible product
recall. Dirt, grease and strings are cosmetic flaws and do not affect the capsule, however imply poor

quality control or manufacturing.

1. INTRODUCTION

1.4 State of the Art

A machine vision system requires a single setup cost as well as possible maintenance costs. Typical
systems available on the market cost in the range of $500,000 [1]. Two big names in the hard
capsule inspection business are Daiichi Jitsugyo Viswill Co. and Eisai Machinery USA Inc. Each
of these companies offer inspection systems for two-part hard gelatin capsules, along with other
pharmaceutical products. The Daiichi Jitsugyo Viswill CVIS-SXX-E system is capable of inspecting
number 1 through 5 sized uni-colour and bi-colour hard capsules, excluding transparent and dark
capsules [5]. Their system performs an inspection on the circumference surface of the cap and body
with a inspection capacity of 1700 to 2500 capsules per minute [5]. The CVIS-SXX-E uses high-
resolution CCD line sensor cameras and is capable of detecting a minimum size flaws of 100mum
[5]. Eisai Machinery offers three models of capsule inspection systems, rated at 800, 1600 and 2500
capsules per minute. The Eisai system uses CCD cameras for inspection, but the capsule sizes
and colours supported are not mentioned. Therefore, while the current current state-of-art capsule

inspection systems do exist they are quite expensive.

1.5 Motivation

The overall goal of this project is to design and develop a working prototype for a full custom
capsule inspection system. The system developed must be capable of a target inspection rate of
1000 capsules per minute. For the prototype system, the focus was on only the inspection of size-0
natural two-part hard gelatin capsules, which is the most popular capsule sold by Pharmaphil Inc.
After the completion of the proof-of-concept stage, sound evidence that such a system is plausible
permitting further development towards a commercial system. Thus the objective of the project was

to complete the proof-of-concept stage with a working prototype.

1.6 Design Strategy

Pharmaphil Inc. purchased several antiquated inspection systems developed in the mid 1990s
with the intent of upgrading them with modern technology. The existing system, called the Op-
tiSorter was developed by an unknown German company. The OptiSorter provides a decent
mechanical basis for inspection but with outdated electronics and processing capabilities. Using this
existing mechanical frame and some existing hardware such as motors, actuators and sensors, the
electronics and processing equipment could be updated to provide a more thorough and accurate
inspection. In collaboration with Pharmaphil Inc., the department of electrical and computer engi-

neering compiled a team of three graduate students to achieve this goal. This thesis refers to the

1. INTRODUCTION

project as the PharmaSorter, although a formal name for the system has not been decided upon by
Pharmaphil.

The approach taken in solving this problem was to develop a full-custom design in order to reduce
cost. By recycling as many components of the OptiSorter as possible, the end cost of the system
was reduced significantly. The full-custom design involved the design of custom USB2.0 cameras
with the development of the associated drivers and software and the design of a system controller to
interface with the mechanics of the system including motor, actuators and sensors. Custom software
running on standard desktop PCs was developed to facilitate analysis of images acquired. The full
custom approach deemed successful in reducing cost and the result was a proof-of-concept prototype
from which the first generation commercial unit can be designed.

The research project involved the collaboration of three students in the Department of Electrical
and Computer Engineering at the University of Windsor. The development of the prototype system
was divided into three sections, namely: machine control and data acquisition, camera hardware
and real-time image processing, and image analysis using image processing. The research team
was comprised of myself, responsible for machine control and data acquisition, Anthony C. Karloff,
responsible for camera hardware design and real-time image processing and Mohammed J. Islam
who developed the image analysis algorithms using image processing.

This thesis outlines the personal contributions made to the project. This includes the detailed
design of various components of the system including detailed hardware design, firmware and software
development. Supplemental documents including technical reference manuals of various hardware
are companion to this thesis and are referenced accordingly. Source code listings for the firmware
and software developed for the prototype system are included in Appendix Chapters B through E.

This thesis is organized into seven chapters. The second chapter provides essential background
information regarding the various technologies used in the project. This is not intended to be a
comprehensive discussion of these technologies, but rather an introduction. The third through sev-
enth chapters cover detailed design methodology of the various components of the system. Chapter
3 provides the basic design approach and considerations for the system. Chapter 4 details the
design of the USB2.0 cameras in particularly the contributions made in terms of firmware and soft-
ware drivers. In Chapter 5, a detailed design specification of the system control board outlines
the hardware design, circuit board layout and fabrication and firmware development. The host PC
hardware requirements, operating system selection and software development is discussed in Chapter
6. Chapter 7 provides a reference to how each component of the system interacts and the required
interconnections of the various hardware components in a high-level manner. The final chapter,
Chapter 8 provides some concluding remarks of the project including results and recommendations

for future development towards a commercial unit.

Chapter 2

Background

This chapter is intended to provide the reader with some background information on some of the
technologies used in the development of the system. The development of the PharmaSorter proto-
type was accelerated by reusing an the mechanics of an existing capsule inspection system called the
OptiSorter. Background information regarding the OptiSorter is presented in this section including
the capsule loading and ejection mechanism, and electrical hardware that was reused in the prototype
design. For the prototype system, custom USB2.0 cameras were developed and custom firmware and
drivers were created. USB2.0 is a fairly involved technology although many semiconductor vendors
offer devices to reduce development time and complexity. The basics of USB2.0 are presented here.
Although I?C is not a complicated communication interface, it does deserve some recognition due
to the abundant use in the prototype system. I?C is a two-wire serial communication interface

intended for chip-to-chip communication.

2.1 OptiSorter

The inspection of any object using a computer vision requires the development of a mechanical
system to load, fixture and eject the object in addition to the electrical hardware and software. For
the development of the PharmaSorter, an existing mechanical structure was used to facilitate this
requirement. The OptiSorter, shown in Figure 2.1, is a machine vision system developed in the
early-to-mid nineties for purpose of inspecting two-part pharmaceutical capsules.

This system facilitates individual capsule loading and ejection. The capsule rests in a holder and is

inspected using a series of four cameras which acquire images of all surfaces of the capsule. Pneumatic

2. BACKGROUND

Figure 2.1: OptiSorter

valves are used to eject the capsule into either a pass or fail discharge mechanisms. The OptiSorteris
comprised of four identical inspection quadrants operating in parallel. The components of a quadrant
are labelled in Figure 2.2 accompanied by a detailed description of the OptiSorter’s components

including the electrical and mechanical systems.

1. Rotating Disc The rotating disc is the base of the loading hopper with slots to allow capsules

to be queued in each arm (4) which are fixed to the disc.

2. Capsule Intake Lever The capsule intake lever controls the flow of capsules entering the holder
(5). Two holders are used to allow a single capsule to be loaded onto the holder at a given

time.

3. Lifters The lifters are fixed metal blocks used to lift the intake levers (2) to allow a capsule to

be loaded in the Loading Stage. The lifters are positioned such that one capsule is loaded onto

2. BACKGROUND

DIRECTION OF
ROTATION

QUADRANT n EJECTION

STAGE

Figure 2.2: OptiSorter Quadrant Birds-Eye View

the holder and another held in the waiting position while the rest are queued single file in the

arm (4).

. Arm The arms are hollow metal shafts that hold the capsules in the inspection queue. The arms
are the link between the hopper and the holder (5) and rotate to move the capsule through

the various stages of the inspection process.

. Capsule Holder The capsule holder is a machined steel block with a grove to hold the capsule
and a slot allowing for the bottom portion of the capsule to be visible. The capsule rests on

the holder while is passes through the various stages.

. Top View Cameras The top view cameras, comprised of a left, center and right camera, ac-
quire images of the top surface of the capsule. The cameras are triggered when the holder

enters their field of view.

. Bottom View Camera A single camera is positioned to acquire an image of the bottom of the
capsule through the slot in the holder (5). This image is acquired after the top view cameras

(6) acquire images of the top surface of the capsule.

2. BACKGROUND

8. Accept Ejection An electrically controlled pneumatic valve is used to eject a passed capsule

using a burst. of air.

9. Reject Ejection A constant supply of air is used to reject all capsules not passed (assumed
fail).

10. Two-Part Capsule The capsule is the object being inspected. A given machine can only
support a single size capsule but by modifying inspection algorithms and machine parameters,

various different coloured capsules can be inspected.

The OptiSorter provides a suitable base for performing inspection with the ability to replace the
electronics and incorporate more advanced inspection methods. The existing mechanical structure
is suitable for the throughput requirement and provides an adequate inspection environment. By

re-using the OptiSorter, the upgraded system is cost effective and provides a reasonable inspection.

2.1.1 Mechanical Design
Capsule Loading

The OptiSorter has a relatively simple, yet elegant mechanical design. The mechanics of the system
rely on a single stepper motor which rotates a series of 24 arms which load and fixture the capsule
for inspection. Each mechanical arm is hollow with a diameter slightly larger than a capsule. The
arm queues capsules in single-file from a large hopper atop the machine. As each arm rotates, two
levers are used to load an individual capsule into the capsule holder and the waiting position. The
levers are activated by lifters located prior to the inspection stage. As the arm enters an inspection
area, the first lever is lifted to allow a single capsule to be queued between the two levers in the
waiting position. After a short distance, a the second lever is lifted to allow the queued capsule to
rest in the holder. The dual plunger system is in place to ensure only a single capsule is loaded at

a given time.

Capsule Holder

As mentioned above, the capsules rest in a capsule holder. The capsule holder is a piece of machined
stainless steel with a grove in which the capsule rests. A slot in the holder allows the capsule to be
viewed from all angles by cameras, thereby maximizing the viewable surface area. A proximity sensor
is used to trigger the cameras for image acquisition once the capsule enters the inspection stage.
The rotating arms are attached to a steel disc with notches machined out. Each notch represents

the entry of a new capsule into the inspection area. This signal is used as a feedback mechanism

2. BACKGROUND

so the position of the arm is always known. This is essential to properly organize the sequence of

events required for inspection.

Capsule Ejection

After the capsule passes the inspection stage it enters the ejection stage where the capsule is ejected
into one of two ejection chutes. The ejection of a passed capsule is performed by an electrically
controlled pneumatic valve that uses a burst of air to eject a capsule. For a rejected capsule, a
constant stream of air is used to eject the capsule into the reject chute. Following ejection, the
capsules rest on a metal disc that rotates at a reduced speed proportional to the speed of the arms.
The capsules collect on the disc in one of two slots, accepted or rejected. As the disc rotates, the

capsules are finally discharged at one of the two exits.

2.1.2 Electrical Design

The OptiSorter’s electrical system is quite dated by today’s standards, however some components of
the existing electrical system can be reused in the re-design. The OptiSorter was mostly comprised
of custom electronics including cameras, acquisition boards and an input/output board as well as
sensors, actuators and a stepper motor. There were several power supplies used in the system to
provide the power requirements of different components. Finally, a simple HMI was designed using

several push-buttons and a character LCD.

Power Supplies

To adequately meet the requirements of the system, several power supplies were used. A 24VDC
supply was used to operate the motor, the electrically controlled pneumatic valves and proximity
sensor. A set of standard PC power supplies were used to provide power for the acquisition boards
and cameras. A set of custom designed 8VDC and +/- 156VDC were also used in the system. It is

presumed that these were used for an analog portion of the image acquisition system.

Illumination

A matrix of LEDs were used to provide backlighting illumination. The LEDs were soldered to a
small circuit board and attached to a diffusing plastic block. The voltage used to operate them
is not known, but assumed to be 8-12VDC. The backlighting was created using high-intensity red
LEDs. It is assumed that these were pulsed to preserve the LEDs lifespan and the provided exposure

control for the image sensor.

2. BACKGROUND

Cameras and Acquisition

The OptiSorter is equipped with 16 cameras, four for each of the inspection quadrants. The cameras,
presumably black-and-white, have a custom circuit board with a custom enclosure and a commercial
lens. The wiring of the cameras infers that the cameras produce an analog signal, most probably
PAL. For each camera, an acquisition and processor board is used to acquire the images and perform
inspection. Each of the acquisition boards is equipped with an equivalent 80286 processor and other
signal processing semiconductor devices. Each acquisition board is connected to a large bus where
the input /output board also resides. It is presumed that following an inspection, the pass/fail signal
is sent to the input/output board which signals the pneumatic valves to accept or reject a given

capsule.

Stepper Motor and Controller

The OptiSorter uses a five-pole stepper motor to rotate the capsule holder arms. The stepper
motor is controlled by a motor controller. The motor controller accepts a direction signal and steps
on the rising edge of the input step pulse. This makes motor control rather straightforward and
requires little feedback to track the position of the arms. The motor controller operates at 24VDC

and requires a 24V pulse to step.

Proximity Sensor

A single proximity sensor is used as feedback of the position of the holder arms. When the holder
enters the inspection area, a pulse is seen from the proximity sensor. This, along with the knowledge

of the number of pulses applied to the stepper motor, is used to track the position of the holders.

Electrically Controlled Pneumatic Valves

Electrically controlled pneumatic valves are used to eject the accepted capsules. The valve is engaged
(opened) by a 24VDC supply voltage. A single valve exists in each inspection quadrant and is opened

according to the pass/fail result of the inspection by the input/output board.

Human Machine Interface

An very simple HMI used to be used by a machine operator is located at the front of the machine.
It is assumed that this interface is used to start and stop the machine and retrieve simple feedback
from the system. The HMI is comprised of a set of two push buttons, a switch, a lamp and a 16x2

character LCD. It is presumed that the HMI is controlled by the I/O board using a parallel interface.

10

2. BACKGROUND

Monitor

A television unit placed atop the machine is presumed to be used for system calibration. A series
of switches used to select a camera exists on the side of the machine. A particular camera can
be selected and viewed on the television unit. It is assumed that a PAL signal directly from each

camera is displayed and used for the calibration of lens focus, camera position, etc.

2.2 Universal Serial Bus (USB)

Universal Serial Bus (USB) is a hi-speed interface used for connecting peripheral devices to a com-
puter, or any host system. USB is abundantly available and most modern PCs are equipped to
support it. USB devices are also widely available in commercial electronics and commonly used in
industry. It is a preferred solution due to it’s hot-swap capability, supply capabilities and high speed
transfer ability. Developing a USB device requires a working knowledge of the physical, protocol
and software levels of the interface.

USB replaces legacy interfaces including serial and parallel ports on PCs. Standard devices like
printers, scanners, mice and keyboards now connect using USB. Among these device, many other
devices are being supported such as PDAs, mobile phones and other hand-held devices. USB is a
serial bus interface first introduced in November 1995 with the initial release USB 1.0 by Microsoft,
Intel, Philips and US Robotics [39]. USB 1.1 was later released in 1998 to rectify the adoption
problem from the initial release [39]. The most current release of USB is version 2.0, which was led

by Hewlett-Packard, Lucent, Microsoft, NEC and Philips [36].

2.2.1 Overview

The Universal Serial Bus is a star topology with a single master on the bus, the host. A device on a
USB bus cannot initiate a transfer to a host; it must be requested by the host prior to transmission.
USB supports the addition of HUBs to the topology to support additional devices. Up to five tiers
of HUBs are permitted supporting, up to 127 devices on a single bus. There is a single root hub
in any given topology which is integrated directly into the USB host controller device of the host
system. A example USB bus topology is shown in Figure 2.3.

Each USB device, or peripheral, is typically comprised of one or more logical sub-devices that
perform a single function. Each of the logical sub-devices is referred to as an interface. Communi-
cation with an interface is performed through pipes which are channels that link to the endpoints of
a given interface. Fach interface can be made up of one or more endpoints that are used to transfer
data. Each endpoint is unidirectional, meaning it can only be used to send or receive data. USB

supports up to 32 endpoints, 16 IN endpoints and 16 OUT endpoints, with IN and OU'T referring

11

2. BACKGROUND

Figure 2.3: USB Bus Topology

to the direction of data flow with respect to the host. There in an exception however, with end-
point zero (EPQ), which is a required endpoint used for device configuration. Endpoint zero is a
bi-directional control endpoint required in all devices. This is used for device configuration during

the enumeration process and is also often used for vendor specific requests.

2.2.2 Enumeration

Enumeration is the process of device identification to the host system upon being attached. The
enumeration process begins with the host initiating a device reset followed by a request for device
configuration information (USB standard device requests). If the device is recognized by the host
operating system, the corresponding device driver is loaded. Device identification is typically based
on three device descriptor values namely VendorID, ProductID and DevicelD. Since USB devices
cannot initiate communication, the host controller polls bus traffic in a round-robin fashion to detect
devices added to the bus. Each USB hub has a status bit to report the attachment or removal of
a device. In the case of a device being attached, the host enables the port and assigns the device
an address on the bus. The device is enumerated using a pipe to the device’s control endpoint zero

where the device and endpoint descriptors are requested by the host.

12

2. BACKGROUND

Endpoint Zero

It is essential that all devices support a common mechanism for accessing device information. This
is accomplished using the default control endpoint which exists on all devices. This endpoint is
bi-directional (IN and OUT) with endpoint address 0. During enumeration, this endpoint is queried
for standard device information including vendor and product identification, device class and power
requirements. This is accomplished by standard descriptor requests from a device, it’s interfaces and
the endpoints of each interface. This is performed using the default control pipe. A control request
is formatted as described in Table 2.1 where the bmRequestType bitmap is detailed in Table 2.2.

The specific configuration data is acquired through a series of requests as described in Table 2.3.

[Offset l Field [Size I Value I Description J
0 bmRequestType 1 BitMap | Description of Request (Type, Direction & Recipient)
1 bRequest 1 Value Specific Request
2 wValue 2 Value Specific to Request

8 4 windex 2 Index Used by request to pass and index

L 6 wlength 2 Count Number of bytes to transfer in data stage (if present)

Table 2.1: USB Control Request Setup Packet

| Bit(s) | Description |

Data Transfer Direction
D7 0 - Host to Device
1 - Device to Host

Type

0 - Standard
D6.5 1 - Class

2 - Vendor
3 - Reserved

Recipient

0 - Device

1 - Interface

2 - Endpoint

3 - Other

4..31 - Reserved

D4..0

Table 2.2: USB Control Request bmRequestType BitMap

2.2.3 Host Controller Interface

The host system uses a host controller to facilitate the USB protocol at the physical level. A USB
host, controller device has several standards for the releases of USB. The UHCI and OHCI (Universal
Host Controller Interface and Open Host Controller Interface) were both released along with USB

13

2. BACKGROUND

bmRequestType bRequest wValue windex wlength Data
0x00, 0x01, 0x02 CLEAR_FEATURE Feature Se- | Zero Zero None
lector Interface
Endpoint
0x80 GET_CONFIGURATION | Zero Zero One Configuration
Value
0x80 GET_DESCRIPTOR Descriptor Zero or | Descriptor | Descriptor
Type and | Language Length
Descriptor 1D
Index
0x81 GET_INTERFACE Zero Interface One Alternate
Interface
0x80, 0x81, 0x82 GET_STATUS Zero Zero Two Device,
Interface Interface,
Endpoint or Endpoint
Status
0x00 SET_ADDRESS Device Ad- | Zero Zero None
dress
0x00 SET_CONFIGURATION | Configuration| Zero Zero None
Value
0x00 SET_DESCRIPTOR Descriptor Zero or | Descriptor | Descriptor
Type and | Language Length
Descriptor ID
Index
0x00, 0x01, 0x02 SET _FEATURE Feature Se- | Zero Zero None
lector Interface
Endpoint
0x01 SET_INTERFACE Alternate Interface Zero None
Setting
0x82 SYNCH_FRAME Zero Endpoint Two Frame
Number

Table 2.3: USB Control Requests

1.1. The OHCI standard is more hardware dependant and faster than the more software dependant
UHCI. OHCI however was more expensive to implement. Regardless of the standard followed, the
same functionality was supported by both interfaces. To reduce the complexity, the release of USB
2.0 permitted only a single interface, EHCI (Enhanced Host Controller Interface). Host controller
devices were required to be backwards compatible and support one of either UHCI or OHCI. The host
operating system uses the host controller interface to communicate directly with the host controller
device using a register file. The host controller device follows the USB protocol to communicate

with peripheral devices.

14

2. BACKGROUND

2.2.4 Device Classes

In an effort to reduce the dependence of devices on individually specific drivers, USB device classes

alleviate this by creating standard classes to which a device can belong. By belonging to a given

device class, the device must follow the standards specified by said class. A device class can be

supported by a single device driver without the need for a fully custom driver for each specific

device. Thus the same driver can be used for many unique devices. Commonly known device classes

include HID (Human Interface Device) and Mass Storage device used for keyboards and flash disks

respectively. A more thorough list of device classes and examples are listed in Table 2.4.

| Base Class | Descriptor Usage | Description I

0x00 Device Indicate that interface descriptors are to be used for the
device.

0x01 Interface Used for audio compatible devices. This can be used in
the audio interface of a webcam device.

0x02 Both Communication and CDC Control device used in devices
such as ethernet adaptors, modems, etc.

0x03 Interface Human Interface Device. This device class is reserved for
devices such as mice and keyboards.

0x05 Interface Physical device class. This class is used in force feedback
Jjoysticks.

0x06 Interface Still Imaging device class. Sometimes used for digital
cameras, but most use Mass Storage Device.

0x07 Interface Printer device class is used for printers and multi-function
printer/scanners.

0x08 Interface Mass Storage Device is used for USB flash drives, external
DVD Drives, etc.

0x09 Device USB Hub class is used for full and high speed USB hubs.

Ox0A Interface CDC-Data class is used with the communication device
class

0x0B Interface Smart Card Class is reserved for USB smart card readers

0x0D Interface Content Security interface class

0x0E Interface Video interface class - used for video devices like web cams

OxOF Interface Personal Health care class

0xDC Both Diagnostic Device - used in USB 2.-0 Compliance testing
apparatus

OxEO0 Interface Wireless controller - used for WiFi and Bluetooth adapters

OxEF Both Miscellaneous - Such as Active Sync devices or Palm Sync
devices.

OxFE Interface Application Specific - use for Device Firmware Upgrade,
IRDA bridge device, etc.

OxFF Both Vendor Specific

Table 2.4: USB Device Classes

2. BACKGROUND

2.2.5 Data Flow Types

USB supports four distinct data transfer types: control, bulk, interrupt and isochronous. ach
transfer type is suitable for a particular application. A USB transfer occurs between the device
driver and an endpoint and thus each endpoint is defined as one of the four flow types in a single
direction (IN or OUT). The transfer of data between the host software and the device endpoint
occurs over a logical channel, often referred to as a pipe. An endpoint may be defined as one of the

following data flow types.

Control Transfer

The control endpoint is used to configure the device during enumeration and also for controlling
other device-specific functionality. Control endpoints are usually reserved for control and status
operations where data is non-periodic. The maximum data size of a control endpoint is 64 bytes for
USB 2.0 (high-speed) and full-speed devices, but only 8 bytes for low-speed devices. This transfer

type is guaranteed and therefore occurs without loss of data.

Bulk Transfers

Bulk endpoints are used when large amounts of data are to be transferred, as for printers, scanners
or external hard-disks. Bulk transfers are guaranteed by built-in error detection to ensure reliable
data transfer. This is accomplished by using error detection via CRC and invoking hardware retries
if required due to delivery failure or bus errors. A bulk transfer is guaranteed for integrity but not
for transfer rate. The bandwidth utilization is dependent on the bus activity and will vary. For USB

2.0, the maximum bulk transfer size is 512 bytes and 64 bytes for full-speed endpoints.

Interrupt Transfers

An interrupt endpoints is designed for devices that do not frequently send or receive data. The
interrupt endpoint supports bounded service periods meaning the service time is guaranteed. The

maximum payload size of an interrupt endpoint is 1024 bytes for USB 2.0 and 64 bytes for full-speed.

Isochronous Transfers

Isochronous transfers are typically used for periodic and continuous data transfer between the host

and the device. It is typically used when timing is critical but data integrity is not.

2. BACKGROUND

2.2.6 USB Connectors and Cabling

So far, the protocol level has been introduced. The USB specification [36] also contains the connector
requirements, cabling, isolation, etc. This information is relevant to the overall layout and design
of a system from a hardware design viewpoint and the logistics of the cabling. USB connectors arc
standard and well designed. They were specifically designed to permit easy insertion and removal
with the inability to incorrectly attach. The connectors are robust unlike some predecessors with
pins that can be bent or broken if not properly inserted. There are several standard types of USB
connectors divided into two classes, A-type connectors and B-type connectors. A-type connectors are
reserved for the host side and B-type connectors are reserved for peripherals. Figure 2.4 illustrates

the common USB connectors used {39].

Type A Type B
2 4 x 321

T I

Mini-A Mini-B

Figure 2.4: USB Standard Connectors

USB cabling is restricted to a maximum of 5 meters (16.4 feet) without the use of hubs. If hubs
are used, the maximum distance is about 25 meters since the maximum cable length between hubs
is 5 meters with a maximum of 5 tiers of hubs. If the USB cable is too long, the host will not receive
the data packet on time and the command will be lost. The cable length is based on the round trip
delay of an electrical signal in the length of copper wiring and is also dependant on the quality of
the cable. A USB cable is comprised of four wires (sometimes five) with a ground shielding. The
data lines are a twisted differential pair to reduce crosstalk. The wiring pin out of a USB cable is

shown in Table 2.5.

[Pin I Name , Colour ! Description I

1 Veus | Red +5V Bus Power

2 D- White Differential Data Negative
3 D+ Green Differential Data Positive
4 GND Black Ground

Table 2.5: USB pin out

17

2. BACKGROUND

2.2.7 Bus Power

The USB cable provides 5V power (with a 5% tolerance) to peripheral devices. When a device is
initially connected, the host reserves 100mA supply which can be later increased after enumeration
for a maximum current of 500mA. There is an exception in battery charging devices whereby the
USB host can provide up to 1.5A worth of current. Devices that require more power must be

externally powered.

2.2.8 USB Device Drivers

A device driver is software that is responsible for interfacing with hardware. It is operating system
dependent and is designed for specific hardware. The driver is responsible for sending commands to
hardware and the interchange of data.

For the Linux operating system, several types of drivers can be developed. A driver can be part
of the kernel or a loadable kernel module. These types of drivers require an extensive knowledge
of the operating system. However, a user-space driver can be developed to interface with a device
that requires less understanding of the operating system kernel. A user-space driver can be safer in
that a poorly written driver cannot affect the kernel as severely, or cause it to panic. LibUSB is a
cross-platform library of user-space routines for controlling USB devices without the need for kernel

drivers. LibUSB is currently available for Linux, MS-Windows, Mac-OSX, and FreeBSD.

libUSB

LibUSB is an open-source project licensed under the GNU GPL intended to provide a library for
user level applications to access USB devices regardless of the operating system. LibUSB provides a
relatively simple method of interacting with USB hardware. Routines were developed so a dedicated
kernel driver is not required to communicate with a USB device. Common functions for scanning
the USB bus, for retrieving descriptor data and for claiming interfaces are rather straight-forward
using libUSB. Of the four data transfer types, control, bulk, interrupt and isochronous, the first
three are supported by libUSB. Although not perfect for all scenarios, libUSB provides many useful
functions for finding and controlling USB devices in user space. Some of the more commonly used

functions are listed in Table 2.6.

2. BACKGROUND

libUSB Function

Description

usb_init()

Initialize the libUSB library for the application.

usb_find_busses()

Searches the system for all USB busses. Returns the
number of changes since last call.

usb_find_devices()

Searches all busses to find all devices on each bus.
Returns number of changes since last call.

usb_get_busses()

Returns the list of busses as type usb_bus.

usb_open(usb_device *dev)

Open a device for use. This must be called before
any operations can be performed. Returns a handle

to the device, or an error code.

usb_close(usb_dev_handle *dev)

Used to close an opened device. Returns 0 on suc-

cess

usb_set_configuration(usb_dev_handle
*dev, int configuration)

Sets active configuration of a device. This is speci-
fied in the descriptor field bConfigurationValue. Re-

turns O on success.

usb_set_altinterface(usb_dev_handle
*dev, int alternate)

Set the active setting of the current interface as
described in descriptor field bAlternateSetting. Re-

turns O on success.

usb_claim_interface(usb_dev_handle
*dev, int interface)

Claims the interface with the operating system. The
interface number is specified in the descriptor bln-

terfaceNumber. Returns O on success.

usb_release_interface(usb_dev_handle

*dev, int interface)

Releases a previously claimed interface. Returns 0

ONn success.

usb_control_msg(usb_dev_handle
*dev, int requesttype, int request,
int value, int index, char *bytes, int

size, int timeout)

This function performs a control request as defined
in Table 2.1.

error code.

Returns O on success, or a negative

usb_bulk_write(usb_dev_handle *dev,
int ep, char *bytes, int size, int time-
out)

This function performs a bulk write to a bulk-OUT
endpoint specified by ep. Returns number of bytes

written on success, or a negative error code.

usb_bulk_read(usb_dev_handle *dev,
int ep, char *bytes, int size, int time-
out)

This function performs a bulk read from a bulk-IN
endpoint specified by ep. Returns number of bytes

read on success, or a negative error code.

Table 2.6: Frequently Uses libUSB Functions

2.3 I:C

I?C (Inter-Integrated Circuit) is a serial bus developed by Philips for connecting low-speed periph-
erals of an embedded system. The I?C bus is a bi-directional two-wire multi-master bus used for
connecting microcontrollers or processors to devices or other processors.

The I?C bus uses two open-drain lines, a serial data line (SDA) and a serial clock line (SCL)
thus each of these lines must be pulled high using pull-up resistors. Typically 5V or 3.3V voltage

levels are used in a system, although higher and lower voltages can be used. A schematic of an

19

2. BACKGROUND

example configuration of a single master I2C bus with several slave devices is shown in Figure 2.5.

Vee

R. q:l H]RP
SCL

AL I . I I .
“Microcontroller | |- Serial EEPROM ~LED Microcontroller
Amaster) - | | o dslave) o | | oo (slave) . (slave)

Figure 2.5: I2C Sample Schematic

"The addressing scheme for I2C slave devices consists of a 7-bit address space with 16 rescrved
addresses resulting in a maximum of 112 nodes for a given bus. A typical slave device has fixed high
address bits and several inputs to select the lower address bits (typically three bits). This allows
the designer to use multiples of the same device on a single bus with distinct addresses.

The I?’C bus most commonly operates at 100 kbit/s, known as standard mode. More recent
revisions of the I2C specification include faster operating speeds including Fast Mode at 400 kbit /s,
Fast Mode Plus at 1 Mbit/s and High Speed Mode at 3.4Mb/s. The High speed mode of opcration
typically requires current sources rather than simple pull-up resistors to permit faster rise times.

Since the lines of the I2C bus are driven by open-drain drivers, the pull-up resistors are nceded
to pull the line voltage to Voo, If a device wishes to communicate on the bus, the line is pulled to
ground to communicate a logical zero, and allowed to float to represent a logical one. The master(s)
on the bus are responsible for providing a clock, however with clock-stretching, slaves arc able to
momentarily pause the transfer of information if required. Clock-stretching occurs when the slave
holds the SCL line low for longer than the clocked frequency. The master must read the clock line
after releasing it to ensure it has been pulled high, if not, the master must wait until the clock line
is high before reading off the data line (SDA).

Since I?C supports multi-master busses, arbitration is required to ensure multiple masters do
not attempt to use the bus at the same time. Arbitration in I2C is quite simple and does not
give priority to a particular master. The process of arbitration is required if two masters start a
transmission around the same time, each transmitter checks the level of the data line (SDA) and
compares it to what is expected. If the value on the bus does not match, the particular transmitter
loses arbitration and ceases transmission. If two masters are sending messages to two different slaves,
the slave device with the lower slave address will win arbitration due to the nature of the bus.

In an 12C transaction, the master initiates transmission by sending a START bit, followed by the
7-bit. address of the target slave device, followed by a read/write bit. The read/write bit indicates

the direction of data flow with respect to the master: 0 for write and 1 for read. If the slave exists

20

2. BACKGROUND

on the bus, it will respond with an ACK (acknowledge) for the address. An acknowledge by a
slave is initiated by pulling the SDA line low for the expected clock which is recognized by the
master. The master will then continue in either transmit or receive mode. After the transmission,
the master will send a STOP bit indicating the transaction is complete. A master will acknowledge
when receiving data by holding the SDA line low after each byte received, except for the last, to
indicate the expected amount of data has been received.

The START bit (S) is recognized by a high to low transition of SDA while SCL is high. A STOP
bit (P) is recognized by a low to high transition of SDA while SCL is high. A typical 1°C transaction

timing diagram is shown in Figure 2.6.

SDA

B Vi 5 N N WV WV W A

START ADDRESS ADDRESS READ/WRITE SLAVE ACK DATA ACKNOWLEDGE STOP
(S) BIT 7 BITS (6..0) BIT BIT BITS (P)

Figure 2.6: I°C Timing Diagram

I2C is commonly used in semiconductor devices where simplicity and cost are key factors. Since
I’C is a two-wire interface, the pin cost is minimal, resulting in a simple and low cost solution.
I?C is common found in serial EEPROMs, low speed ADC and DACs, LCD displays and recal-time
clock chips. Some manufacturers use what they refer to as a two-wire interface (TWI) that is an

adaptation of I?C but not completely conforming to the I2C specification.

2.4 Machine Vision

Machine vision is the encapsulation of computer vision, image processing and machine control to
typically perform inspection on manufactured goods in industry. A traditional machine vision system
is comprised of cameras, computers and digital inputs and outputs or computer networks for machine
control. Machine vision systems are intended to replace human inspectors working on assembly lines
to automate the inspection process. Although human inspection is more flexible and adaptive than
machine classification, human inspection is subject to inaccuracies due to human attention span and
circumstance. Although the human eye is more versatile than any vision system as it can adapt to
various illumination conditions, a machine vision system can replace the need for human inspection
by producing high quality, objective inspection.

Since machine vision systems do not “see” the way humans do, images acquired can be analyzed

to look for certain irregularities or characteristic of an object. This is typically accomplished by

21

2. BACKGROUND

analyzing individual pixels in regions of an image. This portion of machine vision falls under the
image processing section. Image processing is a crucial portion of any machine vision system since
it is essentially the brains of the analysis. Image processing used in machine vision will typically
perform some pre-processing on an image including de-noising and image enhancement. Typically,
the majority of the image processing during inspection is performed on binary images following
the pre-processing. Some of the common processing methods include pixel counting, thresholding,
segmentation, edge detection and template matching. However, it is entirely dependent on the
application and will change depending on the object and the environment. An inspection system
may check for surface flaws and take measurements to determine the quality of the part.

A typical machine vision system is comprised of one or more digital cameras, typically black
and white although colour cameras are gaining popularity, along with the appropriate optics such
as lenses and mounts. The majority of any inspection is typically most dependent on the grayscale
information and thus a grayscale camera is typically preferred since it enables the highest resolution
and faster speed. Some applications, however, require colour information. In this case, a colour
sensor is required and the grayscale information is extracted from the RGB colour space. The
system must also have an interface to digitize and acquire the image data, typically a frame-grabber
or other computer interface such as USB. A processor is required to analyze the image(s) and is often
a PC or embedded DSP processor. A device gaining popularity is a smart camera which incorporates
all of the above mentioned components into a single camera. The smart camera has a lens, sensor,
acquisition hardware and processor all within a single device. Input/Output hardware is required to
interface with the machine portion of the system. Sometimes a communication link like an Ethernet
or RS-232 connection is used rather than dedicated I/O to report inspection results.

Illumination is a crucial element of any machine vision system in order to produce a consistent
environment that is conducive to high-quality inspection. Since the cameras are not as versatile as
the human eye, various illumination techniques can be employed to enhance details of an object.
High-intensity LEDs are commonly used for illumination, however fibre optic, laser, fluorescent and
halogen lamps are also used. Many different lighting schemes exist that provide suitable lighting
for different applications. The backlighting technique is commonly used for measuring objects.
This method provides even illumination and casts silhouettes of object which are suitable for edge
detection of solid or transparent objects [14]. Ringlights are another commonly used lighting source
comprised of one or more rings of LEDs placed around the camera. The ring light provides uniform
front light for matte surfaces. Many other illumination techniques exist and are suitable for different
applications. One must consider the object being inspected, mechanical constraints and speed of
inspection when selecting lighting since some lighting solutions require more space and produce

varying light intensity.

22

2. BACKGROUND

In order to perform inspection, software must be developed to perform the image processing and
yield a pass or fail result of the inspection. This is platform dependent and can be accomplished in
many different ways. The machine must be equipped with sensors and actuators that when combined
are used to locate parts, trigger image acquisition and sort accepted and rejected parts. The system
must incorporate means of obtaining the result of inspection from the software in order to properly
eject the object.

The design of a consistent and high-quality machine vision system requires a well planned ap-
proach. The design of each system is dependent on the part being analyzed and the rate at which the
inspection must occur. The cost of the system is another component that must be considered. The
value of the part being inspected and the throughput of the machine vision system must correlate

to it’s manufacturing and running cost.

23

Chapter 3

Design Methodology

The design of any system requires a substantial amount of planning and research before any type of
development can begin. The design and development of the PharmaSorter began with a list, of high-
level requirements and an existing mechanical structure, namely the Optisorter. In order to meet
the system requirements, many considerations had to be taken into account: the required inspection
rate of the system, the inspection detail requirements (minimum flaw size), the cost constraints and
the ability to maximize the reuse of existing hardware.

The final conceptual design of the system involved the use of USB 2.0 cameras and PCs to perform
the capsule inspection with a system controller for the operation of the controls and mechanics of
the OptiSorter. The overall block diagram of the proposed system is shown in Figure 3.1. From
the block diagram, it is evident that there are three main components of the system. The USB
2.0 cameras which are used to acquire images, the inspection PCs for processing the images and a
system controller to control the hardware and to synchronize timing. Chapter 4 through Chapter 6

discuss the design of each component in detail.

24

3. DESIGN METHODOLOGY

UsSB 2.0 uss 2.0 USB 2.0 UsB 2.0
CAMERA CAMERA CAMERA CAMERA
{master}

[Y

MOTOR CONTROL
>

LIGHTING CONTROL
TRIGGERS
ACCEPT/REJECT CONTROL

Figure 3.1: Conceptual block-diagram of the PharmaSorter

3.1 Design Approach

The design of the PharmaSorter involved a great deal of initial planning and rescarch. This included
asscssing the requirements and constraints of the system, and creating a development strategy based
on these design criterion. The design approach involved the development of the small components
of the project and putting the pieces together until a quality finished product was achieved. This
involved building and testing circuits at the breadboard level with the aid of development boards and
writing and debugging firmware to verify that the selected devices were suitable for their purposc.
This was accompanied by the development of drivers and software to test data rates and ensurc
the selected hardware was suitable for the application. Building small circuits and writing custom
firmware and software was a practical way of testing and verifying designs. Although the initial
concepts for each of the design stages were based on educated predictions, it was imperative that
they were thoroughly tested and verified. As each component was finalized, they were incorporated
into the final prototype.

Due to the requirements and constraints of the system, a fully custom design strategy was taken.
This involved designing custom circuits, developing custom firmware and writing many software
applications. This was essential to reduce the cost of the system, and reuse many of existing
hardware components of the OptiSorter. By undertaking a fully custom approach, the cost of the
prototype was minimized, although the design time increased substantially.

During every stage of design and development, many key considerations were constantly being

taken into account. Focusing on these reduced design errors and improved flexibility.

25

3. DESIGN METHODOLOGY

3.2 Design Considerations

The primary goal of the design of the system was to upgrade the electronics of the OptiSorter, the
driving force for this being the requirement of a low-cost solution. In addition to this constraint,
the required system throughput of 1000 capsules per minute was important as was the ability to
detect a certain degree of flaws. This means the camera must be able to obtain a minimum amount

of detail in the capsule in a certain amount of time.

3.2.1 Data Transfer Medium

A low cost camera solution that met the desired system throughput was sought out. After comparing
available technologies in transfer mediums, the USB2.0 interface was selected. A comparison of

interfaces is shown in Table 3.1 [6].

[| FireWire 1394.a | FireWire 1394.b [Camera Link | USB 2.0 | Gigabit Ethernet |
Data Transfer Rate 400 Mbps 800 Mbps up to 3.6 Gbps 480 Mbps 1000 Mbps ‘
Max. Cable Length 4.5m up to 100m 10m 5m 100m
Max. Devices up to 63 up to 63 1 up to 127 unlimited
Connector 6 pin 9 pin 26 pin 4 pin (USB) RJ45 / CATSe
Capture Board Optional Optional Required Optional Not Required
Cost Moderate Moderate High Low High

Table 3.1: Digital Interface Comparison

Table 3.1 clearly shows that CameraLink is the fastest transfer medium with transfer rates of up
to 3.6Gbps. However, the Cameralink interface requires a dedicated capture board for each camera
which can be expensive. It has the most expensive cabling in comparison to the other interfaces
listed, but could be rather straightforward to implement. The Gigabit Ethernet interface has a
more than adequate transfer rate, is available in every PC, should be straightforward enough to
implement in software but has a more complicated hardware/firmware design. Finally, FireWire
and USB are technologies that are almost comparable in terms of transfer rate, with FireWire being
slightly faster. Both, however, are adequate for the application. The major difference between these
two technologies from a designer’s point of view is availability and complexity. Although most PCs
are equipped with FireWire controllers, almost all are equipped with USB. Due to the popularity
of USB, more peripheral controllers are available for USB than FireWire and usually at a lower
cost. Although either is suitable for the application, USB2.0 was selected because it was a low-cost
interface that meets the data transfer rate requirements. Also, since USB is a star topology with a
single master compared to FireWire which is a peer-to-peer based system, the complexity of USB

devices is significantly less than that of FireWire.

26

3. DESIGN METHODOLOGY

3.2.2 Image Sensor

As a cost reduction measure, and to reduce mechanical changes, a custom USB2.0 camera was
designed. For the design of the camera it was important that an appropriate sensor was selected.
Some of the considerations for the image sensor include the decision between CCD or CMOS, colour
or monochrome, resolution requirements and sensor size. After determining the minimum feature
size flaw detection requirement, and considering transfer rate and image processing constraints, a
colour, 3.1 mega-pixel, 1/2 inch CMOS image sensor was selected. A colour sensor was preferred
since the ability to detect capsule colour was important. Although from analyzing the grayscale
images, a colour classification can be estimated based on a subset of known colours, a colour sensor
will provide more accurate information. The sensor chosen has a maximum resolution of 3.1 mega-
pixels with a 4:3 aspect ratio resulting in an image size of 2048x1536 which significantly exceeds
the minimum feature size requirement. The physical size of the sensor determines the sensor field
of view (FOV) which was selected to roughly match the sensor used in the camera native to the

OptiSorter. It was also desirable to have a low-cost sensor that suited the application.

3.2.3 Inspection Environment

One of the most important components of a quality machine vision system is the inspection envi-
ronment. This includes the illumination, camera angle, immunity to external noise and maximizing
viewable area of the capsule. Considerations such as illumination type and wavelength, obstructions
in the inspection environment and motion of the capsule are all important in acquiring a quality
image. From a machine vision standpoint, the better quality and consistency of the image results

in a more accurate and faster inspection.

IlNlumination

Hlumination is one of the most important aspects in achieving an ideal inspection environment.
An abundance of lighting scenarios exist for which an appropriate selection is highly dependent
on the object being inspected. Some lighting techniques include ring lights, back-lights, dark field
ring-light, dome-lights, light-line and coaxial. Variations of these can be used and the inclusion of
polarizers and filters can improve the image quality. Also, modifying the wavelength of the light
source and sensor will affect the image quality. The object size, lustre, shape and colour must be
considered in selecting an illumination technique in order to obtain the best quality image. For a
transparent gelatin capsule which is rather small and highly reflective with a consistent shape, it is
best suited to back-lighting which will enhance edges of the perimeter of the capsule and any flaws
within the body of the capsule. Due to the required inspection rate and the fact the the capsules

are in motion during inspection, a measure to reduce blur is required. This is achieved by strobing

3. DESIGN METHODOLOGY

the light thus reducing exposure time and minimizing the effect of motion blur. From this, the light
source, wavelength and intensity must be determined. Many lighting sources exist, yet LED is one
of the most popular in machine vision applications. LEDs are compact, low-power, rugged, can be
strobed and possess a long-life. LEDs come in a variety of wavelengths. The most commonly used
in machine vision are red, green, blue and white. Since the recognition of colour is important for the
inspection of the capsules, a white LED was selected. Comparing the spectral content of a white
LED to the quantum efficiency of the selected sensor, a relatively close match exists between the

spectral content of a white LED and the sensitivity of the sensor.

Capsule Holder

The importance of the consistency of the inspection environment must be emphasized. In order for
an inspection algorithm to yield consistent inspection results, a uniform environment must exist.
The OptiSorter was originally equipped with solid holder which provided a consistent environment,
for inspection. A clear holder concept was attempted, however due to the sensitivity to scratches
and inconsistent machining, they did not provide the consistency required for the application. The
initial thought was that the use of a clear holder would permit more viewable area of the capsule
through the transparent plastic. After experimental trials however, the inconsistency of the clear
holder and the marginal improvement in viewable area was not compelling enough to pursue the idea
further. After setting up a reasonable inspection environment, the solid holder provided a consistent

environment suitable for performing inspection.

3.2.4 System Control

Another integral component of the system is the system controller. The system controller is essen-
tially an input/output board with communication interfaces such as I?C and UART. By taking a
custom approach in designing the system controller, the cost can be drastically reduced over select-
ing a generic PLC, or other controller, with much more flexibility. The downside of a full custom
approach is the extra design and development time. Starting with the requirements of the system
controller, component selection began. The speed at which the system must operate, the required
outputs and inputs and the information required after inspection were all considerations that were
taken into account during the design. In addition, the selection of components had to be reasonable
to reduce overall board cost and meet the performance requirements. In selecting the microcontroller
of the system controller board, many criteria were considered including speed, size and features. A
microcontroller was required that met the system requirements at a reasonable cost.

In addition to the system controller MCU selection were the other hardware components respon-

sible for operating mechanical controls and isolation between different components of the system.

28

3. DESIGN METHODOLOGY

For this, many devices were researched, purchased and tested to verify their suitability for the desired

application. One key consideration was the component cost and complexity.

3.2.5 Power Supplies

Any electrical system requires at least one power supply. For the PharmaSorter, it was desired to
maximize the recycling of existing components of the OptiSorter. Unfortunately, the only reusable
power supply was a 24V 1A Siemens supply. It was determined that the motor controller and
the electrically controlled pneumatic valves required a 24V supply. The LCD panel required a 5V
supply, however it appeared that the switches and lamp operated at 24V. The proximity sensor
and back-light LEDs required 12VDC to properly function. The system controller board must
control the motor, pneumatic valves, lights, proximity sensor and HMI and thus requires 24VDC
and 12VDC supplies. The selected MCU operates at 3.3V and thus must be accounted for. Due to
the current supply requirements of the back-light LEDs, a second supply of 12V at 3.6A was used in
the PharmaSorter. The 3.3V required for the system controller MCU and other ICs on the system
controller board was regulated using a linear regulator from the 12V line. Each of the inspection
PCs required an individual standard ATX power supply and thus four 500W power supplies were
used for that purpose. The complete hardware for the inspection PCs are detailed in Chapter 6.
This power scheme provides adequate power to the separate areas of the system and is more than

sufficient for the power demand.

3.2.6 Inspection PCs

With flexibility as a primary goal, many features of the inspection PCs had to be determined. Since
the inspection PCs are not fully functional desktop PCs, merely motherboards with RAM and hard
disks, the goal was to find the best value for the performance requirements. Since a single PC
manages four cameras, with a single PC per quadrant, a quad-core processor was desirable. After
careful research of available components, a quality motherboard and CPU combination were achieved
that would be compatible with the host OS. Fortunately with the speed and performance of PCs
constantly improving, future generations of the PharmaSorter will benefit from this. Considering
the stability of the system, the Windows operating system was not a feasible option. As far as a
practical and reasonable OS for the application, Linux was an attractive choice since it is an open-
source, fairly reliable, stable and secure operating system. After selecting Linux as the host-OS, the
remaining question was which distribution would be the best choice. Also, how well did it function
with the selected PC hardware? After evaluation of various Linux distributions, Debian was selected
for it’s stability and reputable package management system. One of the most prominent features

of Debian is the APT package management system. This is a well mantained package system that

29

3. DESIGN METHODOLOGY

allows for easy automated installations and updates. Debian allows one to install a base system
without an X-Server or extraneous applications from which the user can install packages they deem
necessary. Since the inspection PCs do not need to display any information graphically, they do not
require an X-Server to function. The flexibility and mature package management system were the
most influential components in the selection of Debian.

The design considerations and constraints were not initially fixed, but rather adapted and evolved
as the project progressed. With the initial constraints in place however, the development of the

various phases and components of the PharmaSorter project was started.

30

Chapter 4

USB 2.0 Camera

USB 2.0 is a modern protocol used to interface between computers and external devices. USB is
a replacement for the legacy parallel and serial ports which are being phased out of desktop PCs
by the computer industry. The main advantages of USB are the ability for multiple devices to be
connected to a single USB network and the faster data transfer rates that be achieved with a greater
deal of flexibility over serial and parallel ports.

USB devices require much more planning and development than serial and parallel port devices.
Each USB device must have a unique identifier, handle a set of standard requests and must adhere
to a strict set of rules defined by the USB2.0 specification [36]. It is fortunate however, that
many semiconductor vendors provide USB2.0 microcontrollers that ease device development by
incorporating the particulars of the USB2.0 specification directly in hardware. An example of one of
these devices is the Cypress EZ-USB FX2 series of microcontrollers. The FX2 is a high-speed USB
microcontroller with seven user endpoints which allows great flexibility and expandability during
the design of peripherals. The selected USB microcontroller for the PharmaSorter USB2.0 cameras
is the Cypress EZ-USB FX2LP.

Although there are vendors offering commercial USB still cameras, it was desired to take a
full custom approach and design a USB2.0 camera from the ground up. The most prominent
factor swaying this decision is cost. Taking a custom approach by designing the USB2.0 camera is
beneficial for many reasons: First and foremost, the ability to reuse existing mechanical components.
The OptiSorter was equipped with full-custom cameras from the original design with aluminum
enclosures and lenses. By reusing these elements, the cost of the system is reduced substantially.

Also, a fully custom approach permits use of application specific hardware components. A custom

31

4. USB 2.0 CAMERA

design minimizes component count and board size that even in small fabrication runs, can be achieved
at a relatively low cost.

The image acquisition system for the PharmaSorter invoived a full-custom hardware design.
A full custom approach is a major cost reduction technique since current USB2.0 still cameras for
machine vision applications start above $1000USD. A comparable camera from Silicon Imaging, the
SI-1300-U, is a USB2.0 colour 3.2 megapixel camera with a cost of around $1300. A full custom
design begins with the conceptual design of the system, schematic level design and PCB layout
and fabrication. When a hardware device is being designed, it is often easier and cheaper for the
designer to find an evaluation system or development kit with the hardware they are considering.
Manty development kits provide schematics which serve as a validated reference design. For the
PharmaSorter, this was indeed a situation where this could be taken advantage of. One of the
most significant components of the camera hardware is the image sensor. There are many vendors
and many sensors available that vary in image resolution (megapixels), speed and quality. After
evaluating the products offered by various vendors, the Micron MT9T001 3.1 megapixel CMOS
images sensor was selected [22]. The MT9T001 is low cost, low noise, high quality CMOS image
sensor capable of 2048x1536 pixel images with a frame rate of 12 to 93 fps (frame rate depends on
window size and resolution) {22].

After selecting the image sensor, a Micron evaluation board was purchased that was equipped
with the MT9T001 sensor, a Cypress FX2 USB 2.0 microcontroller and a Xilinx VirtexII FPGA.
This provided a good base for developing a custom camera. With the development kit, the various
components could be evaluated based on the requirements of the project. It also provides a base
design for custom hardware since all development board schematics and component selection were
provided. A high level block diagram of the Micron evaluation camera is shown in Figure 4.1.

The Micron evaluation board was equipped with more than required to begin the development
of custom firmware and software for the PharmaSorter. By designing custom firmware, the abilities
of the evaluation board could be observed and a new hardware design could be tailored to meet the
requirements of the project by minimizing component count, overall cost and complexity.

In many cases, full source code for evaluation boards is provided by the vendor. This was not
the case however for the Micron camera development board. All firmware and MS-Windows drivers
were closed source. Micron did provide documentation for the API they shipped with the device
and sample code on using it with various programming languages. This was not terribly useful for
the PharmaSorter since the host PCs would be running Linux, not Windows, and would be using
custom firmware. However, some aspects of the Micron design posed useful as a reference design.

A useful application for MS-Windows that monitors traffic on the USB port known as USB

Snoopy [40] was used to “reverse engineer” the driver and firmware developed by Micron for their

32

4. USB 2.0 CAMERA

- MICROCHIP :
TRELR EEPRO MICRON
: 12
64kB EEPROM S mT9T001
i IMAGE SENSOR
Y 4;
R s DATA TIMING /
T CONTROL
Uss CYPRESS FX2. 7| ¥
*7 lse2omoU v T — v
CE - o u | XILINX
o VIRTEXH [Leoy
: ’ {2Mb})
TIMING / o
CONTROL 7y
DATA CONTROL
\ \ 4

Figure 4.1: Micron Evaluation Board Block Diagram

evaluation kit. This was useful in determining how the sensor and FPGA were initialized. By using
the API documentation and examining the control transfers it was evident that I°C write and read
requests were used to configure the image sensor registers. When it came to actually transferring
image data, Micron used 1024-byte blocks of data in a USB bulk transfer [23]. In accordance to
the USB 2.0 specification, bulk transfers are limited to a maximum transfer size of 512-bytes [36].
The fact that Micron is using a 1024-byte bulk transfer permits lower overhead according to their
findings [23].

In addition to the Micron evaluation board, a Cypress FX2 USB development board was also
purchased. This aided in the development of the USB firmware and Linux driver. Cypress provided
sample firmware programs (with source), written in C, for the development board. The firmware
was devecloped using Keil Development tools, in particular the C51 compiler [13]. Keil develops
compilers and assemblers for various families of microcontrollers including 8051 MCUs. Since the
core of the Cypress FX2 is an enhanced 8051 structure, the Keil C51 compiler is a suitable tool to
use, however it is quite expensive. Considering that the host PCs will run Linux, an open-source
operating system, it was not unreasonable to use open-source tools to develop firmware for the
USB camera. A compiler known as SDCC (Small Device C Compiler) is an open-source tool used
to compile firmware for various embedded architectures including 8051 core MCUs [38]. A search
on-line yielded several sample projects that targeted the Cypress FX2 using SDCC and open-source

tools. These posed useful in the firmware development for the USB2.0 camera.

33

4. USB 2.0 CAMERA

4.1 Hardware Level Design

After developing initial firmware and software using the Micron development board, which is de-
scribed in detail in the subsequent sections, a finalized hardware design of the camera was developed.
From a block diagram level description of the USB2.0 camera board, schematics were designed based
on the specifics of the devices used in the design. After thorough analysis of the requirements of
the system, a final camera board design was achieved based on the reference design of the Micron
evaluation board. The design included a Xilinx Spartan 3E FPGA to replace the Xilinx Virtex II
from the Micron reference design. It was determined that the Virtex IT was exceedingly powerful for
the application. The Spartan 3E provided the more than required logic elements for the firmware
developed with adequate block-RAMs for image buffering. The finalized design excluded a SDRAM
which was included in the Mircon reference design for image buffering. It was determined that this
was unnecessary and the overhead would compromise the target inspection rate. By excluding the
SDRAM, the camera is operates in real-time. It was determined that if the transfer rate could not
meet the requirements, the image acquisition time would be exceedingly long to meet the timing
requirement of the inspection throughput.

An addition to the camera hardware design is the inclusion of a NXP I2C bus extender [29]. The
NXP I2C bus extender is an IC that extends the I2C bus by increasing the total system capacitive
load to around 3000pF [29]. This permits longer transmission lines between devices on an I°C bus.
I?C is used to transfer pass /fail messages to the system controller following an inspection. Although
not intended for long distance communication, use of I2C bus extenders buffer the I?C line with
higher driving currents that permit long distance communication {29].

The finalized design block diagram of the USB2.0 camera board is shown in Figure 4.2. This
block diagram is a high-level representation of the USB2.0 camera developed. The important compo-
nents including the sensor, FPGA, MCU, EEPROM and bus extender are included excluding power
connections. The USB2.0 interface permits 500mA current draw at 5VDC. The USB bus power
supply is used to power the camera, however is stepped down to 3.3V for all the ICs on the board
with the exception of the FPGA. The Spartan3E series FPGA requires specific power ramping [41]
and thus an application specific power IC is used to provide the 1.2V, 2.5V and 3.3V supply voltages
that meets the required power-up ramping. The Texas Instruments TPS75003 is a specialized power
management IC designed for powering the Spartan-3, Spartan-3E and Spartan-3L with the required
start-up profile [33].

34

4. USB 2.0 CAMERA

24LC128-E/8T

MICROCHIP
128KkB EEPROM

"MICRON
. MT9T001 .
 IMAGE SENSOR

{k
TIMING /
DATA CONTROL

y

XILINX SPARTANSE
»- KN SEAR

TIMING /
CONTROL

P82B715TD
BUFFERED}| -

Figure 4.2: USB2.0 Camera High Level Block Diagram

4.2 Cypress EZ-USB FX2

The Cypress EZ-USB FX2 is a well featured MCU designed as a single chip solution for high-speed
USB peripherals. The FX2 complies entirely with the USB2.0 specification and provides a set of
registers and interrupts to handle USB communications at the hardware level. This abstracts some
of the complexities of the USB protocol away from the designer. The FX2 is equipped with an
enhanced-8051 core, based on the Intel 8051 architecture, with additional features including reduced
instruction cycle (4 clocks compared to 12), faster clock (up to 48 MHz), additional timers and
interrupts and an 12C controller [4]. This MCU is suitable for the USB2.0 camera becausc it permits
soft firmware updates, is a single chip solution, has a built-in slave FIFO, a built-in I2C controller for

sctting registers of the image sensor and has an 8051 core compatible with an open-source compiler.

4.2.1 ReNumeration

Cypress uses a trademark technique for device identification and programming known as ReNumer-
ation. The FX2 is a “soft” configured device that can take on multiple distinct USB devices [4].
When a device is connected to a PC, it is enumerated with the OS (see Section 2.2 for more detailed
information). The FX2 is able to enumerate itself initially as a generic Cypress device that can
be loaded with user firmware and without disconnecting and reconnecting from the USB. It can
then ReNumerate itself through register settings (RENUM and DISCON) as the newly programmed
device. The FX2 supports three ways of loading firmware. Firstly, an external EEPROM can hold

35

4. USB 2.0 CAMERA

the entire firmware which can be loaded on power-up including vendorID, productID and devicelD

information. Secondly, an external EEPROM can only hold the device vendor ID, product ID and

device ID. In this scenario the PC can load the firmware over USB. This allows for easy firmware

updates or “soft-firmware” loading. Or finally, if no EEPROM exists, the FX2 will appear as a

generic Cypress device which can be loaded with firmware over USB. Each of the EEPROM con-

tents requirements for the above scenarios is listed in the following tables Table 4.1 and Table 4.2

respectively.

\EPROM Address] Contents

[0x00 0xCO
0x01 VendorlD Low (VID_L)
0x02 VendorlD High (VID_H)
0x03 ProductID Low (PID_L)
0x04 ProductiD High (PID_H)
0x05 DevicelD Low (DID_L)
0x06 DevicelD High (DID_H)
0x07 Configuration Byte

Table 4.1: Cypress CO Load - Descriptor Values Only

(EPROM Address | Contents
0x00 0xC2
0x01 VendoriD Low (VID_L)
0x02 VendorlD High (VID_H)
0x03 ProductID Low (PID_L)
0x04 ProductID High (PID_H)
0x05 DevicelD Low (DID_L)
0x06 DevicelD High (DID_H)
0x07 Configuration Byte
0x08 Length High
0x09 Length Low
Ox0A Start Address High
0x0B Start Address Low
- Data Block
0x80
0x01
- OxE6
0x00
last 00000000

Table 4.2: Cypress C2 Load - Descriptor Values and Firmware

The C2 loading technique permits more than one data blocks for program data in different

memory locations and is terminated by a unique identifying signature.

The EEPROM loading

36

4. USB 2.0 CAMERA

techniques of the FX2 are rather simple. The USB2.0 camera firmware uses the C0 loading technique

to permit simple in-the-field firmware updates.

4.3 FX2 Firmware

One of the most vital components of the camera system is the ability to reliably and consistently
transfer image data to the PC. USB offers several ways in which a computer can interact with
a peripheral, each with deliberate yet versatile intentions. The USB 2.0 camera uses the default
control endpoint 0 along with a single bulk endpoint to interact with the PC. The control endpoint
is used to configure the MI sensor registers, configure the FPGA registers along with other various
functions. The bulk endpoint is used to transfer the image data to the PC. A bulk endpoint is
chosen because of the built-in error checking and guaranteed data integrity which is important for
this application. Using a bulk endpoint for data transfer ensures that there is never any invalid data

and that all the data requested will arrive to the PC.

4.3.1 Universal Serial Radio Project FX2 Library

The USB 2.0 camera firmware (FX2 firmware), was developed using SDCC. After researching on-
line for existing FX2 firmware libraries with register definitions and USB interrupt handlers, the
USRP (Universal Serial Radio Project) was discovered [37]. The USRP project is a high-speed data
acquisition board developed by the open-source community. The USRP uses an Altera FPGA and a
Cypress FX2 MCU to transfer waveform data to a PC running Linux, Windows or OS X. The FX2
framework developed for the USRP project was coded in C specifically for the SDCC compiler. The
USRP project firmware code was used as a base for the firmware development of the camera. This
framework included all register definitions, handled USB interrupt and responded to all standard
requests defined by the USB 2.0 specification [36]. By using this existing library, the camera firmware

development could begin immediately.

4.3.2 Bulk Transfers

Due to the nature of the image data acquired from the sensor, the best USB transfer method to use
is bulk transfers. Due to the built-in error checking and guaranteed data integrity of the transfer
method, it is the most suitable for the application. The Cypress FX2 has a 4kB slave FIFO that
can be used to hold data to send to a PC or to store data that has been received from the host.
The size of the FIFO for a given endpoint is dependent on the number of endpoints used. Since
transferring packets of bulk data is quite common among USB peripherals, for example scanners

and flash drives, the FX2 has the ability to automatically commit packets when the FIFO begins to

37

4. USB 2.0 CAMERA

fill. The auto commit feature of the FX2 allows data to be automatically submitted as a USB bulk
packet of data when it reaches a given amount [4]. To maximize data transfer ability, the maximum
bulk packet size (512 bytes) is used with the auto commit feature to permit image data to be sent
to the PC as the FIFO is filling. Since the entire slave FIFO of the FX2 is dedicated to endpoint 2
(bulk-in endpoint), the FIFO is able to buffer up to eight packets of data.

4.3.3 MI Sensor Configuration

The Micron image sensor uses a two-wire communication scheme to configure registers. Micron does
not explicitly use the term I2C, however this is essentially what is being used. I?C is used to set
and read registers of the Micron sensor. When writing a register of the MI sensor, an 12C message
is sent to the MI slave address with the R/W flag set to 0 indicating a write request. The next
byte of data is the register, followed by two bytes containing the register data. Similarly, to read a
register from the sensor, an I2C message is sent to the MI slave address with the R/W flag set to 0
indicating a write request, followed by the register address. Following this, a bus restart is initiated
and the master sends an I?C message to the MI slave address with the R/W flag set to 1 indicating
a read request. The sensor responds with two bytes containing the register data.

The FX2 library framework from the USRP project has routines for I?C read and write requests.
These functions are used to interact with the MI sensor and FPGA. Two USB vendor control requests
are created for I2C transfers. A vendor IN request is used to read data from an I>C slave device and
a vendor OUT request is used to write data to an I2C slave device. The vendor requests associated
with the camera firmware can be found in Appendix B.1. The framework of the vendor request for

I2C write and read requests is shown below.

I°C write request:

ushb_control_msg:

bRequestType: VENDOR_REQUEST_OUT

bRequest: VRQ_I2C_WRITE
wlndex: Not Used

wValue: 12C Slave Address
data: Data to be written
length: Length of Data

12C read request:

usb_control_msg:

bRequestType: VENDOR_REQUEST_IN

bRequest: VRQ_I2C_READ

windex: Not Used

wValue: I2C Slave Address
data: Data to store result
length: Length of Data

38

4. USB 2.0 CAMERA

4.3.4 FPGA Register Configuration

Similar to the method of setting and reading registers from the Micron sensor, the FPGA was coded
to support register manipulation using I2C. The same I>C read and write USB vendor requests are
used. The FPGA however does not suypport reading registers at the current time, only writing is

implemented.

4.3.5 FPGA Loader Firmware

To reduce the part count and cost of the camera, a memory device is not included in the design.
The Micron evaluation board does include a Xilinx XC18V02VQ44 2Mb configuration PROM. This
device is used to store the FPGA configuration information. Upon power-on, the FPGA loads the
data from the configuration PROM in master serial mode. FPGAs are very flexible however in the
ways they can be configured. Some configuration techniques include JTAG, master serial, slave-
serial, master-parallel and slave-parallel. Each method has pros and cons, but the most convenient
technique to load the device using an intelligent processor, such as a MCU, is the slave-serial method

for this application.

4.3.6 Slave-Serial FPGA Loading Technique

Slave-serial loading technique for FPG As involves the use of an external processor to load the FPGA

configuration at any given time. To facilitate loading the FPGA, the following lines are used:
e CCLK - Configuration Clock (input)
* PROG - Asynchronous Reset to configuration logic (input/output)

e INIT - Indicate when device is ready to receive configuration data. Also used to flag errors

(input/output)
e DONE - Indicates when configuration is in startup sequence (input/output)
o M][2:0] - Mode select, selects configuration mode to use (input)
e DIN - Serial configuration data input (input)
e DOUT - Serial configuration data output for daisy chaining (output)

Loading of the FPGA configuration bit file is facilitated through a set of vendor requests us-
ing the FX2 control endpoint zero. A total of three requests are required for loading the FPGA.
The vendor requests used are VRQ_FPGA _LOAD_SS which is used for both IN and OUT re-
quest. The IN requests are FPGA_LOAD_START and FPGA_CHECK DONE. The OUT request is

39

4. USB 2.0 CAMERA

FPGA_LOAD_DATA. When loading the FPGA, the FPGA_LOAD_START is used to put the FPGA
in configuration mode. The firmware pulses the PROG bit until the INI'T bit goes high. When INIT
is high, the device is ready to be loaded with the configuration data. If for some reason INIT does not
go high, the host is notified using the endpoint zero data buffer of the IN request. If a 1 is returned,
the FPGA was successfully put into configuration mode. If a 0 is returned, an error occurred while
putting the FPGA in configuration mode. Once in configuration mode, the configuration data is
bit-banged to the FPGA using the CCLK and DIN bits. The OUT request FPGA_.LOAD_DATA is
used with the 64-byte endpoint zero buffer to load the device. The host parses through the BIT file
and sends the data to the FX2 in 64-byte blocks. The FX2 then processes the received data bit by
bit and sends it to the FPGA. The DIN bit is set high or low depending on the bit value and the
CCLK line is pulsed high then low. This is repeated for the entire BIT file worth of data. After
each packet is loaded to the device, the INIT bit is checked to see if the INIT line has gone LOW
indicating a configuration error. If there is an error during configuration, the host will receive a
broken pipe error indicating and error during loading. After the entire BIT file has been bit-banged
to the FPGA, the host sends the request FPGA_CHECK_DONE. This request pulses the CCLK line
and continually checks the status of the DONE bit. If the DONE bit goes high, the configuration
was successful and complete. Otherwise there was an error during configuration. The excess of

CCLXKs is to allow any digital clock managers to lock which typically only takes a few microseconds.

4.4 Control Board Communication

In order to facilitate communication with the system control board, the I?C master module of the
FX2 is used. The control board MCU I?C module is in slave mode and responds to requests from
the camera. To facilitate multiple masters connected to a single slave device, an I?C bus switch
was designed for the system control board that switches between masters until a START bit is seen.
When a channel is active, the SCL (serial clock) lines of the other cameras is held low. Only the
active I2C channel is permitted to communicate with the system control board MCU. Before any
I?C transactions can be made for a camera, the bus must be activated by the system control board
I2C bus switch. To ensure that the bus is active, the SCL line of the camera I12C bus is connected
to a GPIO of the FX2. This line is checked before an I?C request is made. This allows the master
to wait until the I?C bus channel is active before starting a transaction. The reason all buses are
not directly connected together is due to the fact that the Micron Image sensor 12C slave address is

fixed and this would incur severe bus problems.

40

4. USB 2.0 CAMERA

4.5 EEPROM Memory Map

The most convenient way to store information regarding the location of a particular camera in the
system is to use the camera EEPROM. Using the memory map listed in Table 4.3, location informa-
tion and specific camera window parameters are stored. Due to unique calibration requirements of
each camera because of mechanical imperfections, windowing information stored in the EEPROM
is used to provide consistent images to the image processing software. The same EEPROM that is
used for USB identification is used for storing the camera specific settings. The FX2 startup requires
the first 8-bytes of data using the 0xCO loading scheme, the camera specific settings are stored in

the range 0x10 to 0x28.

[EEPROM Address | Contents |

0x00-0x07 Reserved for USB Identification {see Section 4.2)
0x08-0x0F Not Used

0x10 Quadrant

Ox11 Position

0x12 Master Flag

0x13-0x1F Reserved for Future Use
0x20 Window Width High

0x21 Window Width Low

0x22 Window Height High

0x23 Window Height Low

0x24 Window Column Start High
0x25 Window Column Start Low
0x26 Window Row Start High
0x27 Window Row Start Low
0x28 Window Column Skip

0x29 Window Row Skip

Table 4.3: USB2.0 Camera EEPROM Memory Map

In the initialization of the FX2, a routine called load_camera_config() is used to load these pa-
rameters from the EEPROM to the RAM of the FX2. This way, simple USB control requests can
be made to obtain this information in software without excess IC traffic or latency.

A simple utility was created for loading this camera specific information. The utility cam_init
(see Section 6.6) is designed to set the camera location information and is able to read and write data
of specific EEPROM memory locations. To make the configuration of window parameters easier, a
simple GUI application written in Python was developed that is a front-end for cam_init (see Section
6.7).

41

4. USB 2.0 CAMERA

4.6 USB2.0 Camera Linux Device Driver

In order for the inspection PC to acquire image data from the image sensor, a driver had to be devel-
oped. In most operating systems, two types of drivers typically exist, user-mode drivers and kernel-
mode drivers. A user-mode driver runs entirely in user-space, where applications run. Kernel-mode
driver operate in kernel space and have a closer relationship with hardware. Kernel-mode drivers
typically require a solid understating of the operating system and proficiency in C programming. It
is not difficult to write a poor device driver that may cause the entire system to crash. User-mode
drivers on the other hand are much safer in the sense that that it is unlikely for them cause a system
to crash. In user-mode drivers, a layer exists between the user space and kernel space. Due to the
transfer of data between the two, a user-mode driver is slower than a kernel-mode driver. The overall
trade off is between performance, stability and development time.

The USB2.0 camera driver is a hybrid driver that operates mainly in user-space but uses low-level

calls to improve image transfer performance.

4.6.1 LibUSB

LibUSB is a library of routines for manipulating USB devices. This is a convenient API for user-
mode USB device driver development. LibUSB is equipped with functions for finding, claiming
and interacting with devices. It is used extensively in the USB2.0 camera driver for obtaining the
device handles, claiming device interfaces and simple control requests. LibUSB does support bulk
read/write functions, however it suffers performance loss due to the constant switching between user
and kernel space.

To alleviate this, a class was developed to support low level calls for retrieving data over the

bulk-IN endpoint of the USB2.0 camera.

4.6.2 pm_cam Class

A class was developed that holds the USB2.0 device driver called pm_cam. This class is used to
encapsulate all functions related to the camera. This allows an application to create instances of
the class for each device found and manipulate the device in a well organized fashion.

Using a set. of functions created for the pm_cam class, manipulation of devices is rather straight-

forward. The important functions of the pm_cam object are listed below (see Table 4.4).

42

4. USB 2.0 CAMERA

In addition to these functions, a set of primitive functions were created for finding devices and
acquiring device handles. The primitive functions are encapsulated in a library called pm._prims.
The primitive functions are listed with descriptions in Table 4.5.

A typical example, using pseudo-code, of finding devices and initializing them in host software

using the library pm_cam is listed in Listing 4.1.

43

4. USB 2.0 CAMERA

Function

Description

pm._cam(struct usb_dev_handle *udh, int
block_size, int n_blocks)

Constructor, creates an instance of the pm_cam class for the device handle
specified with block_size for bulk transfers. Also creates an instance of

imgUSB class for specifed device handle for high speed bulk transfer.

pm_cam()

Destructor, free up any allocate memory and deletes instance of imgUSB
object.

write_cmd(int request_type, int request,

int value, int index, char *data, int len)

Perform a standard control request to device (using libUSB).

write_reg(unsigned char reg, short value)

Write a value to a specific register of the Micron image sensor.

read_reg(unsigned char reg, short *dat)

Read data from a specific register of the Micron image sensor.

write_fpga.reg(unsigned char reg, short

value)

Write a value to a register of the FPGA. FPGA does not support reading
at this time.

set_window.width(int _width)

Set the width of the window, also write value to image sensor register.

set_window_height(int _height)

Set the height of the window, also write value to image sensor register.

set_window_width(int _width, int _skip)

Set the width of the window with horizontal skip factor. Will compute
appropriate image width and window width depending on skip value.

set_window_height(int _height, int _skip)

Set the height of the window with vertical skip factor. Will compute
appropriate image height and window height depending on skip value.

get_window_width()

Returns the window width value.

get_window_height()

Returns the window height value.

get_image_width()

Returns the image width value (from window width and horizontal skip

factor).

get_image_height()

Returns the image height value (from window height and vertical skip

factor).

set_window_col_start(int _col_start)

Set the image sensor window column start pixel.

set_window_row _start(int _row_start)

Set the image sensor window row start pixel.

read_window_params()

Load from camera the window parameters stored in the EEPROM.

get_eeprom_window_width()

Returns the EEPROM value for window width of camera.

get_eeprom_window_height()

Returns the EEPROM value for window height of camera.

get_eeprom_window_col_start()

Returns the EEPROM value for window column start pixel of camera.

get_eeprom_window_row_start()

Returns the EEPROM value for window row start pixel of camera.

get_eeprom_window_col _skip()

Returns the EEPROM value for column skip value of camera.

get_eeprom_window_row_skip()

Returns the EEPROM value for row skip value of camera.

get_cam_location()

This

include quadrant, position (left, right, center, bottom) and a master flag.

Read camera location information stored in EEPROM of camera.

get_cam_position()

Returns the EEPROM value for camera position.

get_cam_quadrant()

Returns the EEPROM value for camera quadrant.

get_cam_master()

Returns the EEPROM value for camera master flag.

imgusb_allocate_urbs()

Allocate memory for imgUSB object URBs (depends on image size). This
function uses the image_width and image_height variables of the class.

grab_frame(unsigned char *buf)

Retrieve image data to buf using imgUSB class. Returns number of

bytes received.

cam_fpga_reset(int state)

Put the FPGA in or out of reset state.

cam_fpga_power(int state)

Enable or disable power to FPGA.

bayer2gray(unsigned char *bayer, un-
signed char *buf, int width, int height)

Use a simple software nearest-neighbour interpolation to generate

grayscale image from bayer pattern output of image sensor.

write_tiff(unsigned char *buf.in, char

*filename, int width, int height)

Write the data in buf.in to a grayscale TIFF image to filename with
dimension specified by width and height respectively.

Table 4.4: pm_usb Class Functions

44

4. USB 2.0 CAMERA

Function Description AAJ

pm_init_usb() Required to initialize libUSB.

pm_get_device_count() Returns the number of devices found in the entire USB system
that match the specified USB VID and PID in the header file
pm_ids.h

pm_find_camera (int n_th) Returns device pointer to the n*” instance of the device in the
USB system.

pm_camera_configured (struct usb_device *d) Returns TRUE if the device specified is configured (firmware
loaded).

pm_open_interface(struct usb_device *d, int | Returns the device handle to the interface specified for the device

if_num, int alt_if_num) specified. If the interface does not exit, NULL is returned.

pm_close(struct usb_dev_handle *udh) Releases the interface and closes the device. Returns TRUE on
success.

Table 4.5: pm_prims Primitive USB Functions

initialize libusb
dev__count = get device count

IF no devices found THEN
OUTPUT: error message
EXIT

END IF

allocate memory for pointers to devices
allocate memory for pointers to device handles
allocate memory for pm cam class objects

FOR all devices in dev_count
obtain device handle

IF unable to open device THEN
OUTPUT: error message
EXIT

END IF

IF device not loaded with correct firmware THEN
OUTPUT: error message
EXIT

END IF

claim device interface and obtain device handle

IF unable to obtain handle THEN
OUTPUT: error message
EXIT

END IF

create an instance of the pm_cam object for handle found
NEXT device

Listing 4.1: Finding Devices with pm_usb Class

45

4. USB 2.0 CAMERA

Once the device handles are acquired, the imgUSB objects can be created. The imgUSB class
is contains low-level IOCTL calls to improve the performance of USB bulk transfers. From experi-
mentation, the data transfer rate is more than 30% faster using the imgUSB class over the libUSB

usb_bulk_read() function. Not to mention the reduced CPU utilization with the imgUSB class.

4.6.3 tmgUSB

It was determined early in the project that the transfer rates capable of libUSB were inadequate
for the throughput requirement of the system. The theoretical maximum transfer of the high-speed
USB standard is 480Mbps [36]. This translates to 60MB/s, however when testing the transfer rate
using the usb_bulk_read() function in the libUSB library, the maximum achievable transfer rate with
a continuous data stream was around 31 MB/s. After researching for ways to improve this in user-
space drivers, the Universal Serial Radio Project was discovered [37]. The USRP project uses low
level IOCTL calls to perform bulk transfers. After making appropriate changes and incorporating
the fusb library from the USRP project into a test application, transfer rates of 42MB/s were
realizable. The USRP project fusb class however had some extraneous overhead. The imgUSB class
was modeled after the USRP fusb class and the usb bulk_read() function in libUSB. The resulting
wmgUSB class was more suitable for the application of periodic, but not continuous, data acquisition.

The imgUSB class is not terribly complex. The process of acquiring data from the bulk endpoint
of the camera involves submitting URBs using a series of IOCTL calls to the USBDEVEFS (USB
Device File System) for the particular file descriptor of the USB device (acquired from 1ibUSB). The
URBs request blocks of data which is defined in the constructor of the imgUSB class. The maximum
block size is 16kB, although it was found that 8kB provides reasonable performance and puts less of
a constraint on the image size. imgUSB was not programmed to handle data transfer sizes that are
not even multiples of the block size specified. After submitting the URBs, the URBs are reaped in
a blocking IOCTL call. This blocking call essentially waits for all URBs to finish, or fail. Once all
submitted URBs have been reaped, the function returns TRUE for a successful transfer and FALSE
if an error occurred.

The functions contained in the imgUSB class are described in the following table (see Table 4.6).

Although the image size could be specified in the descriptor, but for convenience an additional

function is used to allocate the memory used for the URBs.

46

4. USB 2.0 CAMERA

[Function L Description l

imgusb(struct usb_dev_handle | Constructor, initialized the imgusb class by specifying the device handle
*dev_hdl, int ep, int block.size) | (from libUSB), the endpoint to use (must be a bulk-IN endpoint) and
the block size to use for the URBs.

imgusb() Destructor, free occupied memory.
I allocate_urbs(int image_size) Used to allocate memory for URBs for the image size (or data size). This
must be evenly divisible by the block size specified.
get_image_size() Returns the image size.
get_image(char *buf) Used to acquire an image from the camera using a series of URBs. The

resulting data is stored in the referenced variable buf. Returns TRUE on
success and FALSE on fail.

Table 4.6: imgUSB Class Functions

47

Chapter 5

System Control Board

The system control board is an essential piece of hardware for machine control and capsule tracking.
This includes controlling the motor speed, capsule ejection hardware, providing camera triggers,
controlling lighting, operating the HMI, and monitoring system health. Added functionality required
for the upgraded system includes the soft PC power control, camera communication interface and
RS-232 support.

Starting from a conceptual design of the requirements of the system control board, a block
diagram representing the various interfaces was created, shown in Figure 5.1. Using a microcontroller
(MCU) is the most obvious and practical means of controlling the various hardware and thus is
required. Selecting an appropriate MCU is not trivial though. An essentially unlimited supply of
devices exist to choose from. Selecting an architecture with adequate capabilities that does not
exceed cost constraints is desired. A typical modern MCU suitable for this application operates at
3.3V or 5V and consumes a very modest amount of power. Interfacing with the motor controller,
operating ejection hardware and switching lighting requires significantly more power than what is
capable from the outputs of a typical MCU. Also, considering that many of the existing hardware
components operate at 12V or 24V and the processor operates at 3.3V or 5V, isolation circuits must

be designed to bridge the gap.

5.1 Hardware Design

The hardware design process for the system control board was a fully custom design. Hardware

components were researched, tested and incorporated into the final system control board. The

48

5. SYSTEM CONTROL BOARD

“LIGHTING
CONTROL

MOTOR CONTROL

5932
COMMUNICATION

Figure 5.1: System Controller Block Diagram

design of the system control board involved the design of many smaller circuits that interface with
various hardware components of the system with additional circuits to support specific functionality.
In addition to basic machine control tasks, it was desired to incorporate flexibility into the design

to permit expandability.

5.1.1 Isolation Circuits

Isolation circuits are quite common in the field of electronics, especially when interfacing different
voltage levels and impedance ranges. An optocoupler or optoisolator, is a device that permits full
electrical isolation between circuits. An optocoupler uses a short optical path to transfer a signal
between circuits. Because light is used, there exists no electrical connection between the two sides
of the device. Thus, the potential level on either side of the optocoupler may differ. A typical
optocoupler is comprised of a LED (light emitting diode) and a photo-transistor. When the LED
is “on”, the photo-transistor will conduct. A typical circuit symbol for an optocoupler is shown in
Figure 5.2.

Optocouplers are used extensively in the design of the system controller board. Thus, a brief
explanation of the operation of a typical isolation circuit will be discussed. The design of each
isolation circuit varies slightly depending on the required response time of the circuit, the voltage
levels involved and the driving requirements of the circuit. Although power consumption is not a
primary concern in the system control board design, the circuit parameters used impact the power

consumed by the device. The goal was to maintain a modest current draw while exceeding timing

49

5. SYSTEM CONTROL BOARD

Figure 5.2: Typical Optocoupler Circuit Symbol

requirements. A typical isolation circuit used in the design of the system control board is shown in

Figure 5.3.

24V

3.3V

ouT

Figure 5.3: Common Isolation Circuit

For this particular circuit, when the IN pin is at 0V, the LED is ON, and thus the photo-transistor
is conduction. This results in the voltage seen at OUT to be pulled close to OV. Similarly, when
the input IN is 3.3V, the LED is off and the photo-transistor is not conduction. This results in the
output voltage seen at OUT to be pulled close to 24V by the pull-up resistor. The above circuit
demonstrates isolation can exist between two potential levels. The above configuration is a common
theme throughout the design of the system control board. Many hardware elements of the Optisorter
operate at 12V and 24V requiring isolation circuits. Many circuits also need a substantial current
supply. The photo-transistor of the optocoupler is quite weak and not intended for driving large
loads. For this, driving circuits are required. The driving circuits use the output of the isolation
circuit to control the power delivered to the load.

Without optocouplers, interfacing a MCU with other hardware elements would involve the design
of complex circuits. Optoisolators simplify this task greatly. It will be evident just how significant

isolation circuits are in the design of the system control board.

50

5. SYSTEM CONTROL BOARD

5.1.2 Driving Circuits

Considering that the driving capabilities of a typical MCU is limited to only tens of milliamperes and
the driving capabilities of the photo-transistor of an optocoupler is also quite low, driving circuits are
required to drive many of the hardware elements of the PharmaSorter. The use of power MOSFET's
(metal oxide semiconductor field effect transistors) allow large loads to be driven by lower input
signals. Power MOSFETSs can operate like switches and can be used to turn on and off hardware
of the PharmaSorter with relatively high current sinking or sourcing abilities depending on the
type of power MOSFET used. Like any transistor family, N and P channel devices exist for power
MOSFETs. The N channel FETs are typically used when sinking loads, and P channel FET's are
typically used when sourcing loads. Both N and P channel devices are used in the design of the
system control board. Another desirable property of power MOSFETs is the input current required
to turn the device “ON” is very low. Also, the “ON” resistance of the device is very low. This
results in efficient switching with very low heat generation. Typical driving circuits are shown in
Figure 5.4 and Figure 5.5. Both sinking and sourcing configurations are illustrated.

When used in conjunction with an isolation circuit, devices can be switched on or off with
substantial driving capabilities. For example, the N-Channel power MOSFET used in many areas of
the design is the International Rectifier IRF7103. The IRF7103 is a dual N-channel power MOSFET
with a maximum drain current (Ip) of 3A capable of 50V Vpgs and an Rpg(on) of only 0.130 €.
The IRF7103 is a suitable device for the system control board. It is an extremely efficient, fast
switching device that is used to control solenoids of the electrically controlled pneumatic valves.
The P-Channel sibling to the IRF7103 is the IRF7306. The IRF7306 is a dual P-Channel power
MOSFET with a maximum drain current of 3.6A capable of -30V Vpgg and a Rpg(on) of 0.10 €.
The IRF7306 is used in sourcing circuits and the IRF7103 is used in sinking circuits. The initial
state of devices, before the MCU has been initialized, can be controlled by the selection of either P
or N channel drivers. When considering the input to the LED of the optoisolator in a floating state,
the LED will not be on and thus the phototransistor will not be conduction. If an N-channel device
is selected with the given configuration, the MOSFET will be on. Likewise, for a P-channel device
and the same configuration, the “default” state of the device is off.

The circuits described above are common in the design of the system control board. The system

control board circuits are however more diverse and are described in the following sections.

5.1.3 MCU Selection

Selecting an appropriate MCU for the system control board deemed to be a more exhaustive task
than one might expect. When selecting a device for a somewhat specific application can be daunting.

Semiconductor manufacturers offer a vast selection of devices for designers to select from. The

5. SYSTEM CONTROL BOARD

24v

24V
3.3V
LOAD
%Z Q2
IN @

Figure 5.4: Isolation Driving Circuit - Sinking

Lt

=l

24v 24v

3.3v

Figure 5.5: Isolation Driving Circuit - Sourcing

5. SYSTEM CONTROL BOARD

characteristics considered for the system control board MCU were speed, peripherals, cost and 1/O

capabilities. The device functionality wish list is described in the table below (Table 5.1).

| MCU Function / Category | Requirement |
GPIO (General Purpose 1/0) 24

Pneumatic Valve Control

E-Stop Source

External 12C 1/O Expander Interrupt Source

12C Slave Multiplexer Control Signals
PC Soft Power Control

PC Soft Power Sense

Input Capture

Proximity Sensors

Output Compare

Motor Pulse Signal

Camera Triggers

Back/Front Lighting (LED Matrix)
External Interrupts

E-Stop

External 1?C 1/O Expander Interrupt Signal

12C Slave Bus (Camera Communication)
I2C Master Bus
UART (RS232 Communication)

[y Uy Uy U IS O NG NN Y R N - S S I RS E =)

Table 5.1: System Control Board MCU Requirements

Although many semiconductor manufacturers offer devices that meet and exceed the require-
ments listed, it was desired to find a development board with the selected MCU that is readily
available. It was also desired to find a device that had an inexpensive or free C cross-compiler. Also,
a 16-bit device was preferred over an 8-bit device. It was eventually decided that the Microchip
dsPIC33 family of MCUs met the requirements in the metrics listed above. The dsPIC33FJ256GP710
MCU is the highest pin count device with the most program memory offered in the dsPIC33 series.
Microchip offers a C cross-compiler for the dsPIC33 family, namely the C30 Tool suite. Microchip
offers a student version of the compiler for free. They also offer a commercial version which has more
optimizations but with a hefty price tag. One of the requirements when searching for MCUs was the
availability of a development board. Microchip offers a development board for the dsPIC33 known
as the Explorer 16. The Explorer 16 is readily available through Digi-key and other prominent
electronics suppliers. The Explorer 16 evaluation kit is shipped with the Explorer 16 development
board, an ICD2 in-circuit programmer/debugger, Microchip MPLAB and the C30 compiler. The
ICD2 in-circuit programmer is a programmer solely for Microchip MCUs. MPLAB is an IDE for
managing projects targeting Microchip MCUs and handles the linking of object files.

53

5. SYSTEM CONTROL BOARD

5.1.4 Power Regulation Circuit

Power regulation is very common in all electronic devices since digital circuits require stable DC
power. The dsPIC33 operates at 3.3V and thus a 3.3V line is required to power it along with the
other devices used in the system control board. Since the system control board controls hardware
at higher levels, these voltages must also be present on the board. The lighting control circuit
operates the LED back and front lights by providing 12V pulsed strobes. The electrically controiled
pneumatic valves require 24V to activate. The stepper motor control board operates at 24V and
requires a 24V pulse signal to step the motor. The system is equipped with a Siemens S5-100U
24V supply capable of delivering 1A. Considering the requirements of the system, this single supply
would not suffice. An additional 12V supply was purchased to operate the 12V hardware along with
powering the control board. The V-Infinity VOF-45-12 is a 12V supply capable of supply 3.7A. The
system control board has connections for both the 12V and 24V supplies and are fused for over-
current protection using 1A fuses on each line. The 12V line is regulated down to 5V using a ST
Microelectronics linear regulator, and further regulated down to 3.3V using a Linear Technologies
low-noise, low-dropout (LDQO) regulator (LT1763). The reason for the cascading regulators is that
the LT'1763 is capable of an absolute maximum input voltage of 20V. If there was a short between the
12V and 24V lines, this could potentially destroy the 3.3V regulator and possibly other components
of the board. The ST-Micro 5V regulator is capable of a maximum input voltage of 35V and would

not, be damaged in the event of a short or improper connection.

5.1.5 Electrically Controlled Pneumatic Valve Control Circuit

The Optisorter was equipped with a series of electrically controlled pneumatic valves. These valves
are used to control the ejection of capsules with a main valve control on the main air supply. The
valves require 24V to open, allowing air to flow.

When the valve is activated, an electro-mechanical solenoid engages allowing air to pass through.
Since the solenoid is a purely inductive load, the phenomenon of back-EMF (electro-motive force), or
counter-EMF (CEMF) must be taken into account. CEMF is caused by a changing electromagnetic
field, like that of a solenoid. When the solenoid is released, a reverse voltage is developed that can
potentially damage sensitive devices. In order to handle the CEMF, a diode is connected across the
load to short the CEMF voltage across the load, as shown in Figure 5.6.

In the above circuit, when the solenoid is switched off, a large counter EMF appears across
the terminals. This voltage can be several thousands of volts which could potentially incur severe
damage to the MOSFET. The forward biased diode forces this voltage to be suppressed through the
solenoid. The diode used in the system control board to protect against CEMF from the pneumatic

valves are fast-recovery, 100V, Fairchild 14NQ02FSCT. These were selected for their fast recovery,

54

5. SYSTEM CONTROL BOARD

x SOLENOID

el

Figure 5.6: Counter Electromotive Force Protection Circuit
and high surge capability and are suitable for counter EMF protection diodes.

Pneumatic Valve Circuit After taking appropriate cautions regarding counter-EMF, the design
of the circuit is straightforward. Using an isolation circuit as seen in the previous section, the valves
can be controlled using a sinking configuration. The schematic of the pneumatic valve control circuit

is shown in Figure 5.7.

Racs
33(\
> Rdn oy

. Stk ¢
ENEU WA SUPPLY A/\vf ,_J’ <, neos yaos ;gN
4 150423 8 i
X MowzonM
I ‘ E : i i

Ra1Z o~

_] SN iNazoz
: 2} ¥ 400
510 T Ok DIODE_LAY 400 e
©803 . .
PNFH UPPER SUPPLY S
M LRt e
{ 5 150403 29 Hetrmial_sosw_bloch

-
l [CEEE

= = s‘»lm=Z =

E0Za002 DS

D405
N, tNagoz

DIHOBE _LAY 400

Zearmind_scrrw_frlock

Figure 5.7: Pneumatic Valve Control Circuit

Although only shown for the main and upper air supplies, the identical circuit is used for each of

the accept valves of the four respective quadrants. Unlink the typical isolation and driving circuit

55

5. SYSTEM CONTROL BOARD

shown in the previous section, this configuration requires that the dsPIC MCU sources the LED of
the optoisolator because of it’s output current capabilities. The schematic shown includes resistor

values, part number and reference designators used in the actual design.

5.1.6 Stepper Motor Controller Control Circuit

The Optisorter system was equipped with a 5-pole stepper motor and a corresponding stepper motor
controller. By using a stepper motor, the position of the rotor is always known. However, controlling
a stepper motor is not necessarily trivial. Each pole of the motor has independent coils that must be
energized in a correct sequence. Designing and building a circuit for this would be time consuming
and unnecessary considering the availability of motor controllers. The stepper motor controller uses
control signals from an intelligent device to control the direction and speed of the stepper motor.
The controller is designed to be connected to an industrial logic level device which operate at 24V.
Thus, 24V control signals are required to operate the stepper motor controller. The direction of
rotation of the Optisorter can only be in a single direction. Thus, the direction input is permanently
set, using a hardwired connection. The only available control is the motor speed. This is controlled
by a pulse-train at the desired frequency. Each pulse steps the motor a single step. By applying a
train of pulses at a set frequency, the speed of the motor can be controlled while the position of the
motor is always known.

The stepper motor control circuit must step a 3.3V pulse supplied by the dsPIC MCU to 24V
using an isolation circuit. The stepper motor controller does not draw a significant amount of power
and thus a power MOSFET driver is not required. Rather, a smaller transistor can be used to switch

the voltage, as shown in Figure 5.8.

+24V +24V_
R701 <~ R702
160 < 10k
0805 < 0805 s
MOTOR_PUILSE_| AN 1 J,/ |E \] Q1M
Vv T =) soTes
sl 150701 N B
- 3]
: l MOCD208M MOTOR_PUL SE
1l Ds
< R703
> 10k
< 0805

Figure 5.8: Motor Control Circuit

56

5. SYSTEM CONTROL BOARD

The switching transistor in this configuration is a P-Channel MOSFET capable of driving 130mA
current. The transistor used is the NXP BSS84 T/R. This device is connected to a 10k € load
resistor. This resistance in combination with the MOSFET provides a fast enough switching time
to exceed the maximum frequency of the motor.

An output capture module of the dsPIC is used to allow hardware to generate pulses for the
motor. By adjusting the timer reset value, the hardware will automatically generate a stream of

pulses at a given frequency.

5.1.7 LED Lighting Control Circuit

The lighting system of the Optisorter was a matrix of high-intensity red LEDs diffused through an
opaque block of plastic. This provided lighting from the rear of the capsule holder and illuminated
the capsule for the cameras. The existing cameras were assumed to be grayscale sensors where
colour information was not required. Thus using red light was acceptable. For the upgraded system,
white LEDs are used to achieve the a wider spectrum of light. This allows more accurate colour
information to be acquired. The white light system is a matrix of high-intensity white LEDs that are
strobed when the image sensor of the camera is being exposed. The entire inspection environment is
enclosed in a dark enclosure and therefore this technique of strobing the light mimics a mechanical
shutter. This way, the exposure of the sensor can be tightly controlled to ensure the images acquired
are free of blur with sufficient light to gather quality images.

The lighting system operates at 12V. This is supplied by the VOF45-12 supply and switched
through the system control board. The control board consists of a total of four lighting control
channels with two outputs per channel. This allows for more outputs to be connected to a single
channel. With four channels, the lighting requirements can be met with room for potential upgrades.
It was initially assumed that the only lighting required would be from the rear of the holder, however
it may be beneficial to illuminate the front of the capsule to acquire more accurate colour information
for the inspection of coloured capsules.

The LED control uses P-Channel power MOSFETs to drive the LED matrix banks. The isolation
circuits introduced earlier are used here, see Figure 5.9.

In this configuration, each power MOSFET is capable of driving up to 3.7A per, although it
is unlikely that the LED arrays will load the driver this much. The current configuration of the
PharmaSorter uses two of the possible four outputs and solely for back-lighting of two camera
locations.

To tightly control the duration of the strobe of light, an output compare module of the dsPIC
is used. This is a hardware method of timing the pulse of an output. By setting a start and end

register with a base timer, the hardware will automatically enable and disable the output. This

57

5. SYSTEM CONTROL BOARD

Q205

e uzo1
R201 R2M3 7 '
160 % T . —el LEC BACKIIGHT 0

-l ED BACKEHEHT 10

s 150201
_ MOCD208M
‘'Dg .

LEQ BACKIVTHT 1

e
.|}_7L

IRF7306

Figure 5.9: LED Lighting Control Circuit
ensures that the pulse duration of the light strobe is consistent.

5.1.8 Proximity Sensor Input Circuit

To provide feedback of the holder arm location, a series of notches have been machined into a
metal disk located in the machine. A fixed proximity sensor provides a pulse every time a notch is
encountered. This feedback can be used to track the position of the rotating arms. The proximity
sensors operate at 12V and output a high signal when close to a dense object and a low signal
otherwise. The proximity sensors are inputs to the dsPIC that must be dropped down to a 3.3V
logic level. To manage this, isolation circuits are used. The actual circuit used in the design is shown

in Figure 5.10.

R605
1.8k
> 0805
j PROXY _SENG
R601 +
1.6k [s 13060
0805 2, mMocpzosm
— AN o0
R602 = =

Figure 5.10: Proximity Sensor Input Circuit

The system control board was designed to handle up to four proximity sensors for additional
feedback. Only a single proximity sensor is used in the prototype since the number of motor pulses
applied to the stepper motor can be used to determine the exact position of the arm.

The proximity sensor inputs are connected to input capture modules of the dsPIC. Input capture

allow an interrupt to be generated when the pin changes with a timer value recorded upon the event.

58

5. SYSTEM CONTROL BOARD

5.1.9 Camera Triggering Circuit

To synchronize the cameras with the position of the arm, triggers are provided to the cameras at
appropriate times to begin image acquisition. The image sensor of the camera accepts a 3.3V trigger.
A triggering method referred to as global shutter control [22] is used to control exposure time of the
sensor. This is an input to the camera and requires specific timing. Using an output compare of the
dsPIC, the camera trigger timing is precisely controlled. Although both the camera and the dsPIC
MCU operate at 3.3V, the output from the dsPIC is required to drive a number of cameras, for this
reason, it is buffered using a Texas Instruments CD74HCT126M line buffer. This device acts as a

current, driver allowing a larger fan-out. The schematic is shown in Figure 5.11.

+3.3V
U901 J
= 3 -] 14
= 10E VO
CAard_TRIGH 15 a0 |13 a
- . ——lg
w-CAM TRIGO BUFO — 2F 1y an | 12 CAM_TRIGT g
= 4 {20e gy | 1 CAM TEIGT BUFG
SAM_TEIGH 52 sce |10 by
AN [
AN TRIGO BUET & oy aal ® CAM_TRIG] g
J:_? GND av |8 CAN TRIGT BIIFT o
= CDT74HC126MI6

Figure 5.11: Camera Trigger Driver Circuit

5.1.10 I’C Expansion Circuit

Although the I/O capability of the dsPIC was not exhausted, the I2C bus was used to promote
future system upgrades. In addition to providing extra I/O, I2C can be used for devices such as
sensors and memories. These can be beneficial to the system for sensing things like temperature and
storing setup information. To improve the distance of the transmission line between the devices and
the system control board, and also to increase noise immunity, an I2C line buffer is used to increase
the current of the signals. The NXP P82B715 I2C bus extender chip buffers the [C transmission
lines permitting long distance cabling. This circuit is shown in Figure 5.12. Splitting the I2C bus
into four buffered buses with eight board connectors allows for a great deal of expansion. Each of
these buffered buses is connected to the local bus of the dsPIC operating in master mode potentially
many slave devices to be used. Four of the eight I2C connectors have an independent interrupt line

that can be used to trigger the dsPIC on an external event. For example, an I/O expansion chip

59

5. SYSTEM CONTROL BOARD

can generate an interrupt on pin change. This interrupt can be detected and appropriate actions

can be taken. The I2C buffering interrupt circuit is shown in Figure 5.13.

U120t
D8 +2.3VY
1iNC vee B !
o lCL_BUS WI 0 2 ix Ly ol
-SCL2 3 sx sy 8
4 GND NC S
= P82B715TD

SDAZ

Figure 5.12: 12C Buffered Expansion Circuit

LLBneee

BI2C_INT. !
&.BI2C_INTO 2
»-BI2C_INTI 2

BI2C_INT2 4

BloC _INT3 S

i

Figure 5.13: I2C Buffered Expansion Interrupt Circuit

CD40688

J = {ABCGDEFGH)
K = AECOEFGH

D

NC

v3s

+3.3V
voo 14
AR
H 12
a 1
£ 0
I 9
1)

The buffered I?C buses with interrupt lines use an active-low interrupt signal. The intent for

these expansion buses is for I/O expansion where a NXP PCA8575D I/O expander chip is used.

These chips have an active-low interrupt output that uses an open-drain configuration. Open-drain

circuits require an external pull-up resistor, however the system control board does not pull these

lines high. For buffered buses not used, the interrupt line should be pulled high using a jumper across

the 3.3V line and the interrupt input. To reduce the number of interrupts used in the dsPIC, the

buffered I2C interrupts are connected to an AND gate. The output of the AND gate is connected
to an interrupt of the dsPIC. Each of the buffered I?C line is also connected to the dsPIC so the

source of interrupt can be determined. On an interrupt event, the dsPIC firmware can check the

buffered I2C interrupt input lines to determine the source of the interrupt from which the it can

then takes appropriate actions.

60

5. SYSTEM CONTROL BOARD

5.1.11 PC Soft Power and Sense Circuits

To ensure the system is completely autonomous, the power of the inspection PCs motherboards
is controlled via the system control board. This is accomplished by using the motherboard power
switch and motherboard power LED connections. The system control board was designed to provide
power control for up to four inspection PCs, one for each quadrant. When the system starts up,
it was intended that a power on signal is sent to each motherboard from the system control board.
The power state of each PC can be monitored using the power LED connector of the motherboard.
In the event of a severe software error in a given quadrant, the ability to restart the PC exists
using this soft power interface. The PC soft power circuit is a simple isolation circuit with the
photo-transistor connected to the SW connector of the motherboard. The positive side is connected
to the collector of the photo-transistor and the emitter is connected to the negative side of the
connector. This was verified on an ATX motherboard to ensure it would work as expected, however
it was later determined that the powering input of ATX motherboards is not standardized. For
the motherboards used for the prototype, the powering circuit required the PWR_SW_+ pin be
pulled to ground to signal the power circuitry of the motherboard. Thus, modifications to the power
signal cable were made to facilitate this requirement. The PC soft power sense circuit also uses
an optocoupler isolation circuit. The power LED connection of the motherboard is connected to
the LED of the optocoupler. When the PC is ON, the photo-transistor of the optocoupler will be
conduction, pulling the input to the dsPIC to ground. GPIO of the dsPIC are used for these circuits
since timing and events are not critical. The PC soft power circuits are shown in Figure 5.14 and

Figure 5.15.

0805

CONN301
JUMPER2
o PC PWR 0

1

2

MBO SWITCH

Figure 5.14: Inspection PC Soft Power Circuit

5.1.12 I?C Bus Switch Circuit

To facilitate communication between the master camera of each quadrant and the system control
board, 12C is used. Four input I?C buses from each quadrant are connected to a custom designed

bus switch where the active bus can be selected using two control signals, A0 and Al respectively.

61

5. SYSTEM CONTROL BOARD

+3.3V

<, R1301
., 0805

} 10k
MBO PWR_LEDs PC_SENSE O

__________ L

o wr " 1801301
lz 1 D8

MBO._PWR_LED-

Figure 5.15: Inspection PC Power Sense Circuit

This is achieved by using an analog switch and an analog multiplexer. The design scheme involves
one I?’C module of the dsPIC that is operating in slave mode and the manipulation of the control
signals, an individual camera I2C bus can be connected to the dsPIC I2C slave module. The serial-
data lines (SDA) of the cameras are connected to an analog multiplexer (ADG508A). The A0 and
A1 pins of the ADG508A are used to select one of the four channels to connect to the dsPIC SDA
line. In order for the cameras to honour the multiple master, single slave system, the serial-clock
(SCL) line of each of the cameras is pulled low, except for the one switched to the dsPIC. This is
accomplished using a double pole, single throw analog switch (ADG1434). The DPST analog switch
has four inputs, one for each of the analog inputs. Using an decoder (74AC139), the A0 and Al
lines can be used to select a single line of the DPST switch (IN1 through IN4). The circuit is shown
in Figure 5.16.

The supply voltage of both the analog multiplexer and the analog switch is at 12V. These
devices will not operate properly at 3.3V and thus must be powered using the 12V supply. Since
the analog switch is used for a digital signal, any signal degradation will be negligible considering
the application. Fortunately, the system control board was equipped with a 12V supply that could
be used to power these devices.

The dsPIC slave I2C module input channel is switched between the four cameras at timed
intervals until communication by one of the devices is initiated. If communication is initiated by
the active channel, the dsPIC will listen exclusively to the given camera until the transaction is
complete. While the dsPIC is listening to a given camera, the SCL line of the others is pulled low

to indicate to the other cameras not to initiate communication.

62

5. SYSTEM CONTROL BOARD

u1002
D16
[V T U Y. a8 Ay
>! 2 {EN A 18
«
4 3 _vss aND M
4 12 =
= CAMO_SDA st VDD)
1001 ADGS08A =
wCAMLSDA 5 s s5_12
pis JEEn =
' CAM?_SDA 6 sa s 11
Eat vee 18 N
L CAM3 SDA 7 s g7 19
Ava Eb# . 13
wSDAL 0 8 p ss..2
Ala Ao 14
OOa# At 13
* 7aAc139 :
Olat Oobg .12 U1003
H SSOP20
R
Ozay o1bH
: N1 iNg | 20 N4
Oga# o2br 10 o
S1A sapl 19 i,
GND o3k 9 '
. D1 Dal 1B CAM3 SClg
s18 sag | 7 SCL1
R
vss ADG 1434 voo |18 %
TSSOP!
GND {) NG 1S
s28 ssBl M SCl1,
D2 pal 13 CAM2 SCly
S2A saa| 12 ,
N2 wNa bV N3

Figure 5.16: 12C Bus Switch Circuit

63

5. SYSTEM CONTROL BOARD

5.1.13 Emergency Stop Input Circuit

Although using a soft emergency stop is not permitted in many industrial settings for obvious safety
reasons, the inclusion of soft emergency stop in the system control board can be used to halt the
system for other safety events such as the opening of panel doors during operation. The E-Stop circuit
is a series of four isolation circuit, each connected to the input of an AND gate. The emergency
stop inputs are active high, and isolated using optocouplers (MOCD208M). The isolation circuit
is rather straightforward, see Figure 5.17. When an E-Stop input goes high (assuming all others
are low), the LED of the respective optocoupler causes the photo-transistor to conduct pulling the
input to the AND gate low. The output of the AND gate, which is connected to an interrupt of the
dsPIC, will go low and generate an interrupt event on the negative edge triggered interrupt. Since
the isolated E-Stop inputs are also connected to the dsPIC GPIOs, the source of the interrupt can
be determined. Upon an interrupt, the dsPIC firmware can read the individual inputs to determine

the source of the interrupt and appropriate actions can be taken.
+3.3V
~ R1502

1.8k
- 0805

]l ESTOP _SIGO a

L‘ 'E 3501501

Figure 5.17: E-Stop Input Circuit

5.1.14 RS-232 Communication

RS-232 is standard for serial communication between computers and peripherals and is primarily
used for low-speed communication systems. Although PC serial ports are being phased out, they are
still quite commonly used and are attractive because of the maturity and ease of integration of the
protocol. The dsPIC33 has two UART modules which support RS-232 serial communication. The
use of a RS-232 transceiver is required to interface between the dsPICs 3.3V supply level and the
required +/-25V for RS-232. The transceiver used on the system is a Linear Technology LTC1386
low-power TIA562 transceiver. This device operates at 3.3V and has an internal charge pump to
boost. the voltage to the required +/-25V. The 3.3V level lines are connected to UART module
of the dsPIC and the RS-232 side is connected to a DB9 female connector (RS-232 standard).

64

5. SYSTEM CONTROL BOARD

The RX (receive) and TX (transmit) are the only pins of the RS-232 wires used since the overall

communication scheme developed is quite elementary. The transceiver circuit is shown in Figure 5.18.

1403

©

0.1uF
G805
U401 LTC1388 |1 104
G | I 1 €. uF
0.uF 1o 1 16 - 0803
0305 2 e Vel
e - w2 4{ »_j
5 ==
V- =
St Cid02 I\f‘ 2 1105
- - UuF 5 tea- i
- a 0EDS (L uF
~ 0805
S esiald ALIES (P TR1ouT [14
N RIs0 0 rpon TRz OUT [7 =
- 3 RXDO 2 Fextour Rxtin | 1
7 £T15¢ 9 _{rxzour mezm | ®
< 2 ono | 13
O—1s L
3 =
o
S A 1
“‘*\“_I
CONNT4GH
SUBD_FEMALE tayn

Figure 5.18: RS-232 Transceiver Circuit

5.2 System Control Board PCB Layout

After the design of the system control board was verified using breadboard circuits and the dsPIC
Explorer 16 evaluation board, the design of a printed circuit board (PCB) could begin. The design of
the PCB was not constrained by size or features although it had to promote easy integration with the
existing hardware of the PharmaSorter. To achieve this, easy to manage connectors were selected to
allow easy wiring. Many screw terminal blocks were used for the higher power hardware such as the
pneumatic valves, LED lighting and proximity sensors. For lower voltages or I2C communication
channels, polarized header connectors were used.

PCB layout can be done using any of a large range of tools. The tools available range from free
shareware and open-source tools to high-end professional tools such as Cadence. After evaluating
the available tools, gEDA was selected for the design. Since the system control board PCB was not
of great complexity, gEDA would be a suitable free software tool that has a relatively easy learning
curve. Although Cadence, a professional and high quality tool, was available, it was not used due

to it’s complexity and steep learning curve.

65

5. SYSTEM CONTROL BOARD

5.2.1 gEDA Open-Source Tools

gEDA is an open-source project for electronic design automation. The available tools include a
schematic capture application, PCB layout tool, simulation interface and more. The tools used for
the design of the system control board were gschem for creating the schematic, and pcb for creating
the layout. The gEDA tools are not terribly difficult to understand and use, and contain many of
the required component footprints used in the design. The tool did however require some manual
configuration of text files. The PCB layout tool can use custom footprints which must be entered
in text format. Some custom footprints had to be created for the PCB layout of the system control
board. When creating the schematics using gschem, the footprint of the component is specified. After
the reference designators are set for the components, an application called gsch2pcb can be used to
generate a pcb layout file which uses the footprint defined in the schematic editor for the object.
When the PCB file is opened using pcb, the component footprints are loaded without connections.
The netlist file which is created by gsch2pcb must be loaded from which the nets can be connected
manually or using the auto-route tool.

Manual routing was used for the layout of the system control board since it provides greater
control. The initial floor-planing of the board required the general placement of the components
to maintain a neat and organized appearance. This should be done in an intelligent manner to
help ease the task of routing. Since the system control board has many small localized sub circuits,
the routing for these sections was done in isolation, and then connected to the rest of the circuit.
Some other considerations regarding noise were taken into account during layout design. Potential
noisy circuits were isolated from the dsPIC MCU as much as possible. The potentially noisy voltage
regulation circuits and the high current switching circuits were placed as far away from the dsPIC

as possible.

5.2.2 PCB Fabrication

After the design was complete and verified, Gerber files were created and sent to be manufactured.
Gerber files are the standard used by PCB manufactures. These files contain all the information
pertaining to traces, vias, holes and land patterns. The standard Gerber format is RS-274X. The
PCB fabricator PCB Express of Mulino Oregon was selected to fabricate the system control board.
The automated system made submission seamless. A quantity of four was ordered to allow for
human error and backup boards.

PCB Express, like most other board manufactures, offer different board finishing. Although
slightly more expensive, the professionally finished PCB with a solder-mask and silkscreen was
ordered. This not only is more ascetically pleasing, it has the benefit of making soldering easier.

The solder mask helps prevent solder bridging during population and the silkscreen provides labels

66

5. SYSTEM CONTROL BOARD

of the location of the various components. Since the system control board is has a fairly large BOM,
this was beneficial. The cost per unit for an order of four circuit boards with dimensions of 6.65"x5”

was $68.75.

5.2.3 PCB Population

For the quantity of PCBs ordered, automated population could not be warranted considering the
soldering was manageable in-house. A high-end Weller soldering iron was purchased for the project
that was suitable for surface mount work. The digital variable temperature control was useful in
ensuring the soldering temperature maximums were not exceeded.

The components of the system control board were available and ordered exclusively from Digikey.
The most difficult component to populate was the dsPIC MCU. The dsPIC device selected was
available in a 100-pin TQFP (Thin Quad Flat Pack). This particular package has a 0.5mm pitch.
The technique used to solder this device was to first align the device, apply flux to the leads of
one side (using a flux dispensing pen), and touch the iron to a corner pin using the solder already
tinned on the footprint. This will fix the component for the rest to be soldered. Following the
same technique for the rest of the pins are soldered to the board. This technique does not require
additional solder and is likely the simplest method. After complete, the joints are verified using
magnifying equipment to ensure no cold solder joints or poorly connected pins exist.

During the population process, circuits were verified to ensure everything was properly seated.
The dsPIC was first device tested after the required components for it to operate were soldered, ie.
crystal, decoupling capacitors, 3.3V regulator, etc. The Microchip programmer was used to ensure
it could program the dsPIC. Following this, the other circuits were populated accordingly and tested
during this process.

The final populated system control board PCB is shown below in Figure 5.19.

5.3 TI’C I/O Expansion Board

A highly desirable characteristic of the system control board was for it to possess expandability.
However, the extent of expansion is limited by the processor used. One of the most prominent
deficiencies for a device such as the system control board is limited I/O. Since the system designed is
interfacing with components that typically require higher voltages and significant driving capabilities
and are of unpredictable size, incorporating additional generic 1/O on the system control board would
be impractical. Thus, an I/O expansion board was designed to facilitate this. When considering the
design of the I/O expansion board, a practical number of I/O available was considered, along with

the desired voltage range. The [2C 1/O Expansion board operates at voltages ranging from 5V to

67

5. SYSTEM CONTROL BOARD

Figure 5.19: Populated System Control Board PCB

35VDC with a 3.3V I2C communication interface.

The I/O expansion board uses an I2C 1/O expander from NXP semiconductors. The NXP
PCA8575D is comprised of 16-bit quasi-bidirectional 1/O that can be read and set over an I?C in-
terface. The PCA8575D also has an interrupt line which can be connected to the interrupt line
of the microcontroller. This allows for event driven code which is much more efficient over polling
techniques. The NXP I/0 expander chip is the heart of the 1/O expansion board. Surrounding it are
isolation and driving circuits to permit a wide range of voltage levels with high driving capabilities.
The PCA8575D operates between 2.3V and 5.5V, and thus since the system control board micro-
controller operates at 3.3V, the I/O expansion board does also. The I2C line of the I/O expansion
board is buffered using an NXP P82B715 I2C bus extender chip. This promotes improved signal
integrity which is preferred for long distance transmission lines.

The inputs to the I/O expansion board turn on the LEDs of opto-isolators, as shown in F ig-
ure 5.20. As a result, the photo-transistor will conduct pulling the quasi-bidirectional pin of the
NXP I/O expander chip low. The inputs of the I/Q expander chip used are P00 through P07.

Any change on an input will cause the I/O expander chip to generate an interrupt from which the

68

5. SYSTEM CONTROL BOARD

MCU can read the state of the I/0. The interrupt of the NXP I/O expander chip is an open-drain
configuration and thus requires an external pull-up resistor. This is pulled high via a 2.2k 2 resistor

on the I12C I/O expansion board, not the system control board.

+3.3V
R102
R101 10K
1.8k 0805

P00,

0895

1 8
3 ISO101
2 7 D8

Figure 5.20: I2C I/O Expansion Board Input Circuit

The outputs of the I/O expansion board are generated from the NXP I/O expansion chip quasi-
bidirectional I/O pins P10 through P17. These outputs are best for sinking and thus are connected
to the cathode of the LED of the opto-isolator through a current limiting resistor. Thus, when
the output of the I/O expander chip is set LOW, the LED is on, and thus the photo-transistor is
conducting. This low voltage is seen at the gate of the P-Channel power MOSFET causing it to
conduct thus driving the load at the output. The default state of the I/O of the 1/O expander chip
is all high. Thus, the initial state of the outputs is OFF. For safety reasons, this is desirable. The

typical output circuit is shown in Figure 5.21.

+24V
R110
10k
0805
+3.3V
R109 .
390 "Wl 150105 -
%X U102

o P10 W : |7 D8

= 1 e OUTO 4
4 7

Figure 5.21: IC I/O Expansion Board Output Circuit

=

69

5. SYSTEM CONTROL BOARD

To facilitate easy integration and connectivity of the I/O expander board to the PharmaSorter,
screw terminal blocks were used to connect the inputs and outputs to the I/O expansion board.
The I/O power supply connector and the optional external 3.3V supply connectors are also screw
terminal blocks, but of different colour as to not be confused with I/0. A 5-pin connector is used
to connect the buffered I°C bus, the interrupt line and ground to the system control board. A
polarized connector is used to prohibit incorrect connection.

Since it may be desired to have several 1/O expansion boards co-existing in the same system,
a set of jumpers is used to select the I?C slave address of the I/O expansion board. The NXP
I/0O expander chip allows for up to eight addressable devices to exist on the same bus, resulting in
three address inputs, A0, Al and A2. These inputs can be set high or low by setting the jumpers
accordingly. The address pins are each pulled low via a 10k} resistor, and shorting the jumper

shorts the input high. This circuit is shown in Figure 5.22.

J102 33V
J
2 ADO o o4
J103
JU%%E?%
a-AD1 —o O—¢
J104
JUﬁl%E?f
uAD2 . —0 0 —
R121 R120 R119
10k 10k 10k
0805 0805 0805

Figure 5.22: 12C I/O Expansion Board I2C Address Select Circuit

To promote flexibility with the I/O expander board in terms of I/O voltage levels, the optional
3.3V regulator on the board allows a maximum input of 24V. Thus, if a voltage greater than this
is required, a DPAK? footprint exists for an optional 24V linear regulator. If this is not used, the
input and output pads of the DPAK? can conveniently fit a 0€2 2010 resistor.

The 3.3V supply can be from an external source either on the 5-pin I2C connector, or from the
2-terminal screw block connector. It can also be regulated on the I/O expansion board using the
Linear Technologies LT1121CS8-3.3 3.3V low-drop out regulator. This particular regulator allows
for a maximum input voltage of 30VDC, capable of supplying 150mA.

An optional footprint exists on the 1/O expansion board for a Texas Instruments TMP175

70

5. SYSTEM CONTROL BOARD

I?C temperature sensor. This sensor can be used to monitor ambient temperature in the vicin-
ity. The I2C slave address of this sensor shares the address pins used for the NXP 1/O expander
chip. Additional two-row headers exist on the board to allow for expansion if the existing isolation
circuits are inadequate for a particular application. A separate header exists for P00 through P07
and for P10 through P17. Each header has single pin removed in different locations, commonly
referred to as a key, to prevent incorrect connection and to polarize the connector. The headers also

have 3.3V and ground connections. The header connectors are shown in Figure 5.23.

3105 J106
.II_; |2 KEY g .w___L ?_“.
5}___3_ “4“. gl_?‘ | ¢ KEY 4
202 7 18 Pog, 2127] 13 P13
E—Og 9 10 P05 _.P14 9 10 E]ﬁ
EDE 11 12 EQZ E]E 11 12 E]Z
HEADER12_2 HEADER12 2
INPUTS OUTPUTS

Figure 5.23: I2C I/O Expansion Board Input Circuit

A PCB was designed for the I2C I/O expansion board and submitted for fabrication. Like
the layout of the system control board, the I/0 expansion board PCB was designed using gEDA.
The design involved surface mount components with the smallest IC package being SOIC, and the
smallest resistor size being 0805. The intent in the layout was to achieve the smallest board size
while maintaining reasonable component sizes. The terminal block connectors largely defined the
size of the board. The resulting PCB size was a 4.1 in. x 2.2 in. (104.14mm x 55.8mm). The final
I?C T/O expansion board PCB is shown in Figure 5.24. For detailed operating instructions of the
I?C 1/O expansion board refer to Appendix ?7?.

5.4 Firmware Development

Firmware is a computer program the runs a dedicated application for given hardware. The dsP1C33
microcontroller is the only programmable device on the system control board, and thus is the only
component, for which firmware was required. Firmware development for the system control board

was developed primarily in C. Occasionally, assembly was used for timing dependent tasks and for

71

5. SYSTEM CONTROL BOARD

Figure 5.24: IC I/O Expansion Board

optimization. The Microchip C30 compiler is a fully ANSI compliant C compiler for 16-bit Microchip
MCUs. The system control board firmware was developed using the MPLAB integrated development
environment (IDE) for managing project files and the C30 compiler was used to generate the machine
code.

Firmware development can be a daunting task if preliminary planning stages are neglected. The
firmware design of the system control board was an iterative process broken into sections. The
majority of the firmware is event driven using interrupts, timers, output compare and input capture
modules of the dsPIC. Event driven design increases performance vastly over polling techniques,
however, to reduce complexity and development time, some functions use polling. The overall goal
of the system control board firmware was a design that was a good compromise between performance
and moderate development time.

The system control board firmware development was an iterative process. By taking small steps
and ensure the functionality of each block individually, it simplified the implementation of the entire
application. When a given function was to be developed, it was isolated from the main program,
debugged and verified that it satisfied the expectations. As each block was completed, it was added
to the main program where it was verified once again. Developing for embedded systems can be more
complicated than developing on a workstation because debugging becomes more involved. Because

of this, it is extremely important that things are well thought out to minimize debug time.

72

5. SYSTEM CONTROL BOARD

5.4.1 Functional Requirements

The system control board is required to handle various tasks including: controlling motor speed,
lighting, camera triggers, capsule ejection, communication with cameras, RS-232 communication
and operate a simple HMI. For each of these tasks, the interaction between hardware and software
had to be distinguished. For many of the required tasks, a hardware module of the dsPIC was used
to reduce MCU overhead and thus improve overall performance. For example, the motor speed is
controlled by the frequency of the square wave generated by an output of the dsPIC. Exploiting an

output capture pin, the pulse train is automatically generated with no processor overhead.

5.4.2 Motor Control

The PharmaSorter uses a 5-pole stepper motor with a stepper motor controller. This allows for
easy operation of the motor. Using a stepper motor along with a proximity sensor feedback, the
position of the capsule is always know based on the number of steps applied to the motor after a
transition of the output of the proximity sensor. The proximity sensor is located near a disk with
grooves for each capsule holder. Thus, each time a groove passes the proximity sensor, a pulse is
seen by the dsPIC and an interrupt is generated. The motor control method is quite simple. Using
an output compare module of the dsPIC, and a timer, the frequency and width of the pulses applied
to the motor controller can be controlled.

Setting up the output compare module is rather straightforward and is performed during system
initialization. The system initialization initializes all timers, output compares, input compares,
interrupts and I/O in a function called nit_sys(). The code listing for the initialization of the motor

pulse control portion is shown below (see Listing 5.1).

/+ Configure TimerZ2 for Output Capture =/

T2CONbits.T32 = 0;

PR2 = (unsigned int) ((({(double) Fcy)/ (double) motor_speed) - 1.0) / T2PF;
T2CONbits.TON = 1;

T2CONbits.TCKPS = T2TCKPS;

/% Enable Output Compare to generate PWM for motor control =/
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED; /* Initially OFF =/
OC_MTR_CTRL_CONbits.OCTSEL = OCTSEL_TIMERZ; /* Use Timer2 */
OC_MTR_CTRL_R = 0;

OC_MTR_CTRIL_RS MTR_PULSE_WIDTH;

OC_MTR_CTRL_IF DEASSERTED;

OC_MTR_CTRL__IE TRUE;

Listing 5.1: Motor Control Initialization

The code listing also includes the configuration of Timer2. Timer2 is the base frequency of the
output compare module and is thus used to control the frequency of pulses applied to the stepper

motor controller. The points of interest here are the PR (period register) and the TCKPS (timer

73

5. SYSTEM CONTROL BOARD

clock pre-scaler) registers. The period register controls the frequency and the pre-scaler is used to
select a divider for the system clock. For simplicity, the pre-scaler is fixed to a value that achieves a
suitable range for the system. The pre-scaler for Timer2 (T2TCKPS) is set to 0x03, which translates
to a pre-scale factor (PF) of 256. Thus, the global clock is divided by 256 for Timer2, resulting in an
effective timer clock frequency of 156.25 kHz, for a system clock of 40MHz. The following formula
is used to determine a period value for a given frequency, this is shown below where motor_speed is

in Hz.

fcy
PR2 =
R (motor_speed — 1.0) x TCKPS

Note the frequency of the dsPIC is f., ~ 40M Hz. This frequency is based on the input crystal
(Y1), and the PLL (phase-lock-loop) registers. The external oscillator operates at 8MHz, and using
the selected PLL parameters, a system clock of roughly 40MHz is achieved. With the selected
parameters for the output compare module, the maximum pulse rate is about 3.9kHz, and the
minimum is about 3Hz. The maximum pulse rate depends on the pulse width of the motor pulse,
ton. After experimental trials it was determined that a pulse duration of about 250us was suitable.
The parameters selected fulfill the speed range of the system and limits the maximum speed. It
should also be noted that the output compare mode (OCM) is initially disabled, this will start the
system with the motor disabled, which is desirable for obvious safety reasons.

The motor control function is related to the lighting and camera trigger controls. From experi-
mentation, it was determined that there are about 495 to 505 motor pulses applied between adjacent
holders. In order to properly calibrate camera triggers and accept ejection, various positions are
recorded. By using a counter, pulse_counter, that increments each time a pulse is applied to the
stepper motor controller, the exact location of the capsule holder is known. The counter is reset
once the proximity sensor edge is detected, and hence the next capsule is entering the inspection
area. The flowchart below illustrates the motor pulse counter interrupt service routine (ISR) and
the ISR generated by the proximity sensor, as shown in Figure 5.25 and Figure 5.26 respectively.

From the flow diagrams, the overall motor control is rather straightforward. Being entirely
interrupt driven promotes efficiency, however constantly checking the pulse_counter value each step
is not the most efficient, it is however the most convenient method of coding this section. Also,
the required CPU time is rather insignificant. Take the system operating at a motor pulse rate of
2200Hz, to achieve 4.2 capsules/sec {target inspection rate), and assuming checking the pulse_counter

value each step requires 20 clocks, the relative CPU time is calculated below.

Atpyrses
CPU% =~
AtCcHECK _PULSE.COUNT

74

5. SYSTEM CONTROL BOARD

where,

and,

thus,

From this quick calculation, it is evident that the impact of this operation is quite negligible.

puise_counter++

!

pulse
counter
>520

Yes

Motor Lock Fault

CAMO Trigger
& Lighting

CAM1 Trigger
& Lighting

pulse
counter
=ACCEPT_ON

Yes

ACCEPT_ON
Valve Control

pulse
counter
=ACCEPT_OFf

Yes

All ACCEPT
valves OFF

Figure 5.25: Motor Pulse Control flow diagram

= 455us

1
Atpyrses = 5500

AlCHECK_PULSE.COUNT = x 20clocks = 500ns

1
40M H~

500ns

CPU% =~ s

= 0.1098%

75

5. SYSTEM CONTROL BOARD

pulse_counter = 0

!

Figure 5.26: Proximity Sensor Interrupt flow diagram

Proximity Sensor Compensation

The proximity sensor used in the PharmaSorter is a capacitive sensor and thus is not ideal for
high-speed sensing. Thus, a delay is introduced which is proportional to the speed of the motor. To
alleviate this problem, a compensation factor is used to adjust for this. The compensation factor
is based on experimental results solely. The compensation factor is based on the frequency of the

motor and the calculation is shown below.

PSecomp = (0.12 X wmotor) — 34

5.4.3 Motor Ramping Control

It was obvious that once the motor pulse code was tested that something had to be done about
the sudden starting and stopping. Due to the inertia of the machine when rotating, the motor
had to be ramped up and down to prevent the stepper motor from slipping. The stepper motor
slipping not only sounded unpleasant but it could potentially cause damage to the controller or the
motor itself. The ramping technique was accomplished rather easily using a timer, namely Timer5,
and a few control variables. The ramp_mode variable is set to either RAMP_UP or RAMP_DOWN
and Timer5 is enabled. Each timer event, the motor speed is either incremented or decremented
accordingly until the target speed is met. The timer interrupt service routine is shown below in

Listing 5.2.

/* Clear Interrupt Flag =/
IFSlbits.T5IF = DEASSERTED;

/* If Ramp Up */
if (ramp_mode == RAMP_UP) {
motor_speed++;
PR2 = (unsigned int) (((((double) Fcy)/ (double) motor_speed) - 1.0) / (double)
T2PF) ;
PNEU_MAIN = DEASSERTED;

76

5. SYSTEM CONTROL BOARD

/* If Ramp Down x/

if (ramp_mode == RAMP_DOWN) {
motor_speed--;
PR2 = (unsigned int) (((((double) Fcy)/ (double) motor_speed) - 1.0) / (double)
T2PF) ;

/+ If desired speed reached - stop this timer =/

if (motor_speed == motor_speed_target) ({
T5CONbits.TON = FALSE;
enable_count = 0;

if (motor_stop_flag) {
disable_count = 0;

OC_MTR_CTRL_CONbits.0OCM = OCM_DISABLED;
PNEU_MAIN = ASSERTED;

Listing 5.2: Motor Ramp Timer Routine

By employing the motor ramping technique, the motor will not slip as it accelerates or deceler-
ates preventing wear on the machine and preventing damage to the stepper motor and controller.
Although the constant calculation of the period register of Timer2 (PR2) is being performed, this
is only done during motor start and stop and has an insignificant affect on the normal operation of

the system.

5.4.4 Camera Trigger Control

Because the cameras are operating in Global Shutter Control Mode (see Chapter 4), the width of
the trigger pulse must be tightly controlled. This is accomplished by using an output compare
module. The required pulse width of the camera trigger is 392us for the given PXCLK frequency of
48MHz [22]. To achieve this, the following values are setup for the output capture. Note that the
camera and lighting output compare modules use Timer3 of the dsPIC, and Timer2 is reserved for
motor control since the frequency is varying. The initialization of Timer3 and the output compare
module for the camera trigger is shown below. Note that there are two separate camera triggers
(CAM_TRIGO and CAM_TRIG1) used in the system and the code for only a single trigger is shown
below (see Listing 5.3).

/+ Configure Timer3 for Output Compare x*/
PR3 = Oxffff;

T3CONbits.TCKPS = 2;

T3CONbits.TON = TRUE;

/+ Camera Trigger(Q Output Compare =/
OC_CAM_TRIGO_CONbits.OCM = OCM_DISABLED;
OC_CAM_TRIGO_CONbits.OCTSEL = OCTSEL_TIMER3;
OC_CAM_TRIGO_R = 0;

OC_CAM_TRIGO_RS = CAM TRIGO_PULSE_WIDTH;

77

5. SYSTEM CONTROL BOARD

Listing 5.3: Camera Trigger Output Compare Initialization

Since Timer3 is used for both the camera triggers and lighting control, a suitable pre-scaler of 2
is selected. This will divide the clock by 64, for an effective frequency of 625kHz for a resolution of
1.6us.

When a camera trigger pulse is to be applied to the camera(s), the following code sequence
restarts Timer3 and sets the output compare mode of the given trigger into single pulse mode

(OCM_SINGLE.PULSE). The code listing is shown in Listing 5.4.

/+ Enable Triggerl and BL1 strobe =*/

/+ Reset Timer 3 for Backlight control and Camera Trigger Control =/
T3CONbits.TON = FALSE;

TMR3 = 0;

/+ Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BL1_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIG1_CONbits.OCM = OCM_SINGLE_PULSE;

T3CONbits.TON = TRUE;

Listing 5.4: Trigger and Backlight, Strobe Routine

The code listing also enables the back-light output compare for camera 1. Obviously when the
camera is triggered, the light strobe is to be initiated to illuminate the object. The pulse width of
each can be different, although they are dependent on the same timer. The R and RS registers are
used to set the on and off value corresponding to Timer3.

For a typical inspection of a clear capsule, a back-light strobe duration of about 1.25ms is required
for adequate illumination. This translates to a value of about 800 in the output compare secondary
register, if the primary register is 0. The strobe duration is an important parameter to ensure that
motion blur is eliminated. Thus, a very intense strobe is required for a very short duration. In
addition, by using amplification techniques in the image sensor, light intensity can be compensated

for.

5.4.5 T2C Master

The system controller I?C master module is used to manipulate external I?C slave devices such as
I/O expanders and temperature sensors. One of the primary reasons for including I?C expandability
is to reduce the I/O requirement of the system controller MCU. Considering the PharmaSorter is
a prototype, it is desirable to avoid restricting the design. The available expansion options allow
for additions to the system with relative ease. The dsPIC33 controller used has two I?C modules
that can operate in either master or slave mode. The 12C2 module is used for the master and

the 12C1 module is used for the slave functions. By exploiting the built-in I2C controller in the

78

5. SYSTEM CONTROL BOARD

dsPIC, there is a reduction in processor overhead as well as a simplification in development. The
I°2C master module was coded in a polling fashion to reduce programming time. This is chiefly
due to the fact the the communication over the I?C master bus is quite minimal. I?C is merely
used for updating the LCD, and attending to events from the I2C I/O expansion boards (which
are interrupt driven). The control of the I2C master module is accomplished with several key
functions: init_i2c2(), i2¢2_write() and i2¢2.read(). The initialization of the I?*C module in master
mode involves enabling the module and enabling the master interrupt. The I2C frequency is also
set via the I2CBRG register whereby the frequency of the SCL (serial clock) is determined from the

following formula.

fey fey
- - 1
12CzBRG < o T

Thus, for a foy = 40MHz and a desired I?C clock frequency of fscr = 100kH Z, a 12C2BRG
value of 363 is required.

The init_i2¢c2() function will set the I2C clock frequency based on the above formula and set
other registers to configure the I’C master interrupt. The interrupt routine sets a flag (jDone)
to indicate that the previous request was completed, or that an event has occurred. As mentioned
earlier, the I?C read and write functions, i2c2_read() and i2c2_write(), were programmed in a polling
fashion. Thus, the MCU is “stuck” in the particular function until the sequence has completed. The
i2¢2_read() function returns an integer upon completion. A zero is returned on success and a -1
on failure. Similarly, the i2c2_write() function follows the same return method. The i2¢2 read()
function takes an address of the I2C slave address, a buffer to store the data and the length of data
expected. Using timeouts, the function is guaranteed to return even if there is a severe bus failure.
This is similar in the i2¢2 write() function. A detailed description of the three functions used for

engaging I?’C communication is listed in Table 5.2.

I Function l Description |

init_i2c2() Initialize the 12C2 module of the dsPIC33 in master mode with a
SCL frequency of 100kHz

i2c2_read(unsigned char addr, unsigned char | Perform an I2C read request to the slave device at address addr

*buf, unsigned char len) for len bytes and stores the result in *buf. Returns 0 on success,

or -1 on error.

i2c2_write(unsigned char addr, unsigned char | Performs an 12C write request to the slave device at address addr
*buf, unsigned char len) for len bytes with the data in *buf. Returns O on success, or -1

on error.

Table 5.2: dsPIC I2C Master Functions

79

5. SYSTEM CONTROL BOARD

5.4.6 I°C Slave

The 12C slave module is used for retrieving messages from the four quadrants and responding to
requests. This is accomplished using a time multiplexed I2C bus switch system whereby each of the
I2C buses is allocated a certain amount of time to initiate communication with the system controller.
This is detailed in the Section 5.4.7. The dsPIC33 I2C slave module requires an 12C slave address
and must acknowledge the master when addressed. The I2C slave module requires an initialization
function whereby the slave-mode interrupts are set for the modules. The slave address is set via
the I2C1ADD register and was arbitrarily set to 0x44, since no other device in the system use this
address. The slave module code is stored directly in the interrupt routine. The interrupt routine
must be serviced every time a byte of data is retrieved by the dsPIC33 where the slave address of the
message matches the 2C1ADD register. This occurs immediately after retrieving the slave address
and after each byte subsequent data. The routine must acknowledge this event and either send data
or be prepared to receive data based on the read/write flag. Because the requirements of the system
controller, the pass/fail feedback mechanism is not terribly complex and therefore the routine only
needs to respond to three requests: get capsule ID request, set pass/fail result and set PC ready flag

as described below.

¢ [I2CCMD_GET CAP_ID - The master is requesting the capsule ID of the current capsule.
The slave responds with a 8-bit value that for the 4-bit capsuleID padded with zeros.

¢ I2CCMD SET_PF - The master will set a specific capsule ID pass/fail flag. The received
byte contains a 4-bit capsule ID and a 2-bit pass/fail code. This result is stored in an array of

pass/fail results for the given quadrant.

e 12CCMD SET_PC_READY - Indicate when PC is ready to begin inspecting. This message
is sent by the host when the PC software is loaded and the software is ready to begin acquiring

images and to begin inspection.

5.4.7 TI?C Bus Switch

Due to the limited number of I?C modules in the dsPIC33 MCU, a time-multiplexed system was
devised to retrieve messages from the various quadrant master cameras. Although other approaches
for this could have been pursued, the time multiplexed bus seems to be one of the simpler solutions
primarily since I?C was the desired communication bus and that typical MCUs have no more
than two I°C modules. General purpose I/O could have been used such that dedicated buses
existed for each quadrant, however this would require much more complex code and which would

not have even been practical. The time-multiplexed I?C bus switch system incorporates the use

80

5. SYSTEM CONTROL BOARD

of an analog multiplexer and an analog SPDT switch as described in Section 5.1.12. The active
I2C communication channel is selected by switching the SDA and SCL lines of the active I’C bus
to the dsPIC33 MCU SDA and SCL lines. The inactive channel SCL lines are switched to GND to
prohibit communication on those channels. This technique does not interfere with the I?C protocol
since as long as the I?C bus is inactive at the time that the SCL line is pulled to ground, there is no
chance of generating a false bus event such as a START or STOP. A total of four pins are occupied
in the dsPIC33 for the I2C bus switch, two GPIOs and the I?C pins SDA2 and SCL2. The bus
switch active channel is controlled by the GPIOs labeled A0 and Al.

The firmware controlling the bus switch is comprised of a single timer. When enabled, this timer
will check the status of the I2C bus to verify the it is inactive. If the bus is free, the next channel
will be switched for a period of time and continuing in a cyclic fashion, see the flowchart below in
Figure 5.27.

When an I?C message is received, the I2C timer register is decremented by a factor of the time
splice allocated. This is accomplished by subtracting the value from the timer TMR register, defined
as TMR _BUS_SWITCH_TMR.

In order to calculate a reasonable switching frequency, the time required to satisfy an I?C request
must be considered. For an I?C SCL operating at 400kHz, as in the case of the I2C bus from the
cameras, with a message containing a 7-bit address, a R/W bit, 8-bits of data, two bits for Start
and Stop and two ACKs, a total of 20 clocks are required. Thus, we can approximate the absolute

minimum time requirement as shown below.

20
400 x 103
= 50us

Atroc TRANS

The amount of between capsules should be considered, as a maximum time requirement. If
operating at the target inspection rate of 1000 capsules/minute, the amount of time between capsules
is 200ms. With this wide window, a reasonable switching time must be decided upon, it would not
be unreasonable to switch once every 1 ms. This way, a full cycle will occur every 4ms, or at a
frequency of 250kHz. With the code extending the time splice if an attempt to switch during a
transaction, meeting the time requirements should not pose any problems. From experimental tests,

this switching frequency exceeds the requirements of the system.

5.4.8 Job Queue

In a real-time firmware running a dedicated application, it is essential that the most important events

are attended to first. Scheduling in software is required for multi-tasking applications and important

81

5. SYSTEM CONTROL BOARD

isr_BUS_SWITCH

i2c_bs_active_bus

YES

v

{2C_BS_AO = ASSERTED
12C_BS_A1 = DEASSERTED
i2c_bs_active_bus =1

YES L 3

v

12C_BS_AO = DEASSERTED
12C_BS_A1 = ASSERTED
i2c_bs_active_bus = 2

YES | E—————

'

12C_BS_AD = ASSERTED
12C_BS_A1=ASSERTED
i2c_bs_active_bus = 3

YES | ——

v

12C_BS_A0 = DEASSERTED

12C_BS_A1 = DEASSERTED
i2c_bs_active_bus =0

12C_BS_A0 = DEASSERTED [

12C_BS_A1 = DEASSERTED
i2c_bs_active_bus =0

»l
L o
A 4

END

Figure 5.27: Flow Diagram of Bus Switch Interrupt Service Routine

in real-time applications. The priority of a process is an important parameter in scheduling. For
the firmware design of the system control board, an rudimentary scheduling technique was devised
whereby time critical events are attended to immediately upon their occurrence, and low-priority
events being added to a low priority job queue that is serviced in the application main loop. The
job queue is used solely for tasks of low importance such as attending to the HMI events, setting
LCD text, fulfilling UART requests and managing the soft-power PC control. The job queue system
is comprised of two variables, a job structure and a set of four functions associated functions along

list of defined job IDs. The job structure is organized as follows (see Listing 5.5).

82

5. SYSTEM CONTROL BOARD

struct JOB {

unsigned char job_id; /* Job Identification number =/
unsigned char data(32]; /* Data for associated job */
unsigned char bc; /* Number of bytes of data (if used) =/

ti

Listing 5.5: Job Structure

This structure holds all relevant information of a particular job including an identification number
from a list of pre-defined IDs, an array of data for holding specific information for a job and a byte
count of the number of bytes of the array used. An array of JOB structures was created to hold
the queue of jobs. Two variables, namely curr_job and last_job were used to track the jobs in
the queue and the ones that have been serviced. A set of four functions, namely get next job(),
get_next_curr_job(), add_job() and complete_job() were created for adding and removing jobs from

the queue. These functions are described in detail below.
e get_next_job() - Returns the next available job index number.
e get_next_curr_job() - Returns the next unserviced job index number in the list.

e add_job(unsigned char job_id) - Will add a job to job queue and increment the last._job

counter.
e complete_job() - Will remove the last job from the list and increment curr_job counter.

By manipulating these functions and directly modifying data in the structure array, jobs can be
added to the queue rather conveniently. An example of adding a job to write a message to the HMI

is shown below (see Listing 5.6).

unsigned char tjob = get_next_job(); /+ Get next available job index */
Jjob_list[tjob].datal[l6] = 1; /+ Select LCD Line to write message to +/
sprintf (job_list([tjob].data, "Hello World!"); /* Write message to data array =/
Job_list[tjob]l.bc = 12; /* Set message size x/

add_job (LCD_WRITE) ; /+ Add job with JobID code LCD_WRITE =/

Listing 5.6: Adding HMI Message Job

This is a rather straightforward method of adding jobs without a great deal of processing over-
head. The job queue structure allows for flexibility in the types of jobs that can be serviced using
this technique. An example of servicing a job from the job queue is shown in the next code snippet.

The servicing of jobs is accomplished directly in the main loop as shown in Listing 5.7.

while (1) {
if (curr_job != last_job) {
switch (Jjob_list[get_next_curr_job()].Jjob_id) {

case LCD_WRITE:
lcd_cursor_to (job_list[get_next_curr_job()].data[l6], 0); /* Go to
designate line number =/

83

5. SYSTEM CONTROL BOARD

lcd_print (job_list[get_next_curr_job()].data, job_list[get_next_curr_job
()].bc); /* print message =/
complete_job{(); /+* remove job from queue */
break;

Listing 5.7: Executing LCD Write Job

The designed job queue system was a convenient method of servicing low-priority routines of the
system control board MCU. It was suitable for all HMI handling, soft PC power control and UART

requests. It is flexible in the sense that the addition of new jobs can be integrated with ease.

5.4.9 I?C I/0 Expansion Board Control

To facilitate control of I2C I/O expansion boards (see Section 5.3), several specific routines were
created to handle and organize these devices. In particular, a structure was created to hold infor-
mation pertaining to a specific I?C expansion board attached to the system and is described below

(see Listing 5.8).

struct I2C_IO_EXP {

unsigned char i2c_addr; /+ I2C Slave Address =/

unsigned char biZ2c_channel; /* Buffered I2C Interrupt Channel =/

unsigned char inp; /+ Input data =*/

unsigned char outp; /+ Output data =/

unsigned char ts_i2c_addr; /* Temperature Sensor I2C Address =/

unsigned char ts_conf_reg; /+ Temperature Sensor Configuration Register =/
unsigned char ts_temp_regl2]; /* Temperature Sensor Temperature Data =/

Listing 5.8: 12C I/O Expander Structure

Several specific functions were created for manipulating the 12C 1/O expansion boards. These
functions are used for reading and setting I/O values, configuring the temperature sensor and re-
trieving temperature sensor data. The functions created for I*C I/0 board manipulation are listed

below.

o i2c_jo_exp._write (struct I2C_TO_EXP *io_exp) - Used to write data stored in specified

I/0O expander structure to device.

e i2c_io_exp._read (struct I2C_IO_EXP *io_exp) - Used to read data to I/O expander struc-

ture of specified device.

e i2c_io_exp_set_ts_conf (struct I2C_IO_EXP *io_exp) - Used to set the configuration

register of the temperature sensor of the I/0O expander specified.

84

5. SYSTEM CONTROL BOARD

e i2c_io_exp_get_ts_conf (struct 12C_I0 _EXP *io_exp) - Used to read the configuration

register of the temperature sensor of the I/O expander specified.

e i2c_io_exp_get_ts_temp (struct 12C_IO_EXP *jo_exp) - Used to read the temperature

from the temperature sensor of the I/O expander specified.

Manipulation of I/O on I2C 1/O expanders is made rather straightforward with the abstraction
techniques used here. For example, operation of the HMI LCD is accomplished through an I2C 1/0
expander board and the buttons and switches of the HMI are inputs to the I2C 1/0 expander. This

can be adapted however to a device for any purpose, as long as timing is not critical.

5.4.10 I?C Expansion Interrupt Control

The system controller board was designed to support I?C expansion with a total of eight buffered
I?C connectors. Four of the eight connectors have an additional interrupt line for event detection.
The I?°C I/0 expansion board uses this interrupt line to inform the dsPIC that an input change
event has occurred. At this point, the dsPIC33 can query the particular device that generated the
interrupt. The interrupt lines are connected to an AND gate and to GPIOs of the dsPIC, and
the output of the AND gate is connected an external interrupt of the dsPIC33. On an event, the
interrupt service routine will determine the source of the interrupt and create a job that will update
the register of the I2C_IO_EXP structure instance. A code snippet of the interrupt service routine

is shown below (see Listing 5.9).

void
__attribute__ ((interrupt, no_auto_psv)) isr_BI2C (wvoid)
{

unsigned char tjob;

INT_BI2C_IF = DEASSERTED;

if (!'bi2c_lock) {
bi2c_lock = TRUE;
tjob = get_next_job();
job_list[tJjob].bc = 1;
job_list[tJjobl.datal0] = Oxff;

if (!BI2C_INTO)

job_list[tJjobl.datal[0] = O;
if (!BI2C_INT1)
job_list([tjob].datal0] = 1;
if (!BI2C_INT2)
job_list[tjob].datal0] = 2;
if (!BI2C_INT3)
job_list[tjobl.datal[0] = 3;

add_job (BI2ZC_EVENT) ;

Listing 5.9: Buffered I?C Interrupt Routine

85

5. SYSTEM CONTROL BOARD

By using an interrupt to detect events of an I2C slave devices, the firmware does not need to
poll these devices which in turn frees up controller resources. The bi2c_lock variable is used as a
software debounce since all the inputs used in the system are from push buttons and hence suffer

from jitter. This variable is reset in the system heartbeat timer after a set amount of time.

5.4.11 I?*C LCD Control

As mentioned in the previous section, the control of the HMI is performed over I2C using an 1/0
expansion board. This permits the 5V LCD to be controlled using the I?C master module bus of
the system controller at 3.3V. The OptiSorterwas equipped with an 16x2 character display with a
Hitachi HD44780 controller [10]. Using the I/O expander structure (see Section 5.4.9), the specific
I/0 control sequence required to set data on the LCD is accomplished through a set of various
functions. The specific functions used for controlling the LCD are listed below. Because of the

limited I/O available on the I?C expansion board, the LCD is operated in 4-bit mode [10].

e lcd.init () - Initialize the LCD in 4-bit data mode

e lcd_push_nibble (char nibble) - Put a 4-bit nibble of data on the data lines and toggle EN
to load data

¢ lcd_write_cmd (char cmd) - Send a command to the LCD

e lcd_write_data (char data) - Write a character to the LCD

® lcd_set_bl (char state) - Set HMI panel LED

¢ lcd_cursor_to (char line, char x) - Set LCD cursor to line and z position
¢ lcd_clear() - Clear the display

e lcd_print (char *msg, char len) - Write a series of characters (msg) to the display of length

len

Using these routines, writing messages to the LCD is rather straightforward to manipulate the
LCD. These routines use software delays to meet the timing requirements of the LCD. This is not
the most efficient way of accomplishing this, however the development time is reduced significantly.
Due to the fact that messages are infrequently updated on the HMI panel, it is not critical that an

event driven LCD driver is developed.

86

5. SYSTEM CONTROL BOARD

5.4.12 UART Handler

The system controller support a simple RS232 interface for more advanced machine control over
the simple HMI panel. The RS232 interface is used to set motor speed, control motor state, set
back-light strobe duration, retrieve counters and other system state information. Since a simple
HMI cannot possible fulfill all of these requirements in an elegant fashion, it was intended that an
additional control panel PC could be used for this purpose. The dsPIC33 has two built-in UART
modules one of which was used for machine control and status. The entire UART control was coded
in two functions and two interrupt service routines along with a couple of data buffers (one for
receive and one for transmit) and counters to track the index position of the buffer. The functions

used and interrupt service routines are described in detail below.

o init_uart2() - Initialize the UART2 module using TX and RX line only at desired baud rate
(57.6kbps).

e uart_hdlr() - Handler called after six-byte UART command has been received. This function
performs data integrity check and fulfills the request.

o U2RXInterrupt() - ISR for UART received data. This function will load data into the

cyclic receive buffer uart_rx_buf.

o _U2TXInterrupt() - ISR for UART transmit data, this routine is called after a byte has been
successfully transmitted. This function will automatically load remaining data to U2TXREG

from the transmit buffer uart_tz_buf until complete.

Two structures were created to handle the data pointers for the transmit and receive buffers.

This structure is listed in Listing 5.10.

struct UART_Rx {
unsigned char wr;
unsigned char rd;
i

struct UART _Tx {
unsigned char wr;
unsigned char rd;
}i

Listing 5.10: UART Transmit and Receive Counter Structures

The received data format of dsPIC33 is a six-byte command where the first byte is the request,
followed by two bytes of optional data. The last three bytes are an XOR . of the first three for simple
error checking (see Table 5.3).

The error checking employed is quite straightforward and uses minimal computational time to

verify the data. A code listing of the data verification is shown below. The error counter, err, is used

87

5. SYSTEM CONTROIL BOARD

] Byte l Description

0x00 | UART command request
0x01 | UART command data high
0x02 | UART command data low
0x03 | XOR of byte 0x00

0x04 | XOR of byte 0x01

0x05 | XOR of byte 0x02

Table 5.3: UART Command Format

to count the number of errors found in the data. If the error counter is not zero, an error has been
detected and the dsPIC33 will respond with an NACK, otherwise it will respond with an ACK. The
host PC will expect this response and can continue accordingly. The routine for handling incoming

UART requests is shown below (see Listing 5.11).

/+* Perform Error Check on data x*/
for (¢ = vart_rx.rd; c < uvart_rx.rd + 3; c++) {
if ((uart_rx_buf[c] "~ uart_rx_buf[c+3]) != Oxff)
erxr++;

}
/% Respond accordingly =*/
if (err) {

U2TXREG = 0x15; /* NACK =/

/* Reset buffer pointers equal =/

uvart_rx.rd = uart_rx.wr = 0;
uart_cmd_flag = 0;
return;

}

else {

U2TXREG = 0x06; /+ ACK +/
/+ Wait for ACK msg to be sent =/
while (!U2STAbits.TRMT);

Listing 5.11: UART Data Check and Response

The supporting UART commands are described in 5.4. The list of UART commands can easily
be expanded if required in future revisions. Since one byte is used for the UART command, 255
possible commands can be created. The UART commands were separated into get and set with
respect to the PC. The get commands are used to retrieve data from the system control board, and
the set commands are used to send data.

Using these commands, all machine control can be operated by an external PC or device with
RS232 availability. This permits a highly customizable front-end for a finalized commercial product.
For the prototype, a simple 32-bit Windows application was developed as a demonstration applica-
tion on interfacing with the system controller. This application was developed in Microsoft Visual

Basic 6 and is described in detail in Section 6.9.

88

5. SYSTEM CONTROL BOARD

LUART Command / Request L Description

UARTCMD_SET_MOTOR_STAT Enable or disable the motor

UARTCMD_SET_MOTOR_FREQ Set motor frequency (in Hz)

UARTCMD.SET _BLx_ WIDTH Set the pulse duration of the backlight pulse, where x is
the backlight 0 or 1

UARTCMD SET_FLx_ WIDTH Set the pulse duration of the frontlight pulse, where x is
the frontlight 0 or 1

UARTCMD _SET_CAMx_PULSE_POS Set the position of the camera trigger 0, or 1 pulse with

respect to motor pulses

UARTCMD_SET _ACCEPT_ON_PULSE_POS Set the position of the accept start position (for pneu-
matic valves) with respect to motor pulses
UARTCMD_SET_ACCEPT_OFF_PULSE_POS | Set the position of the accept end position with respect

to motor pulses

UARTCMD._GET_MOTOR_STAT Get state of motor (running or stopped)
UARTCMD_GET_MOTOR_FREQ Get motor pulse frequency (in Hz)

UARTCMD_GET _BLx_WIDTH Get the pulse duration of the backlight 0 or 1, pulse
UARTCMD_GET_FLx_WIDTH Get the pulse duration of the frontlight 0 or 1, pulse
UARTCMD_GET_CAMx_PULSE_POS Get the position of the camera trigger 0, or 1 pulse with

respect to motor pulses
UARTCMD_GET_ACCEPT_ON_PULSE_POS Get the position of the accept start position (for pneu-
matic valves) with respect to motor pulses
UARTCMD_GET_ACCEPT_OFF_PULSE_POS | Get the position of the accept end position with respect

to motor pulses

UARTCMD_GET_PC_PWR_STATE Get the power state of the PCs (two bits per PC)

UARTCMD_GET_GOOD_COUNT Get the accept capsule count value for the specified quad-
rant

UARTCMD_GET_BAD_COUNT Get the reject capsule count value for the specified quad-
rant

UARTCMD_GET_TOTAL_COUNT Get the total capsule count value for the specified quad-
rant

UARTCMD_RESET_COUNTERS Reset all counters to Os

UARTCMD_DEBUG_MODE Put the system controller in debug mode or normal mode

Table 5.4: UART Commands

5.4.13 Soft PC Power Control

In order to facilitate a completely autonomous system, the power of the host PCs is controlled via the
system controller. This is accomplished by manipulating the power switch input of the motherboard
and monitoring the power LED output. A rather straightforward circuit was designed to simulate
clicking a power button as described in Section 5.1.11. The state of the four host PCs is read from
the input pins and is stored in a structure PC_PWR_STATUS where two bits hold the state of the
power. Three distinct power states were created, off, on and ready. Two bit masks are used to define

the power state as described below.

e PC_POWER_ON (bit 0) - Logic-one indicates the host PC is running, otherwise the power

89

5. SYSTEM CONTROL BOARD

is off

e PC_ POWER _READY (bit 1) - This bit is used to indicate if the ready signal has been

received from the host PC software.

This is used to track the power status of the various PCs in the system. When the system starts,
the PCs are turned ON, and the system waits until a ready signal is received from all PCs. Once
all PCs are running and the inspection software is ready, the system if ready for inspection.

The state of the PC power is checked every heartbeat timer event, and the ready signal flag is

updated through an I?C message and reset on if an OFF state of a given PC is detected.

5.4.14 Capsule Tracking and Counts

A highly important measure in the design of the PharmaSorter, is that the pass/fail result of a given
capsule is correct. Thus, a capsule tracking system was developed for storing a pass/fail result for
each individual capsule. This is achieved using a two-dimensional array of pass/fail data for a buffer
of sixteen capsules for each quadrant. The array capsule_passfail along with a capsule ID tracking
variable cap_count is used to track and store inspection results for each capsule. The current capsule
cap-_count is incremented every time a new capsule enters the inspection stage, ie. when a pulse
from the proximity sensor is seen. The host PC uses the master camera of each quadrant to request
the identity the capsule being inspected, and can used this ID to return a pass/fail result following
inspection.

A set of capsule counters is used to record the pass and fail results received from each quadrant
host PC. These values are stored in long type variables with a good, bad and total counter for
each quadrant. These counter variables are labelled capsule_total_count, capsule_good_count and

capsule_bad_count.

5.4.15 Heartbeat Timer

In order to perform occasional tasks in the system controller, a dedicated heartbeat timer is used.
For the heartbeat timer, Timer8 in the dsPIC33 is used. The heartbeat timer is used to flash the
HMI LED based on the state of the system, handle system shutdown, delay inputs for software
debounce, and update host PC power status. The interval at which the heartbeat timer is called is

approximately 205ms.

5.4.16 Debug Mode Timer

During the development it was desirable to have a debug mode within the system controller board.

The debug mode merely generates timed triggers for the cameras without running the motor or

90

5. SYSTEM CONTROL BOARD

monitoring the feedback from the proximity sensor. The debug mode timer is set to a fixed interval
and toggles between triggering the top-view and bottom-view cameras. When enabled, the debug
timer effectively triggers every 192ms. The debug mode timer is initially off, but can be enabled

through the RS232 control interface.

91

Chapter 6

Host PC

The host PCs are an integral part of the PharmaSorter that are responsible for acquiring images from
the USB2.0 cameras and performing inspection on the images. The host PCs are standard desktop
computers without the user essential portions such as monitor, keyboard and mouse. The host PCs
run autonomously without human intervention but can be access remotely for maintenance and
configuration. Many considerations were taken into account when selecting the host PC hardware
and operating system. For the system to be complete, several host PC software applications were
developed. The main application is inspect, which is responsible for the image acquisition and
processing. Several smaller applications were required including an application for loading the

firmware to the FPGA (fpga_loader_ss) and a camera initialization/calibration tool called cam_init.

6.1 Operating System Selection

Early in the project, it was decided upon that Linux was the best choice for the host PC operating
system. There are several significant advantages to using a UNIX-like OS, like Linux, for the
application. Linux can run an various architecture and is compatible with most desktop PCs. Some

of the desirable traits of Linux are listed below.
e Stable and secure
e Not dependent on a window manager (less resources used)
e Open source and free

e Reliable (long up-times)

6. HOST PC

Once it was established that Linux was to be used as the host operating system, the selection of
an appropriate distribution was the next step. Hundreds of distributions are based around the Linux
kernel and there is no singular distribution that is most appropriate for the application. However,

Debian was selected for it’s popularity, renowned stability and polished package management system.

6.2 Hardware Selection

One of the most influential constraints on the entire project is the cost factor. Thus, the selection of
host PC hardware must reflect this requirement, however performance is also an important factor.
A compromise between performance and cost was sought out and an Intel Core 2 Quad system was
a reasonable trade off for the time at which the systems were purchased. The desktop PC market is
constantly changing and evolving. As a result, future generations of the PharmaSorter will benefit
from faster processors and higher data rates. The components used for the host PC are listed in

Table 6.1 with the cost at the time they were purchased (May 2008).

I Part Number | Description | Cost |
ASUS P5K ATX | Asus P5K ATX LGA775 P35 DDR2 2PCI-E16 1PCI-E1 SATA2 motherboard | $142.03
0CZ2P8001GK 0OCZ PC2-6400 1GB (2x512) Platinum XTC Dual Channel RAM $34.50
BX80562Q6600 Intel Core 2 Quad Q6600 / 2.4 GHz (1066MHz) -L2 8MB $249.00
ST3250410AS Seagate 250GB SATA 3GB 7200RPM 16MB Hard Disk Drive $69.99
WO100RU ThermalTake PurePower 500W ATX 2.0 Power Supply $63.00

[| Total $558.52

Table 6.1: Host PC Hardware

For a grand total (excluding applicable taxes and delivery fees), the cost of each inspection PC
is under $600. Each system is powerful enough for the application. To fixture the inspection PCs
in the system, a minor modification to the existing circuit board holder was required as cases were
not purchased.

The OptiSorterwas originally equipped with a circuit board rack that held a total of 17 boards
vertically in the system. This circuit board rack was retrofit to hold the four host PC motherboards.
The motherboards were significantly larger than the existing circuit boards and thus two new metal
plates were fabricated to meet the dimensional requirements of the motherboards. The new plates
also had mounting holes to mount a total of four standard hard disk drives, two on each plate.
This modification made it possible to mount all four host PCs inside the PharmaSorter. The power
supplies required for powering the motherboards were placed vertically underneath the motherboard
rack. They can be easily attached inside the machine by adding brackets to the lower support. The
PC mounting scheme is shown in Figure 6.1.

The cooling of the host PCs is accomplished by a set of two high throughput fans already existent

93

6. HOST PC

MOTHERBOARDS

CHASIS
HARD DRIVES

/

~~— POWER SUPPLIES

Figure 6.1: PC Mounting Scheme

in the OptiSorteralong with the CPU cooling fans on the motherboards. The cooliug faus operate

at 240VAC and a simple 120V to 240V transformer was used to step up the voltage.

6.3 Software

The most liquid component of the PharmaSorter project is the software. The majority of the
software developed for the PharmaSorter was written in C and C++. Small GUI applications
intended for calibration were written in Python and simply provide a front-end to the C/C++
applications. C/C++ are high level languages capable of low-level calls and thus are powerful
for software development. Developing in C/C++ yields high performance applications without
the extraneous overhead in other languages like Java or Python. All C/C+-+ applications were
compiled using the GNU gee / g++ compiler and intended to run on a Linux x86 system. The
PharmaSorter software applications include: inspect, fpga_loader_ss, cam_init, py_write_window and
py-cam_celibrate. An additionally application for advanced control of the system control board was
written for Microsoft Windows using Microsoft Visual Basic 6.0. This is a simple GUI example

application and is intended for a touch-screen HMI or the like.

6.4 wnspect

inspect is the main software application used in the PharmaSorter. This application is responsible

for acquiring images from the cameras of the respective quadrant, performing the inspection using

91

6. HOST PC

image proceséing techniques and return a pass/fail result to the ‘system controller (through the™-
master camera of the quadrant). inspect is a threaded application that uses the pm_cam driver (see
Section 4.6.2) to interact with the connected cameras. An external library contains all the image
processing functions used (libIP). Several Linux libraries are used by inspect including pthreads,
libtiff and libusb.

6.4.1 POSIX Threads

Threads allow applications to parallelize operations [15]. For the user-mode driver created, it is
essential to use threads in order to ensure no data is lost during the transfer from the camera and
that data can be acquired from multiple cameras simultaneously. There is limited buffering in the
camera hardware and thus if images were acquired sequentially, only the first image acquired would
be complete. With modern processors that have multiple cores, parallelism in software can take
advantage of more processing capabilities in a dedicated application such as the PharmaSorter. The

basic scheduling scheme of the inspect is shown in Figure 6.2.

SYSTEM CONTROLLER
MESSAGES

BOTTOM

RIGHT

CENTER

LEFT

JOIN / CREATE JOIN / CREATE

Figure 6.2: Inspect Software Scheduling Scheme

There are essentially a total of eight threads created for every capsule inspected. After finding and
injtializing the USB2.0 cameras in inspect, the main loop is started where a set of image acquisition
threads are created for all top view cameras (ie. left, center and right). After created, these threads
are joined. Before each acquisition thread is finished, an image processing thread is created to process
the image acquired. Following the join, an image acquisition thread is created for the bottom camera
which is also joined in the main loop. After the bottom camera acquisition thread completes, the
cyclic buffer index is incremented and the capsule counter is also incremented. The image processing
threads are not joined. They are restricted to timing requirements but can finish at any point. Once

complete, the inspection result is stored in a global array. The master camera is responsible for

95

6. HOST PC

communication with the system controller and thus must obtain a capsulelD of the current capsule
from the system controller. It must also send a pass/fail result of the previous inspection. This is
accomplished in the acquisition thread for the master camera only. Due to the mechanics of the
machine, a capsule inspection result must be determined by at about the time the next capsule is
enters the inspection stage. Because of this constraint, the previous capsule inspection result is sent
to the system controller at the same time that the current capsuleID is being requested. A data
structure is used to hold specific information required by the threads including capsuleID, camera
position, quadrant, master flag, the threadID, the cyclic buffer index, local and remote capsule IDs,
and the capsule count. A basic flow diagram of the inspect application is shown in Figure 6.3.

The image acquisition thread and image inspection threads are like sub-processes within the
main inspect process. The acquisition and inspection thread flow diagrams are shown below in
Figure 6.4 and Figure 6.5 respectively. Note that there will be four of each of these thread running

simultaneously, one for each camera.

96

6. HOST PC

NO

(START)

Y

Find Cameras

dev_count

YES

=0

Initialize Cameras

I4
-~

Interrupt

v

Cleanup

Figure 6.3: Inspect Main Flow Diagram

Signal?

Create Image Acquisition Threads
for ALL Top View Cameras

Complete?
(JOIN)

Create image Acquisition Thread
for Bottom View Camera

Complete?
(JOIN)

Increment Cyclic Buffer Index
and Capsule Count

v

Update Statistics Files
(HTML and CSV)

97

6. HOST PC

C Acquisition Thread)

Y

Get Image

Master
camera?

Get Capsule ID from
system controller

Y

Send Pass/Fail result of previous
capsule to system controller

AN

Y

Create Image Processing
Threads

END

Figure 6.4: Inspect Image Acquisition Flow Diagram

98

6. HOST PC

inspect is intended to provide a system to control the inspection of capsules where some statistical
data is generated. For every capsule being inspected, HTML and CSV statistics files are updated
with capsule counts, misalignment error counter and the inspection rate. This file can be used for a

larger data collection system if desired.
A screenshot of the output HTML file is shown in Figure 6.6.

99

6. HOST PC

C image Processing Thread >

Y

Analyze Image
(Perform Inspection)

Y

Store inspection result in global array
capsule_pass_fail[cap_id][position]

Write TIFF
Flag?

Generate TIFF Filename
(based on Fail Reason)

) 4

Write TIFF File to image
directory

y

Get Capsule ID from
system controller

>l
Lgd

Figure 6.5: Inspect Image Processing Flow Diagram

100

6. HOST PC

: . InspectionResults
Good Capsules 12138 (88.8\%)
Bad Capsules 74 (3.0%)
Empty Holders 1250(10.2%)

\ {Total Capsules 2482

Misaligned Im 5

Elapsed Time 779.64 5
Inspection Rate 188.4 caps/min

Effective Inspection Rate 170.17 caps/min

Last Updated: Tue 01 Jul 2008 14:55:56 -0400

Done

Figure 6.6: Inspect HIML Output File

6.5 fpga_loader_ss

The minimization of components on the USB2.0 camera circuit board led to a minimalist technique
of loading firmware to the FPGA. In order to load the FPGA configuration bit-file, the FX2 firmwarc
was programmed with a series of USB vendor requests to fulfill the loading using the slave-serial
method as described in 4.3.6. This requires only five GPIO of the FX2 and is capable of programming
a 250kB file in under 30 seconds. This is reasonable for the application since the FPGA is only loaded
once, at startup.

Along with the firmware in the FX2, accompanying software must be developed. For this, an
application titled fpga_loader_ss was developed. This application reads in a FPGA configuration
bit-file, and through a series of vendor requests to the USB2.0 camera instructs the FX2 to “bit
bang” the bit-file data to the FPGA. The command line arguments required are a device address
of the device to program and a BIT file to load. Optional arguments include a verbose option and

FPGA powering options. The listing below is the help screen for the fpga_load_ss application.

101

file:///o

6. HOST PC

Usage: fpga_load ss [OPTIONS]... [BIT FILE]
Options:
-h, --help Display this help screen
-v, ——verbose Increase verbosity

~d, —--device=BUS.DEV Select the bus and device to use

-1, —-list List the devices on the USB bus

-p, ——power <state> Soft power control to FPGA [on / off)
~r, —-reset Soft reset to FPGA (once configured)
-V, —--version Display versicn information

{BIT FILE] is the path to the BIT file generated using ISE
’path/foo.bit’

6.6 cam tnit

During the initial setup of the PharmaSorter, each camera initially must be loaded with location
information including the quadrant, position and a master flag. This information is stored in the
EEPROM of each device and is used by inspect to coordinate inspection. The cam_init utility is
intended for loading this information. Along with the camera location information, the windowing
parameters for the particular camera can also be loaded into the EEPROM following the memory
map in Section 4.5. This however, requires manually setting memory values using the cam_init tool

by specifying the memory address and data to write. The help screen for this utility is listed below.

Usage: cam_init —-d=[BUS.DEV]) [OPTIONS]...

Camera first time setup.

-d, ——device Specify device to target as BUS.DEV
-4, =—-quadrant Specify camera quadrant
-p, —--position Specify camera position
-m, —--master Specify camera as quadrant master (responsible for comm. with control board)
-r, =--read Retrieve ALL EEPROM data to screen
-—quickread Retrieve the camera gquadrant, position and master flag
-3, ——save <FILENAME> Read data from EEPROM and save to <FILENAME>
-1, —-list List all devices on USB bus
——blank Clear EEPROM memory with Oxff
-w, —-write_eeprom {ADDR] [VAL] Write a value to a specific memory location of the EEPROM
-rb, --read_eeprom [ADDR] Read a specific byte of EEPROM memcry
-rp, --reload_params Reload window parameters from EEPROM

*ADDR and VAL are decimal numbers

cam_init v0.01

Configuring a camera for a particular location requires the values specified for the gquadrant,
position and master at the command line. Each of these command line arguments must be followed
by a value. The quadrant value ranges from 1-4, the position value ranges from 1-4 and the master

value is 0 or 1. The camera position identifiers are listed in Table 6.2.

6. HOST PC

Value I Location
0x01 Center
0x02 Left

0x03 Right
0x04 Bottom
Oxff Undefined

Table 6.2: USB2.0 Camera Position Identifiers

6.7 pyWindowConfig

'To provide an easier way of configuring the camera window parameters, a GUI was created using
Python as a front-end for cam_init. This application uses the pyGTK libraries to create a graphical
interface to read and set window parameters. A screenshot of the GUI is shown in Figure 6.7. The
device selection window is also shown in Figure 6.8 where the user can select the specific camera to

configure.

103

6. HOST PC

RS

window Options

width 1536 }
¥
Length 768 |
X-Start 1180
Y-Start 1200
%-Bin 1 E»
Y-Bin 1 |
| Cancel ok |

Figure 6.7: pyWindowConfig Screen Shot

6.8 pyCamCal

A calibration tool was created to simplify the calibration process when installing camecras. Each
camera must be aligned such that the capsule is in the correct orientation in the image, and the focus
is set to the surface being inspected. This is a time consuming process, however with pyCamCal,
this process is more user-friendly. Using a version of inspect that allows command line window
parameters, and a single-shot mode option, pyCamCal can be used as a front-end for displaying
images according the the desired parameters set in the software. pyCamCal was developing in Python
and uses the pyGTK libraries. The following screenshots illustrate this application in operation, as

shown in Figure 6.8 and Figure 6.9).

Figure 6.8: pyCamCal USB Device Selection Screen Shot

6.9 W32 Control Panel Application

A control panel application was developed as an example front-end for advanced machine control.
This application was written in Microsoft Visual Basic 6.0 and uses the MSCOMM activeX control to

communicate over RS232 with the system control board. The application uses the commands listed

104

6. HOST PC

#dth
Length
X-Etat

Stan

*-Bin

v-Bin

Cancel

Refrash

Qptions

Figure 6.9: pyCamCal Main Window Screen Shot.

in Section 5.4.12 to control the machine and acquire status information. Although not intended to
be used in a finished commercial product, the application demonstrates how such an application cau
be developed in a rapid application development environment that can interface with the machine.

A screcenshot of the demonstration application is shown in Figure 6.10.

6.10 Data Collection

As mentioned previously, inspect outputs both a CSV and HTML file with real-time statistics
regarding inspection. With this data available, a data collection system can poll cach host PC
to gather this information. In order to facilitate this, an Apache webserver was setup for each
inspection PC to easily share data over Ethernet. Each host PC is connected to a network switch,
where individual systems can be accessed by their static IP address. This provides means to access
each system for maintenance or data collection remotely. The following table outlines the static IP

addressing scheme (see Table 6.3).

| Quadrant | IP Address |

Q1 192.168.1.101
Q2 192.168.1.102
Q3 192.168.1.103
Q4 192.168.1.104

Table 6.3: Host PC IP Addresses

The Apache webserver uses the /var/www directory to store HI'TP accessible information. To

105

6. HOST PC

B PharmaSorter Control Panel

e =

Figure 6.10: W32 Control Panel Application Screen Shot

make the system data available over a simple web interface, the following files were linked (symbol-

ically) to this directory.

e statistics.html - Link to HTML output of inspect statistics
e statistics.csv - Link to CSV output of inspect statistics
e inspect.log - Link to output log of inspect

e ./images/ - Link to images directory containing inspection images
g

6.11 File Organization

All executable files pertaining to the operation of the system are stored in /opt/pill_machine of each
system. This includes all Linux applications listed above as well as the output statistical information
(statistics.html and statistics.csv). The image files are stored in /images and the log file is stored in
/var/log/pill machine/inspect.log. This file organization deemed suitable for the prototype and can
be easily modified.

106

6. HOST PC

6.12 Start Up

6.12.1 inittab

The start up sequence of the system is important for ensuring the system can operate autonomously.
This involved creating a simple start up script to load firmware to the hardware and start the inspect
application. The start up script is stored in /opt/pill machine/start up. In order to have the start
up script to run on start up, it set as a process in the Linux /etc/inittab file. The entry in the inittab

file appears as follow.

6:23:respawn:/opt/pill_machine/startup

The code listing for the startup script is shown below, where program_cam_revB_ALL is the

firmware loader script.

#!/bin/bash

#PROGRAM CAMERAS

sleep 2

/opt/pill_machine/fpga_loader/program_cam_revB_ALL

sleep 4

#START INSPECTION SOFTWARE

/opt/pill_machine/inspect_vé6/src/inspect —le > /var/leg/pill_machine/inspect

The output from the inspect application is stored in a log file in /var/log/pill_machine/inspect.
This can be used to diagnose system errors and is linked to the /var/wumw directory for access over

HTTP.

6.12.2 Firmware Loading Script

The firmware loading script is used to load firmware to the camera FX2 microcontroller and the
FPGA. The FX2 firmware is loaded using an open-source tool called cycfr2load and the FPGA
firmware is loaded using a custom application called fpga_loader_ss (see Section 6.5). The firmware

loading script (program_cam_revB_ALL) is listed below.

#!/bin/bash

if [V -n "S1")

then
for pm_bus_addr in ‘lsusb | egrep ‘abcd:0201’ | tr -d ‘:’ | awk ‘{print $2"."$4}’"
do

echo Programming FX2 on $pm_bus_addr.
cycfx2prog -d=$pm_bus_addr prg:fx2cam_firmware_revB.ihx

cycfx2prog -d=$pm_bus_addr run

107

6. HOST PC

done
sleep 2
for pm_bus_addr in ‘lsusb | egrep 'abcd:0201’ ([tr -d ’:’ | awk ’{print $2"."$4}’"
do
echo Hard Power Reset of FPGA on $pm_bus_addr.
./fpga_load_ss -d=$pm_bus_addr -p off
sleep 0.5
./fpga_load_ss -d=$pm_bus_addr -p on
done
sleep 2
for pm_bus_addr in ‘lsusb | egrep ‘abcd:0201’ | tr -d ’:’ | awk ‘{print $2"."$4}’"
do
echo Loading FPGA bit-file on $pm_bus_addr.
./fpga_load_ss —-d=$pm_bus_addr frame_grabber_vl.bin &
done
wait
else
cycfx2prog $1 prg:fx2cam_firmware_revB.ihx ; cycfx2prog $1 run
fi

This script uses lsusb to identify the device address of matching devices by productID and
vendorID. Using the USB device address, each specific device is programmed with the camera FX2
firmware. Following the loading of the FX2 firmware, the device will re-numerate [4] itself with the
camera program. This will cause the USB device address to increase. Using the new address, the

FPGA bit-file is loaded using fpga_load_ss.

108

Chapter 7

Assembling the Prototype

So far, each component of the system has been described in some detail. This chapter describes each
component’s role in the prototype system along with the interconnection of components and the setup
requirements of each component. The PharmaSorterfollows the paradigm of a standard machine
vision system. It is comprised of an image acquisition component, a data processing component and a
machine control component. For the PharmaSorter, these components are the USB2.0 cameras, host
PCs and system control board respectively. For specifics on each component, see the corresponding
sections of this thesis and supporting documents in the appendix.

The assembly of the prototype starts with the removal of antiquated electronics from the Opti-
Sorter. This includes camera circuit boards, acquisition and processing boards, controller boards,
etc. Once stripped of all of these components, many unconnected wires will remain. It is recom-
mended that these wires are traced and labelled accordingly as assembly of the prototype involved
connecting existing hardware to new circuit boards. The assembly of the prototype also involved
finding areas to mount circuit boards and modifications to existing circuit board holders to house

new ones.

7.1 Wiring

For the prototype, electrical standard codes were not followed. The goal was to obtain a proof-of-
concept prototype, not a working commercial unit. The circuit board layout was designed to fit all
required circuit boards in the panel of the system. The following figures illustrate the circuit board

layout of the fixture in the system, see Figure 7.1 and Figure 7.2).

109

7. ASSEMBLING THE PROTOTYPE

Stepper Motor
Side Panel I/O Controller Board
Expansion Baord

Front Panel I/O
Expansion Baord

VOF45-12V
Supply Board

Slotted
Wiring Duct

Siemens

DIN Rail
a 24VDC Supply

120VAC 12V Terminal 24V Terminal
Terminal Block Block Block
(fused)

Figure 7.1: Panel! Layout (Front)

System Control

- Board
Slotted \ - PC Chasis

Wiring Duct | - Mounting Holes

Figure 7.2: Panel Layout (Rear)

The host PC chassis is not shown in the panel layout, however must be designed specific to the

motherboards used in the system. Section 6.2 describes the host PC chassis used in the prototype.

The existing wiring was recycled and used for making all electrical connections, with the exception

of some standard cables such as USB and power supply cables. This required custom connectors to

be made for the wiring in some cases where connectors were used. The wiring diagram of the system

is shown in Figure 7.3. This is a high-level wiring diagram and for more specific wiring information,

refer to the appropriate sections of this document and additional documentation provided in the

appendices.

110

7. ASSEMBLING THE PROTOTYPE

7.1.1 USB2.0 Camera

The cameras are designed to fit in the existing housings and must be aligned such that the optical
center of the sensor is at the center of the lens. This requires modification to the housing. The
wiring for the USB2.0 cameras is rather straightforward. All cameras must be connected to their
respective quadrant host PC using standard USB Type-A to Type-B mini cables. For the prototype,
2 meter cables were used. A trigger cable must be connected to all cameras as well. The top cameras
use trigger 0 and the bottom camera uses trigger 1. The camera trigger connector has a trigger-IN
and a trigger-OUT. Thus, for the three top cameras, the trigger signal can be piggy-backed. The
delegated master camera of each quadrant also requires a connector to the I?°C slave channel of the

system control board for the respective quadrant.

7.2 Firmware

The firmware for the system control board must be loaded using the Microchip ICD2 programmer
and the MPLAB IDE software. The firmware files are stored in the project directory in the fu_dsPIC/
directory.

The firmware for the USB2.0 cameras are soft-loaded during machine initialization through soft-

ware.

7.3 Host PCs

The host PC hardware must be installed in the system using a modified motherboard chassis. This
is briefly described in Section 6.2. Formal drawings were not created for this due to the fact that the
chassis dimensions are dependent on the motherboard selected. The host PC chassis must mount
motherboards and hard disk drives. For connection information regarding the specific host PC

hardware selected, refer to the corresponding user manuals.

7.3.1 Operating System

The OS used in the prototype systems was Debian 4.0 rev 3 with minimal packages installed. A
base X server with fluxbox window manager was installed to help debug system issues and aid in
calibration. Since the host PCs do not have input devices or monitors, remote access is required.
The SSH daemon was installed along with a VNC server. This allows graphical access to the remote
systems. An Apache web server was installed and setup to allow access to real-time statistical

information from inspect.

111

7. ASSEMBLING THE PROTOTYPE

o

sewweiborg

2aol
Aoy

(sajepdn esemuwiiy)

c [z [+ Jo

uadnnny | v

JOLUOD SABA

104U0D SAlEA
uiep naug

UoN28)0id WBLINBAD
5 uonenbay abeyop

pieog |043u0) Ew«w>w

[0u0g asing 100/

Jewwelboid "
200y “N8U,
zaoi Veosy evd
E
L] spnduy
| + | 1osuas uomsoy
° jonuen
uopeuIwnii
[ANOYS _ »ove

Od 208p3IY|
950 WK

‘Wwon
07| elawen

1o] T

HERE

NI HIY
|§_ f:
ndul do1S3
zezsy
£
#INI U 2
ozIpaiayng | ¢ g
0
13
=
{oau00 {osueg ¢
106611 e10WeD | | Jamag Od HOS | +
[e .

suoPng ysnd

weies
eiouies wonoa

wBioea

aowe) dog

112

iagram

Level Wiring D

High

Figure 7.3

7. ASSEMBLING THE PROTOTYPE

Once a working system was established on a single system, the hard drives were mirrored using
the dd tool. This allowed direct copies of the source drive to the additional three drives.

Each individual host PC requires specific configuration for network access. The /etc/network/in-
terfaces file was modified to set a static [P address for the system. The IP addressing is set to
192.168.1.10z where z represents the quadrant (ie, 1-4). This is used to remotely access each sys-
tem. Also, the hostname of each individual system was set in the /etc/hostname file that contained
the machine and quadrant number, ie (PMO0Q1). Note that after the drive is cloned, the network
adapter interface number will change on the cloned systems. ifconfig can be used to determine the
interface number to use when configuring the /etc/network/interfaces file.

The /etc/inittab file is modified to include loading the camera firmware and starting the inspec-

tion software as specified in Section 6.12.

7.3.2 Software

The software required for machine operation is stored on each machine in /opt/pill machine/. These
file can be obtained from the project folder deploy directory where the README file contains more

specific information. There are no install scripts and thus each system must be configured manually.

113

Chapter 8

Recommendations and Conclusions

In order for any machine vision system to be introduced into the quality control process of the
manufacturing of any product, it is essential that some means of system verification is performed.
For a system to meet the standards required by the manufacturer, it must pass absolutely no flawed
product, and the amount of rejected good product should be minimized. Pharmaphil has developed
a document to quantify the competency of a system before introducing it into their process known
as the Factory Acceptance Test (F.A.T) [30]. Because the developed system is merely a prototype,
a thorough F.A.T has not been completed as software and hardware are continually evolving. The
F.A.T must be passed before the system can be introduced into the facility.

As a measure to ensure the prototype system would meet expectations, a testing and verification
stage was essential. This test was performed earlier in the development of the system and was not
formalized. The system was configured with two cameras per quadrant (one centre and one bottom).
For this stage of testing, the image processing routines for left and right images were incomplete
and a lack of cameras prohibited a full test. The majority of information resides in these angles
anyway. After various system tests, it was determined that the system was capable of providing
reasonable inspection at a rate of approximately 850 capsules per minute. The inspection results

were not formally recorded, however the following results were achieved:
e Absolutely no foreign capsules passed (le. incorrect size, incorrect colour)
e Absolutely no incorrect size capsules passed
e Absolutely no dented capsules passed

¢ Absolutely no double capped capsules passed

114

8. RECOMMENDATIONS AND CONCLUSIONS

o Most bubbles were failed, although some did pass. This is likely due to the orientation of the

capstle, resulting in the bubble not being visible.

From the initial tests with two cameras per quadrant, the system was meeting it’s expectations,
however it proved that four cameras per quadrant were required for a thorough inspection. Without
modifying the camera angles in the inspection stage, the left and right angles provide little infor-
mation on the top surface of the camera. An example of a capsule with a bubble defect is shown in
Figure 8.1. The orientation of the capsule is such that the defect is not clearly visible from the left
or right camera angles, proving that with the current configuration, a center camera is required to

provide a thorough inspection.

T —— T —
Right Camera View

Center Camera View

Left Camera View Botfom Camera View

Figure 8.1: Camera Views of Bubble Defect

Preliminary tests with a four-camera inspection quadrant prove successful in meeting the iuspec-
tion criterion. This preliminary testing should be followed by a formal and structured verification
process.

"The contributions to the project involve machine control and image acquisition. The capability
of inspection is primarily reliant on the image processing portion. The overall machine control and
image acquisition must be tested and verified to ensure proper images are obtained and that the
ejection of capsule is in the correct slot (accept/reject).

The testing of the machine control portion of the system primarily verified that the system

can operate at the desired inspection rate. Testing the system with a forced pass on all capsules

115

8 RECOMMENDATIONS AND CONCLUSIONS

demonstrated that the maximum operational capsule inspection rate exceeds 1200 capsules per
minute without skipping any capsules. Another verification was to ensure that the images arriving
at the inspection PC match the order required to perform inspection. Measures to ensure proper
alignment were necessary to ensure that the capsule images match the inspected capsule. Verification
of image acquisition was also required to ensure the camera drivers and associated software function
properly. This was accomplished by ensuring that the images match the capsule being inspected.

The overall goal of determining whether or not a system could be developed to perform indi-
vidual inspection of two-part gelatin capsules was successful. It is evident from the research and
development of this project that it is indeed possible to create a low-cost system that is capable
of inspecting capsules with a great deal of accuracy. Although the developed prototype system
does suffer from flaws, they are not significant enough to deter future development with the current
design.

Some design errors, due to inexperience and time constraints, were witnessed in the project. A
design error in the layout of the USB2.0 camera PCB resulted in the modification of the board.
This modification involved attaching patch wires to various regions of the board to the Cypress
FX2 USB2.0 MCU. The heat directly on the pins of the FX2 MCU damaged the device such that
it experienced intermittent resets. This problem seemed to be accelerated by the addition of light
to the image sensor (which is directly connected to the Cypress FX2). As a result, the modified
USB2.0 cameras experience failure after a short running time. There is no simple remedy for
this problem since the FX2 MCU is permanently damaged. Although replacing the device may
successfully remedy the problem, the time and complexity required for this would be overwhelming.
'The simplest solution for the intermittent reset of the FX2 MCU is the submission of a corrected
layout design for fabrication.

USB2.0 seems to adequately meet the transfer rate requirements to meet timing requirements.
The maximum resolution of 3.1 megapixels is far more than what is required for the application.
By reducing the image resolution to about 0.3 megapixels, not only is the transfer time reduced
but the processing time is also reduced without compromising inspection. By reducing the image
size from 2048x1536 to a windowed region with pixel skip enabled for both the horizontal and
vertical directions [22], with a resulting image size of 768x384, the transfer and inspection times are
effectively decreased by a factor of about 10. This greatly improves system performance and allows
for better system throughput while meeting inspection detail requirements.

The addition of the fourth camera to the quadrants was a necessary step in ensuring a thorough
inspection. Although redundant information appears, this information does not negatively affect
inspection in any way.

From the testing stage, it seems that the software is quite stable and can run for extended periods.

116

8. RECOMMENDATIONS AND CONCLUSIONS

inspect was tested overnight to verify it’s stability. Using two cameras with the sensors in test data
mode (to prevent failure from the instability problem mentioned earlier), the system was tested for
a period of about 15 hours with an external trigger firing every 500 ms. This test resulted in a total
of 200,000 successful image acquisition with a total of 12 misaligned images. Misalignment can be
caused by the OS shifting resources to other processes and is inevitable. This affected only 0.0123%
of the “inspections” and is quite negligible. Any inspection affected by a misaligned image will be
rejected.

The system control board seems to be quite stable when operated for extended periods. To
improve robustness of the system, the UART handler firmware should be improved. If UART
requests are performed incorrectly, the UART module will not work as expected and cannot recover
on its own. Thus, error handlers must be created so the UART module is not in an unexpected
state. On occasion, the system control board seems to report incorrect counts. This source of this
problem has not been determined but could be the way the variables are stored, or due to errors
occurring during the transmission to the PC over the UART interface.

An oversight in the design of the system control board requires that jumpers are placed across the
input interrupt pin and the 3.3V pin of the buffered I?C connectors for the interrupt to be properly
triggered. This will only affect the system if the interrupt is required on the buffered I2C slave
devices. This is because the interrupt lines are active low and are in an open drain configuration.
The simplest solution would be to include the pull-up resistors for the interrupt lines directly on the
system control board rather than on the peripheral board.

An additional oversight on the design of the system control board involves the soft PC powering
circuit. The motherboard tested for the design had different powering requirements than the actual
motherboard used in the final prototype. This required a minor circuit modification to properly
function. The circuit was designed such that the power switch on the motherboard caused the
input to be pulled high, however in the ASUS motherboards used, the power pin must be pulled
to ground. The circuit modification for the prototype was made by incorporating the changes in
the cable following the schematic shown in Figure 8.2. The two required modifications are outlined
and include the addition of a pull up resistor on the PWR.SW_+ _n line to 3.3V, and connecting the
PWR_SW_-_n line to ground.

The USB2.0 camera FPGA firmware does not support colour interpolation and is limited to
outputting RAW data or grayscale interpolated image data. To support colour images, more output
data is required from the FPGA than is inputted to it. This would require the system to support
more buffering room, or the PXCLK of the image sensor would need to be divided accordingly. When
considering computational time versus transfer time, it must also be determined at which point it is

more feasible to perform interpolation in software rather than hardware. With the current system

117

8. RECOMMENDATIONS AND CONCLUSIONS

0805

330 1SO301 CONN3O1
JUMPER2
R301 D8
wBCPWRD AAN, PWR_SW 4 Q \
1 8
i :: o) :
, 2
- MBO SWITCH
+3,3V
0805
2225 10k CONN301
1SO301 R302 JUMPER2
R301 Ds

PC_PWR 0 — AN PWR_SW_+ 0 .
1 L2
%L % PWR_SW_GND_ 5
2 7
- = MBO SWITCH

Figure 8.2: System Control Board Soft PC Power Fix

configuration, the transfer time is roughly 15 to 20 ms. Thus, if full interpolation was performed to
output Y, U and V channels, the transfer time would be effectively three times the current transfer
rate, around 45 to 60 ms. Other data methods may include using colour channel data whereby
interpolation is not performed at all. In this technique, from the Bayer pattern image, the red,
green and blue channels can be extracted without interpolation. From this, a YUV image data
can be obtained with an effective image size of 1/4 of the interpolated version. It must be verified
that the data loss by skipping interpolation does not significantly impact inspection. This would
seemingly provide a reasonable image for the purposes of inspection. From preliminary tests using
this technique, the time required to extract the RGB colour channels from a 0.3 megapixel raw bayer
image is about 1.5 ms, with an extra 4.8 ms required to convert it to YUV. This is a total of about
7ms compared to 45 to 60 ms required to transfer the full YUV channels if converted in the camera.
It may be beneficial to explore colour channel extraction techniques further.

The finished prototype did have flaws and limited operating time, but was sufficient to prove that
such a system is realizable. With the development to date, the areas of weakness can be assessed
and with a proper development strategy, the system can be taken from the prototype stage to the
first generation commercial unit. Some optimization is required to reach the target inspection rate
of 1000 capsules per minute from the current approximately 800 capsules per minute. This should
be realizable in software and is an attainable target. The proof-of-concept prototype system was
developed throughout the course of the project from which Pharmaphil can begin designing the first

generation commercial units.

118

References

1]

A. Karloff, N. Scott and R. Muscedere. A Flexible Design for a Cost Effective, High Throughput
Inspection System for Pharmaceutical Capsules. In 11th International Conference on Informa-
tion Technology, (ICIT 2008), April 2008.

Analog Devices, Inc. CMOS 4-/8- Channel Analog Multiplexers ADG508A/ADGS509A.
http://www.analog.com/static/imported-files/data_sheets/ADG508A_509A.pdf, 2007.

Analog Devices, Inc. Triple/Quad SPDT CMOS Switches ADG1433/ADG1434.
http://www.analog.com/static/imported-files/data_sheets/ADG1433.1434.pdf, 2008.

Cypress Semiconductor Corporation. EZ-USB Technical Reference Manual.
http://download.cypress.com.edgesuite.net/design resources/technical_reference_manuals/
contents/ez_usb_r___technical reference_manual__trm__14.pdf, 2005.

Daiichi Jitsugyo Viswill Co. Ltd. Capsule Visual Inspection System - CVIS-SXX-E.
http://www.viswill.jp/English/CVIS_E/cvis_index_e.html, 2005.

Edmund Optics Inc. Comparison of Camera Interfaces, April 2007.

FEisai Machinery U.S.A. Inc. Printing and Inspection for Tablets and Capsules.
http://www.eisalusa.com/printingandinspection.htm, 2007.

Fairchild Semiconductor. 74AC139, T4ACT139 Dual 1l-of-4 Decoder/Demultiplexer.
http://www fairchildsemi.com/ds/74/74AC139.pdf, November 1999.

Fairchild Semiconductor Corporation. = MOCD207M, MOCD208M Dual Channel Pho-
totransistor Small Outline Surface Mount Optocouplers. http://www.fairchildsemi.com
/ds/MO/MOCD208-M.pdf, November 2006.

Hitachi Semiconductor. HD44780 - Dot Matrix Liquid Crystal Display Controller / Driver.
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf.

International Rectifier. IRF7103Q HEXFET Power MOSFET. http://www.irf.com/product-
info/datasheets/data/irf7103q.pdf, March 2002.

International Rectifier. TRF7306 HEXFET Power MOSFET. http://www.irf.com/product-
info/datasheets/data/irf7306.pdf, September 1997.

Keil(TM). C51 Development Tools - Product Overview. http://www.keil.com/c51/, 2008.

Lambda Photometrics. Illumination. http://www.lambdaphoto.co.uk/products/120.105, 2008.

119

http://www.analog.com/static/irnported-files/data_sheets/ADG508A_509A.pdf
http://www.analog.com/static/imported-files/data_sheets/ADG1433_1434.pdf
http://download.cypress.com.edgesuite.net/design_resources/technical_reference_manuals/
http://www.viswill.jp/English/CVIS_E/cvis_index_e.html
http://www.eisaiusa.com/printingandinspection.htm
http://www.fairchildsemi.com/ds/74/74ACl39.pdf
http://www.fairchildsemi.com
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.irf.com/product-
http://www.irf.com/product-
http://www.keil.com/c51/
http://www.lambdaphoto.co.uk/products/120.105

REFERENCES

[15]

16}

[17]

(18]

[19]

[20]

21]

Lawrence Livermore National Laboratory. POSIX Threads Programming. https://computing.
lnl.gov/tutorials/pthreads/, 2008.

Linear Technology Corporation. LTC1386 3.3V Low Power EIA/TIA562 Transceiver.
http://www.linear.com/pc/downloadDocument.do?navld=H0,C1,C1007,C1016,P1044,D1590,
1994.

Linear Technology Corporation. LT1763 Series 500mA, Low Noise, LDO Micropower
Regulators. http://www.linear.com/pc/downloadDocument.do?navIid=H0,C1,C1003,C1040,
C1055,P1778,D3903, 1999.

Microchip Technology Inc. dsPIC33FJXXXGPX06/X08/X10 Data Sheet High-Performance,
16-Bit Digital Signal Controllers. http://wwl.microchip.com/downloads/en/DeviceDoc/
70286A.pdf, 2007.

Microchip Technology Inc. dsPIC33F Family Reference Manul High-Performance Digital Signal
Controllers. http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf, February 2006.

Microchip Technology Inc. Explorer 16 Development Board User's Guide.
http://wwl.microchip.com/downloads/en/DeviceDoc/Explorer%2016%20User %20Guide
%2051589a.pdf, July 2006.

Microchip Technology Inc. dsPIC30F/33F Programmer’s Reference Manul High-Performance
Digital Signal Controllers. http://ww1l.microchip.com/downloads/en/DeviceDoc/70157C.pdf,
March 2008.

Micron Technology Inc. MT9T001 1/2-Inch 3.1-Megapixel Digital Image Sensor Data Sheet.
http://www.micron.com, 2004.

Micron Technology Inc. Micron Imaging FX2 Firmware Overview. Evaluation Board Compan-
ion CD [CONFIDENTIAL], October 2004.

Neil E. Scott. USB2.0 Camera Technical Reference Manual. Internal Document, August 2008.

Neil E. Scott. System Control Board Technical Reference Manual. Internal Document, July
2007.

Neil E. Scott. I/O Expansion Board Technical Reference Manual. Internal Document, July
2008.

NXP Semiconductors. BSS84 P-Channel Enhancement Mode Vertical D-MOS Transistor Prod-
uct Data Sheet. http://www.nxp.com/acrobat_download/datasheets/BSS84_4.pdf, July 2007.

NXP Semiconductors. Remote 16-bit I/O expander for I2C-Bus with Interrupt.
http://www.nxp.com/acrobat/datasheets/PCA8575_2.pdf, March 2007.

NXP Semiconductors. P82B715 12C-Bus Extender Product Data Sheet. http://www.nxp.com
/acrobat_download/datasheets/P82B715_7.pdf, May 2008.

Pharmaphil Inc. Factory Acceptance Test. Internal Document, January 2005.

STMicroelectronics. L78xxAB L78xxAC Precision 1A Regulators. http://www.st.com /stonline
/books/pdf/docs/2144.pdf, July 2008.

Texas Instruments. Digital Temperature Sensor with Two-Wire Interface (Rev. J).
http://focus.ti.com/lit/ds/symlink/tmp175.pdf, December 2007.

120

https://computing
http://llnl.gov/tutorials/pthreads/
http://www.linear.com/pc/downloadDocument.do?navId=H0,Cl,Cl007,C1016,P1044,D1590
http://www
http://wwl.microchip.com/downloads/en/DeviceDoc/
http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/Explorer%2016%20User%20Guide
http://wwl.microchip.com/downloads/en/DeviceDoc/70157C.pdf
http://www.micron.com
http://www.nxp.com/acrobat_download/datasheets/BSS84_4.pdf
http://www.nxp.com/acrobat/datasheets/PCA8575_2.pdf
http://www.nxp.com
http://www.st.com/stonline
http://focus.ti.com/lit/ds/symlink/tmpl75.pdf

REFERENCES

Texas Instruments Inc. TPS750003 Triple-Supply Power Managment IC for Powering FPGAs
and DSPs Data Sheet. http://focus.ti.com/lit/ds/symlink/tps75003.pdf, 2007.

Texas Instruments Incorporated. CD4068B Types CMOS &-Input NAND/AND Gate.
http:/ /focus.ti.com/lit/ds/symlink /cd4068b.pdf, September 2003.

Texas Instruments Incorporated. CD74HCT126. http://focus.ti.com/lit/ds/symlink/cd74hc
126.pdf, September 2003.

Universal Serial Bus. Universal Serial Bus 2.0 Specification. http://www.usb.org/, April 2000.
Unknown. GNU Radio - The GNU Software Radio. http://gnuradio.org/trac, 2008.
Unknown. SDCC - Small Device C Compiler. http://sdcc.sourceforge.net/, 2008.
Wikipedia.org. Universal Serial Bus. http://en.wikipedia.org/wiki/USB, July 2008.
WingmanTeam(R). USB Snoopy. http://www.wingmanteam.com/usbsnoopy/, 2002.

Xilinx Inc. Spartan-3E FPGA Family: Complete Data Sheet. http://www.xilinx.com/support/
documentation/data_sheets/ds312.pdf, April 2008.

121

http://focus.ti.com/lit/ds/symlink/tps75003.pdf
http://focus.ti.com/lit/ds/symlink/cd4068b.pdf
http://focus.ti.com/lit/ds/symlink/cd74hc
http://www.usb.org/
http://gnuradio.org/trac
http://sdcc.sourceforge.net/
http://Wikipedia.org
http://en.wikipedia.org/wiki/USB
http://www.wingmanteam.com/usbsnoopy/
http://www.xilinx.com/support/

Appendix A

Control Board Design Reference

A.1 Control Board Schematics

The design schematics for the system control board.

122

N
Y

b

RENCI

N
b
4.

CONTROL BOARD DESIGN REFII

A.

Lovsan

o
e
s

w3avan cna30 ovar

sydarns
ey

* TINA 00N

amar

sauar

@5 2P e

s080
s

30 374 HOION =

FaITNEOL0n ¢

JLERTTETES

o e

[ECN

1 001da01

o

“w

=ixor
= onzer
on
warea meeva
o B
o3)

* mo30f

5
a2

;

£
H
2

3
£
&
E]

LML
LA
o1LoHrergTEDI

* 11w narg

o0
o
@

om0
o
wia

262,456 404 NOONYAXI O

+ ai3aean
o

. s
LY

v e

siqu s
e
=
e
ot
e
B

o

NOISNYXE D1 O3B

azanor
soureco

razdne
roINOD

* daneirsan

NO1N8 13230 €621

* danmponrzas

. -
oz ws
s
s ane
g8 v
sammn ¢ fw v
o
r
P
cuousIzay an 1IN 200221
T ¢ ez
om0 o
n“ <
cow sare
oz o *
P oo
w: s
souw o
o e
o
o
s
~aoxzom =
- e - .
oux -
a1
w
ey *
» a0a zaon
® 784 T «
ouzarare
carneios
0400 UG 20N
* 50
®godTIe
«amre
* aoa o1
o oy
wr prifiits
soum

40203100 B ¥TeS0ma S0

123

A. CONTROL BOARD DESIGN REFERENCE

a “ o
12008 TAN A8 NmvEa 0
v NOISIAZY 5 s1anD
ONILHEIT RSYT4 027604 400D HINEG

SO LHIA WNSO'S ¥DOI8 TWNINEIL

HI0[MBI UG

T IRoTINGET U3 T

20INNOD

SOdB LA WWBO'S OO T8 WNIAK3L

T IFDTTHOVE TP

z=0s
sa ,
We02ao0w

20208!

8C
vozn
0L

5080
ETEN
g0y

ga
WB0ZA0ON
202081

s0eL 951

5080

2=108

80 .
WB0ZAOOW

102081

8Q
WB0ZAOOW
10Z0S! -

“nzir

102y

124

o
s

CONTROL BOARD DESIGN REFERENC.

A.

11008 3N A8 NMYHQ 40 3ovd
I NOISIA3Y yosuamod od 3

HOLIMS H3IMOd Od 1408 3L

HOLIMS £8W
ez - &
AR R
- voeY
me“_,__,_%h 20€08! oce
5080
HOLIMS 28W
— o :
R .
L e o]] . -
TS E oo ZOWd O3
auzanr 208 e
£0
ENNOD con
HOLIMS 18N -
g -
[Jugszsmumaﬂuj Lo
' memsmma— | T ENE Od
I 2=i08
24adnwnr 8q
20ENNOD L0€0S!
HOLIMS 08N
.
L
[. LT _
T+ MG BMd T BMd 09
- 8Q Loey
Zy3dwne
LOENNOD L0£0S! 0gg

S080

125

RENCE

FE.

)

SIGN RE

)
[

A. CONTROL BOARD DI

i o
11008 AN
L

A8 NAWVEG

NOIBIATE

sio

19y eWNaU 10)

50

2w

wossanpToepE T MBUd 3

%2019”Ma158 TRUILLISE

z — |
00V AVT 30010 . .

2 ——

209 15800 3alL

2000N4
_ $0vQ

£OPNNOD

¥o0iq Mais RULIBZ

%30jq” MO8 euIwIISIg

¢

]

4

v
e
2
'

$02/005Z43 .
LOPNNOD

2

$Q2/005203
2Z0VNNOD

200vNL
sora

WA SE LSYAT LY $1 T10H 08
3215 O¥d ONY 3TOH ISYIHONI - $30010 200¥N} HOS

00v A¥17300I0 .

Apee

T

00 AV1300I .

2000N1
vova - -

00¥ AV173Q0I0 ...
200vNL
£0vg

Av2e

=
-

.

00 A¥173000
2009N}
2000 ~—

aver

00p AYY'3Q0I0 . .
2000Nt
1ova - —

Aver

£01LH1

2wy T aorH
o]]
We0ZQooW
£0¥OS) ¥ ,7| 3
ST RTEanS RIVW NG

covh S080
%0t
5080
N3¢
Y oge
sovH
e
IV =
-
<
o -
¢ 80 ,
Mr— W80ZQ00W
R 20081 *
8 1
2090

£04248)

' 5080
70k
. - - vord
- 14
oLvy sa _ .ﬁ
WB0ZA0OW ° » =
207081 vjT .
P ke 1=
SO0
0EE
e=ols = L E0vH
80 <_
WBoZQoow ™ -
(2o I
1 _ ST IIoVENg ™
5080
oce
20vH
R— e
080
oLe
yovy

N

FERENCE

CONTROL BOARD DESIGN RE

A.

N3350

oge
5080
€0sy

8 . 4 9 . S . I3
11008 3N AR NMYHG 40 39vd
v NOISIAZY yos-semod 34
NOILYIND3Y IDOVLIOA 3L
AE'E UM i
9021
1050 100 Jr
<6080 o o o
080 § 5 3
oHaz
dnos 080
- dAg NaHS
9izevI3d - 2084 S S
§083 . asNas
- _ F
1no NI
Vo 8
8S0€921171 3nol
AT 8Q IILoeleevid
206N ‘ ~ €0SO
TAse
i AZ) TYNHILX3
Jeployasny dijo od wwg -
RS
mcMN %20l lﬂm‘h‘o‘mﬂ_mz_émum
4 20SNNOD
AZL
e L s s v

v
8
~
Jnot 4nee'o -
G080 117D o8z |2 — 9128vI3
2080 - S “ 1080
ano -
T ino N
R 2
o A¥I02201 L
At Losn AZi*
avi-pLg=ud yuisieay
a
I APZ TYNEILXT
Japioy~esny dijo"od wwg e 8 o
P —
SMum_ xoo_nﬂfw_oml_m:_s_m&
“Aver LOSNNOD N

B-£0-86EEVL/ME
JJSQWNN Ued JAPjoH asn4

127

—
Y

SIGN REFERENC

CONTROL BOARD DE

A.

¢
L1O2S AN A8 NMVEE

9) s
40 30vd

I SNOISIATY yos'sindul Josuas” Axoud ERT]
H31H3ANOD TIATT LNINI HOSNIS AXOHd 3L
g0 o
8a q_ $Q9/02403 x 2 38N
_\,_mowmwwmu . HOO|q MBIDS [eLIULNZ |
NNOO HOSNIS AXOHd
ENTS AXOEd T o e
s080 . — oy
NS B - . N
Booy eq 5080
W802a00N o'l e
e 20908 - | .
eNdS AXCEd T s .
. i e g
5080 .. 5080
ol 2=l0is e YT ¢
200y
8q €094
W802a00W
nee 109081 S TS
- 5080 b
TNIS AXOBd 1 Yo'l
5080 209 L ¢
bR M
900y - 8a P T E
W802ao0N 5080 oy
109081) 1 %L .
_ e+ % 1094 . H0ONNOD
UNTS AXOHEd T zir
5080 .
el
S09Y .
¢ s s -

128

SIGN REFERENCE

A
al

A. CONTROL BOARD DE

129

9 S , 4 € 2 L
L100S 13N ‘A8 NMYHQ L 40 | 3oVd
v INOISIAIY yos'ino uanup 1addels ERlE]
% 3STNd H3TTOHLINOD HOL1ON H3dd31S 1L v
3SINd HOLOW .
@ 2 o o
b v TT3STNg HOIOW ™t
LOZNNOD
° ol
5080 .
A0t
€04
oo ea | T
’ o W80ZAOOW *| =] -
. , 10L0SI J i ,,_1
£2108 ~2 1 . T35 TMd goon
1040 - 5080 S080
s A0} 091 a
co/Yd . 10,4
AvZ+ AbSF

3

NCE

SR

)

EE

-
.

SIGN R

CONTROL BOARD DE.

A.

L

FHAJWNP
FOBNNOO

LZEE1TlN
E08NNOD

i 9
11008 13N AB NMVHQ L o

v NQISIAZY 4osI8Ng ogI " Wed

H344N8 SNA D2 YHIWVO

o ‘J 1 - — -
neer SHSJNnr
208NNOO

Aeer SHINNT
LOBNNOD

S12828d ..

g ON anNg .|_..
PEERVD 5 A w g VOS TR
—r —n " _

5 008 N
ATEY 8q
08N
Siegesd -

~5TOoN aNo |_v
TETWVD 5 S S TFTTTT YOS AT
WTenvo 7 A IR E— e)]

Tw 00A oN T
ATET 84d
goan
- . , .

AEET

— J—

35vd

ERIE]

L

S080
089
8084

5080
089
08y

¥
TOT EWYD T TRV
5080 5080 5080
089 089 089
L08d vosy €084
Ager AtEr AEET AEE*
TITZAVD TOT oAV
sos0 | 5080 5080 .
089 . 089 ~ 089 "
sosy zo8y 1084
AT AES* Ager ACE

SHOLSIS3Y dN 11Nd 3NI7 ¢34344n8

$148928d e
—5 N ano |_q
BT 5 s s T VOSTAED
WTIvo ¢ A~ T aT A
_|n 20n oN—T—
Afer 5q
208N
sizg28d =
—oN ano |_«.
dwwuj ks xs n|dqwuq_23
BIoAYT . A A vaT oA
_|m 201 N
Ater ea
Lo8n

30

13

1D

RENC

3
L

A. CONTROL BOARD DESIGN REFT

LiCDS 3N A9 NMYHQ

% ‘NOISIAZY

s

TG TOEL Y0 .
2d3dnne
806NNOD

.

L

TIME FOTEL WO
ed3adwnr
L0BNNOD

T

[

TINE TO1HL W90
243aNne
906NNOD

L.

e

03NE 1oL WD
2d3dWne
SOBNNOD

40

y2s°s10661

3OVd

LT wes =4

433408 ININ Y3DDIHL vHIWYD ELIDS

TaM" 09EL WD

2d3adanr
POENNOD

L

131G 0OTHL WYD

P
cd3Idwnr
€06NNOO

ed3danr
206NNOD

T3NG 09THL WVD

243adnnr
LOBNNOD

96W9ZIOHP£0D

[S, L -

ST TOBL WV g AL ane
ToEL YD s vt X Anry T3TE OSTHL AYD
-3 —
g o do¢ L Aara— TEL YD
¥ ©
- T AY 302 2
TOTEL V3 o AT NS TOOTS T e
P _
o o dor W . UDBL AYD "
‘\qou\, o 2
e oen

131

FERENCE

CONTROL BOARD DESIGN RE

A.

30 39vd

11008 13N A NMYHA
v ‘NOISIA3Y LUW.LUﬁ\Sw\m:DIUN, And
. HOLIMS wjm‘om_ ELIG
N o N NG Nt
3 ves ves g
SRV g €0 A v -to
bl e B ®Ss~, TS
o N (wossL) o Ty o -
m4 aon YEPIOQY s TeTT —5 #ac0 ans .o|_
oS e @ Tost o0 #4320 w0 NI
S0 o ey I B v Lo — o -
o e Ve 37 4900 o5 —————2zNr"
e N e v BELOVPL oo ———————
o et
]
50 O0A
Reee
s e Wt
o s s 7~ VUSENYD "
s £~ VOS ZAvO™"
] % s VOS“TAVO ™"
i aon ¥8089aY R —
—r ano ssATT—,
T NI g
b Z—— T o o7 "
, T 91Q

CONTROL BOARD DESIGN REFERENCE

A.

L1100S 13N A NMYHQ 40
v NOISIAZH yos uoisuedxaog!

NOISNYdX3 Oel

51.828d :
N N9
VIS g ‘s 7 2105
TsmEvaT A N Terg Tt
3 00A N
Negr 8a
2010
§12828d .
TETON aND Ty
VTS 3 s g 208
*TSTE vaT 7 4 M~ osng o1
3 DOn ONTT
AEEH 8da
kN

3V

313

EQuiTy

ATddNS AE€ SHOLDINNOD NOISNYJX3
7V HO4 YWo0Z 40 ANWIXYA V OL
Q3L 38 AINOHS MyYYA LINIHHND .

'SN8 d34344N8 SIHL OL G3L03INOD 38
QINOHS SIVIATA 3AVIS ATNO 'FLON

IHO 18Nd 021 334344N8

peIdNNC
POLINNOD

OHO 18N8 02t J34344Nn8

L0

*IsnE vaT
TSTE 107

S080 5080 ﬁ
089 089
YOLIH © . £0LIH . AT+

AT e

[t

LCEELT
€04 INNOD

LHO 0SN8 O2I a34344N8

£

[Usiai I en)

TST8 10T

4

e e)

AEEr

rd3danre
20LINNOD

OHD 0SNG 221 03Y334na

rb o -

oSNETYaT

oSNy~ ToT q
5080 5080

089 . 089
201ty - 14131

ATE

ALEY ATET

k4
——

yHIINOT
LOLINNOD

133

INCE

i

CONTROL BOARD DESIGN REFERI

A

LLOOS 3N AS NMYHQ 40 39vd
v ‘NOISIAZY yos uoisuedxaag| I

NOISNYJX3 O2I L

SHOLOINNOD NOISNVJX3 021 034344N8 TV HOJ Ywooe
38 GINOHS MyHQA LNIHHND WNWIXYIN :FLON

MO IAILOY Y SINIT XLNITOZI8 TV '3LON

3 ON SSA
NG
HO43008Y = % _
- a7
(HD43008V) =
folare I
8890va0
7%
¥z UINI 28 "
E e I
T T e
alsiigesd
—5 N ano ||_v
VoS o fs S =2
7N Tz
3 9o oN T
Ages 8a
202N
alsiigesd =
S oN ano I_v
VIS ~ ;) Ag x5 B —
7 A L
5 09 N
ATET 8a

(LdNGHILNI HLIM) LHO 0SNE O2i a3Y344nE

TTW STg vaT : v
TR S8 10T £
YINT O™ -2
3
SH3dWNG
e £021NNOD

{LdNYY3LNI HLIM) OHD 0SNE D2 03Y344n8

T TR STY VO

T-TW STg 10T i

AL el z
5080 5090 .

088 o8 SY3IdWNT

” .
0zZ1Y £021g) AT POZLNNCD

(LaNBYILNT HLIM) LHO 0SNE O2) 03434408

T W ST VO T

U ST 10T €

NINT OZ™ -2

[V t
SEERTI
e 20ZLNNOD
{LdNEHILNI HLIM) OHO 0SN8 021 43Y344n8

T W SN va7 e ¥

T WM S8 107 R

UINT o2 2
5080 5080 .

83 089
iy sy3IgNNe

2021y 102ty AETY LOZINNOO

AEE AEE

oy

gel

433V

R1301
0805

B0 _PWR _LED+

10k
F PC_SENSE0

1 . l 1501301

g _LED. 2 _w Dg

MB1_PWA_| EDa

+3.3V

R1302
0805

10k
k PC_SENSE g1

sl

- T 1801301

_ 4 ;m [oX:]

CONN1301
JUMPER2

CONN1302
JUMPER2

_ slot=2

CONN1303
JUMPER2

o e

CONN1304
JUMPER2

433V

R1303
0805

10k
B2_PWR_LED: _ PC_SENSE 2

Lol

- 1801302

433V
R1304
. 0805
10k
\B3_PWR_| ED+ [_ PC_SENSE .3
Ll 1801302
a ._, De
e L slot=2
MB2_PWR_{ EQo
e MB2 PWR I F-
. MB3 PWR IEQs
— . MB3 PWR |EQ}
TITLE PC MB POWER SENSE
FILE: mb_sense.sch REVISION: A

PAGE 1 OF 1 DRAWN BY: NEIL SCOTT

d d4dvod TOHdINOD 'V

Gt

THHATYH NOIS.

’
e

HON

‘NCE

FERE

CONTROL BOARD DESIGN RE

A.

s 8 ¢ . . ®

S 14
L1008 1AN “AB NMYHQ 30 39v4d
v INOISIAIY 4os a0epAL [RLSS BTl
v B3AIFONVHL 282SH ERITIY
q
. 6 AVT J¥W347 08NS
0P LNNOD
3
2 oot T . 8
) I
o aND .
5 Ni2xH noaxd 5 oS . .
_ T NUEXY 100 1X8 ~z; UOXE €
7 lnozdl [T arvam—iciR: s
o1 Lno L NBL T OOXE v .
5080 R
Jnio . o mw%o .)
a SO¥LD s — - an - .
N 20— 20v10 s -
5 :
z +A .\ s
-1 5080
e
S080 . *1D
o 4n1o T o
YOrLD 98€1011 tovin
5080
4040 N
£0v10 et
3
3
8]) Fa) 9 B o <)) 14 - -

136

A. CONTROL BOARD DESIGN REFERENCE

11008 1IN

v

A8 NMYHQ

NOISIATY

4950 doisa

SLNANI dOLS~3 3dILINN HOH 30V4HILNI JOLS-3

SINTYA IONVLSISIH LSNrav 'SIOV.LIOA IN3Y344IQ HOS

8890¥00

HS43008Y =X
(HD43008v) = ¢

AvZ—2} 38 OL 03103dX3 IV STYNDIS dOLS-3

ELE]
ENE]
ERFtER
g=1018 ‘_
gd <[-
205108t
TR
_ |
EDIS JOLST ﬁ .
5080 mxnww
R
2081 20544
Aeer
o | -
2ostosl -
S080
%8}
00818 S05 14
g
g=os 7T
sa s| -
105108S! A, o
TOTS gOIST 1 L AR
5080 wﬁwm
ek
06 1Y €051y
AT
8d
105108
UOIS dOISH
5080 m_ﬁww
%1
1051y
20514

ATET

NI0|q MBS (BUILLIZ

- Bt

FOSINNCO

WO0|q MBS |BULLIDIZ

L

E0SINNQD

3O0{q” MBS [BUILLIBIZ

[

e+ e e |

Z0SLNNOD

HO0|q MBS [eUIWIRIZ

T —

LOSENNGO

137

A. CONTROL BOARD DESIGN REFERENCE

A.2 T?’CI/O Expansion Board Schematics

The design schematics for the I2CI/O expansion board.

138

SIGN REFERENCE

CONTROL BOARD DE

A.

1038 TN s
v

= sgsavan

s0ur

2 s2avan

oo mans GuLS:

o0z

%id
w
ol
ne

L
s
s

=g

ane

suo®

o

riro®

o

o "

o *

QUY08 OTNTAX3 S D31

4300 s U

8500

o

20

s103
=
o
e

a0
sizont

som0
o
e

2o

80
nios

g

s0d

. VY
Y (o
o
N VY
saA o
s
A a
Pt
ey
Sxa o
o
s

-
s XA

s0m0
o
ey

LI
s SR A

wem: 80
P
P
wn
[YSTTY
wa
e
20 -
som SR A
204 .
so00
o
oo
0
ey
wiom SRA
zag .

sa-
won SE A
ot .

o > com > om0
w. o o
By & oy &

‘o o . e
el @
o
"o o . .
waad S
e MYy e sor
00 SRA - o . e
e o Snole ad
. i e
s
P
. e
soom SR A SOLVINOZY 3041108 3L IN404 10N 00
. B4 51 AL S WNSEIXE 8 310N
o :
o
o 03014401561 4 TNE20XE 4 LHONS
© © ey
> suarnr
o0 st = e
e S — amen
o . . 10> Py -
N o -
. - omar o e
mﬂ =
o oo o003
wn
g
o o ag
wom DA
E e -
i v 0105 - "
som0 R C oo
o1 v RN “ o
e - . . —_ .
T o - e
. oz - - EIN .-
seesmzn A
swn
et
any o0
Py e e
wg . ov PR
. v ce ok Lo
e Lo e v
o o won
e e
t0q *
' we
@ v
w 10
. W
“ assernds *vas 1%
o = v el
VY .
. S
oy vaz
vieo 00
PH o v
@ " .
. .
*aee o
m
MYy o w .

. om0
o ues
=

139

Appendix B

USB2.0 Camera FX2 Firmware

This section contains the firmware source code developed for the Cypress FX2 USB microcontroller

of the USB2.0 camera.

B.1 Cypress EZ-USB FX2 Vendor Requests

A summary of the USB vendor requests of the USB2.0 camera.

/% Vendor Specific Requests - Note: OxA0 to OxAF are reserved */

#define VRQ_I2C_READ 0x81 /+ wValuel: i2c¢ addr; wlength: data length =/
#define VRQ_12C_WRITE 0x08 /* wValueL: i2c addr; wLength: data length x/
#define VRQ_READ_EEPROM_SM OxE3

#define VRQ WRITE_EEPROM_SM OxE4 /* wValuel: i2c addr; wIndex: eeprom_addr;

wLengthL: data length =/

#define VRQ_READ_EEPROM_LG OxE6 /+ wValuel: i2c addr; wIndex: eeprom_addr;
wlenghtL: data length =/
#define VRQO_WRITE_EEPROM_LG OxE7

/% Set. 12C Bus Speed */
#define VRQ_SET_I2C_SPEED 0xE5

/+ Camera Specific =/
#define VRQ GET_CAM_STATUS 0xEOC
#define VRQ READ_CAM POSITION OxE1

/+ Pill Accept/Reject «/
#define VRQ PILL_REJECT_ACCEPT 0xFO0 /+ wValuel: accept/reject {1,0}; =/

140

B. USB2.0 CAMERA FX2 FIRMWARE

/* Get Camera Quadrant and Position (read on startup from EEPROM) x/
#define VRQ_GET_QUAD_POS OxFA

/+ FPGA Commands =/

fdefine VRQ FPGA_FLUSH OxF1
#define VRQ_FPGA_RESET 0xF2 /+ wValueL: enable/disable {1,0} =/
#define VRQ_FPGA_POWER 0xF3 /+ wValueL: enable/disable {1,0} «/

/* FPGA Loader Commands +/

#define VRQ_FPGA_LOAD_SS OxF5
/% Sub Commands */

fdefine FPGA_LOAD_START 0x01
#define FPGA_LOAD_DATA 0x02
#define FPGA_LOAD_CHECK_DONE 0x03

/+ Frame Synchronization Commands x/
#define VRQ _GET_FRAME_DROP_COUNT 0x30
#define VRQ_RESET_FRAME_DROP_COUNT 0x31

/% Turn on or off Frame Drop Interrupt =/

#define VRQ_FRAME_DROP_INTERRUPT 0x32 /+ wValuelL: enable/disable {1,0} =/

/* Window Set Commands x/

#define VRQ_GET_WINDOW_ PARAM 0x35 /* wIndexL: sub command =/
/* sub commands =/

#define VRQ _GET_WINDOW_WIDTH 0x01

#define VRQ_GET_WINDOW_LENGTH 0x02

#define VRQ_GET_WINDOW_COL_START 0x03

fdefine VRQ GET_WINDOW_ROW_START 0x04

#define VRQ_GET_WINDOW_COL_SKIP 0x05

fdefine VRQ_GET_WINDOW_ROW_SKIP 0x06

#define VRQ_UPDATE_PARAMS Oxaa

B.2 Micron Image Sensor Register Definitions

B.2.1 mi_regs.h

/+ Filename:
mi_regs.h

*

%

* Description:

* Micron MT9T001 CCD Register Definitions
*

* Author:

* Neil Scott

*

+ Date:

* December 14, 2006

*/

#ifndef _MI_REGS_H
#define MI_REGS_H 1

#define MI_REG_CHIP_VERSION 0x00

141

B. USB2.0 CAMERA FX2 FIRMWARE

#define MI_REG_ROW_START 0x01
#define MI_REG_COLUMN_START 0x02
#define MI_REG_ROW_SIZE 0x03
#define MI_REG_COL_SIZE 0x04
#define MI_REG_HORIZ_BLANKING 0x05
#define MI_REG_VERT_BLANKING 0x06
#define MI_REG_OUTPUT_CONTROL 0x07
#define MI_REG_SHUTTER_WID_UPPER 0x08
#define MI_REG_SHUTTER_WIDTH 0x09
#define MI_REG_PX_CLK_CTRL 0x0A
#define MI_REG_RESTART O0x0B
#define MI_REG_SHUTTER _DELAY 0x0C
#define MI_REG_RESET 0x0D
#define MI_REG_READ_MODE_1 Ox1E
f#idefine MI_REG_READ_MODE_2 0x20
#define MI_REG_READ_MODE_3 0x21
#define MI_REG_ROW_ADDR_MODE 0x22
#define MI_REG_COL_ADDR_MODE 0x23
#define M1_REG_GREEN1_GAIN 0x28B
#define MI_REG_BLUE_GAIN 0x2C
#define MI_REG_RED_GAIN 0x2D
#define MI_REG_GREEN2_GAIN 0x2E
#define MI_REG_TEST_DATA 0x32
#define MI_REG_GLOBAL_GAIN 0x35
#define MI_REG_BLACK_LEVEL 0x49
#define MI_REG_ROW_BLK_DEFAULT_OFFSET O0x4B
#define MI_REG_BLC_DELTA_THRESH 0X5D
#define MI_REG_CAL_THRESH Ox5F
#define MI_REG_GREEN1_OFFSET 0x60
#define MI_REG_GREEN2_OFFSET 0Ox61
#define MI_REG_BLK_LEVEL_CAL 0x62
#define MI_REG_RED_OFFSET 0x63
#define MI_REG_BLUE_OFFSET 0x64
#define MI_REG_CHIP_EN_SYNC OxF8
#define MI_REG_CHIP_VERSIONZ2 OxFF
/+ Skip and Bin Modes =*/
#define MI_COL_SKIP_NONE 0
#define MI_COL_SKIP_2X 1
#define MI_COL_SKIP_3X 2
#define MI_COL_SKIP_4X 3
#define MI_COL_SKIP_8X 4
#define MI_ROW_SKIP_NONE 0
#define MI_ROW_SKIP_2X 1
#define MI_ROW_SKIP_ 3X 2
#define MI_ROW_SKIP_4X 3
#define MI_ROW_SKIP_8X 4
#endif /+ _MI _REGS_H +/

.
B.3 FX2 Firmware
B.3.1 Makefile
srcdir =
top_srcdir = ../..
XCC = sdcc —-mmes5l —-no-xinit-opt
XAS = asx8051 -plosgff
DEFINES = -DHAVE_USRP1
DEFS = -DHAVE_CONFIG_H
INCLUDES = —I$(top_srcdir)/firmware/include -1I$(top_srcdir)/firmware/src -I../common
MEMOPTS = --code-loc 0x0000 --code-size 0x1800 --xram-loc 0x1800 --xram-size 0x0800 \

-Wl '~b USBDESCSEG = 0xE000'

LIBOPTS = ~L ../lib libfx2.lib

142

B. USB2.0 CAMERA FX2 FIRMWARE

LIBDEP = ../1lib/libfx2.1lib
LINKOPTS = $(MEMOPTS) $(LIBOPTS)
HEXFITLES = \

fx2cam_ firmware.ihx
STARTUP = _startup.rel

FXzCAM_OBJS = \
vectors.rel \
fx2cam_main.rel \
fx2cam_common.rel \
usb_descriptors.rel \
$ (STARTUP)

CLEANFILES = \
*.ihx *.1lnk *.lst ».map *.mem x.rel .rst *.sym x.asm *.lib

all: S (HEXFILES)

clean:
rm -rf $(CLEANFILES)

$.rel : %.c
$(XCC) $(INCLUDES) $(DEFINES) \
~c -0 $@ ‘test -f '$<’ || echo ’$(srcdir)/’ *$<
%.rel : %$.abl
test ~-f ‘basename '$<’ || 1n -s '§<’
test -f ../common/‘basename ’$<’' -o \
\! -f ‘dirname ’$<’‘/../common/‘basename ‘$<’/* \
I} in -s ‘dirname ‘'$<’'/../common/‘basename ‘$<’* ../common/.
$(XAS) ‘basename ’$<’*

fxZ2cam_firmware.ihx: S$(FX2CAM_OBJS) $(LIBDEP)
$(XCC) $(LINKOPTS) ~o $@ $(FX2CAM OBJS)

#fx2cam_blink_leds.ihx: ${FX2CAM_OBJS) $(LIBDEP)
S(XCC) $(LINKOPTS) —o $@ $(FX2CAM_OBJS)

fx2cam_main.rel: fx2cam_common.h
usb_common.h
fx2cam_common.rel: fx2cam_common.h

../include/fx2cam_commands.h

../include/fx2cam_commands.h

B.3.2 fx2cam_common.h

/# Filename:
* fx2cam_common.h
*
* Description:
* Camera firmware constants.
*
*+ Author:
* Neil Scott
*
* Date:
* September 13, 2007
*
* Notes:
* February 25, 2008:
* Revised for REV.B of camera board. New routing.
*
*/

#ifndef _FX2CAM_COMMON_H
#define _FXZCAM_COMMON_H 1

#include "fx2regs.h"
#include <syncdelay.h>

/* USB Setup Packet x/
#define bRequestType
#define bRequest
#define wvValuel

SETUPDAT [0}
SETUPDAT({1]
SETUPDAT([2]

../include/fx2regs.h

../include/

../include/fx2regs.h

143

B. USB2.0 CAMERA FX2 FIRMWARE

f#define wvalueHl SETUPDAT [3]
#define wIndexL SETUPDAT[4]
#define windexH SETUPDAT [5]
#define wLengthL SETUPDAT[6]
#define wlLengthH SETUPDAT[7]

/+ Camera Constants */

#define EPOBUFF_SIZE 0x40 /+ 64-bytes */
#define 12C_EEPROM_ADDR 0x51 /+ EEPROM I2C Address */
/#* ——=== PPGA RESET CONTROL ===--+/
#define FPGA_RESET_PORT I0A
#define FPGA_RESET_BIT bmBIT7
/* =-=== PPGA POWER CHIP (S ===-- */
/* FPGA Power Port =/

#define FPGA_POWER_PORT IOE

/% FPGA Power Inputs x*/

#define FPGA_POWER_VCC_AUX bmBIT3
#define FPGA_POWER_VCC_O bmBIT2
#define FPGA_POWER _VCC_INT bmBIT1
/% ==-=== FPGA LOADER */

/+ FPGA Loader Port =/

#define FPGA_LOAD_PORT 10C

/+ FPGA Loader Outputs »*/

#define FPGA_LOAD_CLK_BIT bmBIT3
#define FPGA_LOAD_DATA_BIT bmBIT2
#define FPGA_LOAD PROG_BIT bmBIT4
/+ FPGA Loader Inputs */

#define FPGA_LOAD INIT_BIT bmBITO
#define FPGA_LOAD_DONE_BIT bmBIT1

/% TODO: FPGA Interrupt Lines

* - Start of frame

* - End of frame

* - Frame error

*/
#define FPGA_FS_PORT I0A
#define FPGA_FSO_BIT bmBIT2
#define FPGA_FS1_BIT bmBIT3

/* TODO: 12C SCL Loop back

* — Used to check bus state before starting transmission
*/
#define SCL_LB_PORT 10C
#define SCL_LB_BIT PmBITS
/+ TODO: ADD ERROR CONDITIONS -- Maybe put in separate header =+/
/+ System Error Codes =/
#define ERR_FPGA_LOAD O0xAl
#define ERR_FPGA_FIFO_FULL 0xB1

/+ Function Prototypes =*/
void init_fxZcam (void);

#endif /+ __FX2CAM_COMMON_H =*/

B.3.3 fx2cam_ids.h

/% Filename:

* fx2cam_ids.h

*

* Description:

* FX2 Camera USB IDs. Must be consistent with usb_descriptors.a5l
*

* Author:

+ Nell Scott

*

* Date:

* December 08, 2006

144

B. USB2.0 CAMERA FX2 FIRMWARE

*/

#ifndef _FX2CAM_IDS_H_
#define _FX2CAM_IDS_H__ 1

/* Vendor ID and Product ID =/
#idefine USB_FX2CAM _VID Oxabcd
#define USB_FX2CAM_PID 0x0201

/* Unconfigured Device ID =/
#define USB_FX2CAM_DID_0 0x0000

/+ Configured Device ID #/
#define USB_FX2CAM_DID_1 0x0001

#endif /+« _FX2CAM _ID H +/

B.3.4 fx2cam_i2c_addr.h

/* Filename:
* fxZcam i2c_addr.h
*
* Description:
*

* Author:

* Neil Scott

+ Date:

* December 08, 2006
*/

#ifndef FX2CAM_I2C_ADDR_H
#define FX2CAM_I2C_ADDR_H 1

/* i2c¢ addresses */

#define I12C_EEPROM 0x50
#define 12C_TO_EXP_T7SEG 0x21
#define I2C_IO_EXP_FKEYSi 0x20
#define MI_I2C_ADDR 0x5D
f#define FPGA_IZ2C_ADDR 0Ox55
#define CB_I2C_ADDR 0x44
$define TMP175_I2C_ADDR Ox48
#endif /+« FX2CAM_I2C_ADDR H */
B.3.5 fx2cam_usb.h
#include <usb.h>

#include "fx2cam_commands.h"

#define FX2CAM_VENDOR_ID 0xABCD
fidefine FX2CAM_PRODUCT_ID 0x0201
/% USB Specific */

#define VENDOR_REQUEST_OUT 0x40
#define VENDOR_REQUEST_IN 0xC0
#define BULK_EP2_OUT_ADDR 0x02
#define BULK_EP6_IN_ADDR 0x86
#define BULK_EP2 SIZE 512
#define BULK_EP6_SIZE 512

/+ Vendor Specific +/

#define VRQ_T2C_WRITE 0x08
#define VRQ_I2C_READ 0x81
#define VRQ _NEIL_GET_CAMERA_POS
#define VRQ WRITE_EEPROM_SM OxFA
#define VRQ READ_EEPROM_SM OxEFB
#define VRQ WRITE_EEPROM LG 0xFC
#define VRQ_READ_EEPROM_LG 0xFD

/>
/x
/%
/*
/%
/%
S *

Defines for all i2c device addresses on bus

Microchip 24LC???? x/

Philips I/0 Expander for Seven Segment Display */
Philips I/0 Expander for PBs F1 to F4 (dev board) */
Micron Sensor I2C slave address */

FPGA I2C slave address #/

Control Board IZ2C slave address +*/

TMP175 Temperature Sensor I2C slave address +/

OxFE

145

B. USB2.0 CAMERA FX2 FIRMWARE

#define VRQ_SET_I2C_SPEED 0xE5

/+ 7 Segment Display I12C Addr =/

#define LED7SEG_I2C_ADDR 0x21
#define PBFKEYS_I2C_ADDR 0x20
#define FXZCAM_USB_TIMEOUT 2000

B.3.6 _startup.abl

Fif T*— asm —x—
;i: Copyright 2003,2004 Free Software Foundation, Inc.
;s This file is part of GNU Radio

;;i GNU Radio is free software; you can redistribute it and/or modify
;i: it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 2, or (at your option}
;77 any later version.

;7; GNU Radio is distributed in the hope that it will be useful,
;¢ but WITHOUT ANY WARRANTY; without even the implied warranty of
;77 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; ;i GNU General Public License for more details.

;iii You should have received a copy of the GNU General Public License
;57 along with GNU Radio; see the file COPYING. If not, write to

;i; the Free Software Foundation, Inc., 59 Temple Place - Suite 330
;i; Boston, MA 02111-1307, USA.

; ;7 The default external memory initialization provided by sdcc is not
;i appropriate to the FX2. This is derived from the sdcc code, but uses
;;i the FX2 specific _MPAGE sfr.

;; .area XISEG {XDATA) ; the initialized external data area
;; .area XINIT {CODE) ; the code space consts to init XISEG
.area XSEG {XDATA) ; zero initialized xdata

.area USBDESCSEG (XDATA) ; usb descriptors

.area CSEG (CODE)

;7 sfr that sets upper address byte of MOVX using @r0 or @rl
_MPAGE = 0x0092

__sdcc_external_startup::
;; This system is now compiled with the ~--no-xinit-opt
;7 which means that any initialized XDATA is handled
;; inline by code in the GSINIT segs emitted for each file.

;; We zero XSEG and all of the internal ram to ensure
;7 a known good state for uninitialized variables.

; .mcs51_genRAMCLEAR() start
mov r0, #1_XSEG
mov a, r0
orl a, #(1_XSEG >> 8)
jz 00002%
nov rl,#((1_XSEG + 255) >> 8)
mov dptr, #s_XSEG
clr a

00001$: movx Qdptr,a
inc dptr
djnz r0,00001$
djnz rl,00001%

;i We're about to clear internal memory. This will overwrite

146

B. USB2.0 CAMERA FX2 FIRMWARE

;: the stack which contains our return address.
;; Pop our return address into DPH, DPL

00002%: pop dph
pop dpl

;7 RO and A contain 0. This loop will execute 256 times.
;; FWIW the first iteration writes direct address 0x00,
;; which is the location of r0. We get lucky, we’re

;; writing the correct value (0)

00003%: mov @r0,a
dinz 1r0,00003$

push dpl ; restore our return address

push dph

mov dpl, #0 ; indicate that data init is still required
ret

B.3.7 usb_descriptors.a51

;ii Filename:
ii ush_descriptors.ab5l

;i; Description:
B USB Descriptor table for the fx2 usb camera

I Author:
iy Neil Scott

i:; Date:
iii December 08, 2006
HH April 17, 2007 -- Added EP1 Interrupt IN endpoint

iii

.module usb_descriptors

; TODO —- Set VID and PID once obtained, if obtained
VID_FX2CAM = (OxABCD ; Made Up VID
PID_FX2CAM = 0x0201 ; Made Up PID

;DID used to indicate if loaded with firmware
DID_FX2CAM = 0x0001 ; Device ID (bcd)

DSCR_DEVICE = 1 ; Descriptor type: Device
DSCR_CONFIG = 2 ; Descriptor type: Configuration
DSCR_STRING = 3 ; Descriptor type: String
DSCR_INTRFC = 4 ; Descriptor type: Interface
DSCR_ENDPNT = 5 ; Descriptor type: Endpoint
DSCR_DEVQUAL = 6 ; Descriptor type: Device Qualifier
DSCR_DEVICE_LEN = 18

DSCR_CONFIG_LEN = 9

DSCR_INTRFC_LEN = 9

DSCR_ENDPNT_LEN = 7

DSCR_DEVQUAL_LEN = 10

ET_CONTROL = 0 ; Endpoint type: Control

ET_ISO = 1 ; Endpoint type: Isochronous
ET_BULK = 2 ; Endpoint type: Bulk

ET_INT = 3 ; Endpoint type: Interrupt

;; configuration attributes
bmSELF_POWERED = 1 << 6

147

B. USB2.0 CAMERA FX2 FIRMWARE

.ar

.ev

ea USBDESCSEG (XDATA)

en ; descriptors must be 2-byte aligned for SUDPTR{H,L}

The .even directive isn’t really honored by the linker.

to work

Bummer!

(There’s no way to specify an alignment requirement for a given area,

hence when they’re concatenated together,

We work around this by telling the linker to put USBDESCSEG
This means that the maximimum length of this

at 0xE000 absolute.
segment is 480 bytes,
at O0xEIEO to OxELFF.

leaving room for the two hash slots

As of July 7, 2004, this segment is 326 bytes long

_high_speed_device_descr::

.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

;d
.ev
_high
.db

i

.db

.db
.db
.db
.db
.db
.db
.db

.db 0 ;

DSCR_DEVICE_LEN
DSCR_DEVICE
<0x0200 ;
>0x0200 H
Oxff ;
Oxff ;

Specification version
Specification version (MSB)
device class (vendor specific)
device subclass (vendor specific)
Oxff ; device protocol (vendor specific)
64 ; bMaxPacketSize0O for endpoint 0
<VID_FX2CAM ; idvVendor

>VID_FX2CAM ; idvendor

<PID_FX2CAM ; idProduct

>PID_FX2CAM ; idProduct

<DID_FX2CAM ; bcdDevice

>DID_FX2CAM ; bcdDevice

SI_VENDOR ; iManufacturer (string index)
SI_PRODUCT ; iProduct (string index)
ST_SERIAL ; iSerial number ({string index)

1 ; bNumConfigurations

(LSB)

escribes the other speed

en

_speed_devqual descr::
DSCR_DEVQUAL_LEN
DSCR_DEVQUAL
<0x0200 ;
>0x0200 ;
Oxff ;
Oxff ;
Oxff ;
64 ;
1 ;

(12Mb/sec)

bcdusSB (LSB)

bcdUSB (MSB)

bDeviceClass

bbeviceSubClass

bbDeviceProtocol

bMaxPacketSize0

bNumConfigurations (one config at 12Mb/sec)
bReserved

.even
high_speed_config descr::

.db
.db

i

DSCR_CONFIG_LEN

DSCR_CONFIG

<{_high_speed_config_descr_end - _high_speed_config_descr)
>{_high_speed config_descr_end - _high_speed_config_descr)
1 ; bNumInterfaces

1 ; bConfigurationValue
0 ; iConfiguration

0x80 ; bmAttributes
100 ; bMaxPower

interface descriptor 0

.db DSCR_INTRFC_LEN

.db DSCR_INTRFC

.db 0 ; bInterfaceNumber (zero based)

.db 0O ; bAlternateSetting

.db 1 ; bNumEndpoints

.db Oxff ; bInterfaceClass (vendor specific)
.db Oxff ; bInterfaceSubClass (vendor specific)

even doesn’t work.)

; LSB
; MSB

148

B. USB2.0 CAMERA FX2 FIRMWARIZ

.db Oxff ; bInterfaceProtocol (vendor specific)}
.db O ; iInterface (description)

;; endpoint descriptor EPZIN
.db DSCR_ENDPNT_LEN
.db DSCR_ENDPNT

.db 0x82 ; bEndpointAddress (ep 2 IN)
.db ET_BULK ; bmAttributes

.db <512 ; wMaxPacketSize (LSB)

.db >512 ; wMaxFacketSize (MSB)

.db 0 ; bInterval (iso only)

_high_speed_config_descr_end:

.even

_full speed_device_descr::
.db DSCR_DEVICE_LEN
.db DSCR_DEVICE

.adb <0x0200 ; Specification version (LSB)

.db >0x0200 ; Specification version (MSB}

.db Oxff ; device class (vendor specific)
.db Oxff ; device subclass (vendor specific)
.db Oxff ; device protocel (vendor specific)
.db 64 ; bMaxPacketSize0 for endpoint 0

.db <VID_FX2CAM ; idVendor

.db >VID_FX2CAM ; idVendor

.db <PID_FX2CAM ; idProduct

.db >PID_FX2CAM ; idProduct

.db <DID_FX2CAM ; bcdDevice

.db >DID_FX2CAM ; bcdDevice

.db SI_VENDOR ; iManufacturer (string index)
.db SI_PRODUCT ; iProduct (string index)
.db $SI_NONE ; 1Serial number (None)

.db 1 ; bNumConfigurations

;i: describes the other speed (480Mb/sec)
.even

_ftull speed_devqual_descr::
.db DSCR_DEVQUAL_LEN
.db DSCR_DEVQUAL

.db <0x0200 ; bcdUSB

.db >0x0200 ; bcdUSB

.db Oxff ; bDeviceClass

.db Oxff ; bDeviceSubClass

.db Oxff ; bDeviceProtocol

.db 64 ; bMaxPacketS$Sizel

.db 1 ; bNumConfigurations {(one config at 480Mb/sec)
.db 0 ; bReserved

.even

_full_speed _config_descr::
.db DSCR_CONFIG_LEN

.db DSCR_CONFIG

.db <(_full_speed config_descr_end - _full speed config_descr
.db >(_full_speed_config_descr_end -~ _full_speed config_descr
.db 1 ; bNumInterfaces

.db 1 ; bConfigurationvValue

.db 0 ; iConfiguration

.db 0x80 ; bmAttributes

.db 100 ; bMaxPower

;i interface descriptor 0 (command & status, epO COMMAND)

.db DSCR_INTRFC_LEN
.db DSCR_INTRFC

.db 0 ; bInterfaceNumber (zero based)

.db 0 ; bAlternateSetting

.db 0 ; bNumEndpoints

.db Oxff ; bInterfaceClass (vendor specific)

; LSB
; MSB

149

B. USB2.0 CAMERA FX2 FIRMWARE

.db Onff ; binterfaceSubClass (vendor specific)
.db Oxff ; biInterfaceProtocol (vendor specific)
.db Q ; iInterface (description)

_full_speed_config_descr_end:

_nstring_descriptors::
.db (_string_descriptors_end - _string descriptors) / 2

_string_descriptors:

.db <str0, >str0

.db <strl, »>strl

.db <str2, >str2

.db <str3, >str3
_string_descriptors_end:

SI_NONE = 0
;i str0 contains the language ID’s.
.even
str0: .db str0_end - str0
.db DSCR_STRING

.db O

.db 0

.db <0x0409 ; magic code for US English (LSB)

.db >0x0409 ; magic code for US English (MSB)
strQ0_end:

SI_VENDOR = 1
.even

strl: .db strl_end - strl
.db DSCR_STRING

.db 'U, 0 ; 16-bit unicode
.db ’n, 0
.db ’i, 0
.dbh v, 0
.db 'e, 0
.db 'xr, 0
.db 's, 0
.db i, 0
.db 't, 0
.db 'y, 0
.db ", 0
.db "o, 0
.do " £, O
.db * , 0
.db ‘W, 0
.do i, O
.db 'n, O
.db 'd, 0
.do ’s, O
.db ‘o, 0O
.db 'r, 0
stril_end:

SI_PRODUCT = 2
.even

str2: .db str2_end - str2
.db DSCR_STRING
.db U,
.db 'S,
.db B,
.db * ,
.db ‘C,
.db ’a,

ococoocoCc o ool

150

B. USB2.0 CAMERA FX2 FIRMWARE

SI_SERIAL = 3
.even
str3: .db str3_end - str3
.db DSCR_STRING
.db 0,
.db "1,
.db 2,
.db 3,
.db "4,
.db '5,
.db 6,
.db "7,
str3_end:

cococooo0o ool

B.3.8 vectors.abl

.include "../common/vectors.a51"

B.3.9 eeprom_regs.h

/+ eeprom_regs.h

* Definition of EEPROM registers
*

* Author: Neil Scott

*/

#ifndef EEPROM_REGS_H
#define EEPROM_REGS_H

#define PM_EEPROM_WIDTH_HIGH_ADDR 0x20
#define PM_EEPROM_WIDTH_LOW_ADDR 0x21
#define PM_EEPROM_LENGTH_HIGH_ADDR 0x22
#define PM EEPROM_LENGTH_LOW_ADDR 0x23
#define PM_EEPROM_COL_START_HIGH_ADDR 0x24
#define PM_EEPROM_COI_START_LOW_ADDR 0x25
#define PM_EEPROM_ROW_START_HIGH_ADDR 0x26
#define PM_FEPROM_ROW_START_LOW_ADDR 0x27
#define PM_FEPROM_COL_SKIP_ADDR 0x28
#define PM_FEPROM_ROW_SKIP_ADDR 0x29

#endif /+ EEPROM_REGS_H */

B.3.10 fx2cam_common.c

/* Filename;

This seems to have corrected the data loss problem when

* fx2cam_common.c

*

* Description:

* Initialization for the Cypress FXZ MCU.

*

* Author:

* Neil Scott

*

* Date:

* December 08, 2006

*

* August 10, 2007 - Changed IFCONFIG so IFCLK runs at 30MHz instead of 48MHz,
*

* the slave FIFO was filling.
*/

#include "fx2cam_common.h"

void
init_fx2cam (void)
{

151

B. USB2.0 CAMERA FX2 FIRMWARE

iy
/% Set CPU Clock to 48MHz +/

CPUCS = bmCLKSPD1 | bmCLKOE; //48MHz

//CPUCS = bmCLKSPDO | bmCLKOE; //24MHz

SYNCDELAY;

/+ Set MOVX instruction to take 2 cycles (default is 3)

/+ Set IFCONFIG Register
« Set 3048MHZ to 48MHz FIFO Clock
* Modified - Set 3048MHZ to 30MHZ FIFO Clock
* —-— attempt to fix data loss problems
+ Set IFCLKSRC to external clock on IFCLK pin
*+ Set ASYNC to 0 for synchronous FIFQO operation
*/

TFCONFIG = bmIFCLKSRC | bm3048MHZ | bmIFCLKOE | bmIFCFGMASK;

/+ Set Inputs SLOE, FIFOADDR(O, FIFOADDR1, PKTEND =/

/% Configure I/0 Ports for 100pin FX2
* by default, All set to input

*/
/« Port A Initial State */
TOA = 0x00; i
/+ Set Port A Direction =/
OEA = 0;

/% Port C Initial State =/

I0C = 0;

/+ Set Port C Direction */

OEC = 0; /+ Leave Floating initially #*/

/+ Port E Initial State +/
I0E = FPGA_RESET_BIT;
/+ SelL Port E Direction */

OEE = FPGA_POWER_VCC_AUX | FPGA_POWER_VCC O | FPGA POWER_VCC_INT

/* Disable Auto Arming of AUTOOUT.
+ Set Enhanced Packet Handling
*
+ Recommended by Cypress to set both bits high
« (P15.24 TRM)
*/
REVCTL = bmDYN_OUT | bmENH_PKT; SYNCDELAY;

/+ Configure USB Endpoints +/

/% Disable EP1 »/

EPLOUTCFG = 0; SYNCDELAY;

EPLINCFG = 0; SYNCDELAY;

/% Camera Nata Endpoint is Quad-Buff Bulk-In EP2 =/
EP2CFG = bmVALID | bmIN | bmBULK | bmQUADBUF;
SYNCDELAY;

/# Disable other EPs +/

EP4CEG 0; SYNCDELAY;
EP6CFG = 0; SYNCDELAY;
EPBCFG = 0; SYNCDELAY;

/+ NAK All transfers from host +/
FIFORESET = bmNAKALL; SYNCDELAY;

/* Reset EP2 FIFO #/
FIFORESET = 0x02; SYNCDELAY;
FIFORESET = 0x00; SYNCDELAY;

/+ EPZ AUTOOUT = 0, AUTOIN = 1, ZEROLEN =1, WORDWIDE =
//EPZFIFOCFG = 0x0D; SYNCDELAY;

EPZFIFOCFG = bmAUTOIN | DbmZEROLENIN | bmWORDWIDE; SYNCDELAY;

/+ Set FLAGA to EPZ Full Flag =/
PINFLAGSAB = 0x0C; SYNCDELAY;

*/

*/

SYNCDELAY;

| FPGA_RESET_BIT;

152

B. USB2.0 CAMERA FX2 FIRMWARE

/+ Auto Commmit 512 byte packets */
EPZAUTOINLENH = 0x02; SYNCDELAY;
EPZAUTOINLENL = 0x00; SYNCDELAY;

FIFOPINPOLAR = Ox3F;
SYNCDELAY;

/+ Set

Polarity of EPZ2 Full Flag =/

EP2FIFOPFH = 0x80;
SYNCDELAY;
EP2F1FOPFL = 0x00;
SYNCDELAY;

/+ Must reset EP0OBCH because power-on-reset state
* is undefined (P8.8 TRM)

*/
EPOBCH

/* Set
I2CTL

B.3.11

= 0; SYNCDELAY;

12C serial clock to 400KHz (default is 100kHz)=*/

|= bm400KHZ;

fx2cam_main.c

/% Filename:

* fxZcam main.c

*

* Description:

* USB Firmware for FX2 Camera.

*

* Author:

* Neil Scott

* Date:

* December 10, 2006

*

*/
#include "usb_common.h"
#include "fx2cam_common.h"
#include "fx2cam_commands.h"
#include "fx2utils.h"
#include "iZc.h"
#include "isr.h"
#include "delay.h"
#include "fxZcam_i2c_addr.h"
#include "mi_regs.h"
#include "eeprom_regs.h"

/* Camera Position Registers */

volatile
volatile
volatile
volatile

unsigned char camera_guadrant;
unsigned char camera_position;
unsigned char camera_master;

unsigned int frame_drop_count;

/+ Sensor Window Registers x*/

volatile
volatile
volatile
volatile
volatile
volatile
volatile

/+ Error
volatile

unsigned int window_width;
unsigned int window_length;
unsigned int x_TEMP;

unsigned int window_col_start;
unsigned int window_row_start;
unsigned char window_col_skip;
unsigned char window_row_skip;
Code Register =/

unsigned int err_reg;

/+ Function Prototypes =/
void load_camera_config (void);

void

get_epl_data (void)

B. USB2.0 CAMERA FX2 FIRMWARE

/* Arm EPQ */

= 0;

/#+ Wait until busy flag is clear =/

(EPOCS & bmEPBUSY);

/+ Handle Vendor Regquests to endpoint 0

If handled non zero is returned

unsigned char
app_vendor_cmd (void)

{

unsigned short addr;
unsigned short len;
unsigned short bc;

unsigned char xdata ee_str{3];
unsigned char i, 3. k;
unsigned long timeout;

/+ In Requests +/
(bRequestType == VENDOR_REQUEST_IN) {

switch (bRequest) {
/% Read I12C bus, data is returned through EPOBUF */
case VRQ_I2C_READ:

/% Wait of SCL pin (must be high) */
while (! (SCL_LB_PORT & SCL_LB_BIT));

if (!i2c_read (wValuel, EPOBUF, wLengthL))
return 0;

FPOBCH = 0;
EPOBCL = wLengthlL;
break;

case VRQ_SET_I2C_SPEED:

/+ wValuel = 0 - 100KHz
* wValueL = 1 - 400KHz
*/

/*if (!wValuel)

I2CTL &= “bmd400KHZ;
else

I2CTL |= bm400KHZ;
*/
I2CTL = wValuel;

EPOBUF{0] = 0x08; /+ ACK +/
EPOBCH = 0;
EPOBCL = 1;

break;

case VRQ_GET_CAM_STATUS:

break;

case VRQ _READ_CAM_POSITION:

break;

case VRQ_READ_EEPROM_SM:

break;

case VRQ_READ_EEPROM_LG:

addr = wValuel;
addr |= wValueH << 8§;

len = wlLengthlL;
len |= wLengthH << 8;

while (len) {

154

B. USB2.0 CAMERA FX2 FIRMWARE

/+ One Packet at a time */
while (EPOCS & bmEPBUSY);

if (len < EPOBUFF_SIZE)
bc = len;

else
bc = EPOBUFF_SIZE;

i = 0;
//wValueH;
ee_str[i++] = addr >> 8;
//wValuel;
ee_str[i++] = addr & Ox00ff;

/* Write EEPROM address to device #*/
if (!i2c¢_write (I2C_EEPROM_ADDR, ee_str, i)
return 0;

/+ Read EEPROM data to buffer */
if (!i2c_read (I2C_EEPROM_ADDR, EPOBUF, bc))
return 0;

EPOBCH = 0;
EPOBCL = bc;

addr += bc;
len -= bc;

}
break;

case VRQ_GET_QUAD_POS:
/+ Respond with Camera position / master info x/

EPOBUF[0] = camera_gquadrant;
EPOBUF{1] = camera_position;
EPOBUF[2] = camera_master;
EPOBCH = 0;

EPOBCL = 3;

break;

case VRQ_GET_WINDOW_PARAM:
switch (wIndexL) {
case VRQ UPDATE_PARAMS:
/#* Re-read from EEPROM */
load_camera_config(});

EPOBUF[0] = 0x08;
EPOBCH = 0;
EPOBCL = 1;
break;

case VRQ_GET_WINDOW_WIDTH:
/* Respond with window width =/

EPOBUF[0] = window_width >> 8;
EPOBUF{l] = window_width & Oxff;
EPOBCH = 0;

EPOBCL = 2;

break;

case VRQ_GET_ WINDOW_LENGTH:
/* Respond with window length +/
EPOBUF[0] = window_length >> 8;
EPOBUF([1] = window_length & Oxff;
EPOBCH = 0;
EPOBRCL = 2;
break;

case VRQ GET_WINDOW_COL_START:
/% Respond with window column start */

EPOBUF [0]) = window_col_start >> §;
EPOBUF[1]) = window_col_start & Oxff;
EPOBCH = 0;

EPOBCL = 2;

break;

155

B. USB2.0 CAMERA FX2 FIRMWARE

case VRQ GET_WINDOW_ROW_START:

/# Respond with window row start +/
EPOBUF[0] = window_row_start >> 8;
EPQBUF [1] = window_row_start & Oxff;
EPOBCH = 0;

EPOBCL = 2;

break;

case VRQ_GET_WINDOW_COL_SKIP:

/* Respond with window column skip

EPOBUF (0] = window_col_skip;
EPOBCH = 0;

EPOBCL = 1;

break;

case VRQO_GET_WINDOW_ROW_SKIP:

/+* Respond with window row skip (y

EPOBUF [0] = window_row_skip;
EPOBCH = 0;

EPOBCL = 1;

break;

case VRQ_FPGA_LOAD_SS:
switch (wIndexL) {

case FPGA_LOAD_START:

/% Send the FPGA the Start signal
/% Pulse PROG_B (active low)

*

(x - binning) */

~ binning)

/

/* Set FPGA LOAD port I/0 directions =/

I0C |= FPGA_LOAD_DATA_BIT;

OEC = FPGA_LOAD_CLK_BIT | FPGA_LOAD_DATA_BIT

/% Tiny Delay =/
mdelay (10);

/* timeout — just in case #*/

timecut = 0x05ff;

/* Pulse PROG_B low =*/

/% Wait for INIT_B line to go high,

or timeout to expire
while (! (FPGA_LOAD_PORT & FPGA_LOAD_INIT_BIT)

FPGA_LOAD_PORT &= "FPGA_LOAD_PROG_BIT;

udelay (500} ;
timeout--;

}

/# Send response to host x*/

if (FPGA_LOAD_PORT & FPGA_LOAD_INIT_BIT)

EPOBUF([0] = 0x01; /* Success »*/
else
EPOBUF[0) = 0x00; /* Failure =*/

/* Acknowledge +/

EPOBUF (1] = 0x08;
EPOBCH = 0;
EPOBCL = 2;
break;

case FPGA_LOAD_CHECK_DONE:
/+ Check the DONE bit =/

/* timeout */
timeout = Ox2fffff;

/% Set DIN low and supply CLKS */
FPGA_LCAD_PORT &= “FPGA_LOAD_DATA_BIT;

/+ Supply CLK until DONE_B goes high «/

while (! (FPGA_LOAD_PORT & FPGA_LOAD_DONE_BIT)

FPGA_LOAD_PORT |= FPGA_LOAD_CLK BIT;
FPGA_LOAD_PORT &= "FPGA_LOAD_CLK_BIT;

*/

FPGA_LOAD_PROG_BIT;

&& timeout)

&& timeout)

*/

{

{

156

B. USB2.0 CAMERA FX2 FIRMWARE

timeout——;
}

/* Send response to host #/
if (FPGA_LOAD_PORT & FPGA_LOAD_DONE_BIT)

EPOBUF([0} = 0x01;
else
EPOBUF {0} = 0x00;

/+ Acknowledge x*/

EPOBUF[1] = 0x08;
EPOBCH = 0;
EPOBCL = 2;
break;
default:
break;
}
break;
case VRQO_FPGA_POWER:
/# Disable FPGA Power Chip */
if (!wValuel) {
FPGA_POWER_PORT &= ~ (FPGA_POWER_VCC_AUX

| FPGA_POWER_VCC_O
| FPGA_POWER_VCC_INT) ;

/+ Set FPGA Loader port to all inputs with initial state of DIN high +/
I10C = FPGA_LOAD_DATA_BIT;
OEC = 0;

/+ Respond with ACK to host */
EPOBUF[0] = 0x08;

}
/*

Enable FPGA Power Chip =/

else if (wValuel == 1) {
FPGA_POWER_PORT |= FPGA_POWER_VCC_AUX

| FPGA_POWER_VCC_O
| FPGA_POWER_VCC_INT;

/% Respond with ACK to host =/
EPOBUF [0] = 0x08;

}

else {
/+ Respond with NACK to host =*/
EPOBUF[0] = 0x00;

}

EPOBCH = 0;

EPOBCL

Hi

1;

break;

case
/*
if

}

VRQ_FPGA_RESET:

Set FPGA Reset Mode: 0-disable, l-enable #*/

(!wValueL) {
/* Take FPGA out of reset =/
FPGA_RESET_PORT |= FPGA_RESET_BIT;
/+ Respond with ACK to host =*/
EPOBUF {0} = 0x08;

else if (wValueL == 1) {

}

/* Put FPGA in reset =/
FPGA_RESET_PORT &= “FPGA_RESET_BIT;
/* Respond with ACK to host »*/
EPOBUF{0]) = 0x08;

else {
/+ Respond with NACK to host =*/
EPOBUF [0} = 0x00;

}

EPOBCH = 0;

EPOBCL = 1;

157

B. USB2.0 CAMERA FX2 FIRMWARE

break;

case VRQ_FRAME_DROP_INTERRUPT:

/* Enable / Disable Frame Drop Interrupt: O-disable,

if (!wvaluel) {
/* Respond with ACK to host =/

EPOBUF[0] = 0x08;

}

else if (wValuel == 1) {
/+ Respond with ACK to host x/
EPOBUF[0] = 0x08;

}

else |{
/+ Respond with NACK to host #*/
EPOBUF[0] = 0x00;

}

EPOBCH = 0;

EPOBCL = 1;

break;

case VRQ_GET_FRAME_DROP_COUNT:
/+ Fill EPO buffer with frame drop count */

EPOBUF([1] = (frame_drop_count >> 8) & 0x00ff;
EPOBUF[0] = frame_drop_count & Ox00ff;

EPOBCH = 0;

EPORCL = 2;

break;

case VRQ RESET_FRAME_DROP_COUNT:
/+ Reset frame drop counter */
frame_drop_count = 0;

/* Respond ACK to host =/
EPOBUF[0] = 0x08;

EPOBCH 0;
EPOBCL = 1;
break;

default:
return 0;

}

/+ Out. Requests */
else if (bRequestType == VENDOR_REQUEST_OUT) {
switch (bRequest) {
case VRO _I2C_WRITE:
get_eplO_data (});

/+ Wait of SCL pin (must be high} =/
while (! {(SCL_LB_PORT & SCL_LB_BIT));

if (!i2c_write (wValuel, EPOBUF, EPOBCL))
return 0;
break;

case VRQ_PILL_REJECT_ACCEPT:
get_epO_data {);
break;

l-enable */

/« Write to large size microchip EEPROM (address more than 8 bits) =/

case VRQ WRITE_EEPROM_LG:
addr = wvaluel;

addr |= wValueH << §;
len = wLengthL;
len |= wLengthH << 8;

while (len) {
//get_epO_data ();

158

B. USB2.0 CAMERA FX2 FIRMWARE

EPOBCH = 0;
EPOBCL = 0;
while (EP0OCS & bmEPBUSY);

bc = EPOBCL;

for (i = 0; i < be; i++) |
ee_str([0] = addr >> 8;
ee_str[l]) = addr & 0x00ff;
ee_str[2] = EPOBUF{i];
if (!i2c_write(I2C_EEPROM_ADDR,
return 0;

mdelay (5);

addr++;
}
len -= bc;
)
break;

/% TODO: Is this necessary? +/
case VRQ _FPGA_FLUSH:
if (!wValuel)
/+ Skip Comitting OQut Packets */
OUTPKTEND = 0x82; SYNCDELAY;
QUTPKTEND = 0x82; SYNCDELAY;

EP2FIFOBCH = 0x00; SYNCDELAY;
EP2FIFOBCL = 0x00; SYNCDELAY;
FIFORESET = 0Ox80; SYNCDELAY;
FIFORESET = 0x02; SYNCDELAY;
FIFORESET = 0x00; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;
}
else {
/+ Skip Comitting Out Packets =/
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;

EP2FIFOBCH = 0x00; SYNCDELAY;
EPZFIFOBCL = 0x00; SYNCDELAY;
FIFORESET = 0x80; SYNCDELAY;
FIFORESET = 0x02; SYNCDELAY;
FIFORESET = 0x00; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;
}

break;

/+ FPGA load routine using slave-serial mode =/

case VRQ_FPGA_LOAD_SS:
switch (wIndexL) {
/* Write data =*/
case FPGA_LOAD_DATA:
get_ep0_data ();

/* Get Byte Count =/
bc = EPOBCL;

/% Bit-Bang data to FPGA +/
for (j = 0; j < bc; J++) {
k = EPOBUF[]3];

/+ Loop through each byte x*/
/+* MSB first =/
for (i = 0; i < 8; i++) |

/#+ Set Data bit */

if ((k & 0x80))

FPGA_LOAD_PORT |= FPGA_LOAD_DATA_BIT;

159

B. USB2.0 CAMERA FX2 FIRMWARE

else

FPGA_LOAD_PORT &=
/+ Shift data one left +/
k k << 1;

/% Pulse Clock =*/
FPGA_LOAD_PORT |=
FPGA_LOAD_PORT &=

}

"FPGA_LOAD_DATA_BIT;

FPGA_LOAD_CLK_BIT;
“FPGA_LOAD_CLK_BIT;

/* Check INIT_B - goes LOW on error +/

if (
/* Set Error Flag =/

err_reg |= ERR_FPGA_LOAD;
return 0O;
}
break;
default:
return 0;
}
break;
default:
return 0;
}
}
else {
/* Invalid Request Type x/
return 0;
)
return 1;

/+ Read from EEPROM camera configuration (position / calibrated sensor values)

! (FPGA_LOAD_PORT & FPGA_LOAD_INIT_BIT)) |

/% Will cause broken pipe error */

*/

/% TODO: Right now only reading Camera Quadrant and Position

*

*/
void
load_camera_config
{

unsigned char i;

unsigned char xdata ee_str[3];

unsigned char xdata tmp;

Assuming this is stored at 0x10

{void)

= 0;
ee_str{i++] = 0;
ee_strii++) = 0x10;

/* Write EEPROM address to device x/
if (i2c_write (I2C_EEPROM_ADDR, ee_str,
/+ Read EEPROM data to buffer =/

i2c_read (I2C_EEPROM_ADDR, EPOBUF,
camera_guadrant EPOBUF (0} ;
camera_position EPOBUF[1];
camera_master EPOBUF[2];

}

3)i

/% Write EEPROM Address to device #*/
i = 0;

ee_str[i++]
ee_str{i++]

0;
PM_EEPROM_WIDTH_HIGH_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str,
/+ Read EEPROM byte =/
i2c_read (I2C_EEPROM_ADDR, &tmp, 1);

window_width

}

(tmp << 8);

/% Write EEPROM Address to device #*/

//wValueL;

iy o

i) |

160

B. USB2.0 CAMERA FX2 FIRMWARE

i = 0;
ee_str(i++] = 0;
ee_str[i++] = PM_EEPROM_WIDTH_LOW_ADDR;

if (iZ2c¢c_write (I2C_EEPROM_ADDR, ee_str, i)} {
/* Read EEPROM byte =/
i2¢c_read (I2C_EEPROM_ADDR, &tmp, 1};
window_width |= tmp;

}

/#* Write EEPROM Address to device =/

i=0;
ee_sty[i++] = 0;
ee_str(i++] = PM_EEPROM_LENGTH_HIGH_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, 1i}) {
/% Read EEPROM byte +/
iZ2c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_length = (tmp << 8);

}

/+ Write EEPROM Address to device */

i = 0;
ee_str[i++] = 0;
ee_str[i++] = PM_EEPROM_LENGTH_LOW_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, 1i)) {
/% Read EEPROM byte =/
iZzc_read (I2C_EEPROM_ADDR, &tmp, 1};
window_length |= tmp;

}

/* Write EEPROM Address to device */

i = 0;
ee_str[i++] = 0;
ee_str[i++] = PM_EEPROM_COL_START_HIGH_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)) {
/% Read EEPROM byte +/
i2ec_read (I2C_EEPROM_ADDR, &tmp, 1);
window_col_start = (tmp << 8);

)

/* Write EEPROM Address to device +/

i = 0;
ee_str{i++} = 0;
ee_str{i++] = PM_EEPROM_COL_START LOW_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, i}) {
/* Read EEFROM byte =*/
i2¢c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_col_start |= tmp;

}

/+ Write EEPROM Address to device */

i = 0;
ee_str[it++] = 0;
ee_str[i++] = PM_EEPROM_ROW_START_HIGH_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)) {
/+ Read EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_row_start = (tmp << 8);

}

/% Write EEPROM Address to device +/

i=0;
ee _str{i++] = 0;
ee_str(i++) = PM_EEPROM_ROW_START_LOW_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)) {
/+ Read EEPROM byte +/
i2c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_row_start |= tmp;

)

/% Write EEPROM Address to device +/

i = 0;
ee_str[i++] = 0;
ee_str[i++} = PM_EEPROM_COL_SKIP_ADDR;

if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)} {

161

B.

USB2.0 CAMERA FX2 FIRMWARE

/+ Read EEPROM byte =/
iz2c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_col_skip = tmp;

}

/+ Write EEPROM Address to device =/

i = 0;

ee_str{it++] =
ee_stri++] =
if (iZc_write

0;
PM_EEPROM_ROW_SKIP_ADDR;
(I2C_EEPROM_ADDR, ee_str, i)) |

/+ Read EEPROM byte =/
i2¢c_read (I2C_EEPROM_ADDR, &tmp, 1);
window_row_skip = tmp;

}

/#* Main Program Loop for handling USB requests +/
void

main_loop

{

(void)

/% Task Dispatcher +/

while (1) {

/* Currently Set to Auto Commit BULK IN EP2 packets =/

/% Check for Incoming Setup Packet */

if (usb_setup_packet_avail ())
usb_handle_setup_packet ()

void
main (wvoid)

{

’

/+ Initialization Routine for fxZcam x/
/+ Initiallze FX2 registers =/
init_fx2cam();

/+ Configure PAQO as external interrupt INTO# */

/* TODO: DON’

// PORTACFG

/% Configure
// EXO = 0;
// IEO = 0;
// 1T = 1;

T FORGET TO UPDATE INTERRUPT VECTORS
= bmINTO;

External INTO on falling edge - disabled on startup =/

/+ Disable INTO */
/#* INTO Edge-Sensitive =/
/+ INTO detected on falling edge */

/% Disable all interrupts =/

EA = 0;

setup_autovectors (};
usb_install_handlers ();

/* Enable all interrupts +/

EA = 1;

/+ Simulate a reconnect =/
fx2_renumerate {();

/% Ensure FPGA Power chip (TI) is disabled +/
FPGA_POWER_PORT &= “FPGA_POWER_VCC_AUX;
FPGA_POWER_PORT &= “FPGA_POWER_VCC_O;
FPGA_POWER_PORT &= “FPGA_POWER_VCC_INT;

*/

/% Set FPGA Loader port to all inputs with initial state of DIN high +/
T0C = FPGA_LOAD_DATA_BIT;

OEC = 0;

/+ Ensure FPGA is held in reset

FPGA_RESET_PORT &= "FPGA_RESET_BIT;

/* On Startup -- Read Camera Quadrant and Position =/
camera_quadrant = Oxaa;
camera_position = Oxaa;

(although off)} by default =/

162

B. USB2.0 CAMERA FX2 FIRMWARE

camera_master = 0xff;
load_camera_config (};

/+ TODO:
+ Set perliminary register values for MI Sensor+/

/% Initialize frame drop counter #*/
frame_drop_count = 0;

/* Go to main program loop =/
main_loop ();

163

Appendix C

USB2.0 Camera Linux Driver

C.1 IMGUSB Fast USB Class

C.1.1 imgusb.h

/+ Filename:
* imgusb.h

Description:

* Header file for imgusb class for fast USB bulk transfer.
*

+ Author:

* Neil Scott, Roberto Muscedere

*

* Date:

* November 15th, 2007

*

*/

#include <linux/usbdevice_fs.h>

#ifndef _IMGUSB_H_
#define _IMGUSB_H_

class imgusb
{

private:
struct usb_dev_handle +*d_udh;
usbdevfs_urb *xd_urbs;
int d_ep;
int d_block_size;
int d_n_blocks;
int d_image_size;
protected:
public:

imgush (struct usb_dev_handle =*dev_hdl, int ep, int block_size);
“imgusb ();

164

C. USB2.0 CAMERA LINUX DRIVER

bool allocate_urbs (int image_size);
int get_image_size(void) (return d_image_size;};
bool get_image (char xbuf);

bi

#endif /+ _IMGUSB_H_ */

C.1.2 imgusb.cc

Ve
* Filename:
* imgusb.cc

* Description:
* Fast USB class adapted from the SSRP project.

* Author:

* Neil Scott, Roberto Muscedere

*

* Date:

* November 15th, 2007

*

+ Notes:

* Adapted from the SSRP Project, Simple Software Radio Project

*

* Reference:

* http://oscar.dcarr.org/ssrp/
*/

#include <stdio.h>

#include <stdlib.h>

#include <usb.h> /* LibUSB support =/
#include <stdexcept>

#include <errnoc.h>

#include <linux/usbdevice_fs.h>

#include <linux/compiler.h>

#include <sys/ioctl.h>

#include <assert.h>

#include "imgusb.h"

static const int MAX_BLOCK_SIZE = 16 % 1024; // hard limit

static const int DEFAULT_BLOCK_SIZE = MAX_BLOCK_SIZE;

static const int DEFAULT_BUFFER_SIZE = 16 * (1L << 20); // 16 MB / endpoint

// Totally evil and fragile extraction of file descriptor from

// guts of libusb. They don’t install usbi.h, which is what we’d need

// to do this nicely.
Va4
// FIXME if everything breaks someday in the future, look here...
static int
fd_from_uskb_dev_handle (usb_dev_handle sudh)
{
return x ((int) udh);

imgusb::imgusb (struct usb_dev_handle =sdev_hdl, int ep, int block_size)

{
d_udh = dev_hdl;
d_ep = ep;
d_block_size = block_size;

/% Must Ensure Block Size are legitimate #*/
if (d_block_size < 0 {| d_block_size > MAX_BLOCK_SIZE)
throw std::out_of_range ("imgusb: block_size");

imgusb:: imgusb ()
{

http://d_frorn_usb_.de

C. USB2.0 CAMERA LINUX DRIVER

// TODO: Make sure any outstanding urbs are removed (generally handled by reap)

/% Allocate URBs x/

for (int i=0; i < d_n_blocks; 1i++) {
delete d_urbs[i];

}

delete d_urbs;

bool
imgusb::allocate_urbs (int image_size)
{

d_image_size = image_size;
d_n_blocks = d_image_size / d_block_size;

if (d_n_blocks + d block_size != d_image_size)

throw std::out_of_range ("imgusb: image_size must be a multiple of block_size");

/* Allocate URBs x/
d_urbs = new usbdevfs_urbx{d_n_blocks];

for (int i=0; i < d_n_blocks; i++) {
d urbsf{i] = new usbdevfs_urb;

memset (d_urbs[i], 0, sizeof (struct usbdevfs_urb)

d_urbs[i)~>type = USBDEVFS_URB_TYPE_BULK;

/% for IN endpoint

d_urbs[il~>endpoint = (d_ep & Ox7f) | 0x80;
d_urbsli]~>signr = 0;

}

return true;

bool
imgusb::get_image {(char buf)
{

int ret;
usbdevfs_urb *urb; // = 0;
int £d;

fd = fd_from_usb_dev_handle (d_udh};

for (int i=0; i < d_n_blocks; i++) {
d_urbs[i]->buffer length = d _block_size;
d_urbs[i]l->actual_length = 0;

/+ TODO: Some redundancy #/

d_urbs[i]->type = USBDEVFS_URB_TYPE_BULK;
d_urbs{i)->endpoint = (d_ep & O0x7f) | Ox80;
d_urbs{il->flags = 0;
d_urbsli}->buffer = ((char *) (buf + (i » d_block_size}));
d_urbs(i]->buffer_length = d_block_size;
d_urbs([i]->signr = 0;
d_urbs[i}->actual_length = 0;
d_urbs([i]->number_of_packets = 0;

//;NULL;
d_urbs[i]->usercontext = (void *) ij;

}

for (int i=0; i < d_n_blocks; i++) {
/+ submit urbs */

ret = ioctl (fd, USBDEVFS_SUBMITURB, d_urbs[i]);

if (ret < 0)

fprintf (stdout, "imgusb: Error on SUBMITURB - %s\n"

if (ret < 0) {
for (i;i>=0;i--} {

strerror{errno));

166

C. USB2.0 CAMERA LINUX DRIVER

ret = ioctl{fd, USBDEVFS_DISCARDURB, d_urbks([i}};
}
return false;

urb = NULL;

while ((ret = ioctl (fd, USBDEVFS_REAPURB, &urb)) =
if (urb->status != 0 && urb->status != -ENOENT) {
fprintf (stderr, "imgusb{fd=%d]: REAPURB: urb->status = %d, actual_length = %5d\n",

fd, urb->status, urb->actual_length);

= 0) {

/% discard urb - unlink x/
ret = ioctl (fd, USBDEVFS_DISCARDURB, &urb);
if (ret < Q)
fprintf (stderr, "error discarding URB: %s\n", strerror(errno));
/+ must also reap unlinked urb +/
ioctl (fd, USBDEVFS_REAPURB, é&urb};
}

if ((int) (urb—>usercontext)==d_n_blocks-1) break;
}

if (ret) return false;

return true;

C.2 PM_CAM USB Primatives

C.2.1 pm_prims.h

J *
* Filename:
* pm_prims.cc
o+
+ Description:
* Header file for pm_prims.cc - contains USB functions to find the device,
* verify the device and handle control requests.
*
+ Author:
* Neil Scott
o+
+ Date:
* January 17, 2007
*
* Notes:
* Adapted from the SSRP Project, Simple Software Radio Project
*
* Reference:
* http://oscar.dcarr.org/ssrp/
*/

#ifndef _PM_PRIMS_H
#define _PM _PRIMS_H

/% Initalization for libusb */
void pm_init_usb (veoid);

/#* Find PM Cameras on the bus and return the count =/
int pm_get_device_count (void);

/+ Find PM Camera on bus =*/
struct usb_device » pm_find_camera (int n_th);

/+ Returns true if device is loaded with firmware, false if not or if DID is unknown */
bool pm_camera_configured (struct usb_device xd);

167

http://oscar.dcarr.org/ssrp/

C. USB2.0 CAMERA LINUX DRIVER

/+ Returns true if device is NOT loaded with firmware, false if it is or if DID is unknown #*/

bool pm_camera_unconfigured (struct usb_device xd);

/+ Claims the interface and sets the alt interface +/
struct usb_dev_handle » pm_open_interface (struct usb_device =+d,

/+ Closes the device interface - returns true if success #*/
bool pm_close (struct usb_dev_handle xudh);

#endif /+ _PM_PRIMS_H +/

C.2.2 pm_prims.cc

int if_num,

int alt_if num);

/%
* Filename:
* pm_prims.cc
*
*+ Description:
* Header file for pm prims.cc - contains USB functions to find the device,
*

verify the device and handle control requests.

* Author:

* Neil Scott

*

+ Date:

* January 17, 2007

o*

+ Notes:

* Adapted from the SSRP Project, Simple Software Radio Project
*

*+ Reference:

* http://oscar.decarr.org/ssrp/
*/

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <usb.h>
#include "pm prims.h"
#include "pm_ids.h"

R R R L

* Function:

+ Description:
* Parameters:
* Returns:

pm_init_usb

none
void

Perform initalization for libusb to Initialize the USB bus.

*

*

*

*

Kok ko ko kR R ko & K ke kK A AR A A R A A R A A AR A R A AR A A A A A A KA A AR KA KA KA R A AR KA Ak A Ak k)

void
pm_init_usb (void)
{
static bool first = true;

if (first) {
first = false;
/+ Initalize libusb */
usb_init ();
usb_find_busses ();
usb_find_devices ();

S Ak ko kK Kk K Rk Ak K R R ok ok ko ok o kR kK Kk R R K R Rk R ko R A R R kK kK K K K X ko Kk kK ok A A

+ Function: pm_get_device_count

*

* Description: Search the USB bus for the corresponding product id and vendor id *
* and count the number of instance found.

* Parameters: none

* Returns: number of matching devices found

*
*
*
*
*

Sk ok kA kA ok Ak ok kA A A Ak A ok ko ko bk ko ko k ok Ak Ak ok h Rk kA kA XA AN A A AN AR A A A A A A A A A KA A A A A A AN

int
pm_get_device_count (wvoid)

168

http://pm_prims.ee
http://oscar.dcarr.org/ssrp/

C. USB2.0 CAMERA LINUX DRIVER

struct usb_bus *b;
struct usb_device *d;
int dev_count = 0;
for (b = usb_busses; b != NULL; b = b->next) {
for (d = b->devices; d != NULL; d = d->next) {
/+ Check VID and PID +/
if (d->descriptor.idvVendor == USB_PM VID_CAM &&
d->descriptor.idProduct == USB_PM_PID_CAM) {

dev_count++;

}

return dev_count;

Sk ko k Sk ok ok ko ok ok ok ok ok ek ok ok ok ok Rk ko ok ok kR ok ok ok ok ok ok ko ok ok ok ok sk ok bk ok ok ko ok k kR A Rk Ak A

+ Function: pm_find_camera

* Description: Searches the USB bus for the product id and vendor id that *

* matches the camera. *

* Parameters: n_th - device instance on the bus *

* Returns: pointer to usb device *

kA kA kK ko kK kR kR Rk KRR R AR ARk Ak A Ak A A AR A E A A KA AR A A AR A R R AR A A G A A Kkt kA Akt kA k)

struct usb_device *
pm_find camera ({(int n_th)

{

struct usb_bus *b;
struct usb_device *d;
int dev_count = 0;
for (b = usb_busses; b != NULL; b = b->next) {
for (d = b->devices; d != NULL; d = d->next) {

/% Check VID and PID #*/

if (d->descriptor.idVendor == USB_PM_VID_CAM &&

d->descriptor.idProduct == USB_PM_PID_CAM) ({

if (n_th == dev_count++)
return d;

/+ if not found x*/
return 0;

R R R T I N I I I T L A R s S A A

* Function: pm_camera_configured *
* Description: Reads the Device ID to determine if the pm_camera has been loaded *
* with firmware. Returns true if configured. *
* Parameters: «d, pointer to a USB device *
* Returns: true, if configured *
* false, if unconfigured or unknown DID *

kf*/
bool
pm_camera_configured (struct usb_device =*d)
{

return (d->descriptor.bcdDevice == USB_PM_DID_CAM_CONFIGURED) ;

/***#*************************i***
* 'unction: pm_camera_unconfigured *
* Description: Reads the Device ID to determine if the pm camera has NOT been *

* loaded with firmware. Returns true if unconfigured. *
* Parameters: +d, pointer to a USB device *
* Returns: true, if unconfigured *
* false, if configured or unknown DID *

**********************;(-**/
bool
pm_camera_unconfigured (struct usb_device =d)

169

http://usb_.de
http://pm_.camera_.con

C. USB2.0 CAMERA LINUX DRIVER.

return

(d->descriptor.bcdDevice == USB_PM_DID_CAM_UNCONFIGURED) ;

ok kK kK ks ke sk A K ok ok ok ok Kk ok ok bk & ok ok ok o kb ok ok o ok ok ok ok o ok sk ok ok o ok ok ok kK kb ko S ok ko S

*

Function:
Description:

Parameters:

pm_open_interface

Claims the interface defined by if_num and sets te alternative

interface. Returns a pointer to a device handle.
+d, pointer to a USB device

if_num, interface number to claim

alternative interface to select

*

* alt_1if_num,

* Returns: pointer to usb device handle

Jok kA kA ok Ak kA ok ok b Sk ok ok kb Kk ok ok ok ok ok K ok ok ok ok sk ok Kk ok Sk ok ok ok R K F sk ok ok ok o ok o ok ok ok kb R ok o ok ok kb ok koK ok K Ak Ak ok

struct usb_dev_handle =
pm_cpen_interface (struct usb_device *d,

{

struct usb_dev_handle *udh = usb_open

if (d == 0) {
fprintf (stderr, "pm_open_interface: Error on
return 0;

}

/% Claim device interface »/

if (usb_claim_interface (udh, if_num) < 0} {
fprintf (stderr, "pm_open_interface: Error on

return 0;

/+ Set Alt Interface */

if {(usb_set_altinterface
fprintf (stderr,
return 0;

(udh, alt_if num) < 0)
"pm_open_interface: Error on

return udh;

int if_num,

int alt_if_ num)

(d);

usb_open - %s\n", usb_strerror

usb_claim_device - %s\n",

{
usb_set_altinterface - %s\n",

usb_strerror

*
*
*
*
*

/

0);
O);

usb_strerror

S Aok kA ok kA A Ak K AR A A AR KA A A A Ak A K A Ak Ak KA A A A A A kA A Ak KA E A AR K ARk A XKk A A AR KA KK A A

* Junction:
* Description:
+ Parameters:

pm_close

Closes the USB interface with a given device handle
*udh, pointer to a USB device handle

Ak kA A AR A AR AR AR A AR A A A A A AR A AR AR A AR A AR AT A AR F AR A A AR A A A A AR AR AR A AR K AR A A AN AT ARk kA

+ Returns: true, on success

* false, on failure
bool
pm_close (struct usb_dev_handle wxudh)

{
if (usb_close {udh)
return false;

< O)

return true;

C.3 PM_CAM USB2.0 Camera Driver Class

C.3.1 pm_cam.h
/%

* Filename:

* pm_cam.h

+

* Description:

* Header file for camera class.

*

+ Author:

* Neil Scott

*

0O);

170

http://prn__open_j.nt.erf

C. USB2.0 CAMERA LINUX DRIVER

+ Date:

* January 25, 2007
*

*/

#ifndef PM CAM_H
#define _PM_CAM_H

#include <stdio.h>
#include <stdlib.h>

//#include <fusb.h>
#include "imgusb.h"

#define PM_CAM_BULK_EPIN_ADDR 0x82
#define PM_CAM_BLOCK_SIZE 8%1024
/+ milli-seconds =*/

#define PM_CAM_USB_TIMEOUT 450

#define PM_IMAGE_FORMAT_TIFF_COL 0

#define PM_IMAGE_FORMAT_TIFF_BW 1

#define PM_TIFF_RED_OFFSET 0

#define PM_TIFF_GREEN_OFFSET 1

#define PM TIFF_BLUE_OFFSET 2

/* Camera Positions =*/

#define PM_CAM_CENTER 1

#define PM_CAM_LEFT 2

#define PM_CAM_RIGHT 3

#define PM_CAM_BOTTOM 4

/+ Output Messaging #/

#define OUT_MSG stdout

#define QUT_ERR_MSG stderr

class pm_cam

{

private:
int window_width, window_height;
int image_width, image_height;
int eeprom_window_width, eeprom_window_height;
int eeprom_window_col_start, eeprom _window_row_start;
int eeprom_window_col_skip, eeprom_window_row skip;
int col_skip, row_skip;
int cam_position;
int cam_guadrant;
bool cam_master;
protected:

/* LibUSB device device handle pointer =/
struct usb_dev_handle xd_udh;

/% FastUSB device handle pointer and endpoint handle pointer +/
/% Endpoint handle is for EP2IN, for bulk IN transfers

//fusb_ephandle *d_feph;

/+ ImgUSB pointer for fast USB transfer +*/

imgusb *d_imgusb;
public:
/+ Constructor -- take a libusb device handle pointer #/

pm_cam (struct usb_dev_handle xudh, int block_size, int n_blocks);

/+ Destructor */
“pr_cam {);

/+* For verbose messaging +/
bool verbose_ p;

/% Internal Functions #/
int pm_cam_rx (unsigned char *buf, lomng buf_size);

/+ imgUSB URB allocation +/

171

C. USB2.0 CAMERA LINUX DRIVER

bool imgusb_allocate_urbs() {d_imgusb->allocate_urbs(image_widthximage_height);};

/+* Grab Frame x/
long grab_frame (unsigned char xbuf);

/% 1ibUSB function abstraction x/

int write_cmd (int requesttype, int request, int value, int index, char xdata, int len);
int bulk_read (int ep, char xdata, int size);

int bulk_read (int ep, char «data, int size, int timeout);

/% Get camera position, quadrant and master flag =*/

int get_cam_location (void);

int read_window_params (void);

int get_cam_position (veid) {return cam position;}

int get_cam_guadrant (void) {return cam_qguadrant;)

bool get_cam_master (void) {return cam_master;}

int get_eeprom_window_width (void) {return eeprom_window_width; }

int get_eeprom_window_height (void) {return eeprom window_height;}

int get_eeprom_window_col_start (void) {return eceprom_window_col_start;}
int get_eeprom_window_row_start (void) {return eeprom window_row_start;}
int get_eeprom_window_col_skip (void) {return eeprom _window_col_skip;}
int get_eeprom_window_row_skip (void) {return eeprom_window_row_skip;}
double get_cam_temp (void);

/+* Device Controls =/
bool cam fpga_reset (int state};
bool cam_fpga_power (int state);

/% FPGA Register Write =/
bool fpga_write_reg (unsigned char reg, short value);

/* MI Sensor Register Read or Write #*/
int read_reg (unsigned char reg, short +dat);
int write_reg (unsigned char reg, short value);

/+ Image Conversion */

int bayer2rgb (unsigned char rbayer, unsigned long +*rgb, int width, int height);
int bayer2gray (unsigned char xbayer, unsigned char xbuf, int width, int height);
int bayer2tiff (unsigned char +buf_in, char xfilename, int width, int height});
int write_tiff (unsigned char +buf_in, char «filename, int width, int height);
int inspect (unsigned long x+rgb);

/+ Camera Registry Settings File »*/
bool import_reg_data_file (const char «filename};
bool write_reg_data_file (const char xfilename);

int get window_width (void) {return window_width;}
int get_window_height (wvoid) {return window_height;}
int get_image_width (void) {return image_width;}

int get_image_height (void) {return image_height;}
void set _window_width (int _width);

void set_window_height {(imt _height);

void set_window_width_skip (int _width, int _skip);
void set_window_height_skip (int _height, int _skip);
void set_window_col_start (int _col_start);

void set_window_row_start (int _row_start);

void set_binning (int _width, int _height, int row_skip, int col_skip);

/+ Misc Image Processing Algorithms »/

unsigned char xxconvert_grayscale (unsigned long »**rgb);
i
#endif /x _PM CAM H */

C.3.2 pm_cam.cc

/o
* Filename:
* pm_cam.cc
*
* Description:
* PM Camera USB2.0 Driver Class.
*

172

C. USB2.0 CAMERA LINUX DRIVER

* Author:
* Neil Scott

« Date:
* Januvary 25, 2007
*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<list>
<linux/usbdevice_fs.h>
<unistd.h>
<tiffio.h>
<time.h>
<stdexcept>
<usb.h>
"imgusb.h"

#include
#include
#include
#include
#include
#include

"pm_cam.h"
"fx2cam_ids.h"
"fx2cam_commands.h"
"fx2cam_i2c_addr.h"
"mi_regs.h"
"eeprom_regs.h"
#define DEBUG 1
#define
#define
#define

RED_OFFSET 0
GREEN_OFFSET 1
BLUE_OFFSET 2

#define PM_CAM_INTERRUPT_EP 0x81

/* Constructor - (reate an instance of the device.

/*

J*
/*
/*

LibUSB header =/

USB requests,
I2C Bus addresses,
Registers of Micron Sensor =/

* device handle and FastUSB endpoint handle.

*/
pr_cam: :pm_cam

{

{struct usb_dev_handle =xudh,

int block_size,

/+ Set internal device handle pointer x/

d_udh = udh;

/* Create FUSB endpoint handle =/

d_imgusb = new imgusb (d_udh,

PM_CAM_BULK_EPIN_ADDR,

/+ Set defaults for camera location info */

cam_position = Oxef;
cam_guadrant = Oxef;
cam_master = false;

/+ Initially low-verbosity level

verbose_p = false;

*/

/% Destructor - Free up memory. Delete FastUSB device handle and

* endpoint handle

*/
pm_camz: :
{

“pm_cam ()

/+ Delete IMG _USB objects x/
delete d_imgusb;
}

/* using PM_USB =/
long
pm_cam: :grab_frame
{

int ret;

long bc = 0;

if (!d_imgusb->get_image({

{unsigned char «xbuf)

{char ») buf)) {

Create a FastUSB

block_size);

Shared with Firmware +/
Shared with Firmware +/

int n_blocks)

173

C. USB2.0 CAMERA LINUX DRIVER

fprintf (stderr,
return -1;

}

bc = d_imgusb->get_image_size (};
return bc;

int pm_cam::write_cmd

{

(int requesttype,

int ret;
ret usb_control_msg (
requesttype,
request,
value,
index,
data,
len,
PM_CAM_USB_TIMEOUT};

d_udh,

if (ret < Q)
fprintf (stderr, "pm _cam::write cmd - Error:
return (ret);
}
int
pm_cam: :read_reg (unsigned char regq,
{
int ret;

char datal2];

data [0] = reg;

short

"Exzor on imgusb->get_image () \n"};

int request, int value,

%$s\n",

«dat}

/+ Write Register Address to MI Sensor =/

ret = write_cmd

if (ret < 0)
return ret;

/+ Read Data from MI Sensor =/
ret write_cmd

dat [0} (Ox00FF & dataf{l]) + (OxFFO

if (verbose_p)
fprintf (OUT_MSG,

return ret;

int
pm_cam: :write_reg
{
int ret;
char data{3];
short verify =

(unsigned char reg,

0;

data
data
data

101 =
{1]
[2] =

reg;
({ OxFF00 & value)
(0x00FF & value);

>> 8);

/+ Write
ret = write_cnd

Register Address to MI Sens

if (ret < 0)
fprintf (stderr
else

if (verbose_p)

fprintf (OUT_MSG,

/* Verify Correct value was writte

(VENDOR_REQUEST_OUT, VRQ_I2C_WRITE, MI_I2C_ADDR,

(VENDOR_REQUEST_IN, VRQ_I2C_READ, MI_I2C_ADDR,

0 & (data{0] << 8));

"Register 0x%04x read with a value of 0x%04x\n",

short value)

or */

(VENDOR_REQUEST_OUT, VRQ_I2C_WRITE, MI_I2C_ADDR,

"pm_cam::write_reg: Error writing MI Register - %$s\n"

"Register 0x%04x written with 0x%04x\n",

n +/

strerror(ret)

int index, char data, int len)

)i

0, data, 1);

0, data, 2);

reqg, dat(0]);

0, data, 3);

usb_strerror ());

reg, value);

174

C. USB2.0 CAMERA LINUX DRIVER

ret = read_reg (reg, &verify};

if (verify != value)
fprintf (stderr, "Unexpected Register Value Read Back: Reigster %04x\n", reg);

return ret;

int
pm_cam: :bulk_read (int ep, char xdata, int size)
{
return (usb_bulk_read (d_udh, ep, data, size, PM_CAM_USB_TIMEOUT));

int
pm_cam: :bulk_read (int ep, char +data, int size, int timeout)
{

return (usb_bulk_read (d_udh, ep, data, size, timeout)};

int
pr_cam: :get_cam_location (void)
{
unsigned char datal[3);
int ret;
/+ Control Transfer request for position, quadrant and master flag =*/
ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_GET_QUAD_POS,

0,
0,
(char =) data,
3);
if (ret < 0)
return ret;
cam_quadrant = datal[0];
cam_position = datal[l];
cam_master = ((datal2]) ? true : false);

return ret;

/% Read in window parameters from EEPROM =/
int
pm_cam: : read_window_params (void)
{
unsigned char data{2};
int ret;

/+ Control transfer request for window width =/
ret = write_cmd (VENDOR_REQUEST_IN,

VRQ GET_WINDOW_PARAM,

0,

VRQO_GET _WINDOW_WIDTH,

(char «) data,

2);
if (ret < 0)
return ret;
eeprom_window_width = (data[0] << 8) | datal[l]l;

/#* Control transfer request for window height =/
ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_LENGTH,
(char ») data,
2);

175

C. USB2.0 CAMERA LINUX DRIVER

if (ret < Q)
return ret;

eeprom_window_height = (data[0] << 8) | data(l];

/#* TODO: Problem with COL_START when reading from FX2
+ Unknown problem, hack to read directly from EEPROM in
+ the meantime
*/

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_READ_EEPROM_LG,
PM_EEPROM_COL_START_HIGH_ADDR,
0

(char) data,
1);
if (ret < 0)
return ret;
eeprom_window_col_start = (datal0] << 8});

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_READ_EEPRCM_LG,
PM_EEPROM_COL_START_LOW_ADDR,
0

’
{char =+) data,
1);
if (ret < 0)
return ret;
eeprom_window_col_start |= datal[0];

/+ Control transfer request for window row start «/

rett = write_cmd (VENDOR_REQUEST IN,
VRQ_GET_WINDOW_PARAM,
0,

VRQO_GET_WINDOW_ROW_START,
{char) data,

2);
if (ret < 0)
return ret;
eeprom_window_row_start = (data([0] << 8) | datall];

/* Control transfer reguest for window col skip =/
ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_GET_WINDOW_PARAM,
0.
VRQ_GET_WINDOW_COL_SKIP,
(char) data,
1);

if (ret < 0)
return ret;

eeprom_window_col_skip = data(0];

/+ Control transfer request for window row skip =/
ret = write_cmd { VENDOR_REQUEST_IN,
VRQ_GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_ROW_SKIP,
{char «) data,
2);

if (ret < Q)
return ret;

eeprom_window_row_skip = datal(0];

176

C. USB2.0 CAMERA LINUX DRIVER

return 0O;

/+ Return temperature reading from TMP175 sensor =/
double
pm_cam::get_cam_temp (void)
{
int temp;
int ret;
double rtemp;
char datal3];
static bool set_ts_config = false;

/+ If first read, set configuration register for 12-bit readout

if (set_ts_config) |
/+ Set sensor resolution to 12 bits =/
data [0) = 1;
data [1] = 0x60;

write_cmd (VENDOR_REQUEST_OUT,
VRQ_I2C_WRITE,
TMP175_TI2C_ADDR,
g,
data,
2);

/% read configuration register x*/
data (0] = 1;
write_cmd (VENDOR_REQUEST_OUT,
VRQ_T2C_WRITE,
TMP175_I2C_ADDR,
0,
data,
1);

write cmd (VENDOR_REQUEST_IN,
VRQ_I2C_READ,
TMP175_I2C_ADDR,
0,
data,
1};

if (verbose_p)

*/

fprintf (OUT_MSG, "Configuration Register: 0x%02x\n", data(0]);

}

/+ read temp readout =/

datal0] = 0;

ret = write_cmd (VENDOR_REQUEST_OUT,
VRQ_I2C_WRITE,
TMP175_12C_ADDR,
o,
data,
1y

if (ret < 0)
fprintf (OUT_ERR_MSG, "Error writing to I2C device...\n"};

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_I2C_READ,
TMP175_I2C_ADDR,
0,
data,
2)i

if (ret < 0)

fprintf (OUT_ERR_MSG, "Error reading from I2C device...\n");

temp = (unsigned char) data[l] | ((unsigned char) datal[0] << 8);

temp >>= 4;
rtemp = (double) temp / 16.0;

return (rtemp);

177

C. USB2.0 CAMERA LINUX DRIVER

/+ Set FPGA reset state
* 0 - out of reset
* 1 - in reset
*/

bool

pm_cam: :cam_fpga_reset

{

(int state)

int ret;
char data;

ret = write_cmd (VENDOR_REQUEST_IN,
VRO_FPGA_RESET,
state,
0,
&data,
1);
if (ret < 0) {
return false;
}
else {
if (data != 0x08) {
fprintf (stderr, “"Error setting FPGA reset mode:

return false;

)

return true;

/+ Set FPGA power state

* 0 - power off
* 1 - power on
*/

bool

pm_cam: :cam_fpga_power

{

(int state)

int ret;
char dataj;

ret = write_cmd (VENDOR REQUEST_IN,
VRQ_FPGA_POWER,
state,
0,
sdata,
1)
if (ret < 0) {
return false;
}
else {
if (data != 0x08) {
fprintf (stderr, "Error setting FPGA power mode:

return false;

}

return true;

/+ Write to FPGA registers over I2C +/
bool
pm_cam::fpga_write_reg

{

(unsigned char reg,

int ret;
char data(3];
short verify = 0;

short value)

NACK

NACK

received!\n");

received!\n");

178

C. USB2.0 CAMERA LINUX DRIVER

data [0] = reg;
data [1] = ((OxFFOO0 & value) >> 8);
data [2] = (0x00FF & value);

/+ Write Register Address to MI Sensor =/
ret = write_cmd (VENDOR_REQUEST_OUT, VRQ I2C_WRITE, FPGA_I2C_ADDR, 0, data, 3);

if (ret < 0)

fprintf (stderr, "pm_cam::fpga_write_reg: Error writing FPGA Register - %s\n", usb_strerror ());
else
if {(verbose_p) fprintf (OUT_MSG, "FPGA Register O0x%04x written with 0x%04x\n", reg, value);

return ret;

/% Function to set window width */
void
pm_cam: : set_window_width (int _width)
{
window_width = _width;
write_reg (MI_REG_COL_SIZE, _width-1);
}

/+ Function to set window height +/
void
pm_cam: :set_window_height (int _height)
{
window_height = _height;
write_reg (MI_REG_ROW_SIZE, _height-1);

/% Function to set window width with col skip */
void
pm_cam: :set_window_width_skip (int _width, int _skip)
{

short val;

int factor;

window_width = _width;
col_skip = _skip;

/+ verify width is an even number =/
if ((_width%2))
throw std::out_of_range ("Window width must be an even value!\n");

if ((_skip < 0) || (_skip > 4))
throw std::out_of_range ("Column Skip must be between 0 and 4!{\n");

switch (_skip) {

case MI_COL_SKIP_NONE:
factor = 1;
break;

case MI_COL_SKIP_2X:
factor = 2;
break;

case MI_COI,_SKIP_3X:
factor = 3;
break;

case MI_COL_SKIP_4X:
factor = 4;
break;

case MI_COL_SKIP_8X:
factor = 8;
break;

default:
factor = 1;

if ((_width%factor))
throw std::out_of _range ("Specified width is not evenly divisible by the specified skip factor!\n")

‘

179

C. USB2.0 CAMERA LINUX DRIVER

image_width = _width / factor;
write reg (MI_REG _COL_SIZE, _width-1);

/+ set col skip =/
read_reg (MI_REG_COL_ADDR_MODE, &val);
val |= _skip;

write_reg (MI_REG_COL_ADDR_MODE, val);

/* Function to set window width with col skip =/
void
pm_cam: :set_window_height_skip (int _height, int
{

short val;

int factor;

window_height = _height;
row_skip = _skip;

/% verify width is an even number «/
if ((_height%2))

throw std::out_of_range ("Window width must be an even value!\n");

if ((_skip < 0) || (_skip > 4))

throw std::out_of_range ("Column Skip must be between 0 and 4!\n");

switch (_skip) {
case MI_ROW_SKIP_NONE:

factor = 1;
break;
case MI_ROW_SKIP_2X:
factor = 2;
break;

case MI_ROW_SKIP_3X:
factor = 3;
break;

case MI_ROW_SKIP_4X:
factor = 4;
break;

case MI_ROW_SKIP_8X:
factor = 8;
break;

default:
factor = 1;

if ((_height%factor) }

throw std::out_of range ("Specified height is not evenly divisible by the specified skip factor!\n"

)i
image_height = _height / factor;
write_reg (MI_REG_ROW_SIZE, _height-1);

/% set row skip */
read_req (MI_REG_ROW_ADDR_MODE, &val);
val |= _skip;

write reg(MI_REG_ROW_ADDR_MODE, val);

/* Set the start column for image readout
*/
void
pm_cam: :set_window_col_start (int _col_start)

{

/+ Ensure col_skip specified is within the boundaries of the sensor +/

if (_col_start > 2047)

throw std::out_of_range ("Specified column start out of range!\n");

180

http://irnage._he.ight

C. USB2.0 CAMERA LINUX DRIVER

write_reg (MI_REG_COLUMN_START, _col_start);
}

/* Set the start row for image readout
*/
void
pm_cam: :set_window_row_start (int _row_start)
{
/% Ensure col_skip specified is within the boundaries of the sensor #/
if (_row_start > 1535)
throw std::out_of_range ("Specified column start out of range!\n");

write_reg (MI_REG_ROW_START, _row_start);

/+ Function to enable binning
* Width and Height are the window widths and height,
* row_skip and col_skip are the respective number of rows or cols to skip
+ window_width and window_height are calculated for the image size
*/
void
pm_cam: :set_binning (int _width, int _height, int row_skip, int col_skip}
{
short val;
write_reg (MI_REG_COL_SIZE, _width-1);
write_reg (MI_REG_ROW_SIZE, _height-1);

/% Set binning */
read_reg {(MI_REG_ROW_ADDR_MODE, &val);
val |= row_skip-1;
write reg (MI_REG_ROW_ADDR_MCDE, val};

read_reg (MI_REG_COL_ADDR_MODE, &val);
val |= col_skip-1;
write_reg (MI_REG_COL_ADDR_MODE, val);

int
pm_cam: :bayer2gray (unsigned char rbayer, unsigned char sbuf, int width, int height)
{
for (int y = 0; y < height - 1; y++) {
for (int x = 0; x < width; x++) {
buf [width x y + x] = (unsigned char) ((bayer[width * y + x] + bayer(width * y + x + 1] + bayer/(
width « (y+1}) + x] + bayer([width * (y+1) + x + 1]) / 4);

int
pm_cam: :bayer2rgb (unsigned char rbayer, unsigned long »+rgb, int width, int height)
{

char sraster;

raster = new char [3 « width » height];

/* Covert Bayer 8§ data to RGB =/
/+ Using Nearest neighbor =*/

/% Data Comes in GR G R G R G R %/

/o BGBGBGBG ... %/

for (long j = 0; j < height; j++) {

for (long w = 0; w < width; w ++) {
if (1(3 %2)) |
if (1(w % 2)) {

raster [j*width*3 + wx3 + GREEN_OFFSET] = bayer [jxwidth + w]j;
raster [Jj»widthx3 + w«3 + RED_OFFSET] = bayer [j»width + w + 11];
raster [Jj*widthx3 + wx3 + BLUE_OFFSET) = bayer [(j+1)*(width) + w];

181

C. USB2.0 CAMERA LINUX DRIVER

GREEN_OFFSET] = bayer [j*width + w — 1];
RED_OFFSET] = bayer [j*width + w);
BLUE_OFFSET] = bayer [(j+1)x(width) + w - 1]
GREEN_OFFSET] = bayer [(j-1)*width + w];
RED_OFFSET] = bayer [(j-1)*width + w + 13
BLUE_OFFSET] = bayer [j*width + w];
GREEN_OFFSET] = bayer [(j-1l)xwidth + w - 1];
RED_OFFSET] = bayer [(j-1)*width + w];
BLUE_OFFSET]) = bayer {j*width + w - 1];

else {
raster [j*width+3 + w*3 +
raster [Jjswidth+3 + wx3 +
raster [J*width*3 + wx3 +
}
)
else {
if (' (w%2)) |
raster [J*width*3 + wx3 +
raster [Jjswidth+3 + w3 +
raster [js=width*3 + w3 +
}
else {
raster [j*=width#3 + w3 +
raster [j*width*3 + w3 +
raster [j*width*3 + w*3 +
}
}
}
}
for (int x = 0; x < width; =x++)
for (int y = 0; y < height; y++)
rgb[x] [yl

delete raster;

= raster[x*width+3 + y*3 + RED_OFFSET] +
(raster[x*width+3 + y*3 + GREEN_OFFSET] << 8) +
(raster[x*width+3 + y*3 + BLUE_OFFSET] << 16);

/* Perform interpolation and write TIFF file from raw bayer data +/

int
pm_cam: :bayer2ti
{

TIFF

char

char

int

if ((tiff_fp =
fprintf (std
return -1;

}

ff (unsigned char xbuf_in, char xfilename,

*tiff_fp;

*raster;

*time_stamp;

ret;

TIFFOpen (filename, "w")) == NULL) {
err, "Error opening file...\n");

/% Allocate Memory for Image */

if ((raster =
fprintf (std
return -1;

}

(char) malloc

err, "Unable to allocate memory\n");

/+ Covert RAW data to TIFF image
/% Using Nearest neighbor =/

/* Data Comes
/o
for (long j =
for (long w
if (1 () %2
if (! (w
raster
raster
raster
}
else {
raster
raster
raster
}
}
else {
if (! (w$%
raster

*/
in GRGRGRGR ... */
BGBGBGBG .. */
0; j < height; j++) {
= 0; w < width; w ++) {
1) o
% 2)) |
(j*»width*3 + w3 + RED_OFFSET] = buf_in [
[j*width*3 + w»3 + GREEN_OFFSET] = buf_in
[j*width*3 + w3 + BLUE_OFFSET] = buf_in
[3*width+*3 + wx3 + GREEN_OFFSET] = buf_in
[$*width*3 + wx3 + RED_OFFSET] = buf_in |
[j*width*3 + wx3 + BLUE_OFFSET] = buf_in
2)) |
[j+*width*3 + w+«3 + GREEN_OFFSET] = buf_in

int width, int height)

(sizeof (char) * width x height x3)) == NULL) {

j*width + w];
[j*width + w + 171;
[(j+1) % (width) + w + 1];

[j*width + w);
j*width + w — 1];
[(3+1) x (width) + w];

(J*width + w];

182

C. USB2.0 CAMERA LINUX DRIVER

raster [j*width+3 + wx3 + RED_OFFSET] = buf_in [(j-1)+*width + w];

raster [j*width*3 + wx3 + BLUE_OFFSET] = buf_in {jxwidth + w + 1];

)

else {
raster [j*width*3 + w3 + GREEN_OFFSET) = buf_in [(j-1)=*width + w];
raster [j*width+3 + w+3 + RED_OFFSET] = buf_in [(j-1)*width + w — 1];
raster [j*width+*3 + wx3 + BLUE_OFFSET] = buf_in {j*width + w];

}
}
/% Set Image Values */
TIFFSetField (tiff fp, TIFFTAG_IMAGEWIDTH, width);
TiFFSetField (tiff_fp, TIFFTAG_IMAGELENGTH, height);
TIFFSetField (tiff_fp, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField (tiff fp, TIFFTAG_SAMPLESPERPIXEL, 3);

/* Set Compression */

/+ No Compression =/

TIFFSetField (tiff_fp, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField (tiff_ fp, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);
TIFFSetField (tiff fp, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG) ;

/+ Write Image Information to TIFF file +/
if (TIFFWriteEncodedStrip (tiff_ fp, 0, raster, width height = 3) == 0) {
fprintf (stderr, "Unable tc write to file\n");
return -1;

}

/* Deallocate memory used */
free (raster);

/% Close TIFF file */
TIFFClose (tiff_fp);

return 0;

int
pm_cam::write_tiff (unsigned char +buf_in, char xfilename, int width, int height)

{

TIFF «tiff fp;

char rraster;

int ret;

if ((tiff_fp = TIFFOpen (filename, "w")) == NULL) {

fprintf (stderr, "Error opening file...\n"});
return -1;

}

/+ Set Image Values =*/

TIFFSetField (tiff fp, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField (tiff_fp, TIFFTAG_IMAGELENGTH, height);
TIFFSetField (tiff_ fp, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField (tiff fp, TIFFTAG_SAMPLESPERPIXEL, 1);

/+ Set Compression =/

/+* No Compression */

TIFFSetField (tiff_fp, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField (tiff fp, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK) ;
TIFFSetField (tiff_fp, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG};

/* Write Image Information to TIFF file */

if (TIFFWriteEncodedStrip (tiff_fp, 0, buf_in, width « height » 1) == 0} {
fprintf (stderr, "Unable to write to file\n");
return -1;

}

/+ Close TIFF file x/
TIFFClose (tiff_fp);

return 0;

C. USB2.0 CAMERA LINUX DRIVER

/+ Convert the RGB to Grayscale =/
unsigned char *x
pr_cam: :convert_grayscale (unsigned long *xrgb)

{

unsigned char xxgrayscale;
int W, H;
int R, G, B;

/+ Get Image Size =/

W = image_width;

H = image_height;

/+ Threshold the Image =*/
/% allocate memory =*/

grayscale = new unsigned char «[W);

for (int i = (0; i < W; i++)
grayscale[i] = new unsigned char [H];

/+ Extract Grayscale from RGB */

float =*xY;
float max = 0.0;
float min = (float) (1<<20);

/+ Allocate memory for Y +/

Y = new float «([W];

for (int x = 0; x < W; x++)
Y[x] = new float [H];

/+ Convert active Image form image to Grayscale x/
for (int x = 0; x < W; x++) {
for (int y = 0; y < H; y++) |
/# Extract RGB Components x/

R = (int) rgb{x][y] & O0x000000FF;
G = ({(int) rgb(x][yl & 0x0000FF00 >> 8;
B = (int) rgb(x][y] & Ox00FF0000 >> 16;

/% Calculate Luminance x/
Y{x)[y] = (float) R + (4.5907 x (float) G) + (0.0601 «

if (Y[x]}[y] > max)
max = Y[x}{y];

if (Y{x][y) < min)
min = Y[x]{y};

}
/+ Scale the Y values between 0 and 255 #/

/+ Draw a new picture with Grayscale Colours (All set to Y)
for (int x = 0; x < W; x++) |

for (int y = 0; y < H; y++) {
Y(x) [yl = YI(x}[y]l = (255.0 / (max - min));
G = (int) Y[x][y]l:
grayscale[x] [y) = (unsigned char) G;

}
)

return grayscale;

(float)

*/

B);

184

Appendix D

System Control Board Firmware

This chapter contains all firmware source code developed for the dsPIC33 microcontroller of the

system control board.

D.1

common.h

/+ common.h

Date:

Contains

Author: Neil Scott

August 01, 2007

#ifndef COMMON_H
#define COMMON_H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

/+ Delay

<p33FrJ256GP710.h>
"delay.h"
"uartz.h"
"i2c_2.h"
"led_iZc.h”
"i2c_slave.h"
"job_ids.h"
"i2c_commands.h"
"uart_commands.h"
"err.h"
"i2c_io_exp.h"

for Shutdown Timer x*/

#define SHUTDOWN_TIMER_DEFAULT

/* I2C Slave Device Addresses +/

#define I12C ADDR_FRONT_PANEL
#define I12C_ADDR_SIDF_PANEL

/#*FOR DEBUGGING */
#define ERR_LED
#define ERR_LED_TRIS

global definitions for system

20

0x27
0x23

LATCbits.LATC1
TRISCbits.TRISCL

185

D. SYSTEM CONTROL BOARD FIRMWARE

#define Fcy 40000000

/* System Globals =/

#define ASSERTED 1

#define DEASSERTED 0

#define TRUE 1

#define FALSE 0

#define MTR_PULSE_WIDTH 40

#define CAM_TRIGO_PULSE WIDTH 232 /#1800x%/ /+ Global Shutter Control =/
#define CAM_TRIG1_PULSE_WIDTH 232 /+1800%/ /+ Global Shutter Control =/
#define BLO_PULSE_WIDTH 800

#define BL1_PULSE_WIDTH 800

#define FLO_PULSE_WIDTH 30500

#define FL1_PULSE_WIDTH 30500

#define MTR_DEFAULT_FREQ 1600 /% Hz */
#define PULSE_COUNTER_MAX 650

#define CALIBRATION_START_POS 450

/+ Pulse Count Constants for given positions +/

/+ Optisorter Original Holder Configuration =/

#if 1

#define CAMO_PULSE_POSITION_DEFAULT 1

#define CAM1_PULSE_POSTITION_DEFAULT 320

#define ACCEPT_ON_PULSE_POSITION_DEFAULT 450

#define ACCEPT_OFF_PULSE_POSITION_DEFAULT 175

#endif

/+ PC Definitions #/

#define PCO 0x01

#define PC1l 0x02

#define PCZ 0x03

#define PC3 0x04

/+ 1/0 Definitions */

/+ Pneumatic Controls =/

#define PNEU_MAIN LATEbits.LATE2
#define PNEU_UPPER LATEbits.LATEl
#define PNEU_ACCEPTO LATEbits.LATE3
#define PNEU_ACCEPTL LATEbits.LATE4
#define PNEU_ACCEPT2 LATEbits.LATED
#define PNEU_ACCEPT3 LATEbits.LATE®
#define PNEU_MAIN_TRIS TRISEbits.TRISE1
#define PNEU_UPPER_TRIS TRISEbits.TRISEZ2
#define PNEU_ACCEPTO_TRIS TRISEbits.TRISE3
#define PNEU_ACCEPT1_TRIS TRISEbits.TRISE4
#define PNEU_ACCEPT2_TRIS TRISEbits.TRISES
#define PNEU_ACCEPT3_TRIS TRISEbits.TRISE6
/* LED Lighting Controls =/

#define IC_LED_BLO LATDbits.LATD3
#define TO_LED_BL1 LATDbits.LATDA
#define I10_LED_FLO LATDbits.LATDS
#define 10 _LED_FLI1 LATDbits.LATD6
#define I10_LED_BLO_TRIS TRISDbits.TRISD3
#define 10 _LED_BL1_TRIS TRISDbits.TRISD4
#define I10_LED_FLO_TRIS TRISDbits.TRISDS
#define 10 _LED_FL1_TRIS TRISDbits.TRISD6
/% Camera Trigger / Global Shutter Control x/

#define 10_CAM_TRIGO LATDbits.LATD1
#define 10_CAM_TRIGI1 LATDbits.LATDZ2
#define 10_CAM_TRIGO_TRIS TRISDbits.TRISD2
#define IO_CAM_TRIG1_TRIS TRISDbits.TRISDI
/* PC Power Sense x/

#define PC_SENSEQ PORTCbits.RC3
#define PC_SENSE1L PORTCbits.RC4
#define PC_SENSE2 PORTBbits.RB5

186

D. SYSTEM CONTROL BOARD FIRMWARLE

fidefine PC_SENSE3

/#+ PC Power Control

#define PC_PWRO
#define PC_PWR1
#define PC_PWR2
#define PC_PHWR3

/+ Tristate for PC Sense inpusts #*/

PORTBbits

LATBbits.
LATBbits.
LATBbits.
LATBbits.

.RB4

LATBO
LATB1
LATB2
LATB3

#define
#define
#define
#define

/+ Tristate Control of PC PWR outputs x/

#define
#define
#define
#define

PC_SENSEO_TRIS
PC_SENSE1_TRIS
PC_SENSE2_TRIS
PC_SENSE3_TRIS

PC_PWRO_TRIS
PC_PWR1_TRIS
PC_PWR2_TRIS
PC_PWR3_TRIS

/% E-Stop Inputs */

#define
#define
#define
#define

ESTOP_SIGO
ESTOP_SIG1
ESTOP_SIG2
ESTOP_SIG3

/* E-Stop Tristates +/

#define
#define
#define
#define

#define

/+ Interrput Register Definitions =/
/# E-Stop Interrupt Control Registers x/

#define

/* E-Stop Interrupt Enable Register <BIT> x*/

#define

/* E-Stop Interrupt Status Register <BIT> =/

#define

/% BIZC
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define

#define
#define

/* 12C Bus Switch line control
#define 12C_BUS_SW_AQ_TRIS
#define 12C_BUS_SW_Al_TRIS

#define
#define

ESTOP_SIGO_TRIS
ESTOP_SIG1_TRIS
ESTOP_S1G2_TRIS
ESTOP_SIG3_TRIS

IO_ESTOP_INT_TRIS

INT_ESTCP_CONbits

INT_ESTOP_IE

INT_ESTOP_IF

Inputs */
BI2C_INTO
BI2C_INT1
BI2C_INT2
BI2C_INT3

BI2C_INTO_TRIS
BI2C_INT1_TRIS
BI2C_INT2_TRIS
BI2C_INT3_TRIS

IO_BI2C_INT_TRIS
INT_BIZC_CONbits

INT_BI2C_IE
INT_BI2C_IF

12C_BUS_SW_AQ
12C_BUS_SW_A1

/+ OC Definitions =/

/% Output Captuer Control Registers =/
OC_MTR_CTRL_CONbits
OC_CAM_TRIGO_CONbits
OC_CAM_TRIG1_CONbits
OC_LED_BLO_CONbits

#define
#define
#define
#define

TRISCbits.TRISC3
TRISCbits.TRISC4A
TRISBbits.TRISBS
TRISBbits.TRISB4

TRISBbits.TRISBO
TRISBbits.TRISB1
TRISBbits.TRISB2
TRISBbits.TRISB3

PORTBbits.RB8
PORTBbits.RB9
PORTBbits.RB10
PORTBbits.RB11

TRISBbits.TRISBS
TRISBbits.TRISBY
TRISBbits.TRISB10
TRISBbits.TRISBI1

TRISFbits.TRISF6

INTCONZbits

IECObits.INTOIE

IFSObits.INTOIF

PORTGbits.RGO
PORTGbits.RG1
PORTFbits.REOQ
PORTFbits.RE'1

TRISGbits.TRISGO
TRISGbits.TRISG1
TRISFbits.TRISFO
TRISFbits.TRISF1

TRISAbits.TRISA1Z
INTCONZ2bits

IEClbits.INT1IE
IFSlbits.INTLIF

TRISFbits.TRISF8
TRISFbits.TRISF7

LATFbits.LATFS8
LATFbits.LATF7

OC1CONbits
OC3CONbits
OC2CONbits
OC4CONbits

187

D. SYSTEM CONTROL BOARD FIRMWARE

#define OC_LED_BL1_CONbits OC5CONbits
#define OC_LED_FLO_CONbits OC6CONbits
#define OC_LED_FL1_CONbits OC7CONbits

/+ Start / Stop Registers x/

#define OC_MTR_CTRL_R OC1R /* Motor Control =/
#define OC_MTR_CTRL_RS OC1RS

#define OC_CAM_TRIGO_R OC2ZR /+ Camera Trigger 0 =/
#define OC_CAM_TRIGO_RS OC2RS

#define OC_CAM_TRIGI_R OC3R /% Camera Trigger 1 =/
#define OC_CAM_TRIG1_RS OC3RS

#define OC_LED_BLO_R OC4R /% LED Backlight 0 +/
#define OC_LED_BLO_RS OC4R

#define OC_LED_BL1_R OC5R /% LED Backlight 1 =/
#define OC_LED_BL1_RS OC5RS

#define OC_ LED_FLO_R OC6ER /+ LED Frontlight 0 =/
#define OC_LED_FLO_RS OC6RS

#define OC_LED_FL1_R OC7R /+ LED Frontlight 1 #/
#define OC_LED_FL1_RS OC7RS

/% Qutput Compare Interrupt Status Register <BIT> »*/

#define OC_MTR_CTRL_IF IFSObits.OCLIF
#define OC_CAM_TRIGO_IF IFSObits.OC2IF
#define OC_CAM_TRIG1_IF IFS1bits.OC31IF
#define OC_LED_BLO_IF IFS1bits.OC4IF
#define OC_LED_BL1_IF IFS2bits.OCHIF
#define OC_LED_FLO_IF IFS2bits.OCEIF
#define OC_LED_FLI1_IF IFS2bits.OCTIF

/+ OQutput Compare Interrupt Enable Register <BIT> +/

#define OC_MTR_CTRL_IE IECObits.OCLIE
#define OC_CAM_TRIGO_IE IECObits.OC2IE
#define OC_CAM_TRIGI_IE IEC1lbits.OC3IE
#define OC_LED_BLO_IE TEC1bits.OC41E
#define OC_LED_BL1_IE IEC2bits.OC51E
#define OC_LED_FLO_IE TECZbits.OC6IE
$#define OC_LED FLI1_ITFE IEC2bits.OC7IE

/# Input Capture Definitions #/
/+ Input Capture Control Registers =*/

#define IC_PS0O_CONbits IC1CONbits
#define IC_PS1_CONbits IC2CONbits
#define IC_PS2_CONbits IC3CONbits
#define IC_PS3_CONbits IC4CONbits

/+ Input Capture Interrupt Enable Register <BIT> #/

f#define IC_PSO_IE IECObits.ICLlIE
#define IC_PS1_IE IECObits.IC2IE
$#define IC_PS2_IE IEC2bits.IC3TE
#define 1C_PS3_TE IEC2bits.ICAIE

/% Input Capture Interrupt Status Register <BIT> %/

#define IC_PSO_IF IFSObits.ICLIF
#define IC_PS1_IF IFSObits.IC2IF
#define 1C_PS2_1IF 1FS2bits.IC3IF
#define IC_PS3_IF 1FS2bits. ICATF

/#* Timer Definitions +/
/+ Timer Control Registers x/

#define TMR_BUS_SWITCH_CONbits TACONbits
#define TMR_BUS_SWITCH_PR PR4
#define TMR_BUS_SWITCH_TMR TMR4

/* Timer Interrupt Enable Register <BIT> x*/
$define TMR_BUS_SWITCH_IE IEClbits.T41E

188

D. SYSTEM CONTROL BOARD FIRMWARE

/+ Timer Interrupt Status Register <BIT> %/
#define TMR_BUS_SWITCH_IF

/* Interrupt Service Routine Definitions »/
#define isr MTR_CTRL

#idefine isr_CAM_TRIGO

#define isr CAM TRIG1

#define isr_LED_BLO

#define isr_ LED_BL1

#define isr_LED_FLO

#define isr LED_FL1

#define isr_PSO
f#define isr PS1
#define isr_PS2
#define isr_PS3

#define isr_ BUS_SWITCH

#define isr ESTOP
#define isr BRI2C

/% Some dsPIC33 Constants =/
#define OCM_DISABLED

#define OCM_FORCE_HIGH
#define OCM_FORCE_LOW
#define OCM_TOGGLE

fdefine OCM SINGLE PULSE
#define OCM_CONT_PULSE
#define OCM_PWM_NOFAULT
#define OCM_PWM_FAULT

#define OCTSEL_TIMERZ
#define OCTSEL_TIMER3

#define ICM_DISABLED
#define ICM_RISE_FALIL_EDGE
#define ICM_FALL_EDGE
#define ICM RISE_EDGE
#define ICM_ATH_RISE_EDGE
#define ICM 16TH_RISE_EDGE
#define ICM_TINTERRUPT_ONLY

#define ICTMR_TIMER2
#define ICTMR_TIMER3

/% Machine Specifics */
#define MACHINE_STOPPED
#define MACHINE_RUNNING
#define MACHINE_ FAULTED
#define MACHINE DEBUG

/* Defines for PC Power State bitmask =/
#define PC_POWER_ON
#define PC_POWER_READY

#define RAMP_NONE
#define RAMP_UP
#define RAMP_DOWN

#define MOTOR_MIN_FREQ
#idefine I2C_BUS_SW_PR

#define PULSES_PER_HOLDER

IFSlbits.TA4IF

(approx)

#define
#define

#define

#idefine

T2TCKPS
T2PF

MAX_JOBS

I2C_SLAVE_ADDRESS

_OClInterrupt

_OCZInterrupt

_0OC3Interrupt

_OC4Interrupt

_OCSInterrupt

_OCé6Interrupt

_OCT7Interrupt

_IClInterrupt

_IC2Interrupt

_IC3Interrupt

_IC4Interrupt

_T4Interrupt

_INTOInterrupt

_INTlInterrupt

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x00

0x01

0x02

0x03

0x04

0x05

0x07

0x01

0x00

0x00

0x01

0x02

0x03

0x01 /+ Motherboard is not powered +*/
0x02 /+ Inspect software is running =/
0

1

2

400

350 /% (350) Timer Period #/

495 /* Number of pulses between holders
0x03 /+ Timer 2 Prescale factor register x/
256 /* Timer 2 Prescale factor =/
128

0x44 /% 7-bit I2C Slave Address =/

«/

189

D. SYSTEM CONTROL BOARD FIRMWARE

#define BI2C_CHANNEL_IQO_SIDE_PANEL 3
#define BI2C_CHANNEL_IO_FRONT_PANEL 2

/+ Front Panel Defines #/
/+ INPUTS «/

#define FRONT_PANEL_PBl_bit 0x02
#define FRONT_PANEL_PB2_bit 0x04
#define FRONT_PANEL_SW_bit 0x01

/+ Side Panel Defines =/
/* INPUTS =/
#idefine SIDE_PANEL_PB_bit 0x01

/* Global Structure Definitions x*/
struct SYSTEM_STATUS {

unsigned state:2;
bi

/% Power State of PCs #*/
struct PC_PWR_STATUS {

unsigned state:2;
bi

/* Job Structure */

struct JOB {
unsigned char job_id;
unsigned char data[32];
unsigned char bc;

i

#endif /+ COMMON_H */

D.2 job_ids.h

+ Contains job IDs for various system jobs
*

*+ Author: Neil Scott

*

Date: September 17, 2007

#ifndef JOB_IDS_H
#define JOB_IDS_H

#define 12C1_REQUEST 0x02
#define MOTOR_PULSE 0x03
#define UART_REQUEST 0x04
#define I12C_BUS_SWITCH 0x05
#define I12C2_REQUEST 0x06
#define LCD_WRITE 0x07
#define LCD_WRITE_LOC 0x08
$#define LCD_CLEAR 0x09
#define LCD_LED 0x0a
#define BI2C_EVENT 0x0b
#define PC_POWER_SET 0x0c
#define PC_POWER_RELEASE 0x0d
#define HALT_SYSTEM Oxff

#endif /+ JOB_IDS_H »*/

D.3 main.c

/* main.c

* TEmommmm—m—m m==m==—=== ——szos=====mooos===========

+ Control Board Firmware initial release
+ — Controls motor speed

190

D. SYSTEM CONTROL BOARD FIRMWARE

- Controls lighting and provides camera triggers

- Controls pneumatic valves to eject capsules

— Monitors and reports system health

-~ Tracks Capsules and provides a communication interface
over I2C to each quadrant

— R$-232 communication for reading statistical data

Author: Neil Scott
Date: May 28, 2007

P N

*/

#include "common.h"
#include "delay.h"
#include "uart2.h"
#include “"uart_commands.h"

fidefine LCD_LOCK_TIMEOUT 12

extern struct I12C_IO EXP temp_sense;
extern struct I2C_IO_EXP io_side_panel;
extern struct I2C_JO_EXP io_front_panel;

/+ Side Panel Bitmaps +/

/% Outputs =/

#define SP_LED_bit 0x01
#define SP_BUZZ_bit 0x02
#define SP_AUX_AIR _bit 0x04
/+ Inputs */

#define SP_SW bit 0x01

/* Front Panel Bitmaps +/
/* Qutputs «/
#define FP_LED_bit 0x08

volatile struct JOB job_list[MAX_JOBS];

volatile unsigned char curr_job;

volatile unsigned char last_job;

volatile char *PM_TITLEl = {"-=PharmaSorter=-"};
volatile char *PM_TITLE2 = {"I-START II-STOP"};

volatile unsigned char hb;

volatile unsigned char first_write p = TRUE;
volatile unsignea int trigger_comp = 0;
volatile unsigned int extra_comp = 0;

volatile unsigned char lcd_lock = 0;
volatile unsigned char bi2c_lock = 0;

volatile unsigned char one_step = 0;

volatile unsigned char disable_count = 0;
volatile unsigned char enable_count = 0;

/+ Initially in calibration mode to align holder */
volatile unsigned char calibration mode = 1;
volatile unsigned chaxr calibration_found_zero = 0;

volatile unsigned char pcs_ready = 0;
volatile unsigned char pc_ready done_flag = 0;

volatile unsigned char shutdown_start_timer_flag = FALSE;
volatile unsigned char shutdown_timer = SHUTDOWN_TIMER_DEFAULT;
volatile unsigned char shutdown_in_progress_flag = FALSE;
volatile unsigned char wait_to_halt_flag = FALSE;

volatile unsigned char prev_fp_sw_state;
volatile unsigned char fp_sw_state;

volatile unsigned int mtr_pulse_width;
volatile unsigned int mtr_running_freq;
volatile unsigned int cam _trig0_pulse_width;
volatile unsigned int cam_trigl pulse width;
volatile unsigned int bl0_pulse_width;

191

D. SYSTEM CONTROL BOARD FIRMWARE

volatile unsigned int bll_pulse_width;
volatile unsigned int f10_pulse_width;
volatile unsigned int fll_pulse_width;

volatile unsigned int cam0_pulse_position;
volatile unsigned int caml_pulse_position;
volatile unsigned int accept_on_pulse position;
volatile unsigned int accept_off_pulse_position;

extern char iZc¢_io_outdata;

/+ Job Queue Get Next Available Job */
unsigned char get_next_job (void)
{

unsigned char j;

3 = last_job + 1;

if (§ > (MAX_JOBS ~ 1)) |
3= 0;
t

return j;
}

/#+ Job Queuve Get Next Unserviced Job =/
unsigned char get_ next_curr_job (void)
{

unsigned char j;

j = curr_job + 1;

if (3 > (MAX_JOBS - 1)) {
j o= 0;
}

return j;

}

/* Job Queue Add New Job */
veid add_job (unsigned chaxr job_id)

{
last_job++;

if (last_job > (MAX_JOBS - 1)) {
last_job = 0;
}

job_list([last_jobl.job_id = job_id;

/+ Job Queue Clear last job */
void complete_job (void)
{

job_list [curr_jobl.bc = 0;

curr_job++;

if (curr_job > (MAX_JOBS - 1)} {
curr_job = 0;

}

/* Configure PLL and WDT =/
_FOSCSEL(FNOSC_PRIPLL) ;

_FOSC(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_XT);
_FWDT (FWDTEN_OFF) ;

/% Function Prototypes */

D. SYSTEM CONTROL BOARD FIRMWARE

void init_io(void);

void init_check (void);

void init_sys(void);

void calibrate_sys (void);

void uartZ2_hdlr (veid);

static inline wvoid motor_step_hdlr (void);
void i2cl_request_hdlr (unsigned char i_job);
void i2c2_request_hdlr (unsigned char i_job);
void disable_motor (void);

void enable_motor (wvoid);

void debug_mode (int set);

void set_pc_pwr (unsigned char pc);

/+ Global Variables */

volatile unsigned char ramp_mode;

volatile unsigned int motor_speed; /% in Hz */

volatile unsigned int motor_speed_target; /#* in Hz +/

volatile unsigned char motor_stop_flag;

volatile unsigned char i2c_bus_lock;

volatile unsigned char i2c_bus_lock_count;

volatile unsigned char i2c_bs_active_bus;

volatile unsigned int pulse_counter; /+ Track arm position in terms of motor step pulses */
volatile unsigned int cap_count;

volatile unsigned char capsule passfail[4][16]; /=+ Store Pass/Fail result from inspections */
volatile unsigned char pc_pwr_release_flag = FALSE;

volatile unsigned char refresh_title_flag = FALSE;

/% System Fault and Status Structure #/
volatile struct SYSTEM_STATUS system_status;

/+ PC Power State Structure #/
volatile struct PC_PWR_STATUS pc_pwr_status{4];

/+ UART Buffers and Pointers +/

extern struct UART_Rx uvart_rx;

extern struct UART_Tx uart_tx;

unsigned char uart_rx_buf [MAX_UART_RX BUF];
unsigned char uvart_tx_buf[MAX_UART_TX_ BUF];
unsigned char uvart_cmd_flag;

/% Capsule Counters =*/

volatile unsigned long capsule_good_count([4];
volatile unsigned long capsule_bad_count{4];
volatile unsigned long capsule_total_count[4];

/# Output Compare Interrupt Service Routine for Motor PWM Control =/
void
__attribute_ ((interrupt, no_auto_psv)) isr_MTR_CTRL (wvoid)
{
unsigned char tjob;

/% Clear Interrupt Flag =/
OC_MTR_CTRL_IF = DEASSERTED;

if (calibration_mode} {
if (!calibration_found_zero) {
if (pulse_counter == 0} {
calibration_found_zero = TRUE;
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
Delay (Delay_1S5_Cnt);
OC_MTR_CTRL_CONbits.OCM = OCM_CONT_PULSE;
}
}
else |
/+ Find Start Pos */
if (pulse_counter == CALIBRATION_START_POS) {
/+ Stop Motor =/
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
calibration_mode = 0;

pulse_counter++;

D. SYSTEM CONTROL BOARD FIRMWARE

if ((pulse_counter > PULSE_COUNTER_MAX) && (system_status.state == MACHINE_RUNNING)) {
disable_motor();
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
system_status.state = MACHINE_FAULTED;

motor_step_hdlr();

/# Output Compare Interrupt Service Routine for LED Backlight 0 +/
void
__attribute__ ((interrupt, no_auto_psv)) isr LED_BLO (void)
{
/% Clear Interrupt Flag */
OC_LED_BLO_IF = DEASSERTED;

/* Turn Off Qutput Compare Module */
OC_LED_BLO_CONbits.OCM = OCM_DISABLED;

/% Output Compare Interrupt Service Routine for LED Backlight 0 */
void
__attribute__({(interrupt, no_auto_psv)) isr_LED_BLl (void)
{
/+ Clear Interrupt Flag #*/
OC_LED_BL1_IF = DEASSERTED;

/* Turn Off Output Compare Module =*/
OC_LED_BL1_CONbits.OCM = OCM_DISABLED;

/% Output Compare Interrupt Service Routine for Camera Trigger 0 */
void
.attribute ((interrupt, no_auto_psv)) isr_CAM_TRIGO (veid)
{

/#* Clear Interrupt Flag */

OC_CAM_TRIGO_IF = DEASSERTED;

/#+ Turn Off Output Compare Module x/
OC_CAM_TRIGO_CONbits.OCM = OCM_DISABLED;

/+ Output Compare Interrupt Service Routine for Camera Trigger 0 */
void
__attribute__ ((interrupt, no_auto_psv)) isr CAM_TRIGl (void)
{

/+ Clear Interrupt Flag */

OC_CAM_TRIG1_IF = DEASSERTED;

/+ Turn Off Output Compare Module »*/
OC_CAM_TRIG1_CONbits.OCM = OCM_DISABLED;

/+ Input Capture Interrupt Service Routine for Proximity Sensor PSO »/
void
__attribute__((interrupt, no_auto_psv)) isr_PS0 (void)
{
/* Clear Interrupt Flag =/
IC_PS0_IF = DEASSERTED;

/+ Input Capture Interrupt Service Routine for Proximity Sensor PS1 +/
void
__attribute__ ({interrupt, no_auto_psv)) isr_PSl (void)
{
/* Clear Interrupt Flag =/
IC_PS1_IF = DEASSERTED;

194

D. SYSTEM CONTROL BOARD FIRMWARE

/* Input Capture Interrupt Service Routine for Proximity Sensor PS2 =/
void
___attribute_ ({interrupt, no_auto_psv)) isr_PS2 (void)
{
/* Clear Interrupt Flag x/
IC_PS2_IF = DEASSERTED;

/#+ Input Capture Interrupt Service Routine for Proximity Sensor PS3 +/
void
_______ attribute__ ({interrupt, no_auto_psv)) isr_PS3 (void)

unsigned char tjob;
unsigned char i;

/+ Clear Interrupt Flag +/
IC_PS3_IF = DEASSERTED;

/+ Reset pulse counter =/
pulse_counter = 0;

/+ Increment capsule counter x*/
cap_count-++;
if (cap_count > 15) {

cap_count = 0;

}

for (i = 0; i < 4; i++) {
capsule_passfail[i] [cap_count] = 0;

capsule_total_count[il]l++;

)

/+ Timer 2 Interrupt Service Routine =*/
void
__attribute___((interrupt, no_auto_psv))} _T2Interrupt (void)
{
IFSObits.T2IF = DEASSERTED;

/% Timer 4 Interrupt Service Routine »/
void
attribute ({interrupt, no_auto_psv})) isr BUS_SWITCH (void)
{
/* Clear Interupt Flag +/
TMR_BUS_SWITCH_IF = DEASSERTED;

LATChits.LATCl = DEASSERTED;
LATGbits.LATG6 = DEASSERTED;

/+ Verify not between START and STOP */
if (I2C1STATbits.S) {
LATCbhits.LATC1 = ASSERTED;
LATGbits.LATG6 = DEASSERTED;
return;
}

/% Cycle active bus #*/
switch (i2c_bs_active_bus) |
case 0:
I2C_BUS_SW_AQ = ASSERTED;
I2C_BUS_SW_Al = DEASSERTED;
i2c_bs_active_bus = 1;
break;

case 1:
I2C_BUS_SW_AQ = DEASSERTED;
I2C_BUS_SW_Al = ASSERTED;
izc_bs_active_bus = 2;

195

D. SYSTEM CONTROL BOARD FIRMWARE

break;

case 2:
12C_BUS_SW_AQ0 = ASSERTED;
12C_BUS_SW_Al = ASSERTED;
i2¢_bs_active_bus = 3;
break;

case 3:
I12C_BUS_SW_AQ = DEASSERTED;
J2C_BUS_SW_Al = DEASSERTED;
iZ2¢_bs_active_bus = 0;
break;

default:
I2C_BUS_SW_AQO = DEASSERTED;
I12C_BUS_SW_Al = DEASSERTED;
iZ2c¢_bs_active_bus = 0;
break;

/+ Timer 5 Interrupt Service Routine +/

wvoid
__attribute__{{interrupt, no_auto_psv))
{

unsigned char tjob;

/% Clear Interrupt Flag =/
IFS81lbits.T5IF = DEASSERTED;

/+ Calculate Trigger Compensation =/
if (motor_speed > 300) {

trigger_comp = (int) (0.09 * (double)

extra_comp = {int) 0.05 x {double)
}
else {

trigger_comp = 0;
}

/+ ITf Ramp Up =/
if (ramp_mode == RAMP_UP) {
motor_speed++;

PR2 = (unsigned int) ({((((double} Fcy)/

PNEU_MAIN = DEASSERTED;
}

/+ If Ramp Down */
if (ramp_mode == RAMP_DOWN) {
motor_speed-—;

PR2 = (unsigned int)} (((((double) Fcy)}/

)

/+ If desired speed reached - stop this timer */
if (motor_speed == motor_speed_target)

T5CONbits.TON = FALSE;

enable_count = 0;

if (motor_stop_flag) {
disable_count = 0;

OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;

PNEU_MAIN = ASSERTED;
motor_stop_flag = FALSE;
refresh_title _flag = TRUE;

/+ Timer 7 LCD Timer #+/
void
__attribute__ ({interrupt, no_auto_psv})

{

_T5Interrupt

_T7Interrupt

(void)

motor_speed) - 34;
motor_speed;

motor_speed) - 1.0) / (double) TZPF);
motor_speed) - 1.0} / (double) TZPF);
{(void)

196

D. SYSTEM CONTROL BOARD FIRMWARE

/+ Clear Interrupt Flag =/
IFS3bits.T71F = DEASSERTED;

/* Disable Timer +/
T7CONpbits.TON = FALSE;

refresh_title_flag = TRUE;

/+ Timer 8 Interrupt Service Routine */
void
__.attribute__ ((interrupt, no_auto_psv)) _T8Interrupt (void)

{

unsigned char tjob;
unsigned char temp;

/% Clear Interrupt Flag =/
IFS3bits.T8IF = DEASSERTED;

/+ Release Soft Power SW */
if (pc_pwr_release_flag) {
pc_pwr_release flag = FALSE;
PC_PWRO = FALSE;
PC_PWR1 = FALSE;
PC_PWRZ = FALSE;
PC_PWR3 = FALSE;
}

/+ Look for shutdown request +*/

if (shutdown_start_timer_flag) |{
shutdown_timer--;

i

if (!shutdown_timer) {
shutdown_start_timer_flag = FALSE;
shutdown_timer = SHUTDOWN_TIMER_DEFAULT;
shutdown_in_progress_flag = TRUE;
wait_to_halt_flag = TRUE;

add_job {LCD_CLEAR);

tjob = get_next_job();
job_list[tjobl}.datallé
job_list{tjobl.data[l7]
job_list{tjobl.bc = 16;
sprintf (job_list([tjob].data, "Shutting Down...");
add_job (LCD_WRITE);

I
=

/+ Initiate Shutdown =/

PC_PWR0O = TRUE;

PC_PWR1 = TRUE;

PC_PWRZ = TRUE;

PC_PWR3 = TRUE;

pc_pwr_release_flag = TRUE;
)

/+ Heartbeat LED +/
if (hb > 5)

hb = 0;
else

hb++;

/% Add Job */
tjob = get_next_job();
job_list{tiobl.bc = 1;

/# Blink LEDs according to machine state =/

if (system_status.state == MACHINE_RUNNING) {
job_list{tjobl.data[0) = (hb > 3);
add_job (LCD_LED};

}

else if (system_status.state == MACHINE_FAULTED) ({
job_list{tjobl.datal[0) = (hb % 2);

197

D. SYSTEM CONTROL BOARD FIRMWARE

add_job (LCD_LED);

}

else if (!pcs_ready) |
Job_list[tjob].datal[0] = (hb % 3);
add_job (LCD_LED);
pc_ready_done_flag = TRUE;

}

else if (pc_ready_done_flag) {
pc_ready_done_flag = FALSE;
refresh_title_flag = TRUE;

}

else if (shutdown_in_progress_flag) {
job_list[tjob).data[0) = (hb % 2);
add_job (LCD_LED);

}

else {
job_list[tjob).dataf{0] = 1;
add_job (LCD_LED);

if (refresh_title_flag) {
refresh_title_flag = FALSE;
/* Display title message on LCD »/
add_job (LCD_CLEAR);

tjob = get_next_job(};

job_list[tjob).datall6] = 1;
job_list[tjob].datall7] 0;

job_list[tjob].bc = 16;

sprintf (job_list{tjob].data, "%s", PM_TITLEl);
add_job (LCD_WRITE_LOC) ;

il

tjob = get_next_job();

job_list[tjob].data[l6]
job_list(tjob].datall7]
job_list[tjob].bc = 15;
sprintf (job_list(tjob].data, "%s", PM_TITLE2);

il

2;
0;

add_job (LCD_WRITE_LOC);
}

if (lcd_lock)
lcd_lock-=;

/* Update PC Power state */
if (!PC_SENSEOQ)
pc_pwr_status{0].state |= PC_POWER_ON;
else |{
pc_pwr_status(0].state &= "PC_POWER_ON;
pc_pwr_status[0].state &= "“PC_POWER_READY;
}

if (!PC_SENSE1l)

pce_pwr_status([1].state |= PC_POWER_ON;
else {

pc_pwr_status([l].state &= “PC_POWER_ON;

pc_pwr_status([l].state &= "PC_POWER_READY;
}

if (VPC_SENSE2)

pc_pwr_status[2].state |= PC_POWER_ON;
else {

pc_pwr_status[2].state &= “PC_POWER_ON;

pc_pwr_status[2].state &= “PC_POWER_READY;
}

if (!PC_SENSE3)

pc_pwr_status([3).state |= PC_POWER_ON;
else {

pc_pwr_status[3).state &= "PC_POWER_ON;

pc_pwr_status([3].state &= “PC_POWER_READY;
}

/+ Halt Flag =*/

198

D. SYSTEM CONTROL BOARD FIRMWARLE

if (wait_to_halt_flag) {
if (PC_SENSEQ & PC_SENSEl & PC_SENSEZ2 & PC_SENSE3) {
add_job (HALT_SYSTEM) ;
}
}

/+ Update PC Ready Signal */
pcs_ready = (pc_pwr status[0].state & PC_POWER_READY) & (pc_pwr_status[l].state & PC_POWER_READY)
& (pc_pwr_status[2].state & PC_POWER_READY) & (pc_pwr_status([3]).state & PC_POWER_READY) ;

/% BI2C debounce Lock */
bi2c_lock = FALSE;

/* Timer 9 Interrupt Service Routine */
void
__attribute__ ((interrupt, no_auto_psv)) _T9Interrupt (void)
{
static unsigned char datal2];
static unsigned char alternate;
unsigned char tjaob;

/* Reset Timer 3 for Backlight control and Camera Trigger Control =/
T3CONbits.TON = FALSE;
TMR3 = 0;

/+ Enable Single Pulse Mode for LED Backlight Output Compare #*/

if (lalternate) {
OC_LED_BLO_CONbits.OCM = OCM_SINGLE_PULSE;
OC_LED_BL1_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIGO_CONbits.QOCM = OCM_SINGLE_PULSE;
alternate = 1;

}

else |
OC_LED_BL1_CONbits.OCM = OCM_SINGLE_PULSE;
OC_LED_BLO_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIG1_CONbits.OCM = OCM_SINGLE_PULSE;
alternate = 0;

}
T3CONbits.TON = TRUE;

/+ Clear Interrupt Flag */
IFS3pbits.TOIF = DEASSERTED;

/+ ESTCP Interrupt Service Routine +/
void
__attribute__ ((interrupt, no_auto_psv)) isr ESTOP (void)
{
unsigned char tjob;
unsigned char estop_source = 0Oxff;

IFSObits.INTOIF = DEASSERTED;

/* Determine Source of EStop */
if (!ESTOP_SIGO)
estop_source = 0;
if (!ESTOP_SIGI1)
estop_source += 1;
if (!ESTOP_SIGZ2)
estop_source += 2;
if (!ESTOP_SIG3)
estop_source += 3;

10_LED_FLO = TRUE;
IO_LED_FL1 = TRUE;

/% Disable Motor =/
disable_motor ();

/* Turn OFF All PCs x/

199

http://OC_CAM._TRIG0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

if (!PC_SENSEO) {
tjob = get_next_job();
job_list(tjobl.datal[0] = 1;
add_job (PC_POWER_SET) ;
tjob = get_next_job();
job_list([tjob]).datal[0] = 1;
add_job (PC_POWER_SET) ;

}

if (!PC_SENSELl) {
tjob = get_next_job();
job_list[tjob].datal[0] = 2;
add_job (PC_POWER_SET) ;
tjob = get_next_job();
Job_list[tjob].datal[0) = 2;
add_job (PC_POWER_SET) ;

}

if (!PC_SENSE2) {
tjob = get_next_job{);
job_list(tjob].datal0) = 4;
add_job (PC_POWER_SET) ;
tjob = get_next_job();
job_list{tjob].datal0] = 4;
add_job (PC_POWER_SET) ;

}

if (!PC_SENSE3) {
tjob = get_next_job();
Job_list{tjob].datal[0] = 8;
add__job (PC_POWER_SET) ;
tjob = get_next_job();
job_list[tjob].datal[0] = 8;
add__job (PC_POWER_SET) ;

}

/+ Clear LCD +/
add_job (LCD_CLEAR);

/% Display E-Stop Message x/

tjob = get_next_job();

job_list[tjobl.datal(l6) = 1;
job_list([tjob]l.datall7) = 0;

job_list[tjob).bc = 12;

sprintf (job_list[tjob]).data, "E-Stop Fault");
add_job (LCD_WRITE);

system_status.state = MACHINE_FAULTED;

void
__attribute_ (({interrupt, no_auto_psv)) isr_BI2C (void)
{

unsigned char tjob;

INT_BI2C_IF = DEASSERTED;
if (!'biz2c_lock) {
biZ2c_lock = TRUE;
tjob = get_next job();
job_ list([tjobl.bc = 1;

job_list[tjob]).data[0] = Oxff;
if (!BI2C_INTO)
job_list[tjob].datal0)
if (!BI2C_INT1)
job_list[tjob].data(0] = 1;
if (!BI2C_INT2)

Il
f=

job_list{tjob).data(0] = 2;
if (!BIZC_INT3})
job_list{tjob).datal0] = 3;

add_job (BI2C_EVENT);

200

D. SYSTEM CONTROL BOARD FIRMWARE

int
main (void)

{

unsigned int i, j, c;

unsigned char data{2] = {0x01, 0x60};
unsigned char ret;

unsigned char tjob;

char lcd_msgll6];

int rval;

/+ Configure Oscillator to run at 40MHz +/
/+ Fosc = Fin#M/(N1+N2), Fcy = Fosc/2 */
/* Fosc = 8M#40(2+2) = 80MHz =/

PLLFBD = 38; /+ M = 40 #/
CLKDIVbits.PLLPOST = 0; /* N1 = 2 =/
CLKDIVbits.PLLPRE = 0; /* N2 = 2 x/
OSCTUN = 0; /+ Tune FRC oscillator if FRC is used

/* Wait for PLL to lock =/
while (OSCCONbits.LOCK != 1)

;

/+ Initialize I2C2 Module as Master =/
init_i2¢c2 ();

/* Initialize System I/0, Timers, OCs, etc =/
init_sys{(};

/* Initialize Panel I/0 Expanders =*/
io_side_panel.i2c_addr = I2C_ADDR_SIDE_PANEL;
io_front_panel.i2c_addr = I2C_ADDR_FRONT_PANEL;

io_side_panel.bi2c_channel = BI2C_CHANNEL_IC_SIDE_PANEL;
io_front_panel.biZ2c_channel = BI2C_CHANNEL_IO_FRONT_PANEL;

/* Side Panel */
io_side_panel.outp = Oxff;
io_side_panel.outp &= "SP_LED_bit;
i2c_io_exp_write (&io_side_panel);

/* Front Panel +/
io_front_panel.outp = Oxff;
io_front_panel.outp &= “FP_LED_bit;
i2c_io_exp_write (&io_front_panel);

/* Blink HMI LEDs x/
for (¢ = 0; ¢ < 6; c++) |
if (io_side_panel.outp & SP_LED_bit)
io_side_panel.outp &= “SP_LED_bit;
else
io_side_panel.outp {= SP_LED_bit;

if (io_front_panel.outp & FP_LED_bit)
io_front_panel.outp &= “FP_LED_bit;
else
ico_front_panel.outp |= FP_LED_bit;

i2c_io_exp_write (&io_side_panel);
i2c_io_exp_write (&io_front_panel);
Delay (Delay_1S Cnt/3);

}

/* Turn OFF LEDs x/
io_side_panel.outp }|= SP_LED_bit;
io_front _panel.outp |= FP_LED_bit;

iZ2c_io_exp_write (&io_side_panel);
i2c_io_exp write (&io_front_panel);

/% Set PC Power defaults =/
pc_pwr_status[0].state =
pc.pwr_status[l].state =
pc_pwr_status{2].state
pc_pwr_status[3].state =

i

7

I
O C OoOC

*/

201

http://io_front_panel.i2c_.addr

D. SYSTEM CONTROL BOARD FIRMWARE

/% Intialize LCD =/
led _init ();
led print ("Initializing...", 13);

/+ Initialize UART2 Module =/
init_uart2 ();

/+ Initialize I2C Slave Module +/
init_i2c_slave ();

/+ Initialize GPIO - Direction and Initial State »*/
init_io();

/* Turn ON main air supply - for calibrations/
PNEU_MAIN = DEASSERTED;

/% Calibrate Arm Position x/
calibrate_sys(};

/* Turn OFF Main Air =/
PNEU_MAIN = ASSERTED;

/+ Re-initialize =/
init_sys();

/+ Enable Power on all PCs if not already on #*/
pcs_ready = FALSE;
pc_ready done_flag = FALSE;
if (PC_SENSEOQ)
set_pc_pwr {(0);
if (PC_SENSE1)
set_pc_pwr (1l});
if (PC_SENSE2)
set_pc_pwr (2);
if (PC_SENSE3)
set_pc_pwr (3);

/+ Initialize Job Dispatcher =/
curr_job = 0;
last_job = Q;

/+ Reset Pass / Fail Array */
cap_count = 0;
for (j = 0; 4§ < 4; F++)
for (1 = 0; i < 16; i++)
capsule_passfail[j)[i] = O;

/+ Set bus switch to quadrant 1 (default for now) */
I2C_BUS_SW_AQ = DEASSERTED;
I2C_BUS_SW_Al = DEASSERTED;

/% System Check =/
// init_check();

/# Turn ON LEDs =/
io_side_panel.outp &= “SP_LED bit;
io_front_panel.outp &= "FP_LED_bit;

_io_exp_write (&io_side_panel);
:_lo_exp_write (&io_front_panel);

/* Read data from I2C I/0 Boards x/
i2c_io_exp_read (&io_side_panel};
i2¢_io_exp_read (&io_front_panel);

/+ Display message waiting on PCs #*/
led_clear () ;

lcd_print ("Waiting for PC", 14);
lcd_cursor_to(2, 0);

led_print ("ready signal...", 15);

/#* Current state of front panel switch =/
i2c_io_exp_read (&io_front_panel);

202

D. SYSTEM CONTROL BOARD FIRMWARE

prev_fp_ sw_state

= (“io_front_panel.inp)

/+ The Main Loop +*/

while
if

(1) |
(curr_job
switch

Y= last_job) {
(job_list[get_next_curr_job()].job_id) {

case MOTOR_PULSE:

motor_step_hdlr
complete_job

break;

0
();

case LCD_WRITE:

& FRONT_PANEL_SW_bit;

lcd_cursor_to (job_list(get_next_curr_job()]}.data[l6]},0);
lcd_print (job_listlget_next_curr_job()].data, job_list[get_next_curr_job()].bc};
complete_job ();
break;

case LCD_WRITE_LOC:
lcd_cursor_to (job_list{get_next_curr_job()].datal[l6), job_list{get_next_curr_job()].datall7]
led_print (job_list[get_next_curr_job()].data, job_list[get_next_curr_job()].bc);

complete_job();

break;

case LCD_CLEAR:

lcd_clear

()i

complete job();

break;

case LCD_LED:

lcd_set_bl

(job_list[get_next_cur

complete_job ();

break;

case BIZC_EVENT:
/+ Determine which BI2C line was triggeredx/

switch (job_list[get_next_curr_job()].datal[0]) {

case 0:

break;

case 1:

/+ Front Panel

*/

/% Read I/0 Inputs #*/
i2c_io_exp read (&io_front_panel});

fp_sw_state =

(“io_front_pane

/% Check I/0 Inputs */

J*
if

}
/%

}

Check PB1 Pressed

Check PBZ2 Pressed
else if (

*/
("io_front_panel.inp) &
(system_status.state

enable_motor ();

*/
(Tio_front_panel.in
{system_status.state ==

disable_motor();

r_job()].datal0]);

l.inp) & FRONT_PANEL_SW_bit;

FRONT_PANEL_PB1 bit) {
MACHINE_RUNNING)

p) & FRONT_PANEL PB2 bit) |{
MACHINE_RUNNING)

/% Check SW1 change of state x/

if

(fp_sw_state

= prev_fp_sw_state) {

prev_fp_sw_state = fp_sw_state;

((Tio_front_panel.inp)
/% Enable Debug Mode x/

if (!shutdown_in_progress
add_job (LCD_CLEAR);
tjob = get_next_job();

job_list[tjob].data[l6]
job_list[tjobl].data[1l7]
job_list[tjob].bc = 16;

sprintf (job_list[tjob]
add_job (LCD_WRITE);
tjob = get_next_job();

job_list[tjob].data{l6]

& FRONT_PANEL_SW bit) {
_flag) {

= 1;

= 0;

.data, "HOLD TO SHUTDOWN");

= 2;

203

http://~io._front_panel.inp

D. SYSTEM CONTROL

BOARD FIRMWARE

job_list[tjob].datal[l7] = 0;
job_list[tjob].bc = 15;

sprintf (job_list[tjob].data, " *sxxxsxskkrxsix");

add_job (LCD_WRITE);
shutdown_start_timer_ flag = TRUE;
}
1
else {
if (!shutdown_in_progress_flag) {
add_job (LCD_CLEAR});
tjob = get_next_job();
job_list[tjob].data[l6] = 1;
job_list{tjob].datall7] 0;
job_list[tjobl.bc = 13;
sprintf (job_list{tjob].data, "
add_job (LCD_WRITE);
tjob = get_next_job();
job_list[tjob].dataflé
job_list{tjobl.data{l7]) =
job_list{tjob].bc = 14;

It

2;
0;

sprintf (job_list{tjob].data, " CANCELLED! "} ;

add_job (LCD_WRITE) ;

/+ Refresh LCD Title Timer +/
T7CONbits.TON = TRUE;
shutdown_start_timer_flag = FALSE;
shutdown_timer = SHUTDOWN_TIMER_DEFAULT;

}
}
break;

case 2:

/% Side Panel +/
/% Read I/0 Inputs +/
iZc_io_exp_read (&io_side_panel);

/#* Check I/0 Inputs x*/

/+ Check PB Pressed +/

if (("io_side_panel.inp) & SP_SW_bit) {
/+ Turn ON or OFF AUX air supply */
io_side_panel.outp &= "“SP_AUX_AIR_bit;
//io_side_panel.outp &= "SP_BUZZ _bit;

}

else |
io_side_panel.outp |= SP_AUX_AIR_ bit;
//io_side_panel.outp |= SP_BUZZ _bit;

}
break;
case 3:
break;
default:
break;
)
complete_job();

break;

case PC_POWER_SET:

/+ Toggle power SW to specified motherboards for 400ms

if (job_list[get_next_curr_job()].datal[0} & 0x01)
PC_PWR0O = TRUE;

if (job_list[get_next_curr_job()].data{0] & 0x02)
PC_PWR1 = TRUE;

if (job_list[get_next_curr_job()].datal{0] & 0x04)
PC_PWRZ = TRUE;

if (job_list[get_next_curr_job()]}.datal0] & 0x08)

PC_PWR3 = TRUE;

pc_pwr_release_flag =

TRUE;

SHUTDOWN") ;

*/

204

D. SYSTEM CONTROL BOARD FIRMWARE

complete_ job();
break;

case PC_POWER_RELEASE:
PC_PWR0 = FALSE;
PC_PWR1 = FALSE;

PC_PWR2
PC_PWR3

FALSE;
FALSE;

n

complete_job(};
break;

case HALT_SYSTEM:
lcd_cursor_to (1, 0);
lced_print (" Safe to Power", 14});
lcd_cursor_to (2, 0);
led_print (" Down Now!", 12);
while (1) ;
break;

default:
break;

}

return 0;

/+ System Startup Check Routine (Debug)
* Flash some lights, switch air, etc.
*+ Used to verify system connections

*/
void

init_check (void)

{

unsigned char i;

Delay (Delay._

Delay {(Delay_

PNEU_MAIN =

PNEU_MAIN =

Delay (Delay_

PNEU_UPPER =

Delay (Delay_

PNEU_UPPER =

Delay (Delay_

PNEU_ACCEPTO

Delay (Delay_

PNEU_ACCEPTO

Delay (Delay_

PNEU_ACCEPT1

Delay (Delay_

PNEU_ACCEPT1

Delay (Delay_

PNEU_ACCEPTZ

Delay (Delay_

PNEU_ACCEPT2

Delay (Delay_

PNEU_ACCEPT3

Delay (Delay_

PNEU_ACCEPT3

Delay (Delay_
i < 3; i++) |

for (i = 0;
PNEU_MAIN

1S_Cnt);

1S_Cnt/8});

DEASSERTED;
belay (Delay_
ASSERTED;

1S_Cnt/8);

1S_Cnt/8);
DEASSERTED;
15_Cnt/8);
ASSERTED;

1S_Cnt/8);
= DEASSERTED;
18_Cnt/8);
= ASSERTED;

15_Cnt/8);
= DEASSERTED;
18_Cnt/8);
= ASSERTED;

1s_Cnt/8);

= DEASSERTED;
1S_Cnt/8);
= ASSERTED;

1s_Cnt/8);

= DEASSERTED;
15_Cnt/8});

= ASSERTED;
1S_Cnt);

DEASSERTED;

205

D. SYSTEM CONTROL BOARD FIRMWARE

}

PNEU_UPPER = DEASSERTED;

PNEU_ACCEPTO = DEASSERTED;
PNEU_ACCEPT1 = DEASSERTED;
PNEU_ACCEPTZ = DEASSERTED;
PNEU_ACCEPT3 = DEASSERTED;

Delay (Delay_1lS_Cnt/8)

PNEU_MAIN = ASSERTED;

PNEU_UPPER = ASSERTED;

PNEU_ACCEPTO = ASSERTED;
PNEU_ACCEPT1 = ASSERTED;
PNEU_ACCEPTZ = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;
Delay (belay_1S Cnt/8);

/+ Cycle Lighting +/

for (i = 0; 1 < 4; i++) {
IO_LED_FL1 = DEASSERTED;
IO_LED_BLO = ASSERTED;
Delay (Delay_1S5_Cnt/8);
IO_LED_BLG = DEASSERTED;
IQ_LED_BL1 = ASSERTED;
Delay (Delay_1S_Cnt/8);
TO_LED_BL1 = DEASSERTED;

IO_LED_FLO = ASSE
Delay (Delay_1S_C

IO0_LED_FLO = DEAS

IO_LED_FL1 = ASSE

Delay (Delay_ 1S_C
}

#if 1

for (i = 0; i < 5;
IO_CAM_TRIGO = AS
I0_CAM_TRIGl = AS
Delay (Delay_ 1S_C

RTED;
nt/8);

SERTED;
RTED;
nt/8);

i++) |
SERTED;
SERTED;
nt);

10..CAM_TRIGO = DEASSERTED;
IO0_CAM_TRIG1 = DEASSERTED;

Delay (Delay 1S_C
}
#endif

void
init_io (wvoid)

{

/+* Turn OFF all pne
PNEU_MAIN = ASSERTE
PNEU_UPPER = ASSERT

nt);

umatic valves */
D;
ED;

PNEU_ACCEPTO = ASSERTED;
PNEU_ACCEPT1 = ASSERTED;
PNEU_ACCEPT2 = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;

/% Set Tristate Mode of Pneumatics I1I/0 x*/
PNEU_MAIN_TRIS = FALSE;
PNEU_UPPER_TRIS = FALSE;

PNEU_ACCEPTO_TRIS =
PNEU_ACCEPT1_TRIS =
PNEU_ACCEPTZ_TRIS =
PNEU_ACCEPT3_TRIS =

/#+ Turn OFF all LED

FALSE;
FALSE;
FALSE;
FALSE;

back/front light controls

10_LED_BLO = DEASSERTED;
T10_LED_BL1 = DEASSERTED;
TO_LED_FL0 = DEASSERTED;
T10_LED_FL1 = DEASSERTED;

*/

206

D. SYSTEM CONTROL BOARD FIRMWARE

/* Set Tristate Mode of LED I/O */
I0_LED_BLO_TRIS = FALSE;
IO_LED_BL1_TRIS = FALSE;
I0_LED_FLO_TRIS = FALSE;
IO_LED_FL1_TRIS = FALSE;

/% Turn OFF all Camera Trigger Signals +/
10_CAM_TRIGO = DEASSERTED;
IO_CAM_TRIGl = DEASSERTED;

/+ Set Tristate mode of Camera Triggers =/
10_CAM_TRIGO_TRIS = FALSE;
IO_CAM_TRIGL1_TRIS = FALSE;

/+ Set Tristate mode for I2C Bus Switch +/
12C_BUS_SW_AO_TRIS = FALSE;
I12C_BUS_SW_A1l_TRIS = FALSE;

/* Set Tristate mode for ESTOP Signals =/
ESTOP_SIGO_TRIS = TRUE;

ESTOP_SIG1_TRIS = TRUE;

ESTOP_SIG2_TRIS = TRUE;

BSTOP_SIG3_TRIS = TRUE;

/% Set Tristate mode for ESTOP Interrupt (INTO) =*/
JTO_ESTOP_INT_TRIS = TRUE;

/* Set Tristate mode for BI2C INT Signals =/
BI2C_INTO_TRIS = TRUE;
BIZC_INT1_TRIS = TRUE;
BI2C_INT2_TRIS = TRUE;
BI2C_INT3_TRIS = TRUE;

/+ Set Initial Value for PC Soft Power Control Outputs */
/+ Set Tristate mode for PC Soft Power Control =/

PC_PWR0O = FALSE;

PC_PWR] FALSE;

PC_PWR2 = FPALSE;

PC_PWR3 = FALSE;

PC_PWR0O_TRIS = PFALSE;
PC_PWR1_TRIS = FALSE;
PC_PWRZ_TRIS = FALSE;
PC_PWR3_TRIS = FALSE;

/+ Set Tristate mode for PC Soft Power Sense (inputs) +/
PC_SENSECO_TRIS = TRUE;
PC_SENSE1_TRIS = TRUE;
PC_SENSE2_TRIS = TRUE;
PC_SENSE3_TRIS = TRUE;

PC_SENSE(0 = TRUE;
PC_SENSE1l = TRUE;
PC_SENSE2 = TRUE;
PC_SENSE3 = TRUE;

/% Perform System Initialization

+ - Read current system parameters
+ - Set Initial Outputs for system Parameters
*+ - Initial System Fault Check
*/
void

init_sys (void)
{

char i;

/* Setup some initial system parameters +/
mtr_pulse_width = MTR_PULSE_WIDTH;
cam_trig0_pulse_width = CAM_TRIGO_PULSE_WIDTH;
cam_trigl_pulse_width = CAM_TRIG1_PULSE_WIDTH;
bl0_pulse_width = BLO_PULSE_WIDTH;
bll_pulse_width = BL1_PULSE_WIDTH;

207

D. SYSTEM CONTROL BOARD FIRMWARE

Fl10_pulse_width = FLO_PULSE_WIDTH;
fll_pulse_width = FL1_PULSE_WIDTH;

cam0O_pulse_position = CAMO_PULSE_POSITION_DEFAULT;
caml_pulse_position = CAM1_PULSE_POSITION_DEFAULT;
accept_on_pulse_position = ACCEPT_ON_PULSE_POSITION_DEFAULT;

accept_off_pulse_position = ACCEPT_OFF_PULSE_POSITION_DEFAULT;

mtr_running_freq = MTR_DEFAULT_FREQ;

/+ Set Analog Pins to Digital =#/
AD1PCFGL = Oxffff;
AD1PCFGH = 0Oxffff;
AD2PCFGL = Oxffff;

/+ Trigger Compensation =*/
if (motor_speed_target > 300) {
trigger_comp = (int) (0.09 x (double) motor_speed_target)
}
else |
trigger_comp = 0;
}

/+ Reset counters =/

for (i = 0; 1 < 4; i++) |
capsule_good_count[i] = 0;

capsule_bad_count[i] = 0;
capsule_total_count[i] =
}

0;

/+ Configure Timer2 for Qutput Capture #*/

T2CONbits.T32 = 0;

PR2 = (unsigned int) ((((double) Fcy)/ (double} motor_speed)
PR2 = PR2 / T2PF;

T2CONbits.TON = 1;

TZCONbits.TCKPS = T2TCKPS;

/+ Configure Timer3 for Output Compare x*/
PR3 = Ox{fff;

T3CONbits.TCKPS = 2;

T3CONbits.TON = TRUE;

/* Confiqure Timerd for I12C Bus Switch at about 12 kHzx/
TMR_BUS _SWITCH_CONbits.TON = TRUE;
TMR_BUS_SWITCH_PR = I2C_BUS_SW_PR;

/* Div by 8 PS */
TMR_BUS_SWITCH_CONbits.TCKPS = 3;
TMR__BUS_SWITCH_IF = FALSE; /+ Clear Interrupt Flag #/
TMR_BUS_SWITCH_IE = TRUE; /+ Enable Interrupt =*/

i12¢_bus_lock = FALSE;
i2c¢_bus_lock_count = 0;
i2c_bs_active_bus = 0;

/+ Enable All Input Captures for Proximity Sensors =/
IC_PSO_CONbits.ICM = ICM_FALL_EDGE;
IC_PS0_CONbits.ICTMR = ICTMR_TIMERZ;

IC_PSO_IE = TRUE;

IC_PS1_CONbits.ICM = ICM_FALL_EDGE;
IC_PS1 _CONbits.ICTMR = ICTMR TIMERZ2;
IC_P$1_IE = TRUE;

1C_PS2_CONbits.ICM = ICM_FALL_EDGE;
IC_PS2_CONbits.ICTMR = ICTMR_TIMERZ2;
IC_PS2_IE = TRUE;

IC_P$3_CONbite.ICM = ICM_FALL_EDGE;
TC_PS3_CONbits.ICTMR = ICTMR_TIMERZ;
IC_PS3_IE = TRUE;

/+ Enable Output Compare to generate LED Backlight Pulse x/
OC_LED_BLO_CONbits.0OCM = OCM_DISABLED;
OC_LED_BLO_CONbits.OCTSEL = OCTSEL_TIMER3;

34;

1.0);

208

http://IC_PS3._CONbits.ICM
http://OC_.LED_BL0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

OC_LED_BLO_R = 0;

;
OC_LED_BLO_RS = BLO_PULSE_WIDTH;

OC_LED_BL1_CONbits.OCM = OCM_DISABLED;
OC_LED_BL1_CONbits.OCTSEL = OCTSEL_TIMER3;

OC_LED_BL1_R = 0;

OC_LED_BL1_RS = BL1_PULSE_WIDTH;

OC_CAM_TRIGO_CONbits.OCM = OCM_DISABLED;
OC_CAM_TRIGO_CONbits.OCTSEL = OCTSEL_TIMER3;

OC_CAM_TRIGO_R = 0;

OC_CAM_TRIGO_RS = CAM_TRIGO_PULSE_WIDTH;

OC_CAM_TRIG1l_CONbits.OCM = OCM_DISABLED;
OC_CAM_TRIG1_CONbits.OCTSEL = OCTSEL_TIMER3;

OC_CAM_TRIG1_R = 0;

OC_CAM_TRIG1_RS = CAM_TRIG1_PULSE_WIDTH;

/» Enable Output Compare to generate PWM for motor control

/+ Initially OFF #*/

OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;

OC_MTR_CTRL_CONbits.OCTSEL =

OC_MTR_CTRL_R = 0;

/+ Use Timer2 x*/
OCTSEL_TIMERZ;

OC_MTR_CTRL_RS = MTR_PULSE_WIDTH;

OC_MTR_CTRL_IF = DEASSERTED;
OC_MTR_CTRL_IE = TRUE;

/* Configure Timer5 for Ramp
PR5 = 200;

TSCONbits.TON = FALSE;
T5CONbits.TCKPS = 3;
IFSlbits.T5IF = FALSE;
IEClbits.TS5IE = TRUE;

ramp_mode = RAMP_NONE;
motor_speed = MOTOR_MIN_FREQ;

Up/Down =/

motor_speed_target = MOTOR_MIN_FREQ;

/% Start Heartheat Timer */
PR8 = 32535;
T8CONbits.TCKPS = 3;
T8CONbits.TON = TRUE;
IEC3bits.T8IE = TRUE;

/* LCD Timer =/

PR7 = 65535;
T7CONbits.TCKPS = 3;
T7CONbits.TON = FALSE;
IFS3bits.T7IF = FALSE;
IEC3bits.T7IE = TRUE;

/+ Start the Still Image Capture Timer +/

PRY = 30000;
TOCONbits .TCKPS = 3;
IEC3bits.T9IE = TRUE;

/+ Setup InterruptQ for E-Stop Interrupt =/

INT_ESTOP_CONbits.INTOEP = 1;
INT_ESTOP_IF = DEASSERTED;
INT_ESTOP_IE = TRUE;

/+ Setup Interruptl for BIZ2C
INT_BI2C_CONbits.INTLEP = 1;
INT_BI2C_IF = DEASSERTED;
INT_BI2C_IE = TRUE;

/* Check Motor Step Position.
* system functions
*/

/% Interrupt on negative edge
/* Reset interrupt flag #*/
/+ Enable ESTOP interrupt */

Interrupt =*/
/+ Interrupt on positive edge

For given position trigger

static inline void motor_step_hdlr (void)

*/

*/

*/

209

D. SYSTEM CONTROL BOARD FIRMWARE

unsigned char i;
unsigned char tjob;
unsigned int pc_test;

pc_test = pulse_counter + trigger comp;

if (pc_test >= PULSES_PER _HOLDER) {
pc_test = (pulse_counter + trigger_comp) - PULSES_PER_HOLDER;
}

if (pulse_counter == accept_on_pulse_position) ({
/* Enable Pneu Act - Station 0+/
if (cap_count < 1) {
if (capsule_passfail[0]) [cap_count + 15] == 2) |{
PNEU_ACCEPTO = DEASSERTED;
capsule_good_count [0]++;
)
else if (capsule_passfail[0] (cap_count + 15] == 1} {
capsule_bad_count [0]++;
}
}
else |
if (capsule_passfail [0] [cap_count - 1] == 2) {
PNEU_ACCEPTO = DEASSERTED;
capsule_good_count {0] ++;
}
else if (capsule_passfail(0] [cap_count - 1] == 1} {
capsule_bad_count [0]++;
}
}

/+* Enable Pneu Act - Station 1x/
if (cap_count < 1) {
if (capsule_passfaill[l] [cap_count + 15] == 2) {
PNEU_ACCEPT1 = DEASSERTED;
capsule_good_count [1]++;
}
else if (capsule_passfail[l] [(cap_count + 15} == 1) {
capsule_bad_count [1]++;
}
}
else {
if (capsule_passfail[l][cap_count - 1} == 2) {
PNEU_ACCEPT1 = DEASSERTED;
capsule_good_count [1]++;
}
else if (capsule_passfail(l] [cap_count - 1] == 1) {
capsule_bad_count [1]++;
}
}

/% Enable Pneu Act - Station 2x/
if (cap_count < 1} {
if (capsule_passfail[2][cap_count + 15] == 2) {
PNEU_ACCEPTZ2 = DEASSERTED;
capsule_good_count [2]++;
}
else if (capsule_passfail([2]{cap_count + 15] == 1) {
capsule_bad_count {2]++;
}
}
else |
if (capsule_passfaill2][cap_count - 1] == 2) {
PNEU_ACCEPTZ2 = DEASSERTED;
capsule_good_count [2]++;
}
else if (capsule_passfail([2][cap_count — 1] == 1) {
capsule_bad_count [2]++;
}
}

/* Enable Pneu Act - Station 3x/
if (cap_count < 1) |

210

D. SYSTEM CONTROL BOARD FIRMWARE

if (capsule_passfail[3] [cap_count + 15] == 2} {
PNEU_ACCEPT3 = DEASSERTED;
capsule_good_count [3]++;
}
else if (capsule passfail{3][cap_count + 15]) == 1} {
capsule_bad count [3)++;
}
}
else {
if (capsule_passfail[3] {cap_count — 1] == 2) {
PNEU_ACCEPT3 = DEASSERTED;
capsule_good_count [3]++;
}
else if (capsule_passfail([3]{cap_count - 1] == 1) {
capsule_bad_count [3]++;
}

}

if (pulse_counter == accept_off_pulse_position) {
PNEU_ACCEPTO = ASSERTED;
PNEU_ACCEPT1 = ASSERTED;
PNEU_ACCEPT2 = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;
}

if (pc_test == cam0O_pulse_position) (
/+ Enable Trigger(0 and BLO strobe x/
/* Reset Timer 3 for Backlight control and Camera Trigger Control =/
T3CONbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight OQutput Compare #*/
OC_LED_BLO_CONbits.0OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIGO_CONbits.OCM = OCM_SINGLE_PULSE;

/+ Enable Timer */
T3CONbits.TON = TRUE;
}

pc_test = pulse_counter + trigger_comp + extra_comp;

if (pc_test >= PULSES_PER_HOLDER} {
pc_test = (pulse_counter + trigger_comp + extra_comp) - PULSES_PER_HOLDER;
}

if (pc._test == caml_pulse_position) {
/+ Enable Triggerl and BL1 strobe =/
/+ Reset Timer 3 for Backlight control and Camera Trigger Control +/
T3CONbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BLI1_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIG1_CONbits.OCM = OCM_SINGLE_PULSE;

/+ Enable Timer +/
T3CONbits.TON = TRUE;
}

if (pc_test == 470) {
if (one_step) {
/+ Disable Motor =/
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
/* Flash BLO and send trigger +/
T3CONbits.TON = FALSE;
TMR3 = 0;

/% Enable Single Pulse Mode for LED Backlight Output Compare =/
OC_LED_BLO_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIGO_CONbits.0OCM = OCM_SINGLE_PULSE;

T3CONbits.TON = TRUE;
PNEU_MAIN = ASSERTED;

211

http://OC_CAM_.TRIG0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

one_step = 0;

}

void
i2c2_request_hdlr (unsigned char i_job)
{

unsigned char ret;

/+ Data formatted as follows

dataf{0] ~ I2C Slave Address

datafl} - Read/Write Direction

datal2-15] - I2C transfer buffer

be - holds data size (including byte 0 and 1)

)

/+ Check for Read / Write +/
if (!job_list[i_jobl}.datall]l) |
ret = i2c2_write (job_list(i_job].datal[0], *(job_list[i_job].data + 2), job_list[i_jobl.bc - Z);

/#+ MHandle incoming command from the UARTZ2 module
*/
void
vart2_hdlr (void)
{
unsigned char i = 0, err = 0, c;
unsigned char cmd;
unsigned char dat[2];
unsigned char tjob;
unsigned char tmp;
unsigned long ltmp;

/+ Perform Error Check on data =/
for (c = uvart_rx.rd; ¢ < uvart_rx.rd + 3; c++) {
if ((uart_rx_buf{c] ~ uvart_rx_bufl[c+3]) != 0xff)
errd+;
}
/* Respond accordingly #*/
if (err) |

U2TXREG = 0x15; /* NACK =/

/* Reset buffer pointers equal x/

vart_rx.rd = uvart_rx.wr = 0;
vart_cmd _flag = 0O;
return;
}
else |
U2TXREG = 0x06; /+ ACK */

/+ Wait for ACK msg to be sent x/
while (!U2STAbits.TRMT) ;
I

cmd = uart_rx_buf[uart_rx.rdl;

vart_rx.rd++;
if (uvart_rx.rd >= MAX_UART_RX_BUF)

vart_rx.rd = 0;
for (; i < 2; i++) {
dat[i] = uart_rx_bufluart_rx.rd)];

vart_rx.rd++;
if (uart_rx.rd >= MAX_UART_RX_BUF)
vart_rx.rd = 0;

}

switch (cmd) {
/+ Set Commands #*/
case UARTCMD_SET_MOTOR_STAT:

212

D. SYSTEM CONTROL BOARD FIRMWARE

switch (dat[0}) {
case Oxff:
/+ Enable Motor */
enable_motor (};
break;

default:
/* Disable Motor +/
disable_motor ();
break;
}
break;

case UARTCMD_SET_MOTOR_FREQ:
motor_speed_target = dat[l];
motor_speed_target |= dat[0] << 8;

if (motor_speed_target < MOTOR_MIN_FREQ)
motor_speed_target = MOTOR_MIN_FREQ;

mtr_running freq = motor_speed_target;

/* If Running, ramp appropriately */
if (OC_MTR_CTRL_CONbits.OCM) {
if (motor_speed_target > motor_ speed) {
ramp_mode = RAMP_UP;
T5CONbits.TON = TRUE;
}
else if (motor speed_target == motor_speed) {
/* Do Nothing #*/
}
else {
ramp_mode = RAMP_DOWN;
T5CONbits.TON = TRUE;

}
break;
case UARTCMD_SET_ BLO_WIDTH:

/% Set BLO Pulse Width =/
bl0_pulse_width = dat[1];

bl0_pulse_width |= (dat[0] << 8);
OC_LED_BLO_RS = bl0_pulse width;
break;

case UARTCMD_SET_BL1 WIDTH:
/+ Set BL1 Pulse Width =/
bll_pulse_width = dat[1l];

bll_pulse_width [= (dat[0] << 8);
OC_LED_BL1_RS = bll_pulse_width;
break;

case UARTCMD_SET_FLO_WIDTH:
/% Set FLO Pulse Width =/
f10_pulse_width = dat[l];

£10_pulse_width |= (dat[0] << 8);
OC_LED_FLO_RS = fl10_pulse_width;
break;

case UARTCMD_SET _FL1_WIDTH:
/+ Set FL1 Pulse Width =/
11 _pulse_width = dat{1l);

f11 _pulse_width |= (dat[0] << 8);
OC_LED_FL1_RS = fll1_pulse_width;
break;

case UARTCMD_RESET_COUNTERS:
/+ Reset capsule counters +/

for (i = 0; i < 4; i++) {
capsule_good_count[i] = 0;
capsule_bad_count[i] = 0;

}

break;

213

D. SYSTEM CONTROL BOARD FIRMWARE

case UARTCMD_DEBUG_MODE:
/+ Set in debug mode */
switch (dat[0]) {
case Oxff:
debug_mode (1};
break;

default:
debug_mode (0);
break;
}

break;

case UARTCMD_ONE_STEP:

/% Set in debug mode +/

if (dat (0] == Oxff) {
/* Display Message on LCD =/
add_job (LCD_CLEAR);
tjob = get_next_job(};
job_list{tijob).datallé] = 1;
job_list{tjob].data{l7] = 0;
job_list [tjob).bc = 14;
sprintf (job_list[tjob].data, "
add_job (LCD_WRITE);

One—-Step Mode");
one_step = 1;
QC_MTR_CTRL_CONbits.OCM = OCM_CONT_PULSE;

PNEU_MAIN = DEASSERTED;
}

break;

case UARTCMD_POWER_ON_PCS:
tjob = geb_next_job();

job_list{tjob).datal0] = dat[0];
add_job (PC_POWER_SET) ;
break;

case UARTCMD_SET_CAMO_PULSE_POS:
canl_pulse_position = dat[1l];
camC_pulse_position {= (dat{[0] << 8);
break;

case UARTCMD_SET_CAM1_PULSE_POS:

caml_pulse_position = dat[1l];
caml_pulse_position {= (dat[0] << 8);
break;

case UARTCMD_SET_ACCEPT_ON_PULSE_POS:

accept_on_pulse_position = dat{l);
accept_on_pulse_position |= {(dat[0] << 8);
break;

case UARTCMD_SET_ACCEPT_OFF_PULSE_POS:
accept_off_pulse_position = dat[1l];
accept_off _pulse position |= (dat[0] << 8);
break;

/* Get Commands =/

case UARTCMD_GET_MOTOR_STAT:
/#* Respond with Motor Status - on / off x/
UZTXREG = (OC_MTR_CTRL_CONbits.OCM) ? Oxff
break;

0x00;

case UARTCMD_GET_MOTOR_FREQ:
/* Respond with motor pulse freq =*/

U2TXREG = (mtr_running_freq >> 8) & Ox00ff;
U2TXREG = mtr_running freq & 0x00ff;
break;

case UARTCMD_GET_BLO_WIDTH:

214

D. SYSTEM CONTROL BOARD FIRMWARE

/# Respond with BL0O pulse width «/

U2TXREG = (bl0_pulse width >> 8) & Oxff;

U2TXREG = bl0_pulse width & Oxff;
break;

case UARTCMD_GET_BL1_WIDTH:
/+ Respond with BLl pulse width =/

U2TXREG = (bll_pulse_width >> 8) & Oxff;

U2TXREG = bll_pulse width & Oxff;
break;

case UARTCMD_GET_FLO_WIDTH:
/* Respond with FLO pulse width =/

U2TXREG = (fl0_pulse_width >> 8) & Oxff;

U2TXREG = fl10_pulse_width & Oxff;
break;

case UARTCMD_GET_FL1 WIDTH:
/+ Respond with FL1 pulse width =/

U2TXREG = (fll_pulse_width >> 8) & Oxff;

UZ2TXREG = fl11_pulse_width & Oxff;
break;

case UARTCMD_GOOD_COUNT:

/+ Respond with Good capsule counter value - 4 bytes =/

switch (dat(0]) {

case 1:
ltmp = capsule_good_count{0];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 2:
ltmp = capsule_good_count[1l];
U2TXREG = {(ltmp >> 24) & Oxff;

while (U2STAbits.UTXBF);
U2ZTXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF};
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
UZTXREG = ltmp & Oxff;

break;

case 3:
ltmp = capsule_good_count[2];
U2TXREG = (ltmp >> 24) & Oxff;

while (U2S5TAbits.UTXBF);
U2TXREG = (ltmp >> 16} & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 4:
ltmp = capsule_good_count[3];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF};
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

default:
break;
}
break;

case UARTCMD_BAD_COUNT:

/* Respond with Bad capsule counter value - 4 bytes x/

215

D. SYSTEM CONTROL BOARD FIRMWARE

switch (dat[0)) {

case 1:
ltmp = capsule_bad_count[0]);
UZTXREG = (ltmp >> 24) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16} & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
UZTXREG = ltmp & Oxff;

break;

case 2:
ltmp = capsule_bad_count[l];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16} & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 3:
ltmp = capsule_bad_count[2];
U2TXREG = (ltmp >> 24) & O0xff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 4:
ltmp = capsule_bad_count{3);
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

default:
break;
}
break;

case UARTCMD_TOTAL_COUNT:
/* Respond with Bad capsule counter value - 4 bytes #/
switch (dat([0]) {

case 1:
ltmp = capsule_total_count{0];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = {(ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 2:
ltmp = capsule_total_count([1l];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2S5TAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 3:
ltmp = capsule_total_count[2];
U2TXREG = (ltmp >> 24) & Oxff;

while (U2STAbits.UTXBF);

216

D. SYSTEM CONTROL BOARD FIRMWARE

UZ2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;

break;

case 4:
ltmp = capsule_total count[3];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF};
U2TXREG = (ltmp >> 8) & Oxff;

while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

default:
break;
}

case UARTCMD_GET_CAMO_PULSE_POS:
/+ Respond with motor pulse freq =/

U2TXREG = (cam0_pulse_position >> 8) & O0x00ff;
U2TXREG = cam0_pulse_position & Ox00ff;
break;

case UARTCMD_GET_CAM)_PULSE_POS:
/% Respond with motor pulse freq =/

U2TXREG = (caml_pulse_position >> 8) & O0x00ff;
U2TXREG = caml_pulse_position & O0x00ff;
break;

case UARTCMD_GET_ACCEPT_ON_PULSE_POS:
/+ Respond with motor pulse freg =/
U2TXREG = (accept_on_pulse_position >> 8) & 0x00ff;
U2TXREG = accept_on_pulse_position & 0x00ff;
break;

case UARTCMD_GET_ACCEPT_OFF_PULSE_POS:
/* Respond with motor pulse freq #*/

U2TXREG = (accept_off _pulse position >> 8) & O0x00ff;
U2TXREG = accept_off_pulse_position & OxDOff;
break;

case UARTCMD_GET_PC_PWR_STATE:
/* Respond with power state of PCs #*/

tmp = 0;

tmp |= pc_pwr_status([0].state & 0x03;

tmp = ((pc_pwr_status(l].state << 2) & 0Ox0c);
tmp |= ({(pc_pwr_status{2].state << 4) & 0x30);
tmp |= ({(pc_pwr_status[3].state << 6) & Oxc0});

U2TXREG = tmp;
break;

default:
/* Do nothing =/
break;
}

/% Set buffer pointers equal */
vart_rx.rd = uvart_rx.wr = 0;
uart_cmd_flag = 0;

//complete_job({();

void

enable_motor (veoid)

{
unsigned char tjob;
char msg(16]);

217

D. SYSTEM CONTROL BOARD FIRMWARE

system_status.state = MACHINE_RUNNING;
/+ Enable Motor »/
motor_speed_target = mtr_running_freq;

add__job (LCD_CLEAR);

/% Display Message on LCD */

tjob = get_next_job(};

job_list[tjob].datall6] = 1;
job_list[tjob].datall7] = 0;

job_list[tjob].bc = 13;

sprintf (job_list[tjob].data, "Motor Enabled");
add_job (LCD_WRITE);

tjob = get_next_job({);

job_list[tiob].datallé] = 2;
job_list(tijobl.datal[l7] = 0Q;

sprintf (msg, "Speed: %d Hz", motor_speed_target);

job_ltist[tjob).bc = strlen (msg);
sprintf (job_list[tjobl.data, msqg);
add_job (LCD_WRITE);

led_lock = LCD_LOCK_TIMEOUT;

if (motor_speed < motor_ speed target) |
OC_MTR_CTRL_CONbits.OCM = OCM_CONT_PULSE;
ramp_mode = RAMP_UP;
motor_stop_flag = FALSE;
TS5CONbits.TON = TRUE;

void
disable_motor (void)

{
unsigned char tjob;

if (system status.state = MACHINE_RUNNING)
system_status.state = MACHINE_STOPPED;

add_job (LCD_CLEAR);

/#* Display Message on LCD +/

tjob = get_next_job();

job_list{tjob).datal(l6] = 1;
job_listltjobl).datall7] = 0;

job_list[tjob).bc = 14;

sprintf (job_list[tjob].data, "Motor Disabled");
add_job (LCD_WRITE);

lcd_lock = LCD_LOCK_TIMEOUT;

motor_speed_target = MOTOR_MIN_ FREQ;

if (motor_speed > motor_speed_target) {
ramp__mode = RAMP_DOWN;
motor_stop_flag = TRUE;
T5CONbits.TON = TRUE;

void
debug_mode (int set)
{

int tjob;

/+ Display Message on LCD =/

add_job (LCD_CLEAR);

tjob = get_next_job(};

job_list(tjob].datall6] = 1;
job_list(tiobl.datall?] = Q;

job_list[tjob).bc = 13;

sprintf (job_list([tjob].data, " Debug Mode");

218

D. SYSTEM CONTROL BOARD FIRMWARE

add_job (LCD_WRITE);

if (set) |
if (system _status.state == MACHINE_RUNNING)
disable_motor();

system_status.state = MACHINE_DEBUG;

/+ Display Message on LCD #/
tjob = get_next_job();

job _list([tjob].data(lée) = 2;
job_list[tjob).datall7] = 0;
job_list[tjob).bc = 12;

sprintf (job_list[tjob).data, "
add_job (LCD_WRITE);

Enabled");

/* Enable Timer 9 +/
TY9CONbits.TON = TRUE;
}
else |{
system_status.state = MACHINE STOPPED;

/+ Display Message on LCD x/
tjob = get_next_job(};
job_list [tjobl.data(l6] =
job_list[tijob].datal[l7] =
job_list[tjob].bc = 13;
sprintf (job_list{tjob].data, "
add_job (LCD_WRITE);

o N

Disabled");

/% Disable Timer 9 #*/
TOCONbits.TON = FALSE;

void

calibrate_sys (wvoid)

{
/% initially set to 1 (arbitrary) =/
pulse_counter = 1;

motor_stop_flag = FALSE;

/+ Write to LCD =/
lcd_clear ();
led_print ("Calibrating...", 14);

/+ Align to Zero Position =/
/+ Set Motor Speed =/

PR2 = Ox03ff;

T2CONbits.TON = 1;

/* Enable Calibration Mode #/
calibration_mode = 1;

/+ Start Motor =/

/# Initially OFF +/
OC_MTR_CTRL_CONbits.OCM = OCM _DISABLED;

/+ Use Timer2 »/
OC_MTR_CTRL_CONbits.OCTSEL = OCTSEL_TIMER2;
OC_MTR_CTRL_CONbits.OCM = OCM_CONT_PULSE;

/+ Wait for calibration to complete =/
while (calibration_mode);

void

set_pc_pwr (unsigned char pc)

{
/% Check pc number, if 0xff, power all =/
if (pc == Oxff) {

219

D. SYSTEM CONTROL BOARD FIRMWARE

/* Switch PWR SW signal to ALL MBs to ON */
PC_PWR0O = TRUE;
PC_PWR1 = TRUE;
PC_PWR2 = TRUE;
PC_PWR3 = TRUE;

/+ Delay for 400 ms */
Delay (Delay_ ImS_Cnt = 400);

/% Switch PWR SW signal to ALL MBs to OFF */
PC_PWRO = FALSE;
PC_PWR1 = FALSE;
PC_PWR2 = FALSE;
PC_PWR3 = FALSE;
}
else if (pc == 0) {
/+ Switch PWR SW signal to MB 0 to ON »*/
PC_PWR0O = TRUE;

/+ Delay for 400 ms */
Delay (Delay_1lmS_Cnt * 400);

/* Switch PWR SW signal to MB 0 to OFF «+/
PC_PWR0O = FALSE;

)

else if (pc == 1) {
/+ Switch PWR SW signal to MB 1 to ON */
PC_PWR1 = TRUE;

/+ Delay for 400 ms #/
Delay (Delay_1mS_Cnt = 400);

/% Switch PWR SW signal to MB 1 to OFF x/
PC_PWR1 = FALSE;

}

else if (pc == 2) {
/+ Switch PWR SW signal to MB 2 to ON */
PC_PWR2 = TRUE;

/* Delay for 400 ms +/
Delay {(Delay_1mS_Cnt x 400);

/* Switch PWR SW signal to MB 2 to OFF */
PC_PWR2 = FALSE;

}

else if (pc == 3) |
/* Switch PWR SW signal to MB 3 to ON x/
PC_PWR3 = TRUE;

/* Delay for 400 ms +/
Delay (Delay_1mS_Cnt = 400);

/+ Switch PWR SW signal to MB 3 to OFF #/
PC_PWR3 = FALSE;

D.4 i2c_slave.h

/+ iZ2¢c_slave.h

=omomm=oo=o= B e e == ===

%+ Routines to handle I2C Slave module. Uses I2C_1 module for

+ slave, and I2C_2 for master.
*

*

+ Author: Neil Scott

+ Date: September 12, 2007
*/

#ifndef IZC_SLAVE_H
#define I1Z2C_SLAVE_H

220

D. SYSTEM CONTROL BOARD FIRMWARE

#include <p33FJ256GP710.h>
#include "common.h"

void init_i2c_slave (void);

$endif /+ IZ2C_SLAVE_H =/

D.5 1i2c_slave.c

e
. _ . —e - -
*
+ slave, and I2C_2 for master.
*
*
* Author: Neil Scott
+ Date: September 12, 2007
*/

#include "common.h"

#define I2C1_FREQ 100000 /* Hz */

#define I12C1_BRG 363 /* ((Fcy / I2C2_FREQ} - (Fcy / 1111111)) — 1 */
extern struct JOB job_list [MAX_JOBS];

extern int cap_id;

extern unsigned char cap_count;

extern unsigned char capsule_passfail[4][16];

extern volatile unsigned char i2c_bs_active_bus;

extern volatile struct PC _PWR_STATUS pc_pwr_status[4];

volatile unsigned char i2c_cmd;
volatile unsigned char i2c_data;

volatile unsigned char i2cl_data_flag;
volatile unsigned char i2cl_addr_flag;
volatile unsigned char i2c¢l_cmd_flag;
volatile unsigned char i2cl_last_cmd;

/+ Interrupt Service routine for I2C Slave module =/
void
__attribute___((interrupt, no_auto_psv)) _SI2ClInterrupt (void)
{

unsigned char tjob;

unsigned char tmp;

static unsigned char i__job;

unsigned char cap_id;

static unsigned char cmd;

unsigned char data;

unsigned char buf;

unsigned char bc;

/+* Reset I12C Bus Switch Timer x/
TMR_BUS_SWITCH_TMR = TMR_BUS_SWITCH_PR/4;

/+ Create a Job »/

if (!T2C1STATbits.R_W) {
buf = I2C1RCV;

bc = 1;

}

else |
tmp = I2C1RCV;
bc = 0;

}

/% Clear Interrupt Flag =*/
IFSlbits.SI2CLIF = O;

if (bc) {
/% Unload Address from Receive Buffer +/

221

D. SYSTEM CONTROL BOARD FIRMWARE

if (!i2c¢l_addr_flag) {
i2cl_addr_flag = TRUE;
return,;

}

/+ Get Command x/
if (!i2cl_data_flag) {
cmd = buf;
i2cl_data_flag = TRUE;
return;
}
}
else |
I2C1TRN = cap_count;
I2C1CONbits.SCLREL = TRUE;
}

switch (cmd) |
case I2CCMD_GET_CAPID:
/* Check for read +/
if (!bc) {
12C1TRN = cap_count;
12C1CONbits.SCLREL = TRUE;

i2cl_data_flag = FALSE;
iZ2cl_addr_flag = FALSE;
}
break;

case I2CCMD_SET_PF:
data = buf;
cap_id = ((0xf0 & data) >> 4} & 0xOf
capsule_passfail[i2¢_bs_active_bus] [cap_id] = data & 0x0f;

i2c¢l_data_flag FALSE;
i2cl_addr_flag = FALSE;

break;

case I2CCMD_SET_PC_READY:
data = buf;
if (data)
pc_pwr_status[iZc_bs_active_bus].state |= PC_POWER_READY;

i2cl_data_flag FALSE;
iZ2cl_addr_flag = FALSE;

]

break;

default:
break;

void

init_12c_slave (void)

{
/% Enable I2C1 module as Slave x/
I2ClCONbits.I2CEN = TRUE;

/+ Set for 7-bit Address mode */
I2C1CONbits.A10M = FALSE;

/+ Disable Master Interrupt x/
IEClbits.MI2C1IE = FALSE;

/+ Enable Slave Interrupt +/
IEClbits.SI2CL1IE = TRUE;

/+ Set interrupt priority of SI2CI1IE x/
IPC4bits.SI2CL1IP = 0x06;

/* Clear Interrupt Flag =/

222

D. SYSTEM CONTROL BOARD FIRMWARE

1FS1bits.SI2C1IF = DEASSERTED;

/* Set SCL1 and SDAl as open drain +/
ODCGbits.0ODCG2 = TRUE; /+ SCL1 =/
ODCGbits.ODCG3 = TRUE; /+ SDAl +/

/% Set I2C Clock Rate x/
I2C1BRG = I2C1_BRG;

/+ Set 12C1 Slave Address +/
I2CIADD = I2C_SLAVE_ADDRESS;

/+ Clear Last Start and Set Last Stop Flag =*/
I2C1STATbits.P = 1;
I2C1STATbits.S = 0;

i2cl_data_flag = FALSE;

i2cl_addr_flag = FALSE;
i2cl_cmd_flag = FALSE;

D.6 i2c_commands.h

/*
* S A R S
+ Definitions for I2C slave module commands.
*
* Author: Neil Scott
* Date: September 17, 2007
*/

#ifndef I2C_COMMANDS_H
#define I2C_COMMANDS_H

#define I2CCMD_GET_CAPID 0xA0 /#* Get Capsule ID x/
#define IZCCMD_SET_PF 0x80 /+ Set Pass/Fail =*/
#define I2CCMD_SET _PC_READY 0x81 /x Set Ready Flag for Inspect Software +/

#endif /x I2C_COMMANDS_H +/

D.7 i2c 2.h

* Routines to handle I2C Master module using polling. The
* I2C_2 module is used as the master, and I2C_1 module is
* used as the slave.

*

Author: Neil Scott
Date: August 06, 2007
*/

#ifndef 12C_2_H
#define 12C_2_H

#include <p33FJ256GP710.h>
void init_i2c2 (veoid);
char i2c2_write (unsigned char addr, const unsigned char xbuf, unsigned char len);

char i2c¢2_read (unsigned char addr, unsigned char xbuf, unsigned char len);

#endif /x I2C 2 H +/

D.8 1i12c 2.c

D. SYSTEM CONTROIL BOARD FIRMWARE

/*
* O —— -
* es to handle I2C Master module using polling. The
* I2C_2 module is used as the master, and I12C_1 module is
* used as the slave.
*

+ Author: Neil Scott
* Date: August 06, 2007
*/

#include "i2c_2.h"
#include "common.h"

#define ACK_TIMEOUT 40

#define 12C2_FREQ 100000 /+ Hz */

#define 12C2_BRG 363 /+ ((Fcy / I2C2_FREQ) - (Fcy / 1111111))
#define TIMEQUT_SEN 2500 /+ Start Enable Response Timeout #*/
#define TIMEOUT_TRN 800

#define TIMEOUT PEN 250

#define TIMBOUT_ACKSTAT 350

#define TIMEOUT_TBF 250

#define TIMEOUT_RCEN 250

#define TIMEOUT JDONE 250

volatile unsigned char jDone;

/% 1202 Master Module Interrupt Service Routine */

void
__attribute_ ((interrupt, no_auto_psv)) _MI2C2Interrupt (wvoid)
{

jDone = 1;

/* Clear Interrupt Flag =/
IF53bits . MI2C21F = DEASSERTED;

void

init_i2c2 (void)

{
/* Set SCL2 and SDA2 as open drain =/
ODCAbits.ODCA2 = TRUE; /* SCL2 =/
ODCAbits.ODCA3 = TRUE; /* SDAZ */

/* Set I2C Clock Rate */
T2C2BRG = 12C2_BRG;

/+ Enable the I2C Module as Master x/
I12C2CONbits.I2CEN = TRUE;

/+ Enable Master Interrupt x/
IEC3bits.MI2C2IE = TRUE;

/+ Clear Interrupt Flag =/
IFS3bits.MI2C2IF = DEASSERTED;

/+ Reset Done Flag +/
jDone = ©0;

/% Returns zero on success x/

char

i2¢c2_write (unsigned char addr, const unsigned char xbuf, unsigned char len)
{

unsigned char count = 0;

unsigned int timeout 0;
jbone = 0;

I2C2CONbits.SEN = TRUE;
Nop () ;

timeout = TIMEOUT_SEN;

while (!jDone && timeout) {
timeout——;

224

D. SYSTEM CONTROL BOARD FIRMWARE

}

if (‘timecut) {
return ERR_I2C_MASTER_START;
}

jDone = 0;
12C2TRN =
Nop () ;

timeout = TIMEOUT_TRN;

(addr << 1);

while (!jDone && timeout) {
timeout-—;
}

if (!timeout) {
return ERR_TZ2C_MASTER_TRN;
}

/+ Check for ACK =%/

if (I2C2STATbits.ACKSTAT) |
return ERR_I2C_MASTER_NACK;

}

Nop (};

for (; count < len; count++) {
I2C2TRN = buf{count];
timeout = TIMEOUT_TBF;
Nop (};
jbone = 0;
timeout = 2000; //TIMEOUT JDONE;

o

while (!jDone && timeout) {
timeout--;

}

if (I2C2STATbits.ACKSTAT) {
return 1;

}

if (!timeout) {

return 1;

}

Nop () ;
}
jDone = 0;
I2C2CONbits.PEN = TRUE;
Nop () ;
Nop () ;
while (!iDone);
return O;

/+ Returns non-zero on success +/

char

i2c2_read (unsigned char addr, unsigned char »buf, unsigned char len}
{

unsigned char count = 0;

unsigned int timeout = 0;
jDone = 0;

I2CZ2CONpits.SEN = TRUE;
Nop () ;

Nop () ;

timeocut = TIMEOUT_SEN;

while (!jDone && timeout) |
timeout--;

225

D. SYSTEM CONTROL BOARD FIRMWARE

}

if (!timeout) {
return -1;

}

/% For Read, bit 0 must be high =/
jDone = 0;
I2C2TRN =
Nop () ;

timeout = TIMEQUT_TRN;

(addr << 1) | 0x01;

while (!jDone && timeout) {
timeout——;

)

if (!timeout) {
return ERR_I2C_MASTER_TRN;
1

/# Check for ACK =/
if (I2C2STATbits.ACKSTAT) {

return 1;
}
Nop () ;
for (; count < len; count++) {

jbone = 0;

/+ Enable Receive Mode +/
TZ2C2CONbits.RCEN = TRUE;

timeout = TIMEOUT_RCEN;

while (!jDone && timeout) {
timeout——;

}

buf[count] = I2C2RCV;

/+ If last byte, set to NACK, otherwise set to ACK x/
if (count == (len -~ 1)) {
/+ Set to send NACK */
I2C2CONbits.ACKDT = ASSERTED;
}
else
/4 Set to send ACK =*/
I2C2CONbits.ACKDT = DEASSERTED;
}

jbone = 0;

/* Generate ACK */
I2C2CONbits.ACKEN = TRUE;

while (!jDone);

}

jbone = 0;
12C2CONDits.PEN = TRUE;
Nop (} ;

timeout = TIMEOUT_PEN;

while (!jDone && timeocut) |
timeocut-—;

}

return 0;

226

http://I2C2.CONbits.RCEN

D. SYSTEM CONTROL BOARD FIRMWARE

D.9 1i2c_io_exp.h

/* 12¢c_io exp.h

* Contains definitions for 12C 1/0 Expansion board

* Author: Neil Scott
* Date: January 28, 2008
*/

#ifndef I12C_TO_EXP_H
#define I2C_IO_EXP_H

/+ I2C I/0 Expansion Board abstraction +/
struct I2C_IO_EXP
{
unsigned char i2c_addr;
unsigned char biZc_channel;
unsigned char inp;
unsigned char outp;
unsigned char ts_i2c_addr;
unsigned char ts_conf reg;
unsigned char ts_temp_reg[2];
)i

/+ Function Prototypes «/

int i2c_io_exp_write (struct I2C_IO _EXP rio_exp);

int i2c_io_exp_read (struct I2C_IO _EXP xio_exp);

int i2c_ioc_exp_set_ts_conf (struct I2C_IQ_EXP xio_exp);
int i2c_io_exp_get_ts_conf (struct I2C_IO_EXP xio_exp);
int i2c _io_exp_get _ts_temp (struct I2C_IO_EXP xio_exp);

#endif /» I2C_I0Q EXP_H +/

D.10 i2c_io_exp.c

* Routines to communicate with I1/0 expansion boards.

* Author: Neil Scott
Date: January 28, 2008

%

*/
#include "iZ2c_io_exp.h"

struct I2C_IO _EXP temp_sense;
struct I2C_IO _EXP io_side panel;
struct I2C_I0 EXP io_front panel;

/* Perform I2C request to write output data to the specified I2C I/0 Expansion board */
int i2c¢_io_exp_write (struct I2C_IO_EXP xioc_exp)
{

unsigned char data([2];

/% Must write OXFF to input port of NXP PCA8575 */
data[0] = Oxff;

/% Copy output data from structure #*/
data[l]) = io_exp->outp;

/* Send data to device =/
return (i2c2 _write (io_exp->i2c_addr, data, 2)};

/+ Perform I2C request to read input data from specified I2C I/0 Expansion Board */
int iZ2c_io_exp_read (struct I2C_IO_EXP +io_exp)
{

unsigned char dataf2);

227

D. SYSTEM CONTROL BOARD FIRMWARE

int ret;

ret = i2c2_read (io_exp->i2c_addr, data, 2);
/+ Copy data read from device to structure =/
io_exp->inp = datal0];
io_exp->outp = datall];

return ret;

/% Set the configuration register of the I2C temperature sensor +/
int i2c_io_exp_set_ts_conf (struet I2C_TO_EXP xio_exp)
{

unsigned char datal2];

/% To select Configuration register, first byte is 0x01 */
data[0) = 0x01;
datall} = io_exp->ts_conf_reg;

return (i2c¢2_write (io_exp->ts_i2c¢_addr, data, 2));

/* Read the configuration register of the I2C temperature sensor »/
int i2c¢_io_exp_get_ts_conf (struct I2C_IO_EXP *io_exp)
{

unsigned char datal2];

int ret;

/% To select Configuration register, must write 0x01 #*/
datal0] = 0x01;

if { ret = i2c2_write (io_exp->ts_i2c_addr, data, 1)) {
return ret;

ret = i2c2_read (io_exp->ts_i2c_addr, data, 1);
io_exp->ts_conf_reg = datal0];

return ret;

/#* Read the temperature register of the I2C temperature sensor =/
int i2c_io_exp_get_ts_temp (struct I2C_IO_EXP xio_exp)
{

unsigned char datal[2};

int ret;

/+ To select Temperature register, must write 0x00 x/
data[0] = 0x00;

if (ret = i2c¢2_write (io_exp->ts_i2c_addr, data, 1)) {
return ret;

ret = iZ2c2_read {(io_exp->ts_i2c_addr, &io_exp->ts_temp_reg, 2);

return ret;

D.11 lecd_i2c.h

*
*
* Header file for LCD module controlled over I2C using
* I/0 Extender.

* Author: Neil Scott

228

D. SYSTEM CONTROL BOARD FIRMWARE

* Date: August 14, 2007
*

* Standard HITACHI LCD (HD44780) Pinout:
*

* 1 — GND

* 2 - 5v

* 3 - LCD Driver Vee

* 4 ~ RS

* 5 ~ R/W

* 6 - Enable

* 7-14 - DATAQO to DATA7

+ 15 - LED+

* 16 ~ LED-

*/

#ifndef LCD_IZ2C_H
#define LCD_I2C_H

#define 12C_LCD_SLAVE_ADDR 0x27 /% 7-bit addr =/

/* Bitmasks */

#define bmLCD_RS 0x01
//#define bmLCD_RW 0x02 /+ Shorted to GND for write */
#idefine bmlLCD_PWR 0x02
#define bmLCD_EN 0x04
#define bmlLCD_LED 0x08
#define bmLCD_DATAQ 0x00
f#define bhmLCD_DATALl 0x00
#define bmLCD_DATAZ 0x00
#define bmLCD_DATA3 0x00
#define bmLCD_DATA4 0x10
#define bmLCD_DATAS 0x20
#define bmLCD_DATAG 0x40
#define bmLCD_DATA7 0x80

/+ Function Prototypes =/

char lcd_init (veid);

char lcd_push_nibble (char nibble);

char lcd_write_cmd (char cmd);

char lcd_write_data (char data);

char lcd_set_bl (char state);

char lcd_cursor_to {(char line, char x);

char lcd_print (char =msg, char len);

char lcd_clear (void);

char lcd_print_loc (char «msg, char line, char x);

#endif /» LCD I2C_H «/

D.12 led_i2c.c

/%
N N . e mmmme———=
* Routines to display text on LCD through I2C I/0 expander.
+ Requires the I2C routine function iZ2c2 _write().
*
*
* Author: Neil Scott
* Date: August 14, 2007
*/

#include "common.h"
#include "lcd_iZc.h"

#define DELAY_LCD_EN (Delay200uS_count+3
extern struct I2C_IO_EXP io_front_panel; /+ Front Panel I2C Exp controls LCD =/
char

push_nibble (char nibble)

229

D. SYSTEM CONTROL BOARD FIRMWARE

char val;
char ret;

val = 0Oxff;

/* Clear DATA bits %/
io_front_panel.outp |= (bmLCD_DATA4 | bmLCD_DATAS | bmLCD_DATA€ | bmLCD_DATA7);

if (nibble & 0x01)

io_front_panel.outp &= “bmLCD_DATA4;
if (nibble & 0x02)

io_front_panel.outp &= “bmLCD_DATA5;
if (nibble & 0x04)

io_front panel.outp &= “bmLCD_DATAG6;
if (nibble & 0x08)

io_front_panel.outp &= “bmLCD_DATAT;

io_front_panel.outp |= bmLCD_EN;

/+ Set DATA line =/
ret = i2c_io_exp_write (&io_front_panel);
/+ Error during I2C write */
if (ret) {

return ret;

Delay_Us (DELAY_LCD_EN);

/* Set EN =/
io _front_panel.outp &= “bmLCD_EN;

ret. = i2¢_io_exp_write (&ilo_front_panel);

Delay_Us (2xDELAY_LCD_EN);

/+ Release EN =/
io_front_panel.outp [= bmLCD_EN;
ret = i12c_io_exp_write (&io_front_panel);

Delay_Us (DELAY_LCD_EN);

return 0;

char
lcd_write_cmd (char cmd)
{

char val;

char ret;

/+ Set RS to LOW +/
io_front_panel.outp |= bmLCD_RS;

/% Push High Nibble then Low Nibble #*/
val = (cmd >> 4) & 0x0f;
ret = push_nibble (val);

if (ret)
return ret;

Delay_Us (DELAY_LCD_EN);

val = cmd & 0x0f;
push_nibble (val);

Delay_Us (DELAY_LCD_EN);

return 0;

char

230

D. SYSTEM CONTROL BOARD FIRMWARE

lcd_write_data (char data)

{

char val;
char ret;

/+ Set RS HIGH */

io_front_panel.outp &= “bmLCD_RS;

/+ Push High Nibble then Low Nibble x/

val = (data >> 4) & 0Ox0f;
ret = push_nibble (val);

if (ret)
return ret;

Pelay_Us (DELAY_LCD_EN);

val = data & Ox0f;
push_nibble (val);

Delay_Us (DELAY_LCD_EN);
return 0;

)

char

lod_init (wvoid)

{

char ret;

/% Set Default Output Data =/

/+ Inputs

all high */

io_front_panel.outp = bmLCD_LED
brLCD_DATA6 | bmLCD_DATA7;
ret = i2c_io_exp_write (&io_front_panel);

ret = push_nibble (0x02);

if (ret)

{

return ret;

}

| bmLCD_RS | bmLCD_PWR | bmLCD_EN | bmLCD_DATA4

/+ Initialize LCD in 4-bit mode #/
Delay (20 * Delay_1lmS_Cnt};
push_nibble (0x02});

Delay (20

= Delay_ImS_Cnt});

push_nibble (0x08);

Delay (20

* Delay_ImS_Cnt);

push_nibble (0x00);

Delay (20

+ Delay 1mS_Cnt);

push_nibble (0x0c);
Delay (20 = Delay_1mS_Cnt);
push_nibble (0x00);
Delay (20 * Delay_lmS_Cnt};
push_nibble (0x01);

Delay (20

* Delay_1mS_Cnt};

push_nibble (0x00);

Delay (20

* Delay_1mS_Cnt);

push_nibble (0x06);
Delay (20 » Delay_1mS_Cnt});
push_nibble (0x00);

Delay (20

* Delay_1ImS_Cnt);

push_nibble (0x01);
Delay (20 » Delay_1lmS_Cnt);

return 0;

char
lcd_set_bl
{

char ret;

(char state)

/+ Enable Display - No Blinking Cursor x/

231

http://io_front._panel.outp

D. SYSTEM CONTROL BOARD FIRMWARE

/% Turn off back-light #*/
if (!state)

io_front_panel.outp |= bmLCD_LED;
else

io_front_panel.outp &= “bmLCD_LED;

ret = i2c_io_exp_write (&io_front_panel);
if (ret) {
return ret;
}
Delay (DELAY_LCD_EN);

return 0;

void
lcd_cursor_to {char line, char x)

{

char i;
lcd write_cmd (0x02);
x += {(line - 1) =« 40;

for (i = 0; 1 < x; i++)
lcd write_cmd (0x14);

char
lcd_print (char smsg, char len)

{

char i;
char ret;

for (i = 0; i < len; i++) |
ret = lcd_write_data (msg(il);

if (ret)
return ret;
}
Delay (DELAY_LCD_EN);

return 0;

char
lcd_clear (wvoid)

{

char ret;
ret = lcd_write_cmd (0x01});
Delay (DELAY_LCD_ENx5});

if (ret)
return ret;

return 0;

char
led_print_loc (char smsg, char line, char x)

{

char i;
char ret;

232

D. SYSTEM CONTROL BOARD FIRMWARE

/+ Go Home */
ret = lcd_write_cmd (0x02);

if (ret) {
return ret;
}
Delay (DELAY_LCD_ENx5);

/+ Goto location »/
% += (line - 1} =* 40;

for (i = 0; 1 < x; i++)
lcd_write_cmd (0x14);

for (i = 0; i < strlen(msg); i++) {

lcd_write_data (msg{il));
}

return 0;

D.13 wuart_commands.h

/+ uart_commands.h

« Definitions for UART commands.

* Author: Neil Scott
+ Date: August 10, 2007
*/

$ifndef UART_COMMANDS_H
#define UART_COMMANDS_H

/+ System Control — Set Commands =*/
/* Enable or Disable Motor +/
#define UARTCMD_SET_MOTOR_STAT 0x90
/% Set Motor Speed x/

#define UARTCMD_SET_MOTOR_FREQ 0x91
/+ Set pulse width for BLO */
#define UARTCMD_SET_BLO_WIDTH 0x92
/% Set pulse width for BL1 «/
#define UARTCMD_SET_BL1_WIDTH 0%93
/* Set pulse width for FLO */
#define UARTCMD_SET_FLO_WIDTH 0x94
/% Set pulse width for FL1 x/
#define UARTCMD_SET FL1_WIDTH 0x95

/+* Set motor pulse position for CAMO */

#define UARTCMD_SET_CAMO_PULSE_POS 0x9A
/+ Set motor pulse position for CAMI +/

#define UARTCMD_SET_CAM1_PULSE_POS 0x9B
/% Set motor pulse position for ACCEPT ON x/
#define UARTCMD_SET_ACCEPT_ON_PULSE_POS 0x9C
/* Set motor pulse position for ACCEPT OFF #/
#define UARTCMD_SET_ACCEPT_OFF_PULSE_POS 0x9D

/+ Toggle power SW for 400ms to PC MBs x/
#define UARTCMD_POWER ON_PCS 0x9E

/#* System Control - Get Commands #*/
/% Enable or Disable Motor «/
#define UARTCMD_GET_MOTOR_STAT 0x10
/+ Get Motor Speed =/

#define UARTCMD_GET_MOTOR_FREQ Ox11
/% Get pulse width for BLO x/
#define UARTCMD_GET_BLO_WIDTH 0x12
/+* Get pulse width for BL1 x/
#define UARTCMD_GET_BL1_WIDTH 0x13
/* Get pulse width for FLO =/

D. SYSTEM CONTROL BOARD FIRMWARE

#define UARTCMD_GET_FLO_WIDTH 0x14
/% Get pulse width for FL1 x/
#define UARTCMD_GET FL1_WIDTH 0x15

/% Get motor pulse position for CAMO =/

#define UARTCMD_GET_CAMO_PULSE POS 0x1A
/* Get motor pulse position for CAMI */

#define UARTCMD_GET_CAM1_PULSE.POS 0x1B
/+ Get motor pulse position for ACCEPT ON +/
#define UARTCMD_GET_ACCEPT_ON_PULSE_POS 0x1C
/* Get motor pulse position for ACCEPT OFF x*/
#define UARTCMD_GET_ACCEPT_OFF_PULSE_POS 0x1D

/+ Retrieve the power state of all PCs */
#define UARTCMD_GET_PC_PWR_STATE O0x1E

/+ Inspection Status =/

/+* Get good capsule count for specified quadrant +/
#define UARTCMD_GOOD_COUNT 0x21

/* Get reject capsule count for specified quadrant «/
#define UARTCMD_BAD_COUNT 0x22

/* Get total capsule count from specified quadrant =/
#define UARTCMD_TOTAL_COUNT 0x23

/% Reset the counters =*/

#define UARTCMD_RESET_COUNTERS OxAF

/% Fault Registers +/
/+ Get fault count =/

#define UARTCMD_FAULT_COUNT 0xF0
/% Get fault code of previous fault =/
#define UARTCMD_FAULT_CODE OxF1

/* Debug Modes =/

/* Set in debug mode so images are acquired when motor is off */

#define UARTCMD_DEBUG_MODE 0xDD

/+ Make system step one capsule, fires BL and trigger =/

#define UARTCMD_ONE_STEP 0xDE

#endif /+ UART_COMMANDS_H #/

D.14 wuart2.h

/+ UART Routines for UART2 Module */

#ifndef UART2_H
#define UART2_H

#define MAX_UART_RX_BUF 40
#define MAX_UART_TX_BUF 40

struct UART_Rx
(
unsigned char wr;
unsigned char rd;
Vi

struct UART_Tx
{

unsigned char wr;

unsigned char rd;

unsigned char tx_complete_flag;
Vi

void init_uvartZ (veoid);

void __attribute__ ((interrupt, no_auto_psv)) _U2RXInterrupt (veid);
void __attribute__ ((interrupt, no_auto_psv)) _U2TXInterrupt (void);

D.15 nuart2.c

234

D. SYSTEM CONTROL BOARD FIRMWARE

*+ Routines to handle the UARTZ module

* Author: Neil Scott
* Date: August 01, 2007
*/

#include “"common.h"
#include "uart2.h"

#define FCY 40000000 /+ 40MHz Clock */
#define BAUDRATE 57600 /% 38400 baud x*/
#define BRGVAL ((FCY/BAUDRATE) /16) -1 /+ Baud Rate Generator Register Value #/

extern volatile struct SYSTEM _STATUS system_status;
extern unsigned char ramp_mode;

extern unsigned int motor_speed;

extern unsigned int motor_speed_target;

extern unsigned int temperature;

extern unsigned char uart_rx_buf [MAX_UART_RX_BUF];
extern unsigned char uart_tx_buf [MAX_UART_TX_BUF];
extern unsigned char uart_cmd_flag;

extern unsigned char curr_job;
extern unsigned char last_job;
extern struct JOB job_list [MAX_JOBS]

struct UART_Rx uart_rx;
struct UART_Tx uvart_tx;

volatile unsigned char uart_byte_count;
volatile unsigned char uart_set_motor_speed;

/% Handle UARTZ Interrupts */
void
__attribute__
{

unsigned char next;

. {{interrupt, no_auto_psv)) _U2RXInterrupt (void)

/+ Clear Interrupt Flag =/
IFSlbits.U2RXIF = DEASSERTED;

/* Put data in the circular in-buffer x*/
if (U2STAbits.URXDA) {
uart_rx_buf[uart_rx.wr] = 0x00ff & UZ2RXREG;

/* Increment buffer Write Address =/

uart_rx.wr++;

if (uart_rx.wr >= MAX_UART_RX_BUF)
uart_rx.wr = 0;

}

if (uart_rx.wr == {(uart_rx.rd + 6)) {
vart2_hdlr ();

void
__attribute__ ({(interrupt, no_auto_psv)) _U2TXInterrupt (void)
{

/% Clear Interrupt Flag =*/

IFSlbits.U2TXIF = DEASSERTED;

void

init_uart2 (void)

{
/+ Configure UARTZ2 Module =/
U2MODEbits.UARTEN = 0; /+ Disabled for now */
UZMODEbits.USIDL = 0; /+ Continue in Idle =*/

235

D. SYSTEM CONTROL BOARD FIRMWARE

U2ZMODEbits.IREN = 0; /+ No IR translation +/
UZMODEbits.RTSMD = 0; /* Simplex Mode =*/
U2MODEbits.UEN = 0 /+ TX, RX enabled; CTS, RTS disabled =/

U2MODEbits.WAKE = 0; /+ Since always awake x*/
U2MODEbits.LPBACK = 0; /+ No loopback =/

UZ2MODEbits.ABAUD = 0; /+ Disable Auto Baud Detect =/
U2MODEbits . URXINV = 0; /+ Do not invert receive polarity bit =/

UZMODEbits.BRGH = 0; /* Not High Baud Rate (standard mode) x/
U2MODEbits.PDSEL = 0; /+ No Parity +/
UZMODEbits.STSEL = 0; /+ 1 - Stop Bit =/

i

UZBRG = BRGVAL; /+ Set to 38400 baud +/

U28TAbits.UTXISEL1 =
U2STAbits.UTXINV = 0;
U28TAbits . UTXISELO =
UZ25TAbits .UTXBRK = 0
U28TAbits.UTXEN = O;
U28TAbits . UTXBF = 0;
U2STAbits.TRMT = 0;
U2STAbits .URXISEL =
U2STAbits.ADDEN = 0;
U2STAbits.RIDLE = 0
U2STAbits.PERR =
U28TAbits.FERR =
U25TAbits.OERR = 0;
U2S8TAbits.URXDA = 0;

[
oo

IFS1bits.U2TXIF =
IEClbits ,U2TXIE =
IFS1bits . U2RXIF =
TEC1bits.U2RXIE =

; /% Clear TX Interrupt Flag +/
/% Enable TX Interrupt =/
; /+ Clear RX Interrupt Flag */
; /+ Enable RX Interrupt =*/

= oo

U2MODEbits.UARTEN = 1;
U28TAbits . UTXEN = 1;

vart_rx.rd =
vart_rx.wr =
vart_tx.rd =
vart_tx.wr =

oo C O

Appendix E

Host PC Software

This chapter contains all source code developed for the host PC excluding the image processing
library (libIP).

E.1 inspect

The main inspect software that facilitates inspection. Uses POSIX threads to parallelize image

acquisition and inspection. Uses libIP image processing library object to perform image analysis.

E.1.1 Makefile

TOP_SRC = ../.. /..

cC = g++

#CFLAGS = -02 -fno-rtti -fno-exceptions

CFLAGS = -g -02

LDFLAGS = —lusb -1ltiff -lpthread

INCLUDE = —-I., -I../1ib -I../1ibIP -IS$(TOP_SRC)/firmware/fx2_revB/firmware/include
CLEANFILES = inspect test_ip

0BJS = ,./lib/pm_cam.o \
../lib/pm_prims.o \
./lib/imgusb.o \
../lib/time_calculations.o \
./1ibIP/ip.o \
../Yib/img_conv.o \
./lib/bayer.o

all: inspect test_ip

inspect: inspect.cc ../libIP/ip.o
$(CC) $< $(CFLAGS) $(LIB) $(LDFLAGS) $(INCLUDE) $(OBJS) $(DEFS) -o $@

test_ip: test_ip.cc ../libIP/ip.o

$(CC) $< $(CFLAGS) $(LIB) $(LDFLAGS) $(INCLUDE) $(OBJS) $(DEFS) -o $@
clean:

rm $ (CLEANFILES)

237

E. HOST PC SOFTWARE

Dependencies

E.1.2

inspect.h

/% Filename:
* inspect.h

*

*

*

%

%

Date

* Ok %

*/

Description:
Header file for inspect.cc
Stores constants,

Author:
Neil Scott

May 5, 2008

/+ Camera Position Constants

#define
#define
#define
#define

/* FPGA
#define
#define

#define
#define

#define
#define
#define
#define
#define
#define

#define
#define

PM_CAM_POS_BOTTOM
PM_CAM_POS_CENTER
PM_CAM_POS_LEFT
PM_CAM_POS_RIGHT

Registers +/
FPGA_REG_COLS
FPGA_REG_ROWS

FPGA_REG_PX_COUNT_HI
FPGA_REG_PX_COUNT_LOW

FPGA_REG_RESET
FPGA_REG_DATA_MODE
FPGA_DATA_MODE_NN
FPGA_DATA_MODE_RAW
FPGA_DATA_MODE_TEST
NUM_THREADS

MAX_DEV_COUNT
MAX_QUADRANT

/+ Image defaults =/

#define
#define
#define

MI_WINDOW_HEIGHT_MAX
MI_WINDOW_WIDTH_MAX
MI_BYTES_PER_PX

/+ Micron sensor defaults =/

#define
#define
#define
#define
#define
#define
#define
#define

DEFAULT_WINDOW_HEIGHT
DEFAULT_WINDOW_WIDTH
DEFAULT_IMAGE_HETGHT
DEFAULT_TMAGE_WIDTH
DEFAULT_COL_SKIP
DEFAULT_ROW_SKIP
DEFAULT_COL_START
DEFAULT_ROW_START

//#define MI_BINNING MODE

/* FPGA
#define
#define
$#define
#define

power/reset */
FPGA_POWER_ON
FPGA_POWER_OFF
FPGA_RESET_ENABLE
FPGA_RESET_DISABLE

/% Output Messaging */

#define
#define

OUT_MSG
OUT_ERR_MSG

structs and prototypes

*/
0x04
0x01
0x02
0x03

0x03

0x02

0x06
0x07

0x%01
0x04
0x04

0x02
0x00

S

1536
2048

1024
1024
512
512
1

1

28

80

0x01 /% 2X binning =*/

oo

stdout
stderr

/+ Inspection Fail Return Codes */

#define
#define

IP_FAIL_GENERAL
IP_FATL_WRONG_COLOUR

-20
-7

E. HOST PC SOFTWARE

#define
$#define
#define
#define
#define
#define
#define

IP_FAIL_WRONG_BODY
IP_FAIL_CAP_RADIUS
IP_FAIL_MISSING_CAP
IP_FAIL_HOLDER_ONLY
IP_FAIL_DIMENSION

/+ Capsule P/F Array =*/
#idefine CAPSULE_BUFFER_SIZE

IP_FAIL_CAPSULE_LENGTH
IP_FAIL_SURFACE_FLAW

/+ Thread Data structure */

struct thread_data {
int cam_id; /*
int cam_pos; /*
int cam_quad; S
int cam_master; /*
int thread_id; S
int local_cap_id; /*
int remote_cap_id; /*
int capsule_count; /*
int buffer_id; /*
int insp_result; /*

Vi

void cleanup (void);

void print_cam_loc(int cam_id);

void cam_reg_setup(int cam_id);

E.1.3 inspect.cc

/+ Filename:
* inspect.cc
*

Description:

* %

Author:
Neil Scott

%k A *

*

*

Date:
April

Updated:
May 5, 2008
Aug 19, 2008 -

16, 2007

* % % %

*

*/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<string.h>
<unistd.h>
<signal.h>
<usb.h>

<list>
<tiffio.h>
<pthread.h>
<time.h>

#include
#include
#include
#include
#include
#include
#include
#include

"img_conv.h"
"bayer.h"
"imgusb.h"
"pm_prims.h"
"pm_ids.h"
"pm_cam.h"

"mi_regs.h"

<linux/usbdevice_fs.

"time_calculations.

Capsule inspection application.
camera sensor, performs inspection using image processing and returns an
inspection result to the camera.

h>

h"

16

index */
position (angle) */
location (quadrant)
camera master flag #/
thread index =*/

local capsule index =/
remote capsule index */
capsule count =/
buffer index =/
result of inspection

camera
camera

camera “/

*/

This application retrieves images from

Version 0.8 Using IP class instead of functions
(less memory allocation and deallocation).

239

E. HOST PC SOFTWARE

#include "fx2cam_ids.h"
#include "fx2cam_commands.h"
#include "fxZcam_iZc_addr.h"

#include "ip.h"
#include "inspect.h"

#define SHOW TIME

#idefine DEBUG

//#define SW_INTERPOLATION
#define IP_DETAILS 1

#define STATS_UPDATE_INTERVAL 2.0/+ 5 */
#define CONF_PARAMS_COUNT 7

const char APP_TITLE{] = "inspect"

const char APP_VERSION{[] = "0.8";

char STAT_FILE_HTML[80] = "/opt/pill_machine/statistics.html";
char STAT_FILE_CSV[80] = "/opt/pill _machine/statistics.csv";
char TMAGE_DIR[80) = "/images/";

static char CONF_FILE[] = "inspect.conf";

/+ Default Camera Gains =/

short int CAM_GAIN_LEFT = Ox0ala;
short int CAM_GAIN_RIGHT = 0Ox0a0la;
short int CAM_GAIN_CENTER = 0x0a0a;
short int CAM_GAIN_BOTTOM = 0Ox0ala;
short int CAM_GAIN_DEFAULT = 0x0a0a;

/# Application Total Running Time +/
double inspect_rate_start time;
double inspect_rate_end_time;

/*x Cyclic Buffers used for image data for various cameras and threads »/
unsigned char *buf [NUM_THREADS+MAX_DEV_COUNT] ;

/% Globals used for pmcam class members */

int dev_count; /* number of matching USB devices =/
pm_cam *xpcam; /% pm_cam class for each device #/
struct usb_device *xpm_dev; /+ libusb device pointer +/

struct usb_dev_handle *xpm_dev_hdl; /+ libusb device handle =/

int cam_master_index = Oxff; /x camera master index */

/+ Global Image Processing Class Array =/
pmlpP «*xpm_IP; /* Image Processing Classes #/

/% Application Flags defaults (global) =*/

bool inspect_p = true; /+ Perform inspection »*/

bool verbose_p = false; /* Don’t be verbose #/

bool write_raw_p = false; /+ Don’t write RAW data to file =/
bool write tiff p = false; /* Write image to TIFF file x/

/+ Interrupt Signal Event =/
bool sig_int_p = false;
int sig_int_count = 0;

/+ Capsule Counter %/

long cap_count_good = 0;
long cap_count_bad = 0;
long capsule_count = 0;

/* Capsule pass/fail Array x/
int *xcapsule_passfail
int prev_remote_capsule _1d[CAPSULE_BUFFER_SIZE];

/+ Camera Position String Identifier =/
char *pos_str(] = {"UNDEFINED", "CENTER", "LEFT", "RIGHT", "BOTTOM"};

/* Image Processing Thread Data array =/
struct thread_data ip_data{NUM_THREADS s MAX_ DEV_COUNT];
pthread_t ip_threads [MAX_DEV_COUNT » NUM_THREADS]; /* Image Processing Threads =/

240

E. HOST PC SOFTWARE

pthread_attr_t ip_attr; /+ POSIX Thread Attributes - IP threads */

/#* Alignment Counter */
int misalignment_counter = 0;
int data_flush_counter = (;

/% Function Prototypes x*/
int read_conf_var (char xconf_file, char xkeyword, char xvalue);
void clear_stats_files (void);

/+ Find USB Device on bus =/
struct usb_device
find _device (const char +bus, const char +dev)
{
for (usb_bus xb = usb_busses; b; b = b->next) |{
if (!strcmp (b->dirname, bus)) {
for (struct usb_device »d = b->devices; d; d = d->next) {
if (!strcmp (d->filename, dev))
return (d);

return (NULL);

/+ Interrupt signal handler =*/
void
handle_sig_int (int dummy)
{
fprintf (OUT_MSG, "Interrupt signal caught...\n")

sig_int_p = true;

if (!sig_int_count) {
/+ Start Timer for capsule count =/
inspect_rate_end_time = get_elapsed_time();
}

sig_int_count++;

if (sig_int_count > 2)
cleanup(};

/+ Output Application usage =/

void

usage (void)

{
fprintf (stderr, "usage: %s [(OPTION]\n", APP_TITLE);
fprintf (stderr, "\nInspection Options:\n");

fprintf (stderr, " --disable ip, -id Disable inspectioni\n");

fprintf (stderr, " ~-write raw, -raw Write image buffer to data file\n");

fprintf (stderr, " -~--write_tiff, -wt Write image data to TIFF file\n");

fprintf (stderr, "\nApplication Options:\n");

fprintf (stderr, " ~-help, -h Display this help screen\n");

fprintf (stderr, " --verbose, -v Show verbose messaging\n")

fprintf (stderr, "\nFPGA Options:\n");

fprintf (stderr, " --fpga data_nn Set FPGA output mode to Nearest Neighbourin"});
fprintf (stderr, " --fpga_data_raw Set FPGA output mode to RAW sensor data\n");
fprintf (stderr, " --fpga_data_ test Set FPGA output mode to test data\n");
fprintf (stderr, "\nSensor Options:\n");

fprintf (stderr, " --load_eeprom, -le Load Window Settings from EEPROM\n");

fprintf (stderr, "\n\n");

/+ Image processing thread */
void «
tinspect (void stdata)
{
struct thread_data *targ;

241

http://usb_.de
file:///nApplication
file:///nFPGA
file:///nSensor

E. HOST PC SOFTWARE

int c_id;

int t_id;

int local_cap_id;
int cam_quad;

int cam_pos;

bool cam_master;
int buf_index;

int buf_count;

int ret;

int insp_retval;
char filename_raw([100];
char filename[100);
FILE *fp;

long cap_count;

unsigned char xgray; /% buffer to hold grayscale data if interpolating in s/w */
unsigned char srgb; /+ buffer to hold interpolated image data for s/w interpolation

/+ our camera uses this tile =/
BayerTile bayer tile = BAYER_TILE_GBRG;
TIFF ximg;

/% Detach this thread */
ret = pthread_detach (pthread_self());

if (ret) {
fprintf (stderr, "Error - pthread_detach: %$s\n", strerror(ret));
}

/+ Get Thread ID =/

targ = (struct thread_data x) tdata;
c_id = targ->cam_id;

t_id = targ->thread_id;

cam,_quad = targ->cam_quad;

cam_poes = targ->cam_pos;

cam_master = targ->cam_master;
buf_index = targ->buffer_id;
local_cap_id = targ->local_cap_id;
cap_count = targ->capsule_count;

/% Software Interpolation #/

#ifdef SW_INTERPOLATION

/+ allocate grayscale buffer «/

gray = new unsigned char [pcam{c_id]j->get_image_width()+pcamlc_id]->get_image_height ()];
/% allocate RGB buffer #*/

rgb = new unsigned char [pcamlc_id]l->get_image_width () »pcamlc_id]->get_image_height {)«31;

/» user bayer.h to conver to grayscale (error in bayer2gray) */
gp_bkayer_decode (buf[buf_index},

pcam|c_id])->get_image_width (),

pcam|c_id] ->get_image_height ()

rgb,

bayer_tile);

rgb2grayscale (rgb, gray, pcam[c_id]->get_image_width() » pcam[c_id]->get_image_height ());

ftendif /% SW_INTERPOLATION */

/# Perform Inspection #/
if (inspect_p) {
if (verbose_p)
fprintf (OUT_MSG, "Performing Inspection:\n \n\n");

#ifdef SW_INTERPOLATION

/* Inspect SW Interpolated Image </

insp_retval = pm_IP{c_id]->inspect (gray, NULL, NULL};

jelse

/+ Inspect HW Interpolated Image =/

insp_retval = pm_IP{c_id]->inspect {buf[buf_index], NULL, NULL};
fprintf (stdout, "IP: RET = %d\n", insp_retval);

#endif /% SW_INTERPOLATION */
targ->insp_result = insp_retval;
capsule_passfail [c_id]) (local_cap_id] = insp_retval;

} /* inspect_p x/

/* Make a filename =/

*/

242

E. HOST PC SOFTWARE

sprintf (filename, "/images/IMG%04d_Q%d_%s", cap_count,
sprintf (filename_raw, "/images/raw/IMG%$04d_0%d_p%d.dat", cap_count,
//TODPO —- ADD Failure Code Identifiers //
if (insp_retval == IP_FAIL HOLDER_ONLY) ({
sprintf (filename, "%s_ FAIL_HOLDER_ONLY.tiff", filename};
}
else if (insp_retval == IP_FAIL_DIMENSION) {
sprintf (filename, "%s_FAIL_DIMENSION.tiff", filename);
}
else if (insp_retval < IP_FAIL_HOLDER_ONLY) {
sprintf (filename, "%s_FAIL_GENERAL.tiff", filename);
}
else |
sprintf (filename, "%$s.tiff", filename);
}
//TODO/ /
ferintf (stdout, "TIFF FILENAME: %s\n", filename);

/* Write buffer directly to file - no interpolation performed x*/
if (write_tiff p) {
#ifdef SW_INTERPOLATION

pcam[ec_id)->write_tiff (gray, filename, pcam[c_id]->get_image_width(),
()

#else

pcam{c_id]~->write_tiff (buf[buf_index]}, filename,
get_image_height ()};

#endif

if (verbose_p)

fprintf (stdout, "TIFF File Written (%$s)\n", filename);

}

if (write_raw_p) {
/% Write raw data to disk */
fp = fopen (filename_raw, "wb");
fwrite (buf{buf_index], 1, (pcam[c_id]->get_image_width ()
if (verbose_p)
fprintf (stdout,
fclose (fp);

"\nRAW Image file created: %s\n", filename raw);

#ifdef SW_INTERPOLATION
delete gray;

delete rgb;

#endif

pthread_exit (NULL);

/+ Grab Fframe thread */
void «x
tgrab_frame
{

struct thread_data xtarg;

int c_id;

int t_id;

int p_id;

int cam_qguad;

int cam_pos;

bool cam_master;

int buf_index;

int buf_count;

(void xtdata)

int cap count;

int local_cap_id;
int remote_cap_id;
int ret;

char flush_buf [MI_WINDOW _HEIGHT_MAX+MI_WINDOW_WIDTH_MAX];

/+ Get Thread ID #/

targ = (struct thread_data) tdata;
c_id = targ->cam_id;
t_id = targ->thread_id;

pcam[c_id]->get_image_width(),

* pcam{c_id]}->get_image_height ()),

cam_quad, pos_str[cam_pos]);
cam_guad,

cam_pos);

pcam(c_id]~>get_image_height

pcam[c_id]->

fp);

243

file:///nRAW

E. HOST PC SOFTWARE

cam_guad = targ->cam_quad;

cam_pos = targ->cam_pos;
cam _master = targ—->cam_master;
buf_index = targ->buffer id;

cap_count targ->capsule_count;
remote cap_id targ->remote_cap_id;
local_cap_id targ->local_cap_id;

if (verbose_p)

fprintf (OUT_MSG,

"Grabbing Frame... (t_id %d; c_id = %d)\n", t_id,

/% Grab Image Data - store in global buffer =/
ret pcam[c_id]~>grab_frame (buf(buf_index]);

*/

/+ check return

if (ret != (pcam[c_id]->get_image_height () » pcam(c_id}->get_image_width{()))}
fprint{ (OUT_ERR_MSG, "grab_frame: ERROR!\n");

}

if (verbose_p}
fprintf (OUT_MSG, "Frame Successfully Acquired: (t_id = %d), cap_count =

/+ If this is the master camera, retrieve capsulelD */

/% Send Control message to control board to fetch capsule ID +/

if (cam_master) {
char datal[3];
int insp_result
int no_cap_check

0;
0;

dataf{0] OxAQ;
ret = pcam[cam_master_index)->write_cmad
VRQ _I2C_WRITE,

CB_I2C_ADDR,

{ VENDOR_REQUEST_OUT,

%d\n",

c_id);

{

t_id, cap_count);

0,

data,

1L
if (ret < 0)

fprintf (OUT_ERR_MSG, "Error retrieving Capsule ID from system controller\n");
ret = pcam{cam_master_index]->write_cmd (VENDOR_REQUEST_IN,

VRQ_I2C_READ,
CB_IZC_ADDR,

0,
data,
D
if (ret < 0)
fprintf (OUT_ERR_MSG, "Error retrieving Capsule ID from system controller\n");

remote_cap_id data{0];
targ->remote_cap_id remote_cap_id;

/+ from previous inspection x/

int prev_local_cap_id;

if (local_cap_id == 0)
prev_local_cap_id =

else
prev_local_cap_id

15;

local_cap_id - 1;

feprintf (stdout, "prev_local_cap_id %d\n"
"prev_remote_cap_id[prev_local_capsule_id]
prev_local_cap_id,

prev_remote_capsule_id{prev_local_ cap_id});

sd\n",

/% process inspection results #*/

insp_result = capsule_passfaill0] [prev_local_cap_id] == 0;
for (int i = 0; i < dev_count; i++) {
fprintf (stdout, "capsule_passfail([%d][%d] = %d\n", i, prev_local_cap_id,
prev_local_cap_id]};
}
for (int j = 1; j < dev_count; 3Jj++)

capsule_passfail{i]|

244

http://capsule_passfa.il

E. HOST PC SOFTWARE

insp_result += capsule_passfaill(j] [prev_local_cap_id] == 0;
no_cap_check = 0;
/+ TODO =/
/+ pass all if not inspecting x/
if (!inspect_p)

insp_result = dev_count;
if (insp_result == dev_count})

cap_count_good++;
else |

for (int x = 0; x < dev_count; x++) {

no_cap_check |= (capsule passfail([x][prev_local_cap_id] == IP_FAIL_HOLDER_ONLY);

}

if (!'no_cap_check)
cap_count_bad++;

if (verbose_p)
fprintf (OUT_MSG, "CapsulelID: %d\n", remote_cap_id);

/+ respond to control board with result from previous capsule */

/+ Build control message #/

datal[0] 0x80;
data[l}l = ((insp_result == dev_count) ? 2 : 1};
datal[l] |= (prev_remote_capsule_id[prev_local_cap_id] << 4) & 0xf0;

ret = pcamf[cam_master_ index]->write_cmd(VENDOR_REQUEST_OUT,
VRQ_I2C_WRITE,
CB_I2C_ADDR,
0,
data,
2);

if (ret < 0) {

fprintf (OUT_ERR_MSG, "Error sending pass/fail result to system control board\n");

}

else {

fprintf (OUT_MSG, "%04d: $%$s message successfully sent to system control board (CapsulelD = %d)\n"

,
capsule_count, (insp_result == dev_count) ? “PASS"® : ¥FAIL",
prev_remote_capsule_id([prev_local_cap_id]);

boeol p align_marker = true;
int image_width = pcam[c_id]->get_image_width();
int image_height = pcamlc_id)])->get_image_height ();

#if 1

/% Check last six pixels for alignment marker +/
for (int i = 0; i < 6; 1i+=2) {

if ((bufibuf_index){image_width+image_height - i - 2) != Oxaa)
image_height - i - 1] != Oxaa)) {
p_align _marker = false;
break;

if (!p_align_marker) ({
misalignment _counter++;

ferintf (stderr, "\n\n"
Mok ok ko ke ke ki ok ok k kA h ok ok k kR kk ok Rk k kAN KA AR K KR ANk kkhkkkkkkaxckrr\N"
"hkkkkkhxkkhxhxkxxx ALIGNMENT ERROR *skxkxkkkkkhkxkktxkx\n"

Moddkk ok k ok ok ok ko kkkkkkkkkkh ko khkk ok kkh kAR kA ok kkkhk ok ko hk ke kkx\N"

“\n\n");

/+ Attemplt to recover #*/

/+ Purge data using libusb bulk read =/
/+ Stop the EP so libusb can use it #*/
pcam([c_id])->ep_stop () ;

{buf (buf_ index] [image_width«

245

E. HOST PC SOFTWARIZ

for (int i = 0; 1 < 1;
ret = usb_bulk_read

i++) |
{(pm_dev_hdl(c_id],

0x82, {(char =*) buf[buf_index])

usb_strerror(}

pcam[c_id]->

;

NULL, 0);

);

get_window_width() * pcam(c_id]->get_window_height (), 20);
if (ret < 0)
fprintf (stderr, "ERROR::::: %s\n", usb_strerror{());
if (l(ret > 0))
break;
}
/+ Restart the EP */
pcam[c_id]->ep_start ();
/+* Put FPGA into reset x*/
if (!pcam[c_id]->cam_fpga_reset (FPGA_RESET_ENABLE))
fprintf {(stderr, "Error putting FPGA into reset [Device %d]\n", c_id)
usleep (25000);
if (!pcam{c_id]l->cam_fpga_reset (FPGA_RESET_DISABLE))
fprintf (stderr, "Error taking FPGA out of reset [Device %d]\n", c_id);
ret = pcam{c_id]~->write_cmd (VENDOR REQUEST_OUT, VRQ FPGA_FLUSH, 0, O,
if (ret < 0)
fprintf (stderr, "Error purging FPGA [Device %d}: %s\n", c_id,
}
#endif

/% create image processing thread x/
/% thread id */

ip_data|buf_index].cam_id = c_id;
ip_data[buf_index)].cam _pos =
ip_data(buf_index].cam_guad =

ip data[buf_index].cam_master =
ip_datalbuf_index].thread_id = t_id;
ip_datal{buf_index].buffer_id = buf_index;

ip_data{buf_index]
ip_data({buf_index]
ip_data{buf_index]

.local_cap_id
.capsule_count
.insp_result

-1;

/+* create image processing thread x/

pcam[c_id]->get_cam position(}
pcam[c_id]~->get_cam_guadrant (
pcam{c_id]->get_cam_master (

)i
Y

i

local_cap_id;
capsule_count;

ret = pthread_create (&ip_threads[buf_index],
&ip_attr,
tinspect,
(void x) &ip_datal[buf_index]);

pthread_exit (NULL);

Supervisory Thread

To provide fix for occasional
and if dees not increment for 5 seconds,
script required to start-up again.

P

*/
void «
tsupervisory

{

{void ~tid)

long last_count;

while (1) {
last_count = capsule_count;
usleep (5000000);
if (last_count == capsule_count) {
if (capsule_count < 20} {
cleanup () ;
exit (1);

startup hang,

monitors capsule count
shutdown app. External

246

E. HOST PC SOFTWARE

/+ Main Functiocn
*
* Finds and configures all cameras and starts main loop
*/

int
main (int argc, char xargv([])
{
// Data Acquisition Threads
pthread_t acq_threads[MAX _DEV_COUNT s NUM_THREADS];

// POSIX Thread Attributes
acg_attr;

// Supervisory Thread
supervisor_thread;

pthread_attr_t
pthread_t

struct thread_data acq data[NUM_THREADS » MAX_DEV_COUNT];

int ret;
int window_width = DEFAULT_ WINDOW_WIDTH;
int window_height = DEFAULT_WINDOW_HEIGHT;
int image_width = DEFAULT_IMAGE_WIDTH;
int image_height = DEFAULT_IMAGE_HEIGHT;
int col_skip = DEFAULT_COL_SKIP;
int row_skip = DEFAULT_ROW_SKIP;
int col_start = DEFAULT_COL_START;
int row_start = DEFAULT_ROW_START;
bool fpga_data_nn_p = true;
bool fpga_data_raw_p = false;
bool fpga_data_test_p = false;
bool load_window_eeprom_p = false;
/+ Create String Start Time Stamp =/
char start_time_stamp{100];
char update_time_stamp[100];
time_t tm_stamp;
struct tm «tmstmp;
tm_stamp = time (NULL);
tnstmp = localtime (&tm_stamp);
strftime (start_time_stamp, sizeof (start_time_stamp), "%a
/% parse argument 1ist =/
for (int i = 1; i < argc; i++) |
if (!strcmp(argv{i], "--help") |} !strcmp(argv[i], "—h"
usage () ;
exit (1);
}
if (!strcmp(argv(i], "--verbose") || !strcmp(argv[i], "-—
verbose_p = true;
}
if "--disable_ip"}) || !strcmp(argv(i]

(!strcmp(argv([i],
inspect_p = false;

if (!strcmp(argv[i],

write_raw_p = true;

"--write_raw") || !strcmp(argv[i],

}

if (!strcmp(argvi(i],

write tiff p =

"—-write_tiff") 1|
true;

!'stremp (argv (i),
}

if (!strcmpl{argv(i), "--fpga_data_nn")

fpga_data_nn_p = true;

if (!strcmp(argv([i), "--fpga_data_raw")) {
fpga_data_nn_p = false;
fpga_data_raw_p = true;

y oA

vy |

noid"))

Traw"))

Tty)

{

{

{

%z", tmstmp);

247

E. HOST PC SOFTWARL

}

if (!strcmp(argv(i], "--fpga_data_test")) {
fpga_data_nn_p = false;
fpga_data_test_p = true;

}

if (!strcmp(argv(i), "--load_eeprom") || !strcmp(argv(i), "-le"}))
load_window_eeprom_p = true;

}

/#* print application title =/
if (verbose_p)} {
fprintf (OUT_MSG, "%s v%s\n", APP_TITLE, APP_VERSION);
for (int i = 0; 1 < (strlen(APP_TITLE)+strlen (APP_VERSION)42); i++)
fprintf (OUT_MSG, "=");

fprintf (OUT_MSG, "\n");
}

char xconf_params{] = {"stats_html_file", "stats_csv_file", "image_dir", "left_gain", "right_gain"
center_gain", "bottom_gain"};
char conf_value(80];

/* Look for configuration file x/
for (int i = 0; i < CONF_PARAMS_COUNT; i++) {
ret = read_conf_var (CONF_FILE, conf_params[i], conf_value);
if (!lret) {
if (!strcmp(conf_params([i}, "stats_html_file"™)) {
sprintf (STAT_FILE_HTML, "%s", conf_value};
fprintf (stdout, "STAT FILE_HTML: %s\n", STAT_FILE_HTML)

if (!strcmp{conf_params[i), "stats_csv_file")) {

sprintf (STAT_FILE_CSV, "%s", conf_value);

fprintf (stdout, "STAT_FILE_CSV: %s\n", STAT_FILE_CSV);
1

if (!strcmp(conf_params[i], "image_dir")) {
sprintf (IMAGE_DIR, "%s", conf_value);
if ((IMAGE_DIR{strlen(IMAGE_DIR)-1]) != '/’

sprintf (IMAGE_DIR, "%s/", IMAGE_DIR);

fprintf (stdout, "IMAGE_DIR: %s\n", IMAGE_DIR);
}

if (!strcmplconf_params[i), "left_gain®™)) {

sscanf (conf_value, "O0x%04x", &CAM GAIN_LEFT);

fprintf (stdout, "CAM_GAIN_LEFT: 0x%04x\n", CAM_GAIN_LEFT);
}

if (!strcmp(conf_params[i], "right_gain")) {

sscanf (conf_value, "0x%04x", &CAM_GAIN_RIGHT);

fprintf (stdout, "CAM_GAIN_RIGHT: 0x%04x\n", CAM_GAIN_RIGHT);
}

if (!strcmp(conf_params{i], "center_gain")) {
sscanf (conf_value, "0x%04x", &CAM_GAIN_CENTER};
fprintf (stdout, "CAM_GAIN_CENTER: 0x%04x\n", CAM_GAIN_CENTER);

if (!strcmp(conf_params{i], "bottom_gain")) {
sscanf (conf_value, "0x%04x", &CAM_GAIN_BOTTOM);
fprintf (stdout, "CAM_GAIN_BOTTOM: 0x%04x\n", CAM_GAIN_BOTTOM);
}
}

else |
fprintf (stdout, "Error Processing Configuration File \"%s\"...\n", CONF_FILE);
break;

}
}
/+ find camera(s) +/
/+* Search the USB bus for all cameras +/

/+ Search for the device on the USB bus =/

248

E. HOST PC SOFTWARE

/+ Initialize USB - libusb library =/
if (verbose_p)
fprintf (OUT_MSG, "Initializing USB library...\n");

/+ Initialize libusb +/
pm_init_usb ();

/* Get the number of cameras found connected to the system #*/
dev_count = pm_get_device_count ();

/4 Search for new Device use first instance found +/
if (verbose_p)
fprintf (OUT_MSG, "Searching for devices...\n");

if (!dev_count) {
fprintf (OUT_ERR_MSG, "No devices connected...\n");
return -1;

}

if (verbose_p)
fprintf (OUT_MSG, "Found %d camera(s)\n", dev_count);

/% Allocate memory for pointers to device handles */
pm_dev = new struct usb_device *[dev_count];
pm_dev_hdl = new struct usb_dev_handle x[dev_count];
pcam = new pr_cam *[dev_count];

/+ Allocate Memory for image buffer =+/

for (int i = 0; i < dev_count; i++)
for (int j = 0; j < NUM_THREADS; j++)
buf{ (i * NUM_THREADS) + j] = new unsigned char [MI_WINDOW_WIDTH_MAX~*

MI_WINDOW_HEIGHT_MAX«
MI_BYTES_PER_PX];

/+ Allocate Memory for capsule pass/fail results */

capsule_passfail = new int «[dev_count];

for (int i = 0; i < dev_count; i++)
capsule_passfail[i] = new int [CAPSULE_BUFFER SIZE];

/+ Fill Device Pointers +/

for (int i = 0; i < dev_count; i++) {
pm_dev (i) = pm_find_camera (i);
if (pm_dev([i] == 0) {

fprintf (stderr, "%s: Unable to find device...\n", APP_TITLE);
return -1;

if (pm_camera_configured (pm_dev[i])) {
if (verbose_p)
fprintf (OUT_MSG, "Device %02d is configured...\n", 1i);
}
else if (pm_camera_unconfigured (pm_dev([i]}) {
if (verbose_p)
fprintf (OUT_MSG, "Device %02d is unconfigured...\n", i)
}
else |
fprintf (stderr, "$s: Unrecognized Device ID...\n", APP_TITLE);
return -1;

}
/+ TODO: Handle Unconfigured Device by uploading firmware =/

/% Create a device handle for the device found */

pm_dev_hdl[i] = pm_open_interface (pm_dev[i]
USB_PM_DEV_IF_DEFAULT,
UsB_PM_DEV_ALT_TIF_DEFAULT) ;

if (!pm_dev_hdl[i)) {
fprintf (stderr, "%s: Unable to claim device interface on device %02d...\n", APP_TITLE, 1};
exit (1);

t

if (verbose_p)

249

E. HOST PC SOFTWARE

fprintf (OUT_MSG, "Device %02d Interface Claimed...\n", 1i);
/+ Create an instance of the PM CAM class for the device handle create x/
//PM_CAM BLOCK_SIZE, 64);
pcam([i] = new pm_cam{pm dev_hdl[i], 8+«1024, 64);
/* Set verbose messaging */
pcam{i]->verbose_p = verbose_p;
}

/* initialize camera(s) */

/+ 1f using eeprom window settings,
if (load_window_eeprom_p) {

for (int i = 0; i < dev_count
/% Get Window width =/

ret = pcam[i]->read_window_params();

load them =*/

Jit+) |

if (ret < 0)

fprintf (stderr, "Error retrieving window parameters [DEVICE %$d\n",
/#* TODO: Debug -

#ifdef DEBUG

Write to screen #/

fprintf (stdout, "Window Parameters for Camera %d\n", 1i);
fprintf (stdout, "EEPROM WINDOW_WIDTH: 0x%04x\n",

fprintf (stdout, "EEPROM WINDOW_LENGTH: 0x%04x\n",
fprintf (stdout, "EEPROM WINDOW COL_START:

fprintf (stdout, "EEPROM WINDOW_ROW_START: 0x%04x\n"
fprintf (stdout, "EEPROM WINDOW COL_SKIP:

fprintf (stdout, "EEPROM WINDOW ROW_SKIP: 0x%04x\n",
$endif /* DEBUG #/

}

/* get camera location
for (int i = 0;
ret =

(quadrant and position) =*/
i < dev_count; i++) {
pcam(i]->get_cam_location();

if (ret < 0)
fprintf (stderr,
else if (verbose_p)

print_cam_loc(i);

"Error retrieving camera location [DEVICE %d]\n", i};

/% Set master index, should only find one =/
if (pcam[i)->get_cam_master())
cam_master_index = 1i;

}

/* reset fpga */
for (int i = 0; i < dev_count; i++) {
if (!pcam[i]->cam_fpga reset (FPGA_RESET_ENABLE))
fprintf (OUT_ERR_MSG, "Error putting FPGA into reset [Device %d]\n",
}

usleep (200000);
for (int i = 0; i < dev_count;

if (!pcam{i]->cam_fpga_reset
ferintf (OUT_ERR_MSG,

it++) |
(FPGA_RESET_DISABLE))
"Error taking FPGA out of reset [Device %d]\n",

usleep (250000);

/+* Reset MI Sensor =/

for (int i = 0; i < dev_count; i++) {
ret = pcam{i]->write_reg (MI_REG_RESET, 1);
usleep (200000);
ret |= pcam(i}->write_reg (MI_REG_RESET, 0);

if (ret < 0) {

fprintf (stderr, "Error resetting MI sensor [Device $%d]\n", 1i);

i);

0x%04x\n", pcam[i)->get_eeprom_window_col_start());

pcam{i]->get_eeprom window_row_start ())
0x%04x\n", pcaml[i]->get_eeprom_window_col_skip());
pcam[i] -—>get_eeprom_window_row_skip ()}

i);

iYi

pcam[i])->get_eeprom_window_width{)};
pcanm[i)->get_eeprom_window_height (});

r

250

E. HOST PC SOFTWARE

usleep (5000);
)

/+ set camera registers x*/
for (int i1 = 0; i < dev_count; i++) |

if (load_window_eeprom_p) {
pcam[i]l->set_window_width_skip (pcam[i]->get_eeprom_window_width(), pcam[i]->
get_eeprom_window_col_skip());
pcam(i]l->set_window_height_skip {(pcam[i]->get_eeprom_window_height (), pcam[i]->
get_eeprom window_row_skip(});
pcam([i]->set_window_col_start (pcam[i]-—>get_eeprom_window_col_start ());
pcam([i]->set_window_row_start (pcam[i])->get_eeprom_window_row_start ());
}
else |
pcam[i]~->set_window_width_skip (window_width, col_skip);
pcam{i]->set_window_height_skip (window_height, row_skip);
pcam{i]~>set_window_col_start (col_start);
pcam{i]~>set_window_row_start (row_start);
}

/+ other MI sensor registers */
cam_reg_setup(i);

usleep (100000);
}

/* set fpga registers +/
for (int i = 0; i < dev_count; i++) {
/* Write FPGA registers =/
/# Set Window Size =/
ret = pcam{i]->fpga_write_reg (FPGA_REG_COLS, (pcam[i]->get_image_width() - 1));

if (ret < 0) {
fprintf (stderr, "Error setting FPGA register 0x02\n");
}
else |
fprintf (stdout, "Successfully set FGPA window width register\n");
}

ret = pcam[i)->fpga_write_reg (FPGA_REG_ROWS, (pcam[i])->get_image_height{) - 1}));

if (ret < 0) |
fprintf (stderr, "Error setting FPGA register 0x03\n");
}
else |
fprintf (stdout, "Successfully set FGPA window height register\n");
H

/+ Total Pixel Count =/
ret = pcam[i]->fpga_write_reqg (FPGA_REG_PX_COUNT_HI, (pcam{i]->get_image_width() * pcam[i]->

get_image_height {)) >> 16);
ret = pcam|[i]~>fpga_write_reg (FPGA_REG_PX_COUNT_LOW, (pcam[i]->get_image_width() = pcam[i]->
get_image_height ()) & Oxffff);

if (ret < 0) {
fprintf (stderr, "Error setting FPGA pixel count register!\n");
}
else |
fprintf (stdout, "Successfully set FGPA window height register\n");
}

/+ Take FPGA out of reset +/
ret = pcam[i)->fpga_write_reg (FPGA_REG_RESET, 0x0000};

if (ret < 0) {
fprintf (stderr, "Error setting FPGA register 0x0l1 (RESET)\n");
}
else |
fprintf (stdout, "Successfully reset FPGA\n");
}

/% Set FPGA Qutput Mode +/
if (fpga_data_nn_p) {

251

HOST PC SOFTWARE

ret = pcam(i]->fpga_write_reg (FPGA_REG_DATA_MODE, FPGA_DATA_MODE_NN};
if (verbose_ p)
fprintf (OUT_MSG, "FPGA data mode set to nearest neighbor\n");
}

if (fpga_data_raw_p) {
ret = pcam{i)->fpga_write_reg (FPGA_REG_DATA_MODE, FPGA_DATA_MODE_RAW);
if (verbose_p)
fprintf (OUT_MSG, "FPGA data mode set to raw datal\n");

}

if (fpga_data_test_p) {
ret = pcam{[i]->fpga_write_reg (FPGA_REG_DATA_MODE, FPGA_DATA_MODE_TEST);
if (verbose_p)
fprintf (OUT_MSG, "FPGA data mode set to test sequence\n");

}

/+ Set application signal handling */
signal (SIGINT, handle_sig_int});

int num_bytes;
unsigned char cap_id;

for (int i = 0; i < dev_count; i++) {

/+ Get Window Size x*/

num_bytes = pcam([i]->get_image_width () * pcam[i]->get_image_height ();
}

/+ Try to clear buffer */
if (verbose_ p)
fprintf (OUT_MSG, "Purging FPGA data...\n");

for (int i1 = 0; i < dev_count; i++) {
ret = 1;

for (int j = 0; 3 < NUM_THREADS; j++) {
if (ret > 0) {

ret = usb_bulk_read (pm_dev_hdl[i], 0x82, (char x) buf[i«NUM_THREADS], 1024%768, 150);

if (verbose_p)

fprintf (OUT_MSG, "Data received from purge [Device %d]: ret = %d\n", i, ret);
if (ret < 0)
fprintf (QUT_ERR_MSG, "usb_bulk_read() error - %s\n", usb_strerror());
else
pcam[i}—>write_tiff (buf[i*NUM_THREADS], "PURGE.tiff", pcam[il->get_image_width(), pcam(i}->
get_image_height (});
}
}
)
for (int i = 0; i < dev_count; i++) {
ret = pcam[i)->write_cmd (VENDOR_REQUEST_OUT, VRQ_FPGA_FLUSH, 0, 0, NULL, 0);
if (ret < 0)
fprintf (OUT_ERR_MSG, "Error purging FPGA [Device %d]: %s\n", i, usb_strerror{));

)

/% Flush STDOUT x/
fflush (OUT_MSG);

/+ Allocate URBs for IMGUSB class */
for (int i = 0; i < dev_count; i++) {
pcam{i)->imgusb_allocate_urbs();

\

t

for (int i = 0; i < dev_count; i++) {
if (verbose_p)
fprintf (OUT_MSG, "Starting bulk end-point [Device %dj\n", i);

/% Start Bulk EP x/
pcam(i}~->ep_start ();

252

E. HOST PC SOFTWARE

}

if (cam_master_index != QOxff) {
/+ Send Ready Signal to System Controller =/
for (int i=0; i<4; i++) {
char cb_ready = 0x81;

pcam[cam_master_ index]->write_cmd (VENDOR_REQUEST_OUT,

VRQ_I2C_WRITE,
CB_I2C_ADDR,

0,

(char +) &cb_ready,
1)

usleep (10000« (pcam[cam_master_index]->get_cam_quadrant (}+1});

}
}

/+ Set Thread detached attribute =/
pthread_attr_init (&acg_attr)

pthread_attr_setdetachstate (&acq_attr, PTHREAD_CREATE_JOINABLE);

pthread_attr_init (&ip_attr);

pthread_attr_setdetachstate (&ip_attr, PTHREAD_CREATE_ JOINABLE);

int capsule_id = 0;

int buffer_count 0;
int no_cap_check = 0;
int local_cap_id = 0

;
int remote_cap_id = 0;
int cam_bottom_index = Oxff;
char data{l6];
int status;
int insp_result;
FILE *fp_stats_html = NULL;
FILE *fp _stats_csv = NULL;
double last_stat_update_time = get_elapsed_time();

/+ Statistics Variables =/
long empty_holder count;

double good_cap_percentage;
double bad_cap_percentage;
double empty_ holder_percentage;
double elapsed_ time;

double inspection_rate;

double eff_ inspection_rate;
short int val;

/+ create image processing classes (one for each device)
pm_IP = new pmIPx[dev_count];

for (int i=0; i < dev_count; i++) {
pm_IP[i] = new pmIP (pcam[i]->get_image_width(),
pcam(i)~>get_image_height (),
pcam[i]->get_cam_position(),
IP_DETAILS);
}

/* reset inspection results */
for (int i = 0; i < dev_count; i++)
capsule_passfail[i] [15] = -1;

/* Write Blank stats files (HTML / CSV) #*/
clear_stats_files();

/+ Create Supervisory Thread #/

int t=1;

ret = pthread_create (&supervisor_thread,
NULL,
tsupervisory,
(void ») t);

/# program main loop */
while (!sig_int_p)} {

/*~ set thread arguments =/

*/

253

E. HOST PC SOFTWARE

for (int i = 0; i < dev_count; i++) {
/* acquire top camera images first (for synchronization) =/

if (pcam[i]~->get_cam_position() == PM_CAM POS_BOTTOM) {
cam_bottom_index = i;
continue;

}

/+ thread id =*/

acqg_data[i+*NUM_THREADS+buffer_count]}.cam_id = i;
acq_data[i«NUM_THREADS+buffer_count].cam_pos = pcam[i]->get_cam_position{();
acq_data [i*NUM_THREADS+buffer count].cam_quad = pcam[i]~->get_cam_qguadrant ();
acq_data[i+«NUM_THREADS+buffer_count].cam _master = pcam[i]->get_cam master();
acqg_data[1i+NUM_THREADS+buffer_count].thread_id = i * NUM_THREADS + buffer_ccunt;
acg_data[i+=NUM_THREADS+buffer_count]).buffer id = i * NUM_THREADS + buffer_ count;
acqg_data[i*NUM_THREADS+buffer_count).local_cap_id = local_cap_id;
acqg_data[i+*NUM_THREADS+buffer_count].remote_cap_id = remote_cap_id;
acqg_data[i+NUM_THREADS+buffer_count].capsule_count = capsule_count;

/% create image acquisition threads x*/

ret = pthread_create (&acg_threads[i*NUM_THREADS + buffer_count],
&acg_attr,
tgrab_frame,
(void x) &acq data{i+NUM_THREADS + buffer count]};

if (ret) {
fprintf (QUT_ERR_MSG, "Error - pthread_create(): %s\n", strerror(ret));

}

/% start inspection rate counter on first capsule */

if (capsule_count == 1) {
/% Start Timer for capsule count =/
inspect_rate_start_time = get_elapsed_time();

}

/+ join grab image threads =/

for (int i = 0; i < dev_count; i++) {
if (pcam[i]->get_cam position() == PM_CAM_POS_BOTTOM)
continue;

/% Join Threads to Main «/
ret = pthread_join (acqg threads[1i+*NUM_THREADS + buffer_count], (wvoid =x*) &status);
}

/+ Top View Images Acquired Here x/
if (verbose_p) fprintf (stdout, "\n\nxxsxxxxxx*xxxxx*xxxx«TOP VIEW IMAGES ACQUIRED

Ak kkkxkxkkxk ok xxkxxx\N\N\DN");

/+ Now acquire bottom camera image (if it exists) */
if (cam_bottom_index != Oxff) {
int i = cam_bottom_index;

/* thread id */
acq_data[i+~NUM_THREADS+buffer count].cam_id = 1i;

acq _data[i+«NUM_THREADS+buffer_count].cam _pos = pcam[i]->get_cam_position(};
acg_data[i+«NUM_THREADS+buffer_count].cam_quad = pcam{i]->get_cam_guadrant ();

acg _data[i*NUM_THREADS+buffer count].cam_master = pcam[i]->get_cam_master();
acyg_data[i«NUM _THREADS+buffer_count].thread_id = i * NUM_THREADS + buffer_count;
acq data[i+NUM_THREADS+buffer count].buffer_id = i « NUM_THREADS + buffer_count;
acq_data[i«NUM_THREADS+buffer_count].local_cap_id = local_cap_id;
acg_data[i+«NUM_THREADS+buffer count].remote cap_id = remote_cap_id;
acg_data[i+NUM_THREADS+buffer_count].capsule_count = capsule_count;

/+ create image acquisition threads +*/

ret = pthread_create (&acg_threads{i»NUM_THREADS + buffer count],
&acqg_attr,
tgrab_frame,
(void *) &acq data[i+NUM_TRREADS + buffer count]);

if (ret) {
fprintf (OUT_ERR_MSG, "Error - pthread_create(): %s\n", strerror(ret));
}

/% Join Threads to Main =/

254

file:///n/ri*

E. HOST PC SOFTWARE

ret = pthread_join (acq_threads[i+NUM_THREADS + buffer count], {(void xx) &status);
}

/+ Bottom Camera Image Acquired */
if (cam_bottom _index != 0xff)
if (verbose_p) fprintf (stdout, "\n\n#xxkxxx*xxxxxxx*xxx % xxxx*x*xBOTTOM VIEW IMAGES ACQUIRED

Kk Kk kAR kXK Ak k kA kxkxkxkxxxxxx\n\n\n"};

/+ get remote capsulelID from master cam */
if (cam_master_index != 0Oxff
remote_cap_id = acqﬁdata[camfmasterfindex*NUMiTHREADS+bufferfcount].remoteicap_id;

/+ remote capsulelD +/
if (verbose_p) fprintf (stdout, "REMOTE CAPSULEID: %d\n", remote_cap_id);

/% increment capsule counter +/
capsule_count++;

/* set previous remote to local capsuleID x/
prev_remote_capsule_id[local_cap_id] = remote_cap_id;

/+ increment local capsule_id counter x/

local_cap_id++;

if (local_cap_id == CAPSULE_BUFFER_SIZE)
local_cap_id = 0;

/* clear capsule pass/fail result for upcoming capsule */
for (int i = 0; i < dev_count; i++)
capsule_passfail[i)(local_cap_id] = -1;

/* increment buffer counter for cyclic buffer =/
buffer_ count++;
if (buffer_ count == NUM_THREADS)

buffer count = 0;

/# Check stats update timer =/

if ((get_elapsed_time() - last_stat_update_time) < (STATS_UPDATE_INTERVAL))
continue;

else
last_stat_update_time = get_elapsed_time();

/* updata statistics file results #/
fp_stats_html = fopen (STAT_FILE_HTML, "w");
fp_stats_csv = fopen (STAT_FILE_CSV, "w"};

/% Make sure files were created »*/

if ((fp_stats_html == NULL) || (fp_stats_csv == NULL)) {
fprintf (stderr, "Error: Error creating stats files!\n");
continue;

inspect_rate_end_time = get_elapsed_time();

tm_stamp = time (NULL);

tmstmp = localtime (&tm_stamp);

stritime (update_time_stamp, sizeof (update_time_stamp), "%a %d %b %Y %H:3¥M:%S %z", tmstmp);

/+ calculate statistic parameters =/

empty_holder count = capsule_count - (cap_count_good + cap_count_bad);

good_cap_percentage = (double)cap_count_good/ (cap_count_good+cap_count_bad) »100.0;

bad_cap_percentage = (double)cap_count_bad/ (cap_count_good+cap_count_bad) »100.0;

empty_holder_percentage = (double) (capsule_count - (cap_count_good+cap_count_bad))/capsule_count
*100.0;

/% seconds =/

elapsed_time = (inspect_rate_end_time ~ inspect_rate_start_time};
/* caps/min */
inspection_rate = 60 » capsule_count / elapsed time;

/+ caps/min */
eff_inspection_rate = 60 » (cap_count_good+cap_count_bad) / elapsed_time;

/+ HTML Output =/
/* Header «*/
if (cam_master_index != Oxff)

255

http://cap_.count_.bad/

E. HOST PC SOFTWARE

fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</

head>\n",
pcam[cam_master _index}->get_cam_quadrant ());
else
fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</
head>\n",
Oxffy;

/+ Title =/
fprintf (fp_stats_html, "\n\t<body>\n\t\t<h2>Q%d - Inspection Statistics</h2>\n");

/#* results table x/
fprintf (fp_stats_html, "\t\t<table width=420 border=1, cellpadding=2 cellspacing=0>\n"};
fprintf (fp_stats_html, "\t\t\t<tr><td colspan=2 align=center bgcolor=\"#c0c0cO0\">Inspection
Results</td></tr>\n");
fprintf (fp_stats_html, "\t\t\t<tr><td>Good Capsules</td><td>%d (%.3g\%)</td></tr>\n"
cap_count_goocd, good_cap_percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Bad Capsules</td><td>%d (%.3g\%) </td></tr>\n",
cap_count_bad, bad_cap_percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Empty Holders</td><td>%d (%.3g\%)</td></tr>\n",
empty_holder_count, empty holder_ percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Total Capsules</td><td>$d</td></tr>\n",
capsule_count};

fprintf (fp_stats_html, "\t\t\t<tr><td>Misaligned Images</tdr<td>%d</td></tr>\n",
misalignment_counter);

fprintf (fp_stats_html, "\t\t\t<tr><td colspan=2 align=center bgcolor=\"#c0c0cO0\">Inspection
Rate</td></tr>\n");
fprintf (fp_stats_html, "\t\t\t<tr><td>Elapsed Time</td><td>%.5g s</td></tr>\n",
({inspect_rate _end_time - inspect_rate_start_time)));

fprintf (fp_stats_html, "\t\t\t<tr><td>Tnspection Rate</td><td>%.5g caps/min</td></tr>\n",
60 * capsule_count / (inspect_rate_end_time - inspect_rate_start_time));

fprintf (fp_stats_html, "\t\t\t<tr><td>Effective Inspection Rate</td><td>%.5g caps/min</td
></tr>\n",
60 * (cap_count_good+cap_count_bad) / (inspect_rate_end_time - inspect_rate_start_time));

fprintf (fp_stats_html, "\t\t</table>");

/+ HTMIL Closing +/

fprintf (fp_stats_html, "\t\t<p>
</p>\n\t\t<hr/>\n\t\t<p><i>Last Updated: %s</i></p>",
update_time_stamp);

fprintf (fp_stats_html, "\t</body>\n"});

fprintf (fp_stats_html, "</html>\n");

fclose (fp_stats_html);

/+ CSV File Output =/
if (cam _master_index != Oxff

fprintf (fp_stats_csv, "Quadrant, %d\n", pcam([cam_master_index])->get_cam_quadrant{) });
else

fprintf (fp_stats_csv, "Quadrant, UNKNOWN\n");

fprintf (fp_stats_csv, "Start Time, %s\n", start_time_stamp);

fprintf (fp_stats_csv, "Last Updated, %s\n”", update_time_stamp);

fprintf (fp_stats_csv, "\nlInspection Results, Count, Percentage\n");

fprintf (fp_stats_csv, "Good Capsules, %d, %.3g\%\n", cap_count_good, good_cap_percentage);
fprintf (fp_stats_csv, "Bad Capsules, %d, %.3g\%\n", cap_count_bad, bad_cap_percentage);
fprintf (fp_stats_csv, "Empty Holders, %d, %.3g\%\n", empty_holder_count, empty_ holder_percentage};
fprintf (fp_stats_csv, "Total Capsules, %d\n", capsule_count);

fprintf (fp_stats_csv, "Misaligned Images, %d\n", misalignment_counter);

forintf (fp_stats_csv, "\nInspection Rate\n");

fprintf (fp_stats_csv, "Elapsed Time, %.3g, seconds\n", elapsed_time);

fprintf (fp_stats_csv, "Inspection Rate, %.3g, caps/min\n", inspection_rate);

fprintf (fp_stats_csv, "Effective Inspection Rate, %.3g, caps/min\n", eff_inspection_rate);

fclose (fp_stats_csv);
/% while =/

256

file:///nInspection
file:///nInspection

E. HOST PC SOFTWARE

/+ cleanup =/
cleanup () ;

/+ success x/
return 0;

void
cleanup (void)

{

/+ stop bulk endpoint #/

for (int i = 0; i < dev_count; i++) {
pcam[i)->ep_stop();

}

/+ close USB device handles +/

for (int i = 0; i < dev_count; i++) {
pm_close (pm_dev_hdl{i]);

}

delete pm_1P;
delete pcam;
delete pm_dev;
delete pm_dev_hdl;

exit (0);

void
print_cam loc(int cam_id)

{

/% OQutput this infomation =*/
if (verbose_p) {
fprintf (OUT_MSG, "CAMERA %d:\n=========\n", cam_id);

fprintf (OUT_MSG, "\tQuadrant: %d\n", pcam[cam_id]->get_cam_quadrant ()

)i

fprintf (OUT_MSG, "\tPosition: %d (%s)\n", pcam[cam_id]->get_cam _position ()

pos_str[pcam[cam_id]->get_cam_position()]);

fprintf (QUT_MSG, "\tMaster: $s\n", ((pcam{cam_id]->get_cam_master ()

fprintf (OUT_MSG, "\n");

void
cam_reg_setup (int cam_id)

{

short val;

/+ Set Camera Registers +/

/% Column and Row start */

//pcam{cam_id]->write_req (MI_REG_COLUMN_START, DEFAULT_COL _START);
//pcam[cam_id]->write_reg(MI_REG_ROW_START, DEFAULT_ROW_START);

/% Blanking Regions - Defaults (H=142, V=25) =/
//1210

pcam[cam_id]->write_reqg (MI_REG_HORIZ_BLANKING, 1023);
//830

pcam[cam_id]->write_reg (MI_REG_VERT_BLANKING, 5);

/+ Global Gain =/

/* Read in from conf file +/

if (pcam[cam_id)->get_cam position{) == PM_CAM_POS_BOTTOM) {
pcamfcam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_BOTTOM);

}

else if (pcam([cam_id]->get_cam_position() == PM_CAM_POS_CENTER) {
pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_CENTER};

}

else if (pcam[cam_id]->get_cam_position() == PM_CAM_POS_LEFT) ({
pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM GAIN_LEFT);

}

else if (pcam[cam_id]->get_cam_position() == PM_CAM_POS_RIGHT) {
pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_RIGHT);

?

nyeg"

"N "

)i

257

file:///tPosition
file:///tMaster

E. HOST PC SOFTWARE

* % % % %

*

}
else {

pcam[cam_id]->write reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_ DEFAULT);
}

/+* For Left Camera, increase analog gain =/

if (pcam[cam_id]->get_cam_position() == PM_CAM_POS_LEFT) {
pcam|[cam_id])->write reg(MI_REG_GLOBAL_GAIN, 0x0a0f);

}

#if O

/* Individual Channel Gains */
pcam[cam_id] ->write_ reg (MI_REG_RED_GAIN, 0x000f);
pcamf{cam_id]~>write_reg(MI_REG GREEN1_GAIN, 0x002f);
pcamlcam _id]->write_reg(MI_REG_GREEN2_GAIN, 0x002f);
pcamf{cam_id]}->write reg(MI_REG_BLUE_GAIN, 0x000f);

/* Black Level x/
pcam[cam_id]->write_reqg (MI_REG_BLACK_LEVEL, 0x00a8);
#endif

/+ As per MTY9T001 datasheet (p.13) =/
pcam{cam_id]~>read_reqg (0x4E, &val);
val &= Oxffef;

val |= 0x0020;

pcam[cam_id] ->write_reg(0x4E, val);

#if 1

/+ Set Trigger Mode +/

pcamfcam_id]->read_reg (MI_REG_READ_MODE_1, &val);
val &= 0Oxbfff;

val |= 0x0100;

pcam{cam_id}->write_reqg (MI_REG_READ_MODE_1, val);
#endif

#if O

/* TODO: Putting in Test Data Mode «/

pcam(cam_id]->read_reg (MI_REG _OUTPUT_CONTROL, &val);

val |= 0x0040; // bit 6 set for test data mode
pcam[cam_id]~>write reg (MI_REG QUTPUT_CONTROL, wval);

pcam([cam_id]~>write_reg (MI_REG_TEST_DATA, 0x0000);
YEavs
#endif

/% Over-ride Black level calibration */

#if O

pcam[cam_id] ->read_reg (0x62, &val);
val |= 0x0003;
pcam[cam_id]->write_reg (0x62, wval);
#endif

#if 1

/+* Set Read Mode 3 register for global shutter control (pg. 23 MT9T001 Datasheet) +/

pcam{cam_id]->read_reg (MI_REG_READ_MODE_3, &val);
val = 0x0003;

pcam{cam_id]->write_reqg (MI_REG_READ_MODE_3, val);
pcam[cam_id]}->write _reg (MI_REG_SHUTTER_WIDTH, 1);
flendif

read_conf_var()
reads variable from configuration file
conf_file - configuration file string

keyword - variable keyword
value - value (if found)

* returns:

0 - on success
-1 - on file error

258

E. HOST PC SOFTWARE

* ~2 - on invalid keyword
* -3 -~ on keyword not found
*/

int

read_conf_var (char xconf_file, char xkeyword, char xvalue)

{

FILE «fp=NULL;
int len;

char str{80];
char «pch;

int leq;

if (keyword == NULL)
return -2;

len = strlen (keyword);

if (len > 77)
return -2;

if (conf_file) {
fp = fopen (conf_file, "r");
if (fp == NULL)
return -1;
}
else
return -1;

if (fseek({fp, 0, SEEK_SET)) {
fclose (fp);
return -1;

}

for (;;) |
fgets (str, 80, fp);
if (ferror(fp) || feof(fp))

return -3;
len = strlen(str);

/% look for comment character =/
if (!strncmp ("#", str, 1)

continue;
if (strncmp (keyword, str, strlen(keyword)) == 0)
if (strilen-1) == '\n")
str[--len] = 0;

/+ find equal sign +/

pch = strrchr(str, "=");

leq = pch-str+l;

sprintf (value, "%s", &str(leq));

/* trim spaces =/
while (value{0] == ' ') strcpy{value, value+l);

break;
}
fclose (fp);

/% success */
return 0;

void
clear_stats_files (void)

{
FILE «fp_stats_html;
FILE =fp_stats_csv;

259

E. HOST PC SOFTWARILE

/#* updata statistics file results »*/
fp_stats_html = fopen (STAT_FILE_HTML, "w");
fp_stats_csv = fopen (STAT_FILE_CSV, "w");

/+ Make sure files were created */

if ((fp_stats_html == NULL) || (fp_stats_csv == NULL)) {
fprintf (stderr, "Error: Error creating stats files!\n");

}

/+ calculate statistic parameters =/
int empty_holder_count = 0; // capsule_count - (cap_count_good + cap_count_bad);

double good_cap_percentage = 0.0;
double bad_cap_percentage = 0.0;
double empty_holder percentage = 0.0;

double elapsed_time = 0.0;
double inspection_rate = 0.0;
double eff inspection_rate = 0.0;

/* HTML Output */
/* Header =/

if (cam_master_index != Oxff
fprintf (fp_stats_html, *"<html>\n\t<head>\n\t\t<title>0%d - Inspection Statistics</title>\n\t</head
>\n",
0);
else
fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</head
>\n",
0);

/+ Title */
fprintf (fp_stats_html, "\n\t<body>\n\t\t<h2>0%d - Inspection Statistics</h2>\n");

/* results table =/
fprintf (fp_stats_html, "\t\t<table width=420 border=1, cellpadding=2 cellspacing=0>\n");
fprintf (fp_stats_html, "\t\t\t<tr><td colspan=2 align=center bgcolor=\"#c0c0c0\">Inspection
Results</td></tr>\n"};
fprintf (fp_stats_html, "\t\t\t<tr><td>Good Capsules</td><td>%d (%.3g\%)</td></tr>\n",
cap_count_good, good_cap_percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Bad Capsules</td><td>%d (%.3g\%)</td></tr>\n",
cap_count_bad, bad_cap_percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Empty Holders</td><td>%d (%.3g\%)</td></tr>\n",
empty_holder_count, empty holder_percentage);

fprintf (fp_stats_html, "\t\t\t<tr><td>Total Capsules</td><td>%d</td></tr>\n",
capsule_count);

fprintf (fp_stats_html, "\t\t\t<tr><td>Misaligned Images</td><td>%d</td></tr>\n",
misalignment_counter);

fprintf (fp_stats_html, "\t\t\t<tr><td colspan=2 align=center bgcolor=\"#c0c0cO\">Inspection Rate

</td></tr>\n");
fprintf (fp_stats_html, "\t\t\t<tr><td>Elapsed Time</td><td>%.5g s</td></tr>\n"
((inspect_rate _end_time - inspect rate_start_time))};

fprintf (fp_stats_html, "\t\t\t<tr><td>Inspection Rate</td><td>%.5g caps/min</td></tr>\n",
0):

fprintf (fp_stats_html, "\t\t\t<tr><td>Effective Inspection Rate</td><td>%.5g caps/min</td></
tr>\n",
0);

fprintf (fp_stats_html, "\t\t</table>");

/4 HITML Closing */

fprintf (fp_stats_html, "\t\t<p>
</p>\n\t\t<hr/>\n\t\t<p><i>Last Updated: $s</i></p>", "");
fprintf (fp_stats_htmi, "\t</body>\n");

fprintf (fp_stats_html, "</html>\n"};

fclose (fp_stats_html);

260

E. HOST PC SOFTWARE

/+ C8V

if (cam
fprin

else
fprin

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

fclose

E.1.4

File Output +/
__master__index
tf

tf

(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,
(fp_stats_csv,

(fp_stats_csv);

1=

(fp_stats_csv,

(fp_stats_csv,

Oxff)
"Quadrant, %d\n", pcam[cam_master_index]->get_cam_quadrant () };
"Quadrant, UNKNOWN\n");

"Start Time, %s\n", ""};

"Last Updated, %s\n", "");
"\nInspection Results, Count,
"Good Capsules, %d, %.3g\%\n",

Percentage\n");

cap_count_good, good_cap_percentage);

"Bad Capsules, %d, %.3g\%\n", cap_count_bad, bad_cap_percentage};

"Empty Holders, %d, %.39\%\n", empty_holder_count, empty_holder_percentage);
"Total Capsules, %d\n", capsule_count);

"Misaligned Images, %d\n", misalignment_counter);

"\nInspection Rate\n");

"Elapsed Time, %.3g, seconds\n", 0);
"Inspection Rate, %.3g, caps/min\n", 0};
"BEffective Inspection Rate, %.3g, caps/min\n", 0);

inspect.conf

Configuration file used by inspect.

Configuration File for inspect
Used to define application parameters including

camera

#applicat
stats_htm
stats_csv
image_dir

#Camera G
left_gain
right _gai
center_ga
bottom_ga

E.2

sensor gains

ion Parameters
1_file =
_file =

= /images

ains

= 0Ox0az2f
0x0a0f
in = 0x0ala
in = 0xQala

n =

test_ip

/opt/pill_machine/statistics.html
/opt/pill_machine/statistics.csv

An offline test application to verify the functionality of the image processing algorithm.

E.2.1

offl

* Author:

*/

#include
#include
#include
#include
#include

#include

void

usage (vo

test_ip.cc

ine.
Neil Scott
<stdio.h>
<unistd.h>
<stdlib.h>
<string.h>

<tiffio.h>

"ip.h"

id)

* Utility to verify the functionality of the image processing library
* Input files are specified along with a position ID.

261

file:///nInspection

E. HOST PC SOFTWARE

fprintf (stderr, "Usage:\n");

fprintf (stderr, " ip_test -p [POSITION) file.tiff\n\n");
fprintf (stderr, "Position IDs:\n");

fprintf (stderr, ™ 1 - Center\n");

fprintf (stderr, " 2 - Left\n");

fprintf (stderr, " 3 - Right\n");

fprintf (stderr, " 4 - Bottom\n");

int
main (int argc, char xargv(])
{
TIFEF +img;
unsigned char *Y, +U, «V;
int CAM_POS = 1, DETAILS = 1;
pmlP +#+pm_ip;

int width, height;
char filename[80];
unsigned char R, G, B;
uint32 *raster;

int ret;

int pos;

fprintf (stdout, "Image Processor Test App.\n");

if (argc < 4) |
usage ();
return -1;

}

for (int i = 0; i < argc; i++) |
if (!strcmp{argv([i], "-p"}) {
sscanf (argv([i+l}, "%d", &pos});
it

strcepy (filename, argviargc-11};

if ((img = TIFFOpen (filename, "r")) == NULL) {
fprintf (stderr, "Brror loading image file!\n");
return -1;

1
j

TIFFGetField (img, TIFFTAG_IMAGEWIDTH, &width);
TIFFGetField (img, TIFFTAG_IMAGELENGTH, &height);

/+ Allocate Memory =/
raster = (uint32) malloc (sizeof (uint32) * width + height);

/* Load image to buffer =+/
TIFFReadRGBAImage (img, width, height, raster, 0);

/% Convert RGB image to Grayscale =/
/* Allocate memory for grayscale buffer x/
Y = (unsigned char) malloc(sizeof (char) * width * height);

int m = 0;
unsigned int pix;

for (int e = height - 1; e != -1; e--) {
for (int ¢ = 0; c < width; c++) {

R = TIFFGetR(raster[e * width + c])
G = TIFFGetG(raster[e * width + cl});

B = TIFFGetB(raster[e » width + c])

pix = (unsigned int) (0.299 * (double) R + 0.587 * (double) G + 0.114 * (double) B + 0.5};

if (pix > 255) pix = 255;
if (pix < 0) pix = 0;

262

E. HOST PC SOFTWARE

Y[m++] = (unsigned char) pix;
}

pr_ip = new pmIPx[1];
pm_ip[0] = new pmIP (width, height, pos, DETAILS});

ret = pm_ip[0]->inspect (Y, NULL, NULL);
//ret = inspect (Y, NULL, NULL, width, height, pos, DETAILS);
if (ret)
fprintf (stdout, "Inspection FAILED\n"});
else
fprintf (stdout, "Inspection PASSED\n");
fprintf (stdout, "ret = %d\n", ret};
/% cleanup =*/
free (Y);
free (raster);

TIFFClose (img);

return 0;

E.3 cam._init

This application is used to initialize the camera for first time use. The quadrant, position and
master flag are set using this utility. The ability to read/write any arbitrary register of the camera
EXPROM exists with this utility.

E.3.1 Makefile

TARGET = cam_init

cC = g++

LDFLAGS = -lusb

INCLUDE = -I../../firmware/fx2_revB/firmware/include
CFLAGS = -02

all: S$(TARGET)

$(TARGET) : $(TARGET) .cc
$(CC) $(TARGET).cc $(CFLAGS) $(LDFLAGS) $(INCLUDE) -o $(TARGET)

clean:
rm $ (TARGET)}

E.3.2 cam._init.cc

/% cam_init.cc

*

* location information, ie. quadrant and camera position.
*

*

* Author: Neil Scott

* Date: July 28, 2007

*/

#include <iostream>
#include <usb.h>
#include "fx2cam_commands.h"

263

E. HOST PC SOFTWARIs

#define VERSION "o.01"

#define FX2_VID Oxabed

#define FX2_PID 0x0201

$#define VENDOR_REQUEST_IN 0xCO

$define VENDOR_REQUEST_OUT 0x40

#define VRQ_EEPROM READ_LG 0xE6

#define VRQ_EEPROM WRITE_LG 0xE7

f#define VRQ_T2C_READ 0x81

#define EEPROM_HEADER_SIZE 8 //bytes

#define EEPROM_SIZE 16%x1024 // 128kbits = 16kB

#define EEPROM_QUADPOS_START_ADDR 0x10
#idefine EEPROM_QUADPOS_LENGTH 3

/+ EEPROM Header contains VID/PID/DID according to FX2 TRM (pg. 3.4)

*

* For a C0 Load (Only VID/PID/DID - Host loads firmware)

* EEPROM ADDR CONTAINS

* 0 0xCO0

* 1 VID (low)

* 2 VID (high)

* 3 PID (low)

* 4 PID (high)

* 5 DID (low)

* 6 DID (high)

* 7 Configuration Byte (Set to 0) (FX2 TRM pg. 3.8)

*

* V1iD: OxABCD; PID: 0x0201; DID: 0x0101

*/
unsigned char EEPROM_HEADER[] = {0xc0O, Oxcd, Oxab, 0x01, 0x02, 0x01, 0x01, 0Ox00};
char *pos_str[] = {"UNDEFINED", "CENTER", "LEFT", "RIGHT", "BOTTOM"};

/* List all devices on the USB bus. Mark matching VID/FPID
*/
void
show_bus (void)
{
for (usb_bus *bus = usb_busses; bus; bus = bus->next) {
for (struct usb_device *dev = bus->devices; dev; dev = dev->next) ({
fprintf (stdout, "bus %s dev %s: ID %04x:%04x", bus->dirnane,
dev->filename,
dev->descriptor.idvendor,
dev->descriptor.idProduct);

if (dev->descriptor.idVendor == FX2_VID &&
dev->descriptor.idProduct == FX2_PID) {
std::cout << " <--";

}

std::cout << std::endl;

/+ Search bus for specific device

*/
struct usb_device =«
find_device (const char xbus, const char xdev)
{

for (usb_bus *b = usb_busses; b; b = b->next) {

if (!strcmp (b->dirname, bus)) {
for (struct usb_device *d = b->devices; d; d = d->next) {
if (!strcmp (d->filename, dev))
return (d);

264

E. HOST PC SOFTWARE

return (NULL);

/+ Sequentially write data to EEPROM starting at addr
*/
int

write_eeprom (struect usb_dev_handle xusb_hdl, int addr, char xdata, int len)

{
int ret;
/+ Verify len is no more than 64 bytes »*/
if (len > 64)
return -1;

ret = usb_control_msg (usb_hdl
VENDOR_REQUEST _QUT,
VRO_EEPROM_WRITE_LG,
addr,
0,
(char x) data,
len,
500) ;

return ret;

/% Output application usage
*/
void
usage (void)
{
std::cout << "Usage: cam_init -d=[BUS.DEV] [OPTIONS]...

<< std::endl;

std::cout << "Camera first time setup." << std::endl << std::endl;

std:icout << " -d, --device Specify device to target as BUS.DEV" << std::endl;

std::cout << " -g, --quadrant Specify camera guadrant" << std::endl;

std::cout << " -p, --position Specify camera position" << std::endl;

std::cout << " -m, --master Specify camera as quadrant master (responsible for
comm. with control board" << std::endl;

std::cout << " -r, —-read Retrieve ALL EEPROM data to screen® << std::endl;

std::cout << " ~—qguickread Retrieve the camera quadrant, position and master
flag" << std::endl;

std::cout << " -5, --save <FILENAME> Read data from EEPROM and save to <FILENAME>" << std
crendl;

std::cout << " -1, --list List all devices on USB bus" << std::endl;

std::cout << " ——blank Clear BEEPROM memory with Oxff" << std::endl;

std::icout << " -w, --write_eeprom [ADDR] [VAL] Write a value to a specific memory location of the
EEPROM" << std::endl;

std::cout << " -rb, --read_eeprom [ADDR] Read a specific byte of EEPROM memory" << std::endl;
: << " -rp, --reload_params Reload window parameters from EEPROM" << std::endl;

std::cout << " «ADDR and VAL are decimal numbers" << std::endl;

std::cout << std::endl << "cam_init v" << VERSION << std::endl;

int
main (int argc, char =argv{])
{
char *usb_bus_dev = NULL;
char bus(4], dev([4];
int guadrant, position, master = 0;
bool device_p = false;
bool bus_dev_p = false;

bool list_only_p = false;
bool quadrant_p = false;
bool position_p = false;
bool master_p = false;

bool read_p = false;

bool save_p = false;

bool quick_read_ p = false;
bool Dblank p = false;
bool write_eeprom_p = false;

265

E. HOST PC SOFTWARE

bool
bool
char
int we_addr;
int re_addr;

read_eeprom_p = false;
reload_params_p = false;
we_data;

char datal6ed];

int ret;

int byte_count, len;
char filename[128];
FILE «»fp;

if (argc < 2) {

usage ();
return -1;

/* Loop through command line arguments =/
for (int 1 = 0; i < argc; i++) |
if (!strncmp(argv([i], "--device=", 9)) {
usb_bus_dev = argv[i] + 9;
}
if (!strncmp(argv(i}, "-d=", 3)) {
usb_bus_dev = argv{i}l + 3;
}
if (!strcmp("--guadrant", argv{i])} || !strcmp ("-gq", argv[i])) {
quadrant_p = true;
sscanf (argvl[i+l], "%d", &quadrant};
}
if (!strcmp("--position", argviil]) || l!strcmp ("-p", argvi{il)) {
position_p = true;
sscanf (argv[i-+1l], "%3d", &position);
}
if (!strcmp ("--master", argv{i]) || !strcmp ("-m", argv[i])) {
master_p = true;
sscanf (argv[i+l], "%d", &master);
if (master)
master = 1;
}
if (!strcmp("--read", argv(i)) || !strcmp ("-r", argv[i))) |
read_p = true;
}
if (!strcmp("--quickread", argv([i]) } {
quick_read_p = true;
}
if (!strcmp("--save®™, argv[i]) || !strcmp ("-s", argv[i])) |
save_p = true;
if (argec < i + 2) {
std::cerr << "You must specify a valid filename!" << std::endl;
return -1;
}
sscanf (argv[i+1l], "%s", &filename);
}
if (!stromp("--list", argviil) j} ‘stromp (“-1%, argviil)) {
list_only_p = true;
)
if (!strcemp("--blank", argv(i})) {
blank _p = true;
}
if (!strcmp("--write_eeprom", argv([i]) || !strcmp ("-w", argv([i])) {
if (argc < (i+3)) {

std::cerr << "Memory location and value must be specified!" << std

::endl;

266

E. HOST PC SOFTWARE

return -1;

write_eeprom p = true;

sscanf (argv[i+1], "%d", &we_addr};
sscanf (argv[i+2]), "%d", &we_data);
fprintf (stdout, "WRITE EEPROM ADDRESS: ADDR = 0x%02x, DATA = 0x%02x\n\n", we_addr, we_data);
i+=2;
}
if (!strcmp("--read_eeprom", argv{i]) |{ !stremp ("-rb", argvl[i])) {

if (argc < (i+2)) |
std::cerr << "Memory location must be specified!" << std::endl;

return -1;

read_eeprom_p = true;
sscanf (argv[i+l], "%d", &re_addr);
i4+;

}

if (!strcomp("--reload params", argviil) || !stremp ("-rp", argv[i])) {
reload_params_p = true;

}

/% Initialize libusb #*/
usb_init ();

uskb_find _busses ();
usb_find_devices ();

if (list_only_p) |
show_bus ();
return —-1;

if (usb_bus_dev '= NULL) {

/+ Extract BUS and DEVICE from command line arguments +/

const char *p = strchr {usb _bus dev, ’.7);

if (!'p) |
std::cerr << "Illegal/nonexistant device " << usb_bus_dev << "." << std::endl;
return -1;

}

strncpy (bus, usb_bus_dev, p - usb_bus_dev)};

bus[p - usb_bus _dev] = '\0’;

strcpy (dev, p+l);

}

else {
std::icerr << "USB bus and device not specified!"™ << std::endl;
usage ();
return -1;

struct usb_device =*usb_dev;
/* Find device at location specified #/
usb_dev = find_device (bus, dev);

if (usb_dev == NULL) {
std::cerr << "Unable to find device!" << std::endl;
return -1;

std::cout << "Device Found. (ID: " << std::hex;
std::cout << usb_dev->descriptor.idVendor;
std::cout << ":" << usb_dev->descriptor.idProduct << "}" << std::endl;

struct usb_dev_handle =xusb_hdl;

usb_hdl = usb_open (usb_dev);

if (lusb_hdl) {
std::cerr << "Error Opening Device: " << usb_strerror() << std::endl;
return -1;

267

E. HOST PC SOFTWARE

if (usb_set_configuration (usb_hdl, 1) < 0) {
std::cerr << "Error setting configuration: " << usb_strerror() << std::endl;
return -1;

}

if (usb_claim_interface (usb_hdl, 0) < 0) {
std::cerr << "BError claiming interace: " << usb_strerror ()} << std::endl;
return -1;

}

if (usb_set__altinterface (usb_hdl, 0) < 0} {
std::cerr << "Error setting alternative interface: " << usb_strerror() << std::endl;
return -1;

}

if (save_p) ¢
ip = fopen (filename, "wb");

if (fp == NULL) {
std::cerr << "Error opening file: "™ << filename << std::endl;
usb_close (usb_hdl);
return -1;

}
/+ Read Contents +/

if (read_p | save_p) {
/* Read Contents of Serial EEPROM - VRQ _EEPROM_READ LG (l6-bit address)

* wValue: Start Address
* wLength: Length of data (64 bytes max because using EPO)
*/

/+ Read ALL data =/
len = EEPROM_SIZE;
while (len) {
if (len < 64)
byte_count = len;
else
byte count = 64;

ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ_EEPROM_READ_LG,
(EEPROM_STZE - len},
0,
data,
byte_count,
1500) ;

if (ret < 0) {
std::cerr << "Error Reading EEPROM Data: " << usb_strerror() << std::endl;
usb_close (usb_hdl);
return -1;

if (read_p) {

for (int i = 0; 1 < byte count; i++) {
//std::cout << std::hex << datafi] << " ";
fprintf (stdout, "%02x ", (unsigned char) datalil);

if (! ((i+1l) % 16)) {
std::cout << std::endl;

if (save_p) {
fwrite (data, byte_count, 1, fp);

len —-= byte_count;

}

if (save_p) {
fclose (fp);
}

268

E. HOST PC SOFTWARE

std::cout << std::endl;

usb_close (usb_hdl);
return O;
}
if (blank_p) {
int erxr_count = 0;
for (int i = 0; i < 64; i++)
datafi] = Oxff;
for (int i = 0; i1 < (EEPROM_SIZE/64) ; i++) |
ret = usb_control_msg {(usb_hdl,

VENDOR_REQUEST_O0OUT,
VRQ_EEPROM_WRITE_LG,
i+64,
0,
(char +) data,
64,
1500);
if (ret < 0) {
fprintf (stderr,
err_count++4;

"Error writing data to EEPROM — %s\n",

}

fprintf (stdout, "$.4g%% complete.\n", ((double) (i+l) / (double)
}
if (err_count)

fprintf (stderr, "\n\nErrors occurred while blanking EEPROM!\n");
else

fprintf (stdout, "\n\nBlanking EEPROM successful!\n");
ush_close (usb_hdl);

return 0;

}

if (quick_read_p) {
/+ Read Quadrant, Position and Master flag from EEPROM +/
ret = usb_contrel_msg (usb_hdl,

VENDOR_REQUEST__IN,
VRQ_EEPROM_READ_LG,
EEPROM_QUADPOS_START_ADDR,
o,

{(char x)data,
EEPROM_QUADPOS_LENGTH,
500) ;

/* verify data +/

if ((unsigned) data([0] > 4) {
fprintf {stderr, “Camera not configured!\n");
usb_close (usb_hdl);
return (-1);

}

if ((unsigned) data{l] > 4) {
fprintf (stderr, "Invalid Position!\n");
usb_close (usb_hdl);
return (-1);
}
std::cout << "Quadrant: " << (int) data(0] << std::endl;
std::cout << "Position: " << pos_str[data[l]]) << std::endl;
std::cout << "Master: " << ((datal2]) ? "Yes" "No") << std
usb_close (usb_hdl);
return 0;
}
if (write eeprom_p) {
ret = write_eeprom (usb_hdl, we_addr, &we_data, 1);

if (ret < 0)
std::cerr << "Error writing EEPROM data!" << std::endl;
else

usb_strerror());

(EEPROM_SIZE/64))*100.0);

:rendl;

269

file:///n/nErrors
file:///n/nBlanking

E. HOST PC SOFTWARE

std::cout << "Data successfully written to EEPROM..." << std::endl;

usb_close (usb_hdl);
return O;

if (read_eeprom p) {
ret = usb_control_msg (usb_hdl,

VENDOR_REQUEST_1IN,
VRQ._EEPROM_READ_LG,
re_addr,
0
(char)data,
i,
500);

fprintf (stdout, "0x%02x: %d\n\n", re_addr, (unsigned char) data(0]);
usb_close (usb_hdl);
return 0;

}

if (reload_params_p) {
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST__IN,
VRO _GET_WINDOW_PARAM,
0,
VRQ_UPDATE_PARAMS,
(char x)data,
1,
500);
if (ret < 0)
fprintf (stderr, "Error relcading window parameters: $s\n", usb_strerror(});
else {
if (datal0} != 0x08)
fprintf (stderr, "Error reloading window parameters: ACK not received!\n");
else

fprintf (stdout, "Successfully reloaded window parameters...\n");

usb_close (usb_hdl);
return 0;

if (! (quadrant_p && position_p)) {
std::icerr << "Quadrant and Position must be specified at command line!" << std::endl;
usb_close (usb_hdl);
return -1;

}

else {
std::cout << "Quadrant: " << guadrant << std::endl;
std::cout << "Position: " << pos_strlposition] << std::endl;
std::cout << "Master: " << ((master) ? "Yes" : "No") << std::endl;

}

/% Write Header Data #*/

ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_OUT,
VRQ_EEPROM_WRITE_LG,
0,
0,
(char *) EEPROM_HEADER,
EEPROM_HEADER_SIZE,
500) ;

if (ret < 0) {
std::cerr << "Error writing to EEPROM: " << usb_strerror() << std::endl;
usb_close (usb_hdl);
return -1;

}

/+ Write Position and Quadrant Data - Stored at address - 0x0010 x/
data[0] = quadrant;

datall] = position;

datal2] = master;

270

E. HOST PC SOFT'WARE

ret = usb_control_msg (usb_hdl

VENDOR_REQUEST_OUT,

VRQ EEPROM_WRITE_LG,

0x10,

0,
(char »*) data,
0x3,

500);

if (ret < 0) {
std::cerr << "Brror writing to EEPROM: " << usb_strerror() << std::endl;
usb_close (usb_hdl});
return -1;

}

usb_close (usb_hdl);

return 0;

E.4 fpga loader_ss

This application is used to load a .bin/.bit FPGA configuration file generated using Xilinx ISE to
the FPGA of the USB2.0 camera.

E.4.1 Makefile

TOP_SRC = ../..

cc = g++

CFLAGS = -02

LDFLAGS = ~-lusb

INCLUDE = —I$(TOP_SRC)/firmware/fx2/firmware/include

CLEANFTLES = fpga loader_ss
all: fpga _loader_ss

fpga_loader_ss: fpga_loader_ss.cc
$(CC) $< $(CFLAGS) $(LIB) $(LDFLAGS) $(INCLUDE) $(OBJS) $(DEFS) -o $@

clean:
rrn $ (CLEANFILES)

Dependencies
fpyga_loader_ss: ${TOP_SRC)/firmware/fx2/firmware/include/fx2cam_commands.h

E.4.2 fpga_loader_ss.cc

/
Filename:
fpga load _ss.cc

Description:
application to load FPGA firmware using slave-serial methed.

Author:
Neil Scott

Date:
May 4, 2007
May 21, 2007 - Added error handling for unspecified bit file

P T T T S S

;

*/

#include <stdio.h>

271

E. HOST PC SOFTWARE

#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <usb.h>

#include "fx2cam_commands.h"
#include "fx2cam_i2c_addr.h"

$#define DEBUG 0
#define VERSION "0.01"
#define FX2 MAX_DEVICES 16
#define FXZ_CAM_VENDOR_ID Oxabcd
#idefine FX2_CAM_PRODUCT_ID 0x0201
#define FPGA_POWER_ON 0x01
#define FPGA POWER_OFF 0x00
#define FPGA_RESET ENABLE 0x01
#define FPGA_RESET_DISABLE 0x00

/+ Global Variables x/
char «app_title={"Xilinx Slave-Serial FPGA Loader"};

void
show_bus (void)
{
for (usb_bus +bus = usb_busses; bus; bus = bus->next) {
for (struct usb_device r*dev = bus->devices; dev; dev = dev->next) |
fprintf (stdout, "bus %s dev %$s: ID %04x:%04x",
bus=->dirname,
dev~>filenamne,
dev->descriptor.idVendor,
dev->descriptor.idProduct);

if (dev->descriptor.idVendor == FX2_CAM_VENDOR_1D &&
dev->descriptor.idProduct == FX2_CAM_PRODUCT_ ID) {
fprintf (stdout, " <--");

}
fprintf (stdout, "\n");

struct usb_device «
find_device (const char xbus, const char *dev)
{
for (usb_bus *b = usb_busses; b; b = b->next) {

if (!strcmp (b->dirname, bus)) {
for (struct usb_device xd = b->devices; d; d = d->next) ({
if (!strcmp (d->filename, dev))

return (d);

return (NULL);

void
usage (void)
{

fprintf (stderr, "Usage: fpga_load_ss [OPTIONS]}... [BIT FILE]\n");

fprintf (stderr, "Options:\n");

fprintf (stderr, " -h, --help Display this help screen\n");

fprintf (stderr, ™ -v, ——verbose Increase verbosity\n");

fprintf (stderr, " ~d, --device=BUS.DEV Select the bus and device to use\n");
fprintf (stderr, " -1, —--list List the devices on the USB bus\n");
fprintf (stderr, " -p, --power <state> Soft power control to FPGA {on / off]\n");
fprintf (stderr, " -r, --reset Soft reset to FPGA (once configured)\n");

272

E. HOST PC SOFTWARE

fprintf
fprintf
fprintf
fprintf

void

{stderr,
{stderr,
{stderr,
(stderr,

" -V, —-version
"\n\n");

Display version information\n");

"[BIT FILE] is the path to the BIT file generated using ISE\n")

" path/foo.bit’\n"});

print_version (void)
{
fprintf (stdout, "%s v%s\n", app_title, VERSION);
fprintf (stdout, "2007 Neil Scott, University of Windsor\n");
}
int
main (char argc, char xxargv)
{
int ret;
char datal64];
struct usb_bus xusb_bus;
struct usb_device »fx2_dev_list[(FX2_MAX_DEVICES];
struct usb_dev_handle xusb_hdl;
struct usb_device =*usb_dev;
int dev_count = 0;
int h, i;
FILE «fp;
char filename [80];
int fsize, byte_count, rval;
bool p_verbose = false;
bool p_list_only = false;
bool p_fpga_power only = false;
bool p_fpga_reset_only = false;
int fpga_power_ state;
char *usb_bus_dev = NULL;
int option_count = 0;
char msg [80]
/+ Check argument count */
if (argc < 2) {
usage ();
return (1);
}
/# Parse command line arguments #*/
for (int i = 0; i1 < argc; i++) |
if ((!strcmp (argvii), "--help")) || (!strcmp (argv(i], "-h"}))} {
usage ();
return 1;
}
if ((!strcmp (argv([i]), "--version")) || (!strcmp (argv[i], "-V"}) } {
print_version (};
return 1;
}
if ((!strcmp (argvii), "--verbose")) || (!strcmp (argvl[i], "-v"))) {
p_verbose = true;
option_count++;
}
if ((!strcmp (argv[i], "--1ist")) |! (!strcmp (argv[i], "-1"))) |
p_list_only = true;
option_count++;
}
if (!strncmp (argufi}, "-d=", 3)) {
usb_bus_dev = argv(i] + 3;
option_count++;
)
if (!strncmp (argv{i}, "--device=", 9)) {
usb_bus_dev = argvi{i} + 9;

option_count++;

273

E. HOST PC SOFTWARE

}

if ((!stremp (argv{i}, "--power")) || (!strcmp (argv{i]l, "-p"))) {
if ((!strcmp (argv([i+l], "on")) || (istrcmp (argv[i+1]), "off"))) |
p_fpga_power_only = true;
if (!'strcmp (argvi{i+l], "on")) {
fpga power_state = FPGA_POWER_ON;
}
else {
fpga_power_state = FPGA_POWER_OFF;
)

i+t
option_count++;

}

if ((!strcmp (argv(i], "--reset")) || (!strcmp (argv(i], "-r"))) {
p_fpga_reset_only = true;
option_count++;
}
}

/+ Initialize libusb =/
usb _init ();
usb_find_busses();
usb_find_devices (};

/* Print Application Name x/
if (p_verbose) {
sprintf (msg, "%s (v%s)\n", app_title, VERSION});

fprintf (stdout, "%s", msg);
for (int j = 0; j < strlen (msg) - 1; j++) |
fprintf (stdout, "=");
}
fprintf (stdout, "\n\n");
}

/% Check 1if only listing bus =/
if (p_list_only} |

show_bus (};

return (0);

}

/* Ensure a bus and device were specified =/

if (usb_bus_dev == NULL) {
fprintf (stderr, "You must specify a device to program!\n");
return (1);

)

/% Search the USB bus for the Device Specified «/

char bus [FX2_MAX_DEVICES]}, dev[FX2_MAX DEVICES];
const char xp = strchr (usb_bus_ dev, '.7);
if (!p) {

fprintf (stderr, "Illegal/nonexistant device %s.\n", usb_bus_dev);
return (1);

}

strncpy (bus, usb_bus_dev, p - usb_bus_dev);
bus{p - usb_bus_dev] = "\0’;

strcpy (dev, p+l1);

usb_dev = find_device {(bus, dev);

if (usb_dev == NULL) {
fprintf (stderr, "Illegal/nonexistant device: %s.\n", usb_bus_dev);
return (1)
}

if (p_verbose) {
fprintf (stdout, "Device Found. (ID: $%$04x:%04x)\n",
usb_dev->descriptor.idVendor
usb _dev->descriptor.idProduct);

274

E. HOST PC SOFTWARIZ

}

if (p_verbose) |{
fprintf (stdout, "Claiming Device...\n");

usb_hdl = usb_open (usb_dev);

if (lusb_hdl) {
fprintf (stderr, "Error Opening Device: %s\n", usb_strerror{());
return (1)

}

/+ Set Configuration =+/

if (usb_set_configuration (usb_hdl, 1} < 0) {
fprintf (stderr, "Error setting configuration: %s\n", usb_strerror());
return (1);

}

/+ Claim Device */

if (usb_claim_interface (usb_hdl, 0) < 0) {
fprintf (stderr, "Error claiming device interface: %s\n", usb_strerror());
return (1);

}

/+ Set Alt interface #*/

if (usb_set__altinterface (usb_hdl, 0) < 0) {
fprintf (stderr, "Error setting alternative interface: %s\n", usb_strerror());
return {(1);

}

/+ FPGA Power Only */
if (p_fpga_power_only) {
/* Control Message to FX2 to Power on/off FPGA */
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ_FPGA_POWER,
fpga_power state,
0,
data,
1,
500} ;

if (ret < 0) {
fprintf (stderr, "Error setting FPGA power state: %s\n",

(fpga_power_state == FPGA_POWER_ON) ? "on" : "off");
}
else {
if (data[0] == 0x08) ({
fprintf (stdout, "FPGA power state set: %s\n",
(fpga_power_state == FPGA_POWER_ON) ? "on" : "off");
}
else

fprintf (stderr, "Error setting FPGA power state: NACK received\n");
}

usb_close (usb_hdl);
return O;

}

/+ FPGA Reset Only +/
if (p_fpga reset_only) {
/+ Control Message to FX2 to Soft-Reset FPGA x/
ret = usb_control_msg (usb_hdl
VENDOR_REQUEST_IN,
VRQ_FPGA_RESET,
FPGA_RESET_ENABLE,
¢,
data,
1,
500) ;

if (ret < 0) {
fprintf (stderr, "Error on FPGA soft-reset\n");

275

http://Corjt.ro

E. HOST PC SOFTWARE

}
else if (data[0] == 0x08) {
fprintf (stdout, "“FPGA successfully put into reset\n");
}
else |
fprintf (stderr, "Error on FPGA soft-reset\n");
}

usleep (250000); /*250ms delay =/
ret = usb_control_msg (usb_hdl,

VENDOR_REQUEST_IN,

VRQ_FPGA_RESET,

'PGA_RESET_DISABLE,

0

data,

1,

500);

if (ret < 0) {
fprintf (stderr, "Error on FPGA soft-reset\n");
}
else if (data[0] == 0x08) {
fprintf (stdout, "FPGA successfully taken out of reset\n");
}
else {
fprintf (stderr, "Error on FPGA soft-reset\n");
}

if (p_verbose)
fprintf (stdout, "Clesing USB device...\n"};

/+ Close USB handle »*/
usb_close {(usb_hdl);
return 0O;

}

/% Check for program file +/

if (option_count > (argc — 2))} {
fprintf (stderr, "Bit File not specified!\n"};
usage ();
usb_close (usb_hdl);
return 1;
}

/* Get File =/
if (!p_list_only) {
strcpy (filename, argv[argc-1]);

fp = fopen (filename, "rb");

if (fp == NULL) |{
fprintf (stderr, "Error opening file (%s)!\n");
ushb_close (usb_hdl);
return 1;

}

/+ get bit file size */
fseek (fp, 0, SEEK_END);
fsize = ftell (fp);
rewind (fp);

if (p_verbose) fprintf (stdout, "File Size: %dkb (%d bytes)\n", (fsize+l) / 1024, fsize+l)
if (p_verbose) fprintf (stdout, "Starting FPGA Configuration...\n");
if (p_verbose) fprintf (stdout, "Enabling Power to FPGA...\n");
/+ send command to enable power to FPGA */
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,

VRQ_FPGA_POWER,
FPGA_POWER_ON,

276

E.

HOST PC SOFTWARE

0
data,
1,
500);

if (ret < 0)

fprintf (stderr, "ERROR: usb_control_msg() - %s\n", usb_strerror());
else {

/+ ensure FPGA was powered +/

if (data[0] != 0x08) {

fprintf (stderr, "Acknowledge not received, unable to power FGPA!\n");
usb_close (usb_hdl);
return (1);
}
}

/+ Allow FPGA to power up #*/
usleep (250000);

if (p_verbose) fprintf (stdout, "Holding FPGA in reset...\n");

/* send command to hold FPGA in reset after configuration =/
ret = usb_control _msg (usb_hdl,

VENDOR_REQUEST_IN,

VRQ_FPGA_RESET,

FPGA_RESET_ENABLE,

0,

data,

1,

500) ;

if (ret < 0)

fprintf (stderr, "ERROR: usb_control_msg() = %s\n", usb_strerror());
else {

/% ensure FPGA was powered =/

if (data{0) != 0x08) {

fprintf (stderr, "Acknowledge not received, unable to hold FGPA in reset!\n");

usb_close (usb_hdl};
return (1);

}

/+ send fpga load start to FX2 */
ret. = usb_control_msg (usb_hdl
VENDOR_REQUEST_IN,
VRC_FPGA_LOAD_SS,
0,
FPGA_LOAD_START,
data,
2,
500);

if (ret < 0)
fprintf (stderr, "ERROR: usb_control msg() - %s\n", usb_strerror());

/+* check return to ensure start was successful =/
if (datall] != 0x08) {
fprintf (stderr, "Acknowledge not received!\n");
l
if (dataf0] != 0x0l) {
fprintf (stderr, "Error starting serial mode configuration!\n");
usb_clcse (usb_hdl);
return (1);
}

byte count = fsize;

bool p_toggle = false;

int progress_update;

int progress_count = 0;
progress_update = (fsize / 64) / 50;

if (p_verbose) {
fprintf (stdout, "Configuration Progress:\n"};

277

E. HOST PC SOFTWARE

fprintf (stdout, "|(0-----—-—-- 25-——=—mmm - 50-~-—--———— R 1001\n ");
)

/+ build 64 byte packets to send to FX2 x/
while (byte_count > 64) |{
if ((rval = fread (data, 1, 64, fp)) > 0) {
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_OUT,
VRQ_FPGA_LOAD_SS,
rval,
FPGA_LOAD__DATA,
data,
rval,

1500);
if (ret < ()
fprintf (stderr, "ERROR on VRQ_FPGA_LOAD_SS - FPGA_LOAD_DATA: usb_control_msg() - %s\n",

usb_strerror{));

if (p_verbose) {

if (progress_count == progress_update) {
fprintf (stdout, "=");
fflush (stdout);
progress_count = 0;

}

else

progress_count++;

)
byte _count -= rval;

if (DEBUG) fprintf (stdout, "byte_count = %d\n", byte_count);

usleep (9);
)

if (byte_count} {
if ((rval = fread (data, 1, byte_count, fp)) > 0) {

ret = usb_control_msg { usb_hdl,
VENDOR__REQUEST_OUT,
VRQ_FPGA_LOAD_SS,
rval,
FPGA_LOAD_DATA,
data,
rval,
200);

if (ret < Q)
fprintf (stderr, "ERROR on VRQ_FPGA_LOAD_SS - FPGA_LOAD_DATA: usb_control_msg{() - %s\n",

usb_strerror() };

byte_count -= rval;

if (DEBUG) fprintf (stdout, "byte_ count = %d\n", byte_count);

}
if (p_verbose) fprintf(stdout, "\n%);
usleep (200000} ;

/+ ensure the done bit is set +/
ret = usb_control_msg (usb_hdl
VENDOR_REQUEST_IN,
VRQ_FPGA_LOAD_SS,
0,
FPGA_LOAD_CHECK_DONE,
data,
2,
300009 ;

if (ret < 0)

278

E. HOST PC SOFTWARE

fprintf (stderr, "ERROR on VRQ _FPGA_LOAD_SS - FPGA_LOAD_CHECK_DONE: usb_control_msg() - %s\n",
usb_strerror () };

/% check return =/
if (data[l] !'= 0x08) {
fprintf (stderr, "Acknowledge not received!\n");
)
if (datal0] != 0x01) {
fprintf (stderr, "Done indication not received by device!\n");
}
else |
if (p_verbose) fprintf (stdout, "Programming Successful!\n");
}

/+ Control Message to FX2 to Soft-Reset FPGA */
ret. = usb_control_msg (usb_hdl,

VENDOR_REQUEST_IN,

VRQ _FPGA_RESET,

FPGA_RESET_ENABLE,

0,

data,

1,

500) ;
if (ret < 0) {

fprintf (stderr, "Error on FPGA soft-reset\n");
}
else if (data[0] == 0x08) {

fprint.f (stdout, "FPGA successfully put into reset\n");
}
else

fprintf (stderr, "Error on FPGA soft-reset\n");
}

usleep (250000); /*250ms delay =/

ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ_FPGA_RESET,
FPGA_RESET_DISABLE,
0,
data,
,

L,

500);

if (ret < 0} {
fprintf (stderxr, "Error on FPGA soft-reset\n");
}
else if (data[0] == 0x08) {
fprintf (stdout, "FPGA successfully taken out of reset\n");
}
else {
fprintf (stderr, "Error on FPGA soft-reset\n");
}

if (p_verbose) fprintf (stdout, "Closing USB device...\n");
usb_close (usb_hdl);

return 0;

E.5 pyWindowConfig

E.5.1 pyWindowConfig.py

#!/usr/bin/env python

import pygtk
import gtk
import os

279

E. HOST PC SOFTWARE

import pexpect

PM_EEPROM_WIDTH_HIGH_ADDR
PM__EEPROM_WIDTH_LOW_ADDR
PM_EEPROM_LENGTH_HIGH_ADDR 0x22
PM_EEPROM_LENGTH_LOW_ADDR 0x23
PM_EEPROM_COL_START_HIGH_ADDR =
PM_EEPROM_COL_START_LOW_ADDR
PM_EEPROM_ROW_START_HIGH_ADDR
PM_EEPROM_ROW_START_LOW_ADDR
PM_EEPROM_COL_SKIP_ADDR = 0x28
PM_EEPROM _ROW_SKIP_ADDR 0x29

0x20
0x21

0x24
0x25

0x26
0x27

USBlist=[Nonelx1l6
USBposition={None]*16
cmd=""

optionsg="'"

class gEEPROMConfig:
def on_close(self,
gtk.main_quit ()
return False

widget, event,

def list_usb (self):
global USBposition
X os.popen (’lsusb’,
Y 0;
found
while 1:
line = x.readline{)
line line.rstrip()
USBlist[y) list

mpny

0;

if line.count(’abcd’):
usBlist { found] line

print found

print USBlist[found)

Get position

bus USBlist{found][4:7]
dev = USBlist[found] [15:18)

z os.popen(’./cam_init -d=

quad = z.readline ()

quad = z.readline ()

quad = quad{14]

pos = z.readline()

pos = pos[l4:]

pos = pos.rstrip()
USBposition[found) = Q' + g
print ‘Q:’ + quad

print 'P:’ + pos

self.USBcbhUSB.insert_text (fo
found found + 1

y y+1

if not line: break;

if not found:
self.error

gtk.MessageDialog

self.error.
self.error.

connect ("resp
show_all ()

else:
self . USBcbUSB.set_active (0
self.usblist.show_all{)

def read_eeprom_data
global cnd

(self):

— ’

-rb
os.popen

opts
7 =

+ str (PM_EEPROM_W
(cmd + opts)

data=None) :

‘' 4+ bus + . + dev + ' —-qguickread’)
uvad + ': ' + pos
und, line + ' — [Q' + guad + ' + pos + '17)

(self.options, gtk.DIALOG_MODAL, gtk.MESSAGE_INFO,
gtk .BUTTONS_OK, ‘No Devices Found!’)

onse", self.on_close)

IDTH_HIGH_ADDR}

E. HOST PC SOF1T'WARE

r = z.readline()
r = z.readline(
val_hi = int(r[5:])

opts = ' -rb ' + str(PM_EEPROM _WIDTH_LOW_ADDR)
z = os.popen (cmd + opts)

r = z.readline(}

r = z.readline ()

val_lo = int(r(5:])

val = (val_hi << 8) + val_lo
print ‘RESULT: ’ + str{val)
self.OPTentryWidth.set_text (str(val))

opts = ' -rb ' + str(PM_EEPROM_LENGTH_HIGH_ADDR)
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline ()

val_hi = int(r[5:]1)

opts =’ -rb ’ + str(PM_EEPROM_LENGTH_LOW_ADDR)
2z = os.popen {(cmd + opts)

r = z.readline ()

r = z.readline ()

val_lo = int(r{5:})

val = (val_hi << 8) + val_lo
print ‘RESULT: ’ + str(val)
sel f.OPTentrylLength.set_text (str(val))

opts = ' -rb ' + str(PM_EEPROM_COL_START_HIGH_ADDR}
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline ()

val_hi = int(r(5:])

opts = ' -rb ’ + str(PM_EEPROM _COL_START_LOW_ADDR)
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline ()

val_lo = int(r[5:])

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str(val)
self.OPTentryXStart.set_text (str{val))

opts = ' ~rb ' + str(PM_EEPROM_ROW_START_HIGH_ADDR)
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline ()

val_hi = int(r[5:])

opts = ' -rb ' + str(PM_EEPROM_ROW_START_LOW_ADDR)
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline ()

val_lo = int{(r(5:])

val = (val_hi << 8) + val_lo
print ‘RESULT: * + str(val)
self.OPTentryYStart.set_text (str(val))

opts = ' -rb * + str(PM_EEPROM_COL_SKIP_ADDR})
z = os.popen (cmd + opts)
= z.readline ()
.readline ()
int(r[5:])

<

o

—
NN

E. HOST PC SOFTWARE

print 'RESULT: ’ + str{(val)
sel f.OPTentryXBin.set_text (str{val})

opts = ' ~rb ’ + str(PM_EEPROM_ROW_SKIP_ADDR)

z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline()

val = int(r(5:1)

print ‘RESULT: ‘ + str(val)

self.OPTentryYBin.set_ text (str(val))

def options_on_ok (self, widget):

fwrite eeprom data
global cmd, options

val = int(self.OPTentryWidth.get_ text ())

val_hi = val >> 8
val_lo = val & Oxff
options = ' -w ' + str(PM_EEPROM WIDTH_HIGH_ADDR) + ' ‘ + str(val_hi)

print cmd + options

os.system(cmd + options)

options =’ -w ' + str(PM_EEPROM_WIDTH_LOW_ADDR) + ' ' + str(val_lo)
print cmd + options

os.system(cmd + options)

val = int(self.OPTentryLength.get_text())

val_hi = val >> 8
val_lo = val & Oxff
options = ' -w ' + str(PM_EEPROM_LENGTH_HIGH_ADDR) + ' 7 + str(val_hi)

print cmd + options

os.system(cmd + options

options = ' -w ' + str(PM_EEPROM_LENGTH_LOW_ADDR) + ' ' + str{val_lo)
print cmd + options

os.system(cmd + options

val = int (self.OPTentryXStart.get_text())

val_hi = val »> 8
val _lo = val & Oxff
options = ' ~-w ’ + str(PM_EEPROM_COL_START_HIGH_ADDR) + * '’ 4 str{val_hi)

os.system(cmd + options)

print cmd + options

options = ' -w ' + str(PM_EEPROM_COL_START_LOW_ADDR} + ' ' + str(val_lo)
print cmd + options

os.system(cmd + options)

val = int (self.OPTentryYStart.get_text())

val_hi = val >> 8

val_lo = val & Oxff

options = ' -w ' + str(PM_EEPROM ROW_START_HIGH_ADDR) + ‘ ' + str(val_hi)
print cmd + options

os.system(cmd + options)

options = ' -~w ' + str(PM_EEPROM_ROW_START_LOW_ADDR) + ’ ' + str(val_lo)
print cmd + options

os.system(cmd + options

val = int (self.OPTentryXBin.get_text ())

options =’ -w ‘ + str(PM_EEPROM_ROW_SKIP_ADDR}) + ‘ ' + str{val)
print cmd + options

os.system{cmd + options)

val = int(self.OPTentryYBin.get_text ()}

options = ' -w ’ + str(PM_EEPROM_COL_SKIP_ADDR} + / ' + str(val)
print cmd + options

os.system(cmd + options

#reload EEPROM data
options = ’ -rp’
os.system(cmd + options)

282

E. HOST PC SOFTWARE

def options_on_cancel (self, widget):
gtk.main_quit (

def on_error_ok (self,widget,event):
self.error.hide_all ()

def usb_on_ok (self, widget):
global cmd
global USBposition

selected = self.USBcbUSB.get_active ()
bus = USBlist{selected][4:7]
dev = USBlist{selected]{15:18]

cnd = *./cam_init -d=' + bus + ‘.’ + dev

self.options.set_title(self.options.get_title() + ' — [’ + USBposition(selected] + "]’)
self.read_eeprom_data ()

self.usblist.hide__all{)

def _ init___(self):
self.threads = 0
self.options = gtk.Window{()
self.usblist = gtk.Window{)
self.usblist.set_modal {True)
self.usblist.set_transient_for(self.options)

self.options.connect ("delete_event", self.on_close, None)
self.options.connect ("destroy", self.on_close, None}

#0ptions List
self.options.set_border_width(5)
self.options.set_title("Window Options")

#Frame
self.OFTvbTop = gtk.VBox(False,5)
self.options.add(self.OPTvbTop)

self.OPTframe = gtk.Frame(label="Window Options")
self.OPTvbTop.add (self.OPTframe)

self.OPTvbFrame = gtk.VBox(False, 5)
self.0OPTframe.add (self.OPTvbFrame)

#width
self.OPThbWidth = gtk.HBox (True, 5)
self.OPTvbFrame.add (self.OPThbWidth)

self.OPT1blWidth = gtk.Label ("Width")
self.OPThbWidth.add (self.OPT1blWidth)

sel{.OPTentryWidth = gtk.Entry()
self.OPThbWidth.add (self.OPTentryWidth)
#self.OPTentryWidth.set_text (120487)

#length
self.OPThbLength = gtk.HBox (True, 5)
self.OPTvbFrame.add (self.OPThbLength)

self.OPTlblLength = gtk.Label ("Length"
self.0PThbLength.add (self.OPTlblLength)

self.OPTentryLength = gtk.Entry()
self.OPThbLength.add (self.OPTentryLength)
#self.OPTentryLength.set_text ("1536")

#xstart
self.OPThbXStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXStart)

self.OPT1blXStart = gtk.Label ("X-Start")
self.0OPThkXStart.add (self.OPTlblXStart)

http://uSB.li.st

E.

HOST PC SOFTWARE

self.OPTentryXStart = gtk.Entry()
self.OPThbXStart.add (self.OPTentryXStart)
self . OPTentryXStart.set_text ('28")

#ystart
self.OPThbYStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbYStart)

sel f.0PT1blYStart = gtk.Label ("Y-Start")
self.OPThbYStart.add (self.OPTlblYStart)

self.OPTentryYStart = gtk.Entry()
self.OPThbYStart.add (self.OPTentryYStart)
self.OPTentryYStart.set_text ('16'

#xbin
self . OPThbXBin = gtk.HBox{(True, 5)
self.OPTvbFrame.add (self.OPThbXBin)}

s5elf.OPT1blXBin = gtk.Label ("X-Bin")
self.OPThbXBin.add (self.OPT1blXBin)

self.OPTentryXBin = gtk.Entry(
self.OPThbXBin.add (self.OPTentryXBin)
self.OPTentryXBin.set_text{’1")

#ybin
self.OPThbYBin = gtk.HBox (True, 5)
self.OPTvbFrame.add (self.OPThbYBin)

self.0OPTlblYBin = gtk.Label {("Y-Bin")
self.OPThbYBin.add (self.OPTlblYBin)

self.OPTentryYBin = gtk.Entry()
self.0OPThbYBin.add (self.CPTentryYBin)
self.OPTentryYBin.set_text ('1')

#buttons
self.OFThbBtns = gtk.HBox (True, 5)
self.OPTvbTop.add (self.OPThbBtns)

self.OPThbtnCancel = gtk.Button("_Cancel”
self.OPTbtnCancel.connect ("clicked", self.options_on_cancel)
self.OPThbBtns.add (self.OPTbtnCancel)

self.0PTbtnOK = gtk.Button("_Ok"
self.OPTbtnOK.connect ("clicked", self.options_on_ok)
self.OPThbBtns.add (self.OPTbtnOK)

self.OPTframe = gtk.Frame(label="Window Options")
self.OPTvbTop.add (self.OPTframe)

#USB List window
self.usblist.set_border_width(5
self.usblist.set_title ("Select USB Device...")
self.USBvbTop = gtk.VBox(False, 3)
self.usblist.add(self.USBvbTop)

self.USBchbUSB = gtk.combo_box_new_text ();
self.USBvbTop.add (self.USBcbUSB)

self . USBbtnOK = gtk.Button ("_0Ok")
self.USBvbTop.add (self.USBbtnOK)
self.USBbtnOK.connect ("clicked", self.usb_on_ok)
self.list_usb()

self.options.show_all ()

def main(self):
gtk.main ()

284

E. HOST PC SOFTWARE

if _ name__ == "_ main__ ":
app = gEEPROMConfig()
app.main ()

E.6 pyCamCal

E.6.1 pyCamCal.py

#!1/usr/bin/env python

import pygtk
import gtk
import os
import pexpect

PM_EEPROM_WIDTH_HIGH_ADDR = 0x20
PM_EEPROM_WIDTH_LOW_ADDR = 0x21
PM_EEPROM_LENGTH_HIGH_ADDR = 0x22
PM_EEPROM_LENGTH_LOW_ADDR = 0x23
PM_FEPROM_COL_START_HIGH_ADDR = 0x24
PM_EEPROM_COL_START_LOW_ADDR = 0x25
PM_EEPROM_ROW_START_HIGH_ADDR = 0x26
PM_FEPROM_ROW_START_LOW_ADDR = 0x27
PM_EEPROM_COL_SKIP_ADDR = 0x28
PM_EEPROM_ROW_SKIP_ADDR = 0x29

USBlist=[None]=*16
USBposition=([Nonelxlé
cmd=""

optiong=""

class gEEPROMConfig:
def on_close(self, widget, event, data=None}):
gtk.main_gquit ()
return False

def list_usb (self):
global USBposition

% = os.popen (’lsusb’, "r"
y = 0;
found = 0;
while 1:
line = x.readline()
line = line.rstrip({()
USBlist[y] = list

if line.count{’abcd’):
USBlist{found] = line
print found
print USBlist{found]

Get position
bus = USBlist[found][4:7]
dev = USBlist[found][15:18]

z = os.popen{’./cam_init -d=' + bus + ‘.’ + dev + ' --quickread’)
guad = z.readline ()}

guad = z.readline ()

guad = guad[14]

pos = z.readline()

pos = pos[14:}
pos = pos.rstrip ()
USBposition{found] = ‘Q’ + quad + ’': ' + pos

print 'Q:’ + quad
print ‘P:’ + pos

self.USBcbUSB.insert_text (found, line + ’ - [Q' + quad + ’:’ + pos + *']’)
found = found + 1
y = y+1

285

E. HOST PC SOFTWARE

if not line: break;
if not found:
self.error = gtk.MessageDialog(self.options, gtk.DIALOG_MODAL, gtk.MESSAGE_INFC,
gtk .BUTTONS_OK, ’'No Devices Found!’)
self.error.connect ("response", self.on_close)
self.error.show_all ()

else:
self.USBcbUSB.set_active (0
self.usblist.show_all{)

def read_eeprom data (self):
global cmd

opts = ' ~rb ’ + str(PM_EEPROM_WIDTH_HIGH_ADDR)
z = os.popen (cmd + opts)

r = z.readline ()

r = z.readline()

val_hi = int(xr[5:])

opts = ’ -rb ’ + str(PM_EEPROM _WIDTH_LOW_ADDR}

z = os.popen (cmd + opts)

r = z.readline(

r = z.readline ()

val_lo = int{r(5:])

val = (val_hi << 8) + val_lo

print ’RESULT: ' + str(val)
self.OPTentryWidth.set text (str{val))

opts =/ —-rb ’ + str(PM_EEPROM_LENGTH_HIGH_ADDR)
= os.popen (cmd + opts)

= z.readline ()}

= z.readline ()

val_hi = int(r(5:])

H KN

opts = ' -rb ’/ + str(PM_EEPROM_LENGTH_LOW_ADDR)
2 = os.popen (cmd + opts)

r = z.readline{)

r = z.readline ()

val_lo = int(x[5:])

val = (val_hi << 8) + wval_lo

print ‘RESULT: * + str{val)

self.OPTentrylLength.set_text (str(val))

opts = ' ~rb ' + str(PM_EEPROM_COL_START_HIGH_ADDR}
z = os.popen (cmd + opts)

r = z.readline (}

1 = z.readline()

val_hi = int(r[5:1)

opts = ' -rb ’ + str(PM_EEPROM_COL_START_LOW_ADDR)
z = os.popen (cmd + opts)

r = z.readline()

r = z.readline()

val_lo = int(r[5:])

val = (val_hi << 8) + val_lo

print 'RESULT: ' + str(val)

self.OPTentryXStart.set_ text{str(val})

opts = ' -rb ' + str(PM_EEPROM_ROW_START_HIGH_ADDR)
z = os.popen {cmd + opts)

r = z.readline()

r = z.readline ()

val_hi = int(rf5:1)

286

HOST PC SOFTWARE

opts = * -rb ' + str(PM_EEPROM_ROW_START_LOW_ADDR)
z = os.popen (cmd + opts)

r = z.readline()

r = z.readline()

val_lo = int(r{5:})

val = (val_hi << 8) + val_lo

print ‘RESULT: ' + str(val)
self.OPTentryYStart.set_text (str(val))

opts = ' ~-rb ’ + str(PM_EEPROM_COL_SKIP_ADDR)
z = os.popen (cmd + opts)
r = z.readline()

r = z.readline ()
val = int(r[5:]

print ‘RESULT: * + str(val)
self.OPTentryXBin.set_text (str(val}))

opts = ' -rb ' + str(PM_EEPROM_ROW_SKIP_ADDR)
z = os.popen (cmd + opts)

r = z.readline/()

r = z.readline ()

val = int (x[5:])

print ‘RESULT: ’ + str(val)
self.OPTentryYBin.set_text (str(val))

def options_on_ok (self, widget}):
#write eeprom data
global cmd, options

val = int{self.OPTentryWidth.get_text (})

val_hi = val >> 8

val_lo = val & Oxff

options = ' —-w ' + str (PM_EEPROM_WIDTH_HIGH_ADDR} + ' ' + str(val_hi)
print cmd + options

os.system(cmd + options

options = ' —w ' + str(PM_EEPROM_WIDTH_LOW_ADDR) + ' ' + str{val_lo)
print cmd + cptions

os.system{cmd + options)

val = int(self.OPTentrylLength.get_text())

val_hi = val >> §
val_lo = val & Oxff
options = ' -w ' + str(PM_EEPROM_LENGTH_HIGH_ADDR) + ' ' + str{val_hi)

print cmd + options

os.system({(cmd + options

options = / —-w / + str(PM_EEPROM_LENGTH_LOW_ADDR) + 7 ' + str{val_lo}
print cmd + options

os.system{cmd + options

val = int(self.OPTentryXStart.get_text())

val_hi = val >> 8
val_lo = val & Oxff
options = ' —-w ' + str(PM_EEPROM_COL_START_HIGH_ADDR) + ' ' + str(val_hi)

os.system(cmd + options)

print cmd + options

options = ' -w !/ 4+ sty (PM_EEPROM_COL_START_LOW_ADDR} + ' ' + str(val_lo)
print cnd + options

os.system{cmd + options)

val = int(self.OPTentryYStart.get_text())

val_hi = val >> 8

val_lo = val & Oxff

options = ' -w ' + str(PM_EEPROM_ROW_START_HIGH_ADDR) + ' ' + str{val_hi)
print cmd + options

os.system({cmd + options

options = ' -w ’ + str(PM_EEPROM_ROW_START_LOW_ADDR) + ’ ’ + str{val_lo)

287

E. HOST PC SOFTWARE

print cmd + options
os.system(cmd + options})

val = int(self.OPTentryXBin.get_ text ()

options =’ -w ’ + str (PM_EEPROM_ROW_SKIP_ADDR)

print cmd + options
os.system(cmd + options)

val = int(self.OPTentry¥Bin.get text{))

options = ' -w ' + str(PM_EEPROM_COL_SKIP_ADDR)

print cmd + options
os.system(cmd + options)

#reload EEPROM data
options = ' -rp’
os.system(cmd + options)

def options_on_cancel
gtk.main_qguit ()

def on_error ok (self,widget,event):

self.error.hide_all{)

def usb_on_ok
global cmd
global USBposition

(self, widget):

{self, widget):

selected = self.USBcbUSB.get_active ()

bus = USBlist[selected] [4:7]
dev = USBlist[selected] [15:18]

cmd = ' ./cam_init ~d=’ + bus + ‘.

self.options.set_title(self.options.get_title ()

self.read_eeprom_data ()
self.usblist.hide_all{)

def ___init_ (self):
self.threads = 0
self.options = gtk.Window ()
self.usblist = gtk.Window ()
self.usblist.set_modal (True)

self.usblist.set_transient_for(self.options)

self.options.connect ("delete_event”,

self.options

#Options List
self.options.set_border_width (5)

’

+ dev

self.options.set_title("Window Options™)

#Frame
self.OPTvbTop = gtk.VBox(False,5)
self.options.add(self.OPTvbTop)

+

+

+

self.OPTframe = gtk.Frame (label="Window Options"

self.0PTvbTop.add (self.COPTframe)

self.OPTvbFrame = gtk.VBox (False,

#width
sel {.0PThbWidth = gtk.HBox (TIrue,

5)

5)
self . OPTframe.add (self.OPTvbFrame)

self.OPTvbFrame.add (self.OPThbWidth)

$elf.OPTlblWidth = gtk.Label ("Width")
sel{.OPThbWidth.add (self.OPTlblWidth)

self.OPTentryWidth = gtk.Entry(}

self.OPThbWidth.add (self.OPTentryWidth)
#self.OPTentryWidth.set_text (12048")

#length

’

'

.

self.on_close,

.connect {"destroy", self.on_close, None)

’

’

3

+

i

str{val)

str{val)

+ USBposition{selected]) + ’]7)

None}

288

)

=

HOST PC SOFTWARE

ES

self.OPThbLength = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbLength)

self.OPTlblLength = gtk.Label ("Length")
self.OPThbLength.add {(self.OPTlblLength)

self.OPTentryLength = gtk.Entry()
self.OPThbLength.add (self.OPTentryLength)
#self.OPTentryLength.set_text ('1536")

#xstart
self.OPThbXStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXStart)

self.OPT1lblXStart = gtk.Label ("X-Start")
self . OPThbXStart.add (self.OPTlblXStart)

self.OPTentryXStart = gtk.Entry()
self.OPThbXStart.add (self.OPTentryXStart)
self.OPTentryXStart.set_text ('28")

#vstart
self.OPThbYStart = gtk.HBox (True, 5}
self.OPTvbFrame.add (self.OPThbYStart)

sel{.OPTlblYStart = gtk.Label ("Y-Start")
self . OPThbYStart.add (self.OPTlblYStart)

self.OPTentryYStart = gtk.Entry()
self.OPThbYStart.add (self.OPTentryYStart)
self.OPTentryYStart.set_text(’16")

#xbin
self.OPThbXBin = gtk.HBox (True, 3)
self.OPTvbFrame.add (self.OPThbXBin)

sel f.OPT1Ib1XBin = gtk.Label ("X-Bin")
s3elf.OPThbXBin.add (self.OPT1blXBin)

self.OPTentryXBin = gtk.Entry()
self.OPThbXBin.add (self.OPTentryXBin)
self . OPTentryXBin.set_text (17}

#ybin
self.OPThbYBin = gtk.HBox (True, 5)
self.OPTvbFrame.add (self.CPThb¥YBin)

self.OPT1lblYRin = gtk.Label ("Y-Bin")
self.OPThbYBin.add (self.OPTlblYBin)

self.OPTentryYRin = gtk.Entry ()
$elf.OPThbYBin.add (self.OPTentryYBin)
self.OPTentryYBin.set_text ('1’)

#buttons
self.OPThbBtns = gtk.HBox (True, 5}
self.OPTvbTop.add (self.OPThbBtns)

self.OPTbtnCancel = gtk.Button("_Cancel")
self.OPTbtnCancel.connect {"clicked", self.options_on_cancel)
self.OPThbBtns.add (self.OPTbtnCancel)

sel £, OPTbLnOK = gtk.Button("_Ok")
self .OPThtnOK.connect ("clicked", self.options_on_ok)
self.OPThbBtns.add (self.OPTbtnOK)

self.OPTframe = gtk.Frame (label="Window Options")
self.OPTvbTop.add (self.OPTframe)

#USB List window
self.usblist.set_border_width(5)
self.usblist.set_title ("Select USB Device...")
self.USBvbTop = gtk.VBox(False, 3)

289

E. HOST PC SOFTWARE

self.usblist.add(self.USBvbTop)

self.USBcbUSB = gtk.combo_box_new_text ();
self.USBvbTop.add (self.USBcbUSB)

self.USBbtnOK = gtk.Button("_Ok")
self.USBvbTop.add (self.USBbtnOK)
self.USBbtnCK.connect ("clicked", self.usb_on_ok)
self.list_usb ()

self.éptions.show_all“

def main(self):

gtk.main ()
if _ _name__ == "__main__":
app = gEEPROMConfig{()
app.main ()

E.7 Human Machine Interface (w32)

The HMI application was develped in Microsoft Visual Basic 6.

E.7.1 frmmMain.frm

VERSION 5.00

Object = "{5E9E78A0-531B-11CF-91F6-C2863C385E30}#1.040"; "MSFLXGRD.OCX"
Object = "{648A5603-2C6E-101B~82B6-000000000014})#1.140"; "MSCOMM32.0CX"
Object = "{48E59290-9880~-11CF-9754-00AA00C00908}#1.0#0"; "MSINET.OCX"
Begin VB.Form frmMain
BorderStyle = 0 ’None
Caption = "PM Control Panel™
ClientHeight = 9000
ClientLeft = 0
ClientTop = 0
ClientWidth = 12000
BeginProperty Font
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 'False
EndProperty
LinkTopic = "Forml"
MaxButton = 0 ‘False
MinButton = 6] ‘False
ScaleHeight = 9000
ScaleWidth = 12000
StartUpPosition = 2 ‘’CenterScreen
Begin VB.Frame frameShutdownVerify
Caption = "Question"
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 400
Underline = 0 ’'False
Italic = 0 'False
Strikethrough = 0 ‘False
EndProperty
Height = 3615
Left = 4920
TabIndex = 23
Top = 3720

290

E.

HOST PC SOFTWARE

Width = 7695
Begin VB.PictureBox Picturel
BorderStyle = 0 ’None
Height = 3135
Left = 120
ScaleHeight = 3135
ScaleWidth = 7335
TabIndex = 24
Top 360
Width = 7335
Begin VB.CommandButton cmdShutdownNo
Caption = "NO"
BeginProperty Font
Name = "Tahoma"
Size = 15.75
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = o] ‘False
Strikethrough = 0 'False
EndProperty
Reight = 855
Left = 4200
TabIndex = 27
Top = 2040
Width = 1935
End
Begin VB.CommandButton cmdShutdownYes
Caption = "YES"
BeginProperty Font
Name = "Tahoma™
Size = 15.75
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height 855
Left = 1080
TabIndex = 26
Top = 2040
Width = 1935
End
Begin VB.Label 1lblShutdownVerify
Alignment = 2 ‘Center
Caption = "Are you sure you wish to shutdown?"
BeginProperty Font
Name = "Tahoma™
Size = 24
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 ‘False
Strikethrough = 0 'False
EndProperty
Height 1575
Left = 0
TabIndex = 25
Top = 360
Width 7215
End
End
End
Begin VB.Frame frameStats
Caption = "Statistics"
BeginProperty Font
Name "Tahoma"
Size = 14.25
Charset = 0
Weight = 400
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 'False

291

E.

HOST PC SOFTWARE

EndProperty
Height =
Left =
TabIndex =
Top =
Width =
Begin InetCtlsObijec

Left

Top

_ExtentX

_ExtentyY

_Version

Protocol

URL

RequestTimeout
End

t

57175

5040

18

1200

5295

s.Inet inetDownload
240
1440
1005
1005
393216
4
"hitp://"
4

Begin VB.Timer tmrStats

Interval
Left
Top

End

2000
840
1560

Begin MSFlexGridLib.MSFlexGrid gridStats

Height
Index
Left
TabIndex
Top
Width
_ExtentX
_ExtentY
_Version
AllowBigSelectio
ScrollBars
Appearance
BeginProperty Fo
Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndFroperty
End
End
Begin MSCommLib.MSComm
Left =
Top =
_ExtentX =
_ExtentyY =
_Version =
DTREnable =
BaudRate =
End

n

n

1455
0
0
21
0
5055
8916
2566
393216
= o ‘False
0
0
{0BE35203-8F91-11CE-9DE3-00AA004BB851}
= "Arial"
= 14.25
= 0
= 400
= o ‘False
‘False

= o]
= 0 ’False

Comm

8640

120

1005

1005
393216

-1 /True
57600

Begin VB.Frame frameShutdownWait

Height =
Left

Tablndex =
Top =
Width =

2055
4680
28
480
6615

Begin VB.Timer tmrShutdown

Enabled
Interval
Left
Top

End

0 ‘False
350

0

1560

Begin VB.Label 1lblShutdownWait

Alignment
BackStyle
Caption

2 ’Center
0 ’Transparent

"Please wait while the system shuts down...

BeginProperty Font

Name
Size
Charset

= "Tahoma"
= 24
= 0

292

http://

E.

HOST PC SOFTWARE

Weight = 400
Underline = 0 ‘False
Italic = 0 'False
Strikethrough = 0 ’False
EndProperty
Height = 1215
Left = 240
TabIndex = 29
Top = 120
Width = 6135
End
Begin VB.Shape shapeShutdownAnlmatlon
BackColor = &H00004000&
BackStyle = 1 ’Opague
Height = 255
Index = 5
Left = 5640
Top = 1200
Visible = 0 ‘False
Width = 255
End
Begin VB.Shape shapeShutdownAnlmatlon
BackColor = &H00004000&
BackStyle = 1 “Opague
Height = 255
Index = 6
Left = 5880
Top = 1200
Visible = 0 ‘False
Width = 255
End
Begin VB.Shape shapeShutdownAnimation
BackColor = &H00004000&
BackStyle = 1 ’Opague
Height = 255
Index = 4
Left = 6120
Top = 1560
Width = 255
End
Begin VB.Shape shapeShutdownAnimation
BackColor = &H00004000&
BackStyle = 1 ’Opaque
Height = 255
Index = 3
Left = 5760
Top = 1560
Width = 255
End
Begin VB.Shape shapeShuLdownAnlmablon
BackColor = &H00004000¢
BackStyle = 1 ’Opague
Height = 255
Index = 2
Left = 5400
Top = 1560
Width = 255
End
Begin VB.Shape shapeShutdownAnimation
BackColor = &H00004000¢&
BackStyle = 1 ’Opaque
Height = 255
Index = 1
Left = 5040
Top = 1560
Width = 255
End
Begin VB.Shape shapeShutdownAnimation
BackColor = &H00004000&
BackStyle = 1 ‘Opaque
Height = 255
Index = 0
Left = 4680
Top = 1560

293

E. HOST PC SOFTWARE

Width = 255
End
End
Begin VB.CommandButton cmdShutdown
Caption = "SHUTDOWN"
BeginProperty Font
Name = “"Tahoma™
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = (] ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 495
Left = 4800
TabIndex = 19
Top = 7800
Width = 3255
End
Begin VB.CommandButton cmdCalMode
Caption = "CALIBRATION MODE"
Enabled = 0 ‘False
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘'False
EndProperty
Height 495
Left = 4800
TablIndex = 20
Top = 7200
Width = 3255
End
Begin VB.CommandButton cmdControlScr
Caption = "CONTROL/MONITOR"
BeginProperty Font
Name = "Tahoma™
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Ttalic = 0 ‘False
Strikethrough = o ‘False
EndProperty
Height = 1095
Left = 1080
TabIndex = 6
Top = 6720
Width = 3255
End
Begin VB.Frame frameQuadMonitor
Caption = "Quadrant Monitor"
BeginProperty Font
Name = "Tahoma"
Size 14.25
Charset = 0
Weight = 400
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough 0 ‘False
EndProperty
Height = 3855
Left = 120
TabIndex = 12
Top = 3240
Width = 4575
Begin VB.Timer tmrUART
Interval = 1000
Left = 3720

294

HOST PC SOFTWARE

Top
End

360

Begin VB.Label lblQPercent

Alignment
Caption

BeginProperty Font

Name
Size
Charset
Weight

Underline

Italic

Strikethrough

EndProperty
Height
Index
Left
TabIndex
Top
Width

End

2 ’Center

nogn

"Arial®

18

0

400

0 ‘False
-1 ‘True
0 ‘False

375
3
840
33
1320
975

Begin VB.Label lblQPercent

Alignment
Caption

BeginProperty Font

Name
Size
Charset
Weight

Underline

Italic

Strikethrough

EndProperty
Height
Index
Left
TabIndex
Top
Width

End

2 ‘Center

nogn

"Arial"

18

0

400

0 ’False
~1 ‘True
0 ’False

375
2
1080
32
2040
975

Begin VB.Label 1lblQPercent

Alignment
Caption

BeginProperty Font

Name
Size
Charset
Weight

Underline

Italic

Strikethrough

EndProperty
Height
Index
Left
TabIndex
Top
Width

End

2 ’Center

nogn

"Arial"

18

0

400

0 ‘False
-1 ! True
0 ‘False

375
1
720
31
2760
975

Begin VB.Label lbiQPercent

Alignment
Caption

BeginProperty Font

Name
Size
Charset
Weight

Underline

Italic

Strikethrough

EndProperty
Height
Index

Left

i

2 ‘Center
nggn

"Arial"

18

0

400

0 ‘False
-1 ‘True
0 'False

375

2160

205

E.

HOST PC SOFTWARE

TablIndex
Top
Width
End
Begin VB.Label 1blM
Alignment
BackStyle
Caption
BeginProperty Fo
Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndProperty
Height
Left
TabIndex
Top
Width
End
Begin VB.Label 1blQ
BackStyle
Caption
BeginProperty Fo
Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndProperty
Height
Index
Left
TabIndex
Top
Width
End
Begin VB.Label 1blQ
BackStyle
Caption
BeginProperty Fo
Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndProperty
Height
Index
Left
TabIndex
Top
Width
End
Begin VB.Label 1blQ
BackStyle
Caption
BeginProperty Fo
Name
Size
Charset
Weight
Underline
Ttalic
Strikethrough
EndProperty
Height

30
480
975

I

2 ’Center

= 0 ‘Transparent
= "M"
nt

= "Tahoma"
14.25
= 0
= 700
= 0 ‘False
= 0 ‘False
0 'False

on
e
-~} @
o
o

it

1920
615

uad
= 0 ‘Transparent
= "Labell™"
nt
= "Tahoma"
= 14.25
= 0
= 700
= 0
= -1
= 0

‘False
‘True
'False

I
w
~J
w

0o
o
o

uad

= 0 ’Transparent

= "Labell"

nt
= “Tahoma"

= 14.25

= 0

= 700

= 0

= 1
-1

‘False
‘True
‘False

i
o

375

il

15

[
o

it

1335

uad
= 0 ‘Transparent
= "Labell"”
nt
= "Tahoma"
= 14.25
= 0
= 700
= 0
= -1
= 0

‘False
‘! True
‘False

= 375

296

HOST PC SOFTWARE

Index 1
Left = 0
TabIndex = 14
Top = 0
Width 1335
End
Begin VB.Label lbiQuad
BackStyle = 0 ’Transparent
Caption = "Labell"”
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = -1 ‘True
Strikethrough = 0 ’False
EndProperty
Height = 375
Index = 0
Left = 2300
TabIndex = 13
Top = 1680
Width = 1335
End
Begin VB.Shape shapeMotor
BackStyle = 1 ’Opaque
BorderWidth 2
Height = 855
Left = 1680
Shape = 2 ‘Oval
Top = 1680
Width = 855
End
Begin VB.Shape boxQuad
BackStyle = 1 ‘Opague
Height = 2175
Index = 3
Left = 360
Top = 1320
Width = 2175
End
Begin VB.Shape boxQuad
BackColor = &HO000C000&
BackStyle = 1 ’Opaque
Height = 2175
Index = 2
Left = 120
Top = 360
Width = 2175
End
Begin VB.Shape boxQuad
BackStyle = 1 ’ Opaque
Height = 2175
Index = 1
Left = 2400
Top = 480
Width = 2175
End
Begin VB.Shape boxQuad
BackStyle = 1 ‘Opaque
Height = 2175
Index = 0
Left = 2160
Top = 1320
Width = 2175
End
End
Begin VB.Timer tmrERR
Interval = 750
Left = 240
Top = 4440
End

Begin VB.CommandButton cmdExit

297

HOST PC SOFT'WARE

Caption = "EXIT"
BeginProperty Font
Name = "Tahoma"
Size = 21.75
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 1095
Left = 8520
TabIndex = 5
Top = 6960
Width = 1815
End
Begin VB.Frame frameMotorControl
Caption = "Motor Control"
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 400
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough =] 'False
EndProperty
Height = 2415
Left = 120
TabIndex = 0
Top = 840
Width = 4455
Begin VB.PictureBox pbMotorControl
Appearance = 0 ’Flat
BackColor = &HB0000005&
BorderStyle = 0 ’None
BeginProperty Font
Name = "MS Sans Serif"
Size = 8.25
Charset = 0
Welght = 400
Underline = 0 ‘False
Italic = ¢ ‘False
Strikethrough =] ‘False
EndProperty
ForeColor = &HB00000084&
Height = 1935
Left = 120
ScaleHeight = 1935
ScaleWidth = 4215
TablIndex = 1
Top = 360
Width = 4215
Begin VB.CommandButton cmdStop
BackColor = &H000000CQ&
Caption = "STOP"
BeginProperty Font
Name = "Tahoma"
Size = 15.75
Charset =]
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 735
Left = 2280
Style = 1 “’Graphical
TabIndex = 11
Top = 1200
Width = 1695
End
Begin VB.CommandButton cmdStart
BackColor = &H0000C000&

208

HOST PC SOFTWARE

Caption = "START"
BeginProperty Font
Name = "Tahoma"
Size = 15.75
Charset = 0
Weight = 700
Underline = 0 ’False
Italic = 0 ’False
Strikethrough = 0 ‘False
EndProperty
Height 735
Left = 240
Style = 1 ‘Graphical
TabIndex = 10
Top = 1200
Width 1695
End
Begin VB.CommandButton cmdMotorSpeedUP
Caption = n+
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ‘False
Strikethrough = 0 ‘False
EndProperty
Height = 495
Left = 3600
TabIndex = 4
Top = 0
Width = 615
End
Begin VB.CommandButton cmdMotorSpeedbDOWN
Caption = "
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 700
Underline =] ‘False
Italic = o 'False
Strikethrough = 0 'False
EndProperty
Height = 495
Left = 3600
TabIndex = 3
Top = 600
Width 615
End
Begin VB.TextBox txtMotorSpeed
Alignment = 2 ’Center
BackColor = &HOOBOFFFF&
BeginProperty Font
Name = "Tahoma"
Size = 14.25
Charset = 0
Weight = 700
Underline = 0 ‘False
Italic = 0 ’False
Strikethrough = 0 ‘False
EndProperty
Height 480
Left = 2280
TabIndex = 2
Text = "1000"
Top = 360
Width = 1215
End
Begin VB.Label lblMotorSpeed
BackStyle = 0 ’Transparent
Caption = "SPEED (Hz):"

BeginProperty Fo

nt

E. HOST PC SOFTWARE

Name
Size
Charset
Weight
Underlin
Ttalic
Striketh
EndProperty
Reight
Left
TabIndex
Top
Width
End
End
End
Begin VB.Line lineSB
Visible =
X1
Xz
Y1
Y2
End
Begin VB.Label sbMai
Appearance
BackColor
BorderStyle =
Caption
BeginProperty Fon
Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndProperty
ForeColor =
Height
Left
Tablndexn
Top
Width =
End
Begin VB.Shape shape
Height =
Left =
Top =
Width
End
Begin VB.Label 1lblSc

It

il

1

Alignment ="

BackStyle
Caption =

= “"Tahoma"
= 15.75
= 0
= 700
e = 0 ‘False
0 ‘False

rough = 0 ’False
= 495
= 120
= 9
= 360
= 2175
Main
0 ‘False
360
6480
8160
8160
n
0 ‘’Flat

&HB0000005&
1 ‘Fixed Single
"Labell"

= "Arial"

= 14.25

= 0

= 400

= 0 ‘False

= 0 ‘False

=] ‘False

&HB80000008%&
375

720

22

8040

4935

Border
855
0
0
1335

rTitle

2 ‘Center

0 ‘Transparent
"Control/Monitor"

BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough
EndProperty
ForeColor
Height
Left
TabIndex
Top
Width
End

]

It

il

= "Tahoma"

= 21.75

= 0

= 400

= 0 ‘False
= 0 ’False
= 0 'False

SHOOFFEFFFES
615
480

—

¢
9975

Begin VB.Label 1blScrTitleShadow

Alignment =
Appearance
BackColor =

2 ‘Center
0 ‘Flat
&H8000000D&

300

E. HOST PC SOFTWARLE

BorderStyle = 1 ’Fixed Single
Caption = “"Control/Monitor"
BeginProperty Font
Name = "Tahoma"
Size = 21.75
Charset = 0
Weight = 400
Underline = 0 'False
Ttalic = 0 ’False
Strikethrough = 0 ’False
EndProperty
ForeColor = &HB80000008%&
Height = 615
Left = 120
TabIndex = 8
Top = 480
Width = 9975
End
Begin VB.Line LineBottom
BorderWidth = 2
Visible = 0 ‘False
X1 = 1080
X2 = 10800
Yl = 6120
Y2 = 6120
End
Begin VB.Shape shapeControlBox
BackColor = &HB8000000C&
BackStyle = 1 ’“Opaque
Height = 735
Left =]
Top = 7200
Width = 2655
End
End
Attribute VB_Name = "frmMain"

Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_Predeclaredld = True
Attribute VB_Exposed = False

Option Explicit

Private Declare Function InitCommonControls Lib
Private Declare Sub Sleep Lib "kernel32®

Const

Const
Const
Const

Const
Const
Const

Const
‘Warning Messages

Const

MACHINE _NAME As String = "PharmaSorter"

MOTOR_SPEED_INC 100
MOTOR_SPEED_MAX = 2000
motor_speed_min = 500

PC_STATE_OFF = 1
PC_STATE_BOCTING
PC_STATE _READY =

=2
3

tes(4) As Integer
ion Messages
INFO_READY As String = " READY..."

WARNING_PCS_NOT_READY As String = " WAITING FOR INSPECTION PCs TO BOOT!"™

'Error Messages

Private Sub cmdControlScr_Click ()

1blScrTitle.Caption = "Control/Monitor"
lblScrTitleShadow.Caption = lblScrTitle.Caption
frameMotorConitrol.Visible = True
frameQuadMonitor.Visible = True
frameStats.Visible = True

frameShutdownVerify.Visible = False
frameShutdownWait.Visible = False

End Sub

Private Sub cmdExit_Click ()
End

“comctl32.dl1"
(ByVal dwMilliseconds As

301

E. HOST PC SOFTWARE

End Sub

Private Sub cndMotorSpeedDOWN_Click()
Dim MotorSpeed As Integer
Dim Speed_Low As Integer
Dim Speed_High As Integer

MotorSpeed = CInt (txtMotorSpeed.Text)

If Not (MotorSpeed Mod 100) = O Then
MotorSpeed = MotorSpeed - MotorSpeed Mod 100
End If

If MotorSpeed > motor_speed_min Then
MotorSpeed = MotorSpeed - MOTOR_SPEED_INC
txtMotorSpeed.Text = MotorSpeed

Else
Beep

End If

/ Send UART Command to set speed
Speed_Low = MotorSpeed And &HFF
Speed High = (MotorSpeed And &HFF00) / 256

uart_cmd _set UARTCMD_SET_MOTOR_FREQ, Speed_High, Speed Low
End Sub

Private Sub cmdMotorSpeedUP_Click(
Dim MotorSpeed As Integer
Dim Speed_Low As Integer
Dim Speed_High As Integer

MotorSpeed = CInt (txtMotorSpeed.Text)

If Not (MotorSpeed Mod 100) = 0 Then
MotorSpeed = MotorSpeed - MotorSpeed Mod 100
End If

If MotorSpeed < MOTOR_SPEED_MAX Then
MotorSpeed = MotorSpeed + MOTOR_SPEED_INC
txtMotorSpeed.Text = MotorSpeed

Else
Beep
Exit Sub

End If

’ Send UART Command to set speed
Speed_Low = MotorSpeed And &HFF
Speed_High = (MotorSpeed And &HFFO00) / 256

uart_cmd_set UARTCMD_SET MOTOR_FREQ, Speed High, Speed Low
End Sub

Private Sub cmdShutdown_Click (
lblScrTitle.Caption = "System Shutdown"
lblScrTitleShadow.Caption = lblScrTitle.Caption
frameMotorControl.Visible = False
frameQuadMonitor.Visible = False
frameStats.Visible = False
frameShutdownVerify.Visible = True

End Sub

Private Sub cmdShutdownNo_Click ()
cmdControclScr_Click
End Sub

Private Sub cmdShutdownYes_Click ()
frameShutdownVerify.Visible = False
frameShutdownWait.Visible = True
tmrShutdown.Enabled = True

’Send Shutdown Command

w
=]
N

E. HOST PC SOFTWARE

cmdStop_Click
uart_cmd_set UARTCMD_SHUTDOWN, &HFF, &HFF

End Sub

Private Sub cmdStart_Click ()
Dim iRetVal As Integer

’Send Start Motor command to system controller
iRetvVal = uart_cmd_set (JARTCMD_SET_MOTOR_STAT, &HFF, &HFF)

shapeMotor.BackColor = GUI_GREEN_BRIGHT
End Sub

Private Sub cmdStop_Click ()}
Dim iRetVal As Integer

‘Send Stop Motor command to system controller
iRetVal = uart_cmd_set (JARTCMD_SET_MOTOR_STAT, &HO, &HO)

shapeMotor.BackColor = GUI_RED_BRIGHT
End Sub

Private Sub Form_Initialize ()
InitCommonControls
End Sub

Private Sub Form_Load ()
Dim I As Integer
Dim data() As Byte
Dim buffer As Variant
Dim ret As Integer

‘Get. current motor speed
ret = uart_cmd_get (UARTCMD_GE1_MOTOR_FREQ, 0, 0, buffer)}

If (ret) Then
MsgBox "Unable to connect to " & MACHINE_NAME, vbInformation + vbOKOnly
End

End If

data = buffer

txtMotorSpeed.Text = data(2) += 256 + data(4)

’Get current motor state
ret = uart__cmd_get (UVARTCMD_GET_MOTOR_STAT, 0, 0, buffer)

data = buffer

If data(2) = &HFF Then
shapeMotor.BackColor = GUI_GREEN_BRIGHT
Else
shapeMotor.BackColor = GUI_RED_BRIGHT
End If

tmrERR.Enabled = True

sbMain.Caption = " WAITING FOR INSPECTION PCs TO BOOT!"

’ Set PC states to red for now

For 1 = boxQuad.LBound To boxQuad.UBound
boxQuad (I) .BackColor = GUI_RED

Next I

/ Fill in labels for flexgrid

With gridStats (0)

.Rows = 9

.Cols = 5

.Cel = 0

For I = 0 To .Rows — 1
.Row = T
.CellFontBold = True

Next I

303

E. HOST PC SOFTWARE

.Row = 0
For I = 0 To .Cols - 1
.Col =1
.CellFontBold = True
Next I
.Row = 0
For I = 1 To 4
.Col =1
.Text = "Q" & I
Next I
.Col = 0
.Row =1
.Text = "GOOD"
.Row = .Row + 1
.Text = "BAD"
.Row = ,Row + 1
.Text = "EMPTY"
.Row = .Row + 1
.Text = "TOTAL"
.Row = .Row + 1
.Text = "GOOD (%"
.Row = .Row + 1
.Text = "MISALIGN"
.Row = .Row + 1
.Text = "RATE (cap/m)"
.Row = .Row + 1
.Text = "EFF. RATE"
End With

'Set. Default Screen
cmdControlScr _Click
End Sub

Private Sub Form_Resize ()
’On Error GoTo ErrHdlr

Dim 1 As Integer

’ Position Objects

sbMain.Top = Me.Height - sbMain.Height
sbMain.Left = ¢

sbMain.Width = Me.Width

IhlscrTitleShadow.Left = BORDER_SPACE
IblscrTitleShadow.Top = BORDER_SPACE
IblscrTitleShadow.Width = Me.Width -~ BORDER_SPACE * 2
lblScrTitle.Left = BORDER_SPACE - 20

1blScrTitle.Top == BORDER_SPACE - 20

1blScrTitle.Width = Me.Width - BORDER_SPACE = 2

cmdExit . Left = Me.Width - cmdExit.Width - BORDER_SPACE
cmdExit.Top = Me.Height - cmdExit.Height - sbMain.Height — BORDER_SPACE + 3 / 2

cmdControlScr.Left = BORDER_SPACE
cmdControlScr.Top = Me.Height - cmdExit.Height - sbMain.Height - BORDER_SPACE = 3 / 2

cmdShutdown.Left = cmdControlScr.Left + cmdControlScr.Width + BORDER_SPACE
cmdShutdown.Top = cmdControlScr.Top + cmdShutdown.Height + BORDER_SPACE / 2

cmdCalMede .Left = cmdControlScr.Left + cmdControlScr.Width + BORDER_SPACE
cmdCalMode.Top = cmdControlScr.Top

frameMotorControl.Left = BORDER_SPACE
frameMotorControl.Top = 1blScrTitle.Top + 1lblScrTitle.Height + BORDER_SPACE

frameQuadMonitor.Left = BORDER_SPACE

frameQuadMonitor.Top = frameMotorControl.Top + frameMotorControl.Height + BORDER_SPACE
frameQuadMonitor.Height = cmdExit.Top - frameQuadMonitor.Top - BORDER_SPACE * 2
frameQuadMorniitor .Width = frameMotorControl.Width

http://cmdControl.Scr.Top

E. HOST PC SOFTWARE

’Size gquadrant boxes
For 1 = boxQuad.LBound To boxQuad.UBound
If (frameQuadMonitor.Height > frameQuadMonitor.Width) Then
boxQuad(I) .Width = (frameQuadMonitor.Width - BORDER_SPACE / 2) / 2
boxQuad (I} .Height = boxQuad{(I).Width
Else
boxQuad(I) .Width = (frameQuadMonitor.Height — BORDER_SPACE » 2) / 2
boxQuad(I).Height = boxQuad(I) .Width
End If
Next T

‘Arrange quadrant boxes

c03 | 02
L S
T4 ol

boxQuad(0) .Left = frameQuadMonitor.Width / 2
boxQuad(l) .Left = frameQuadMonitor.Width / 2
boxQuad(2) .Left = boxQuad(0) .Left - boxQuad(0) .Width
boxQuad (3) .Left = boxQuad(0) .Left - boxQuad(0) .Width

boxQuad(0) .Top = frameQuadMonitor.Height / 2 + BORDER_SPACE / 2
boxQuad(3) .Top = frameQuadMonitor.Height / 2 + BORDER_SPACE / 2
boxQuad(l) .Top = boxQuad(0).Top — boxQuad(0) .Height ’ - BORDER_SPACE / 8
boxQuad(2) .Top = boxQuad(0).Top - boxQuad(0) .Height ’ - BORDER SPACE / 8

‘Cuadrant labels

1blQuad (0) .Left = boxQuad(0).Left + boxQuad(0).Width - 1blQuad(0) .Width - BORDER_SPACE / 4
1lblQuad(0).Top = boxQuad(0).Top + boxQuad(0).Height - 1blQuad(0).Height

1blQuad(0) .Alignment = 1 ’ vbAlignRight

lblQuad (1) .Left = boxQuad(l) .Left + boxQuad(l).Width - 1blQuad(l) .Width - BORDER_SPACE / 4
lbiQuad (1) .Top = boxQuad(l).Top ’+ 1blQuad(l).Height
1blQuad(l) .Alignment = 1 / vbAlignRight

iblQuad(2) .Left = boxQuad(2) .Left + BORDER_SPACE / 4
1b1Quad(2) .Top = boxQuad(2).Top
1blQuad(2) .Alignment = 0 ’ vbAlignleft

1blQuad(3) .Left = boxQuad(3).Left + BORDER_SPACE / 4
1blQuad(3) .Top = boxQuad(3).Top + boxQuad(3).Height - 1blQuad(3).Height
1blQuad(3) .Alignment = 0 ’ vbAlignLeft

‘Good cap percentage labels
For I = 1lblQPercent.LBound To lblQPercent.UBound
1biQPercent (1) .BackStyle = vbTransparent

1biQPercent (T) .Left = (boxQuad(I).Left + boxQuad(I).Width / 2) - 1lblQPercent (I).Width / 2
1blQPercent (I).Top = (boxQuad(I).Top + boxQuad(I).Height / 2) - 1blQPercent(I).Height / 2
Next I

For I = 1blQuad.LBound To lblQuad.UBound

1blQuad (1) .Caption = "O0" & CInt(I + 1)
Next I
shapeMotor.Left = (frameQuadMonitor.Width - shapeMotor.Width) / 2
shapeMotor.Top = boxQuad(0).Top - (shapeMotor.Height / 2)

1h1lM.Left = (frameQuadMonitor.Width - 1lblM.Width) / 2
1bIM.Top = boxQuad(0).Top ~ (lblM.Height / 2)

’Statistics
frameStats.Top = frameMotorControl.Top
frameStats.Height = cmdExit.Top - frameStats.Top — BORDER_SPACE » 2

frameStats.Left = frameMotorControl.Left + frameMotorControl.Width + BORDER_SPACE
frameStats.Width = Me.Width - frameStats.Left - BORDER_SPACE

For I = gridStats.LBound To gridStats.UBound
gridStats(I).Left = BORDER_SPACE / 2
gridStats(I).Width = frameStats.Width - BORDER_SPACE

gridStats(I).Height = (frameStats.Height} / gridStats.count - (BORDER_SPACE x 3}
gridStats(I).Top = (I » (gridStats{gridStats.LBound).Height) + BORDER_SPACE) + BORDER_SPACE
Next T

‘Data Grid

E. HOST PC SOFTWARE

With gridStats (0)
.ColWidth (0) = 2000

For I = 1 To .Cols ~ 1
.ColWidth(I) = (.Width - .ColWidth(0)) / (.Cols - 1) - 20
Next I

For I = 0 To .Rows — 1
.RowHeight (I} = (.Height) / (.Rows) - 10
Next I
End With

/Shutdown
frameShutdownVerify.Left = (Me.Width - frameShutdownVerify.Width) / 2

frameShutdownVerify.Top = (cmdExit.Top - lblScrTitle.Top + lblScrTitle.Height - frameShutdownVerify
.Height) / 2

frameShutdownWait .Left = (Me.Width - frameShutdownWait.Width) / 2

frameShutdownWait.Top = (cmdExit.Top - 1lblScrTitle.Top + 1lblScrTitle.Height - frameShutdownWait.

Height) / 2

LineBottom.Yl = cmdExit.Top - BORDER_SPACE
LineBottom.Y2 = cmdExit.Top - BORDER_SPACE
LineBottom.X]l = BORDER_SPACE

LineBottom.X2Z = Me.Width - BORDER_SPACE

lineS8BMain.BorderWidth = 3
lineSBMain.Y1l = sbMain.Top
lineSBMain.¥2 = sbMain.Top
lineSBMain.X1 = 0
lineSBMain.X2 = Me.Width

shapeControlBox.Left = BORDER_SPACE / 2
shapeControlBox.Width = Me.Width - BORDER_SPACE
shapeControlBox.Top = cmdExit.Top -~ BORDER_SPACE
shapeControlBox.Height = cmdExit.Height + BORDER_SPACE * 2

shapeBorder.Left = 0
shapeBorder.Top = 0
shapeBorder.Width = Me.Width

shapeBorder.Height = Me.Height

7 Colours
pbMotorControl.BackColor = frameMotorControl.BackColor

Erctdlr:

7 1 don’t care if it gets here

End Sub

Private Sub tmrERR_Timer ()

Dim pc _ready As Integer
Dim bWarning As Boclean
Dim bError As Boolean
Dim I As Integer

‘Are all inspection PCs up and running?
For I = 0 To 3

If (pc_states(I) = PC_STATE_READY) Then
pc_ready = pc_ready + 1
End If
Next 1

If Not pc_ready = 4 Then

bWarning = True

sbMain.Caption = WARNING_PCS_NOT_READY
Else

bWarning = False

sbMain.Caption = INFO_READY
End If

’

Flash Banner

If bWarning = True Then

If (sbMain.BackColor = vbYellow) Then
sbMain.BackColor = Me.BackColor

Else

306

E. HOST PC SOFTWARE

End

sbMain.BackColor = vbYellow
End If
ElseIf bError = True Then
If (sbMain.BackCeclor = vbRed) Then
sbMain.BackColor = Me.BackColor
Else
sbMain.BackColor = vbRed
End If
Else
If Not (sbMain.BackColor = Me.RackColor) Then
sbMain.BackColor = Me.BackColor
End If
End If
Sub

Private Function uart_cmd_get (cmd As Integer, value_hi As Integer,

Variant) As Integer

On Error GoTo ErrHdlr

Dim sData As String
Dim count As Integer
Dim buffer As Variant

count = 0

Dim x As Byte
Dim check (3) As Byte

check (0} = cmd

check (0) = Not check (0}
check (1) = value_hi
check {1} = Not check (1)
check (2) = value_low
check (2) = Not check (2}

’Send data to serial port

If (Comm.PortOpen = False) Then
Comm.PortCpen = True

End If

/' command

Comm.Qutput = Chr (cmd)
Comm.Qutput = Chr(value hi)
Comm.Output = Chr(value_low)

’ data check

Comm.Output = Chr (check(0))
Corm.QOutput = Chr(check (1}
Comm.Outpul = Chr(check {2}

Sleep 45
/ check for ack

While (Comm.InBufferCount > 0)
count = count + Comm.InBufferCount
buffer = puffer & Comm.Input
’DoEvents

Wend

If (count < 2) Then
uvart_cmd_get = 1
Else
uart_cmd_get = 0
End If

data = buffer

/ If (buffer(0) <> &) Then
’ MsgBox "Error during communication (NACK received)!", vbCritical

,

End If

value_low As Integer,

ByRef data As

307

E. HOST PC SOFTWARE

Comm.PortOpen = False

Exit Function

ErrHdlr:
If Err.Number = 8002 Then
MsgBox "Invalid Port Selected...", vbCritical + vbOKOnly
End If

vart_cmd_get = 1
End Function

Private Function uart_cmd_set (cmd As Integer, value_hi As Integer, value_low As Integer) As Integer
Dim pbuffer As Variant
Dim data({) As Byte
Dim x As Byte
Dim check (3) As Byte

check (0) = cmd

check (0) = Not check(0)
check (1) = value_hi
check (1) = Not check (1)
check (2) = value_low

check {2} = Not check(2)

’Send data to serial port
If (Comm.PortOpen = False) Then

Comm.PortOpen = True
End If
¢ command
Comm. Output = Chr(cmd)
Comm.Output = Chr(value_hi)

Comm.Output = Chr(value_low)

/ data check

Comm, Output = Chr(check(0)
Comm., Output = Chr (check (1))
Comm.Output = Chr{check (2))

Sleep 65

While (Comm.InBufferCount > 0)
buffer = Comm.Input
‘NDoEvents

Wend

data = buffer
check for ack

’

x = data(0)
If (x <> 6) Then
uart_cmd_set = 1
Else
uvart_cmd_set = 0
End If

Comm.PortOpen = False
End Function

Private Sub tmrShutdown_Timer ()
Static I, J, F As Integer
Dim buffer As Variant
Dim data{) As Byte
Dim c As Integer

I =1+1

J =3+ 1

If T > shapeShutdownAnimation.UBound Then
I = shapeShutdownAnimation.LBound

End If

If 5 > shapeShutdownAnimation.UBound Then

308

E. HOST PC SOFTWARE

J = shapeShutdownAnimation.LBound
End If

If F = 0 Then
I = shapeShutdownAnimation.lLBound

J = shapeShutdownAnimation.UBound

F =1

End If

shapeShutdownAnimation (J) .BackColor = shapeShutdownAnimation(I).BackColor
shapeShutdownAnimation (I) .BackColor = vbGreen

uart_cmd_get UARTCMD_GET_SHUTDOWN_STATUS, O, 0, buffer
data() = buffer

If data{z) Then
’ Shutdown complete
IblShutdownWait .Caption = "System is now safe to power down..."

For ¢ = shapeShutdownAnimation.LBound To shapeShutdownAnimation.UBound

shapeShutdownAnimation(c) .BackColor = vbGreen
Next c

tmrShutdown.Enabled = False
’Sleep (4000)
‘Shell "shutdown -s -t 10", vbNormalFocus

End If
End Sub

Private Sub tmrStats_Timer ()}
On Error Resume Next

Dim bytes () As Byte
Dim fnum As Integer
’ Grab Files from Inspection PCs

’ Check state of inspection PCs

If (pc_states(0) = PC_STATE_READY) Then
inetDownload.Protocol = icHTTP
inetDownload.URL = "HTTP://192.168.1.101/statistics.csv"
bytes () = inetDownload.OpenURL (inetDownload.URL, icByteArray)

‘bytes() = inetDownload.OpenURL("http://192.168.1.101/statistics.csv",

inum = FreeFile

Open "C:\tmp\stats_Ql.csv" For Binary Access Write As #fnum
Put #fnum, , bytes()

Close #fnum

End If
If (pc_states(l) = PC_STATE_READY) Then
bytes() = inetDownload.OpenURL ("http://192.168.1.102/statistics.csv",

fnum = FreeFile

Open "C:\tmp\stats_Q2.csv" For Binary Access Write As #fnum
Put #fnum, , bytes(}

Close #fnum

End If
If (pc_states(2) = PC_STATE_READY) Then
bytes() = inetDownload.OpenURL{"http://192.168.1.103/statistics.csv",

fnum = FreeFile
Open "c:\tmp\stats_Q3.csv" For Binary Access Write As #fnum
Put #fnum, , bytes()
Close i#fnum
End If
If (pc_states(3) = PC_STATE_READY) Then
bytes () = inetDownload.OpenURL ("http://192.168.1.104/statistics.csv",

fnum = FreeFile

Open "C:\TMP\stats_Q4.csv" For Binary Access Write As #fnum
Put #fnum, , bytes{()

icByteArray)

icByteArray)

icByteArray)

icByteArray)

309

http://uart._cmd._get
http://iblShutdownWa.it
HTTP://192.168.1.101/statistics-csv
http://I
file:///tmp/stats_Ql
http://192.168.1.102/statistics.csv
file://C:/tmp/stats__Q2.csv
http://192.168.1.103/statistics.csv
file:///tmp/stats_Q3
http://l92.168.1.104/statistics.csv
file://C:/TMP/stats_Q4.csv

E. HOST PC SOFTWARE

Close #fnum
End If

Dim fieldArray() As String
Dim I, J As Integer

Dim lineRead As String
Dim QuadNum As Integer
Dim sFileName As String

For QuadNum = 1 To 4
If pc_states(QuadNum - 1) = PC_STATE_READY Then

’Open File
sFileName = "C:\tmp" & "\stats_QO" & QuadNum & ".csv"

Open sFileName For Input As #1

While Not EOF (1)
Line Input #1, lineRead

lineRead = Replace(lineRead, vbLf, ", ")
fieldArray = parseCsv(lineRead)
‘Parse through CSV looking for specific parameters
If lineRead <> "" Then
With gridStats(0)
For I = 0 To UBound(fieldArray)
.Col = QuadNum

If InStr(l, fieldArray(I), "Good", vbTextCompare) Then
.Row = 1
.Text = fieldArray(I + 1)

End If

If InStr(l, fieldArray(I), "Good", vbTextCompare) Then
.Row = 5

.Text = fieldArray(I + 2)
1blQPercent (QuadNum - 1) .Caption = fieldArray (I + 2)

End If

If InStr(l, fieldArray(I}, "Bad", vblextCompare) Then
.Row = 2
.Text = fieldArray(I + 1)

End If

If InStr(l, fieldArray(I}, "Empty", vbTextCompare) Then
.Row = 3
.Text = fieldArray(I + 1)

End If

If InStr(l, fieldArray(I), "Total", vbTextCompare) Then
.Row = 4
.Text = fieldArray(I + 1)

End If

If InStr(l, fieldArray(I), "Effective Inspection Rate", vbTextCompare) Then
.Row = 8
.Text = fieldArray(I + 1)

End If

If (InStr(l, fieldArray{I), "Inspection Rate", vbTextCompare) And _
InStr(l, fieldArray(I), "Effective", vbTextCompare) = False) Then
.Row = 7
.Text = fieldArray(I + 1)

End If

If InStr(l, fieldArray(I), "Misaligned", vbTextCompare) Then
.Row = 6
.Text = fieldArray(I + 1)

End If

Next
End With
End If
Wend
Close #1

Else
’ Blank entire column

gridStats(0).Col = QuadNum

For J = 1 To gridStats(0).Rows - 1
gridStats(0).Row = J

310

file://C:/tmp

E. HOST PC SOFTWARE

gridStats (0) .Text = ""
Next J
End If

Next QuadNum
End Sub

Private Sub tmrUART_Timer (
On Error GoTo ErrHdlr

Dim cmd As Integer

Dim value_hi As Integer
Dim value_low As Integer
Dim sData As String

Dim buffer As Variant
Dim data{() As Byte

Dim count As Integer
Dim ret As Integer

Dim x As Byte

count = 0
ret = uart_cmd_get (UARTCMD_GET_PC_PWR_STATE, 0, 0, buffer)
If (ret) Then
GoTo ErrHdlr
End If

data = buffer

If (data(0) <> 6) Then

MsgBox "Error during communication (NACK received)!”, vbCritical
End If
x = data(2)
If ((x And &H3) = &H3) Then

/1blPCStatus (0).Caption = "Online"

boxQuad(0) .BackColor = vbGreen

pc_states (0} = PC_STATE_READY

ElseIf (x And &H1l) Then
/ IblPCStatus (0).Caption = "Booting Up..."
hoxQuad (0) .BackColor = vbYellow

pc._states(0) = PC_STATE_BOOTING

Else
1blFCStatus (0).Caption = "Offline”
boxQuad (0) .BackColor = vbRed
pc._states (0) = PC_STATE_OFF

End If

If ((x And &HC) = &HC) Then
/IblPCStatus (1) .Caption = "Online”
boxQuad (1) .BackColor = vbGreen
pc_states (1) = PC_STATE_READY

Elself (x And &H4) Then
’1blPCStatus (1).Caption = "Booting Up..."
boxQuad(l) .BackColor = vbYellow
pc_states(l) = PC_STATE_BOOTING

Else
/1blPCStatus (1) .Caption = "Offline”
boxQuad (1) .BackColor = vbRed
pc_states(l) = PC_STATE_OFF

End If

If ((x And &H30) = &H30) Then
’1blPCStatus (2) .Caption = "Online"
boxQuad (2) .BackColor = vbGreen
pc_states (2} = PC_STATE_READY

ElseIf (x And &H10) Then
‘1blPCStatus (2).Caption = "Booting Up..."
boxQuad(2) .BackColor = vbYellow
pc_states(2) = PC_STATE_BOOTING

Else

311

E. HOST PC SOFTWARE

1blPCStatus (2).Caption = "Offline"”
boxQuad (2) .BackColor = vbRed
pc_states (2) = PC_STATE_OFF

End If

If ((x And &HCO) = &HCO) Then
’1b1PCStatus (3) .Caption = "Online"
boxQuad (3) .BackColor = vbGreen
pc_states(3) = PC_STATE_READY

ElseIf (x And &H40) Then
7JblPCStatus (3) .Caption = "Booting Up..."
boxQuad(3) .BackColor = vbYellow
pc_states(3) = PC_STATE_BOOTING

Else
‘1blPCStatus (3).Caption = "Offline"
boxQuad (3) .BackColor = vbRed
pc_states(3) = PC_STATE_OFF

End If

‘Get current motor state
ret = uart_cmd _get (UARTCMD_GET MOTOR_STAT, 0, 0, buffer)

data = buffer

If data(Z) = &HFF Then
shapeMotor.BackColor = GUI_GREEN_BRIGHT
Else
shapeMotor.BackColor = GUI_RED_BRIGHT
End If
Exit Sub
brridlr:
End Sub

E.7.2 modGUIConsts.bas

Attribute VB_Name = "modGUIConsts"
Global Const BORDEK_SPACE As Integer = 250

Global Const GUI_GREEN_BRIGHT As Long = &H30FF30
Global Const GUI_YELLOW_BRIGHT As Long = &H30FFFF
Global Const GUI_RED_BRIGHT As Long = &H3030FF

Global Const GUI_GREEN As Long = &HE000&
Global Const GUI_YELLOW As Long = &HFOFO&
Global Const GUI_RED As Long = &HEO&

E.7.3 modCSVParser.bas

Attribute VB_Name = "modCSVParser"

Function parseCsv(lineIn As String) As String()
Dim s As String

Dim local_s As String

Dim nl As Integer

Dim n2 As Integer

Dim str2 As String

Dim I As Integer

Dim strTemp() As String

T =20

s = Trim(lineIn) ’ remove spaces, if any

While Len(s)
ReDim Preserve strTemp(I) ’ Didnt want to have fixed fields,
’ dont know how to dynamically allocate, hence

If Mid$(s, 1, 1) = """ Then ’ if already in quotes
strTemp () = Mid$(s, 2, InStr(2, s, """") - 2) ‘find 2nd ""
Else: If InStr(s, ",") Then strTemp(I) = Mid$(s, 1, InStr(s, ",") - 1)

312

E. HOST PC SOFTWARE

End If
‘s = Mid$(s, Len(strTemp(i)) + 1)
nZ2 = InStr(Len(strTemp(I)) Or 1, s, ", ")

If nZ Then s = Trim(Mid$(s, n2 + 1)) Else s = "" / clip till next
I =1 +1

Wend

parseCsv = strTemp

End Function

E. 7.4 modUARTCommands.bas

Attribute VB Name = "modUARTCommands™

’/+ uart_commands.h

* Author: Neil Scott
’ « Date: August 10, 2007

'/ System Control -~ Set Commands +/
Global Const UARTCMD_SET_MOTOR_STAT = &H90 ’/+ Enable or Disable Motor =/

‘#define UARTCMD SET _MOTOR_STAT 0x90 /#* Enable or Disable Motor +/
Global Const UARTCMD_SET_MOTOR_FREQ = &H91 ’/+ Set Motor Speed =*/

‘#define UARTCMD _SET _BLO WIDTH 0x92 /+ Set pulse width for BLO =/

‘#define UARTCMD_SET_BLI_WIDTH 0x93 /+ Set pulse width for BL1 #*/

‘#define UARTCMD_SET _FLO_WIDTH 0x94 /* Set pulse width for FLO =/

‘#define UARTCMD_SET_FLI_WIDTH 0x95 /* Set pulse width for FL1 */

‘#define UARTCMD_SET_CAMO_PULSE_POS Ox9A /% Set motor pulse position for CAMO +/

’#define UARTCMD_SET_CAMI_PULSE POS 0x9B /% Set motor pulse position for CAMLI =/

‘#define UARTCMD_SET_ACCEPT ON_PULSE_POS 0x9C /# Set motor pulse position for ACCEPT ON
*/

#define UARTCMD_SET. _ACCEFY _OFF_PULSE_POS 0x9D /+ Set motor pulse position for ACCEPT
OFF /7

Global Const UARTCMD_POWER_ON_PCS = &H9E ‘/+ Toggle power SW for 400ms to PC MBs +/

Global Const UARTCMD_SHUTDOWN = &HOF ’/+ Put system in shutdown mode =/

‘/+ System Control - Get Commands #/

Global Const UARTCMD_GET_MOTOR_STAT = &H10 ’/* Enable or Disable Motor #*/

Global Const UARTCMD_GET_MOTOR_FREQ = &H11 ’/+ Get Motor Speed */

Global Const UARTCMD_GET_BLO_WIDTH = &H12 ’/+ Get pulse width for BLO =*/

Global Const UARTCMD_GET_BL1_WIDTH = &H13 ’ /% Get pulse width for BL1 =*/

Global Const UARTCMD_GET_FLO_WIDTH = &H14 '/« Get pulse width for FLO %/

Global Const UARTCMD_GET_FL1_WIDTH = &H15 '/+ Get pulse width for FL1 */'

‘#define UARTCMD_GET_CAMO_PULSE_POS Ox1A /+ Get motor pulse position for CAMO +/

‘#define UARTCMD_GET_CAMI_PULSE_POS Ox1B /+ Get motor pulse position for CAMI =/

‘#define UARTCMD_GET_ACCEPT_ON_PULSE_POS ox1C /% Get motor pulse position for ACCEPT ON x/

‘#define UARTCMD_GET_ACCEPT_OFF_PULSE_POS Ox1D /+ Get motor pulse position for ACCEPT OFF =/

Global Const UARTCMD_GET_PC_PWR_STATE = &HIE ‘/%* Retrieve the power state of all PCs =/

Global Const UARTCMD_GET_SHUTDOWN_STATUS = &H1F ‘/+ Retrieve status of shutdown (complete?) =/

‘/+ System Monitors =/
Global Const UARTCMD_GET_TEMP_SP = &H30 ’/+ Get Temperature from Side Fanel Sensor */
Global Const UARTCMD_GET_TEMP_FP = &H31 ’/+ Get Temperature from Front Panel Sensor =/

’/+ Inspection Status #/

Global Const UARTCMD_GOOD_COUNT = &H21 ' /% Get good capsule count for specified quadrant
*/
Global Const UARTCMD_BAD_COUNT = &H22 . ’/+ Get reject capsule count for specified
quadrant =/
Global Const UARTCMD_TOTAL_COUNT = &H23 /% Get total capsule count from specified
quadrant =/
’#define UARTCMD_RESET_COUNTERS OxAF /+ Reset the counters =/’

http://UARTCMD__GET._MOTOR_.STAT

E. HOST PC SOFTWARE

/ Fault Registers =»/

‘#define UARTCMD FAULT_COUNT OxFO
’#define UARTCMD_FAULT_CODE OxF1

’/* Debug Modes #*/

Global Const UARTCMD _DEBUG_MODE = &HDD
when motor is off */

Global Const UARTCMD_ONE_STEP = &HDE
trigger +/

/* Get fault count */
/* Get fault code of previous fault =/

/ Set in debug mode so images are acquired

’/* Make system step one capsule, fires BL and

VITA AUCTORIS

Neil Scott was born in Sarnia, Ontario, Canada. He received his Bachelor of Applied Science
degree in Electrical Engineering from the University of Windsor, Ontario, Canada in 2006. He is
currently working towards a Master of Applied Science degree in Electrical Engineering. His primary
area of research is the development of a high throughput inspection system for quality control of
pharmaceutical capsules. His main area of expertise lies in hardware design, software and firmware
development. His research involves USB device development, embedded system design with a focus

on high-level programming languages, primarily C and C++.

315

	An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection
	Recommended Citation

	ProQuest Dissertations

