
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2008

An Integrated Control and Data Acquisition System for An Integrated Control and Data Acquisition System for

Pharmaceutical Capsule Inspection Pharmaceutical Capsule Inspection

Neil E. Scott
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Scott, Neil E., "An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection"
(2008). Electronic Theses and Dissertations. 8120.
https://scholar.uwindsor.ca/etd/8120

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8120?utm_source=scholar.uwindsor.ca%2Fetd%2F8120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

An Integrated Control and Data Acquisition
System for Pharmaceutical Capsule Inspection

by

Neil E. Scott

A Thesis
Submitted to the Faculty of Graduate Studies through the

Department of Electrical and Computer Engineering in Partial Fulfillment
of the Requirements for the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2008

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre r6f6rence
ISBN: 978-0-494-70596-4
Our file Notre reference
ISBN: 978-0-494-70596-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1*1

Canada

© 2008 Neil E. Scott

All Rights Reserved. No part of this document may be reproduced, stored or otherwise retained in

a retrieval system or transmitted in any form, on any medium by any means without prior written

permission of the author.

Declaration of Co-Authorship

I hereby declare that this thesis incorporates material that is the result of joint research as follows:

This thesis incorporates the outcome of joint research undertaken in collaboration with Anthony

C. Karloff and Mohammed J. Islam under the supervision of Dr. Roberto Muscedere. The

collaboration contributions are outlined in Chapter 1. The personal contributions, design work and

development performed by the author are the focus of this thesis.

I am aware of the University of Windsor Senate Policy on Authorship and I certify that I have

properly acknowledged the contributions of other researchers to my thesis, and have obtained

written permission from the co-authors to include the above materials in my thesis.

I certify that with the above qualification, this thesis, and the research to which it refers is the

product of my own work.

Abstract

Pharmaphil Inc. manufactures two-part gelatin capsules for the pharmaceutical industry. Their

current methods of quality control of their product is by performing manual inspection of every

carton of capsules prior to shipment. In today's modern manufacturing world, more efficient and

cost-effective means of quality control exist. It is Pharmaphil's desire to develop a custom machine

vision system to replace manual inspection with a potential opportunity in the capsule manufacturing

quality control market. In collaboration with the Electrical and Computer Engineering Department

at the University of Windsor, a novel system was developed to achieve this goal. The objective was

to develop a system capable of inspecting 1000 capsules per minute with the ability to detect holes,

cracks, dents, bubble, double caps and incorrect colour or size.

Using an antiquated machine vision system for capsule inspection from the mid-nineties as a base,

a modern inspection system was developed that performed faster and more thorough inspections. As

a measure to minimize the overall system cost as well as to increase flexibility, a full custom design

was undertaken. The resulting system follows a traditional machine vision system whereby the main

components include an image acquisition component, a processing unit and machine control. The

designed system uses custom USB2.0 cameras to acquire images, a standard desktop PC to process

image data and a custom machine control board to perform machine control and timing. The system

operates with four identical quadrants operating in parallel to increase throughput.

The final system developed provided a proof-of-concept for the approach taken. The machine

control and image acquisition component of the system yielded a maximum throughput of 1200

capsules per minute. After incorporating image inspection, the final result was a system that was

capable of inspecting capsules at a rate of about 800 capsules per minute with high accuracy.

With optimizations, the system throughput can be further improved. The findings throughout the

development of the prototype system provide an excellent basis from which the first generation

commercial unit can be designed.

To my family for their perpetual support and to Brianne for her patience, support and advice.

vi

Acknowledgments

I would like to express my gratitude towards my generous and supportive supervisor Dr. Roberto

Muscedere for his guidance and devotion to the project. I would like to thank my colleagues Anthony

Karloff and Mohammed Islam for their contributions to the project. I would also like to thank my

committee members Dr. Mohammed Khalid and Dr. Walid Abdul-Kader.

Contents

Declaration of Co-Authorship iv

Abstract v

Dedication vi

Acknowledgments vii

List of Figures xiv

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Current Quality Control Methods 1

1.2 Automated Vision Solution 2

1.3 Typical Manufacturing Defects 2

1.4 State of the Art 3

1.5 Motivation 3

1.6 Design Strategy 3

2 Background 5

2.1 OptiSorter 5

2.1.1 Mechanical Design 8

2.1.2 Electrical Design 9

2.2 Universal Serial Bus (USB) 11

2.2.1 Overview 11

2.2.2 Enumeration 12

CONTENTS

2.2.3 Host Controller Interface 13

2.2.4 Device Classes 15

2.2.5 Data Flow Types 16

2.2.6 USB Connectors and Cabling 17

2.2.7 Bus Power 18

2.2.8 USB Device Drivers 18

2.3 I2C 19

2.4 Machine Vision 21

3 Design Methodology 24

3.1 Design Approach 25

3.2 Design Considerations 26

3.2.1 Data Transfer Medium 26

3.2.2 Image Sensor 27

3.2.3 Inspection Environment 27

3.2.4 System Control 28

3.2.5 Power Supplies 29

3.2.6 Inspection PCs 29

4 USB 2.0 C a m e r a 31

4.1 Hardware Level Design 34

4.2 Cypress EZ-USB FX2 35

4.2.1 ReNumeration 35

4.3 FX2 Firmware 37

4.3.1 Universal Serial Radio Project FX2 Library 37

4.3.2 Bulk Transfers 37

4.3.3 MI Sensor Configuration 38

4.3.4 FPGA Register Configuration 39

4.3.5 FPGA Loader Firmware 39

4.3.6 Slave-Serial FPGA Loading Technique 39

4.4 Control Board Communication 40

4.5 EEPROM Memory Map 41

4.6 USB2.0 Camera Linux Device Driver 42

4.6.1 LibUSB 42

4.6.2 pm_cam Class 42

4.6.3 imgUSB 46

ix

CONTENTS

5 System Control Board 48

5.1 Hardware Design 48

5.1.1 Isolation Circuits 49

5.1.2 Driving Circuits 51

5.1.3 MCU Selection 51

5.1.4 Power Regulation Circuit 54

5.1.5 Electrically Controlled Pneumatic Valve Control Circuit 54

5.1.6 Stepper Motor Controller Control Circuit 56

5.1.7 LED Lighting Control Circuit 57

5.1.8 Proximity Sensor Input Circuit 58

5.1.9 Camera Triggering Circuit 59

5.1.10 I2C Expansion Circuit 59

5.1.11 PC Soft Power and Sense Circuits 61

5.1.12 I2C Bus Switch Circuit 61

5.1.13 Emergency Stop Input Circuit 64

5.1.14 RS-232 Communication 64

5.2 System Control Board PCB Layout 65

5.2.1 gEDA Open-Source Tools 66

5.2.2 PCB Fabrication 66

5.2.3 PCB Population 67

5.3 P C I/O Expansion Board 67

5.4 Firmware Development 71

5.4.1 Functional Requirements 73

5.4.2 Motor Control 73

5.4.3 Motor Ramping Control 76

5.4.4 Camera Trigger Control 77

5.4.5 I2C Master 78

5.4.6 I2C Slave 80

5.4.7 I2C Bus Switch 80

5.4.8 Job Queue 81

5.4.9 I2C I/O Expansion Board Control 84

5.4.10 I2C Expansion Interrupt Control 85

5.4.11 I2C LCD Control 86

5.4.12 UART Handler 87

5.4.13 Soft PC Power Control 89

X

CONTENTS

5.4.14 Capsule Tracking and Counts 90

5.4.15 Heartbeat Timer 90

5.4.16 Debug Mode Timer 90

6 Host P C 92

6.1 Operating System Selection 92

6.2 Hardware Selection 93

6.3 Software 94

6.4 inspect 94

6.4.1 POSIX Threads 95

6.5 fpgaJoaderss 101

6.6 camJnit 102

6.7 pyWindowConfig 103

6.8 pyCamCal 104

6.9 W32 Control Panel Application 104

6.10 Data Collection 105

6.11 File Organization 106

6.12 Start Up 107

6.12.1 inittab 107

6.12.2 Firmware Loading Script 107

7 Assembling the Prototype 109

7.1 Wiring 109

7.1.1 USB2.0 Camera I l l

7.2 Firmware I l l

7.3 Host PCs I l l

7.3.1 Operating System I l l

7.3.2 Software 113

8 Recommendations and Conclusions 114

References 119

A Control Board Design Reference 122
A.l Control Board Schematics 122
A.2 I 2 CI /0 Expansion Board Schematics 138

xi

CONTENTS

B USB2.0 Camera FX2 Firmware 140

B.l Cypress EZ-USB FX2 Vendor Requests 140

B.2 Micron Image Sensor Register Definitions 141

B.2.1 mLregs.h 141

B.3 FX2 Firmware 142

B.3.1 Makefile 142.

B.3.2 fx2cam_common.h 143

B.3.3 fx2cam_ids.h 144

B.3.4 fx2cam_i2c-addr.h 145

B.3.5 fx2cam_usb.h 145

B.3.6 .startup.a51 146

B.3.7 usb_descriptors.a51 147

B.3.8 vectors.a51 151

B.3.9 eeprom_regs.h 151

B.3.10 fx2cam_common.c 151

B.3.11 fx2cam_main.c 153

C USB2.0 Camera Linux Driver 164

C.l IMGUSB Fast USB Class 164

C.l.l imgusb.h 164

C.1.2 imgusb.cc 165

C.2 PM_CAM USB Primatives 167

C.2.1 pm_prims.h 167

C.2.2 pm_prims.cc 168

C.3 PM^CAM USB2.0 Camera Driver Class 170

C.3.1 pm.cam.h 170

C.3.2 pm_cam.cc 172

D System Control Board Firmware 185

D.l common.h 185

D.2 job_ids.h 190

D.3 main.c 190

D.4 i2c_slave.h 220

D.5 i2c_slave.c 221

D.6 i2c_commands.h 223

D.7 i2c-2.h 223

xi i

CONTENTS

D.8 i2c_2.c 223

D.9 i2c_io_exp.h 227

D.10 i2c_io_exp.c 227

D.l l lcd_i2c.h 228

D.12 lcd_i2c.c 229

D.13 uart_commands.h 233

D.14 uart2.h 234

D.15 uart2.c 234

E Host P C Software 237

E.l inspect 237

E.l . l Makefile 237

E.1.2 inspect.h 238

E.l.3 inspect.cc 239

E.l.4 inspect.conf 261

E.2 tesUp 261

E.2.1 test_ip.cc 261

E.3 camJnit 263

E.3.1 Makefile 263

E.3.2 cam_init.cc 263

E.4 fpga_loader_ss 271

E.4.1 Makefile 271

E.4.2 fpga_loader_ss.cc 271

E.5 pyWindowConfig 279

E.5.1 pyWindowConfig.py 279

E.6 pyCamCal 285

E.6.1 pyCamCal.py 285

E.7 Human Machine Interface (w32) 290

E.7.1 frmMain.frm 290

E.7.2 modGUIConsts.bas 312

E.7.3 modCSVParser.bas 312

E.7.4 modUARTCommands.bas 313

VITA AUCTORIS 315

xiii

http://test_ip.cc

List of Figures

2.1 OptiSorter 6

2.2 OptiSorter Quadrant Birds-Eye View 7

2.3 USB Bus Topology 12

2.4 USB Standard Connectors 17

2.5 I2C Sample Schematic 20

2.6 I~C Timing Diagram 21

3.1 Conceptual block-diagram of the PharmaSorter 25

4.1 Micron Evaluation Board Block Diagram 33

4.2 USB2.0 Camera High Level Block Diagram 35

5.1 System Controller Block Diagram 49

5.2 Typical Optocoupler Circuit Symbol 50

5.3 Common Isolation Circuit 50

5.4 Isolation Driving Circuit - Sinking 52

5.5 Isolation Driving Circuit - Sourcing 52

5.6 Counter Electromotive Force Protection Circuit 55

5.7 Pneumatic Valve Control Circuit 55

5.8 Motor Control Circuit 56

5.9 LED Lighting Control Circuit 58

5.10 Proximity Sensor Input Circuit 58

5.11 Camera Trigger Driver Circuit 59

5.12 I2C Buffered Expansion Circuit 60

5.13 I2C Buffered Expansion Interrupt Circuit 60

5.14 Inspection PC Soft Power Circuit 61

5.15 Inspection PC Power Sense Circuit 62

xiv

LIST OF FIGURES

5.16 I2C Bus Switch Circuit 63

5.17 E-Stop Input Circuit 64

5.18 RS-232 Transceiver Circuit 65

5.19 Populated System Control Board PCB 68

5.20 I2C I/O Expansion Board Input Circuit 69

5.21 I2C I/O Expansion Board Output Circuit 69

5.22 I2C I/O Expansion Board I2C Address Select Circuit 70

5.23 I2C I/O Expansion Board Input Circuit 71

5.24 I2C I/O Expansion Board 72

5.25 Motor Pulse Control flow diagram 75

5.26 Proximity Sensor Interrupt flow diagram 76

5.27 Flow Diagram of Bus Switch Interrupt Service Routine 82

6.1 PC Mounting Scheme 94

6.2 Inspect Software Scheduling Scheme 95

6.3 Inspect Main Flow Diagram 97

6.4 Inspect Image Acquisition Flow Diagram 98

6.5 Inspect Image Processing Flow Diagram 100

6.6 Inspect HTML Output File 101

6.7 pyWindowConfig Screen Shot 104

6.8 pyCamCal USB Device Selection Screen Shot 104

6.9 pyCamCal Main Window Screen Shot 105

6.10 W32 Control Panel Application Screen Shot 106

7.1 Panel Layout (Front) 110

7.2 Panel Layout (Rear) 110

7.3 High-Level Wiring Diagram 112

8.1 Camera Views of Bubble Defect 115

8.2 System Control Board Soft PC Power Fix 118

XV

List of Tables

2.1 USB Control Request Setup Packet 13

2.2 USB Control Request bmRequestType BitMap 13

2.3 USB Control Requests 14

2.4 USB Device Classes 15

2.5 USB pin out 17

2.6 Frequently Uses libUSB Functions 19

3.1 Digital Interface Comparison 26

4.1 Cypress CO Load - Descriptor Values Only 36

4.2 Cypress C2 Load - Descriptor Values and Firmware 36

4.3 USB2.0 Camera EEPROM Memory Map 41

4.4 pm_usb Class Functions 44

4.5 pm_prims Primitive USB Functions 45

4.6 irngUSB Class Functions 47

5.1 System Control Board MCU Requirements 53

5.2 dsPIC I2C Master Functions 79

5.3 UART Command Format 88

5.4 UART Commands 89

6.1 Host PC Hardware 93

6.2 USB2.0 Camera Position Identifiers 103

6.3 Host PC IP Addresses 105

xvi

List of Abbreviations

CCD
CMOS
DID
FOV
FPGA
GNU
GPL
I2C
LCD
LED
Mbps
MCU
OS
PAL
PC
PCB
PID
URB
USB
VID

Charge Coupled Device.
Complimentary Metal Oxide Semiconductor.
Device ID.
Field of View.
Field Programmable Gate Array.
GNU's Not Linux.
General Public License.
Inter-Integrated Circuit.
Liquid Crystal Display.
Light Emitting Diode.
Mega-bits Per Second.
Microcontroller.
Operating System.
Phase Alternating Line.
Personal Computer.
Printed Circuit Board.
Product ID.
USB Request Block.
Universal Serial Bus.
Vendor ID.

xvii

Chapter 1

Introduction

The manufacturing of two-part gelatin capsules requires a highly controlled process to ensure the

resulting product is of optimal quality. The customer expectation is that the product is free of

functional as well as of aesthetic defects. It is not possible however, to have absolute control over

every aspect of the manufacturing process and as a result, defects are inevitable. To ensure the

end-product is free of flaws, some means of quality control are required. Although, one of the most

influential facets for quality control is cost. The profit made from the sale of an individual capsule

is very small and thus the cost and time devoted to the inspection of each individual capsule should

reflect this.

1.1 Current Quality Control Methods

Pharmaphil Inc. currently uses manual inspection to ensure the quality of their product. This

involves a worker monitoring a conveyor belt of capsules and removing any defective product. Human

inspection provides an immediate solution for quality control as humans can be trained to look for

a set of various flaws in products deeming them unacceptable. A human can also quickly adapt to

changing environments and different products. However, manual inspection has several drawbacks:

First, human inspection is not consistent. The inevitability of human error eliminates the certainty

of an ideal inspection. Also, it is certainly not reasonable to expect that congruency exists between

workers. Second, the attention span of human workers is limited, making it impossible for a worker

to provide accurate results for the entire duration of a given shift. Although a human worker may

have a low initial cost and produce reasonable results, human inspection is ultimately exceedingly

l

1. INTRODUCTION

more expensive than a high-quality, reliable automated inspection system.

1.2 Automated Vision Solution

In contrast, automated vision systems require significant start-up costs and development time. A

vision system needs to be planned out, built and tested before it can be used in a quality control

situation with confidence. Once built and verified, however, an automated vision system can provide

consistent, objective inspection. It can also run indefinitely without breaks, aside from regular

scheduled maintenance or downtime for repairs. However, a vision system does require a consistent

environment to perform inspection, unlike humans that can easily adapt to changes in lighting or

product. Even slight environmental changes can be detrimental in the performance of an automated

vision system. For the inspection of two-part gelatin capsules, which are produced in various sizes

and colours, specific inspection algorithms and parameters must be tailored to each specific capsule

type. Although, once developed, an automated inspection system is a much more cost effective and

accurate means of quality control than manual inspecting.

The cost devoted to the inspection of each individual capsule is very small arid this must be

considered for a machine vision system to replace a human worker, this must be considered. Devel­

oping nations clearly have an advantage in ensuring their product is of high quality since the cost

of manual inspection is a very small component of the overall cost of the product. Thus for North

America to compete, where labour costs are substantially higher, an automated inspection system

is a practical solution to quality control. Automated inspection systems exist for the inspection of

two-part gelatin capsules, however the expense of such a unit cannot always be warranted.

1.3 Typical Manufacturing Defects

Inconsistencies in the manufacturing of two-part gelatin capsules and equipment problems result in

several common flaws. This includes dents, bubbles, holes, strings, cracks, dirt, double caps and

incorrect colour or size. Some defects are classified as more severe over others. For example, a hole

or a crack is a functional flaw as once the capsule is filled, it is possible for product to spill out. This

is a critical defect for if received by an end-user, but also can cause machine failure at the filling

stage. Other flaws such as bubble do not pose immediate functional failure, although the region of

a bubble is a much thinner than that of the rest capsule and can easily turn into a hole. Dents and

double caps can cause failure at the filling stage since they have an irregular shape. Incorrect colour

or sized capsules can cause serious problems if they reach an end-user, resulting in possible product

recall. Dirt, grease and strings are cosmetic flaws and do not affect the capsule, however imply poor

quality control or manufacturing.

2

1. INTRODUCTION

1.4 State of the Art

A machine vision system requires a single setup cost as well as possible maintenance costs. Typical

systems available on the market cost in the range of $500,000 [1]. Two big names in the hard

capsule inspection business are Daiichi Jitsugyo Viswill Co. and Eisai Machinery USA Inc. Each

of these companies offer inspection systems for two-part hard gelatin capsules, along with other

pharmaceutical products. The Daiichi Jitsugyo Viswill CVIS-SXX-E system is capable of inspecting

number 1 through 5 sized uni-colour and bi-colour hard capsules, excluding transparent and dark

capsules [5]. Their system performs an inspection on the circumference surface of the cap and body

with a inspection capacity of 1700 to 2500 capsules per minute [5]. The CVIS-SXX-E uses high-

resolution CCD line sensor cameras and is capable of detecting a minimum size flaws of lOOmum

[5]. Eisai Machinery offers three models of capsule inspection systems, rated at 800, 1600 and 2500

capsules per minute. The Eisai system uses CCD cameras for inspection, but the capsule sizes

and colours supported are not mentioned. Therefore, while the current current state-of-art capsule

inspection systems do exist they are quite expensive.

1.5 Motivation

The overall goal of this project is to design and develop a working prototype for a full custom

capsule inspection system. The system developed must be capable of a target inspection rate of

1000 capsules per minute. For the prototype system, the focus was on only the inspection of size-0

natural two-part hard gelatin capsules, which is the most popular capsule sold by Pharmaphil Inc.

After the completion of the proof-of-concept stage, sound evidence that such a system is plausible

permitting further development towards a commercial system. Thus the objective of the project was

to complete the proof-of-concept stage with a working prototype.

1.6 Design Strategy

Pharmaphil Inc. purchased several antiquated inspection systems developed in the mid 1990s

with the intent of upgrading them with modern technology. The existing system, called the Op-

tiSorter was developed by an unknown German company. The OptiSorter provides a decent

mechanical basis for inspection but with outdated electronics and processing capabilities. Using this

existing mechanical frame and some existing hardware such as motors, actuators and sensors, the

electronics and processing equipment could be updated to provide a more thorough and accurate

inspection. In collaboration with Pharmaphil Inc., the department of electrical and computer engi­

neering compiled a team of three graduate students to achieve this goal. This thesis refers to the

1. INTRODUCTION

project as the PharmaSorter, although a formal name for the system has not been decided upon by

Pharmaphil.

The approach taken in solving this problem was to develop a full-custom design in order to reduce

cost. By recycling as many components of the OptiSorter as possible, the end cost of the system

was reduced significantly. The full-custom design involved the design of custom USB2.0 cameras

with the development of the associated drivers and software and the design of a system controller to

interface with the mechanics of the system including motor, actuators and sensors. Custom software

running on standard desktop PCs was developed to facilitate analysis of images acquired. The full

custom approach deemed successful in reducing cost and the result was a proof-of-concept prototype

from which the first generation commercial unit can be designed.

The research project involved the collaboration of three students in the Department of Electrical

and Computer Engineering at the University of Windsor. The development of the prototype system

was divided into three sections, namely: machine control and data acquisition, camera hardware

and real-time image processing, and image analysis using image processing. The research team

was comprised of myself, responsible for machine control and data acquisition, Anthony C. Karloff,

responsible for camera hardware design and real-time image processing and Mohammed J. Islam

who developed the image analysis algorithms using image processing.

This thesis outlines the personal contributions made to the project. This includes the detailed

design of various components of the system including detailed hardware design, firmware and software

development. Supplemental documents including technical reference manuals of various hardware

are companion to this thesis and are referenced accordingly. Source code listings for the firmware

and software developed for the prototype system are included in Appendix Chapters B through E.

This thesis is organized into seven chapters. The second chapter provides essential background

information regarding the various technologies used in the project. This is not intended to be a

comprehensive discussion of these technologies, but rather an introduction. The third through sev­

enth chapters cover detailed design methodology of the various components of the system. Chapter

3 provides the basic design approach and considerations for the system. Chapter 4 details the

design of the USB2.0 cameras in particularly the contributions made in terms of firmware and soft­

ware drivers. In Chapter 5, a detailed design specification of the system control board outlines

the hardware design, circuit board layout and fabrication and firmware development. The host PC

hardware requirements, operating system selection and software development is discussed in Chapter

6. Chapter 7 provides a reference to how each component of the system interacts and the required

interconnections of the various hardware components in a high-level manner. The final chapter,

Chapter 8 provides some concluding remarks of the project including results and recommendations

for future development towards a commercial unit.

4

Chapter 2

Background

This chapter is intended to provide the reader with some background information on some of the

technologies used in the development of the system. The development of the PharmaSorter proto­

type was accelerated by reusing an the mechanics of an existing capsule inspection system called the

OptiSorter. Background information regarding the OptiSorter is presented in this section including

the capsule loading and ejection mechanism, and electrical hardware that was reused in the prototype

design. For the prototype system, custom USB2.0 cameras were developed and custom firmware and

drivers were created. USB2.0 is a fairly involved technology although many semiconductor vendors

offer devices to reduce development time and complexity. The basics of USB2.0 are presented here.

Although I2C is not a complicated communication interface, it does deserve some recognition due

to the abundant use in the prototype system. I2C is a two-wire serial communication interface

intended for chip-to-chip communication.

2.1 OptiSorter

The inspection of any object using a computer vision requires the development of a mechanical

system to load, fixture and eject the object in addition to the electrical hardware and software. For

the development of the PharmaSorter, an existing mechanical structure was used to facilitate this

requirement. The OptiSorter, shown in Figure 2.1, is a machine vision system developed in the

early-to-mid nineties for purpose of inspecting two-part pharmaceutical capsules.

This system facilitates individual capsule loading and ejection. The capsule rests in a holder and is

inspected using a series of four cameras which acquire images of all surfaces of the capsule. Pneumatic

5

2. BACKGROUND

Figure 2.1: OptiSorter

valves are used to eject the capsule into either a pass or fail discharge mechanisms. The OptiSorteris

comprised of four identical inspection quadrants operating in parallel. The components of a quadrant

are labelled in Figure 2.2 accompanied by a detailed description of the OptiSorter's components

including the electrical and mechanical systems.

1. Rotating Disc The rotating disc is the base of the loading hopper with slots to allow capsules

to be queued in each arm (4) which are fixed to the disc.

2. Capsule Intake Lever The capsule intake lever controls the flow of capsules entering the holder

(5). Two holders are used to allow a single capsule to be loaded onto the holder at a given

time.

3. Lifters The lifters are fixed metal blocks used to lift the intake levers (2) to allow a capsule to

be loaded in the Loading Stage. The lifters are positioned such that one capsule is loaded onto

6

2. BACKGROUND

Figure 2.2: OptiSorter Quadrant Birds-Eye View

the holder and another held in the waiting position while the rest are queued single file in the

arm (4).

4. Arm The arms are hollow metal shafts that hold the capsules in the inspection queue. The; arms

are the link between the hopper and the holder (5) and rotate to move the capsule through

the various stages of the inspection process.

5. Capsule Holder The capsule holder is a machined steel block with a grove to hold the capsule

and a slot allowing for the bottom portion of the capsule to be visible. The capsule rests on

the holder while is passes through the various stages.

6. Top View Cameras The top view cameras, comprised of a left, center and right camera, ac­

quire images of the top surface of the capsule. The cameras are triggered when the holder

enters their field of view.

7. Bottom View Camera A single camera is positioned to acquire an image of the bottom of the

capsule through the slot in the holder (5). This image is acquired after the top view cameras

(6) acquire images of the top surface of the capsule.

7

2. BACKGROUND

8. Accept Ejection An electrically controlled pneumatic valve is used to eject a passed capsule

using a burst of air.

9. Reject Ejection A constant supply of air is used to reject all capsules not passed (assumed

fail).

10. Two-Part Capsule The capsule is the object being inspected. A given machine can only

support a single size capsule but by modifying inspection algorithms and machine parameters,

various different coloured capsules can be inspected.

The OptiSorter provides a suitable base for performing inspection with the ability to replace the

electronics and incorporate more advanced inspection methods. The existing mechanical structure

is suitable for the throughput requirement and provides an adequate inspection environment. By

re-using the OptiSorter, the upgraded system is cost effective and provides a reasonable inspection.

2.1.1 Mechanical Design

Capsule Loading

The OptiSorter has a relatively simple, yet elegant mechanical design. The mechanics of the system

rely on a single stepper motor which rotates a series of 24 arms which load and fixture the capsule

for inspection. Each mechanical arm is hollow with a diameter slightly larger than a capsule. The

arm queues capsules in single-file from a large hopper atop the machine. As each arm rotates, two

levers are used to load an individual capsule into the capsule holder and the waiting position. The

levers are activated by lifters located prior to the inspection stage. As the arm enters an inspection

area, the first lever is lifted to allow a single capsule to be queued between the two levers in the

waiting position. After a short distance, a the second lever is lifted to allow the queued capsule to

rest in the holder. The dual plunger system is in place to ensure only a single capsule is loaded at

a given time.

Capsule Holder

As mentioned above, the capsules rest in a capsule holder. The capsule holder is a piece of machined

stainless steel with a grove in which the capsule rests. A slot in the holder allows the capsule to be

viewed from all angles by cameras, thereby maximizing the viewable surface area. A proximity sensor

is used to trigger the cameras for image acquisition once the capsule enters the inspection stage.

The rotating arms are attached to a steel disc with notches machined out. Each notch represents

the entry of a new capsule into the inspection area. This signal is used as a feedback mechanism

8

2. BACKGROUND

so the position of the arm is always known. This is essential to properly organize the sequence of

events required for inspection.

Capsule Ejection

After the capsule passes the inspection stage it enters the ejection stage where the capsule is ejected

into one of two ejection chutes. The ejection of a passed capsule is performed by an electrically

controlled pneumatic valve that uses a burst of air to eject a capsule. For a rejected capsule, a

constant stream of air is used to eject the capsule into the reject chute. Following ejection, the

capsules rest on a metal disc that rotates at a reduced speed proportional to the speed of the arms.

The capsules collect on the disc in one of two slots, accepted or rejected. As the disc rotates, the

capsules are finally discharged at one of the two exits.

2.1.2 Electrical Design

The OptiSorter's electrical system is quite dated by today's standards, however some components of

the existing electrical system can be reused in the re-design. The OptiSorter was mostly comprised

of custom electronics including cameras, acquisition boards and an input/output board as well as

sensors, actuators and a stepper motor. There were several power supplies used in the system to

provide the power requirements of different components. Finally, a simple HMI was designed using

several push-buttons and a character LCD.

Power Supplies

To adequately meet the requirements of the system, several power supplies were used. A 24VDC

supply was used to operate the motor, the electrically controlled pneumatic valves and proximity

sensor. A set of standard PC power supplies were used to provide power for the acquisition boards

and cameras. A set of custom designed 8VDC and + / - 15VDC were also used in the system. It is

presumed that these were used for an analog portion of the image acquisition system.

Illumination

A matrix of LEDs were used to provide backlighting illumination. The LEDs were soldered to a

small circuit board and attached to a diffusing plastic block. The voltage used to operate them

is not known, but assumed to be 8-12VDC. The backlighting was created using high-intensity red

LEDs. It is assumed that these were pulsed to preserve the LEDs lifespan and the provided exposure

control for the image sensor.

9

2. BACKGROUND

Cameras and Acquisition

The OptiSorter is equipped with 16 cameras, four for each of the inspection quadrants. The cameras,

presumably black-and-white, have a custom circuit board with a custom enclosure and a commercial

lens. The wiring of the cameras infers that the cameras produce an analog signal, most probably

PAL. For each camera, an acquisition and processor board is used to acquire the images and perform

inspection. Each of the acquisition boards is equipped with an equivalent 80286 processor and other

signal processing semiconductor devices. Each acquisition board is connected to a large bus where

the input/output board also resides. It is presumed that following an inspection, the pass/fail signal

is sent to the input/output board which signals the pneumatic valves to accept or reject a given

capsule.

Stepper Motor and Controller

The OptiSorter uses a five-pole stepper motor to rotate the capsule holder arms. The stepper

motor is controlled by a motor controller. The motor controller accepts a direction signal and steps

on the rising edge of the input step pulse. This makes motor control rather straightforward and

requires little feedback to track the position of the arms. The motor controller operates at 24VDC

and requires a 24V pulse to step.

Proximity Sensor

A single proximity sensor is used as feedback of the position of the holder arms. When the holder

enters the inspection area, a pulse is seen from the proximity sensor. This, along with the knowledge

of the number of pulses applied to the stepper motor, is used to track the position of the holders.

Electrically Controlled Pneumatic Valves

Electrically controlled pneumatic valves are used to eject the accepted capsules. The valve is engaged

(opened) by a 24VDC supply voltage. A single valve exists in each inspection quadrant and is opened

according to the pass/fail result of the inspection by the input/output board.

Human Machine Interface

An very simple HMI used to be used by a machine operator is located at the front of the machine.

It is assumed that this interface is used to start and stop the machine and retrieve simple feedback

from the system. The HMI is comprised of a set of two push buttons, a switch, a lamp and a 16x2

character LCD. It is presumed that the HMI is controlled by the I/O board using a parallel interface.

10

2. BACKGROUND

Monitor

A television unit placed atop the machine is presumed to be used for system calibration. A series

of switches used to select a camera exists on the side of the machine. A particular camera can

be selected and viewed on the television unit. It is assumed that a PAL signal directly from each

camera is displayed and used for the calibration of lens focus, camera position, etc.

2.2 Universal Serial Bus (USB)

Universal Serial Bus (USB) is a hi-speed interface used for connecting peripheral devices to a com­

puter, or any host system. USB is abundantly available and most modern PCs are equipped to

support it. USB devices are also widely available in commercial electronics and commonly used in

industry. It is a preferred solution due to it's hot-swap capability, supply capabilities and high speed

transfer ability. Developing a USB device requires a working knowledge of the physical, protocol

and software levels of the interface.

USB replaces legacy interfaces including serial and parallel ports on PCs. Standard devices like

printers, scanners, mice and keyboards now connect using USB. Among these device, many other

devices a.re being supported such as PDAs, mobile phones and other hand-held devices. USB is a

serial bus interface first introduced in November 1995 with the initial release USB 1.0 by Microsoft,

Intel, Philips and US Robotics [39]. USB 1.1 was later released in 1998 to rectify the adoption

problem from the initial release [39]. The most current release of USB is version 2.0, which was led

by Hewlett-Packard, Lucent, Microsoft, NEC and Philips [36].

2.2.1 Overview

The Universal Serial Bus is a star topology with a single master on the bus, the host. A device on a

USB bus cannot initiate a transfer to a host; it must be requested by the host prior to transmission.

USB supports the addition of HUBs to the topology to support additional devices. Up to five tiers

of HUBs are permitted supporting, up to 127 devices on a single bus. There is a single root hub

in any given topology which is integrated directly into the USB host controller device of the host

system. A example USB bus topology is shown in Figure 2.3.

Each USB device, or peripheral, is typically comprised of one or more logical sub-devices that

perform a single function. Each of the logical sub-devices is referred to as an interface. Communi­

cation with an interface is performed through pipes which are channels that link to the endpoints of

a given interface. Each interface can be made up of one or more endpoints that are used to transfer

data. Each endpoint is unidirectional, meaning it can only be used to send or receive data. USB

supports up to 32 endpoints, 16 IN endpoints and 16 OUT endpoints, with IN and OUT referring

11.

2. BACKGROUND

Figure 2.3: USB Bus Topology

to the direction of data flow with respect to the host. There in an exception however, with end-

point zero (EPO), which is a required endpoint used for device configuration. Endpoint zero is a

bi-directional control endpoint required in all devices. This is used for device configuration during

the enumeration process and is also often used for vendor specific requests.

2.2.2 Enumeration

Enumeration is the process of device identification to the host system upon being attached. The

enumeration process begins with the host initiating a device reset followed by a request for device

configuration information (USB standard device requests). If the device is recognized by the host

operating system, the corresponding device driver is loaded. Device identification is typically based

on three device descriptor values namely VendorlD, ProductID and DevicelD. Since USB devices

cannot initiate communication, the host controller polls bus traffic in a round-robin fashion to detect

devices added to the bus. Each USB hub has a status bit to report the attachment or removal of

a device. In the case of a device being attached, the host enables the port and assigns the device

an address on the bus. The device is enumerated using a pipe to the device's control endpoint zero

where the device and endpoint descriptors are requested by the host.

12

2. BACKGROUND

Endpoint Zero

It is essential that all devices support a common mechanism for accessing device information. This

is accomplished using the default control endpoint which exists on all devices. This endpoint is

bi-directional (IN and OUT) with endpoint address 0. During enumeration, this endpoint is queried

for standard device information including vendor and product identification, device class and power

requirements. This is accomplished by standard descriptor requests from a device, it's interfaces and

the endpoints of each interface. This is performed using the default control pipe. A control request

is formatted as described in Table 2.1 where the bmRequestType bitmap is detailed in Table 2.2.

The specific configuration data is acquired through a series of requests as described in Table 2.3.

Offset

0

1

2

4

6

Field

bm Req uestTy pe

bRequest

wValue

wlndex

wLength

Size

1

1

2

2

2

Value

BitMap

Value

Value

Index

Count

Description

Description of Request (Type, Direction & Recipient)

Specific Request

Specific to Request

Used by request to pass and index

Number of bytes to transfer in data stage (if present)

Table 2.1: USB Control Request Setup Packet

Bit(s)

D7

D6..5

D4..0

Description

Data Transfer Direction

0 - Host to Device

1 - Device to Host

Type

0 - Standard

1 - Class

2 - Vendor

3 - Reserved

Recipient

0 - Device

1 - Interface

2 - Endpoint

3 - Other

4..31 - Reserved

Table 2.2: USB Control Request bmRequestType BitMap

2.2.3 Host Controller Interface

The host system uses a host controller to facilitate the USB protocol at the physical level. A USB

host controller device has several standards for the releases of USB. The UHCI and OHCI (Universal

Host Controller Interface and Open Host Controller Interface) were both released along with USB

13

2. BACKGROUND

bmRequestType

0x00, 0x01, 0x02

0x80

0x80

0x81

0x80, 0x81, 0x82

0x00

0x00

0x00

0x00, 0x01, 0x02

0x01

0x82

bRequest

CLEAR-FEATURE

GET_CONFIGURATION

GET_DESCRIPTOR

GETJNTERFACE

GET_STATUS

SET_ADDRESS

SET-CONFIGURATION

SET_DESCRIPTOR

SET-FEATURE

SET-INTERFACE

SYNCH-FRAME

wValue

Feature Se­

lector

Zero

Descriptor

Type and

Descriptor

Index

Zero

Zero

Device Ad­

dress

Configuration

Value

Descriptor

Type and

Descriptor

Index

Feature Se­

lector

Alternate

Setting

Zero

wlndex

Zero

Interface

Endpoint

Zero

Zero or

Language

ID

Interface

Zero

Interface

Endpoint

Zero

Zero

Zero or

Language

ID

Zero

Interface

Endpoint

Interface

Endpoint

wLength

Zero

One

Descriptor

Length

One

Two

Zero

Zero

Descriptor

Length

Zero

Zero

Two

Data

None

Configuration

Value

Descriptor

Alternate

Interface

Device,

Interface,

or Endpoint

Status

None

None

Descriptor

None

None

Frame

Number

Table 2.3: USB Control Requests

1.1. The OHCI standard is more hardware dependant and faster than the more software dependant

UHCI. OHCI however was more expensive to implement. Regardless of the standard followed, the

same functionality was supported by both interfaces. To reduce the complexity, the release of USB

2.0 permitted only a single interface, EHCI (Enhanced Host Controller Interface). Host controller

devices were required to be backwards compatible and support one of either UHCI or OHCI. The host

operating system uses the host controller interface to communicate directly with the host controller

device using a register file. The host controller device follows the USB protocol to communicate

with peripheral devices.

14

2. BACKGROUND

2.2.4 Device Classes

In an effort to reduce the dependence of devices on individually specific drivers, USB device classes

alleviate this by creating standard classes to which a device can belong. By belonging to a given

device class, the device must follow the standards specified by said class. A device class can be

supported by a single device driver without the need for a fully custom driver for each specific

device. Thus the same driver can be used for many unique devices. Commonly known device classes

include HID (Human Interface Device) and Mass Storage device used for keyboards and flash disks

respectively. A more thorough list of device classes and examples are listed in Table 2.4.

Base Class

0x00

0x01

0x02

0x03

0x05

0x06

0x07

0x08

0x09

OxOA

OxOB

OxOD

OxOE

OxOF

OxDC

OxEO

OxEF

OxFE

OxFF

Descriptor Usage

Device

Interface

Both

Interface

Interface

Interface

Interface

Interface

Device

Interface

Interface

Interface

Interface

Interface

Both

Interface

Both

Interface

Both

Description

Indicate that interface descriptors are to be used for the

device.

Used for audio compatible devices. This can be used in

the audio interface of a webcam device.

Communication and CDC Control device used in devices

such as ethernet adaptors, modems, etc.

Human Interface Device. This device class is reserved for

devices such as mice and keyboards.

Physical device class. This class is used in force feedback

joysticks.

Still Imaging device class. Sometimes used for digital

cameras, but most use Mass Storage Device.

Printer device class is used for printers and multi-function

printer/scanners.

Mass Storage Device is used for USB flash drives, external

DVD Drives, etc.

USB Hub class is used for full and high speed USB hubs.

CDC-Data class is used with the communication device

class

Smart Card Class is reserved for USB smart card readers

Content Security interface class

Video interface class - used for video devices like web cams

Personal Health care class

Diagnostic Device - used in USB 2.-0 Compliance testing

apparatus

Wireless controller - used for WiFi and Bluetooth adapters

Miscellaneous - Such as Active Sync devices or Palm Sync

devices.

Application Specific - use for Device Firmware Upgrade,

IRDA bridge device, etc.

Vendor Specific

Table 2.4: USB Device Classes

15

2. BACKGROUND

2.2.5 Da ta Flow Types

USB supports four distinct da ta transfer types: control, bulk, interrupt and isochronous. Each

transfer type is suitable for a particular application. A USB transfer occurs between the device

driver and an endpoint and thus each endpoint is defined as one of the four flow types in a single

direction (IN or OUT) . The transfer of da t a between the host software and the device endpoint

occurs over a logical channel, often referred to as a pipe. An endpoint may be defined as one of the

following da t a flow types.

Contro l Transfer

The control endpoint is used to configure the device during enumeration and also for controlling

other device-specific functionality. Control endpoints are usually reserved for control and s ta tus

operations where da ta is non-periodic. The maximum da ta size of a control endpoint is 64 bytes for

USB 2.0 (high-speed) and full-speed devices, but only 8 bytes for low-speed devices. This transfer

type is guaranteed and therefore occurs without loss of data .

B u l k Transfers

Bulk endpoints are used when large amounts of da t a are to be transferred, as for printers, scanners

or external hard-disks. Bulk transfers are guaranteed by built-in error detection to ensure reliable

da t a transfer. This is accomplished by using error detection via CRC and invoking hardware retries

if required due to delivery failure or bus errors. A bulk transfer is guaranteed for integrity but not

for transfer rate. The bandwidth utilization is dependent on the bus activity and will vary. For USB

2.0, the maximum bulk transfer size is 512 bytes and 64 bytes for full-speed endpoints.

In terrupt Transfers

An interrupt endpoints is designed for devices tha t do not frequently send or receive data . The

interrupt endpoint supports bounded service periods meaning the service t ime is guaranteed. The

maximum payload size of an interrupt endpoint is 1024 bytes for USB 2.0 and 64 bytes for full-speed.

I s o c h r o n o u s Transfers

Isochronous transfers are typically used for periodic and continuous da ta transfer between the host

and the device. It is typically used when timing is critical but da ta integrity is not.

16

2. BACKGROUND

2.2.6 USB Connectors and Cabling

So far, the protocol level has been introduced. The USB specification [36] also contains the connector

requirements, cabling, isolation, etc. This information is relevant to the overall layout and design

of a system from a hardware design viewpoint and the logistics of the cabling. USB connectors arc

standard and well designed. They were specifically designed to permit easy insertion and removal

with the. inability to incorrectly attach. The connectors are robust unlike some predecessors with

pins that can be bent or broken if not properly inserted. There are several standard types of USB

connectors divided into two classes, A-type connectors and B-type connectors. A-type connectors are

reserved for the host side and B-type connectors are reserved for peripherals. Figure 2.4 illustrates

the common USB connectors used [39].

Type A Type B

4 x 3 2 1 4 x 3 2 1

Mini-A Mini-B

Figure 2.4: USB Standard Connectors

USB cabling is restricted to a maximum of 5 meters (16.4 feet) without the use of hubs. If hubs

are used, the maximum distance is about 25 meters since the maximum cable length between hubs

is 5 meters with a maximum of 5 tiers of hubs. If the USB cable is too long, the host will not receive

the data packet on time and the command will be lost. The cable length is based on the round trip

delay of an electrical signal in the length of copper wiring and is also dependant on the quality of

the cable. A USB cable is comprised of four wires (sometimes five) with a ground shielding. The

data lines are a twisted differential pair to reduce crosstalk. The wiring pin out of a USB cable is

shown in Table 2.5.

Pin

1

2

3

4

Name

Vst/s
D-

D+
GND

Colour

Red

White

Green

Black

Description

+ 5 V Bus Power

Differential Data Negative

Differential Data Positive

Ground

Table 2.5: USB pin out

17

2. BACKGROUND

2.2.7 Bus Power

The USB cable provides 5V power (with a 5% tolerance) to peripheral devices. When a device is

initially connected, the host reserves 100mA supply which can be later increased after enumeration

for a maximum current of 500mA. There is an exception in battery charging devices whereby the

USB host can provide up to 1.5A worth of current. Devices that require more power must be

externally powered.

2.2.8 USB Device Drivers

A device driver is software that is responsible for interfacing with hardware. It is operating system

dependent and is designed for specific hardware. The driver is responsible for sending commands to

hardware and the interchange of data.

For the Linux operating system, several types of drivers can be developed. A driver can be part

of the kernel or a loadable kernel module. These types of drivers require an extensive knowledge

of the operating system. However, a user-space driver can be developed to interface with a device

that requires less understanding of the operating system kernel. A user-space driver can be safer in

that a poorly written driver cannot affect the kernel as severely, or cause it to panic. LibUSB is a

cross-platform library of user-space routines for controlling USB devices without the need for kernel

drivers. LibUSB is currently available for Linux, MS-Windows, Mac-OSX, and FreeBSD.

l ibUSB

LibUSB is an open-source project licensed under the GNU GPL intended to provide a library for

user level applications to access USB devices regardless of the operating system. LibUSB provides a

relatively simple method of interacting with USB hardware. Routines were developed so a dedicated

kernel driver is not required to communicate with a USB device. Common functions for scanning

the USB bus, for retrieving descriptor data and for claiming interfaces are rather straight-forward

using libUSB. Of the four data transfer types, control, bulk, interrupt and isochronous, the first

three are supported by libUSB. Although not perfect for all scenarios, libUSB provides many useful

functions for finding and controlling USB devices in user space. Some of the more commonly used

functions are listed in Table 2.6.

18

2. BACKGROUND

libUSB Function

usbJnitQ

usb_find_busses()

usb-find-devices()

usb-get_busses()

usb_open(usb_device *dev)

usb-dose(usb_dev_handle *dev)

usb_set_configuration(usb_dev_handle

*dev, int configuration)

usb_set-altinterface(usb.dev_handle

*dev, int alternate)

usb_claim_interface(usb_dev_handle

*dev, int interface)

usb_releaseJnterface(usb_dev_handle

*dev, int interface)

usb_controLmsg(usb_dev_handle

*dev, int requesttype, int request,

int value, int index, char *bytes, int

size, int t imeout)

usb_bulk_write(usb_dev-handle *dev,

int ep, char *bytes, int size, int t ime­

out)

usb_bulk_read(usb_dev_handle *dev,

int ep, char *bytes, int size, int t ime­

out)

Description

Initialize the libUSB library for the application.

Searches the system for all USB busses. Returns the

number of changes since last call.

Searches all busses to find all devices on each bus.

Returns number of changes since last call.

Returns the list of busses as type usb_bus.

Open a device for use. This must be called before

any operations can be performed. Returns a handle

to the device, or an error code.

Used to close an opened device. Returns 0 on suc­

cess

Sets active configuration of a device. This is speci­

fied in the descriptor field bConfigurationValue. Re­

turns 0 on success.

Set the active setting of the current interface as

described in descriptor field bAlternateSetting. Re­

turns 0 on success.

Claims the interface with the operating system. The

interface number is specified in the descriptor bln-

terfaceNumber. Returns 0 on success.

Releases a previously claimed interface. Returns 0

on success.

This function performs a control request as defined

in Table 2.1. Returns 0 on success, or a negative

error code.

This function performs a bulk write to a bulk-OUT

endpoint specified by ep. Returns number of bytes

written on success, or a negative error code.

This function performs a bulk read from a bulk-ll\l

endpoint specified by ep. Returns number of bytes

read on success, or a negative error code.

Table 2.6: Frequently Uses libUSB Functions

2.3 I2C

I2C (Inter-Integrated Circuit) is a serial bus developed by Philips for connecting low-speed periph­

erals of an embedded system. The I2C bus is a bi-directional two-wire multi-master bus used for

connecting microcontrollers or processors to devices or other processors.

The I2C bus uses two open-drain lines, a serial data line (SDA) and a serial clock line (SCL)

thus each of these lines must be pulled high using pull-up resistors. Typically 5V or 3.3V voltage

levels are used in a system, although higher and lower voltages can be used. A schematic of an

19

2. BACKGROUND

example configuration of a single master I2C bus with several slave devices is shown in Figure 2.5.

SCL
SDA

Microcontroller
(slave)

Figure 2.5: I2C Sample Schematic

The addressing scheme for I2C slave devices consists of a 7-bit address space with 16 reserved

addresses resulting in a maximum of 112 nodes for a given bus. A typical slave device has fixed high

address bits and several inputs to select the lower address bits (typically three bits). This allows

the designer to use multiples of the same device on a single bus with distinct addresses.

The I"C bus most commonly operates at 100 kbit/s, known as standard mode. More recent

revisions of the I2C specification include faster operating speeds including Fast Mode at 400 kbit/s,

Fast Mode Plus at 1 Mbit/s and High Speed Mode at 3.4Mb/s. The High speed mode of operation

typically requires current sources rather than simple pull-up resistors to permit faster rise times.

Since the lines of the I2C bus are driven by open-drain drivers, the pull-up resistors are needed

to pull the line voltage to Vcc- If a device wishes to communicate on the bus, the line is pulled to

ground to communicate a logical zero, and allowed to float to represent a logical one. The master(s)

on the bus are responsible for providing a clock, however with clock-stretching, slaves arc able to

momentarily pause the transfer of information if required. Clock-stretching occurs when the slave

holds the SCL line low for longer than the clocked frequency. The master must read the clock line

after releasing it to ensure it has been pulled high, if not, the master must wait until the clock line

is high before reading off the data line (SDA).

Since I2C supports multi-master busses, arbitration is required to ensure multiple masters do

not attempt to use the bus at the same time. Arbitration in I2C is quite simple and does not

give priority to a particular master. The process of arbitration is required if two masters start a

transmission around the same time, each transmitter checks the level of the data line (SDA) and

compares it to what is expected. If the value on the bus does not match, the particular transmitter

loses arbitration and ceases transmission. If two masters are sending messages to two different slaves,

the slave device with the lower slave address will win arbitration due to the nature of the bus.

In an I2C transaction, the master initiates transmission by sending a START bit, followed by the

7-bit address of the target slave device, followed by a read/write bit. The read/write bit indicates

the direction of data flow with respect to the master: 0 for write and 1 for read. If the slave exists

«-n

Microcontroller
(master)

Serial EEPROM
(slave)

LCDS

(slave)

20

2. BACKGROUND

on the bus, it will respond with an ACK (acknowledge) for the address. An acknowledge by a

slave is initiated by pulling the SDA line low for the expected clock which is recognized by the

master. The master will then continue in either transmit or receive mode. After the transmission,

the master will send a STOP bit indicating the transaction is complete. A master will acknowledge

when receiving data by holding the SDA line low after each byte received, except for the last, to

indicate the expected amount of data has been received.

The START bit (S) is recognized by a high to low transition of SDA while SCL is high. A STOP

bit (P) is recognized by a low to high transition of SDA while SCL is high. A typical 12C transaction

timing diagram is shown in Figure 2.6.

START ADDRESS ADDRESS READ/WRITE SLAVE ACK DATA ACKNOWLEDGE STOP
(S) BIT 7 BITS (6..0) BIT BIT BITS (P)

Figure 2.6: I2C Timing Dia gram

I"*C is commonly used in semiconductor devices where simplicity and cost are key factors. Since

I2C is a two-wire interface, the pin cost is minimal, resulting in a simple and low cost solution.

I2C is common found in serial EEPROMs, low speed ADC and DACs, LCD displays and real-time

clock chips. Some manufacturers use what they refer to as a two-wire interface (TWI) that is an

adaptation of I2C but not completely conforming to the I2C specification.

2.4 Machine Vision

Machine vision is the encapsulation of computer vision, image processing and machine control to

typically perform inspection on manufactured goods in industry. A traditional machine vision system

is comprised of cameras, computers and digital inputs and outputs or computer networks for machine

control. Machine vision systems are intended to replace human inspectors working on assembly lines

to automate the inspection process. Although human inspection is more flexible and adaptive than

machine classification, human inspection is subject to inaccuracies due to human attention span and

circumstance. Although the human eye is more versatile than any vision system as it can adapt to

various illumination conditions, a machine vision system can replace the need for human inspection

by producing high quality, objective inspection.

Since machine vision systems do not "see" the way humans do, images acquired can be analyzed

to look for certain irregularities or characteristic of an object. This is typically accomplished by

21

2. BACKGROUND

analyzing individual pixels in regions of an image. This portion of machine vision falls under the

image processing section. Image processing is a crucial portion of any machine vision system since

it is essentially the brains of the analysis. Image processing used in machine vision will typically

perform some pre-processing on an image including de-noising and image enhancement. Typically,

the majority of the image processing during inspection is performed on binary images following

the pre-processing. Some of the common processing methods include pixel counting, thresholding,

segmentation, edge detection and template matching. However, it is entirely dependent on the

application and will change depending on the object and the environment. An inspection system

may check for surface flaws and take measurements to determine the quality of the part.

A typical machine vision system is comprised of one or more digital cameras, typically black

and white although colour cameras are gaining popularity, along with the appropriate optics such

as lenses and mounts. The majority of any inspection is typically most dependent on the grayscale

information and thus a grayscale camera is typically preferred since it enables the highest resolution

and faster speed. Some applications, however, require colour information. In this case, a colour

sensor is required and the grayscale information is extracted from the RGB colour space. The

system must also have an interface to digitize and acquire the image data, typically a frame-grabber

or other computer interface such as USB. A processor is required to analyze the image(s) and is often

a PC or embedded DSP processor. A device gaining popularity is a smart camera which incorporates

all of the above mentioned components into a single camera. The smart camera has a lens, sensor,

acquisition hardware and processor all within a single device. Input/Output hardware is required to

interface with the machine portion of the system. Sometimes a communication link like an Ethernet

or RS-232 connection is used rather than dedicated I/O to report inspection results.

Illumination is a crucial element of any machine vision system in order to produce a consistent

environment that is conducive to high-quality inspection. Since the cameras are not as versatile as

the human eye, various illumination techniques can be employed to enhance details of an object.

High-intensity LEDs are commonly used for illumination, however fibre optic, laser, fluorescent and

halogen lamps are also used. Many different lighting schemes exist that provide suitable lighting

for different applications. The backlighting technique is commonly used for measuring objects.

This method provides even illumination and casts silhouettes of object which are suitable for edge

detection of solid or transparent objects [14]. Ringlights are another commonly used lighting source

comprised of one or more rings of LEDs placed around the camera. The ring light provides uniform

front light for matte surfaces. Many other illumination techniques exist and are suitable for different

applications. One must consider the object being inspected, mechanical constraints and speed of

inspection when selecting lighting since some lighting solutions require more space and produce

varying light intensity.

22

2. BACKGROUND

In order to perform inspection, software must be developed to perform the image processing and

yield a pass or fail result of the inspection. This is platform dependent and can be accomplished in

many different ways. The machine must be equipped with sensors and actuators that when combined

are used to locate parts, trigger image acquisition and sort accepted and rejected parts. The system

must incorporate means of obtaining the result of inspection from the software in order to properly

eject the object.

The design of a consistent and high-quality machine vision system requires a well planned ap­

proach. The design of each system is dependent on the part being analyzed and the rate at which the

inspection must occur. The cost of the system is another component that must be considered. The

value of the part being inspected and the throughput of the machine vision system must correlate

to it's manufacturing and running cost.

23

Chapter 3

Design Methodology

The design of any system requires a substantial amount of planning and research before any type of

development can begin. The design and development of the PharmaSorter began with a list of high-

level requirements and an existing mechanical structure, namely the Optisorter. In order to meet

the system requirements, many considerations had to be taken into account: the required inspection

rate of the system, the inspection detail requirements (minimum flaw size), the cost constraints and

the ability to maximize the reuse of existing hardware.

The final conceptual design of the system involved the use of USB 2.0 cameras and PCs to perform

the capsule inspection with a system controller for the operation of the controls and mechanics of

the OptiSorter. The overall block diagram of the proposed system is shown in Figure 3.1. From

the block diagram, it is evident that there are three main components of the system. The USB

2.0 cameras which are used to acquire images, the inspection PCs for processing the images and a

system controller to control the hardware and to synchronize timing. Chapter 4 through Chapter 6

discuss the design of each component in detail.

24

3. DESIGN METHODOLOGY

USB 2.0
CAMERA

(master)

SYSTEM
CONTROLLER

USB 2.0
CAMERA

USB 2.0
CAMERA

TUSB USBT

INSPECTION PC

MOTOR CONTROL

LIGHTING CONTROL

ACCEPT/REJECT CONTROL
•

USB 2.0
CAMERA

QUADRANT r.

Figure 3.1: Conceptual block-diagram of the PharmaSorter

3.1 Design Approach

The design of the PharmaSorter involved a great deal of initial planning and research. This included

assessing the requirements and constraints of the system, and creating a development strategy based

on these design criterion. The design approach involved the development of the small components

of the project and putting the pieces together until a quality finished product was achieved. This

involved building and testing circuits at the breadboard level with the aid of development boards and

writing and debugging firmware to verify that the selected devices were suitable for their purpose.

This was accompanied by the development of drivers and software to test data rates and ensure

the selected hardware was suitable for the application. Building small circuits and writing custom

firmware and software was a practical way of testing and verifying designs. Although the initial

concepts for each of the design stages were based on educated predictions, it was imperative that

they were thoroughly tested and verified. As each component was finalized, they were incorporated

into the final prototype.

Due to the requirements and constraints of the system, a fully custom design strategy was taken.

This involved designing custom circuits, developing custom firmware and writing many software

applications. This was essential to reduce the cost of the system, and reuse many of existing

hardware components of the OptiSorter. By undertaking a fully custom approach, the cost of the

prototype was minimized, although the design time increased substantially.

During every stage of design and development, many key considerations were constantly being

taken into account. Focusing on these reduced design errors and improved flexibility.

25

3. DESIGN METHODOLOGY

3.2 Design Considerations

The primary goal of the design of the system was to upgrade the electronics of the OptiSorter, the

driving force for this being the requirement of a low-cost solution. In addition to this constraint,

the required system throughput of 1000 capsules per minute was important as was the ability to

detect a certain degree of flaws. This means the camera must be able to obtain a minimum amount

of detail in the capsule in a certain amount of time.

3.2.1 Data Transfer Medium

A low cost camera solution that met the desired system throughput was sought out. After comparing

available technologies in transfer mediums, the USB2.0 interface was selected. A comparison of

interfaces is shown in Table 3.1 [6].

Data Transfer Rate

Max. Cable Length

Max. Devices

Connector

Capture Board

Cost

FireWire 1394.a

400 Mbps

4.5m

up to 63

6 pin

Optional

Moderate

FireWire 1394.D

800 Mbps

up to 100m

up to 63

9 pin

Optional

Moderate

Camera Link

up to 3.6 Gbps

10m

1

26 pin

Required

High

USB 2.0

480 Mbps

5m

up to 127

4 pin (USB)

Optional

Low

Gigabit Ethernet

1000 Mbps

100m

unlimited

RJ45 / CAT5e

Not Required

High

Table 3.1: Digital Interface Comparison

Table 3.1 clearly shows that CameraLink is the fastest transfer medium with transfer rates of up

to 3.6Gbps. However, the CameraLink interface requires a dedicated capture board for each camera

which can be expensive. It has the most expensive cabling in comparison to the other interfaces

listed, but could be rather straightforward to implement. The Gigabit Ethernet interface has a

more than adequate transfer rate, is available in every PC, should be straightforward enough to

implement in software but has a more complicated hardware/firmware design. Finally, FireWire

and USB are technologies that are almost comparable in terms of transfer rate, with FireWire being

slightly faster. Both, however, are adequate for the application. The major difference between these

two technologies from a designer's point of view is availability and complexity. Although most PCs

are equipped with FireWire controllers, almost all are equipped with USB. Due to the popularity

of USB, more peripheral controllers are available for USB than FireWire and usually at a lower

cost. Although either is suitable for the application, USB2.0 was selected because it was a low-cost

interface that meets the data transfer rate requirements. Also, since USB is a star topology with a

single master compared to FireWire which is a peer-to-peer based system, the complexity of USB

devices is significantly less than that of FireWire.

26

3. DESIGN METHODOLOGY

3.2.2 Image Sensor

As a cost reduction measure, and to reduce mechanical changes, a custom USB2.0 camera was

designed. For the design of the camera it was important that an appropriate sensor was selected.

Some of the considerations for the image sensor include the decision between CCD or CMOS, colour

or monochrome, resolution requirements and sensor size. After determining the minimum feature

size flaw detection requirement, and considering transfer rate and image processing constraints, a

colour, 3.1 mega-pixel, 1/2 inch CMOS image sensor was selected. A colour sensor was preferred

since the ability to detect capsule colour was important. Although from analyzing the grayscale

images, a colour classification can be estimated based on a subset of known colours, a colour sensor

will provide more accurate information. The sensor chosen has a maximum resolution of 3.1 mega­

pixels with a 4:3 aspect ratio resulting in an image size of 2048x1536 which significantly exceeds

the minimum feature size requirement. The physical size of the sensor determines the sensor field

of view (FOV) which was selected to roughly match the sensor used in the camera native to the

OptiSorter. It was also desirable to have a low-cost sensor that suited the application.

3.2.3 Inspection Environment

One of the most important components of a quality machine vision system is the inspection envi­

ronment. This includes the illumination, camera angle, immunity to external noise and maximizing

viewable area of the capsule. Considerations such as illumination type and wavelength, obstructions

in the inspection environment and motion of the capsule are all important in acquiring a quality

image. From a machine vision standpoint, the better quality and consistency of the image results

in a more accurate and faster inspection.

Illumination

Illumination is one of the most important aspects in achieving an ideal inspection environment.

An abundance of lighting scenarios exist for which an appropriate selection is highly dependent

on the object being inspected. Some lighting techniques include ring lights, back-lights, dark field

ring-light, dome-lights, light-line and coaxial. Variations of these can be used and the inclusion of

polarizers and filters can improve the image quality. Also, modifying the wavelength of the light

source and sensor will affect the image quality. The object size, lustre, shape and colour must be

considered in selecting an illumination technique in order to obtain the best quality image. For a

transparent gelatin capsule which is rather small and highly reflective with a consistent shape, it is

best suited to back-lighting which will enhance edges of the perimeter of the capsule and any flaws

within the body of the capsule. Due to the required inspection rate and the fact the the capsules

are in motion during inspection, a measure to reduce blur is required. This is achieved by strobing

27

3. DESIGN METHODOLOGY

the light thus reducing exposure time and minimizing the effect of motion blur. From this, the light

source, wavelength and intensity must be determined. Many lighting sources exist, yet LED is one

of the most popular in machine vision applications. LEDs are compact, low-power, rugged, can be

strobed and possess a long-life. LEDs come in a variety of wavelengths. The most commonly used

in machine vision are red, green, blue and white. Since the recognition of colour is important for the

inspection of the capsules, a white LED was selected. Comparing the spectral content of a white

LED to the quantum efficiency of the selected sensor, a relatively close match exists between the

spectral content of a white LED and the sensitivity of the sensor.

Capsule Holder

The importance of the consistency of the inspection environment must be emphasized. In order for

an inspection algorithm to yield consistent inspection results, a uniform environment must exist.

The OptiSorter was originally equipped with solid holder which provided a consistent environment

for inspection. A clear holder concept was attempted, however due to the sensitivity to scratches

and inconsistent machining, they did not provide the consistency required for the application. The

initial thought was that the use of a clear holder would permit more viewable area of the capsule

through the transparent plastic. After experimental trials however, the inconsistency of the clear

holder and the marginal improvement in viewable area was not compelling enough to pursue the idea

further. After setting up a reasonable inspection environment, the solid holder provided a consistent

environment suitable for performing inspection.

3.2.4 System Control

Another integral component of the system is the system controller. The system controller is essen­

tially an input/output board with communication interfaces such as I2C and UART. By taking a

custom approach in designing the system controller, the cost can be drastically reduced over select­

ing a generic PLC, or other controller, with much more flexibility. The downside of a full custom

approach is the extra design and development time. Starting with the requirements of the system

controller, component selection began. The speed at which the system must operate, the required

outputs and inputs and the information required after inspection were all considerations that were

taken into account during the design. In addition, the selection of components had to be reasonable

to reduce overall board cost and meet the performance requirements. In selecting the microcontroller

of the system controller board, many criteria were considered including speed, size and features. A

microcontroller was required that met the system requirements at a reasonable cost.

In addition to the system controller MCU selection were the other hardware components respon­

sible for operating mechanical controls and isolation between different components of the system.

28

3. DESIGN METHODOLOGY

For this, many devices were researched, purchased and tested to verify their suitability for the desired

application. One key consideration was the component cost and complexity.

3.2.5 Power Supplies

Any electrical system requires at least one power supply. For the PharmaSorter, it was desired to

maximize the recycling of existing components of the OptiSorter. Unfortunately, the only reusable

power supply was a 24V 1A Siemens supply. It was determined that the motor controller and

the electrically controlled pneumatic valves required a 24V supply. The LCD panel required a 5V

supply, however it appeared that the switches and lamp operated at 24V. The proximity sensor

and back-light LEDs required 12VDC to properly function. The system controller board must-

control the motor, pneumatic valves, lights, proximity sensor and HMI and thus requires 24VDC

and 12VDC supplies. The selected MCU operates at 3.3V and thus must be accounted for. Due to

the current supply requirements of the back-light LEDs, a second supply of 12V at 3.6A was used in

the PharmaSorter. The 3.3V required for the system controller MCU and other ICs on the system

controller board was regulated using a linear regulator from the 12V line. Each of the inspection

PCs required an individual standard ATX power supply and thus four 500W power supplies were

used for that purpose. The complete hardware for the inspection PCs are detailed in Chapter 6.

This power scheme provides adequate power to the separate areas of the system and is more than

sufficient for the power demand.

3.2.6 Inspection P C s

With flexibility as a primary goal, many features of the inspection PCs had to be determined. Since

the inspection PCs are not fully functional desktop PCs, merely motherboards with RAM and hard

disks, the goal was to find the best value for the performance requirements. Since a single PC

manages four cameras, with a single PC per quadrant, a quad-core processor was desirable. After

careful research of available components, a quality motherboard and CPU combination were achieved

that would be compatible with the host OS. Fortunately with the speed and performance of PCs

constantly improving, future generations of the PharmaSorter will benefit from this. Considering

the stability of the system, the Windows operating system was not a feasible option. As far as a

practical and reasonable OS for the application, Linux was an attractive choice since it is an open-

source, fairly reliable, stable and secure operating system. After selecting Linux as the host-OS, the

remaining question was which distribution would be the best choice. Also, how well did it function

with the selected PC hardware? After evaluation of various Linux distributions, Debian was selected

for it's stability and reputable package management system. One of the most prominent features

of Debian is the APT package management system. This is a well mantained package system that

29

3. DESIGN METHODOLOGY

allows for easy automated installations and updates. Debian allows one to install a base system

without an X-Server or extraneous applications from which the user can install packages they deem

necessary. Since the inspection PCs do not need to display any information graphically, they do not

require an X-Server to function. The flexibility and mature package management system were the

most influential components in the selection of Debian.

The design considerations and constraints were not initially fixed, but rather adapted and evolved

as the project progressed. With the initial constraints in place however, the development of the

various phases and components of the PharmaSorter project was started.

30

Chapter 4

USB 2.0 Camera

USB 2.0 is a modern protocol used to interface between computers and external devices. USB is

a replacement for the legacy parallel and serial ports which are being phased out of desktop PCs

by the computer industry. The main advantages of USB are the ability for multiple devices to be

connected to a single USB network and the faster data transfer rates that be achieved with a greater

deal of flexibility over serial and parallel ports.

USB devices require much more planning and development than serial and parallel port devices.

Each USB device must have a unique identifier, handle a set of standard requests and must adhere

to a strict set of rules defined by the USB2.0 specification [36]. It is fortunate however, that

many semiconductor vendors provide USB2.0 microcontrollers that ease device development by

incorporating the particulars of the USB2.0 specification directly in hardware. An example of one of

these devices is the Cypress EZ-USB FX2 series of microcontrollers. The FX2 is a high-speed USB

microcontroller with seven user endpoints which allows great flexibility and expandability during

the design of peripherals. The selected USB microcontroller for the PharmaSorter USB2.0 cameras

is the Cypress EZ-USB FX2LP.

Although there are vendors offering commercial USB still cameras, it was desired to take a

full custom approach and design a USB2.0 camera from the ground up. The most prominent

factor swaying this decision is cost. Taking a custom approach by designing the USB2.0 camera is

beneficial for many reasons: First and foremost, the ability to reuse existing mechanical components.

The OptiSorter was equipped with full-custom cameras from the original design with aluminum

enclosures and lenses. By reusing these elements, the cost of the system is reduced substantially.

Also, a fully custom approach permits use of application specific hardware components. A custom

31

4. USB 2.0 CAMERA

design minimizes component count and board size that even in small fabrication runs, can be achieved

at a relatively low cost.

The image acquisition system for the PharmaSorter involved a full-custom hardware design.

A full custom approach is a major cost reduction technique since current USB2.0 still cameras for

machine vision applications start above $1000USD. A comparable camera from Silicon Imaging, the

SI-1300-U, is a USB2.0 colour 3.2 megapixel camera with a cost of around $1300. A full custom

design begins with the conceptual design of the system, schematic level design and PCB layout

and fabrication. When a hardware device is being designed, it is often easier and cheaper for the

designer to find an evaluation system or development kit with the hardware they are considering.

Many development kits provide schematics which serve as a validated reference design. For the

PharmaSorter, this was indeed a situation where this could be taken advantage of. One of the

most significant components of the camera hardware is the image sensor. There are many vendors

and many sensors available that vary in image resolution (megapixels), speed and quality. After

evaluating the products offered by various vendors, the Micron MT9T001 3.1 megapixel CMOS

images sensor was selected [22]. The MT9T001 is low cost, low noise, high quality CMOS image

sensor capable of 2048x1536 pixel images with a frame rate of 12 to 93 fps (frame rate depends on

window size and resolution) [22].

After selecting the image sensor, a Micron evaluation board was purchased that was equipped

with the MT9T001 sensor, a Cypress FX2 USB 2.0 microcontroller and a Xilinx VirtexII FPGA.

This provided a. good base for developing a custom camera. With the development kit, the various

components could be evaluated based on the requirements of the project. It also provides a base

design for custom hardware since all development board schematics and component selection were

provided. A high level block diagram of the Micron evaluation camera is shown in Figure 4.1.

The Micron evaluation board was equipped with more than required to begin the development

of custom firmware and software for the PharmaSorter. By designing custom firmware, the abilities

of the evaluation board could be observed and a new hardware design could be tailored to meet the

requirements of the project by minimizing component count, overall cost and complexity.

In many cases, full source code for evaluation boards is provided by the vendor. This was not

the case however for the Micron camera development board. All firmware and MS-Windows drivers

were closed source. Micron did provide documentation for the API they shipped with the device

and sample code on using it with various programming languages. This was not terribly useful for

the PharmaSorter since the host PCs would be running Linux, not Windows, and would be using

custom firmware. However, some aspects of the Micron design posed useful as a reference design.

A useful application for MS-Windows that monitors traffic on the USB port known as USB

Snoopy [40] was used to "reverse engineer" the driver and firmware developed by Micron for their

32

4. USB 2.0 CAMERA

USB

MICROCHIP
64kB EEPROM

I2C

CYPRESS FX2
USB 2.0 MCU

I2C MICRON
MT9T001

IMAGE SENSOR

DATA

TIMING/
CONTROL

TIMING/
CONTROL

XILINXVIRTEX-II
FPGA

DATA

XSLINX
PROM
(2Mb)

CONTROL

MICRON
SDRAM
128MB

Figure 4.1: Micron Evaluation Board Block Diagram

evaluation kit. This was useful in determining how the sensor and FPGA were initialized. By using

the API documentation and examining the control transfers it was evident that I2C write and read

requests were used to configure the image sensor registers. When it came to actually transferring

image data, Micron used 1024-byte blocks of data in a USB bulk transfer [23]. In accordance to

the USB 2.0 specification, bulk transfers are limited to a maximum transfer size of 512-bytes [36].

The fact that Micron is using a 1024-byte bulk transfer permits lower overhead according to their

findings [23].

In addition to the Micron evaluation board, a Cypress FX2 USB development board was also

purchased. This aided in the development of the USB firmware and Linux driver. Cypress provided

sample firmware programs (with source), written in C, for the development board. The firmware

was developed using Keil Development tools, in particular the C51 compiler [13]. Keil develops

compilers and assemblers for various families of microcontrollers including 8051 MCUs. Since the

core of the Cypress FX2 is an enhanced 8051 structure, the Keil C51 compiler is a suitable tool to

use, however it is quite expensive. Considering that the host PCs will run Linux, an open-source

operating system, it was not unreasonable to use open-source tools to develop firmware for the

USB camera. A compiler known as SDCC (Small Device C Compiler) is an open-source tool used

to compile firmware for various embedded architectures including 8051 core MCUs [38]. A search

on-line yielded several sample projects that targeted the Cypress FX2 using SDCC and open-source

tools. These posed useful in the firmware development for the USB2.0 camera.

33

4. USB 2.0 CAMERA

4.1 Hardware Level Design

After developing initial firmware and software using the Micron development board, which is de­

scribed in detail in the subsequent sections, a finalized hardware design of the camera was developed.

From a block diagram level description of the USB2.0 camera board, schematics were designed based

on the specifics of the devices used in the design. After thorough analysis of the requirements of

the system, a final camera board design was achieved based on the reference design of the Micron

evaluation board. The design included a Xilinx Spartan 3E FPGA to replace the Xilinx Virtex II

from the Micron reference design. It was determined that the Virtex II was exceedingly powerful for

the application. The Spartan 3E provided the more than required logic elements for the firmware

developed with adequate block-RAMs for image buffering. The finalized design excluded a SDRAM

which was included in the Mircon reference design for image buffering. It was determined that this

was unnecessary and the overhead would compromise the target inspection rate. By excluding the

SDRAM, the camera is operates in real-time. It was determined that if the transfer rate could not

meet the requirements, the image acquisition time would be exceedingly long to meet the timing

requirement of the inspection throughput.

An addition to the camera hardware design is the inclusion of a NXP I2C bus extender [29]. The

NXP I2C bus extender is an IC that extends the I2C bus by increasing the total system capacitive

load to around 3000pF [29]. This permits longer transmission lines between devices on an I2C bus.

I2C is used to transfer pass/fail messages to the system controller following an inspection. Although

not intended for long distance communication, use of I2C bus extenders buffer the I2C line with

higher driving currents that permit long distance communication [29].

The finalized design block diagram of the USB2.0 camera board is shown in Figure 4.2. This

block diagram is a high-level representation of the USB2.0 camera developed. The important compo­

nents including the sensor, FPGA, MCU, EEPROM and bus extender are included excluding power

connections. The USB2.0 interface permits 500mA current draw at 5VDC. The USB bus power

supply is used to power the camera, however is stepped down to 3.3V for all the ICs on the board

with the exception of the FPGA. The Spartan3E series FPGA requires specific power ramping [41]

and thus an application specific power IC is used to provide the 1.2V, 2.5V and 3.3V supply voltages

that meets the required power-up ramping. The Texas Instruments TPS75003 is a specialized power

management IC designed for powering the Spartan-3, Spartan-3E and Spartan-3L with the required

start-up profile [33].

34

4. USB 2.0 CAMERA

24LC128-E/ST

MICROCHIP
128kB EEPROM

I2C

USB CYPRESS FX2
USB 2.0 MCU

BUFFERED
I2C ^ NXP I2C BUS

EXTENDER

MTfflflME,«S,TXU,

I2C MICRON
MT9T001

iMAGE SENSOR

DATA

DATA

TIMING /
CONTROL

I2C

TIMING/
CONTROL

XILINX SPARTAN3E
FPGA

Figure 4.2: USB2.0 Camera High Level Block Diagram

4.2 Cypress EZ-USB FX2

The Cypress EZ-USB FX2 is a well featured MCU designed as a single chip solution for high-speed

USB peripherals. The FX2 complies entirely with the USB2.0 specification and provides a set of

registers and interrupts to handle USB communications at the hardware level. This abstracts some

of the complexities of the USB protocol away from the designer. The FX2 is equipped with an

enhanced-8051 core, based on the Intel 8051 architecture, with additional features including reduced

instruction cycle (4 clocks compared to 12), faster clock (up to 48 MHz), additional timers and

interrupts and an I2C controller [4]. This MCU is suitable for the USB2.0 camera because it permits

soft firmware updates, is a single chip solution, has a built-in slave FIFO, a built-in I2C controller for

setting registers of the image sensor and has an 8051 core compatible with an open-source compiler.

4.2.1 ReNumeration

Cypress uses a trademark technique for device identification and programming known as ReNumer­

ation. The FX2 is a "soft" configured device that can take on multiple distinct USB devices [4].

When a device is connected to a PC, it is enumerated with the OS (see Section 2.2 for more detailed

information). The FX2 is able to enumerate itself initially as a generic Cypress device that can

be loaded with user firmware and without disconnecting and reconnecting from the USB. It can

then ReNumerate itself through register settings (RENUM and DISCON) as the newly programmed

device. The FX2 supports three ways of loading firmware. Firstly, an external EEPROM can hold

35

4. USB 2.0 CAMERA

the entire firmware which can be loaded on power-up including vendorlD, productID and devicelD

information. Secondly, an external EEPROM can only hold the device vendor ID, product ID and

device ID. In this scenario the PC can load the firmware over USB. This allows for easy firmware

updates or "soft-firmware" loading. Or finally, if no EEPROM exists, the FX2 will appear as a

generic Cypress device which can be loaded with firmware over USB. Each of the EEPROM con­

tents requirements for the above scenarios is listed in the following tables Table 4.1 and Table 4.2

respectively.

EEPROM Address

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

Contents

OxCO

VendorlD Low (VID_L)

VendorlD High (VIDJH)

ProductID Low (PIDJ_)

ProductID High (PIDJH)

DevicelD Low (DIDJ_)

DevicelD High (DIDJH)

Configuration Byte

Table 4.1: Cypress CO Load - Descriptor Values Only

EEPROM Address

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x08

0x09

OxOA

OxOB

-

last

Contents

0xC2

VendorlD Low (VID.L)

VendorlD High (VIDJH)

ProductID Low (PID-L)

ProductID High (PIDJH)

DevicelD Low (DID.L)

DevicelD High (DIDJH)

Configuration Byte

Length High

Length Low

Start Address High

Start Address Low

Data Block

0x80

0x01

0xE6

0x00

00000000

Table 4.2: Cypress C2 Load - Descriptor Values and Firmware

The C2 loading technique permits more than one data blocks for program data in different

memory locations and is terminated by a unique identifying signature. The EEPROM loading

36

4. USB 2.0 CAMERA

techniques of the FX2 are rather simple. The USB2.0 camera firmware uses the CO loading technique

to permit simple in-the-field firmware updates.

4.3 FX2 Firmware

One of the most vital components of the camera system is the ability to reliably and consistently

transfer image data to the PC. USB offers several ways in which a computer can interact with

a peripheral, each with deliberate yet versatile intentions. The USB 2.0 camera uses the default

control endpoint 0 along with a single bulk endpoint to interact with the PC. The control endpoint

is used to configure the MI sensor registers, configure the FPGA registers along with other various

functions. The bulk endpoint is used to transfer the image data to the PC. A bulk endpoint is

chosen because of the built-in error checking and guaranteed data integrity which is important for

this application. Using a bulk endpoint for data transfer ensures that there is never any invalid data

and that all the data requested will arrive to the PC.

4.3.1 Universal Serial Radio Project FX2 Library

The USB 2.0 camera firmware (FX2 firmware), was developed using SDCC. After researching on­

line for existing FX2 firmware libraries with register definitions and USB interrupt handlers, the

USRP (Universal Serial Radio Project) was discovered [37]. The USRP project is a high-speed data

acquisition board developed by the open-source community. The USRP uses an Altera FPGA and a

Cypress FX2 MCU to transfer waveform data to a PC running Linux, Windows or OS X. The FX2

framework developed for the USRP project was coded in C specifically for the SDCC compiler. The

USRP project firmware code was used as a base for the firmware development of the camera. This

framework included all register definitions, handled USB interrupt and responded to all standard

requests defined by the USB 2.0 specification [36]. By using this existing library, the camera firmware

development could begin immediately.

4.3.2 Bulk Transfers

Due to the nature of the image data acquired from the sensor, the best USB transfer method to use

is bulk transfers. Due to the built-in error checking and guaranteed data integrity of the transfer

method, it is the most suitable for the application. The Cypress FX2 has a 4kB slave FIFO that

can be used to hold data to send to a PC or to store data that has been received from the host.

The size of the FIFO for a given endpoint is dependent on the number of endpoints used. Since

transferring packets of bulk data is quite common among USB peripherals, for example scanners

and flash drives, the FX2 has the ability to automatically commit packets when the FIFO begins to

37

4. USB 2.0 CAMERA

fill. The auto commit feature of the FX2 allows data to be automatically submitted as a USB bulk

packet of data when it reaches a given amount [4]. To maximize data transfer ability, the maximum

bulk packet size (512 bytes) is used with the auto commit feature to permit image data to be sent

to the PC as the FIFO is filling. Since the entire slave FIFO of the FX2 is dedicated to endpoint 2

(bulk-in endpoint), the FIFO is able to buffer up to eight packets of data.

4.3.3 MI Sensor Configuration

The Micron image sensor uses a two-wire communication scheme to configure registers. Micron does

not explicitly use the term I2C, however this is essentially what is being used. I2C is used to set

and read registers of the Micron sensor. When writing a register of the MI sensor, an I2C message

is sent to the MI slave address with the R/W flag set to 0 indicating a write request. The next

byte of data is the register, followed by two bytes containing the register data. Similarly, to read a

register from the sensor, an I2C message is sent to the MI slave address with the R/W flag set to 0

indicating a write request, followed by the register address. Following this, a bus restart is initiated

and the master sends an I2C message to the MI slave address with the R/W flag set to 1 indicating

a read request. The sensor responds with two bytes containing the register data.

The FX2 library framework from the USRP project has routines for I2C read and write requests.

These functions are used to interact with the MI sensor and FPGA. Two USB vendor control requests

are created for I2C transfers. A vendor IN request is used to read data from an I2C slave device and

a vendor OUT request is used to write data to an I2C slave device. The vendor requests associated

with the camera firmware can be found in Appendix B.l. The framework of the vendor request for

I2C write and read requests is shown below.

I C wri te request:

usb„control_msg:

bRequestType

bRequest:

wlndex:

wValue:

data:

length:

I~C read request:

usb_control_msg:

bRequestType

bRequest:

wlndex:

wValue:

data:

length:

38

VENDOR_REQUEST„OUT

VRQ_I2C_WRITE

Not Used

I2C Slave Address

Data to be written

Length of Data

VENDOR_REQUEST_IN

VRQ_I2C_READ

Not Used

I2C Slave Address

Data to store result

Length of Data

4. USB 2.0 CAMERA

4.3.4 F P G A Register Configuration

Similar to the method of setting and reading registers from the Micron sensor, the FPGA was coded

to support register manipulation using I2C. The same I2C read and write USB vendor requests are

used. The FPGA however does not suypport reading registers at the current time, only writing is

implemented.

4.3.5 F P G A Loader Firmware

To reduce the part count and cost of the camera, a memory device is not included in the design.

The Micron evaluation board does include a Xilinx XC18V02VQ44 2Mb configuration PROM. This

device is used to store the FPGA configuration information. Upon power-on, the FPGA loads the

data from the configuration PROM in master serial mode. FPGAs are very flexible however in the

ways they can be configured. Some configuration techniques include JTAG, master serial, slave-

serial, master-parallel and slave-parallel. Each method has pros and cons, but the most convenient

technique to load the device using an intelligent processor, such as a MCU, is the slave-serial method

for this application.

4.3.6 Slave-Serial F P G A Loading Technique

Slave-serial loading technique for FPGAs involves the use of an external processor to load the FPGA

configuration at any given time. To facilitate loading the FPGA, the following lines are used:

• CCLK - Configuration Clock (input)

• PROG - Asynchronous Reset to configuration logic (input/output)

• INIT - Indicate when device is ready to receive configuration data. Also used to flag errors

(input/output)

• D O N E - Indicates when configuration is in startup sequence (input/output)

• M[2:0] - Mode select, selects configuration mode to use (input)

• DIN - Serial configuration data input (input)

• D O U T - Serial configuration data output for daisy chaining (output)

Loading of the FPGA configuration bit file is facilitated through a set of vendor requests us­

ing the FX2 control endpoint zero. A total of three requests are required for loading the FPGA.

The vendor requests used are VRQ JTGA_LOAD_SS which is used for both IN and OUT re­

quest. The IN requests are FPGA_LOAD_START and FPGA_CHECKLDONE. The OUT request is

39

4. USB 2.0 CAMERA

FPGA_LOAD_DATA. When loading the FPGA, the FPGA_LOAD_START is used to put the FPGA

in configuration mode. The firmware pulses the PROG bit until the INIT bit goes high. When INIT

is high, the device is ready to be loaded with the configuration data. If for some reason INIT does not

go high, the host is notified using the endpoint zero data buffer of the IN request. If a 1 is returned,

the FPGA was successfully put into configuration mode. If a 0 is returned, an error occurred while

putting the FPGA in configuration mode. Once in configuration mode, the configuration data is

bit-banged to the FPGA using the CCLK and DIN bits. The OUT request FPGA.LOAD_DATA is

used with the 64-byte endpoint zero buffer to load the device. The host parses through the BIT file

and sends the data to the FX2 in 64-byte blocks. The FX2 then processes the received data bit by

bit and sends it to the FPGA. The DIN bit is set high or low depending on the bit value and the

CCLK line is pulsed high then low. This is repeated for the entire BIT file worth of data. After

each packet is loaded to the device, the INIT bit is checked to see if the INIT line has gone LOW

indicating a configuration error. If there is an error during configuration, the host will receive a

broken pipe error indicating and error during loading. After the entire BIT file has been bit-banged

to the FPGA, the host sends the request FPGA_CHECK_DONE. This request pulses the CCLK line

and continually checks the status of the DONE bit. If the DONE bit goes high, the configuration

was successful and complete. Otherwise there was an error during configuration. The excess of

CCLKs is to allow any digital clock managers to lock which typically only takes a few microseconds.

4.4 Control Board Communication

In order to facilitate communication with the system control board, the I2C master module of the

FX2 is used. The control board MCU I2C module is in slave mode and responds to requests from

the camera. To facilitate multiple masters connected to a single slave device, an I2C bus switch

was designed for the system control board that switches between masters until a START bit is seen.

When a channel is active, the SCL (serial clock) lines of the other cameras is held low. Only the

active I2C channel is permitted to communicate with the system control board MCU. Before any

I C transactions can be made for a camera, the bus must be activated by the system control board

P C bus switch. To ensure that the bus is active, the SCL line of the camera I2C bus is connected

to a GPIO of the FX2. This line is checked before an I2C request is made. This allows the master

to wait until the I2C bus channel is active before starting a transaction. The reason all buses are

not directly connected together is due to the fact that the Micron Image sensor I2C slave address is

fixed and this would incur severe bus problems.

40

4. USB 2.0 CAMERA

4.5 EEPROM Memory Map

The most convenient way to store information regarding the location of a particular camera in the

system is to use the camera EEPROM. Using the memory map listed in Table 4.3, location informa­

tion and specific camera window parameters are stored. Due to unique calibration requirements of

each camera because of mechanical imperfections, windowing information stored in the EEPROM

is used to provide consistent images to the image processing software. The same EEPROM that is

used for USB identification is used for storing the camera specific settings. The FX2 startup requires

the first 8-bytes of data using the OxCO loading scheme, the camera specific settings are stored in

the range 0x10 to 0x28.

EEPROM Address

0x00-0x07

0x08-0x0F

0x10

0x11

0x12

0x13-0x1F

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

Contents

Reserved for USB Identification (see Section 4.2)

Not Used

Quadrant

Position

Master Flag

Reserved for Future Use

Window Width High

Window Width Low

Window Height High

Window Height Low

Window Column Start High

Window Column Start Low

Window Row Start High

Window Row Start Low

Window Column Skip

Window Row Skip

Table 4.3: USB2.0 Camera EEPROM Memory Map

In the initialization of the FX2, a routine called load-camera„config() is used to load these pa­

rameters from the EEPROM to the RAM of the FX2. This way, simple USB control requests can

be made to obtain this information in software without excess I2C traffic or latency.

A simple utility was created for loading this camera specific information. The utility camAnit

(see Section 6.6) is designed to set the camera location information and is able to read and write data

of specific EEPROM memory locations. To make the configuration of window parameters easier, a

simple GUI application written in Python was developed that is a front-end for camAnit (see Section

6.7).

41

4. USB 2.0 CAMERA

4.6 USB2.0 Camera Linux Device Driver

In order for the inspection PC to acquire image data from the image sensor, a driver had to be devel­

oped. In most operating systems, two types of drivers typically exist, user-mode drivers and kernel-

mode drivers. A user-mode driver runs entirely in user-space, where applications run. Kernel-mode

driver operate in kernel space and have a closer relationship with hardware. Kernel-mode drivers

typically require a solid understating of the operating system and proficiency in C programming. It

is not difficult to write a poor device driver that may cause the entire system to crash. User-mode

drivers on the other hand are much safer in the sense that that it is unlikely for them cause a system

to crash. In user-mode drivers, a layer exists between the user space and kernel space. Due to the

transfer of data between the two, a user-mode driver is slower than a kernel-mode driver. The overall

trade off is between performance, stability and development time.

The USB2.0 camera driver is a hybrid driver that operates mainly in user-space but uses low-level

calls to improve image transfer performance.

4.6.1 LibUSB

LibUSB is a library of routines for manipulating USB devices. This is a convenient API for user-

mode USB device driver development. LibUSB is equipped with functions for finding, claiming

and interacting with devices. It is used extensively in the USB2.0 camera driver for obtaining the

device handles, claiming device interfaces and simple control requests. LibUSB does support bulk

read/write functions, however it suffers performance loss due to the constant switching between user

and kernel space.

To alleviate this, a class was developed to support low level calls for retrieving data over the

bulk-IN endpoint of the USB2.0 camera.

4.6.2 pm_cam Class

A class was developed that holds the USB2.0 device driver called prri-cam. This class is used to

encapsulate all functions related to the camera. This allows an application to create instances of

the class for each device found and manipulate the device in a well organized fashion.

Using a set of functions created for the pm.cam class, manipulation of devices is rather straight­

forward. The important functions of the pm^cam object are listed below (see Table 4.4).

42

4. VSB 2.0 CAMERA

In addition to these functions, a set of primitive functions were created for finding devices and

acquiring device handles. The primitive functions are encapsulated in a library called prruprims.

The primitive functions are listed with descriptions in Table 4.5.

A typical example, using pseudo-code, of finding devices and initializing them in host software

using the library pm.cam is listed in Listing 4.1.

43

4. USB 2.0 CAMERA

Function

pm_cam(struct usb_dev_handle *udh, int

block_size, int n_blocks)

pm_cam()

write_cmd(int request-type, int request,

int value, int index, char *data, int len)

write_reg(unsigned char reg, short value)

read_reg(unsigned char reg, short *dat)

write_fpga_reg(unsigned char reg, short

value)

set_window_width(int _width)

set_window_height(int -height)

set_window_width(int _width, int _skip)

set_window-height(int -height, int _skip)

get_window_width()

get_window_height()

get_image_width()

getJmage_height()

set_window_coLstart(int .coLstart)

set_window_row_start(int _row_start)

read_window_params()

get_eeprom_window_width()

get_eeprom_window_height()

get-eeprom_windowj:ol_start()

get-eeprom_window_row_start()

get^eeprom-window_col_skip()

get_eeprom_window_row_skip()

get_cam_location()

get_cam_position()

get_cam_quadrant()

get_cam_master()

imgusb_allocate-urbs()

grab_frame(unsigned char *buf)

cam_fpga^reset(int state)

cam_fpga_power(int state)

bayer2gray(unsigned char *bayer, un­

signed char *buf, int width, int height)

write_tiff(unsigned char *bufJn, char

*filename, int width, int height)

Description

Constructor, creates an instance of the pm_cam class for the device handle

specified with block_size for bulk transfers. Also creates an instance of

imgUSB class for specifed device handle for high speed bulk transfer.

Destructor, free up any allocate memory and deletes instance of imgUSB

object.

Perform a standard control request to device (using l ibUSB).

Write a value to a specific register of the Micron image sensor.

Read data from a specific register of the Micron image sensor.

Write a value to a register of the FPGA. FPGA does not support reading

at this t ime.

Set the width of the window, also write value to image sensor register.

Set the height of the window, also write value to image sensor register.

Set the width of the window with horizontal skip factor. Wil l compute

appropriate image width and window width depending on skip value.

Set the height of the window with vertical skip factor. Wil l compute

appropriate image height and window height depending on skip value.

Returns the window width value.

Returns the window height value.

Returns the image width value (from window width and horizontal skip

factor).

Returns the image height value (from window height and vertical skip

factor).

Set the image sensor window column start pixel.

Set the image sensor window row start pixel.

Load from camera the window parameters stored in the EEPROM.

Returns the EEPROM value for window width of camera.

Returns the EEPROM value for window height of camera.

Returns the EEPROM value for window column start pixel of camera.

Returns the EEPROM value for window row start pixel of camera.

Returns the EEPROM value for column skip value of camera.

Returns the EEPROM value for row skip value of camera.

Read camera location information stored in EEPROM of camera. This

include quadrant, position (left, right, center, bot tom) and a master flag.

Returns the EEPROM value for camera position.

Returns the EEPROM value for camera quadrant.

Returns the EEPROM value for camera master flag.

Allocate memory for imgUSB object URBs (depends on image size). This

function uses the image-width and image-height variables of the class.

Retrieve image data to buf using imgUSB class. Returns number of

bytes received.

Put the FPGA in or out of reset state.

Enable or disable power to FPGA.

Use a simple software nearest-neighbour interpolation to generate

grayscale image from bayer pattern output of image sensor.

Write the data in bufJn to a grayscale TIFF image to filename with

dimension specified by width and height respectively.

Table 4.4: pm.usb Class Functions

44

4. USB 2.0 CAMERA

Function

pm_init_usb()

pm_get_device_count()

pm_find_camera (int n_th)

pm_camera_configured (struct usb-device *d)

pm_open_interface(struct usb-device * d , int

if_num, int alt_if_num)

pm_close(struct usb_dev_handle *udh)

Description

Required to initialize libUSB.

Returns the number of devices found in the entire USB system

that match the specified USB VID and PID in the header file

pmJds. h

Returns device pointer to the nih instance of the device in the

USB system.

Returns TRUE if the device specified is configured (firmware

loaded).

Returns the device handle to the interface specified for the device

specified. If the interface does not exit, NULL is returned.

Releases the interface and closes the device. Returns TRUE on

success.

Table 4.5: pm_prims Primitive USB Functions

i n i t i a l i z e l i b u s b

dev__count = g e t d e v i c e c o u n t

IF no d e v i c e s found THEN
OUTPUT: e r r o r message
EXIT

END I F

a l l o c a t e memory f o r p o i n t e r s t o d e v i c e s
a l l o c a t e memory f o r p o i n t e r s t o d e v i c e h a n d l e s
a l l o c a t e memory f o r pm_cam c l a s s o b j e c t s

FOR a l l d e v i c e s i n dev c o u n t
o b t a i n d e v i c e h a n d l e

I F u n a b l e
OUTPUT:
EXIT

END IF

IF d e v i c e
OUTPUT:
EXIT

END IF

t o open d e v i c e THEN
e r r o r message

no t l o a d e d w i t h c o r r e c t f i rmware THEN
e r r o r message

c l a i m d e v i c e i n t e r f a c e and o b t a i n d e v i c e h a n d l e

I F u n a b l e
OUTPUT:
EXIT

END IF

c r e a t e an
NEXT d e v i c e

t o o b t a i n h a n d l e THEN
e r r o r message

i n s t a n c e of t h e pm_cam o b j e c t f o r h a n d l e found

Listing 4.1: Finding Devices with pm_usb Class

45

4. USB 2.0 CAMERA

Once the device handles are acquired, the imgUSB objects can be created. The irngUSB class

is contains low-level IOCTL calls to improve the performance of USB bulk transfers. From experi­

mentation, the data transfer rate is more than 30% faster using the imgUSB class over the libUSB

usb-bxdk-read() function. Not to mention the reduced CPU utilization with the im,gUSB class.

4.6.3 imgUSB

It was determined early in the project that the transfer rates capable of libUSB were inadequate

for the throughput requirement of the system. The theoretical maximum transfer of the high-speed

USB standard is 480Mbps [36]. This translates to 60MB/s, however when testing the transfer rate

using the usb-bulk-read() function in the libUSB library, the maximum achievable transfer rate with

a continuous data stream was around 31 MB/s. After researching for ways to improve this in user-

space drivers, the Universal Serial Radio Project was discovered [37]. The USRP project uses low

level IOCTL calls to perform bulk transfers. After making appropriate changes and incorporating

the fusb library from the USRP project into a test application, transfer rates of 42MB/s were

realizable. The USRP project fusb class however had some extraneous overhead. The imgUSB class

was modeled after the USRP fusb class and the usb-bulk-read() function in libUSB. The resulting

irngUSB class was more suitable for the application of periodic, but not continuous, data acquisition.

The irngUSB class is not terribly complex. The process of acquiring data from the bulk endpoint

of the camera involves submitting URBs using a series of IOCTL calls to the USBDEVFS (USB

Device File System) for the particular file descriptor of the USB device (acquired from libUSB). The

URBs request blocks of data which is denned in the constructor of the irngUSB class. The maximum

block size is 16kB, although it was found that 8kB provides reasonable performance and puts less of

a constraint on the image size. imgUSB was not programmed to handle data transfer sizes that are

not even multiples of the block size specified. After submitting the URBs, the URBs are reaped in

a blocking IOCTL call. This blocking call essentially waits for all URBs to finish, or fail. Once all

submitted URBs have been reaped, the function returns TRUE for a successful transfer and FALSE

if an error occurred.

The functions contained in the imgUSB class are described in the following table (see Table 4.6).

Although the image size could be specified in the descriptor, but for convenience an additional

function is used to allocate the memory used for the URBs.

46

4. USB 2.0 CAMERA

Function

imgusb(struct usb_dev_handle

*dev_hdl, int ep, int block_size)

imgusb()

allocate_urbs(int image_size)

getJmage_size()

get_image(char *buf)

Description

Constructor, initialized the imgusb class by specifying the device handle

(from libUSB), the endpoint to use (must be a bulk-IN endpoint) and

the block size to use for the URBs.

Destructor, free occupied memory.

Used to allocate memory for URBs for the image size (or data size). This

must be evenly divisible by the block size specified.

Returns the image size.

Used to acquire an image from the camera using a series of URBs. The

resulting data is stored in the referenced variable but Returns TRUE on

success and FALSE on fail.

Table 4.6: imgUSB Class Functions

47

Chapter 5

System Control Board

The system control board is an essential piece of hardware for machine control and capsule tracking.

This includes controlling the motor speed, capsule ejection hardware, providing camera triggers,

controlling lighting, operating the HMI, and monitoring system health. Added functionality required

for the upgraded system includes the soft PC power control, camera communication interface and

RS-232 support.

Starting from a conceptual design of the requirements of the system control board, a block

diagram representing the various interfaces was created, shown in Figure 5.1. Using a microcontroller

(MCU) is the most obvious and practical means of controlling the various hardware and thus is

required. Selecting an appropriate MCU is not trivial though. An essentially unlimited supply of

devices exist to choose from. Selecting an architecture with adequate capabilities that does not

exceed cost constraints is desired. A typical modern MCU suitable for this application operates at

3.3V or 5V and consumes a very modest amount of power. Interfacing with the motor controller,

operating ejection hardware and switching lighting requires significantly more power than what is

capable from the outputs of a typical MCU. Also, considering that many of the existing hardware

components operate at 12V or 24V and the processor operates at 3.3V or 5V, isolation circuits must

be designed to bridge the gap.

5.1 Hardware Design

The hardware design process for the system control board was a fully custom design. Hardware

components were researched, tested and incorporated into the final system control board. The

48

SYSTEM CONTROL BOARD

MOTOR CONTROL

PROXiMHY
SENSOR INPUTS

SOFT PC POWER
CONTROL/SENSE

I2C SLAVE
BUS SWITCH

\

ACCEPT/REJECT
CONTROL

n

\
\

/
/

/

MCU

/

\
\

"

I2C EXPANSION
WITH INTERRUPT

LIGHTING
CONTROL

E-STOP
INPUTS

RS-232
COMMUNICATION

CAMERA
TRIGGERS

Figure 5.1: System Controller Block Diagram

design of the system control board involved the design of many smaller circuits that interface with

various hardware components of the system with additional circuits to support specific functionality.

In addition to basic machine control tasks, it was desired to incorporate flexibility into the design

to permit expandability.

5.1.1 Isolation Circuits

Isolation circuits are quite common in the field of electronics, especially when interfacing different

voltage levels and impedance ranges. An optocoupler or optoisolator, is a device that permits full

electrical isolation between circuits. An optocoupler uses a short optical path to transfer a signal

between circuits. Because light is used, there exists no electrical connection between the two sides

of the device. Thus, the potential level on either side of the optocoupler may differ. A typical

optocoupler is comprised of a LED (light emitting diode) and a photo-transistor. When the LED

is "on", the photo-transistor will conduct. A typical circuit symbol for an optocoupler is shown in

Figure 5.2.

Optocouplers are used extensively in the design of the system controller board. Thus, a brief

explanation of the operation of a typical isolation circuit will be discussed. The design of each

isolation circuit varies slightly depending on the required response time of the circuit, the voltage

levels involved and the driving requirements of the circuit. Although power consumption is not a

primary concern in the system control board design, the circuit parameters used impact the power

consumed by the device. The goal was to maintain a modest current draw while exceeding timing

49

5. SYSTEM CONTROL BOARD

s

Figure 5.2: Typical Optocoupler Circuit Symbol

requirements. A typical isolation circuit used in the design of the system control board is shown in

Figure 5.3.

24V

3.3V

- • OUT

IN • - K

Figure 5.3: Common Isolation Circuit

For this particular circuit, when the IN pin is at OV, the LED is ON, and thus the photo-transistor

is conduction. This results in the voltage seen at OUT to be pulled close to OV. Similarly, when

the input IN is 3.3V, the LED is off and the photo-transistor is not conduction. This results in the

output, voltage seen at OUT to be pulled close to 24V by the pull-up resistor. The above circuit

demonstrates isolation can exist between two potential levels. The above configuration is a common

theme throughout the design of the system control board. Many hardware elements of the Optisorter

operate at 12V and 24V requiring isolation circuits. Many circuits also need a substantial current

supply. The photo-transistor of the optocoupler is quite weak and not intended for driving large

loads. For this, driving circuits are required. The driving circuits use the output of the isolation

circuit to control the power delivered to the load.

Without optocouplers, interfacing a MCU with other hardware elements would involve the design

of complex circuits. Optoisolators simplify this task greatly. It will be evident just how significant

isolation circuits are in the design of the system control board.

50

5. SYSTEM CONTROL BOARD

5.1.2 Driving Circuits

Considering tha t the driving capabilities of a typical MCU is limited to only tens of milliamperes and

the driving capabilities of the photo-transistor of an optocoupler is also quite low, driving circuits are

required to drive many of the hardware elements of the PharmaSorter . The use of power MOSFETs

(metal oxide semiconductor field effect transistors) allow large loads to be driven by lower input

signals. Power MOSFETs can operate like switches and can be used to tu rn on and off hardware

of the PharmaSor ter with relatively high current sinking or sourcing abilities depending on the

type of power M O S F E T used. Like any transistor family, N and P channel devices exist for power

MOSFETs . The N channel F E T s are typically used when sinking loads, and P channel F E T s are

typically used when sourcing loads. Both N and P channel devices are used in the design of the

system control board. Another desirable property of power MOSFETs is the input current required

to turn the device "ON" is very low. Also, the "ON" resistance of the device is very low. This

results in efficient switching with very low heat generation. Typical driving circuits are shown in

Figure 5.4 and Figure 5.5. Both sinking and sourcing configurations are illustrated.

When used in conjunction with an isolation circuit, devices can be switched on or off with

substantial driving capabilities. For example, the N-Channel power M O S F E T used in many areas of

the design is the International Rectifier IRF7103. The IRF7103 is a dual N-channel power M O S F E T

with a maximum drain current (ID) of 3A capable of 50V V Q S S and an RDS{OTI) O I o m y 0.130 Q,.

The IRF7103 is a suitable device for the system control board. It is an extremely efficient, fast

switching device tha t is used to control solenoids of the electrically controlled pneumatic valves.

The P-Channel sibling to the IRF7103 is the IRF7306. The IRF7306 is a dual P-Channel power

M O S F E T with a maximum drain current of 3.6A capable of -30V VQSS a n d a RDS(OU) °f 0-10 ^-

The IRF7306 is used in sourcing circuits and the IRF7103 is used in sinking circuits. The initial

s ta te of devices, before the MCU has been initialized, can be controlled by the selection of either P

or N channel drivers. When considering the input to the LED of the optoisolator in a floating state,

the LED will not be on and thus the phototransistor will not be conduction. If an N-channel device

is selected with the given configuration, the M O S F E T will be on. Likewise, for a P-channel device

and the same configuration, the "default" s tate of the device is off.

The circuits described above are common in the design of the system control board. The system

control board circuits are however more diverse and are described in the following sections.

5.1.3 M C U Selection

Selecting an appropriate MCU for the system control board deemed to be a more exhaustive task

than one might expect. When selecting a device for a somewhat specific application can be daunting.

Semiconductor manufacturers offer a vast selection of devices for designers to select from. The

51

5. SYSTEM CONTROL BOARD

24V 24V

3.3V

-vw-
LOAD

S
IN S. LTJ

Figure 5.4: Isolation Driving Circuit - Sinking

24V 24V

3.3V

- A A / V
hi

2
IN K LOAD

T

Figure 5.5: Isolation Driving Circuit - Sourcing

52

5. SYSTEM CONTROL BOARD

characteristics considered for the system control board MCU were speed, peripherals, cost and I/O

capabilities. The device functionality wish list is described in the table below (Table 5.1).

MCU Function / Category

GPIO (General Purpose I /O)

Pneumatic Valve Control

E-Stop Source

External l2C I/O Expander Interrupt Source

l2C Slave Multiplexer Control Signals

PC Soft Power Control

PC Soft Power Sense

Input Capture

Proximity Sensors

Output Compare

Motor Pulse Signal

Camera Triggers

Back/Front Lighting (LED Matrix)

External Interrupts

E-Stop

External l2C I/O Expander Interrupt Signal

I 'C Slave Bus (Camera Communication)

l2C Master Bus

UART (RS232 Communication)

Requirement

24

6

4

4

2

4

4

4

4

7

1

2

4

2

1

1

1

1

1

Table 5.1: System Control Board MCU Requirements

Although many semiconductor manufacturers offer devices that meet and exceed the require­

ments listed, it was desired to find a development board with the selected MCU that is readily

available. It was also desired to find a device that had an inexpensive or free C cross-compiler. Also,

a 16-bit device was preferred over an 8-bit device. It was eventually decided that the Microchip

dsPIC33 family of MCUs met the requirements in the metrics listed above. The dsPIC33FJ256GP710

MCU is the highest pin count device with the most program memory offered in the dsPIC33 series.

Microchip offers a C cross-compiler for the dsPIC33 family, namely the C30 Tool suite. Microchip

offers a student version of the compiler for free. They also offer a commercial version which has more

optimizations but with a hefty price tag. One of the requirements when searching for MCUs was the

availability of a development board. Microchip offers a development board for the dsPIC33 known

as the Explorer 16. The Explorer 16 is readily available through Digi-key and other prominent

electronics suppliers. The Explorer 16 evaluation kit is shipped with the Explorer 16 development

board, an ICD2 in-circuit programmer/debugger, Microchip MPLAB and the C30 compiler. The

ICD2 in-circuit programmer is a programmer solely for Microchip MCUs. MPLAB is an IDE for

managing projects targeting Microchip MCUs and handles the linking of object files.

53

5. SYSTEM CONTROL BOARD

5.1.4 Power Regulation Circuit

Power regulation is very common in all electronic devices since digital circuits require stable DC

power. The dsPIC33 operates at 3.3V and thus a 3.3V line is required to power it along with the

other devices used in the system control board. Since the system control board controls hardware

at higher levels, these voltages must also be present on the board. The lighting control circuit

operates the LED back and front lights by providing 12V pulsed strobes. The electrically controlled

pneumatic, valves require 24V to activate. The stepper motor control board operates at 24V and

requires a 24V pulse signal to step the motor. The system is equipped with a Siemens S5-100U

24V supply capable of delivering 1A. Considering the requirements of the system, this single supply

would not suffice. An additional 12V supply was purchased to operate the 12V hardware along with

powering the control board. The V-Infinity VOF-45-12 is a 12V supply capable of supply 3.7A. The

system control board has connections for both the 12V and 24V supplies and are fused for over-

current protection using 1A fuses on each line. The 12V line is regulated down to 5V using a ST

Microelectronics linear regulator, and further regulated down to 3.3V using a Linear Technologies

low-noise, low-dropout (LDO) regulator (LT1763). The reason for the cascading regulators is that

the LT1763 is capable of an absolute maximum input voltage of 20V. If there was a short between the

12V and 24V lines, this could potentially destroy the 3.3V regulator and possibly other components

of the board. The ST-Micro 5V regulator is capable of a maximum input voltage of 35V and would

not be damaged in the event of a short or improper connection.

5.1.5 Electrically Controlled Pneumatic Valve Control Circuit

The Optisorter was equipped with a series of electrically controlled pneumatic valves. These valves

are used to control the ejection of capsules with a main valve control on the main air supply. The

valves require 24V to open, allowing air to flow.

When the valve is activated, an electro-mechanical solenoid engages allowing air to pass through.

Since the solenoid is a purely inductive load, the phenomenon of back-EMF (electro-motive force), or

counter-EMF (CEMF) must be taken into account. CEMF is caused by a changing electromagnetic

field, like that of a solenoid. When the solenoid is released, a reverse voltage is developed that can

potentially damage sensitive devices. In order to handle the CEMF, a diode is connected across the

load to short the CEMF voltage across the load, as shown in Figure 5.6.

In the above circuit, when the solenoid is switched off, a large counter EMF appears across

the terminals. This voltage can be several thousands of volts which could potentially incur severe

damage to the MOSFET. The forward biased diode forces this voltage to be suppressed through the

solenoid. The diode used in the system control board to protect against CEMF from the pneumatic

valves axe fast-recovery, 100V, Fairchild 14N002FSCT. These were selected for their fast recovery,

54

5. SYSTEM CONTROL BOARD

24V

T SOLENOID

ai

Figure 5.6: Counter Electromotive Force Protection Circuit

and high surge capability and are suitable for counter EMF protection diodes.

Pneumatic Valve Circuit After taking appropriate cautions regarding counter-EMF, the design

of the circuit is straightforward. Using an isolation circuit as seen in the previous section, the valves

can be controlled using a sinking configuration. The schematic of the pneumatic valve control circuit

is shown in Figure 5.7.

, PNPII MfelM '.MPPI V

. PMCII HPPFP ^I IPPIV

Rac*

OK0S

1 4 r
ISO403

OC020SM

1

0803

-AA/v

R4M

1.0k k

f <L MOCD20E

1 - L " 8 ,

ygti
' I DiODL.JJW 400

D40&

DK)DE_LAV

CONN4'J
EDZiiiJCi.

rONM4f:

Figure 5.7: Pneumatic Valve Control Circuit

Although only shown for the main and upper air supplies, the identical circuit is used for each of

the accept valves of the four respective quadrants. Unlink the typical isolation and driving circuit

55

5. SYSTEM CONTROL BOARD

shown in the previous section, this configuration requires that the dsPIC MCU sources the LED of

the optoisolator because of it's output current capabilities. The schematic shown includes resistor

values, part number and reference designators used in the actual design.

5.1.6 Stepper Motor Controller Control Circuit

The Optisorter system was equipped with a 5-pole stepper motor and a corresponding stepper motor

controller. By using a stepper motor, the position of the rotor is always known. However, controlling

a stepper motor is not necessarily trivial. Each pole of the motor has independent coils that must be

energized in a correct sequence. Designing and building a circuit for this would be time consuming

and unnecessary considering the availability of motor controllers. The stepper motor controller uses

control signals from an intelligent device to control the direction and speed of the stepper motor.

The controller is designed to be connected to an industrial logic level device which operate at 24V.

Thus, 24V control signals are required to operate the stepper motor controller. The direction of

rotation of the Optisorter can only be in a single direction. Thus, the direction input is permanently

set using a hardwired connection. The only available control is the motor speed. This is controlled

by a pulse-train at the desired frequency. Each pulse steps the motor a single step. By applying a

train of pulses at a set frequency, the speed of the motor can be controlled while the position of the

motor is always known.

The stepper motor control circuit must step a 3.3V pulse supplied by the dsPIC MCU to 24V

using an isolation circuit. The stepper motor controller does not draw a significant amount of power

and thus a power MOSFET driver is not required. Rather, a smaller transistor can be used to switch

the voltage, as shown in Figure 5.8.

^/IQTOR PI I ISFJ

Figure 5.8: Motor Control Circuit

56

5. SYSTEM CONTROL BOARD

The switching transistor in this configuration is a P-Channel MOSFET capable of driving 130mA

current. The transistor used is the NXP BSS84 T/R. This device is connected to a 10k Q load

resistor. This resistance in combination with the MOSFET provides a fast enough switching time

to exceed the maximum frequency of the motor.

An output capture module of the dsPIC is used to allow hardware to generate pulses for the

motor. By adjusting the timer reset value, the hardware will automatically generate a stream of

pulses at a given frequency.

5.1.7 LED Lighting Control Circuit

The lighting system of the Optisorter was a matrix of high-intensity red LEDs diffused through an

opaque block of plastic. This provided lighting from the rear of the capsule holder and illuminated

the capsule for the cameras. The existing cameras were assumed to be grayscale sensors where

colour information was not required. Thus using red light was acceptable. For the upgraded system,

white LEDs are used to achieve the a wider spectrum of light. This allows more accurate colour

information to be acquired. The white light system is a matrix of high-intensity white LEDs that are

strobed when the image sensor of the camera is being exposed. The entire inspection environment is

enclosed in a dark enclosure and therefore this technique of strobing the light mimics a mechanical

shutter. This way, the exposure of the sensor can be tightly controlled to ensure the images acquired

are free of blur with sufficient light to gather quality images.

The lighting system operates at 12V. This is supplied by the VOF45-12 supply and switched

through the system control board. The control board consists of a total of four lighting control

channels with two outputs per channel. This allows for more outputs to be connected to a single

channel. With four channels, the lighting requirements can be met with room for potential upgrades.

It was initially assumed that the only lighting required would be from the rear of the holder, however

it may be beneficial to illuminate the front of the capsule to acquire more accurate colour information

for the inspection of coloured capsules.

The LED control uses P-Channel power MOSFETs to drive the LED matrix banks. The isolation

circuits introduced earlier are used here, see Figure 5.9.

In this configuration, each power MOSFET is capable of driving up to 3.7A per, although it

is unlikely that the LED arrays will load the driver this much. The current configuration of the

PharmaSorter uses two of the possible four outputs and solely for back-lighting of two camera

locations.

To tightly control the duration of the strobe of light, an output compare module of the dsPIC

is used. This is a hardware method of timing the pulse of an output. By setting a start and end

register with a base timer, the hardware will automatically enable and disable the output. This

57

5. SYSTEM CONTROL BOARD

. i m P.ai-Ki!t-UT i n
IS0201

•8>k MOCD209M
D8

U20I
Da

^y$x-* en BtrKi n-.uT i

Figure 5.9: LED Lighting Control Circuit

ensures that the pulse duration of the light strobe is consistent.

5.1.8 Proximity Sensor Input Circuit

To provide feedback of the holder arm location, a series of notches have been machined into a

metal disk located in the machine. A fixed proximity sensor provides a pulse every time a notch is

encountered. This feedback can be used to track the position of the rotating arms. The proximity

sensors operate at 12V and output a high signal when close to a dense object and a low signal

otherwise. The proximity sensors are inputs to the dsPIC that must be dropped down to a 3.3V

logic level. To manage this, isolation circuits are used. The actual circuit used in the design is shown

in Figure 5.10.

R601

1,0k

0805

AA/V
R602

8 ISO601

^ K . MCX; :D2Q8M

D8

f3.3V

I
<^ R60S

< ^ i.8k

^ > 0805 a p g n y v S F M O

Figure 5.10: Proximity Sensor Input Circuit

The system control board was designed to handle up to four proximity sensors for additional

feedback. Only a single proximity sensor is used in the prototype since the number of motor pulses

applied to the stepper motor can be used to determine the exact position of the arm.

The proximity sensor inputs are connected to input capture modules of the dsPIC. Input capture

allow an interrupt to be generated when the pin changes with a timer value recorded upon the event.

58

5. SYSTEM CONTROL BOARD

5.1.9 Camera Triggering Circuit

To synchronize the cameras with the position of the arm, triggers are provided to the cameras at

appropriate times to begin image acquisition. The image sensor of the camera accepts a 3.3V trigger.

A triggering method referred to as global shutter control [22] is used to control exposure time of the

sensor. This is an input to the camera and requires specific timing. Using an output compare of the

dsPIC, the camera trigger timing is precisely controlled. Although both the camera and the dsPIC

MCU operate at 3.3V, the output from the dsPIC is required to drive a number of cameras, for this

reason, it is buffered using a Texas Instruments CD74HCT126M line buffer. This device acts as a

current driver allowing a larger fan-out. The schematic is shown in Figure 5.11.

m CAM TRian

m CAM TPI f iT l RIIFO

m CAM T R i n f l

B CAM T R i r ; n R H F I

SI
+

I

1

1

2

3

4

5

6

7

U901

10E

1A

IV

20E

2A

2Y

GND

VCC

40E

4A

4Y

JOE

3A

3Y

14

13

12

11

10

9

a

+
—Iw

l<

I-
l<

C A M TRlf-,1 m

CAM TR I R 1 RIIFO a

C A M T R i f i l a

CAM T R I f i l R I IF1 a

CD74HC126M96

Figure 5.11: Camera Trigger Driver Circuit

5.1.10 I2C Expansion Circuit

Although the I/O capability of the dsPIC was not exhausted, the I2C bus was used to promote

future system upgrades. In addition to providing extra I/O, I2C can be used for devices such as

sensors and memories. These can be beneficial to the system for sensing things like temperature and

storing setup information. To improve the distance of the transmission line between the devices and

the system control board, and also to increase noise immunity, an I2C line buffer is used to increase

the current of the signals. The NXP P82B715 I2C bus extender chip buffers the I2C transmission

lines permitting long distance cabling. This circuit is shown in Figure 5.12. Splitting the I2C bus

into four buffered buses with eight board connectors allows for a great deal of expansion. Each of

these buffered buses is connected to the local bus of the dsPIC operating in master mode potentially

many slave devices to be used. Four of the eight I2C connectors have an independent interrupt line

that can be used to trigger the dsPIC on an external event. For example, an I/O expansion chip

59

SYSTEM CONTROL BOARD

can generate an interrupt on pin change. This interrupt can be detected and appropriate actions

can be taken. The I2C buffering interrupt circuit is shown in Figure 5.13.

. i n RI is wi n
„ SCL2

1

2 !

3 I
4 \

U1201
D 8

NC

Lx

Sx

GND

vcc
Ly

Sy

NC

+3.3V

8

7

6

5

IDA RUR WI f^

S D A ^

P82B715TD

Figure 5.12: I2C Buffered Expansion Circuit

U1203

, BI?Q \m

a RISC INTO

m B12C IISJT1

„ R(?c INT?

_ Rl?n INT3

1 !

2 :

3 !

4 i

5 :

B

C

D

NC

VSS

CD4068B

J = J(ABCDEFGH)

K = ABCDEFGH

VDD

J

H

G

F

E

14

13

12

11

10

'
9

Figure 5.13: I2C Buffered Expansion Interrupt Circuit

The buffered I2C buses with interrupt lines use an active-low interrupt signal. The intent for

these expansion buses is for I/O expansion where a NXP PCA8575D I/O expander chip is used.

These chips have an active-low interrupt output that uses an open-drain configuration. Open-drain

circuits require an external pull-up resistor, however the system control board does not pull these

lines high. For buffered buses not used, the interrupt line should be pulled high using a jumper across

the 3.3V line and the interrupt input. To reduce the number of interrupts used in the dsPIC, the

buffered I2C interrupts are connected to an AND gate. The output of the AND gate is connected

to an interrupt of the dsPIC. Each of the buffered I2C line is also connected to the dsPIC so the

source of interrupt can be determined. On an interrupt event, the dsPIC firmware can check the

buffered I2C interrupt input lines to determine the source of the interrupt from which the it can

then takes appropriate actions.

60

5. SYSTEM CONTROL BOARD

5.1.11 P C Soft Power and Sense Circuits

To ensure the system is completely autonomous, the power of the inspection PCs motherboards

is controlled via the system control board. This is accomplished by using the motherboard power

switch and motherboard power LED connections. The system control board was designed to provide

power control for up to four inspection PCs, one for each quadrant. When the system starts up,

it was intended that a power on signal is sent to each motherboard from the system control board.

The power state of each PC can be monitored using the power LED connector of the motherboard.

In the event of a severe software error in a given quadrant, the ability to restart the PC exists

using this soft power interface. The PC soft power circuit is a simple isolation circuit with the

photo-transistor connected to the SW connector of the motherboard. The positive side is connected

to the collector of the photo-transistor and the emitter is connected to the negative side of the

connector. This was verified on an ATX motherboard to ensure it would work as expected, however

it was later determined that the powering input of ATX motherboards is not standardized. For

the motherboards used for the prototype, the powering circuit required the PWR_SW_+ pin be

pulled to ground to signal the power circuitry of the motherboard. Thus, modifications to the power

signal cable were made to facilitate this requirement. The PC soft power sense circuit also uses

an optocoupler isolation circuit. The power LED connection of the motherboard is connected to

the LED of the optocoupler. When the PC is ON, the photo-transistor of the optocoupler will be

conduction, pulling the input to the dsPIC to ground. GPIO of the dsPIC are used for these circuits

since timing and events are not critical. The PC soft power circuits are shown in Figure 5.14 and

Figure 5.15.

0805

330 ISO301

R301 D 8

, PC_PWR_0 A A A , t PWFLSW_,+J)

Y ^ L PWR_SW_flND_0

Figure 5.14: Inspection PC Soft Power Circuit

5.1.12 I2C Bus Switch Circuit

To facilitate communication between the master camera of each quadrant and the system control

board, I2C is used. Four input I2C buses from each quadrant are connected to a custom designed

bus switch where the active bus can be selected using two control signals, AO and Al respectively.

CONN301

JUMPER2

i

2

MBO SWITCH

61

5. SYSTEM CONTROL BOARD

m30.....PWR LED*

r ^ Q J M B J . E D -

Figure 5.15: Inspection PC Power Sense Circuit

This is achieved by using an analog switch and an analog multiplexer. The design scheme involves

one P C module of the dsPIC that is operating in slave mode and the manipulation of the control

signals, an individual camera I2C bus can be connected to the dsPIC I2C slave module. The serial-

data lines (SDA) of the cameras are connected to an analog multiplexer (ADG508A). The AO and

Al pins of the ADG508A are used to select one of the four channels to connect to the dsPIC SDA

line. In order for the cameras to honour the multiple master, single slave system, the serial-clock

(SCL) line of each of the cameras is pulled low, except for the one switched to the dsPIC. This is

accomplished using a double pole, single throw analog switch (ADG1434). The DPST analog switch

has four inputs, one for each of the analog inputs. Using an decoder (74AC139), the AO and Al

lines can be used to select a single line of the DPST switch (INI through IN4). The circuit is shown

in Figure 5.16.

The supply voltage of both the analog multiplexer and the analog switch is at 12V. These

devices will not operate properly at 3.3V and thus must be powered using the 12V supply. Since

the analog switch is used for a digital signal, any signal degradation will be negligible considering

the application. Fortunately, the system control board was equipped with a 12V supply that could

be used to power these devices.

The dsPIC slave I2C module input channel is switched between the four cameras at timed

intervals until communication by one of the devices is initiated. If communication is initiated by

the active channel, the dsPIC will listen exclusively to the given camera until the transaction is

complete. While the dsPIC is listening to a given camera, the SCL line of the others is pulled low

to indicate to the other cameras not to initiate communication.

*-".,, R1301
<

> 0805
S 10k

I PC, S F N S F J P

VY 5»K 1SO1301

.K17 D8

62

5. SYSTEM CONTROL BOARD

. An

U1002

D 1 6

IM1

INP

IN3

i IN4

U1001

D16

A1a AOb^.

O0a# ., „ „ „ A1b _
7 4 A C 1 3 9

Ola f f

02a#

Q3a#

GND

O0b# L

O lb f l _

02b» ,.

03b# _

m r.AMn s n A

. CAM1 RDA

B CAM? RDA

D CAMS SDA

_ SOA1

4

5

6

7

8

GND _

VDD _

U1003

SSOP20

. INI1

. r.AMn

, sr.i 1

. KOI 1

. CAM1

. IN?

sr.i

'h

S C I

1

2

3

4

5

6

7

8

9

10

IN1

S1A

D1

S1B

VSS

GND

S2B

D2

S2A

IN2

ADG1434

(TSSOP)

IN4

S4A

D4

SdB

VDD

NC

S3B

D3

S3A

IN3

20

19

18

17

16

15

14

13

12

11

I N 4 .

C A M . 1 S C t B

S C I 1 m

RCA 1 m

CAM? S C I ,

IN3 m

Figure 5.16: I2C Bus Switch Circuit

63

5. SYSTEM CONTROL BOARD

5.1.13 Emergency Stop Input Circuit

Although using a soft emergency stop is not permitted in many industrial settings for obvious safety

reasons, the inclusion of soft emergency stop in the system control board can be used to halt the

system for other safety events such as the opening of panel doors during operation. The E-Stop circuit

is a series of four isolation circuit, each connected to the input of an AND gate. The emergency

stop inputs are active high, and isolated using optocouplers (MOCD208M). The isolation circuit

is rather straightforward, see Figure 5.17. When an E-Stop input goes high (assuming all others

are low), the LED of the respective optocoupler causes the photo-transistor to conduct pulling the

input to the AND gate low. The output of the AND gate, which is connected to an interrupt of the

dsPIC, will go low and generate an interrupt event on the negative edge triggered interrupt. Since

the isolated E-Stop inputs are also connected to the dsPIC GPIOs, the source of the interrupt can

be determined. Upon an interrupt, the dsPIC firmware can read the individual inputs to determine

the source of the interrupt and appropriate actions can be taken.

+3.3V

> R1502
'* 1.8k
''• 0805

FSTOP 9,\CM .

ISO1501
7 D 8

Figure 5.17: E-Stop Input Circuit

5.1.14 RS-232 Communicat ion

RS-232 is standard for serial communication between computers and peripherals and is primarily

used for low-speed communication systems. Although PC serial ports are being phased out, they are

still quite commonly used and are attractive because of the maturity and ease of integration of the

protocol. The dsPIC33 has two UART modules which support RS-232 serial communication. The

use of a RS-232 transceiver is required to interface between the dsPICs 3.3V supply level and the

required +/-25V for RS-232. The transceiver used on the system is a Linear Technology LTC1386

low-power TIA562 transceiver. This device operates at 3.3V and has an internal charge pump to

boost the voltage to the required +/-25V. The 3.3V level lines are connected to UART module

of the dsPIC and the RS-232 side is connected to a DB9 female connector (RS-232 standard).

R1501
1.8k
0805

1. n

64

5. SYSTEM CONTROL BOARD

The RX (receive) and TX (transmit) are the only pins of the RS-232 wires used since the overall

communication scheme developed is quite elementary. The transceiver circuit is shown in Figure 5.18.

CONN 1401

SUBD. FEMALE... LAVS

C1402
0.1uF
0605

CHOI
: O.luF

5 TTl,
JfTSft
jrann

jPTSO

TR2IN

RX10UT

TR2 OUT

RX1 IN

RX2IN

GND

CI 403
O.luF
0805

C1404
0.1 uF
0805

CI 405
0.1uF
080 S

Figure 5.18: RS-232 Transceiver Circuit

5.2 System Control Board PCB Layout

After the design of the system control board was verified using breadboard circuits and the dsPIC

Explorer 16 evaluation board, the design of a printed circuit board (PCB) could begin. The design of

the PCB was not constrained by size or features although it had to promote easy integration with the

existing hardware of the PharmaSorter. To achieve this, easy to manage connectors were selected to

allow easy wiring. Many screw terminal blocks were used for the higher power hardware such as the

pneumatic valves, LED lighting and proximity sensors. For lower voltages or I2C communication

channels, polarized header connectors were used.

PCB layout can be done using any of a large range of tools. The tools available range from free

shareware and open-source tools to high-end professional tools such as Cadence. After evaluating

the available tools, gEDA was selected for the design. Since the system control board PCB was not

of great complexity, gEDA would be a suitable free software tool that has a relatively easy learning-

curve. Although Cadence, a professional and high quality tool, was available, it was not used due

to it's complexity and steep learning curve.

65

5. SYSTEM CONTROL BOARD

5.2.1 gEDA Open-Source Tools

gEDA is an open-source project for electronic design automation. The available tools include a

schematic capture application, PCB layout tool, simulation interface and more. The tools used for

the design of the system control board were gschem for creating the schematic, and pcb for creating

the layout. The gEDA tools are not terribly difficult to understand and use, and contain many of

the required component footprints used in the design. The tool did however require some manual

configuration of text files. The PCB layout tool can use custom footprints which must be entered

in text format. Some custom footprints had to be created for the PCB layout of the system control

board. When creating the schematics using gschem, the footprint of the component is specified. After

the reference designators are set for the components, an application called gsch2pcb can be used to

generate a pcb layout file which uses the footprint defined in the schematic editor for the object.

When the PCB file is opened using pcb, the component footprints are loaded without connections.

The netlist file which is created by gsch2pcb must be loaded from which the nets can be connected

manually or using the auto-route tool.

Manual routing was used for the layout of the system control board since it provides greater

control. The initial floor-planing of the board required the general placement of the components

to maintain a neat and organized appearance. This should be done in an intelligent manner to

help ease the task of routing. Since the system control board has many small localized sub circuits,

the routing for these sections was done in isolation, and then connected to the rest of the circuit.

Some other considerations regarding noise were taken into account during layout design. Potential

noisy circuits were isolated from the dsPIC MCU as much as possible. The potentially noisy voltage

regulation circuits and the high current switching circuits were placed as far away from the dsPIC

as possible.

5.2.2 P C B Fabrication

After the design was complete and verified, Gerber files were created and sent to be manufactured.

Gerber files are the standard used by PCB manufactures. These files contain all the information

pertaining to traces, vias, holes and land patterns. The standard Gerber format is RS-274X. The

PCB fabricator PCB Express of Mulino Oregon was selected to fabricate the system control board.

The automated system made submission seamless. A quantity of four was ordered to allow for

human error and backup boards.

PCB Express, like most other board manufactures, offer different board finishing. Although

slightly more expensive, the professionally finished PCB with a solder-mask and silkscreen was

ordered. This not only is more ascetically pleasing, it has the benefit of making soldering easier.

The solder mask helps prevent solder bridging during population and the silkscreen provides labels

66

5. SYSTEM CONTROL BOARD

of the location of the various components. Since the system control board is has a fairly large BOM,

this was beneficial. The cost per unit for an order of four circuit boards with dimensions of 6.65"x5"

was $68.75.

5.2.3 PCB Population

For the quantity of PCBs ordered, automated population could not be warranted considering the

soldering was manageable in-house. A high-end Weller soldering iron was purchased for the project

that was suitable for surface mount work. The digital variable temperature control was useful in

ensuring the soldering temperature maximums were not exceeded.

The components of the system control board were available and ordered exclusively from Digikey.

The most difficult component to populate was the dsPIC MCU. The dsPIC device selected was

available in a 100-pin TQFP (Thin Quad Flat Pack). This particular package has a 0.5mm pitch.

The technique used to solder this device was to first align the device, apply flux to the leads of

one side (using a flux dispensing pen), and touch the iron to a corner pin using the solder already

tinned on the footprint. This will fix the component for the rest to be soldered. Following the

same technique for the rest of the pins are soldered to the board. This technique does not require

additional solder and is likely the simplest method. After complete, the joints are verified using

magnifying equipment to ensure no cold solder joints or poorly connected pins exist.

During the population process, circuits were verified to ensure everything was properly seated.

The dsPIC was first device tested after the required components for it to operate were soldered, ie.

crystal, decoupling capacitors, 3.3V regulator, etc. The Microchip programmer was used to ensure

it could program the dsPIC. Following this, the other circuits were populated accordingly and tested

during this process.

The final populated system control board PCB is shown below in Figure 5.19.

5.3 I2C I /O Expansion Board

A highly desirable characteristic of the system control board was for it to possess expandability.

However, the extent of expansion is limited by the processor used. One of the most prominent

deficiencies for a device such as the system control board is limited I/O. Since the system designed is

interfacing with components that typically require higher voltages and significant driving capabilities

and are of unpredictable size, incorporating additional generic I/O on the system control board would

be impractical. Thus, an I/O expansion board was designed to facilitate this. When considering the

design of the I/O expansion board, a practical number of I/O available was considered, along with

the desired voltage range. The I2C I/O Expansion board operates at voltages ranging from 5V to

67

5. SYSTEM CONTROL BOARD

Figure 5.19: Populated System Control Board PCB

35VDC with a 3.3V I2C communication interface.

The I/O expansion board uses an I2C I/O expander from NXP semiconductors. The NXP

PCA8575D is comprised of 16-bit quasi-bidirectional I/O that can be read and set over an I2C in­

terface. The PCA8575D also has an interrupt line which can be connected to the interrupt line

of the microcontroller. This allows for event driven code which is much more efficient over polling

techniques. The NXP I/O expander chip is the heart of the I/O expansion board. Surrounding it are

isolation and driving circuits to permit a wide range of voltage levels with high driving capabilities.

The PCA8575D operates between 2.3V and 5.5V, and thus since the system control board micro­

controller operates at 3.3V, the I/O expansion board does also. The I2C line of the I/O expansion

board is buffered using an NXP P82B715 I2C bus extender chip. This promotes improved signal

integrity which is preferred for long distance transmission lines.

The inputs to the I/O expansion board turn on the LEDs of opto-isolators, as shown in Fig­

ure 5.20. As a result, the photo-transistor will conduct pulling the quasi-bidirectional pin of the

NXP I/O expander chip low. The inputs of the I/O expander chip used are POO through P07.

Any change on an input will cause the I/O expander chip to generate an interrupt from which the

68

5. SYSTEM CONTROL BOARD

MCU can read the state of the I/O. The interrupt of the NXP I/O expander chip is an open-drain

configuration and thus requires an external pull-up resistor. This is pulled high via a 2.2k Q resistor

on the I2C I/O expansion board, not the system control board.

LND

R101

1.8k

13805

f3.3V

R102
10k

2 ' 1) D8
ISO101

POP.

Figure 5.20: I2C I/O Expansion Board Input Circuit

The outputs of the I/O expansion board are generated from the NXP I/O expansion chip quasi-

bidirectional I/O pins P10 through P17. These outputs are best for sinking and thus are connected

to the cathode of the LED of the opto-isolator through a current limiting resistor. Thus, when

the output of the I/O expander chip is set LOW, the LED is on, and thus the photo-transistor is

conducting. This low voltage is seen at the gate of the P-Channel power MOSFET causing it to

conduct thus driving the load at the output. The default state of the I/O of the I/O expander chip

is all high. Thus, the initial state of the outputs is OFF. For safety reasons, this is desirable. The

typical output circuit is shown in Figure 5.21.

P i n

R109

390

•WAr

+ 3.3V

}

R110

10k

0805

^ ISO105

D 8
U102

Figure 5.21: I2C I/O Expansion Board Output Circuit

69

5. SYSTEM CONTROL BOARD

To facilitate easy integration and connectivity of the I/O expander board to the PharmaSorter,

screw terminal blocks were used to connect the inputs and outputs to the I/O expansion board.

The I/O power supply connector and the optional external 3.3V supply connectors are also screw

terminal blocks, but of different colour as to not be confused with I/O. A 5-pin connector is used

to connect the buffered I2C bus, the interrupt line and ground to the system control board. A

polarized connector is used to prohibit incorrect connection.

Since it may be desired to have several I /O expansion boards co-existing in the same system,

a set of jumpers is used to select the I2C slave address of the I/O expansion board. The NXP

I/O expander chip allows for up to eight addressable devices to exist on the same bus, resulting in

three address inputs, AO, Al and A2. These inputs can be set high or low by setting the jumpers

accordingly. The address pins are each pulled low via a lOfcfi resistor, and shorting the jumper

shorts the input high. This circuit is shown in Figure 5.22.

J102 *3:3V

IMPFB?
O O

J103
IIIMPFR?

O O

J104
IIIMPFR?

O O

Figure 5.22: I2C I/O Expansion Board I2C Address Select Circuit

To promote flexibility with the I/O expander board in terms of I/O voltage levels, the optional

3.3V regulator on the board allows a maximum input of 24V. Thus, if a voltage greater than this

is required, a DPAK2 footprint exists for an optional 24V linear regulator. If this is not used, the

input and output pads of the DPAK2 can conveniently fit a Ofi 2010 resistor.

The 3.3V supply can be from an external source either on the 5-pin I2C connector, or from the

2-terminal screw block connector. It can also be regulated on the I/O expansion board using the

Linear Technologies LT1121CS8-3.3 3.3V low-drop out regulator. This particular regulator allows

for a maximum input voltage of 30VDC, capable of supplying 150mA.

An optional footprint exists on the I/O expansion board for a Texas Instruments TMP175

70

5. SYSTEM CONTROL BOARD

I2C temperature sensor. This sensor can be used to monitor ambient temperature in the vicin­

ity. The I2C slave address of this sensor shares the address pins used for the NXP I/O expander

chip. Additional two-row headers exist on the board to allow for expansion if the existing isolation

circuits are inadequate for a particular application. A separate header exists for POO through P07

and for P10 through P17. Each header has single pin removed in different locations, commonly

referred to as a key, to prevent incorrect connection and to polarize the connector. The headers also

have 3.3V and ground connections. The header connectors are shown in Figure 5.23.

J105 J106

>l

f n n

^ n ?

fM

f r i f i

1

3

5

7

9

11

2

4

6

8

10

12

KFY a

p n ^

p n ^

pnrh

p n 7 .

>il
''1
>|

•

JM0

^ 1 ?

JM4

J^lfi

1

3

5

7

9

11

2

A

6

8

10

12

KFY m

P 1 ^

P 1 ^

P1.%

P H

HEADER12_2 HEADER12 2

INPUTS OUTPUTS

Figure 5.23: I2C I/O Expansion Board Input Circuit

A PCB was designed for the I2C I/O expansion board and submitted for fabrication. Like

the layout of the system control board, the I/O expansion board PCB was designed using gEDA.

The design involved surface mount components with the smallest IC package being SOIC, and the

smallest resistor size being 0805. The intent in the layout was to achieve the smallest board size

while maintaining reasonable component sizes. The terminal block connectors largely defined the

size of the board. The resulting PCB size was a 4.1 in. x 2.2 in. (104.14mm x 55.8mm). The final

I2C I/O expansion board PCB is shown in Figure 5.24. For detailed operating instructions of the

I2C I/O expansion board refer to Appendix ??.

5.4 Firmware Development

Firmware is a computer program the runs a dedicated application for given hardware. The dsPIC33

microcontroller is the only programmable device on the system control board, and thus is the only

component for which firmware was required. Firmware development for the system control board

was developed primarily in C. Occasionally, assembly was used for timing dependent tasks and for

71

5. SYSTEM CONTROL BOARD

Figure 5.24: I2C I/O Expansion Board

optimization. The Microchip C30 compiler is a fully ANSI compliant C compiler for 16-bit Microchip

MCUs. The system control board firmware was developed using the MPLAB integrated development

environment (IDE) for managing project files and the C30 compiler was used to generate the machine

code.

Firmware development can be a daunting task if preliminary planning stages are neglected. The

firmware design of the system control board was an iterative process broken into sections. The

majority of the firmware is event driven using interrupts, timers, output compare and input capture

modules of the dsPIC. Event driven design increases performance vastly over polling techniques,

however, to reduce complexity and development time, some functions use polling. The overall goal

of the system control board firmware was a design that was a good compromise between performance

and moderate development time.

The system control board firmware development was an iterative process. By taking small steps

and ensure the functionality of each block individually, it simplified the implementation of the entire

application. When a given function was to be developed, it was isolated from the main program,

debugged and verified that it satisfied the expectations. As each block was completed, it was added

to the main program where it was verified once again. Developing for embedded systems can be more

complicated than developing on a workstation because debugging becomes more involved. Because

of this, it is extremely important that things are well thought out to minimize debug time.

72

5. SYSTEM CONTROL BOARD

5.4.1 Functional Requirements

The system control board is required to handle various tasks including: controlling motor speed,

lighting, camera triggers, capsule ejection, communication with cameras, RS-232 communication

and operate a simple HMI. For each of these tasks, the interaction between hardware and software

had to be distinguished. For many of the required tasks, a hardware module of the dsPIC was used

to reduce MCU overhead and thus improve overall performance. For example, the motor speed is

controlled by the frequency of the square wave generated by an output of the dsPIC. Exploiting an

output capture pin, the pulse train is automatically generated with no processor overhead.

5.4.2 Motor Control

The PharmaSorter uses a 5-pole stepper motor with a stepper motor controller. This allows for

easy operation of the motor. Using a stepper motor along with a proximity sensor feedback, the

position of the capsule is always know based on the number of steps applied to the motor after a

transition of the output of the proximity sensor. The proximity sensor is located near a disk with

grooves for each capsule holder. Thus, each time a groove passes the proximity sensor, a pulse is

seen by the dsPIC and an interrupt is generated. The motor control method is quite simple. Using

an output compare module of the dsPIC, and a timer, the frequency and width of the pulses applied

to the motor controller can be controlled.

Setting up the output compare module is rather straightforward and is performed during system

initialization. The system initialization initializes all timers, output compares, input compares,

interrupts and I/O in a function called initsys(). The code listing for the initialization of the motor

pulse control portion is shown below (see Listing 5.1).

/* Configure Timer2 for Output Capture
T2CONbits.T32 =
PR2 = unsigned
T2CONbits.TON =
T2C0Nbits.TCKPS

/*
OC_
0C_
0C_
0C_
0C_
OC_

Enable Output
MTR
MTR
MTR
MTR
MTR
MTR

_CIRL_C0Nfc
_CTRL_CONt
_CTRL_R =
_CTRL_RS =
_CTRL„IF =
_CTRL„IE =

0;
int) ((((double) Fey)/
1;
= T2TCKPS;

*/

(double) motor_speed) - 1.0) / T2PF;

Compare to generate PWM for motor control */
its.OCM = OCM_DISABLED;
its.OCTSEL = OCTSEL_TIMER2;
0;
MTR_PULSE_WIDTH;
DEASSERTED;
TRUE;

/* Initially OFF */
/* Use Timer2 */

Listing 5.1: Motor Control Initialization

The code listing also includes the configuration of Timer2. Timer2 is the base frequency of the

output compare module and is thus used to control the frequency of pulses applied to the stepper

motor controller. The points of interest here are the PR (period register) and the TCKPS (timer

73

5. SYSTEM CONTROL BOARD

clock pre-scaler) registers. The period register controls the frequency and the pre-scaler is used to

select a divider for the system clock. For simplicity, the pre-scaler is fixed to a value that achieves a

suitable range for the system. The pre-scaler for Timer2 (T2TCKPS) is set to 0x03, which translates

to a pre-scale factor (PF) of 256. Thus, the global clock is divided by 256 for Timer2, resulting in an

effective timer clock frequency of 156.25 kHz, for a system clock of 40MHz. The following formula

is used to determine a period value for a given frequency, this is shown below where motor speed is

in Hz.

PR2 Jcy

{motorspeed - 1.0) x TCKPS

Note the frequency of the dsPIC is fcy « 40MHz. This frequency is based on the input crystal

(Yl), and the PLL (phase-lock-loop) registers. The external oscillator operates at 8MHz, and using

the selected PLL parameters, a system clock of roughly 40MHz is achieved. With the selected

parameters for the output compare module, the maximum pulse rate is about 3.9kHz, and the

minimum is about 3Hz. The maximum pulse rate depends on the pulse width of the motor pulse,

ton. After experimental trials it was determined that a pulse duration of about 250/x.s was suitable.

The parameters selected fulfill the speed range of the system and limits the maximum speed. It

should also be noted that the output compare mode (OCM) is initially disabled, this will start the

system with the motor disabled, which is desirable for obvious safety reasons.

The motor control function is related to the lighting and camera trigger controls. From experi­

mentation, it was determined that there are about 495 to 505 motor pulses applied between adjacent

holders. In order to properly calibrate camera triggers and accept ejection, various positions are

recorded. By using a counter, pulse-counter, that increments each time a pulse is applied to the

stepper motor controller, the exact location of the capsule holder is known. The counter is reset

once the proximity sensor edge is detected, and hence the next capsule is entering the inspection

area. The flowchart below illustrates the motor pulse counter interrupt service routine (ISR) and

the ISR generated by the proximity sensor, as shown in Figure 5.25 and Figure 5.26 respectively.

From the flow diagrams, the overall motor control is rather straightforward. Being entirely

interrupt driven promotes efficiency, however constantly checking the pulse-counter value each step

is not the most efficient, it is however the most convenient method of coding this section. Also,

the required CPU time is rather insignificant. Take the system operating at a motor pulse rate of

2200Hz, to achieve 4.2 capsules/sec (target inspection rate), and assuming checking the pulsccounter

value each step requires 20 clocks, the relative CPU time is calculated below.

CPU%- DULSES
At, CHECK-PULSE-COUNT

74

5. SYSTEA4 CONTROL BOARD

CAMO Trigger
& Lighting

CAM1 Trigger
& Lighting

ACCEPT ON
Valve Control

All ACCEPT
valves OFF

<C end J

Figure 5.25: Motor Pulse Control flow diagram

inhere,

and,

thus,

At
1

PULSES

&tc HECK .PULSE .COUNT

2200Hz

1

AOMHz

455/us

x 20clocks = 500ns

CPU% » ™ = 0.1098%
455/zs

From this quick calculation, it is evident that the impact of this operation is quite negligible.

75

5. SYSTEM CONTROL BOARD

(^ isrPSO

^ ~
pulse_counter = 0

T

Q end J)

Figure 5.26: Proximity Sensor Interrupt flow diagram

Proximity Sensor Compensation

The proximity sensor used in the PharmaSorter is a capacitive sensor and thus is not ideal for

high-speed sensing. Thus, a delay is introduced which is proportional to the speed of the motor. To

alleviate this problem, a compensation factor is used to adjust for this. The compensation factor

is based on experimental results solely. The compensation factor is based on the frequency of the

motor and the calculation is shown below.

P&comp = (0 .12 X U>motor) ~ >>4

5.4.3 Motor Ramping Control

It was obvious that once the motor pulse code was tested that something had to be done about

the sudden starting and stopping. Due to the inertia of the machine when rotating, the motor

had to be ramped up and down to prevent the stepper motor from slipping. The stepper motor

slipping not only sounded unpleasant but it could potentially cause damage to the controller or the

motor itself. The ramping technique was accomplished rather easily using a timer, namely Timer5,

and a few control variables. The ramp.mode variable is set to either RAMP.UP or RAMP.DOWN

and Timer5 is enabled. Each timer event, the motor speed is either incremented or decremented

accordingly until the target speed is met. The timer interrupt service routine is shown below in

Listing 5.2.

/* Clear Interrupt Flag */
IFSlbits.T5IF = DEASSERTED;

/* If Ramp Up */
if (ramp_mode == RAMP_UP) {

motor_speed++;
PR2 = (unsigned int) (((((double) Fey)/ (double) motor_speed) - 1.0) / (double)

T2PF);
PNEU_MAIN = DEASSERTED;

}

J>

76

5. SYSTEM CONTROL BOARD

/* If Ramp Down */
i f (r a m p j o d e == RAMP_DOWN) {

m o t o r _ s p e e d - - ;
PR2 = (unsigned int) (((((double) Fey)/ (double) motor_speed) - 1.0) / (double)

T2PF);
}

/* If desired speed reached - stop this timer */
if (motor_speed == motor_speed__target) {

T5CONbits.TON = FALSE;
enable_count = 0;
if (motor_stop_flag) {

disable_count = 0;

OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
PNEU„MAIN = ASSERTED;

}
}

Listing 5.2: Motor Ramp Timer Routine

By employing the motor ramping technique, the motor will not slip as it accelerates or deceler­

ates preventing wear on the machine and preventing damage to the stepper motor and controller.

Although the constant calculation of the period register of Timer2 (PR2) is being performed, this

is only done during motor start and stop and has an insignificant affect on the normal operation of

the system.

5.4.4 Camera Trigger Control

Because the cameras are operating in Global Shutter Control Mode (see Chapter 4), the width of

the trigger pulse must be tightly controlled. This is accomplished by using an output compare

module. The required pulse width of the camera trigger is 392//S for the given PXCLK frequency of

48MHz [22]. To achieve this, the following values are setup for the output capture. Note that the

camera and lighting output compare modules use Timer3 of the dsPIC, and Timer2 is reserved for

motor control since the frequency is varying. The initialization of Timer3 and the output compare

module for the camera trigger is shown below. Note that there are two separate camera triggers

(CAM.TRIGO and CAM_TRIG1) used in the system and the code for only a single trigger is shown

below (see Listing 5.3).

/* Configure Timer3 for Output Compare */
PR3 = Oxffff;
T3CONbits.TCKPS = 2;
T3CONbits.TON = TRUE;

/* Camera TriggerO Output Compare */
OC_CAM__TRIG0_CONbits.OCM = OCM__DISABLED;
OC_CAM_TRIG0_CONbits.OCTSEL = OCTSEL_TIMER3;
OC_CAM_TRIG0_R = 0;
OC_CAM_TRIG0_RS = CAM_TRIGO_PULSE_WIDTH;

77

5. SYSTEM CONTROL BOARD

Listing 5.3: Camera Trigger Output Compare Initialization

Since Timer3 is used for both the camera triggers and lighting control, a suitable pre-scaler of 2

is selected. This will divide the clock by 64, for an effective frequency of 625kHz for a resolution of

1.6/is.

When a camera trigger pulse is to be applied to the camera(s), the following code sequence

restarts Timer3 and sets the output compare mode of the given trigger into single pulse mode

(OCMJ3INGLE _PULSE). The code listing is shown in Listing 5.4.

/* Enable Triggerl and BL1 strobe */
/* Reset Timer 3 for Backlight control and Camera Trigger Control */
T3C0Nbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BLl_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM__TRIGl_CONbits.OCM = OCM_SINGLE__PULSE;

T3CONbits.TON = TRUE;

Listing 5.4: Trigger and Backlight Strobe Routine

The code listing also enables the back-light output compare for camera 1. Obviously when the

camera is triggered, the light strobe is to be initiated to illuminate the object. The pulse width of

each can be different, although they are dependent on the same timer. The R and RS registers are

used to set the on and off value corresponding to Timer3.

For a typical inspection of a clear capsule, a back-light strobe duration of about 1.25ms is required

for adequate illumination. This translates to a value of about 800 in the output compare secondary

register, if the primary register is 0. The strobe duration is an important parameter to ensure that

motion blur is eliminated. Thus, a very intense strobe is required for a very short duration. In

addition, by using amplification techniques in the image sensor, light intensity can be compensated

for.

5.4.5 I2C Master

The system controller I2C master module is used to manipulate external I2C slave devices such as

I/O expanders and temperature sensors. One of the primary reasons for including I2C expandability

is to reduce the I/O requirement of the system controller MCU. Considering the PharmaSorter is

a prototype, it is desirable to avoid restricting the design. The available expansion options allow

for additions to the system with relative ease. The dsPIC33 controller used has two I2C modules

that can operate in either master or slave mode. The I2C2 module is used for the master and

the I2C1 module is used for the slave functions. By exploiting the built-in I2C controller in the

78

5. SYSTEM CONTROL BOARD

dsPIC, there is a reduction in processor overhead as well as a simplification in development. The

I2C master module was coded in a polling fashion to reduce programming time. This is chiefly

due to the fact the the communication over the I2C master bus is quite minimal. I2C is merely

used for updating the LCD, and attending to events from the I2C I/O expansion boards (which

are interrupt driven). The control of the I2C master module is accomplished with several key

functions: initJ2c2(), i2c2-write() and i2c2„read(). The initialization of the I2C module in master

mode involves enabling the module and enabling the master interrupt. The I2C frequency is also

set via the I2CBRG register whereby the frequency of the SCL (serial clock) is determined from the

following formula.

™I f lM-(fe-drm)-'
Thus, for a fCY = 40MHz and a desired I2C clock frequency of fSCL = WOkHZ, a I2C2BRG

value of 363 is required.

The initJ2c2() function will set the I2C clock frequency based on the above formula and set

other registers to configure the I2C master interrupt. The interrupt routine sets a flag (jDone)

to indicate that the previous request was completed, or that an event has occurred. As mentioned

earlier, the I2C read and write functions, i2c2^read() and i2c2^write(), were programmed in a polling

fashion. Thus, the MCU is "stuck" in the particular function until the sequence has completed. The

i2c2-read() function returns an integer upon completion. A zero is returned on success and a -1

on failure. Similarly, the i2c2-write() function follows the same return method. The i2c2-read()

function takes an address of the I2C slave address, a buffer to store the data and the length of data

expected. Using timeouts, the function is guaranteed to return even if there is a severe bus failure.

This is similar in the i2c2-write() function. A detailed description of the three functions used for

engaging P C communication is listed in Table 5.2.

Function

init_i2c2()

i2c2_read(unsigned char addr, unsigned char

*buf, unsigned char len)

i2c2_write(unsigned char addr, unsigned char

*buf, unsigned char len)

Description

Initialize the I2C2 module of the dsPIC33 in master mode with a

SCL frequency of 100kHz

Perform an l2C read request to the slave device at address addr

for len bytes and stores the result in *buf. Returns 0 on success,

or -1 on error.

Performs an l2C write request to the slave device at address addr

for len bytes with the data in *buf. Returns 0 on success, or -1

on error.

Table 5.2: dsPIC I2C Master Functions

79

5. SYSTEM CONTROL BOARD

5.4.6 I2C Slave

The I2C slave module is used for retrieving messages from the four quadrants and responding to

requests. This is accomplished using a time multiplexed I2C bus switch system whereby each of the

I2C buses is allocated a certain amount of time to initiate communication with the system controller.

This is detailed in the Section 5.4.7. The dsPIC33 I2C slave module requires an I2C slave address

and must acknowledge the master when addressed. The I2C slave module requires an initialization

function whereby the slave-mode interrupts are set for the modules. The slave address is set via

the I2C1ADD register and was arbitrarily set to 0x44, since no other device in the system use this

address. The slave module code is stored directly in the interrupt routine. The interrupt routine

must be serviced every time a byte of data is retrieved by the dsPIC33 where the slave address of the

message matches the I2C1ADD register. This occurs immediately after retrieving the slave address

and after each byte subsequent data. The routine must acknowledge this event and either send data

or be prepared to receive data based on the read/write flag. Because the requirements of the system

controller, the pass/fail feedback mechanism is not terribly complex and therefore the routine only

needs to respond to three requests: get capsule ID request, set pass/fail result and set PC ready flag

as described below.

• I2CCMD_GET_CAP_ID - The master is requesting the capsule ID of the current capsule.

The slave responds with a 8-bit value that for the 4-bit capsulelD padded with zeros.

• I2CCMD_SET_PF - The master will set a specific capsule ID pass/fail flag. The received

byte contains a 4-bit capsule ID and a 2-bit pass/fail code. This result is stored in an array of

pass/fail results for the given quadrant.

• I2CCMD_SET_PC_READY - Indicate when PC is ready to begin inspecting. This message

is sent by the host when the PC software is loaded and the software is ready to begin acquiring

images and to begin inspection.

5.4.7 I2C Bus Switch

Due to the limited number of I2C modules in the dsPIC33 MCU, a time-multiplexed system was

devised to retrieve messages from the various quadrant master cameras. Although other approaches

for this could have been pursued, the time multiplexed bus seems to be one of the simpler solutions

primarily since I2C was the desired communication bus and that typical MCUs have no more

than two I2C modules. General purpose I/O could have been used such that dedicated buses

existed for each quadrant, however this would require much more complex code and which would

not have even been practical. The time-multiplexed I2C bus switch system incorporates the use

80

5. SYSTEM CONTROL BOARD

of an analog multiplexer and an analog SPDT switch as described in Section 5.1.12. The active

I2C communication channel is selected by switching the SDA and SCL lines of the active I2C bus

to the dsPIC33 MCU SDA and SCL lines. The inactive channel SCL lines are switched to GND to

prohibit communication on those channels. This technique does not interfere with the I2C protocol

since as long as the I2C bus is inactive at the time that the SCL line is pulled to ground, there is no

chance of generating a false bus event such as a START or STOP. A total of four pins are occupied

in the dsPIC33 for the I2C bus switch, two GPIOs and the I2C pins SDA2 and SCL2. The bus

switch active channel is controlled by the GPIOs labeled AO and Al.

The firmware controlling the bus switch is comprised of a single timer. When enabled, this timer

will check the status of the I2C bus to verify the it is inactive. If the bus is free, the next channel

will be switched for a period of time and continuing in a cyclic fashion, see the flowchart below in

Figure 5.27.

When an I2C message is received, the I2C timer register is decremented by a factor of the time

splice allocated. This is accomplished by subtracting the value from the timer TMR register, defined

as TMR-BUS-SWITCH_TMR.

In order to calculate a reasonable switching frequency, the time required to satisfy an I2C request

must be considered. For an I2C SCL operating at 400kHz, as in the case of the I2C bus from the

cameras, with a message containing a 7-bit address, a R/W bit, 8-bits of data, two bits for Start

and Stop and two ACKs, a total of 20 clocks are required. Thus, we can approximate the absolute

minimum time requirement as shown below.

20
&ti2C-TRANS 400 x 103

= 50//s

The amount of between capsules should be considered, as a maximum time requirement. If

operating at the target inspection rate of 1000 capsules/minute, the amount of time between capsules

is 200ms. With this wide window, a reasonable switching time must be decided upon, it would not

be unreasonable to switch once every 1 ms. This way, a full cycle will occur every 4ms, or at a

frequency of 250kHz. With the code extending the time splice if an attempt to switch during a

transaction, meeting the time requirements should not pose any problems. From experimental tests,

this switching frequency exceeds the requirements of the system.

5.4.8 Job Queue

In a real-time firmware running a dedicated application, it is essential that the most important events

are attended to first. Scheduling in software is required for multi-tasking applications and important

81

5. SYSTEM CONTROL BOARD

C isr_BUS_SWITCH D
NO ' l2C1STAbits.S

T YES

i2c bs active bus

A YES

NO

/ \ YES
/
X

NO

>
/

>'
I2C_BS_A0 = ASSERTED

I2C_BS_A1 = DEASSERTED
i2c_bs_active_bus = 1

\
/

'
/ \ YES

>'
I2C_BS_A0 = DEASSERTED

I2C_BS_A1 = ASSERTED
i2c_bs_active_bus = 2

/ -, X

\
NO

/

/

'

/ X
NO

>

>r

I2C_BS_A0 = ASSERTED
I2C_BS_A1 = ASSERTED

i2c_bs_active_bus = 3

N

/

<
I2C_BS_A0 = DEASSERTED
I2C_BS_A1 = DEASSERTED

i2c_bs_active_bus = 0

> '

>'
I2C_BS_A0 = DEASSERTED
I2C_BS_A1 = DEASSERTED

i2c_bs_active_bus = 0

c D
Figure 5.27: Flow Diagram of Bus Switch Interrupt Service Routine

in real-time applications. The priority of a process is an important parameter in scheduling. For

the firmware design of the system control board, an rudimentary scheduling technique was devised

whereby time critical events are attended to immediately upon their occurrence, and low-priority

events being added to a low priority job queue that is serviced in the application main loop. The

job queue is used solely for tasks of low importance such as attending to the HMI events, setting

LCD text, fulfilling UART requests and managing the soft-power PC control. The job queue system

is comprised of two variables, a job structure and a set of four functions associated functions along

list of defined job IDs. The job structure is organized as follows (see Listing 5.5).

82

5. SYSTEM CONTROL BOARD

struct JOB {
unsigned char job_id;
unsigned char data[32];
unsigned char be;

I ;

/* Job Identification number */
/* Data for associated job */
/* Number of bytes of data (if used) */

Listing 5.5: Job Structure

This structure holds all relevant information of a particular job including an identification number

from a list of pre-defined IDs, an array of data for holding specific information for a job and a byte

count of the number of bytes of the array used. An array of JOB structures was created to hold

the queue of jobs. Two variables, namely curr-job and last-job were used to track the jobs in

the queue and the ones that have been serviced. A set of four functions, namely get-next-job (),

get-next-Curr-job(), add-job() and complete-job() were created for adding and removing jobs from

the queue. These functions are described in detail below.

• get_next_job() - Returns the next available job index number.

• get next_curr_job() - Returns the next unserviced job index number in the list.

• add_job(unsigned char jobJd) - Will add a job to job queue and increment the last_job

counter.

• complete-job() - Will remove the last job from the list and increment currjob counter.

By manipulating these functions and directly modifying data in the structure array, jobs can be

added to the queue rather conveniently. An example of adding a job to write a message to the HMI

is shown below (see Listing 5.6).

unsigned char tjob = get_next_job(); /* Get next available job index */
job_list[tjob].data[16] = 1; /* Select LCD Line to write message to */
sprintf (job_list[tjob].data, "Hello World!"); /* Write message to data array */
job_list[tjob].be = 12; /* Set message size */
add_job (LCD_WRITE) ; /* Add job with JobID code LCD_WRITE */

Listing 5.6: Adding HMI Message Job

This is a rather straightforward method of adding jobs without a great deal of processing over­

head. The job queue structure allows for flexibility in the types of jobs that can be serviced using

this technique. An example of servicing a job from the job queue is shown in the next code snippet.

The servicing of jobs is accomplished directly in the main loop as shown in Listing 5.7.

while (1) {
if (curr_job != last_job) \

switch (job_list[get_next_curr_job()] .job_id) {

case LCD„WRITE:
lcd_cursor_to (job_list [get__next_curr_job ()] .data [16] , 0); /* Go to

designate line number */

83

5. SYSTEM CONTROL BOARD

lcd_pr in t (j o b _ l i s t [get_next__curr_job ()] .da ta , j ob_ l i s t [ge t_nex t_cur r_ job
()] . b c) ; / * print message */

complete_job(); / * remove job from queue */
break;

}

}

}

Listing 5.7: Executing LCD Write Job

The designed job queue system was a convenient method of servicing low-priority routines of the

system control board MCU. It was suitable for all HMI handling, soft PC power control and UART

requests. It is flexible in the sense that the addition of new jobs can be integrated with ease.

5.4.9 I2C I/O Expansion Board Control

To facilitate control of I2C I/O expansion boards (see Section 5.3), several specific routines were

created to handle and organize these devices. In particular, a structure was created to hold infor­

mation pertaining to a specific I2C expansion board attached to the system and is described below

(see Listing 5.8).

struct I2C_I0_EXP {
unsigned char i2c_addr;
unsigned char bi2c_channel;
unsigned char inp;
unsigned char outp;
unsigned char ts_i2c_addr;
unsigned char ts_conf_reg;
unsigned char ts_temp_reg[2];

};

/*
/*
/*
/*
/*
/*
/*

I2C Slave Address */
Buffered I2C Interrupt Channel */
Input data */
Output data */
Temperature Sensor I2C Address */
Temperature Sensor Configuration Register */
Temperature Sensor Temperature Data */

Listing 5.8: I2C I/O Expander Structure

Several specific functions were created for manipulating the I2C I/O expansion boards. These

functions are used for reading and setting I/O values, configuring the temperature sensor and re­

trieving temperature sensor data. The functions created for I2C I/O board manipulation are listed

below.

• i2c io_exp„write (struct I2C_IO_EXP *io_exp) - Used to write data stored in specified

I/O expander structure to device.

• i2c Jo_exp_read (struct I2C_IO_EXP *io_exp) - Used to read data to I/O expander struc­

ture of specified device.

• i2c_io_exp„set_ts_conf (struct I2C_IO_EXP *io^exp) - Used to set the configuration

register of the temperature sensor of the I/O expander specified.

5. SYSTEM CONTROL BOARD

• i2cJo_exp_get_ts_conf (struct I2CJOJEXP *io_exp) - Used to read the configuration

register of the temperature sensor of the I/O expander specified.

• i2c_io_exp_get_ts_temp (struct I2C_IO_EXP *io_exp) - Used to read the temperature

from the temperature sensor of the I/O expander specified.

Manipulation of I/O on I2C I/O expanders is made rather straightforward with the abstraction

techniques used here. For example, operation of the HMI LCD is accomplished through an I2C I/O

expander board and the buttons and switches of the HMI are inputs to the I2C I/O expander. This

can be adapted however to a device for any purpose, as long as timing is not critical.

5.4.10 I2C Expansion Interrupt Control

The system controller board was designed to support I2C expansion with a total of eight buffered

P C connectors. Four of the eight connectors have an additional interrupt line for event detection.

The P C I/O expansion board uses this interrupt line to inform the dsPIC that an input change

event has occurred. At this point, the dsPIC33 can query the particular device that generated the

interrupt. The interrupt lines are connected to an AND gate and to GPIOs of the dsPIC, and

the output of the AND gate is connected an external interrupt of the dsPIC33. On an event, the

interrupt service routine will determine the source of the interrupt and create a job that will update

the register of the I2CJO-EXP structure instance. A code snippet of the interrupt service routine

is shown below (see Listing 5.9).

void
a t t r i b u t e ((i n t e r r u p t , n o j u t o j s v)) isr_BI2C (void)

{

unsigned char tjob;

INT_BI2C_IF = DEASSERTED;
if (!bi2c_lock) {

bi2c_lock = TRUE;
tjob = get__next_job () ;
job_list[tjob].be = 1;
job_list[tjob].data[0] = Oxff;

if (!BI2C_INT0)
job_list[tjob].data[0] = 0;

if (!BI2C_INT1)
job_list[tjob].data[0] = 1;

if (!BI2C_INT2)
job_list[tjob].data[0] = 2;

if (!BI2C_INT3)
job_list[tjob].data[0] = 3;

add_job (BI2C_EVENT);
)

)

Listing 5.9: Buffered I2C Interrupt Routine

85

5. SYSTEM CONTROL BOARD

By using an interrupt to detect events of an I2C slave devices, the firmware does not need to

poll these devices which in turn frees up controller resources. The biBcAock variable is used as a

software debounce since all the inputs used in the system are from push buttons and hence suffer

from jitter. This variable is reset in the system heartbeat timer after a set amount of time.

5.4.11 I2C LCD Control

As mentioned in the previous section, the control of the HMI is performed over I2C using an I/O

expansion board. This permits the 5V LCD to be controlled using the I2C master module bus of

the system controller at 3.3V. The OptiSorterwas equipped with an 16x2 character display with a

Hitachi HD44780 controller [10]. Using the I/O expander structure (see Section 5.4.9), the specific

I/O control sequence required to set data on the LCD is accomplished through a set of various

functions. The specific functions used for controlling the LCD are listed below. Because of the

limited I/O available on the I2C expansion board, the LCD is operated in 4-bit mode [10].

• lccLinit () - Initialize the LCD in 4-bit data mode

• lcd_push_nibble (char nibble) - Put a 4-bit nibble of data on the data lines and toggle EN

to load data

• lccLwrite^cmd (char cmd) - Send a command to the LCD

• lcd_write data (char data) - Write a character to the LCD

• lcd_set Jbl (char state) - Set HMI panel LED

• lcd^cursor.to (char line, char x) - Set LCD cursor to line and x position

• lcd_clear() - Clear the display

• lcd_print (char *msg, char len) - Write a series of characters (rnsg) to the display of length

len

Using these routines, writing messages to the LCD is rather straightforward to manipulate the

LCD. These routines use software delays to meet the timing requirements of the LCD. This is not

the most efficient way of accomplishing this, however the development time is reduced significantly.

Due to the fact that messages are infrequently updated on the HMI panel, it is not critical that an

event driven LCD driver is developed.

86

5. SYSTEM CONTROL BOARD

5.4.12 UART Handler

The system controller support a simple RS232 interface for more advanced machine control over

the simple HMI panel. The RS232 interface is used to set motor speed, control motor state, set

back-light strobe duration, retrieve counters and other system state information. Since a simple

HMI cannot possible fulfill all of these requirements in an elegant fashion, it was intended that an

additional control panel PC could be used for this purpose. The dsPIC33 has two built-in UART

modules one of which was used for machine control and status. The entire UART control was coded

in two functions and two interrupt service routines along with a couple of data buffers (one for

receive and one for transmit) and counters to track the index position of the buffer. The functions

used and interrupt service routines are described in detail below.

• init uart2() - Initialize the UART2 module using TX and RX line only at desired baud rate

(57.6kbps).

• uart_hdlr() - Handler called after six-byte UART command has been received. This function

performs data integrity check and fulfills the request.

• U2RXInterrupt() - ISR for UART received data. This function will load data into the

cyclic receive buffer uartj"x_buf.

• _U2TXInterrupt() - ISR for UART transmit data, this routine is called after a byte has been

successfully transmitted. This function will automatically load remaining data to U2TXREG

from the transmit buffer uarLtx-buf until complete.

Two structures were created to handle the data pointers for the transmit and receive buffers.

This structure is listed in Listing 5.10.

struct UART_Rx {
unsigned
unsigned

};

struct

char
char

UART_Ix {
unsigned
unsigned

);

char
char

wr;
rd;

wr;
rd;

Listing 5.10: UART Transmit and Receive Counter Structures

The received data format of dsPIC33 is a six-byte command where the first byte is the request,

followed by two bytes of optional data. The last three bytes are an XOR of the first three for simple

error checking (see Table 5.3).

The error checking employed is quite straightforward and uses minimal computational time to

verify the data. A code listing of the data verification is shown below. The error counter, err, is used

87

5. SYSTEM CONTROL BOARD

Byte

0x00

0x01

0x02

0x03

0x04

0x05

Description

UART command request

UART command data high

UART command data low

XOR of byte 0x00

XOR of byte 0x01

XOR of byte 0x02

Table 5.3: UART Command Format

to count the number of errors found in the data. If the error counter is not zero, an error has been

detected and the dsPIC33 will respond with an NACK, otherwise it will respond with an ACK. The

host PC will expect this response and can continue accordingly. The routine for handling incoming

UART requests is shown below (see Listing 5.11).

/* Perform Error Check
f o r (c = u a r t _ _ r x . r d ; c

}

/*
i f

i f ((u a r t _ r x _ b u f [c
e r r + + ;

Respond accordingly
(e r r) {
U2TXREG = 0 x 1 5 ; /*

/* Reset buffer po
u a r t „ r x . r d = u a r t _
u a r t _ c m d _ f l a g = 0 ;
r e t u r n ;

e l s e {

)

U2TXREG = 0 x 0 6 ; / *
/ * Wait for ACK ms

on data */
< u a r t _ r x . r d + 3 ; C + +) (

" u a r t _ r x _ b u f [c + 3]) != O x f f)

*/

NACK */

inters equal
r x . w r = 0 ;

ACK */
j to be sent

w h i l e (! U 2 S T A b i t s . T R M T) ;

*/

*/

Listing 5.11: UART Data Check and Response

The supporting UART commands are described in 5.4. The list of UART commands can easily

be expanded if required in future revisions. Since one byte is used for the UART command, 255

possible commands can be created. The UART commands were separated into get arid set with

respect to the PC. The get commands are used to retrieve data from the system control board, and

the set commands are used to send data.

Using these commands, all machine control can be operated by an external PC or device with

RS232 availability. This permits a highly customizable front-end for a finalized commercial product.

For the prototype, a simple 32-bit Windows application was developed as a demonstration applica­

tion on interfacing with the system controller. This application was developed in Microsoft Visual

Basic 6 and is described in detail in Section 6.9.

5. SYSTEM CONTROL BOARD

UART Command / Request

UARTCMD_SET_MOTOR_STAT

UARTCMD_SET_MOTOR_FREQ

UARTCMD_SET_BLx_WIDTH

UARTCMD_SET_FLx_WIDTH

UARTCMD_SET_CAMx_PULSEJ>OS

UARTCMD_SET_ACCEPT_ON_PULSE_POS

UARTCMD_SET_ACCEPT_OFF_PULSE.POS

UARTCMDJSET_MOTOR_STAT

UARTCMD_GET_MOTOR_FREQ

UARTCMD_GET_BLxJA/IDTH

UARTCMDJ3ET_FLx_WIDTH

UARTCMD_GET_CAMx_PULSE_POS

UARTCMDXET_ACCEPT_ON_PULSE_POS

UARTCMD_GET_ACCEPT_OFF_PULSE_POS

UARTCMD_GET_PC_PWR_STATE

UARTCMD-GET_GOOD_COUNT

UARTCMD_GET_BAD_COUNT

UARTCMD_GET_TOTAL_COUNT

UARTCMD_RESET_COUNTERS

UARTCMD_DEBUG_MODE

Description

Enable or disable the motor

Set motor frequency (in Hz)

Set the pulse duration of the backlight pulse, where x is

the backlight 0 or 1

Set the pulse duration of the frontl ight pulse, where x is

the frontl ight 0 or 1

Set the position of the camera trigger 0, or 1 pulse with

respect to motor pulses

Set the position of the accept start position (for pneu­

matic valves) with respect to motor pulses

Set the position of the accept end position with respect

to motor pulses

Get state of motor (running or stopped)

Get motor pulse frequency (in Hz)

Get the pulse duration of the backlight 0 or 1, pulse

Get the pulse duration of the frontl ight 0 or 1, pulse

Get the position of the camera trigger 0, or 1 pulse with

respect to motor pulses

Get the position of the accept start position (for pneu­

matic valves) with respect to motor pulses

Get the position of the accept end position with respect

to motor pulses

Get the power state of the PCs (two bits per PC)

Get the accept capsule count value for the specified quad­

rant

Get the reject capsule count value for the specified quad­

rant

Get the total capsule count value for the specified quad­

rant

Reset all counters to 0s

Put the system controller in debug mode or normal mode

Table 5.4: UART Commands

5.4.13 Soft P C Power Control

In order to facilitate a completely autonomous system, the power of the host PCs is controlled via the

system controller. This is accomplished by manipulating the power switch input of the motherboard

and monitoring the power LED output. A rather straightforward circuit was designed to simulate

clicking a power button as described in Section 5.1.11. The state of the four host PCs is read from

the input pins and is stored in a structure PC-PWRJ3TATUS where two bits hold the state of the

power. Three distinct power states were created, off, on and ready. Two bit masks are used to define

the power state as described below.

• PC.POWER^ON (bit 0) - Logic-one indicates the host PC is running, otherwise the power

89

5. SYSTEM CONTROL BOARD

is off

• PC_POWER_READY (bit 1) - This bit is used to indicate if the ready signal has been

received from the host PC software.

This is used to track the power status of the various PCs in the system. When the system starts,

the PCs are turned ON, and the system waits until a ready signal is received from all PCs. Once

all PCs are running and the inspection software is ready, the system if ready for inspection.

The state of the PC power is checked every heartbeat timer event, and the ready signal flag is

updated through an I2C message and reset on if an OFF state of a given PC is detected.

5.4.14 Capsule Tracking and Counts

A highly important measure in the design of the PharmaSorter, is that the pass/fail result of a given

capsule is correct. Thus, a capsule tracking system was developed for storing a pass/fail result for

each individual capsule. This is achieved using a two-dimensional array of pass/fail data for a buffer

of sixteen capsules for each quadrant. The array capsule-passfail along with a capsule ID tracking

variable cap.count is used to track and store inspection results for each capsule. The current capsule

cap^count is incremented every time a new capsule enters the inspection stage, ie. when a pulse

from the proximity sensor is seen. The host PC uses the master camera of each quadrant to request

the identity the capsule being inspected, and can used this ID to return a pass/fail result following

inspection.

A set of capsule counters is used to record the pass and fail results received from each quadrant

host PC. These values are stored in long type variables with a good, bad and total counter for

each quadrant. These counter variables are labelled capsule-totaLcount, capsule-good-count and

capsule Jiad-count.

5.4.15 Heartbeat Tinier

In order to perform occasional tasks in the system controller, a dedicated heartbeat timer is used.

For the heartbeat timer, Timer8 in the dsPIC33 is used. The heartbeat timer is used to flash the

HMI LED based on the state of the system, handle system shutdown, delay inputs for software

debounce, and update host PC power status. The interval at which the heartbeat timer is called is

approximately 205ms.

5.4.16 Debug Mode Timer

During the development it was desirable to have a debug mode within the system controller board.

The debug mode merely generates timed triggers for the cameras without running the motor or

90

5. SYSTEM CONTROL BOARD

monitoring the feedback from the proximity sensor. The debug mode timer is set to a fixed interval

and toggles between triggering the top-view and bottom-view cameras. When enabled, the debug

timer effectively triggers every 192ms. The debug mode timer is initially off, but can be enabled

through the RS232 control interface.

91

Chapter 6

Host PC

The host PCs are an integral part of the PharmaSorter that are responsible for acquiring images from

the USB2.0 cameras and performing inspection on the images. The host PCs are standard desktop

computers without the user essential portions such as monitor, keyboard and mouse. The host PCs

run autonomously without human intervention but can be access remotely for maintenance and

configuration. Many considerations were taken into account when selecting the host PC hardware

and operating system. For the system to be complete, several host PC software applications were

developed. The main application is inspect, which is responsible for the image acquisition and

processing. Several smaller applications were required including an application for loading the

firmware to the FPGA (fpgaJoaderss) and a camera initialization/calibration tool called cam-init.

6.1 Operating System Selection

Early in the project, it was decided upon that Linux was the best choice for the host PC operating

system. There are several significant advantages to using a UNIX-like OS, like Linux, for the

application. Linux can run an various architecture and is compatible with most desktop PCs. Some

of the desirable traits of Linux are listed below.

• Stable and secure

• Not dependent on a window manager (less resources used)

• Open source and free

• Reliable (long up-times)

92

6. HOST PC

Once it was established that Linux was to be used as the host operating system, the selection of

an appropriate distribution was the next step. Hundreds of distributions are based around the Linux

kernel and there is no singular distribution that is most appropriate for the application. However,

Debian was selected for it's popularity, renowned stability and polished package management system.

6.2 Hardware Selection

One of the most influential constraints on the entire project is the cost factor. Thus, the selection of

host PC hardware must reflect this requirement, however performance is also an important factor.

A compromise between performance and cost was sought out and an Intel Core 2 Quad system was

a reasonable trade off for the time at which the systems were purchased. The desktop PC market is

constantly changing and evolving. As a result, future generations of the PharmaSorter will benefit

from faster processors and higher data rates. The components used for the host PC are listed in

Table 6.1 with the cost at the time they were purchased (May 2008).

Part Number

ASUS P5K ATX

OCZ2P8001GK

BX80562Q6600

ST3250410AS

W0100RU

Description

Asus P5K ATX LGA775 P35 DDR2 2PCI-E16 1PCI-E1 SATA2 motherboard

OCZ PC2-6400 1GB (2x512) Platinum XTC Dual Channel RAM

Intel Core 2 Quad Q6600 / 2.4 GHz (1066MHz) -L2 8MB

Seagate 250GB SATA 3GB 7200RPM 16MB Hard Disk Drive

ThermalTake PurePower 500W ATX 2.0 Power Supply

Total

Cost

$142.03

$34.50

$249.00

$69.99

$63.00

$558.52

Table 6.1: Host PC Hardware

For a grand total (excluding applicable taxes and delivery fees), the cost of each inspection PC

is under $600. Each system is powerful enough for the application. To fixture the inspection PCs

in the system, a minor modification to the existing circuit board holder was required as cases were

not purchased.

The OptiSorterwas originally equipped with a circuit board rack that held a total of 17 boards

vertically in the system. This circuit board rack was retrofit to hold the four host PC motherboards.

The motherboards were significantly larger than the existing circuit boards and thus two new metal

plates were fabricated to meet the dimensional requirements of the motherboards. The new plates

also had mounting holes to mount a total of four standard hard disk drives, two on each plate.

This modification made it possible to mount all four host PCs inside the PharmaSorter. The power

supplies required for powering the motherboards were placed vertically underneath the motherboard

rack. They can be easily attached inside the machine by adding brackets to the lower support. The

PC mounting scheme is shown in Figure 6.1.

The cooling of the host PCs is accomplished by a set of two high throughput fans already existent

93

6. HOST PC

MOTHERBOARDS

/L\

HARD DRIVES

£>z^
CHASIS

POWER SUPPLIES

Figure 6.1: PC Mounting Scheme

in the OptiSorteralong with the CPU cooling fans on the motherboards. The. cooling fans operate;

at 240VAC and a simple 120V to 240V transformer was used to step up the voltage.

6.3 Software

The most liquid component of the PharmaSorter project is the software. The majority of the

software developed for the PharmaSorter was written in C and C++. Small GUI applications

intended for calibration were written in Python and simply provide a front-end to the C / C + +

applications. C /C++ are high level languages capable of low-level calls and thus are powerful

for software development. Developing in C / C + + yields high performance applications without

the extraneous overhead in other languages like Java or Python. All C / C + + applications were

compiled using the GNU gec / g++ compiler and intended to run on a Linux x86 system. The

PharmaSorter software applications include: inspect, fpgaJoaderss, camAnit, py_write-window and

py-carri-calibrate. An additionally application for advanced control of the system control board was

written for Microsoft Windows using Microsoft Visual Basic 6.0. This is a simple GUI example

application and is intended for a touch-screen HMI or the like.

6.4 inspect

inspect is the main software application used in the PharmaSorter. This application is responsible

for acquiring images from the cameras of the respective quadrant, performing the inspection using

94

6. HOST PC

image processing techniques and return a pass/fail result to the system controller (through the'

master camera of the quadrant), inspect is a threaded application that uses the prri-caw, driver (see

Section 4.6.2) to interact with the connected cameras. An external library contains all the image

processing functions used (liblP). Several Linux libraries are used by inspect including pthreads,

libtiff and libusb.

6.4.1 POSIX Threads

Threads allow applications to parallelize operations [15]. For the user-mode driver created, it is

essential to use threads in order to ensure no data is lost during the transfer from the camera and

that data can be acquired from multiple cameras simultaneously. There is limited buffering in the

camera hardware and thus if images were acquired sequentially, only the first image acquired would

be complete. With modern processors that have multiple cores, parallelism in software can take

advantage of more processing capabilities in a dedicated application such as the PharmaSorter. The

basic scheduling scheme of the inspect is shown in Figure 6.2.

BOTTOM

RIGHT

CENTER

SYSTEM CONTROLLER
MESSAGES m

I W

FT i*^-j-

TO

' ! • • . . . ' • • • "

77 TO l

JOIN / CREATE JOIN / CREATE

Figure 6.2: Inspect Software Scheduling Scheme

There are essentially a total of eight threads created for every capsule inspected. After finding and

initializing the USB2.0 cameras in inspect, the main loop is started where a set of image acquisition

threads are created for all top view cameras (ie. left, center and right). After created, these threads

are joined. Before each acquisition thread is finished, an image processing thread is created to process

the image acquired. Following the join, an image acquisition thread is created for the bottom camera

which is also joined in the main loop. After the bottom camera acquisition thread completes, the

cyclic buffer index is incremented and the capsule counter is also incremented. The image processing

threads are not joined. They are restricted to timing requirements but can finish at any point. Once

complete, the inspection result is stored in a global array. The master camera is responsible for

95

6. HOST PC

communication with the system controller and thus must obtain a capsulelD of the current capsule

from the system controller. It must also send a pass/fail result of the previous inspection. This is

accomplished in the acquisition thread for the master camera only. Due to the mechanics of the

machine, a capsule inspection result must be determined by at about the time the next capsule is

enters the inspection stage. Because of this constraint, the previous capsule inspection result is sent

to the system controller at the same time that the current capsulelD is being requested. A data

structure is used to hold specific information required by the threads including capsulelD, camera

position, quadrant, master flag, the threadID, the cyclic buffer index, local and remote capsule IDs,

and the capsule count. A basic flow diagram of the inspect application is shown in Figure 6.3.

The image acquisition thread and image inspection threads are like sub-processes within the

main inspect process. The acquisition and inspection thread flow diagrams are shown below in

Figure 6.4 and Figure 6.5 respectively. Note that there will be four of each of these thread running

simultaneously, one for each camera.

96

6. HOST PC

c START 3

NO

c END D

YES

Cleanup

c z>

Find Cameras

Create Image Acquisition Threads
for ALL Top View Cameras

Create image Acquisition Thread
for Bottom View Camera

Increment Cyclic Buffer Index
and Capsule Count

Update Statistics Files
(HTML and CSV)

Figure 6.3: Inspect Main Flow Diagram

97

6. HOST PC

C Acquisition Thread z>
Get Image

NO

Get Capsule ID from
system controller

Send Pass/Fail result of previous
capsule to system controller

Create Image Processing
Threads

c END 3
Figure 6.4: Inspect Image Acquisition Flow Diagram

98

6. HOST PC

inspect is intended to provide a system to control the inspection of capsules where some statistical

data is generated. For every capsule being inspected, HTML and CSV statistics files are updated

with capsule counts, misalignment error counter and the inspection rate. This file can be used for a

larger data collection system if desired.

A screenshot of the output HTML file is shown in Figure 6.6.

99

6. HOST PC

£ Image Processing Thread j

Analyze Image
(Perform Inspection)

Store inspection result in global array
capsule_pass_fail[cap_id][position]

NO

NO

Generate TIFF Filename
(based on Fail Reason)

> f
Write TIFF File to image

directory

> f

Get Capsule ID from
system controller

^
*> '

f END ")

Figure 6.5: Inspect Image Processing Flow Diagram

100

6. HOST PC

file Edit View History Bookmarks Tools Help

Li file:///o M N ilfi]'

Ql - Inspection Statistics

Inspection Results

Good Capsules
j Bad Capsules
j Empty Holders

2138 186.8%)

: 74 (3.0%)

: 250 (10.2%)

12462

5

I Total Capsules

Misaligned Images

Inspection Rate

| Elapsed Time ^79.940

Inspection Rate 189.4 caps/min

Effective Inspection Rate 170.17 caps/min

Last Updated: Tue 01 Jul 2008 14:55:56 -0400

Done I Adblock

Figure 6.6: Inspect HTML Output File

6-5 fpga_loader_ss

The minimization of components on the USB2.0 camera circuit board led to a minimalist technique

of loading firmware to the FPGA. In order to load the FPGA configuration bit-file, the FX2 firmware

was programmed with a series of USB vendor requests to fulfill the loading using the slave-serial

method as described in 4.3.6. This requires only five GPIO of the FX2 and is capable of programming

a 250kB file in under 30 seconds. This is reasonable for the application since the FPGA is only loaded

once, at startup.

Along with the firmware in the FX2, accompanying software must be developed. For this, an

application titled fpgaJoaderss was developed. This application reads in a FPGA configuration

bit-file, and through a series of vendor requests to the USB2.0 camera instructs the FX2 to "bit

bang" the bit-file data to the FPGA. The command line arguments required are a device address

of the device to program and a BIT file to load. Optional arguments include a verbose option and

FPGA powering options. The listing below is the help screen for the fpgaJoadss application.

101

file:///o

6. HOST PC

Usage: fpga„load_ss [OPTIONS]... [BIT FILE]

Options:

-h, --help Display this help screen

-v, --verbose Increase verbosity

-d, --device^BUS.DEV Select the bus and device to use

-1, --list List the devices on the USB bus

-p, --power <state> Soft power control to FPGA [on / off]

-r, --reset Soft reset to FPGA (once configured)

-V, --version Display version information

[BIT FILE] is the path to the BIT file generated using ISE

'path/foo.bit'

6.6 cam init

During the initial setup of the PharmaSorter, each camera initially must be loaded with location

information including the quadrant, position and a master flag. This information is stored in the

EEPROM of each device and is used by inspect to coordinate inspection. The camJnit utility is

intended for loading this information. Along with the camera location information, the windowing

parameters for the particular camera can also be loaded into the EEPROM following the memory

map in Section 4.5. This however, requires manually setting memory values using the camJ/nit tool

by specifying the memory address and data to write. The help screen for this utility is listed below.

Usage: carn_init -d= [BUS . DEV) [OPTIONS]...

Camera first time setup.

-d, —device Specify device to target as BUS.DEV

-q, --quadrant Specify camera quadrant

-p, --position Specify camera position

-m, —master Specify camera as quadrant master {responsible for cornrn. with contro] board)

-r, --read Retrieve ALL EEPROM data to screen

--quickread Retrieve the camera quadrant, position and master flag

-s, —save <FILENAME> Read data from EEPROM and save to <FILENAME>

-1, —list List all devices on USB bus

—blank Clear EEPROM memory with Oxff

-w, --write_eeprom [ADDR] [VAL] Write a value to a specific memory location of the EEPROM

-rb, --read_eeprom [ADDR] Read a specific byte of EEPROM memory

-rp, ~-reload_params Reload window parameters from EEPROM

*ADDR and VAL are decimal numbers

cam_init vO.Ol

Configuring a camera for a particular location requires the values specified for the quadrant,

position and master at the command line. Each of these command line arguments must be followed

by a value. The quadrant value ranges from 1-4, the position value ranges from 1-4 and the master

value is 0 or 1. The camera position identifiers are listed in Table 6.2.

102

6. HOST PC

Value

0x01

0x02

0x03

0x04

Oxff

Location

Center

Left

Right

Bottom

Undefined

Table 6.2: USB2.0 Camera Position Identifiers

6.7 py Window Config

To provide an easier way of configuring the camera window parameters, a GUI was created using

Python as a front-end for camJnit. This application uses the pyGTK libraries to create a. graphical

interface to read and set window parameters. A screenshot of the GUI is shown in Figure 6.7. The

device selection window is also shown in Figure 6.8 where the user can select the specific camera to

configure.

103

e. HOST PC

Window Options

Width

Length

X-Start

Y-Start

X-Bin

Y-Bin

Cancel

1538

768

180

200

Ok

Figure 6.7: pyWindowConfig Screen Shot

6.8 pyCamCal

A calibration tool was created to simplify the calibration process when installing cameras. Each

camera must be aligned such that the capsule is in the correct orientation in the image, and the focus

is set to the surface being inspected. This is a time consuming process, however with pyCamCal,

this process is more user-friendly. Using a version of inspect that allows command line window

parameters, and a single-shot mode option, pyCamCal can be used as a front-end for displaying

images according the the desired parameters set in the software. pyCamCal was developing in Python

and uses the pyGTK libraries. The following screenshots illustrate this application in operation, as

shown in Figure 6.8 and Figure 6.9).

JBus 007 Device 004: ID abcd:0201 [Q4:CENTER] : £i|

Ok |

Figure 6.8: pyCamCal USB Device Selection Screen Shot

6.9 W32 Control Panel Application

A control panel application was developed as an example front-end for advanced machine control.

This application was written in Microsoft Visual Basic 6.0 and uses the MSCOMM activeX control to

communicate over RS232 with the system control board. The application uses the commands listed

104

6. HOST 1'C

Width

Length

V-Start

>%airt

Figure 6.9: pyCamCal Main Window Screen Shot

in Section 5.4.12 to control the machine and acquire status information. Although not intended to

be used in a finished commercial product, the application demonstrates how such an application can

be developed in a rapid application development environment that can interface with the machine.

A screenshot of the demonstration application is shown in Figure 6.10.

6.10 Data Collection

As mentioned previously, inspect outputs both a CSV and HTML file with real-time statistics

regarding inspection. With this data available, a data collection system can poll each host PC

to gather this information. In order to facilitate this, an Apache webserver was setup for each

inspection PC to easily share data over Ethernet. Each host PC is connected to a network switch,

where individual systems can be accessed by their static IP address. This provides means to access

each system for maintenance or data collection remotely. The following table outlines the static IP

addressing scheme (see Table 6.3).

Quadrant

Qi
Q2

Q3

Q4

IP Address

192.168.1.101

192.168.1.102

192.168.1.103

192.168.1.104

Table 6.3: Host PC IP Addresses

The Apache webserver uses the /var/www directory to store HTTP accessible information. To

105

6. HOST PC

i PharmaSorter Control Panel

L'Jhle Optmns Debug Mjde

Motor Control:

5pi sd Hz) [i _

rwcr yate

nn . .
&

Enable " |

Rpihgn

Lightinq Control: - - - — -

Back Light 0 |£n7T ^ get' |

Bacl< Light 1 ^ '• , get j

F-ont Light 0 [7 £ £ ':", Set 1 !

Front Light 1 [" ^ •;- | e t j j

PC Power Control: -

Quadrant!

Toggli

System Monitor:

r
t

:
r

-
:

L

WKH3SB* JSEMKM

MflDEEM Q9E9HI
i

f /n
V ^

MESS

& • * •

« 3 E B —

«!

Qi

PC's Status:

"51
cc
'33
Oi

Onlhe
Online

On'he

Cnine

System Temperature:
Upper
Lower

N/A
M,'A

Capsule Counters:
Good

Bad
Tctal

31!
48
359

Connc tpd

Figure 6.10: W32 Control Panel Application Screen Shot

make the system data available over a simple web interface, the following files were linked (symbol­

ically) to this directory.

• statistics.html - Link to HTML output of inspect statistics

• statistics.csv - Link to CSV output of inspect statistics

• inspect.log - Link to output log of inspect

• . / images / - Link to images directory containing inspection images

6.11 File Organization

All executable files pertaining to the operation of the system are stored in /opt/pilLmachine of each

system. This includes all Linux applications listed above as well as the output statistical information

(statistics.html and statistics.csv). The image files are stored in /images and the log file is stored in

/var/log/pilLmachine/inspect.log. This file organization deemed suitable for the prototype and can

be easily modified.

106

6. HOST PC

6.12 Start Up

6.12.1 init tab

The start up sequence of the system is important for ensuring the system can operate autonomously.

This involved creating a simple start up script to load firmware to the hardware and start the inspect

application. The start up script is stored in /opt/pilLmachine/'start up. In order to have the start

up script to run on start up, it set as a process in the Linux /etc/inittab file. The entry in the inittab

file appears as follow.

6 : 2 3 : r e s p a w n : / o p t / p i l l _ r n a c h i n e / s t a r t u p

The code listing for the startup script is shown below, where program-cam.revB-ALL is the

firmware loader script.

#!/bin/bash

#PROGRAM CAMERAS

sleep 2

/opt/pi ll_machine/f pga_loader/program_carn_revB_ALL

sleep 4

«START INSPECTION SOFTWARE

/ o p t / p i l l _ r n a c h i n e / i n s p e c t _ v 6 / s r c / i n s p e c t - l e > / v a r / l o g / p i l l _ m a c h i n e / i n s p e c t

The output from the inspect application is stored in a log file in /var/log/pilLmachine/inspect.

This can be used to diagnose system errors and is linked to the /var/www directory for access over

HTTP.

6.12.2 Firmware Loading Script

The firmware loading script is used to load firmware to the camera FX2 microcontroller and the

FPGA. The FX2 firmware is loaded using an open-source tool called cycfx2load and the FPGA

firmware is loaded using a custom application called fpgaJoaderss (see Section 6.5). The firmware

loading script (program,-cam,-revB.ALL) is listed below.

#!/bin/bash

if [! -n "51"]

then

for pm_bus_addr in 'Isusb I egrep 'abed: 0201' I tr -d ' : ' I awk '{print $2". "$4 1' '

do

echo Programming FX2 on $pm_bus_addr.

cycfx2prog -d-$pm_bus_addr prg : f x2cam_f irmware__revB . ihx

cycfx2prog -d=$prn_bus_addr run

.107

6. HOST PC

e l s e

f 1

s l e e p 2

f o r pm_bus_addr in ' l s u s b | e g r e p ' a b e d : 0 2 0 1 ' | t r -d ' : ' | awk ' { p r i n t $2" . "$4 }'

do

echo Hard Power Rese t of FPGA on $pm_bus__addr.

. / f p g a _ l o a d _ s s -d=$pm__bus_addr - p o f f

s l e e p 0 .5

./fpga_load_ss -d=$pm_bus_addr -p on

done

sleep 2

for pm_bus_addr in ' lsusb I egrep 'abcd:0201' | tr -d ':' I awk '{print $2"."$4}'

do

echo Loading FPGA bit-file on $pm_bus_addr.

•/fpga_load_ss -d=$pm_bus_addr frame_grabber_vl.bin &

done

wait

cycfx2prog $1 prg:fx2cam_firmware_revB.ihx ; cycfx2prog $1 run

This script uses Isusb to identify the device address of matching devices by productID and

vendorlD. Using the USB device address, each specific device is programmed with the camera FX2

firmware. Following the loading of the FX2 firmware, the device will re-numerate [4] itself with the

camera program. This will cause the USB device address to increase. Using the new address, the

FPGA bit-file is loaded using fpgaJoadss.

108

Chapter 7

Assembling the Prototype

So far, each component of the system has been described in some detail. This chapter describes each

component's role in the prototype system along with the interconnection of components and the setup

requirements of each component. The PharmaSorterfollows the paradigm of a standard machine

vision system. It is comprised of an image acquisition component, a data processing component and a

machine control component. For the PharmaSorter, these components are the USB2.0 cameras, host

PCs and system control board respectively. For specifics on each component, see the corresponding

sections of this thesis and supporting documents in the appendix.

The assembly of the prototype starts with the removal of antiquated electronics from the Opti-

Sorter. This includes camera circuit boards, acquisition and processing boards, controller boards,

etc. Once stripped of all of these components, many unconnected wires will remain. It is recom­

mended that these wires are traced and labelled accordingly as assembly of the prototype involved

connecting existing hardware to new circuit boards. The assembly of the prototype also involved

finding areas to mount circuit boards and modifications to existing circuit board holders to house

new ones.

7.1 Wiring

For the prototype, electrical standard codes were not followed. The goal was to obtain a proof-of-

concept prototype, not a working commercial unit. The circuit board layout was designed to fit all

required circuit boards in the panel of the system. The following figures illustrate the circuit board

layout of the fixture in the system, see Figure 7.1 and Figure 7.2).

109

7. ASSEMBLING THE PROTOTYPE

Side Panel I/O
Expansion Baord

Stepper Motor
Controller Board

Front Panel I/O
Expansion Baord

DIN Rail

Slotted „
Wiring Duct

7

VOF45-12V
"Supply Board

Siemens
24VDC Supply

120VAC 12V Terminal 24V Terminal
Terminal Block Block Block

(fused)

Figure 7.1: Panel Layout (Front)

Slotted
Wiring Duct

PC Chasis '
Mounting Holes.,

System Control
^ Board

Figure 7.2: Panel Layout (Rear)

The host PC chassis is not shown in the panel layout, however must be designed specific to the

motherboards used in the system. Section 6.2 describes the host PC chassis used in the prototype.

The existing wiring was recycled and used for making all electrical connections, with the exception

of some standard cables such as USB and power supply cables. This required custom connectors to

be made for the wiring in some cases where connectors were used. The wiring diagram of the system

is shown in Figure 7.3. This is a high-level wiring diagram and for more specific wiring information,

refer to the appropriate sections of this document and additional documentation provided in the

appendices.

110

7. ASSEMBLING THE PROTOTYPE

7.1.1 USB2.0 Camera

The cameras are designed to fit in the existing housings and must be aligned such that the optical

center of the sensor is at the center of the lens. This requires modification to the housing. The

wiring for the USB2.0 cameras is rather straightforward. All cameras must be connected to their

respective quadrant host PC using standard USB Type-A to Type-B mini cables. For the prototype,

2 meter cables were used. A trigger cable must be connected to all cameras as well. The top cameras

use trigger 0 and the bottom camera uses trigger 1. The camera trigger connector has a trigger-IN

and a trigger-OUT. Thus, for the three top cameras, the trigger signal can be piggy-backed. The

delegated master camera of each quadrant also requires a connector to the I2C slave channel of the

system control board for the respective quadrant.

7.2 Firmware

The firmware for the system control board must be loaded using the Microchip ICD2 programmer

and the MPLAB IDE software. The firmware files are stored in the project directory in the fw-dsPIC/

directory.

The firmware for the USB2.0 cameras are soft-loaded during machine initialization through soft­

ware.

7.3 Host PCs

The host PC hardware must be installed in the system using a modified motherboard chassis. This

is briefly described in Section 6.2. Formal drawings were not created for this due to the fact that the

chassis dimensions are dependent on the motherboard selected. The host PC chassis must mount

motherboards and hard disk drives. For connection information regarding the specific host PC

hardware selected, refer to the corresponding user manuals.

7.3.1 Operating System

The OS used in the prototype systems was Debian 4.0 rev 3 with minimal packages installed. A

base X server with fluxbox window manager was installed to help debug system issues and aid in

calibration. Since the host PCs do not have input devices or monitors, remote access is required.

The SSH daemon was installed along with a VNC server. This allows graphical access to the remote

systems. An Apache web server was installed and setup to allow access to real-time statistical

information from inspect.

i l l

-f

33

c CD

C
O

(W
 tr

tr
1

CD
 <;

CD
 a 00
. O

IT

3

c
^

 ''
 N

-J

it
f!

jj

,
--

N
r,

t
U

-
u

**»
*

^
^

^

5>

C
O

C

O

ft

Q

ft

TJ
 o d H

7. ASSEMBLING THE PROTOTYPE

Once a working system was established on a single system, the hard drives were mirrored using

the dd tool. This allowed direct copies of the source drive to the additional three drives.

Each individual host PC requires specific configuration for network access. The /etc/network/in­

terfaces file was modified to set a static IP address for the system. The IP addressing is set to

192.168.1.10x where x represents the quadrant (ie, 1-4). This is used to remotely access each sys­

tem. Also, the hostname of each individual system was set in the /etc/hostname file that contained

the machine and quadrant number, ie (PM0Q1). Note that after the drive is cloned, the network

adapter interface number will change on the cloned systems, ifconfig can be used to determine the

interface number to use when configuring the /etc/network/interfaces file.

The /etc/inittab file is modified to include loading the camera firmware and starting the inspec­

tion software as specified in Section 6.12.

7.3.2 Software

The software required for machine operation is stored on each machine in /opt/pilLmachine/. These

file can be obtained from the project folder deploy directory where the README file contains more

specific information. There are no install scripts and thus each system must be configured manually.

113

Chapter 8

Recommendations and Conclusions

In order for any machine vision system to be introduced into the quality control process of the

manufacturing of any product, it is essential that some means of system verification is performed.

For a system to meet the standards required by the manufacturer, it must pass absolutely no flawed

product, and the amount of rejected good product should be minimized. Pharmaphil has developed

a document to quantify the competency of a system before introducing it into their process known

as the Factory Acceptance Test (F.A.T) [30]. Because the developed system is merely a prototype,

a thorough F.A.T has not been completed as software and hardware are continually evolving. The

F.A.T must be passed before the system can be introduced into the facility.

As a measure to ensure the prototype system would meet expectations, a testing and verification

stage was essential. This test was performed earlier in the development of the system and was not

formalized. The system was configured with two cameras per quadrant (one centre and one bottom).

For this stage of testing, the image processing routines for left and right images were incomplete

and a lack of cameras prohibited a full test. The majority of information resides in these angles

anyway. After various system tests, it was determined that the system was capable of providing

reasonable inspection at a rate of approximately 850 capsules per minute. The inspection results

were not formally recorded, however the following results were achieved:

• Absolutely no foreign capsules passed (ie. incorrect size, incorrect colour)

• Absolutely no incorrect size capsules passed

• Absolutely no dented capsules passed

• Absolutely no double capped capsules passed

114

8. RECOMMENDATIONS AND CONCLUSIONS

o Most bubbles were failed, although some did pass. This is likely due to the orientation of the

capsule, resulting in the bubble not being visible.

From the initial tests with two cameras per quadrant, the system was meeting it's expectations,

however it proved that four cameras per quadrant were required for a thorough inspection. Without

modifying the camera angles in the inspection stage, the left and right angles provide little infor­

mation on the top surface of the camera. An example of a capsule with a bubble defect is shown in

Figure 8.1. The orientation of the capsule is such that the defect is not clearly visible from the left

or right camera angles, proving that with the current configuration, a center camera is required to

provide a thorough inspection.

Center Camem View Right Camera View

Left Camera View Bottom Camera View

figure 8.1: Camera Views of Bubble Defect

Preliminary tests with a four-camera inspection quadrant prove successful in meeting the inspec­

tion criterion. This preliminary testing should be followed by a formal and structured verification

process.

The contributions to the project involve machine control and image acquisition. The capability

of inspection is primarily reliant on the image processing portion. The overall machine control and

image acquisition must be tested and verified to ensure proper images are obtained and that the

ejection of capsule is in the correct slot (accept/reject).

The testing of the machine control portion of the system primarily verified that the system

can operate at the desired inspection rate. Testing the system with a forced pass on all capsules

1J5

8. RECOMMENDATIONS AND CONCLUSIONS

demonstrated that the maximum operational capsule inspection rate exceeds 1200 capsules per

minute without skipping any capsules. Another verification was to ensure that the images arriving

at the inspection PC match the order required to perform inspection. Measures to ensure proper

alignment were necessary to ensure that the capsule images match the inspected capsule. Verification

of image acquisition was also required to ensure the camera drivers and associated software function

properly. This was accomplished by ensuring that the images match the capsule being inspected.

The overall goal of determining whether or not a system could be developed to perform indi­

vidual inspection of two-part gelatin capsules was successful. It is evident from the research and

development of this project that it is indeed possible to create a low-cost system that is capable

of inspecting capsules with a great deal of accuracy. Although the developed prototype system

does suffer from flaws, they are not significant enough to deter future development with the current

design.

Some design errors, due to inexperience and time constraints, were witnessed in the project. A

design error in the layout of the USB2.0 camera PCB resulted in the modification of the board.

This modification involved attaching patch wires to various regions of the board to the Cypress

FX2 USB2.0 MCU. The heat directly on the pins of the FX2 MCU damaged the device such that

it experienced intermittent resets. This problem seemed to be accelerated by the addition of light

to the image sensor (which is directly connected to the Cypress FX2). As a result, the modified

USB2.0 cameras experience failure after a short running time. There is no simple remedy for

this problem since the FX2 MCU is permanently damaged. Although replacing the device may

successfully remedy the problem, the time and complexity required for this would be overwhelming.

The simplest solution for the intermittent reset of the FX2 MCU is the submission of a corrected

layout design for fabrication.

USB2.0 seems to adequately meet the transfer rate requirements to meet timing requirements.

The maximum resolution of 3.1 megapixels is far more than what is required for the application.

By reducing the image resolution to about 0.3 megapixels, not only is the transfer time reduced

but the processing time is also reduced without compromising inspection. By reducing the image

size from 2048x1536 to a windowed region with pixel skip enabled for both the horizontal and

vertical directions [22], with a resulting image size of 768x384, the transfer and inspection times are

effectively decreased by a factor of about 10. This greatly improves system performance and allows

for better system throughput while meeting inspection detail requirements.

The addition of the fourth camera to the quadrants was a necessary step in ensuring a thorough

inspection. Although redundant information appears, this information does not negatively affect

inspection in any way.

From the testing stage, it seems that the software is quite stable and can run for extended periods.

116

8. RECOMMENDATIONS AND CONCLUSIONS

inspect was tested overnight to verify it's stability. Using two cameras with the sensors in test data

mode (to prevent failure from the instability problem mentioned earlier), the system was tested for

a period of about 15 hours with an external trigger firing every 500 ms. This test resulted in a total

of 200,000 successful image acquisition with a total of 12 misaligned images. Misalignment can be

caused by the OS shifting resources to other processes and is inevitable. This affected only 0.0123%

of the "inspections" and is quite negligible. Any inspection affected by a misaligned image will be

rejected.

The system control board seems to be quite stable when operated for extended periods. To

improve robustness of the system, the UART handler firmware should be improved. If UART

requests are performed incorrectly, the UART module will not work as expected and cannot recover

on its own. Thus, error handlers must be created so the UART module is not in an unexpected

state. On occasion, the system control board seems to report incorrect counts. This source of this

problem has not been determined but could be the way the variables are stored, or due to errors

occurring during the transmission to the PC over the UART interface.

An oversight in the design of the system control board requires that jumpers are placed across the

input interrupt pin and the 3.3V pin of the buffered I2C connectors for the interrupt to be properly

triggered. This will only affect the system if the interrupt is required on the buffered I2C slave

devices. This is because the interrupt lines are active low and are in an open drain configuration.

The simplest solution would be to include the pull-up resistors for the interrupt lines directly on the

system control board rather than on the peripheral board.

An additional oversight on the design of the system control board involves the soft PC powering

circuit. The motherboard tested for the design had different powering requirements than the actual

motherboard used in the final prototype. This required a minor circuit modification to properly

function. The circuit was designed such that the power switch on the motherboard caused the

input to be pulled high, however in the ASUS motherboards used, the power pin must be pulled

to ground. The circuit modification for the prototype was made by incorporating the changes in

the cable following the schematic shown in Figure 8.2. The two required modifications are outlined

and include the addition of a pull up resistor on the PWR_SW-+_n line to 3.3V, and connecting the

PWR_SW_-_n line to ground.

The USB2.0 camera FPGA firmware does not support colour interpolation and is limited to

outputting RAW data or grayscale interpolated image data. To support colour images, more output

data is required from the FPGA than is inputted to it. This would require the system to support

more buffering room, or the PXCLK of the image sensor would need to be divided accordingly. When

considering computational time versus transfer time, it must also be determined at which point it is

more feasible to perform interpolation in software rather than hardware. With the current system

117

8. RECOMMENDATIONS AND CONCLUSIONS

0805
330

PC PWR 0

R301

AW

SO301
38

'^<
'

PWR RW J. f)

P W R R W Rivin n

J - - -

CONN301
JUMPER2

1

MBO SWITCH

CONN301
JUMPER2

MBO SWITCH

Figure 8.2: System Control Board Soft PC Power Fix

configuration, the transfer time is roughly 15 to 20 ms. Thus, if full interpolation was performed to

output Y, U and V channels, the transfer time would be effectively three times the current transfer

rate, around 45 to 60 ms. Other data methods may include using colour channel data whereby

interpolation is not performed at all. In this technique, from the Bayer pattern image, the red,

green and blue channels can be extracted without interpolation. From this, a YUV image data

can be obtained with an effective image size of 1/4 of the interpolated version. It must be verified

that the data loss by skipping interpolation does not significantly impact inspection. This would

seemingly provide a reasonable image for the purposes of inspection. From preliminary tests using

this technique, the time required to extract the RGB colour channels from a 0.3 megapixel raw bayer

image is about 1.5 ms, with an extra 4.8 ms required to convert it to YUV. This is a total of about

7ms compared to 45 to 60 ms required to transfer the full YUV channels if converted in the camera.

It may be beneficial to explore colour channel extraction techniques further.

The finished prototype did have flaws and limited operating time, but was sufficient to prove that

such a system is realizable. With the development to date, the areas of weakness can be assessed

and with a proper development strategy, the system can be taken from the prototype stage to the

first generation commercial unit. Some optimization is required to reach the target inspection rate

of 1000 capsules per minute from the current approximately 800 capsules per minute. This should

be realizable in software and is an attainable target. The proof-of-concept prototype system was

developed throughout the course of the project from which Pharmaphil can begin designing the first

generation commercial units.

118

References

A. Karloff, N. Scott and R. Muscedere. A Flexible Design for a Cost Effective, High Throughput
Inspection System for Pharmaceutical Capsules. In 11th International Conference on Informa­
tion Technologxj, (WIT 2008), April 2008.

Analog Devices, Inc. CMOS 4-/8- Channel Analog Multiplexers ADG508A/ADG509A.
http://www.analog.com/static/irnported-files/data_sheets/ADG508A_509A.pdf, 2007.

Analog Devices, Inc. Triple/Quad SPDT CMOS Switches ADG1433/ADG1434.
http://www.analog.com/static/imported-files/data_sheets/ADG1433_1434.pdf, 2008.

Cypress Semiconductor Corporation. EZ-USB Technical Reference Manual.
http://download.cypress.com.edgesuite.net/design_resources/technical_reference_manuals/
contents/ez_usb_r technical_reference_manual__trm__14.pdf, 2005.

Daiichi Jitsugyo Viswill Co. Ltd. Capsule Visual Inspection System - CVIS-SXX-E.
http://www.viswill.jp/English/CVIS_E/cvis_index_e.html, 2005.

Edmund Optics Inc. Comparison of Camera Interfaces, April 2007.

Eisai Machinery U.S.A. Inc. Printing and Inspection for Tablets and Capsules.
http://www.eisaiusa.com/printingandinspection.htm, 2007.

Fairchild Semiconductor. 74AC139, 74ACT139 Dual l-of-4 Decoder/Demultiplexer.
http://www.fairchildsemi.com/ds/74/74ACl39.pdf, November 1999.

Fairchild Semiconductor Corporation. MOCD207M, MOCD208M Dual Channel Pho-
totransistor Small Outline Surface Mount Optocouplers. http://www.fairchildsemi.com
/ds/MO/MOCD208-M.pdf, November 2006.

Hitachi Semiconductor. HD44780 - Dot Matrix Liquid Crystal Display Controller / Driver.
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf.

International Rectifier. IRF7103Q HEXFET Power MOSFET. http://www.irf.com/product-
info/datasheets/data/irf7103q.pdf, March 2002.

International Rectifier. IRF7306 HEXFET Power MOSFET. http://www.irf.com/product-
info/datasheets/data/irf7306.pdf, September 1997.

Keil(TM). C51 Development Tools - Product Overview, http://www.keil.com/c51/, 2008.

Lambda Photometries. Illumination, http://www.lambdaphoto.co.uk/products/120.105, 2008.

119

http://www.analog.com/static/irnported-files/data_sheets/ADG508A_509A.pdf
http://www.analog.com/static/imported-files/data_sheets/ADG1433_1434.pdf
http://download.cypress.com.edgesuite.net/design_resources/technical_reference_manuals/
http://www.viswill.jp/English/CVIS_E/cvis_index_e.html
http://www.eisaiusa.com/printingandinspection.htm
http://www.fairchildsemi.com/ds/74/74ACl39.pdf
http://www.fairchildsemi.com
http://www.sparkfun.com/datasheets/LCD/HD44780.pdf
http://www.irf.com/product-
http://www.irf.com/product-
http://www.keil.com/c51/
http://www.lambdaphoto.co.uk/products/120.105

REFERENCES

Lawrence Livermore National Laboratory. POSIX Threads Programming, https://computing.
llnl.gov/tutorials/pthreads/, 2008.

Linear Technology Corporation. LTC1386 3.3V Low Power EIA/TIA562 Transceiver.
http://www.linear.com/pc/downloadDocument.do?navId=H0,Cl,Cl007,C1016,P1044,D1590,
1994.

Linear Technology Corporation. LT1763 Series 500mA, Low Noise, LDO Micropower
Regulators. http://www. linear. com/pc/downloadDocument.do?navId=HO, CI, C1003,C1040,
C1055,P1778,D3903, 1999.

Microchip Technology Inc. dsPIC33FJXXXGPX06/X08/X10 Data Sheet High-Performance,
16-Bit Digital Signal Controllers. http://wwl.microchip.com/downloads/en/DeviceDoc/
70286A.pdf, 2007.

Microchip Technology Inc. dsPIC33F Family Reference Manul High-Performance Digital Signal
Controllers. http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf, February 2006.

Microchip Technology Inc. Explorer 16 Development Board User's Guide.
http://wwl.microchip.com/downloads/en/DeviceDoc/Explorer%2016%20User%20Guide
%2051589a.pdf, July 2006.

Microchip Technology Inc. dsPIC30F/33F Programmer's Reference Manul High-Performance
Digital Signal Controllers. http://wwl.microchip.com/downloads/en/DeviceDoc/70157C.pdf,
March 2008.

Micron Technology Inc. MT9T001 1/2-Inch 3.1-Megapixel Digital Image Sensor Data Sheet.
http://www.micron.com, 2004.

Micron Technology Inc. Micron Imaging FX2 Firmware Overview. Evaluation Board Compan­
ion CD [CONFIDENTIAL], October 2004.

Neil E. Scott. USB2.0 Camera Technical Reference Manual. Internal Document, August 2008.

Neil E. Scott. System Control Board Technical Reference Manual. Internal Document, July
2007.

Neil E. Scott. I/O Expansion Board Technical Reference Manual. Internal Document, July
2008.

NXP Semiconductors. BSS84 P-Channel Enhancement Mode Vertical D-MOS Transistor Prod­
uct Data Sheet. http://www.nxp.com/acrobat_download/datasheets/BSS84_4.pdf, July 2007.

NXP Semiconductors. Remote 16-bit I/O expander for I2C-Bus with Interrupt.
http://www.nxp.com/acrobat/datasheets/PCA8575_2.pdf, March 2007.

NXP Semiconductors. P82B715 I2C-Bus Extender Product Data Sheet, http://www.nxp.com
/acrobat-download/datasheets/P82B715_7.pdf, May 2008.

Pharmaphil Inc. Factory Acceptance Test. Internal Document, January 2005.

STMicroelectronics. L78xxAB L78xxAC Precision 1A Regulators, http://www.st.com/stonline
/books/pdf/docs/2144.pdf, July 2008.

[32] Texas Instruments. Digital Temperature Sensor with Two-Wire Interface (Rev. J).
http://focus.ti.com/lit/ds/symlink/tmpl75.pdf, December 2007.

120

https://computing
http://llnl.gov/tutorials/pthreads/
http://www.linear.com/pc/downloadDocument.do?navId=H0,Cl,Cl007,C1016,P1044,D1590
http://www
http://wwl.microchip.com/downloads/en/DeviceDoc/
http://wwl.microchip.com/downloads/en/DeviceDoc/70046E.pdf
http://wwl.microchip.com/downloads/en/DeviceDoc/Explorer%2016%20User%20Guide
http://wwl.microchip.com/downloads/en/DeviceDoc/70157C.pdf
http://www.micron.com
http://www.nxp.com/acrobat_download/datasheets/BSS84_4.pdf
http://www.nxp.com/acrobat/datasheets/PCA8575_2.pdf
http://www.nxp.com
http://www.st.com/stonline
http://focus.ti.com/lit/ds/symlink/tmpl75.pdf

REFERENCES

[33] Texas Instruments Inc. TPS750003 Triple-Supply Power Managment IC for Powering FPGAs
and DSPs Data Sheet, http://focus.ti.com/lit/ds/symlink/tps75003.pdf, 2007.

[34] Texas Instruments Incorporated. CD4068B Types CMOS 8-Input NAND/AND Gate.
http://focus.ti.com/lit/ds/symlink/cd4068b.pdf, September 2003.

[35] Texas Instruments Incorporated. CD74HCT126. http://focus.ti.com/lit/ds/symlink/cd74hc
126.pdf, September 2003.

[36] Universal Serial Bus. Universal Serial Bus 2.0 Specification, http://www.usb.org/, April 2000.

[37] Unknown. GNU Radio - The GNU Software Radio, http://gnuradio.org/trac, 2008.

[38] Unknown. SDCC - Small Device C Compiler, http://sdcc.sourceforge.net/, 2008.

[39] Wikipedia.org. Universal Serial Bus. http://en.wikipedia.org/wiki/USB, July 2008.

[40] WingmanTeam(R). USB Snoopy, http://www.wingmanteam.com/usbsnoopy/, 2002.

[41] Xilinx Inc. Spartan-3E FPGA Family: Complete Data Sheet, http://www.xilinx.com/support/
documentation/data_sheets/ds312.pdf, April 2008.

121

http://focus.ti.com/lit/ds/symlink/tps75003.pdf
http://focus.ti.com/lit/ds/symlink/cd4068b.pdf
http://focus.ti.com/lit/ds/symlink/cd74hc
http://www.usb.org/
http://gnuradio.org/trac
http://sdcc.sourceforge.net/
http://Wikipedia.org
http://en.wikipedia.org/wiki/USB
http://www.wingmanteam.com/usbsnoopy/
http://www.xilinx.com/support/

Appendix A

Control Board Design Reference

A.l Control Board Schematics

The design schematics for the system control board.

122

A. CONTROL BOARD DESIGN REFERENCE

l 8
a 3

Hill

.: l y i, .A j i i i !

a s s s d i I § j

a g a a s l a i i i s

2 8

S'i

! « I II

a |

123

F
n

M
n

K
M

fi
H

T
j

O
80

5

'
R

?D
3

l
l

!
v

U
2

0
1

D
B

1 1-

IS
O

3
0

1

-
M

O
C

D
2

0
8

M

0
8

H
2C

«

0
8

0
5

I
F

D

B
A

C
K

I
If

tH
T

1

IR
F

7
3

0
6

U
2

0
2 •._
=.

:
T

F

ri

B
A

r:
k

n
r;

H
T

-

J
F

f]

R
A

^K
I

If
tH

T

0

J
F

n
R

A
H

K
I

If
iH

T

I

j.
p

n
R

A
H

K
II

G
H

T

?

J.
F

H

R
A

H
K

I
IG

H
T

3

8
le

rm
in

a
l_

sc
re

w

t

T
E

R
M

IN
A

L
B

L
O

C
K

 S
.O

S
M

M
 V

E
R

T
 B

P
O

S

'
R

2
0

7

'
0

8
0

5

i'T
'

IC
n

F
R

O
N

T
ll

P
iH

T

n

I
F

H

F
R

O
N

T
I

IK
H

T

1

J
F

D

F
R

O
N

T
I

If
tH

T

n

J
f

n
F

R
O

N
T

I
If

iH
T

1

J
F

I1

F
R

O
N

T
I

If
fM

T

P

J
F

D

F
R

O
N

T
I

If
iH

T

3

I
F

H

F
R

O
N

T
I

IF
5H

T

I

I
F

O

F
R

O
N

T
I

IR
H

T

P

T
E

R
M

IN
A

L
B

L
O

C
K

 5
.0

8
M

M
 V

I

D
R

IV
E

R
 C

IR
C

U
IT

 F
O

R
 L

S
D

 F
L

A
S

H
 L

IG
H

T
IN

G

,
p

n
_

p
w

n
_

n

IS
O

3
0

1

P
W

R

S
W

+

 f
l

l<

la

P
W

R

S
W

H

N
D

0

C
O

N
N

3
0

1

J
U

M
P

E
R

2

2

M
B

O
 S

W
IT

C
H

.
P

C
J

W
R

_

0
8

0
5

3
3

0

R
3

0
2 •'

V

IS
O

3
0

1

D
8

sl
o

t=

J
_s

""-""
 :2

P

W
R

S

W

+

1

:
P

W
R

 S
W

fiN

O

1

C
O

N
N

3
0

2

J
U

M
P

E
R

2

2

M
B

1
S

W
IT

C
H

.
p

c

P
W

H

p

0
8

0
5

3
3

0

R
3

0
3

IS
O

!

D
8

li

(0
2

P
W

R

S
W

*

•>

P
W

R

S
W

fiN

n
?

C
O

N
N

3
0

3

J
U

M
P

E
R

2

2

M
B

2
S

W
IT

C
H

0
8
0
5

3
3
0

R
3
0
4

,
P

C
P

W
R

3

IS
O

3
0

2

D
8

S
l0

,
=

2
P

W
R

 S
W

 »
 3

P
W

R

S
W

fiN

n
3

C
O

N
N

3
0

4

J
U

M
P

E
R

2

._-
.

,
?

M
B

3
S

W
IT

C
H

TI
TL

E

S
O

F
T

 P
C

 P
O

W
E

R
 S

W
IT

C
H

FI
LE

:
p
c_

p
o
w

e
r.
sc

h

P
A

G
E

O
F

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
.

O
 o

2 O
 o
 •>

t>

b

ft

o

2 SJ

ft

to

2 O

-
P

N
g

M

A
C

T
fl

U

IS
O

4
0

1

•
•,

M

O
C

D
2

0
S

M

D
IO

D
E

J
.A

Y

4
0

0

-
D

4
0

2

IN
4

0
0

2

'
D

IO
D

E
_

L
A

Y
4

0
0

D
4

0
3

1
N

4
0

0
2

'
0

IO
D

E
_

L
A

Y

4
0

0

C
O

M
N

4
0

1

•
E

D
Z

5
0

0
/2

D
S

D
4

0
4

1
N

4
0

0
2

'
D

IO
D

E
_

L
A

Y
 4

0
0

fi
te

rm
 i n

a
l_

s
c

re
 w

b
lo

c
fc

F
O

R
 1

N
4

0
0

2
D

IO
D

E
S

 -

IN
C

R
E

A
S

E
 H

O
L

E
 A

N
D

 P
A

D
 S

IZ
E

S
O

 H
O

L
E

 I
S

 A
T

 L
E

A
S

T
 3

5
M

IL

,
p

N
F

U
_

M
A

IN
_

S
U

P
P

I
Y

,
P

N
F

II
J

IP
P

F
R

S
U

t

R
4

0
5

3
3

0

0
8

0
5

"X

D
4

0
S

1
N

4
0

0
2

'
D

1
O

D
E

_
L

A
Y

4
0

0

D
4

0
6

IN
4

0
0

2

'
D

IO
D

E
_

L
A

Y
4

0
0

O
 o

O

o
 o

e
r

C
ir

cu
it

fo
r

P
n

e
u

m
a

ti
c

u_
_a

cl
 u

a
lo

r_
d

r i
ve

 r.
 s

c
h

D
R

A
W

N
 B

v-

N
E

IL
 S

C
O

T
T

to

Z

O

F
u

s
e

 H
o

ld
e

r
P

a
rt

N

u
m

b
e

r:

B
K

/1
A

3
3

9
8

-0
7

-R

C
O

N
N

5
0

1

2
te

rm
in

a
l

s
c

re
w

b

lo
c

k
F

5
0

1

2
A

C
O

N
N

5
0

2

2
te

rm
in

a
L

s
c

re
w

_
_

b
lo

c
k

E
X

T
E

R
N

A
L

2

4
V

"~

L
5
m

m
_
p
c
_
c
lip

_
fu

s
e
_
h
o
Id

e
r

E
X

T
E

R
N

A
L

 1
2
V

5
m

m
_
p
c
_
c
lip

_
fu

s
e
_
h
o
ld

e
r

h
e
a
ts

in
k
_
p
n
=

2
7
4
-1

A
B

U
5
0
1

T
O

2
2
0
L
A

V

C
5
0
1

E
IA

3
2
1
6

'

0
.3

3
u
F

C
5
Q

2

0
8
0
5

1
0
u
F

C
5
0
3

.

E
IA

3
2
1
6

1
0
u
F

R
5
0
1

0
8
0
5

U
5
0
2

D
8

L
T

1
7
6
3
C

S
8

—
 I

N

O
U

T

S
E

N
S

E

—
/S

H
D

N

B
Y

P

C
5

0
4

0
8

0
5

0
.0

1
 u

F

R
5

0
2

.
0

8
0

5

Z
E

R
O

C
5

0
5

E
IA

3
2

1
6

1
0

u
F

D
5

0
1

.

1
2

0
6

P
W

R

3
.3

V

R
5

0
3

0
8

0
5

3
3

0

T
IT

LE

V
O

L
T

A
G

E

R
E

G
U

L
A

T
IO

N

F
IL

E
:

p
o

w
e

r.
s

c
h

P
A

G
E

O
F

R
E

V
IS

IO
N

:
A

D
R

A
W

N
 B

Y
:

N
E

IL

S
C

O
T

T

O

O
 o

to

o

2 Z

P
R

O
X

Y
_

S
E

IM
S

O
R

_
C

O
N

N

1
2

te
rm

in
a

l_
s

c
re

w
_

b
lo

c
k

U
S

E
2

x
E

D
1

2
0

/6
D

S

1
.0

k

0
8

0
5

R
6

0
2

1
.0

k

0
8

0
5

R
6

0
3

1
.0

k

0
8

0
5

«'
'

"
R

6
0
4

1
.0

k

0
8
0
5

h

Is

IS
O

6
0
1

~:

'
.

M
O

C
D

2
0
8
M

2

'
D

8

L

.
Is

IS

O
6
0
1

Y

^

M
O

C
D

2
0
8
M

5

D
8

"-
-"

"~

s
lo

t=
2

11

1
 B

IS

O
6
0
2

Y

-«
-,

M

O
C

D
2
0
B

M

r
'

D
8

L
L

 IS
O

60
2

-r
'•

-,

M
O

C
D

2
0

8
M

|
+3

.3
V

 |
+3

.3
V

 1
+3

.3
V

 |

R
G

0
5

1
.8

k

0
8

0
5

R
6

0
6

1
.8

k

0
8

0
5

R
6

0
7

1
.8

k

0
8

0
5

R
6

0
8

1
.8

k

0
8

0
5

P
R

D
Y

Y

S
F

N
D

T
IT

LE

P
R

O
X

Y

S

E
N

S
O

R

IN
P

U
T

L

E
V

E
L

C

O
N

V
E

R
T

E
R

F
IL

E
;

p
ro

x
y

_
s

e
n

s
o

r_
in

p
u

ts
.s

c
h

R

E
V

IS
IO

N
:

1

P
A

G
E

O
F

D

R
A

W
N

 B
Y

:
N

E
IL

S

C
O

T
T

o o o CD

O
 to

o 2 2 o

1
2

3

4

5

6

E

E

J/
IO

T
O

R
_P

U
I

S
F

_I

R
70

1

16
0

08
05

R
70

2

10
k

08
05

I
'

-
'

.
8

IS
O

70
1

2
| 7

M

O
C

D
20

8M

J_

J
_

 D
8

G

S D

Q
70

1

S
O

T
23

M
O

T
O

R

P
ill

 S
F

R
70

3

10
k

08
05

.
M

O
T

O
R

_P
H

l S
F

C
O

N
N

70
1

—

1
 2

M
O

T
O

R
 P

U
LS

E

TI
TL

E
S

T
E

P
P

E
R

 M
O

T
O

R
 C

O
N

T
R

O
LL

E
R

 P
U

LS
E

FI
LE

:
st

e
p
p
e
r_

d
ri
ve

r_
_
o
u
t.
sc

h

R
E

V
IS

IO
N

:

P
A

G
E

1

O
F

1

D

R
A

W
N

 B
Y

:
N

E
IL

 S
C

O
T

T

C
/M

O
J
 f

lA

r.
A

M
n

j
cy

C
JM

W
?_

S
nA

P
A

M
?

_
I

g

rf
M

i
i
n
A

C
A

M
I

S
D

A

U
8

0
2

D
8

1
_

N
C

2

I.

3
«

,

:^
J

C
A

M
IJ

g

K
flM

i_
ag

r̂

M
a_

sn
A

C

A
M

nj
 g

C

A
M

_
B

g

C
O

N
N

8
0
1

JU
M

P
E

R
S

C

O
N

N
8
0
3

JU
M

B
E

B
4

B
U

F
F

E
R

E
D

 L
IN

E
 P

U
L
L
 U

P
 R

E
S

IS
T

O
R

S

.
H

A
M

fl
J
 H

A

G
A

M
O

_

O
/M

n

D
A

a

R
8

0
1

,
6

8
0

'I

0
8

0
5

I

R
8

0
2

.
6

8
0

0
8

0
5

Q
A

M
?

I
H

A

O
/M

?
I

C
.\

I

R
8

0
5

6
8

0

0
8

0
5

R
8

0
6

.
6

8
0

0
8

0
5

u
H

A
M

1
i

n

.
H

A
M

1
I

D
A

*3
.3

V
 I

C
O

N
N

8
0

2

JU
.M

P
E

R
4

..
. .

 ,

--

-
3

rj
iw

ii
i n

A

.
R

8
0

3

6
8

0

1
0

8
0

5

O
A

M
1

l
C

I

.
R

8
0

4

6
8

0

0
8

0
5

T
^M

.T

I
H

A

r/
M

.i

i
n

,
R

8
0

7

6
8

0

|
0

8
0

5

.
R

8
0

8

.
6

8
0

0
8

0
5

TI
TL

E

C
A

M
E

R
A

I2

C
 B

U
S

 B
U

F
F

E
R

R
L

E

ca
m

J2
c_

b
u

ff
e

r.
sc

h

PA
G

E

1

O
F

R
E

V
IS

IO
N

:
A

D
R

AW
N

 B
Y

:
N

E
IL

S

C
O

T
T

C
O

N
N

8
0

4

JU
M

P
E

R
4

O

O

2 O

to

O

•>
 o

t)

ft

C
O

 s 2 S3

2 O

.
C

A
M

T

R
in

n

2

.
C

A
M

T

B
lr

tn

n
il
F

n

3

.
C

A
M

T

R
IR

d

.
H

A
M

T

R
in

n

R

1
IF

1

•i

4 5 6

12

C
A

M

T

R
IR

1

-

*v

"
C

A
M

T

R
I0

1

R
IIF

O

-

30
E

.

3
Y

.

10

9

e

•3.3V

1

C
A

M

T

R
If

il

R
II
F

1

.

C
D

7
4

H
C

1
2

6
M

9
6

C
O

N
N

9
0

1

J
U

M
P

E
H

2

n
A

M
_
T

R
ir
a
i_

R
i
iF

n

C
O

N
N

9
0

5

J
U

M
P

E
R

2

C
A

M
_

T
R

IC
1

_
R

II
F

n

C
O

N
N

9
0

2

J
U

M
P

E
R

2

C
A

M
T

R
IC

n
R

M
F

d

C
O

N
N

9
0

6

JU
M

P
.E

R
2

C
A

M
_

T
R

IG
I_

R
II

F
n

C
O

N
N

9
0

3

1
U

M
P

E
R

2

C
A

M
J

T
R

IR
ri

J
II

IF
I

C
O

N
N

9
0

7

J
U

M
P

E
R

2

C
A

M

T

R
IR

1

R
l I

F
1

C
O

N
N

9
0

4

J
U

M
P

E
R

2

r.
a

u

T
R

in
n

R

I I
F
1

C
O

N
N

9
0

8

J
U

M
P

E
R

2

R
A

M

T
R

IR
1

R
II

F
1

TI
TL

E

C
A

M
E

R
A

 T
R

IG
G

E
R

 L
IN

E

B
U

F
F

E
R

FI
LE

:
c

a
m

_
tr

ig
g

e
rs

.s
c

h

P
A

G
E

O
F

R
E

V
IS

IO
N

:
A

D
R

A
W

N
 B

Y
:

N
E

IL
 S

C
O

T
T

U
10

02

D
16

m

C
A

M
1

S
O

 A

m

C
A

M
?

R
D

A

B

H
A

M
S

 R
H

A

s
n

A
i

4 5 6 7 8

G
N

D
_

V
O

D
_

,
A

n

,_
A

j_

.
IN

7

,
IN

S

,
IN

4

1
E

a#

2
A

O
a

3
A

T
,

°°
a

e
74

A
C

13
9

_
^

0
!

6
D

?a
*

Z
_0

3a
B

_
JL

G
N

D

0
2

b
#

_

03
b#

 _

U
10

03

S
S

O
P

20

m

T
A

M
O

 9
,C

.\

1 2 3

m
 s

n
1

4

_
vs

s

_G
N

D

TI
TL

E

I2
C

 B
U

S
 S

W
IT

C
H

FI
LE

:
i2

c_
bu

s_
sw

itc
h.

sc
h

PA
G

E

A
D

G
14

34

(T
S

S
O

P
)

O
F

S
4

A
.

S
4

B
.

N
C

 .

S
3B

_

S
3A

_

19

18

17

16

15

11

13

12

+ 12V

S
C

L.
,1

.

R
C

.\
1

a

H
A

M
?

S
H

I.

R
E

V
IS

IO
N

:

D
R

AW
N

 B
Y

O

O

2 o to

o to

to

cc

O

S)

to

•q

to

to

2 O

a

C
O

N
N

! 1
01

J.
U

M
P

E
R

4

.
R

1
1
0
1

.
R

1
1
0
2

6
8
0

6
8
0

0
8
0
5

I
0
8
0
5

B
U

F
F

E
R

E
D

 I
2
C

 B
U

S
O

 C
H

O

C
O

N
N

! 1
0
2

JU
M

P
.E

R
4

I
O

A
_
g
U

S
0

_
s
r.

i
?

U
11

01

D
8

1_
N

C

2
,.

3
S

T

B
U

F
F

E
R

E
D

 1
2C

 B
U

S
O

 C
H

1

C
O

N
N

1
1

0
3

JU
M

P
E

R
4

R
1

1
0

3
'

.
R

1
1

0
4

6
8

0
.

6
8

0

0
8

0
5

I
0

8
0

5
m

\r

.\

R
II

S
I

m

R
C

I
?

U
11

02

D
8

I_
N

C

2
,,

3
s

.

f_
G

N
D

V
C

C
.

N
C

.

P
8

2
B

7
1

5

B
U

F
F

E
R

E
D

 I
2

C
B

U
S

1
C

H
O

C
O

N
N

1
1

0
4

JU
M

P
E

R
4

B
U

F
F

E
R

E
D

I2

C
B

U
S

1
C

H
1

N
O

T
E

:
O

N
L

Y

S
L

A
V

E
 D

E
V

IC
E

S

S
H

O
U

L
D

B
E

 C
O

N
E

C
T

E
D

 T
O

 T
H

IS
 B

U
F

F
E

R
E

D

B
U

S
.

•
C

U
R

R
E

N
T

D
R

A
W

 S
H

O
U

L
D

 B
E

L

IM
IT

E
D

T
O

 A
 M

A
X

IM
U

M
 O

F
2

0
0

m
A

F

O
R

 A
L

L

E
X

P
A

N
S

IO
N

 C
O

N
N

E
C

T
O

R
S

3.

3V

S
U

P
P

L
Y

TI
TL

E

I2
C

E

X
P

A
N

S
IO

N

FI
LE

:
i2

c_
e

xp
a

n
si

o
n

.s
ch

PA
G

E

O
F

R
E

V
IS

IO
N

.
A

D
R

AW
N

 B
Y

:
N

E
IL

S

C
O

T
T

O

O
 o ft

to

Jo

0 t)

fa

C
o

Q
 2 S3

ft

ft

ft

=0

ft
 z

C
O

N
N

12
01

JU

M
P

E
R

5
R

12
01

R

12
02

68

0
68

0
08

05

|
08

05

R
I7

C
JN

T
0.

I
r.

l
R

l i
s_

w
i_

n

I
na

_R
i

is
_w

i_
n

i r
.l

_R
l i

s_
w

i_
n

l
nA

R

l
is

w
ij

t

B
U

FF
E

R
E

D
 I2

C
 B

U
SO

 C
H

O
 (W

IT
H

 IN
TE

R
R

U
P

T)

C
O

N
N

12
02

j

JU
M

P
E

R
5

I
r.l

R

l I
S

W

IJ

I
nA

_R
I I

S
_W

I_
^

i
r.l

_

R
I

IS
_

W
I_

O

i
n

a
R

iiq
 w

i
n

5

B
U

FF
E

R
E

D
 I2

C
 B

U
SO

 C
H

I
(W

IT
H

 IN
TE

R
R

U
P

T)

C
O

N
N

12
04

JU

M
P

E
R

S

R
I2

03

68
0

08
05

R
12

04

68
0

08
05

I
r.

l _
R

I I
S

_W
M

B
U

FF
E

R
E

D
 I2

C
 B

U
SO

 C
H

O
 (W

IT
H

 IN
TE

R
R

U
P

T)

C
O

N
N

 1
20

3
l3

JU
M

P
E

R
S

R
IP

C
JN

T
.t

i
r.

l
_

R
I

IS
_

W
IJ

i
n

t_
R

i
IS

_
W

M

B
U

FF
E

R
E

D
 I2

C
 B

U
SO

 C
H

I
(W

IT
H

 IN
TE

R
R

U
P

T)

.
R

i?
r.

 i
N

Tn

1 2

m
 R

l?
r.

 I
N

T1

3

m

R
\P

C
,

IN
T

9
4

R
i?

r.

iN
T

n
s

J=
/(

A
B

C
D

E
F

G
H

)

K
 =

 A
B

C
D

E
FG

H

N
O

TE
: A

LL
 B

I2
C

 I
N

Tx
 L

IN
E

S
 A

R
E

 A
C

T
IV

E
 L

O
W

N
O

TE
:

M
A

X
IM

U
M

 C
U

R
R

E
N

T
 D

R
A

W
 S

H
O

U
LD

 B
E

20
0m

A
 F

O
R

 A
LL

 B
U

FF
E

R
E

D
 I2

C
 E

X
P

A
N

S
IO

N
 C

O
N

N
E

C
TO

R
S

TI
TL

E

I2
C

 E
X

P
A

N
S

IO
N

F
IL

E
:

i2
c_

e
X

p
a

n
si

o
n

.S
C

h
R

E
V

IS
IO

N
:

P
A

G
E

O

F

D
R

A
W

N
 B

V
.

J

14

13

12

F

E

10

9

o
 o

o

t-
l

tr
j O

to

to

to

CO

O

to

o to

A
S

 N
M

V
ba

•N
0I

S
IA

3H

dO

[
3S

V
d

Lp
S

'3
S

U
9S

~
qW

31

U

3S
N

3S
 H

3M
O

d
BW

 3
d

31
m

Q

O

O
 o

o

-T
id

 i
 H

M
d

ra
w

<
fl

d
I

U
M

d
I'H

W

-U
d

I
H

M
d

W

«T
jd

 I
 H

M
d

dU
IA

I

zH
a

d
w

n
r

ttX
H

N
N

O
O

S
U

H
dl

W
ir

E
O

E
IN

N
O

D

-T
Jd

 i
 H

M
d

m
w

+?
)d

 f
H

M
d

^l
iJ

W

-T
JJ

 i
 H

M
d

m
m

->
Tj

d
I

H
M

d
IM

W

S
H

3d
lA

in
T

20

E
IN

N
O

O

2
H

3
d

l«
n

r
lO

ei
N

N
O

O

8
0

20
E

IO
S

I
J

'L

-U
d

i
H

M
d

IH
*I

+U
d

I
H

M
d

ty
ti

l
P

db
fN

dS

J
d

!l
"L

-u
d

ru
M

cT
id

h

+U
d

I
U

M
d

lU
ft

S
08

0
'

w
re

ty

'
S

08
0

so
e

m

'

20
E

LO
S

I

cT
"d

yN
dy

J

d

S
09

0
E

O
E

ld

'

-U
d

I
H

M
d

dU
fc

l

+Q
d

rd
M

d
^

tl
^

BQ
 4

-r

lO

C
iO

S
!

C
fd

S
N

dS

J
d

'J

'L

so
eo

L

O
E

IH

-U
d

I
H

M
d

U
U

fc

+U
d

!
H

M
d

U
«f

t

0
.1

 u
F

"

0
8

0
5

I

nL

,
i

C
1

4
0

1

:
o

.i

U
F

0
8

0
5

-
L

^

3

I
5

C
1

4
0

3

O
.l

u
F

0
8

0
5

C
1

4
0

4

0
.1

 u
F

C
1

4
0

5

0
.1

 u
F

0
8

0
5

C
O

N
N

1
4

0
1

S
U

B
D

F

E
M

A
L

E

L
A

Y

9

J
IT

S
O

J
1

X
O

0

fT
SO

1
0

,
T

R
2

 I
N

u

R
X

1
 O

U
T

T
IT

LE

R
S

2
3

2

T
R

A
N

C
E

IV
E

R

F
IL

E
:

s
e

ri
a

lj
n

te
rf

a
c

e
.s

c
h

P
A

G
E

O

F

R
E

V
IS

IO
N

:
A

D
R

A
W

N
 B

Y
:

N
E

IL

S
C

O
T

T

O

O
 o to

G

O

M

C
O

O

2;
 I s o to

2
te

rm
in

a
l

s
c

re
w

b

lo
c

k

R
1

5
0

1

1
.8

k

0
8

0
5

R
1
5
0
2

1
.8

k

0
8
0
5

F
S

T
D

P

S
in

n

IS
O

1
5
0
1

D
8

R
1
5
0
3

1
.8

k

0
8

0
5

2
te

rm
in

a
l_

s
c
re

w
_
b
lo

c
k

2
te

rm
in

a
l

s
c
re

w

b
lo

c
k

I S
0
1
5
0
2

D
8

2
te

 rm
 i
 n

 a
 l_

s
c
 re

 w
_
b
 lo

c
k

F
R

T
O

P

F
R

T
fJ

P

F
R

T
O

P

F
S

T
O

P

s
tG

n

2

R
IR

1

3

S
1P

n?

4

S
IR

S

5

J=
/(

A
B

C
D

E
F

G
H

|

K
 =

 A
B

C
D

E
F

G
H

E
-S

T
O

P

S
IG

N
A

L
S

 A
R

E

E
X

P
E

C
T

E
D

 T
O

 B
E

1

2
-2

4
V

.

F
O

R

D
IF

F
E

R
E

N
T

V

O
L

T
A

G
E

S
,

A
D

J
U

S
T

R

E
S

IS
T

A
N

C
E

V

A
L

U
E

S

TI
TL

E
E

-S
T

O
P

IN

T
E

R
F

A
C

E

F
O

R

M
U

L
T

IP
L

E

E
-S

T
O

P

IN
P

U
T

S

FI
LE

:
e

s
to

p
_

c
tr

l.
s

c
h

R

E
V

IS
IO

N
:

A

P
A

G
E

O
F

D

R
A

W
N

 B
Y

:
N

E
IL

S

C
O

T
T

o o ft

o t- ta
 o > ft

o t)
 to

«2
 5 2 ft

to

ft

to

8

A. CONTROL BOARD DESIGN REFERENCE

A.2 I 2 C I / 0 Expansion Board Schematics

The design schematics for the I 2 CI/0 expansion board.

138

A. CONTROL BOARD DESIGN REFERENCE

5 ^ S 5 S

A V • §: • AAA • a s I > v W • I : - A V • 8: i

5>£ 5-sS •<4

W - 8 S - A A A - l s I *• v W - S S * A V - S s I

A V * AAA

AAA i: AAA

Sd i£22£2£=a

§ 9 3

v / W • 8 S s A V • 8 S 5 ^ A V • 8 2 •; AAA • 8 5

a'o' $ 1
VW

h i
•wv

isi

i s S

.£

u
! :l !l

139

Appendix B

USB2.0 Camera FX2 Firmware

This section contains the firmware source code developed for the Cypress FX2 USB microcontroller

of the USB2.0 camera.

B.l Cypress EZ-USB FX2 Vendor Requests

A summary of the USB vendor requests of the USB2.0 camera.

/* Vendor Specific Requests - Note: OxAO to OxAF are reserved */

#define VRQ_I2C„READ 0x81 /* wValueL: i2c addr; wLength: data length */

#define VRQ_I2C_WRITE 0x08 /* wValueL: i2c addr; wLength: data length */

tdefine VRQ_READ__EEPROM_SM 0xE3

#define VRQ_WRITE_EEPROM_SM 0xE4 /* wValueL: i2c addr; wlndex: eeprom_addr;

wLengthL: data length */

#define VRQ__READ_EEPROM_LG 0xE6 /* wValueL: i2c addr; wlndex: eepromjddr;

wLenghtL: data length */

#define VRQJRITE„EEPROM_LG 0xE7

/* Set I2C Bus Speed */

(define VRQ_SET_I2C„SPEED 0xE5

/* Camera Specific */

((define VRQ_GET_CAM_STATUS OxEO

#define VRQ_READ_CAM_POSITION OxEl

/* Pill Accept/Reject */

#define VRQ_PILL_REJECT„ACCEPT OxFO /* wValueL: accept/reject (1,0); */

140

B. USB2.0 CAMERA FX2 FIRMWARE

/* Get Camera Quadrant and Position (read on startup from EEPROM) */

•define VRQ_GET_QUAD_POS OxFA

/* FPGA Commands */

«define VRQ_FPGA_FLUSH

#define VRQ„FPGA_RESET

#define VRQ_FPGA_POWER

OxFl

0xF2 /* wValueL: enable/disable (1,0) */

0xF3 /* wValueL: enable/disable (1,0) */

/* FPGA Loader Commands */

(define VRQ__FPGA_LOAD_SS

/* Sub Commands */

I define FPGA_LOAD_START

(define FPGA_LOAD_DATA

(define FPGA_LOAD_CHECKJ)ONE

0x01

0x02

0x03

/* Frame Synchronization Commands */

#defme VRQ_GET„FRAME_DROP_COUNT 0x30

#define VRQ_RESET_FRAME_DROP_COUNT 0x31

/* Turn on or off Frame Drop Interrupt */

(define VRQ_FRAME_DROP_INTERRUPT 0x32 /* wValueL: enable/disable (1,0) */

/* Window Set Commands */

(define VRQ_GET_WINDOW_PARAM

/* sub commands */

(define VRQ_GET_WINDOW_WIDTH

(define VRQ_GET_WINDOW_LENGTH

(define VRQ_GET_WINDOW_COL_START

(define VRQ_GET_WINDOW_ROW_START

(define VRQ_GET_WINDOW_COL_SKIP

(define VRQ_GET„WINDOW_ROW_SKIP

0x01

0x02

0x03

0x04

0x05

0x06

/* wlndexL: sub command */

(define VRQ_UPDATE_PARAMS

B.2 Micron Image Sensor Register Definitions

B.2.1 mLregs.h

/* Filename:
* mi_regs .h

* Description:
* Micron MT9T001 CCD Register Definitions

* Author:
* Neil Scott

* Date:
* December 14, 2006

(tifndef _MI„REGS_H
#define _M1_REGS_H 1

#define MI_REG_.CHIP_VERSION 0x00

B. USB2.0 CAMERA FX2 FIRMWARE

#define

#define

#define
#define

#define

#define
#define

#define

#define
#de£ine

#de£ine
#define

ftdefine
#define

#define

#de£ine
#define

#de£ine
#define

#de£ine

#define
#define

#define
#define

#define

#define

#define

#de£ine
#de£ine

#define

#define

#define

#define

#define
#define

MI_
MI.
MI_
MI.
MI_
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
Ml.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.
MI.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

REG

.REG.

.REG..

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

.REG.

..REG.

REG

.REG.

..REG.

.REG.

REG

.REG.

..REG.
_REG.

.REG.
_REG.

_REG.

_ROW_START

_COLUMN_START

.ROW_SIZE
_COL_SIZE

_HORIZ_BLANKING

_VERT_BLANKING
_OUTPUT_CONTROL

_SHUTTER_WID_UPPER

_SHUTTER_WIDTH
_PX_CLK_CTRL

.RESTART

_SHUTTER_DELAY
.RESET

_READ_M0DE__1

_READ__M0DE_2

_READ_M0DE_3
_ROW_ADDR_MODE

_COL_ADDR_MODE

_GREEN1_GAIN

_BLUE_GAIN
_RED__GAIN

.GREEN2_GAIN

_TEST_DATA

.GLOBAL_GAIN

_BLACK_LEVEL
ROW.BLK_DEFAULT_OFFSET

_BLC„DELTA_THRESH

_CAL_THRESH
_GREEN1_0FFSET

_GREEN2_0FFSET

_BLK_LEVEL_CAL

_RED_OFFSET
_BLUE_OFFSET

_CHIP„EN_SYNC
_CHIP__VERSI0N2

0x01

0x02

0x03
0x04

0x05

0x06
0x07

0x08

0x09
OxOA

OxOB

OxOC

OxOD

OxlE

0x20

0x21
0x22

0x23
0x2B

0x2C
0x2D

0x2E
0x32

0x35

0x49

0x4B

0X5D

0x5F

0x60

0x61

0x62

0x63
0x64

0xF8
OxFF

/* Skip and Din Modes */
#define Ml_COL_SKIP_NONE 0
#define MI..COL_SKIP_2X 1
idefine MI_COL_SKIP„.3X 2
#define MI_COL_SKIP_4X 3

#define MI_COL_SKIP_8X 4

tfdefine MI_.ROW_.SKIP_NONE 0

#define MI_ROW_SKIP_2X 1

fldefine MI_ROW_SKIP_3X 2

#define Ml_ROW_SKIP_4X 3

#define MI_ROW_SKIP_8X 4

#endif /* _MI_REGS_H */

B.3 FX2 Firmware

B.3.1 Makefile

srcdir ~ .

top_srcdir - . . / . .

XCC - sdcc -mmcs51 --no-xinit-opt

XAS = asx8051 -plosgff

DEFINES = -DHAVE_USRP1

DEFS = -DHAVE_CONFIG._H

INCLUDES = -1$ (top__srcdir) /firmware/include -1$ (top_srcdir) /f irmware/src -I../common

MEMOPTS = —code-loc 0x0000 —code-size 0x1800 —xram-loc 0x1800 —xram-size 0x0800 \

-Wl '-b USBDESCSEG = OxEOOO'

LIBOPTS = -L ../lib libfx2.1ib

142

B. USB2.0 CAMERA FX2 FIRMWARE

LIBDEP = ../Ilb/libfx2.1ib
LINKOPTS = $(MEMOPTS) $(LIBOPTS)
HEXF]LES = \

fx2cam_firmware.ihx

STARTUP = _startup.rel
FX2CAM_OBJS = \

vectors.rel \
f x 2 c a m _ m a i n . r e l \
f x2cam_comrnon . r e l \
u s b _ d e s c r i p t o r s . r e l \
$(STARTUP)

CLEANFILES = \

*.ihx *.lnk *.lst *.map *.mein * . rel * . rst * . sym * . asm *.lib

all: $(HEXFILES)

clean:
rm -rf $(CLEANFILES)

%.rel : %.c
$(XCC) $(INCLUDES) $(DEFINES) \
-c -o $@ "test -f '$<' II echo '$(srcdir)/''$<

%.rel : %.a51
test -f "basename '$<' x I I In -s '$<' .
test -f ../common/'basename '$<' * -o \

\! -f 'dirname '$<' V.. /common/ 'basename ' $<' * \
II In -s 'dirname '$<' V../common/'basename '$<'' ../common/.

$(XAS) "basename '$<''

fx2cam._firmware. ihx: $ (FX2CAM„OBJS) $ (LIBDEP)
S(XCC) $(LINKOPTS) ~o $@ $(FX2CAM_OBJS)

#fx2cam__blink_leds.ihx: $ (FX2CAM_0BJS) $(LIBDEP)
5(XCC) $(LINKOPTS) -o $@ $(FX2CAM_OBJS)

fx2cam_rnain. rel: fx2cam_common.h ../include/fx2cam_commands.h ../include/fx2regs.h ../include/
usb_cornmon. h

Ix2cam_common.rel: fx2cam„common.h ../include/fx2cam_commands.h ../include/fx2regs.h

B.3.2 fx2camxommon.h

/ * Filename:
* fx2cam__common. h

* Description:
* Camera firmware constants.

* Author:
* Neil Scott

* Date:
* September 13, 2007

* Notes:
* February 25, 2008:
* Revised for REV.3 of camera board. New routing.

*/

(tifndef J'X2CAM_C0MM0N_H
#define _FX2CAM_C0MM0N_H 1

#include "fx2regs.h"
#include <syncdelay.h>

/* USB Setup Packet */
#define bRequestType SETUPDAT[0]
#define bRequest SETUPDATfl]
#define wValueL SETUPDAT[2]

143

B. USB2.0 CAMERA FX2 FIRMWARE

#define wValueH SETUPDAT[3]
#define wlndexL SETUPDAT[4]
#define wlndexH SETUPDAT[5]
#define wLengthL SETUPDAT[6]
#define wLengthH SETUPDAT[7]

/* Camera Constants */
#define EPOBUFF_SIZE 0x40 /* 64-bytes */
#define I2C_EEPROM_ADDR 0x51 /* EEPROM I2C Address */

/* --=== FPGA RESET CONTROL ===--*/
#define FPGA_RESET„PORT IOA
#define FPGA_RESET J I T bmBIT7

/* — = „ FPGA POWER CHIP CS ===— */
/* FPGA Power Port */
#define FPGA_POWER_PORT IOE
/* FPGA Power Inputs */
tdefine FPGA_POWER_VCC__AUX brnBIT3
#define FPGA_POWER_VCC_0 bmBIT2
#define FPGA_POWER_VCC_INT bmBITl

/* --== = FPGA LOADER ===-- */
/* FPGA Loader Port */
#define FPGA_LOAD„PORT IOC
/* FPGA Loader Outputs */
#define FPGA_LOAD_CLK„BIT bmBIT3
#define FPGA_LOAD„DATA_BIT bmBIT2
#define FPGA_LOAD_PROG_.BIT bmBIT4
/* FPGA Loader Inputs */
#define FPGA_LOAD_INIT._BIT bmBITO
#de£ine FPGA_LOAD_DONE„BIT bmBITl

/* TODO: FPGA Interrupt Lines
* - Start of frame
* - End of frame
* - Frame error
*/

#define FPGA_FS_PORT IOA
#define FPGA_FS0_BIT bmBIT2
#define FPGA_FS1_BIT bmBIT3

/* TODO: I2C SCL Loop back
* - Used to check bus state before starting transmission
*/

#define SCL_LB_PORT IOC
tdefine SCL_LB_BIT bmBIT5

/* TODO: ADD ERROR CONDITIONS -- Maybe put in separate header */
/* System Error Codes */
fldefine ERR__FPGA_LOAD OxAl
ttdefine ERR„FPGA_FIFO_FULL OxBl

/* Function Prototypes */
void init„fx2cain (void) ;

#endif /* __FX2CAM_COMMON_H */

B.3.3 fx2camJds.h

/* Filename:
* fx2cam_ids.h

* Description:
* FX2 Camera USB IDs. Must be consistent with usb_descriptors.a51

* Author:
* Neil Scott
*
* Date:
* December 08, 2006

144

B. USB2.0 CAMERA FX2 FIRMWARE

#ifndef _FX2CAM_IDS_H_
#define ,_FX2CAM_IDS_H__ 1

/* Vendor ID and Product ID */
#define USB_FX2CAM_VID Oxabcd
#define USB_FX2CAM_PID 0x0201

/* Unconfigured Device ID */
#define USB„FX2CAM_DID_0 0x0000

/* Configured Device ID */
#define USB_FX2CAM_DID_1 0x0001

fendif /* _FX2CAM__ID_H_ */

B.3.4 fx2camJ2c addr .h

Filename:
fx2cam_i2c_addr .h

Description:
Defines for all 12c device addresses on bus

Author:
Nell Scott

Date:
December 08, 2006

#ifndef FX2CAM_I2C_ADDR_H
#define FX2CAM__I2C_ADDR_H 1

/* i2c addresses */
#define I2C_EEPROM 0x50
fdefine I2C_IO_EXP_7SEG 0x21
#define I2C_.IO_EXP_FKEYSi 0x20
#define MI_I2C_ADDR 0x5D
#define FPGA_I2C_ADDR 0x55
#define CB_I2C__ADDR 0x44
fdefine TMP175_I2C_ADDR 0x48
#endif /* FX2CAM__I2C_ADDR_H */

/* Microchip 24LC???? */
/* Philips I/O Expander for Seven Segment Display */
/* Philips I/O Expander for PBs Fl to F4 (dev board)
/* Micron Sensor I2C slave address */
/* FPGA I2C slave address */
/* Control Board I2C slave address */
/* TMP175 Temperature Sensor 12C slave address */

B.3.5 fx2cam_usb.h

#include <usb.h>
#include "fx2cam_commands.h"

#define FX2CAM._VENDOR_ID
#define FX2CAM_PRODUCT_ID

OxABCD
0x0201

/* USB Specific */
#define VENDOR_REQUEST_OUT 0x4 0
fdefine VENDOR„REQUEST_IN OxCO
#define BULK_EP2_OUT_ADDR 0x02
fdefine BULK_EP6_IN_ADDR 0x8 6

#define BULK._EP2_SIZE
fdefine BULK_EP6_SIZE

512
512

/ * Vendor Specific */
fdefine VRQ_I2C_WRITE 0x08
fdefine VRQ_I2C_READ 0x81
fdefine VRQ.JMEIL„GET_CAMERA_POS OxFE

fdefine VRQ_WRITE._EEPROM_SM OxFA
fdefine VRQ_READ_EEPROM_SM OxFB
fdefine VRQ_WRITE_EEPROM_LG OxFC
fdefine VRCj_READ„EEPROM„LG OxFD

145

B. USB2.0 CAMERA FX2 FIRMWARE

#define VRQ_SET_I2C_SPEED 0xE5

/* 7 Segment Display I2C Addr */
#define LED7SEG„I2C_ADDR 0x21
#define PBFKEYS„I2C_ADDR 0x20

tdefine FX2CAM_USB_TIMEOUT 2000

B.3.6 _startup.a51

Copyright 2003,2004 Free Software Foundation, Inc.

This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

The default external memory initialization provided by sdcc is not
appropriate to the FX2. This is derived from the sdcc code, but uses
the FX2 specific _MPAGE sfr.

;; .area XISEG {XDATA) ; the initialized external data area
;; .area XINIT (CODE) ; the code space consts to init XISEG
.area XSEG (XDATA) ; zero initialized xdata
.area USBDESCSEG (XDATA) ; usb descriptors

.area CSEG (CODE)

;; sfr that sets upper address byte of MOVX using @r0 or @rl
_MPAGE - 0x0092

,sdcc_external„startup: :
This system is now compiled with the --no-xinit-opt
which means that any initialized XDATA is handled
inline by code in the GSINIT segs emitted for each file.

We zero XSEG and all of the internal ram to ensure
a known good state for uninitialized variables.

; ...mcs51_genRAMCLEAR() start
mov rO,#1_XSEG
mov a,rO
orl a,#(1_XSEG >> 8)
jz 00002$
mov rl, # ((1_XSEG + 255) >> 8)
mov dptr, #s_XSEG
clr a

00001$: movx @dptr,a
inc dptr
djnz rO,00001$
djnz rl,00001$

;; We're about to clear internal memory. This will overwrite

B. USB2.0 CAMERA FX2 FIRMWARE

;; the stack which contains our return address.
; ; Pop our return address into DPH, DPL

00002$: pop dph
pop dpi

R0 and A contain 0. This loop will execute 256 times.

FWIW the first iteration writes direct address 0x00,
which is the location of rO. We get lucky, we're
writing the correct value (0)

00003$: mov @r0,a
djnz rO,00003$

push dpi ; restore our return address
push dph

mov dpl,#0 ; indicate that data init is still required
ret

B.3.7 usb_descriptors.a51

Filename:
usb__descriptors . a51

Description:
USB Descriptor table for the fx2 usb camera

Author:
Neil Scott

Date:
December 08, 2006
April 17, 2007 — Added EP1 Interrupt IN endpoint

.module usb„descriptors

; TODO — Set VID and PID once obtained, if obtained
VID_.FX2CAM = OxABCD ; Made Up VID
PID__FX2CAM = 0x0201 ; Made Up PID

;DID used to indicate if loaded with firmware
DID_.FX2CAM = 0x0001 ; Device ID (bed)

DSCR_DEVICE = 1 ; Descriptor type: Device
DSCR_CONFIG = 2 ; Descriptor type: Configuration
DSCR_STRING = 3 ; Descriptor type: String
DSCR_INTRFC = 4 ; Descriptor type: Interface
DSCR_ENDPNT = 5 ; Descriptor type: Endpoint
DSCR_DEVQUAL = 6 ; Descriptor type: Device Qualifier

DSCR_DEVICE„LEN = 18
DSCR_CONFIG_.LEN = 9
DSCR_.INTRFC_LEN = 9
DSCR._ENDPNT_LEN = 7
DSCR„DEVQUAL_LEN = 10

ET_CONTROL = 0 ; Endpoint type: Control
ET_ISO - 1 ; Endpoint type: Isochronous
ET_BULK = 2 ; Endpoint type: Bulk
ET_INT = 3 ; Endpoint type: Interrupt

;; configuration attributes
bmSELFJ>OWERED = 1 << 6

external ram data

147

B. USB2.0 CAMERA FX2 FIRMWARE

.area USBDESCSEG (XDATA)

descriptors used when operating at high speed (480Mb/sec)

even ; descriptors must be 2-byte aligned for SUDPTR{H,L} to work

The .even directive isn't really honored by the linker. Bummer!
{There's no way to specify an alignment requirement for a given area,
hence when they're concatenated together, even doesn't work.)

We work around this by telling the linker to put USBDESCSEG
at OxEOOO absolute. This means that the maximirnum length of this
segment is 480 bytes, leaving room for the two hash slots
at OxElEO to OxElFF.

As of July 7, 2004, this segment is 326 bytes long

_high_speed„device_descr::
.db DSCR_DEV1"CE_LEN
.db DSCR_DEVICE
.db <0x0200 ; Specification version (LSB)
.db >0x0200 ; Specification version (MSB)
.db Oxff ; device class (vendor specific)
.db Oxff ; device subclass (vendor specific)
.db Oxff ; device protocol (vendor specific)
.db 64 ; bMaxPacketSizeO for endpoint 0
.db <VID_FX2CAM ; idVendor
.db >VID_FX2CAM ; idVendor
.db <PID„FX2CAM ; idProduct
.db >PID_FX2CAM ; idProduct
.db <DID_FX2CAM ; bcdDevice
.db >DID„FX2CAM ; bcdDevice

. db SI__VENDOR ; ^Manufacturer (string index)

.db SI_PRODUCT ; iProduct {string index)

.db SI_SERIAL ; iSerial number (string index)

.db 1 ; bNumConfigurations

;;; describes the other speed (12Mb/sec)
. even

_high__speed_devqual_descr: :
.db DSCR„DEVQUAL_LEN
.db DSCR_DEVQUAL
.db <0x0200 ; bcdUSB (LSB)
.db >0x0200 ; bcdUSB (MSB)
.db Oxff ; bDeviceClass
.db Oxff ; bDeviceSubClass
.db Oxff ; bDeviceProtocol
.db 64 ; bMaxPacketSizeO
.db 1 ; bNumConfigurations (one config at 12Mb/sec)
.db 0 ; bReserved

. even
_high._speed__conf ig_descr: :

.db DSCR„CONFIG_LEN

.db DSCR_CONFIG

. db < (_higt_speed_conf ig_descr_end - _high_speed_conf ig__descr) ; LSB

.db >(_high_speed_config_descr_end - _high_speed_config_descr) ; MSB

.db 1 ; bNumlnterfaces

.db 1 ; bConfigurationValue

.db 0 ; iConfiguration

.db 0x80 ; bmAttributes

.db 100 ; bMaxPower

;; interface descriptor 0

.db DSCR_INTRFC_LEN

.db DSCR.„INTRFC

.db 0 ; blnterfaceNumber (zero based)

.db 0 ; bAlternateSetting

.db 1 ; bNumEndpoints

.db Oxff ; blnterfaceClass {vendor specific)

.db Oxff ; blnterfaceSubClass {vendor specific)

148

B. USB2.0 CAMERA FX2 FIRMWARE

. db Oxff ; blnterfaceProtocol (vendor specific)

.db 0 ; ilnterface (description)

;; endpoint descriptor EP2IN
.db DSCR_ENDPNT_LEN
.db DSCR_ENDPNT
.db 0x82 ; bEndpointAddress (ep 2 IN)
.db ET_BULK ; bmAttributes
.db <512 ; wMaxPacketSize (LSB)
.db >5]2 ; wMaxPacketSize (MSB)
.db 0 ; blnterval (iso only)

_high_speed__conf ig_descr_end:

; descriptors used when operating at full speed (12Mb/sec)

. even
__full__speed„device_descr: :

-db DSCR_DEVICE_LEN
.db DSCR__DEVICE
.db <0x0200 ; Specification version (LSB)
.db >0x0200 ; Specification version (MSB)
.db Oxff ; device class (vendor specific)
.db Oxff ; device subclass (vendor specific)
.db Oxff ; device protocol (vendor specific)
.db 64 ; bMaxPacketSizeO for endpoint 0
.db <VID_FX2CAM ; idVendor
.db >VID_FX2CAM ; idVendor
.db <PID_FX2CAM ; idProduct
.db >PID._FX2CAM ; idProduct
.db <DID_FX2CAM ; bcdDevice
.db >DID_FX2CAM ; bcdDevice
.db SI_VENDOR ; iManufacturer (string index)
.db SURODUCT ; iProduct (string index)
.db SI_NONE ; iSerial number (None)
.db 1 ; bNumConfigurations

;;; describes the other speed (480Mb/sec)
. even

_full. speed_devqual_descr: :
.db DSCR_DEVQOAL_LEN
.db DSCR_DEVQUAL
.db <0x0200 ; bcdUSB
.db >0x0200 ; bcdUSB
.db Oxff ; bDeviceClass
.db Oxff ; bDeviceSubClass
.db Oxff ; bDeviceProtocol
.db 64 ; bMaxPacketSizeO
.db 1 ; bNumConfigurations (one config at 480Mb/sec)
.db 0 ; bReserved

. even
_full_speed_config„descr::

.db DSCR„CONFIG_LEN

.db DSCR_CONFIG
• db < (._full_speed_config_descr„end - _full_speed__config_descr) ; LSB
.db >(„full_speed_config_descr_end - _full_speed_config„descr) ; MSB
.db 1 ; bNumlnterfaces
.db 1 ; bConfigurationValue
.db 0 ; iConfiguration
.db 0x80 ; bmAttributes
.db 100 ; bMaxPower

; ; iriterface descriptor 0 (command & status, epO COMMAND)

.db DSCR_INTRFC_LEN

.db DSCR__INTRFC

.db 0 ; blnterfaceNumber (zero based)

.db 0 ; bAlternateSetting

.db 0 ; bNumEndpoints

.db Oxff ; binterfaceClass (vendor specific)

149

B. USB2.0 CAMERA FX2 FIRMWARE

. db Oxff ; blnterfaceSubClass (vendor specific)

.db Oxff ; blnterfaceProtocol (vendor specific)

.db 0 ; ilnterface (description)

_f ull__speed_conf ig_descr_end:

string descriptors

„nstring_descriptors::
.db („string_descriptors_end - _string_descriptors) / 2

_string_descriptors::
.db <strO, >strO
.db <strl, >strl
.db <str2, >str2
.db <str3, >str3

_string__descriptors_end:

SI_NONE = 0
;; strO contains the language ID's.
. even

strO: -db strO_end - strO
.db DSCR_STRING
-db 0
.db 0
.db <0x0409 ; magic code for US English (LSB)
.db >0x0409 ; magic code for US English (MSB)

strO._end :

SI_VENDOR - 1
. even

strl: .db strl_end - strl
.db DSCR_STRING
.db 'U, 0 ; 16-bit Unicode
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

' n,
' i-r

' v*
' e,
' r,
' s,
' i,
' t,
' y,

' ,
' o,
' f,
' ,
'W,
' i,
' n,
'd,
' s.
' o,
' F/

strl_end:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

SI__PRODUCT = 2
. even

str2:
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

.db str2_end -
DSCR_STRING
'U,
' s,
'B,
' ,
'C,
' a,
' ni,

' e,
' r,
' a,

str2_end:

0
0
0
0
0
0
0
0
0
0

- str2

150

B. USB2.0 CAMERA FX2 FIRMWARE

SI_SERIAL = 3
. even

s t r 3 : .db str3_end - s t r3
.db DSCR_STRING
. db ' 0, 0
.db '] , 0
.db ' 2 , 0
. db ' 3, 0
.db ' 4 , 0
. db ' 5, 0
.db ' 6 , 0
. db ' 7, 0

str3_.end:

B.3.8 vectors.a51

-include "../common/vectors.a51"

B.3.9 eeprom_regs.h

/* eeprom_regs.h

* Definition of EEPROM registers

* Author: Neil Scott

*/

#ifndef EEPROM„REGS_H
#define EEPROM_.REGS_H

#define PM_EEPROM_WIDTH_HIGH„ADDR 0x20
#define PM_EEPROM_WIDTH_LOW_ADDR 0x21
#define PM_EEPROM_LENGTH_HIGH_ADDR 0x22
#define PM_EEPROM_LENGTH_LOW_ADDR 0x23
#define PM__EEPROM_COL_START_HIGH_ADDR 0x24
#define PM_EEPROM_COL„START_LOW_ADDR 0x2 5
#define PM_EEPROM_ROW_START_HIGH_ADDR 0x26
tfdefine PM„EEPROM_ROW_START_LOW._ADDR 0x2 7
#define PM__EEPROM_COL_SKIP_ADDR 0x28
tdefine PM_EEPROM_ROW._SKIP_ADDR 0x29

tendif /* EEPROM_REGS_H */

B.3.10 fx2cam_common.c

/ * Filename;
* fx2carn_common. c

* Description:
* Initialization for the Cypress FX2 MCU.
*
* Author:
* Neil Scott
*
* Date:
* December 08, 2006
*
* August 10, 2001 - Changed IFCONFIG so IFCLK runs at 30MHz instead of 48MHz,
* This seems to have corrected the data loss problem when
* the slave FIFO was filling.
*/

#include "fx2cam_common.h"

void
in i t_f x2carn (void)

151

B. USB2.0 CAMERA FX2 FIRMWARE

/* Set CPU Clock to 48MHz */
CPUCS = bmCLKSPDl | bmCLKOE; //48MHz
//CPUCS = bmCLKSPDO I bmCLKOE; //24MHz
SYNCDELAY;
/* Set MOVX instruction to take 2 cycles (default is 3) */

/* Set IFCONFIG Register
* Set 3048MHZ to 48MHz FIFO Clock
* Modified - Set 3048MHZ to 30MHZ FIFO Clock
* -- attempt to fix data loss problems
* Set IFCLKSRC to external clock on IFCLK pin
* Set ASYNC to 0 for synchronous FIFO operation
*/

IFCONFIG = bmlFCLKSRC I bm3048MHZ I bmlFCLKOE I bmlFCFGMASK; SYNCDELAY;

/* Set Inputs SLOE, FIFOADDRO, FIFOADDR1, PKTEND */

/* Configure I/O Ports for lOOpin FX2
* by default. All set to input

*/

/•> Port A Initial State */
IOA = 0x00; -•
/* Set Port A Direction */
OEA = 0;

/* Port C Initial State */
IOC = 0;
/*- Set Port C Direction */
OEC = 0; /* Leave Floating initially */

/* Port E Initial State */
IOE = FPGA_RESET_BIT;
/* SeL Port E Direction */
OEE = FPGA_POWER_VCC_AUX I FPGA_POWER_VCC_0 I FPGA_POWER_VCC_INT I FPGA_RESET_BIT;

/* Disable Auto Arming of AUTOOUT.
* Set Enhanced Packet Handling

* Recommended by Cypress to set both bits high
* (PI 5.24 TRM)
*/

REVCTI- = bmDYN_OUT | bmENH_PKT; SYNCDELAY;

/* Configure USB Endpoints */

/* Disable EP1 */
EP10UTCFG =• 0; SYNCDELAY;
EP1INCFG = 0; SYNCDELAY;

/* Camera Data Endpoint is Quad-Buff Bulk-In EP2 */
EP2CFG = bmVALID I brnlN I bmBULK I bmQUADBUF;
SYNCDELAY;

/» Disable other EPs */
EP4CFG = 0; SYNCDELAY;
EP6CFG = 0; SYNCDELAY;
EP8CFG = 0; SYNCDELAY;

/* NAK All transfers from host */
FIFORESET = bmNAKALL; SYNCDELAY;

/* Reset EP2 FIFO */
FIFORESET = 0x02; SYNCDELAY;
FIFORESET = 0x00; SYNCDELAY;

/* F,P2 AUTOOUT = 0, AUTOIN = 1, ZEROLEN =1, WORDWIDE = 1 */
//EP2FIFOCFG = OxOD; SYNCDELAY;

EP2FIFOCFG = bmAUTOIN I bmZEROLENIN I bmWORDWIDE; SYNCDELAY;

/* Set FLAGA to EP2 Full Flag */
PINFLAGSAB = OxOC; SYNCDELAY;

152

B. USB2.0 CAMERA FX2 FIRMWARE

/* Auto Commmit 512 byte packets */
EP2AUT0INLENH = 0x02; SYNCDELAY;
EP2AUTOINLENL = 0x00; SYNCDELAY;

FIFOPINPOLAR - 0x3F;
SYNCDELAY;

/* Set Polarity of EP2 Full Flag */
EP2FIFOPFH = 0x80;
SYNCDELAY;
EP2F1FOPFL - 0x00;
SYNCDELAY;

/* Must reset EPOBCH because power-on-reset state
* is undefined (P8.8 TRM)
*/

EPOBCH - 0; SYNCDELAY;

/* Set J.2C serial clock to 400KHz (default is 100kHz) */
I2CTL |- bm400KHZ;

B.3.11 fx2cam_main.c

Filename:
fx2cam_main.c

Description:
USB Firmware for FX2 Camera.

Author:
Neil Scott

Da t e ;
December 10, 2006

*/
#include "usb_common.h"
#include "fx2cam_common.h"
ttinclude "fx2cam_commands.h"
#include "fx2utils. h"
include "i 2 c.h"
#include "isr.h"
#include "delay.h"
#include "Lx2cam_i2c_addr.h"
#include "rni„regs. h"
#include "eeprom__regs. h"

/* Camera Position Registers */
volatile unsigned char camera_quadrant;
volatile unsigned char earnera_jposition;
volatile unsigned char camera_rnaster;
volatile unsigned int frame_drop_count;

/* Sensor Window Registers
volatile unsigned int
volatile unsigned int
volatile unsigned int
volatile unsigned int
volatile unsigned int
volatile unsigned char
volatile unsigned char

window_width;
window_length;
x_TEMP;
window_col_start;
window_row__start;

window_col_skip;
window__row__skip;

/* Error Code Register */
volatile unsigned int err_reg;

/* Function Prototypes */
void load_camera_config (void);

void
get_ep0„data {void)

153

/* Arm EPO */
EPOBCL =• 0;

/* Wait until busy flag is clear */
while (EPOCS S bmEPBUSY);

/* Handle Vendor Requests to endpoint 0
* If handled non zero is returned
*/

unsigned char
app_vendor_cmd (void)
1
unsigned short addr;
unsigned short len;
unsigned short be;
unsigned char xdata ee_str[3];
unsigned char i, j, k;
unsigned long timeout;

/* In Requests */
if (bRequestType == VENDOR_REQUEST_IN) (

switch (bRequest) {
/* Read 12C bus, data is returned through EPOBUF */
case VRQ„I2C_READ:

/* Wait of SCL pin (must be high) */
while (!(SCL_LB_PORT S SCL_LB„BIT));

if (!i2c_read (wValueL, EPOBUF, wLengthL))
return 0;

F.POBCH = 0;
EPOBCL = wLengthL;
break;

case VRQ__SET_I2C_SPEED:
/* wValueL = 0 - lOOKHz

* wValueL = 1 - 400KHz
*/

/*if (IwValueL)
I2CTL 4 = ~bm100KHZ;

else
I2CTL 1= bm400KHZ;

*/
I2CTL = wValueL;

EP0BUF[0] = 0x08; /* ACK */
EPOBCH = 0;
EPOBCL = 1;

break;

case VRQ_GET„CAM_STATUS:

break;

case VRQ_READ_CAM_POSITION:

break;

case VRQ_READ_EEPROM_SM:

break;

case VRQ_READ_EEPROM_LG:
addr = wValueL;
addr |= wValueH << 8;

len = wLengthL;
len |= wLengthH << 8;

while (len) (

/* One Packet at a time */
while (EPOCS & bmEPBUSY);

if (len < EPOBUFF„SIZE)
be = len;

else
be = EPOBUFF_SIZE;

i = 0;
Z/wValueH;

ee_str[i++] = addr >> 8;
Z/wValueL;

ee_str[i++] = addr 4 OxOOff;

/* Write EEPROM address to device */
if (!i2c_wnte (I2C_EEPROM_ADDR, ee_str, i))

return 0;

/* Read EEPROM data to buffer */
if (!i2c_read (I2C_EEPROM_ADDR, EPOBUF, be))

return 0;

EPOBCH = 0;
EPOBCL = be;

addr +- be;
len -~ be;

)

break;

case VRQ_GET_QUAD_POS:
/* Respond with Camera position / master info
EPOBUF[0] = camera_quadrant;
EPOBUF [1] = carnera_position;
EPOBUF[2] = camera_master;
EPOBCH = 0;
EPOBCL = 3;
break;

case VRQ_GET_WINDOW_PARAM:
switch (wlndexL) {

case VRQ_UPDATE_PARAMS:
/* Re-read from EEPROM */
load_camera_config();
EPOBUF[0] = 0x08;
EPOBCH = 0;
EPOBCL = 1;
break;

case VRQ_GET„WINDOW_WIDTH:
/* Respond with window width */
EPOBUF[0] = window_width >> 8;
EPOBUF[1] = window_width & Oxff;
EPOBCH = 0;
EPOBCL = 2;
break;

case VRQ_GET_WINDOW_LENGTH:
/* Respond with window length */
EPOBUF[0] = window_length >> 8;
EPOBUF[1] = window_length 4 Oxff;
EPOBCH = 0;
EPOBCL = 2;
break;

case VRQ_GETJINDOW_COL_START:
/* Respond with window column start */
EP0BUF[0] = window_col„start >> 8;
EP0BUF[1] = window_col_start S Oxff;
EPOBCH = 0;
EPOBCL = 2;
break;

B. USB2.0 CAMERA FX2 FIRMWARE

case VRQ_GET_WINDOW_ROW_START:
/* Respond with window row start */
EPOBUF[0] = window_row_start >> 8;
EP0BUF[1] = window_row_start s Oxff;
EPOBCH = 0;
EPOBCL = 2;
break;

case VRQ„GET_WINDOW_COL„SKIP:
/* Respond with window column skip (x - binning) */
EP0BUF[0] = window_col_skip;
EPOBCH = 0;
EPOBCL = 1;
break;

case VRQ_GET_WINDOW_ROW_SKIP:
/* Respond with window row skip (y - binning) */
EP0BUF[0] = window_row_skip;
EPOBCH = 0;
EPOBCL = 1;
break;

case VRQ_FPGA_LOAD_SS:
switch {wlndexL) {

case FPGA_LOAD_START:
/ * Send the FPGA the Start signal */
/* Pulse PROG_B (active low) */

/* Set FPGA LOAD port I/O directions */
IOC |= FPGA_LOAD_DATA_BIT;
OEC = FPGA_LOAD_CLK_BIT I FPGA_LOAD_DATA_BIT I FPGA_LOAD_PROG_BIT;

/* Tiny Delay */
rndelay (10) ;

/* timeout - just in case */
timeout = 0x05ff;

/* Pulse PROG__B low */

/* Wait for INIT_B line to go high, or timeout to expire */
while (!(FPGA_LOAD_PORT & FPGA_LOAD_INIT_BIT) SS timeout) (

FPGA_LOAD_PORT & = ~FPGA_LOAD_PROG_BIT;
udelay(500);
timeout--;

)

/* Send response to host */
if (FPGA_LOAD„PORT & FPGA_LOAD_INIT_BIT)

EP0BUF[0] = 0x01; /* Success */
else

EP0BUF[0] = 0x00; /* Failure */

/* Acknowledge */
EP0BUF[1] = 0x08;

EPOBCH = 0;
EPOBCL = 2;
break;

case FPGA_LOAD_CHECK„DONE:
/* Check the DONE bit */

/* timeout */
timeout = 0x2fffff;

/* Set DIN low and supply CLKS */
FPGA_LOAD_PORT &= ~FPGA_LOAD_DATA__BIT;

/* Supply CLK until DONE__B goes high */
while (!(FPGA_LOAD„PORT S FPGA_LOAD_DONE_BIT) SS timeout) {

FPGA_LOAD_PORT |= FPGA_LOAD_CLK_BIT;
FPGA_LOAD_PORT &= ~FPGA_LOAD_CLK_BIT;

i :

B. USB2.0 CAMERA FX2 FIRMWARE

timeout — ;
)

/* Send response to host */
if (FPGA_LOAD_PORT & FPGA_LOAD_DONE_BIT)
EP0BUF[0] = 0x01;

else
EP0BUF[0] = 0x00;

/* Acknowledge */
EP0BUF[1] = 0x08;

EPOBCH = 0;
EP0BCL = 2;
break;

default:
break;

)
break;

case VRQ_FPGA_POWER:
/* Disable FPGA Power Chip */
if (iwValueL) (

FPGA_POWERJ>ORT & = "(FPGA_POWER_VCC_AUX
! FPGA_POWER_VCC_0
] FPGA_POWER_VCC_INT) ;

/* Set FPGA Loader port to all inputs with initial state of DIN high */
IOC = FPGAJOADJ)ATA_BIT;
OEC = 0;

/* Respond with ACK to host */
EP0BUF[0] = 0x08;

)
/* Enable FPGA Power Chip */
else if (wValueL == 1) {

FPGA_POWER_PORT |= FPGA„POWER„VCC„AUX
I FPGA_POWER_VCC_0
I FPGA_POWER„VCC_INT;

/* Respond with ACK to host */
EP0BUF[0] = 0x08;

)
else f

/* Respond with NACK to host */
EP0BUF[0] = 0x00;

)

EPOBCH = 0;
EP0BCL = 1;
break;

case VRQ_FPGA_RESET :
/* Set FPGA Beset Mode: 0-disable, 1-enable */
if (IwValueL) (

/* Take FPGA out of reset */
FPGA_RESET_PORI |= FPGA_RESET_BIT;
/* Respond with ACK to host */
EP0BUF[0] = 0x08;

I
else if (wValueL ==1) (

/* Put FPGA in reset */
FPGA_RESET_PORT S= ~FPGA„RESET_BIT;
/* Respond with ACK to host */
EP0BUF[0] = 0x08;

)
else {

/* Respond with NACK to host */
EP0BUF[0) = 0x00;

1

EPOBCH = 0;
EP0BCL = 1;

B. USB2.0 CAMERA FX2 FIRMWARE

break;

case VRQ_FRAME_DROP_INTERRUPT:
/* Enable / Disable Frame Drop Interrupt: O-disable, 1-enable */
if (iwValueL) (

/* Respond with ACK to host */
EP0BUF[O] = 0x08;

1
else if (wValueL ~= 1) 1

/* Respond with ACK to host */
EP0BUF[0] = 0x08;

}
else {

/* Respond with NACK to host */
EP0BUF[O] = 0x00;

EPOBCH = 0;
EPOBCL = 1;
break;

case VRQ_GET_FRAME„DROP_COUNT:
/* Fill EPO buffer with frame drop count */
EP0BUF[1] = (frame_drop_count >> 8) & OxOOff;
EP0BUF[OJ = frame_drop_count S OxOOff;

EPOBCH = 0;
EPOBCL = 2;

break;

case VRCLRESET_FRAME_DROP_COUNT:
/* Reset frame drop counter */
frame_drop_count ~ 0;

/* Respond ACK to host */
EP0BUF[0] = 0x08;

EPOBCH = 0;
EPOBCL = 1;
break;

default:
return 0;

)
)

/* Our. Requests */
else if (bRequestType == VENDOR_REQUEST_OUT) (

switch (bRequest) {
case VRQ_I2C_WRITE:

get_epO„data ();

/* Wait of SCL pin (must be high) */
while (!(SCL_LB„PORT S SCL_LB_BIT));

if (!i2c_write(wValueL, EP0BUF, EPOBCL))
return 0;

break;

case VRQ_PILL„REJECT„ACCEPT:
qet_epO_data ();
break;

/* Write to large size microchip EEPROM (address more than 8 bits)
case VRQ_WRITE_EEPROM_LG:

addr = wValueL;
addr != wValueH << 8;

len = wLengthL;
len |= wLengthH << 8;

while (len) (

//get__epO_data ();

158

B. USB2.0 CAMERA FX2 FIRMWARE

EPOBCH = 0;
EPOBCL = 0;
while (EPOCS s bmEPBUSY);

be = EPOBCL;

for (i = 0; i < be; i++) (
ee_str[0] = addr >> 8;
ee_str[l] = addr s OxOOff;
ee_str[2] = EPOBUF(i);
if (!i2c_write(I2C_EEPROM_ADDR, ee_str, 3))

return 0;
mdelay(5);

addr++;

)

len be;

break;

/* TODO: Is this necessary? */
case VRQ_FPGA_FLUSH:

if (iwVaiueL) (
/* Skip Comitting Out Packets
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;

EP2FIFOBCH
EP2FIFOBCL
FIFORESET =
FIFORESET =
FIFORESET =
OUTPKTEND =
OUTPKTEND =

= 0x00
= 0x00
0x80;
0x02;
0x00;
0x82;
0x82;

SYNCDELAY
SYNCDELAY
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;

else {
/* Skip Comitting Out Packets */
OUTPKTEND = 0x82; SYNCDELAY;
OUTPKTEND = 0x82; SYNCDELAY;

EP2FIFOBCH
EP2FIFOBCL
FIFORESET =
FIFORESET =
FIFORESET =
OUTPKTEND =
OUTPKTEND =
OUTPKTEND =

= 0x00
= 0x00
0x80;
0x02;
0x00;
0x82;
0x82;
0x82;

SYNCDELAY
SYNCDELAY
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;
SYNCDELAY;

break;

/* FPGA load routine using slave-serial mode */
case VRQ„FPGA_LOAD_SS:

switch (wlndexL) {
/* Write data */
case FPGA_LOAD_DATA:

get_ep0_data();

/* Get Byte Count */
be = EPOBCL;

/* Bit-Bang data to FPGA */
for (j = 0; j < be; j++) (

k = EP0BUF[j];

/* Loop through each byte */
/* MSB first */
for (i = 0; i < 8; i++) (

/* Set Data bit */
if ((k s 0x80))

FPGA_LOAD_PORT 1= FPGA_LOAD_DATA_BIT;

159

B. USB2.0 CAMERA FX2 FIRMWARE

else
FPGA_LOAD_PORT S= ~FPGA_LOAD_DATA_BIT;

/ * Shift data one left */
k = k << 1;

/ * Pulse Clock */
FPGA_L0AD_PORT |= FPGA_LOAD_CLK_BIT;
FPGA__LOAD_PORT S= "FPGA_LOAD_CLK_BIT;

)
)

/* Check INIT_B - goes LOW on error */
if (!(FPGA_LOAD_PORT & FPGA_LOAD_INIT_BIT)) I
/* Set Error Flag */
err_reg 1= ERR_FPGA_LOAD;
return 0; /* Will cause broken pipe error */

)
break;

default:
return 0;

}

break;

default:
return 0;

)
}
else {

/* Invalid Request Type */
return 0;

)

return 1;

)

/* Read from EEPROM camera configuration (position / calibrated sensor values) */
/* TODO: Right now only reading Camera Quadrant and Position

* Assuming this is stored at OxlO
*/

void
load_camera_config (void)
<
unsigned char i;
unsigned char xdata ee_str[3];
unsigned char xdata tmp;

i = 0;
ee_str[i++] = 0;
ee_st.r[i++] = 0x10; Z/wValueL;

/* Write EEPROM address to device */
if (i2c_write (I2C„EEPROM_ADDR, ee_str, i)) (

/* Read EEPROM data to buffer */
i2c„read (I2C_EEPROM_ADDR, EPOBUF, 3);
camera_quadrant = EPOBUF[0];
camera_position = EPOBUF[1];
camera_master = EP0BUF[2];

}

/* Write EEPROM Address to device */
i = 0;
e e _ s t r [i + +] = 0;
e e . _ s t r [i + +] = PM_EEPROM_WIDTH_HIGH__ADDR;
i f (i 2 c _ w r i t e (I2C_EEPROM_ADDR, e e _ s t r , i)) (

/ * Read EEPROM byte */
i 2 c _ r e a d (I2C_EEPROM_ADDR, Stmp, 1) ;
window_width = (trnp << 8) ;

)

/* Write EEPROM Address to device */

160

i = 0;
ee_str[i++) = 0;
ee_str[i++] = PM_EEPROM_WIDTH_LOW_ADDR;
if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)))

/* Read EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, stmp, 1);
window_width ! = tmp;

)

/* Write EEPROM Address to device */
i = 0;
ee_str[i++] = 0;
ee_str[i++] = PM_EEPROM_LENGTH_HIGH_ADDR;
if (iZc_write (I2C_EEPROM_ADDR, ee_str, i)) (

/* Read EEPROM byte */
i2c._read (I2C_EEPROM_ADDR, stmp, 1);
window_length ~ (tmp << 8);

)

/* Write EEPROM Address to device */
i = 0;
ee_str[i++] = 0;
ee_str[i++] = PM„EEPROM_LENGTH_LOW_ADDR;
if (i2c„write (I2C„EEPROM_ADDR, ee_str, i)) (

/* Read EEPROM byte */
i2c_read (I2C„EEPROM„ADDR, Stmp, 1) ;
window_length 1= tmp;

)

/* Write EEPROM Address to device */
i =• 0;

ee_str[i+-M = 0;
ee_str[i++] = PM_EEPROM_COL_START_HIGH_ADDR;
if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)) (

/* Read EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, Stmp, 1) ;
window_col_start = (tmp << 8);

/* Write EEPROM Address to device */
i - 0;
ee_str[i++) = 0;
ee_str[i++] = PM_EEPROM_COL_START_LOW_ADDR;
if (i2c_write (I2C_EEPROM„ADDR, ee_str, i)) {

/* Read EEPROM byte */
i2c„read (I2C_EEPROM_ADDR, Stmp, 1);
window_col_start = tmp;

1

/* Write EEPROM Address to device */
i = 0;
e e _ s t r [i + +] = 0;
e e _ s t r [i + +] = PM_EEPROM__ROW_START_HIGH_ADDR;
i f (i 2 c _ w r i t e (I2C__EEPROM_ADDR, e e _ s t r , i)) (

/* Read EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, Stmp, 1);
window_.row_start = (tmp << 8);

)

/* Write EEPROM Address to device */
i = 0;
ee._str[i + +] = 0;
ee_str[i++] = PM_EEPROM_ROW_START_LOW_ADDR;
if (i2c_write (I2C_EEPROM_ADDR, ee_str, i)) (

/* Read EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, stmp, 1);
window_row_start I- tmp;

)

/* Write EEPROM Address to device */
i = 0;
e e _ s t r [i + +] = 0;
e e _ s t r [i + +] = PM_EEPROM_COL_SKIP_ADDR;
if (i2c_write (I2C_EEPROM ADDR, ee str, i)) (

B. USB2.0 CAMERA FX2 FIRMWARE

/* Read EEPROM byte */
i 2 c _ r e a d (I2C_EEPR0M_ADDR, strnp, 1) ,-
window_col_ .sk ip - tmp;

)

/ * W r i t e EEPROM Address to device */
i = 0;
e e _ s t r [i + +] = 0;
e e _ s t r [l + +] = PM_EEPROM_ROW_SKIP_ADDR;
i f (i2c__wri te (I2C„EEPROM„ADDR, e e _ s t r , i)) {

/* Head EEPROM byte */
i2c_read (I2C_EEPROM_ADDR, Strnp, 1);
window_row_skip = tmp;

)
)

/* Main Program Loop for handling USB requests */
void
main_loop (void)
(
/* Task Dispatcher */
while(1) (

/* Currently Set to Auto Commit BULK IN EP2 packets */
/* Check for Incoming Setup Packet */
if (usb_setup_packet_avail ())

usb__handle„setup_packet ();
)

)

v o i d
main (void)
1

/ * Initialization Routine for fx2cam */
/* Initialize FX2 registers */
i n i t _ f x 2 c a m () ;

/ * Configure PAO as external interrupt INTOt */
/* TODO: DON'T FORGET TO UPDATE INTERRUPT VECTORS */
// PORTACFG = bmTNTO;

/* Configure External INTO on falling edge - disabled on startup */
// EXO =•• 0; /* Disable INTO */
// IEO --= 0; /* INTO Edge-Sensitive */
// ITO = 1; /* INTO detected on falling edge */

/* Disable all interrupts */
Eh = 0;

setup_autovectors 0;
usb_install_handlers ();

/* Enable all interrupts */
EA = 1;

/* Simulate a reconnect */
f x2__renurnerate ();

./* Ensure FPGA Power chip (Til is disabled */
FPGA_POWER_PORT &= ~FPGA_POWER_VCC_AUX;
FPGA_POWER_PORT 4= ~FPGA_POWER_VCC_0;
FPGA_POWER_PORT S= ~FPGA_POWER_VCC_INT;

/* Set FPGA Loader port to all inputs with initial state of DIN high */
IOC = FPGA_LOAD_DATA_BIT;
OEC = 0;

/* Ensure FPGA is held in reset (although off) by default */
FPGA_RESET_PORT &= "FPGA_RESET_BIT;

/* On Startup -- Read Camera Quadrant and Position */
camera_quadrant = Oxaa;
carnera_position - Oxaa;

162

B. USB2.0 CAMERA FX2 FIRMWARE

carnera.__master = Oxf f;

load_camera_config ();

/* TODO:
* Set perliminary register values for MI Sensor*/

/* Initialize frame drop counter */
frame_drop„count = 0;

/* Go to main program loop */
main_loop ();

163

Appendix C

USB2.0 Camera Linux Driver

C.l IMGUSB Fast USB Class

C.l . l imgusb.h

/ * Filename:
* imgusb.h

* Description:
* Header file for imgusb class for fast USB bulk transfer.
*
* Author:
* Nei1 Scott, Roberto Muscedere

* Date:
* November 15th, 2007

*/

#include <1in ux/u sbdevice„fs

#ifndef _IMGUSB_H_
#define _IMGUSB_H_

class imgusb
j
1
private:

struct usb_...dev_handle
usbdevfs_urb

int
int
int
int

protected:

public:

.h>

*d„udh;
**d_jjrbs;

d_ep;
d_block_size;
d_n__b locks,•
d_irnage_size;

imgusb (struct usb_dev_handle *dev_hdl, int ep, int block_size) ;
~imgusb {);

164

C. VSB2.0 CAMERA LINUX DRIVER

bool allocate_urbs(int image_size);
int get_image__size(void) {return d_image_size;};
bool get_image (char *buf};

};
#endif / * _IMGUSB_H_ */

C.1.2 imgusb.cc

* Filename:
* imgusb.cc

* Description:
* Fast: USB class adapted from the SSRP project.

* Author:
* Neil Scott, Roberto Muscedere

* Date:
* November 15th, 2001

* Notes:
* Adapted from the SSRP Project, Simple Software Radio Project

* Reference:
* http: //oscar.dcarr.org/ssrp/
*/

#include <stdio.h>
#include <stcllib. h>
#include <usb.h> /* LibUSB support */
#include <stdexcept>
#include <errno.h>
#include <linux/usbdevice_fs.h>
#include <linux/compiler.h>
#include <sys/ioctl-h>
#include <assert.h>

#include "imgusb.h"

static const int MAX_BLOCK_SIZE - 16 * 1024; // hard limit
static const int DEFAULT_BLOCK_SIZE = MAX_BLOCK„SIZE;
Static const int DEFAULT_BUFFER_SIZE - 16 * (1L « 20); // 16 MB / endpoint

// Totally evil and fragile extraction of file descriptor from
// guts of libusb. They don't install usbi.h, which is what we'd need
// to do this nicely.
//
// FIXME if everything breaks someday in the future, look here...
static int
f d_frorn_usb_.de v_hand.le (usb_dev_handle *udh)
{
return *({int *) udh);

imgusb::imgusb (struct usb_dev__handle *dev_hdl, int ep, int block_size)
{
d__udh = dev_hdl;
cl_ep = ep ;
d_block_size = block_size;

/* Must Ensure Block Size are legitimate */
if (d_block_size < 0 I I d_block_size > MAX_BLOCK_SIZE)
throw std : : out__of_range ("imgusb : block_size") ;

imgusb::~ imgusb ()

165

http://d_frorn_usb_.de

C. USB2.0 CAMERA LINUX DRIVER

// TODO: Make sure any outstanding urbs are removed (generally handled by reap)

/* Allocate URBs */
for (int i=0; i < d_n_blocks; i++) {
delete d_urbs[i];

d e l e t e d „ u r b s ;
}

b o o l
i rngusb: : a l l o c a t e _ u r b s (i n t image r s i z e)
{

d_. image„s ize = i m a g e _ s i z e ;

d_n_blocks = d_image_size / d_block_size;

if (d_n_blocks * d_block_size != d„image_size)
throw std;:out_of_range ("irngusb: image_size must be a multiple of block_size");

/* Allocate URBs */
d urbs = new usbdevfs_urb*[d_n_blocks];

for (int i=0; 1 < d_n_blocks; i++) {
d_urbs i" i] = new usbdevf s_urb;

memset(d_urbs[i], 0, sizeof (struct usbdevfs_urb));

d„urbs[i]->type - USBDEVFS_URB_TYPE„BULK;
/* for IN endpoint */

d__urbs [i]->endpoint - (d_ep & 0x7f) | 0x80;
d_urbs [i]->sigrir = 0;

}

return true;

bool
irngusb: :ge t_ i rnage {char *buf)

i n t
usbdevf s__urb
i n t

r e t ;
* u rb ;
fd ;

/ / = 0;

fd = fd_from_usb_dev_handle (d_udh);

for (int i=0; i < d„n__blocks; i++) {
d_urbs[i]->buffer_length = d_block_size;
d_urbs [i]->actual_.lengtb = 0;

/ * TODO: Some redundancy */
d_urbs[i]->type = USBDEVFS_URB_TYPE_BULK;
d._urbs [i] ->endpoint = (d„ep & 0x7f) | 0x80;
d _ u r b s [i] - > f l a g s = 0;
d _ u r b s 1 i] - > b u f f e r = ((char *) (buf + (i * d _ b l o c k _ s i z e))) ;
d__urbs [i] - > b u f f e r _ l e n g t h - d „ b l o c k _ s i z e ;
d _ u r b s [i] - > s i g n r = 0;
d_urbs[i]->actual_length = 0;
d_urbs [i] ->number_.of_packets = 0;

///NULL;
d_urbs[i]->usercontext = (void *) i;

for (int i=0; i < d_n_blocks; i++) (
/* submit urbs */
ret <= ioctl (fd, USBDEVFS_SUBMITURB, d_urbs[i]);

if (ret < 0)
fprintf (stdout, "irngusb: Error on SOBMITURB -

if (ret < 0) (
for (i;i>=0;i—) (

%s\n", strerror(errno));

166

C. USB2.0 CAMERA LINUX DRIVER

ret = ioctKfd, USBDEVFS_DISCARDURB, d_urbs[i]);
)
return false;

}
}

urb = NULL;

while ((ret = ioctl (fd, USBDEVFS_REAPURB, Surb)) == 0) (
if (urb->status != 0 S& urb->status != -ENOENT) {

fprintf (stderr, "imgusb[fd=%d]: REAPURB: urb->status = %d, actual_length = %5d\n",
fd, urb->status, urb->actual_length);

/* discard urb - unlink */
ret = ioctl (fd, USBDEVFS_DISCARDURB, Surb);
if (ret < 0)

fprintf (stderr, "error discarding URB: %s\n", strerror(errno));

/* must also reap unlinked urb */
ioctl(fd, USBDEVFS_REAPURB, Surb);

)

if ((int)(urb->usercontext)==d_n_blocks-l) break;
(

if (ret) return falser-

return true;

)

C.2 P M CAM USB Primatives

C.2.1 pm_prims.h

/*
* Filename:
* pm_prims. cc

* Description:
* Header file for pm_prims.cc - contains USB functions to find the device,
* verify the device and handle control requests.

* Author:
* Neil Scott

* Date:
* January 11, 2001

* Notes:
* Adapted from the SSRP Project, Simple Software Radio Project

* Reference:
* http://oscar.dcarr.org/ssrp/
*/

#ifndef „PM„PRIMS_H
#define _PM_PRIMS_H

/ * Initalization for libusb */
void prn_init_usb (void);

/ * Find PM Cameras on the bus and return the count */
int pm_get_device„count (void);

/ * Find PM Camera on bus */
struct usb_device * pm_find_camera (int n_th);

/ * Returns true if device is loaded with firmware, false if not or if DID is unknown */
bool pm_camera_configured (struct usb_device *d);

167

http://oscar.dcarr.org/ssrp/

C. USB2.0 CAMERA LINUX DRIVER

/* Returns true if device is NOT loaded with firmware, false if it is or if DID is unknown */
b o o l pm_camera_uneonf igu red (s t r u c t u s b _ d e v i c e * d) ;

/ * Claims the interface and sets the alt interface */
s t r u c t u s b _ d e v _ h a n d l e * p m _ o p e n _ i n t e r f a c e (s t r u c t u s b _ d e v i c e *d, i n t if_nurn, i n t a l t _ i f_nurn) ;

/ * Closes the device interface - returns true if success */
b o o l pm_c lose (s t r u c t usb_dev__handle *udh) ;

e n d i f A _PM_PRIMS_H */

C.2.2 pm_prims.ee

/*
* Filename:
* pm_prims.cc

* Description:
* Header file for pm_prims.cc - contains USB functions to find the device,
* verify the device and handle control requests.

* Author:
* Neil Scott

* Date:
* January 17, 2007

* Notes:
* Adapted from the SSRP Project, Simple Software Radio Project

* Reference:
* http://oscar.dcarr.org/ssrp/
*/

#include <stdio.h>
#include <unistd.h>
#include <string.b>
#include <usb.h>
#include "pm_prims.h"
#include "prn_.ids. h"

/**-*************************
* Funotion: pm_init^usb *
* Description: Perform initalization for libusb to initialize the USB bus. *
* Parameters .* none *
* Returns: void *

void
prn_init_usb (void)
{
static bool first = true;

if (first) {
first = false;
/* Initalize libusb */
usb._init () ;
usb_find_busses () ;
usb_find_devices ();

* Function: pm_get_device__count
* Description: Search the USB bus for the corresponding product id and vendor id
* and count the number of instance found.
* Parameters: none
* Returns: number of matching devices found

int
pni._get_device_count (void)

168

http://pm_prims.ee
http://oscar.dcarr.org/ssrp/

C. USB2.0 CAMERA LINUX DRIVER

struct usb_bus *b;
struct usb_device *d;
int dev_count - 0;

for {b ~ usb_busses; b != NULL; b - b->next) {
for (d = b->devices; d != NULL; d = d->next) (

/* Check VID and PID */
if (d->descriptor.idVendor == USB_PM_VID_CAM SS
d->descriptor.idProduct == USB_PM_PID„CAM) i

dev_count++;
)

return dev_count;

1

/***
* Function : pni_f ind_camera
* Description: Searches the USB bus for the product id and vendor id that
* matches the camera.
* Parameters: n_th - device instance on the bus
* Ret urns: pointer to usb device

s t r u c t usb_ .device *
prn_find_ca:nera (i n t n_ th)
{

s t r u c t usb__bus *b;
struct usb__device *d;
int dev_count = 0;

for (b = usb_busses; b != NULL; b = b->next) {
for (d = b->devices; d ! = NULL; d = d->next) {

/* Check VID and PID */
if (d->descriptor.idVendor == USB_PM_VID_CAM &&
d->descriptor.idProduct == USB_PM_PID_CAM) {

if (n_th == dev_count++)
return d;

I
}

/* if not found */
return 0;

/ * - * • *

* Function: pm_camera_configured *
* Description: Reads the Device ID to determine if the pm_camera has been loaded *
* with firmware. Returns true if configured. *
* Parameters: *dr pointer to a USB device *
* Returns: true, if configured *
* false, if unconfigured or unknown DID *

b o o l
pm_.camera_.configured (struct usb_device *d)
{
return (d->descriptor.bcdDevice == USB_PM„DID_CAM_CONFIGURED);

/***
* Function: pm__camera_u neon figured *
* Description: Reads the Device ID to determine if the pm_camera has NOT been *
* loaded with firmware. Returns true if unconfigured. *
* Parameters: *d, pointer to a USB device *
* Returns: true, if unconfigured *
* false, if configured or unknown DID *
** */

b o o l
pm_camera_unconfigured (struct usb_device *d)

169

http://usb_.de
http://pm_.camera_.con

C. USB2.0 CAMERA LINUX DRIVER

{

return (d->descriptor.bcdDevice == USB_PM_DID_CAM_UNCONFIGURED);
}

* Function: pm_open_interface *
* Description: Claims the interface defined by if_nvm and sets te alternative *
* interface. Returns a pointer to a device handle. *
* Parameters: *d, pointer to a USB device *
* i.f_num, interface number to claim *
* alt_if_num, alternative interface to select *
* Returns: pointer to usb device handle *
* * * **

struct usb._dev_handle *
prn__open_j.nt.erface (struct usb__device *d, int if_num, int alt_if_num)
{
struct usb_dev_handle *udh = usb_open (d);

if (d == 0) {
fprint f (stderr, "pm__open__interf ace: Error on usb_open - %s\n", usb__strerror ()) ;
return 0;

I

/* Claim device interface */
if (usb._claim_interf ace (udh, if__num)

fprintf (stderr, "pm__open__interface
return 0;

}

/* Set Alt Interface */
if (usb_set_.altinterf ace (udh, alt_if

fprintf (stderr, "pm__open__interf ace
return 0;

}

return udh;
}

* Function: pm__close *
* Description: Closes the USB interface with a given device handle *
* Parameters: *udh, pointer to a USB device handle *
* Returns: true, on success *
* false, on failure *

bool
pn_close (struct usb_dev„handle *udh)
{
if (usb_close (udh) < 0)

return false;

return true;
}

C.3 PIVLCAM USB2.0 Camera Driver Class

C.3.1 pm„cam.h

/*
* Filename:
* pm_cam. h

* Description:
* Header file for camera class.

< 0) {
Error on usb_,claim__device - %s\n", usb_strerror ()) ;

_nurn) < 0) {
: Error on usb_set_aItinterface %s\n", usb_strerror ());

Author:
Neil Scott

http://prn__open_j.nt.erf

C. USB2.0 CAMERA LINUX DRIVER

Date:
January 25, 2007

#ifndef _PM_CAM_H
tdefine _PM_CAM_H

#include <stdio.h>
#include <stdlib.h>

//^include <fusb.h>
#include "imgusb.h"

#define PM_CAM_BULK_EPIN_ADDR
tdefine PM_CAM_BLOCK_SIZE

#define PM_CAM_USB_TIMEOUT

0x82
8*1024

mi Hi-seconds
450

#define PM_._IMAGE_FORMAT_T I FF„COL
#define PM_IMAGE__FORMAT_TIFF_BW

#define PM_TIFF_RED_OFFSET
tdefine PM„TIFF_GREEN_OFFSET
#define PM_TIFF_BLUE_OFFSET

/* Camera Positions */
#define PM_CAM_CENTER
tdefine PM_CAM_LEFT
tdefine PM„_CAM_RIGHT
tdefine PM_CAM_BOTTOM

/* Output Messaging
tdefine OUT_MSG
tdefine OUT_ERR_MSG

>/
stdout
stderr

class pm__carn

private:
int
int
int
int
int
int
int
int
bool

window_width, window_height;
image_width, image_height;

eeprom_window_width, eeprorn_window_height ;
eeprom_window_col_start, eeprom__window_row__start ;
eeprom_window_col_skip, eeprom_window_row_skip;

col_skip, row_skip;
cam_position;
cam_quadrant;
cam_master;

protected:
/ * LibUSB device device handle pointer */
struct usb_dev_handle *d_udh;

/* FastUSB device handle pointer and endpoint handle pointer */
/* Endpoint handle is for EP2IN, for bulk IN transfers */
//fusb_ephandle *d__feph;

/* ImgUSB pointer for fast USB transfer */
imgusb *d„imgusb;

public:
/* Constructor -- take a libusb device handle pointer */
pm_cam (struct usb_dev_handle *udh, int block_size, int n_blocks);

/* Destructor */
"pm_cam {) ;

/* For verbose messaging */
bool verbose_p;

/* Internal Functions */
int pin_cam_rx (unsigned char *buf, long buf_size) ;

/ * imgUSB URB allocation */

171

C. USB2.0 CAMERA LINUX DRIVER

bool irngusb_allocate_urbs() {d_imgusb->allocate_urbs(irnage_width*image_height);1;

/ * Grab Frame */
long grab_frame (unsigned char *buf);

/* libUSB function abstraction */
int write_cmd (int requesttype, int request, int value, int index, char *data, int len);
int bulk_read (int ep, char *data, int size);
int bulk_read (int ep, char *data, int size, int timeout);

/* Get camera position, quadrant and master flag */
int get__cam_location (void) ;
int read_window_params (void);
int get_cam._position (void) {return carn_position; }
int get_carn_quadrant (void) {return cam_quadrant;}
bool get_cam_master (void) {return cam__master; }
int get_eeprom_window_width (void) {return eeprom_window_width;)
int get_eeprom_window__height (void) {return eeprorn_window_height; }
int get_eeprom_window_col__start (void) (return eeprom_window_col_start;)
int get__eeprom_window_row_start (void) {return eeprom_window_row_start;}
int get_eeprom_window_col__skip (void) {return eeprom__window_col_skip; }
int get_eeprom_window__row_skip (void) {return eeprom_window_row_skip;}
double get_cam_temp(void);

/* Device Controls */
bool cam_fpga„reset (int state);
bool cam_fpga_power (int state);

/* FPGA Register Write */
bool fpga_write_reg (unsigned char reg, short value);

/* MI Sensor Register Read or Write */
int read__reg (unsigned char reg, short *dat);
int write._reg (unsigned char reg, short value) ;

/* Image Conversion */
int bayer2rgb (unsigned char *bayer, unsigned long **rgb, int width, int height);
int bayer2gray (unsigned char *bayer, unsigned char *buf, int width, int height);
int bayer2tiff (unsigned char *buf„in, char * filename, int width, int height);
int write__tiff (unsigned char *buf_in, char *filename, int width, int height);
int inspect (unsigned long **rgb);

/* Camera Registry Settings File */
bool import_reg_data„file (const char *filename) ;
bool write„reg_data_file (const char *filename);

int get_window_width (void) {return window_width;}
int get_window_height (void) {return window_height;}
int get_image_width (void) {return image_width;}
int get_image„height (void) {return image„height;}
void set_window_width (int _width);
void set_window_height (int _height);
void set_window_width_skip (int _width, int _skip);
void set_window_height_skip (int _height, int _skip);
void set_window_col_start (int _col_start);
void set_window_row__start (int _row_start) ;
void set_binning (int _width, int _height, int row_skip, int col_skip);

/* Misc Image Processing Algorithms */
unsigned char **convert_grayscale (unsigned long **rgb);

};
#endif /* _PM_CAM_B */

C.3.2 pm_cam.cc

Filename:
pm^cam.cc

Description:
PM Camera USB2.0 Driver Class.

C. USB2.0 CAMERA LINUX DRIVER

Author:
Neil Scott

Date:
January 25, 2001

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <list>
#include <lmux/usbdevice_fs.h>
#include <unistd.h>
#include <tiffio.h>
#include <time.h>
#include <stdexcept>
#include <usta.h>
#include "imgusb.h"

/* LibUSB header */

#include
#include
#include
#include
#include
#include

'pm_carn. h"
' f x2cam__ids . h"
' f x2cain_comrnands . h"
' fx2cam_i2c_addr.h"
'mi_regs.h"
'eeprom_regs.h"

/* USB requests. Shared with Firmware */
/* I2C Bus addresses. Shared with Firmware
/* Registers of Micron Sensor */

#define DEBUG

#define RED_OFFSET
ttdefine GREEN„OFFSET
#de£ine BLUE_OFFSET

#define PM_CAM„INTERRUPT_EP 0x81

/* Constructor - Create an instance of the device. Create a FastUSB
* device handle and FastUSB endpoint handle.
*/

pm__cani: :pm_cam (struct usb_dev_handle *udh, int block_size, int n_blocks)
{

/* Set internal device handle pointer */
d„udb - udh;

/* Create FUSB endpoint handle */
d„imgusb - new imgusb {d_udh, PM_CAM_BULK_EPIN_ADDR, block_size) ;

/ * Set defaults for camera location info
cam„position = Oxef;
cani„guadrant = Oxef;
carn_rnaster = f a l se ;

/* Initially low-verbosity level
verbose_p = f a l se ;

* • /

/* Destructor - Free up memory. Delete FastUSB device handle and
* endpoint handle
*/

pm_cam: : ~pm._.carn ()
{
/* De.Zete IMG__USB objects */
delete d_imgusb;

/* using PM_USB */
long
pm__.cam: :grab_frame (unsigned char *buf)

int ret;
long be = 0;

if (! d_imgusb->get__image ((char *) buf))

173

C. USB2.0 CAMERA LINUX DRIVER

fprintf (stderr, "Error on imgusb->get_image()\n");
return -1;

I

be "- d__irngusb->get„image_size () ; V
return be;

}

int pm„cam::write_cmd (int requesttype, int request, int value, int index, char *data, int ien)
{
int ret.;
ret = usb_control_msg (d__udh,

requesttype,
request,
value,
index,
data,
len,
PM_CAM_USB„TIMEOUT);

if (ret < 0}
fprintf {stderr, "pm_cam::write_cmd - Error: %s\n", strerror(ret));

return (ret);
}

int
pm._cam: : read_reg (unsigned char reg, short *dat)
{
int ret;

char data [2] ;

data [0] = reg;

/* Write Register Address to Ml Sensor */
ret - write.__cmd (VENDOR_REQUEST_OUT, VRQ_I2C_WRITE, MI_I2C_ADDR, 0, data, 1) ;
if (ret < 0)

return ret;

/'* Read Data from MI Sensor */

ret = write„cmd (VENDOR_REQUEST_IN, VRQ_I2C_READ, MI_I2C„ADDR, 0, data, 2);

dat[0] = (OxOOFF & data[l]) + (OxFFOO & (data[0] << 8));

if (verbose._p)
fprintf (OUT_MSG, "Register 0x%04x read with a value of 0x%04x\n", reg, dat[0]);

return ret;
1

int
pm__carn: :write_reg (unsigned char reg, short value)
{
int ret;
char data[3];
short verify = 0 ;

data [0] =: reg;
data [1] = ({ OxFFOO & value) >> 8);
data [2] - (OxOOFF & value);

/* Write Register Address to MI Sensor */
ret - write_cmd (VENDOR_REQUEST_OUT, VRQ_I2C_WRITE, MI_I2C„ADDR, 0, data, 3);

if (ret < 0)
fprintf (stderr, "pm__cam: :write_reg: Error writing Ml Register - %s\n", usb._strerror ()) ;

else
if (verbose__p) fprintf (OUT„MSG, "Register 0x%04x written with 0x%04x\n", reg, value);

/* Verify Correct value was written */

C. USB2.0 CAMERA LINUX DRIVER

ret = read_reg (reg, Sverify);

if (verify != value)
fprintf (stderr, "Unexpected Register Value Read Back: Reigster %04x\n", reg)

return ret;
)

int
pm_cani: : bulk_read (int ep, char *data, int size)
(
return (usb_bulk_read (d_udh, ep, data, size, PM_CAM_USB_TIMEOUT)

)

int
pm_cain: :bulk__read (int ep, char *data, int size, int timeout)
(
return (usb_bulk__read (d_udh, ep, data, size, timeout));

int
pm_.carn: : get_cam_locat ion (void)
1
unsigned char data[3];
int ret;
/ * Control Transfer request for position, quadrant and master flag */
r e t = wr i t e_cmd (VENDOR_REQUEST_IN,

VRQ_GET_QUAD_POS,
0,
0,
(char *) d a t a ,
3) ;

i f (r e t < 0)
return r e t ;

cam_.quadrant ^ d a t a [0] ;
carn__position = d a t a [l] ;
carn_inaster = ((d a t a [2]) ? t r u e : f a l s e) ;

return r e t ;

/* Read in window parameters from EEPROM */
int
pm_cam::read_window_params (void)
f
unsigned char data[2];
int ret;

/ * Control transfer request for window width */
r e t = w r i t e „ c m d (VENDOR_REQUEST„IN,

VRQ_GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_WIDTH,
(char *) data,
2);

if (ret < 0)
return ret;

eeprom_w.indow_width = (data[0] << 8) I data[l];

/* Control transfer request for window height */
ret = write_cmd (VENDOR_REQUEST_IN,

VRQ_GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_LENGTH,
(char *) data,
2);

175

C. USB2.0 CAMERA LINUX DRIVER

if (ret < 0)
return ret;

eeprom_window_height ~ (data[0] << 8) I data[l];

/* TODO: Problem with COL_START when reading from FX2
* Unknown problem, hack to read directly from EEPROM in
* the meantime
*/

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_READ_EEPROM_LG,
PM_EEPROM_COL__START_HIGH_ADDR,
0,
{char *) data,
1);

if (ret < 0)
return ret;

eeprom_window_col_start = (data[0] << 8);

ret = write._cmd (VENDOR_REQUEST_IN,
VRQ_READ„EEPROM„LG,
PM_EEPROM_COL_START_LOW„ADDR,
0,
(char *) data,
1);

if (ret < 0)
return ret;

eeprom_window_col_start |- data[0];

/* Control transfer request for window row start */
ret = write_.cmd (VENDOR_REQUEST_IN,

VRQ__GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_ROW_START,
(char *) data,
2) ;

if (ret < 0)
return ret;

eeprorn__window__row_start = (data[0] << 8) I data[l];

/* Control transfer request for window col skip */
ret = write_.cmd (VENDOR„REQUEST_IN,

VRQ_GET„WINDOW_PARAM,
0,
VRQ_GET„WINDOW_COL_SKIP,
(char *) data,
1);

if (ret < 0)
return ret;

eeprom__window_col_skip - data[0];

/* Control transfer request for window row skip */
ret = write_crnd (VENDOR„REQUEST_IN,

VRQ_GET_WINDOW_PARAM,
0,
VRQ_GET_WINDOW_ROW_SKIP,
(char *} d a t a ,
2) ;

i f (r e t < 0)
r e t u r n r e t ;

eepront_window_row_skip - d a t a [0] ;

176

C. USB2.0 CAMERA LINUX DRIVER

return 0;

)

/* Return temperature reading from TMP175 sensor */
double
pm_catn : : ge t_cam_temp (void)
(

i n t t emp;
i n t r e t ;
double rtemp;
char data[3];
static bool set_ts„config = false;

/* If first read, set configuration register for 12-bit readout */
if (set_ts_config) {

/* Set sensor resolution to 12 bits */
data [0] = 1;
data [1] = 0x60;

write_cmd (VENDOR_REQUEST_OUT,
VRQ_I2C_WRITE,
TMP175_I2C_ADDR,
0,
data,
2);

/* read configuration register */
data [0] = 1;
write_cmd (VENDOR_REQUEST_OUT,

VRQ_I2C_WRITE,
TMP175_I2C_ADDR,
0,
data,
1) ;

wri te_crnd (VENDOR_REQUEST_IN,
VRQ„I2C_READ,
TMP17 5_12C_ADDR,
0,
d a t a ,
1) ;

i f (ve rbose_p)
fprintf (OUT_MSG, "Configuration Register: 0x%02x\n", data[0]);

1

/* read temp readout */
data[0] = 0;
ret = write_cmd (VENDOR_REQUEST_OUT,

VRQ_I2C_WRITE,
TMP175_I2C_ADDR,
0,
data,
1);

if (ret < 0)
fprintf (OUT_ERR_MSG, "Error writing to I2C device...\n");

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_I2C_READ,
TMP175_I2C_ADDR,
0,
data,
2);

if (ret < 0)
fprintf (OUT„ERR_MSG, "Error reading from I2C device ...\n");

temp = (unsigned char) data[l] I ((unsigned char) data[03 << 8);
temp >>= 4;

rtemp ^ (double) temp / 16.0;

return (rtemp);

177

C. USB2.0 CAMERA LINUX DRIVER

/* Set FPGA reset state
* 0 - out of reset
* 1 - in reset
*/

bool
pm_cam::cam_fpga_reset (int state)
{
int ret;
char data;

ret = write_cmd (VENDOR_REQUEST_IN,
VRQ_FPGA_RESET,
state,
0,
&data,
1) ;

if (ret < 0) {
return false;

}
else {

if (data != 0x08) {
fprintf (stderr, "Error setting FPGA reset mode: NACK received!\n");
return false;

}
}

return true;
}

/ * Set FPGA power state
* 0 - power off
* 1 ~ power on
*/

b o o l
pm„.carn: : carn_fpga_power (i n t s t a t e)
{

i n t r e t ;
char d a t a ;

r e t - wri te_crnd (VENDOR_REQUEST„IN,
VRQ_FPGA_POWER,
s t a t e ,
0,
&data ,
1) ;

if (ret < 0) {
return false;

}
else {

if (data != 0x08) {
fprintf (stderr, "Error setting FPGA power mode: NACK received!\n");
return false;

}
}

return true;

/* Write to FPGA registers over I2C */
bool
pm_cam::fpga_write_reg (unsigned char reg, short value)
{
int ret;
char data [3];
short verify = 0;

178

C. USB2.0 CAMERA LINUX DRIVER

data fO] = reg;
data 11] - {(OxFFOO & value) >> 8);
data [2] - (OxOOFF & value);

/*• Write Register Address to MI Sensor */
ret - write_cmd (VENDOR_REQUEST_OUT, VRQ_I2C_WRITE, FPGA_I2C_ADDR, 0, data, 3) ;

if (ret < 0)
fprintf (stderr, "pm_cam::fpga_write_reg: Error writing FPGA Register - %s\n", usb_strerror ());

else
if (verbose_p) fprintf (OUT_MSG, "FPGA Register 0x%04x written with 0x%04x\n", reg, value);

return ret;
}

/* Function to set window width */
void
pm_carn: :set_window_width (int _width)
<
window_width = __width;
write_reg {MI_REG_COL_SIZE, _width-l);

1

/* Function to set window height */
void
pm_carn : : set_window_height {int _h eight)
{

window_height = _height;
write_reg (MI_REG_ROW„SIZE, _height-l);

/* Function to set window width with col skip */
void
pm_cam::set_window_width_skip (int _width, int _skip)
{
short val;
int factor;

window_width = _width;
col_skip = _skip;

/* verify width is an even number */
if ({__width%2))
throw std: : out__of_range ("Window width must be an even value ! \n");

if ((_skip < 0) I I <_skip > 4))
throw std::out_of_range ("Column Skip must be between 0 and 4!\n");

switch (._.skip) {
case Ml„COL_SKIP_NONE:

factor = 1;
break;

case MI_COL_SKIP_2X:
factor = 2;
break;

case MI_COL_SKIP_3X:
factor = 3;
break;

case MI_COL_SKIP_4X:
factor = 4;
break;

case MI_COL_SKIP_8X:
factor ~ 8;
break;

default:
factor = 1;

}

if ((_width%factor))
throw std: :out__of„.range ("Specified width is not evenly divisible by the specified skip factor!\n")

179

C. USB2.0 CAMERA LINUX DRIVER

image._width = _width / factor;

write_reg (MI„REG_COL_SIZE, _width-l);

/*• set col skip */
read_reg (MI_REG_COL_ADDR_MODE, &val);
val | = ...skip;

write_reg(MI_REG_COL_ADDR_MODE, val);
)

/* Function to set window width with col skip */
void
pm_cam: : set„_window_heigbt_skip (int _height, int _skip)

{

short val;
int factor;

window_height = _height;
row_skip - „skip;

/* verify width is an even number */
if (<_heigbt%2))
throw std::out_of__range ("Window width must be an even value!\n");

if ((_skip < 0) I| (_skip > 4))
throw std::out__of_range ("Column Skip must be between 0 and 4 ! \n");

switch („skip) {
case MI_ROW_.SKIP_NONE:

factor = 1 ;
break;

case MI„ROW__SKIP_2X:
factor = 2;
break;

case MI_ROW_SKIP_3X:
factor = 3;
break;

case MI_ROW_SKIP_4X:
factor - 4;
break;

case MI_ROW_SKIP_8X:
factor = 8;
break;

default:
factor = 1;

}

if ((_height%factor))
throw std::out_of_range {"Specified height is not evenly divisible by the specified skip factor!\n"

);

irnage._he.ight = _height / factor;

write„reg (MI_REG„ROW_SIZE, _height-l);

/* set row skip */
read_reg (MI__REG_ROW_ADDR_MODE, &val) ;
val |= _ski p;
write_reg(MI__REG_ROW_ADDR_MODE, val);

}

/* Set the start column for image readout
*/

void
prn_carn: : set_window_col_start (int _col_start)
<
/* Ensure col_skip specified is within the boundaries of the sensor */
if (_col_start > 2047)
throw std::out_of_range ("Specified column start out of range!\n");

180

http://irnage._he.ight

C. USB2.0 CAMERA LINUX DRIVER

write_.reg (MI_REG_COLUMN_START, _col_start) ;

)

/* Set the start row for image readout
*/

void
pm cam::set_window„row_start (int _.row_start)
(

/* Ensure col_skip specified is within the boundaries of the sensor */
if („row_start > 1535)
throw std: : out_of_range ("Specified column start out of range!\n");

write_reg (MI„REG_ROW_START, _ro»_start);
)

/ * Function to enable binning
* Width and Height are the window widths and height,
* row_skip and col_skip are the respective number of rows or cols to skip
* window^ width and window_height are calculated for the image size
*/

void
pm_cam::set_binning (int _width, int _height, int row_skip, int col_skip)
<
short val;
write_reg (MI_REG_COL_SIZE, _widtb-l);
write_reg (MI_REG_ROW„SIZE, _beight-l);

/* Set binning */
read_reg (MI_REG_R0W_ADDR_MODE, Sval);
val I- row_skip-l;
write_reg (MI_REG_ROW_ADDR_MODE, val);

read_reg (MI_REG_COL_ADDR_MODE, Sval);
val | = col_skip-l;
write._reg (MI_REG_COL_ADDR_MODE, val);

)

int
pm_cam::bayer2gray (unsigned char *bayer, unsigned char *buf, int width, int height)
{
for (int y = 0; y < height - 1; y++) (

for (int x = 0; x < width; x++) {
buf[width * y + x] = (unsigned char) ((bayer[width * y + x] + bayer[width * y + x + 1] + bayer[

width * (y+1) + x] + bayer[width * (y+1) + x + 1]) II);
)

)

int
pm_cam::bayer2rgb (unsigned char *bayer, unsigned long **rgb, int width, int height)
I
char traster;

raster = new char [3 * width * height];

/* Covert Bayer 8 data to RGB */
/* Using Nearest neighbor */

/* Data Comes inGRGRGRGR... */
/ * BGBGBGBG...*/
for (long j = 0; j < height; j++) (

for (long w = 0; w < width; w ++) {
if (!(j %2)) (

if (! (w % 2)) {
raster [j*width*3 + w*3 + GREEN_OFFSET] = bayer [j*width + w] ;
raster [j*width*3 + w*3 + RED_OFFSET] = bayer [j*width + w + 1];
raster [j*width*3 + w*3 + BLUE_OFFSET] = bayer [(j+1)*(width) + w];

)

C. USB2.0 CAMERA LINUX DRIVER

else {
raster [j*width*3 + w*3 + GREEN_OFFSET]
raster [j*width*3 + w*3 + RED_OFFSET] =
raster [j*width*3 + w*3 + BLUE_OFFSET]

= bayer [j*width + w - 1];
bayer [j*width + w] ;
^ bayer t (j + 1)*(width) + w -1] ;

else (
if (! (w%2)) f

raster [j*width*3 »3 + GREEN„OFFSET] = bayer [(j-1)*width + w];
raster [j*width*3 + w*3 + RED_OFFSET] = bayer [(j-l)*width + w + 1];
raster [j*width*3 »3 + BLUE_OFFSET] = bayer [j*width + w];

else f
raster [j*width*3 + w*3 + GREEN_OFFSET] = bayer [(j-1)*width + w - 1];
raster [j*widtb*3 + w*3 + RED_OFFSET] = bayer [(j-1)*width + w] ;
raster [j*width*3 + w*3 + BLUE_OFFSET] = bayer [j*width + w - 1] ;

for (int. x = 0; x < width; x++)
for (int y = 0; y < height; y++)

rgb[x][y] = raster[x*width*3 + y*3 + RED_OFFSET]
(raster[x*width*3 + y*3 + GREEN_OFFSET] << 8)
(raster[x*widtb*3 + y*3 + BLUE_OFFSET] << 16)

delete raster;

/* Perform interpolation and write TIFF file from raw bayer data */
int
pm_cam::bayer2tiff (unsigned char *buf_in, char ^filename, int width, int height)

TIFF
char
char
int

*tiff_fp;
*raster;
*time„stamp;
ret;

if ((tiff_fp = TIFFOpen (filename, "w")) == NULL)
fprintf (stderr, "Error opening file...\n");
return -1;

/* Allocate Memory for Image */
if ((raster = (char *) malloc (sizeof (char) * width

fprintf (stderr, "Unable to allocate memory\n");
return -1;

height *3)) == NULL) f

/* Covert RAW data to TIFF image */
/* Using Nearest neighbor */

/* Data Comes inGRGRGRGR... */
/* BGBGBGBG...*/
for (long j = 0; j < height; j++) (

for (long w = 0; w < width; w ++) {
if (!(j %2)) (

if (!(w % 2)) (
raster [j*width*3 + w*3 + RED_OFFSET] =
raster [j*width*3 + w*3 + GREEN_OFFSET]
raster [j*width*3 + w*3 + BLUE_OFFSET]

buf_in [j*width + w];
= buf_in [j*width + w + 1];
= buf_in [(j+1)*(width) + w

else (
raster [j*widtb*3 + w*3 + GREEN_OFFSET] = buf_in [j*width + w];
raster [j*widtb*3 + w*3 + RED_OFFSET] = buf_in [j*width + w - 1];
raster [j*width*3 + w*3 + BLUE_OFFSET] = buf_in [(j+1)*(width) + w];

alse {
if (! (w%2)) (

raster [j*width*3 + w*3 + GREEN_OFFSET] = buf„in [j*width + w] ;

C. USB2.0 CAMERA LINUX DRIVER

raster [j*width*3 + w*3 + RED_OFFSET) = buf_in [(j-l)*width +
raster [j*width*3 + w*3 + BLUE_OFFSET] = buf„in [j*widtb + w + 1];

else {
raster [j*width*3 + w*3 + GREEN_OFFSET) = buf_in [(j-l)*width + w];
raster [j*width*3 + w*3 + RED„OFFSET] = buf_in [(j-1)*width + w - 1]
raster [j*width*3 + w*3 + BLUE_OFFSET] = buf_in [j*width + w] ;

)
/* Set Image Values */
TIFFSetField
TIFFSetField
TIFFSetField
TIFFSetField

(tiff_fp, TIFFTAG_IMAGEWIDTH, width);
(tiff_fp, TIFFIAG_IMAGELENGTH, height);
(ti£f_fp, TIFFTAG_BITSPERSAMPLE, 8);
(tiff_fp, TIFFTAG„SAMPLESPERPIXEL, 3);

/* Set Compression */
/* No Compression */
TIFFSetField (tiff_fp, TIFFTAG_COMPRESSION,
TIFFSetField (tiff_fp, TIFFTAG_PHOTOMETRIC,
TIFFSetField (tiff_fp, TIFFTAG„PLANARCONFIG,

COMPRESSION_NONE);
PHOTOMETRIC_RGB);
PLANARCONFIG_CONTIG) ;

/* Write Image Information to TIFF file */
if (TIFFWriteEncodedStrip (tiff_fp, 0, raster, width

fprintf (stderr, "Unable to write to file\n");
return -1;

1

height

/* Deallocate memory used */
free (raster);

/* Close TIFF file */
TIFFClose (tiff_fp);

return 0;

int
pm_carn: : write_tif f (unsigned char *buf_in, char *filename, int width, int height)

TIFF
char
int

*tiff_fp;
*raster;
ret;

if ((tiff_fp = TIFFOpen (filename, "w")) == NULL) (
fprintf (stderr, "Error opening file...\n");
return -1;

)

/* Set Image Values */
TIFFSetField (tiff_fp, TIFFTAG_IMAGEWIDTH, width);
TIFFSetField (tiff_fp, TIFFTAG„IMAGELENGTH, height);
TIFFSetField (tiff_fp, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField (tiff_fp, TIFFTAG_SAMPLESPERPIXEL, 1);

/* Set Compression */
/* No Compression */
TIFFSetField (tiff_fp, TIFFTAG_COMPRESSION, COMPRESSIONJMONE);
TIFFSetField (tiff_fp, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK)
TIFFSetField (tiff_fp, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG) ;

/* Write Image Information to TIFF file */
if (TIFFWriteEncodedStrip (tiff_fp, 0, buf_in, width

fprintf (stderr, "Unable to write to file\n");
return -1;

)

height 1) == 0) {

/* Close TIFF file */
TIFFClose (tiff_fp);

return 0;

183

C. USB2.0 CAMERA LINUX DRIVER

/* Convert the RGB to Grayscale */
unsigned char * *
prn^cam: :convert_grayscale (unsigned long **rgb)
I
unsigned char **grayscale;
int W, H;
int R, G, B;

/* Get Image Size */
W - image_width;
H = irnage_beight;

/* Threshold the Image */
/* allocate memory */
grayscale - new unsigned char *[W] ;

for (int i = 0; i < W; i++)
grayscale[i] •= new unsigned char [H] ;

/* Extract Grayscale from RGB */
float **Y;
float max = 0.0;
float inin = (float) (1<<20);

/* Allocate memory for Y */
Y = new float *[W];
for (int x = 0; x < W; x++)

Y[x) = new float [H];

/* Convert active Image form image to Grayscale */
for (int x = 0; x < W; x++) (

for (int y = 0; y < H; y++) j
/* Extract RGB Components */
R = (int) rgb[x][y] S OxOOOOOOPF;
G = (int) rgb[x][y] S OxOOOOFFOO >> 8;
B = (int) rgb[xj [y] & OxOOFFOOOO >> 16;

/* Calculate Luminance */
Y[x][y] = (float) R + (4.5907 * (float) G) + (0.0601 * (float)

if (Y[x)[y] > max)
max ~ Y[x][y];

if (Y[x][y] < min)
min - Y[x][y];

)

/* Scale the Y valves between 0 and 255 */
/* Draw a new picture with Grayscale Colours (All set to Y) */
for (int x = 0; x < W; x++) {

for (int y = 0; y < H; y++) (
Y[x][y] = Y[x][y] * (2 55.0 / (max - min));
G = (int) Y[x][y];
grayscale[x][y] = (unsigned char) G;

)

return grayscale;

184

Appendix D

System Control Board Firmware

This chapter contains all firmware source code developed for the dsPIC33 microcontroller of the

system control board.

D.l common, h

/* common.h

* Contains global definitions for system

* Author
* Date:
*/

; Neil Scott
August 01, 2007

#ifndef COMMONER
ftdefine COMMON_H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<p33FJ256GP710.h>
"delay.h"
"uart2.h"
"i2c_2.b"
"lcd_i2c.h"
"i2c_slave.h"
"job_ids.h"
"i2c_commands.h"
"uart_commands.h"
"err.h"
"i2c_io_exp.h"

/* Delay for Shutdown Timer */
#define SHUTDOWN_TIMERJ>EFAULT 20

/* I2C Slave Device Addresses */
#define I2C_ADDR„FRONT_PANEL
#define I2C _ADDR_SIDE__PANEL

/*FOR DEBUGGING */
Sdefine ERR_LED
#define ERR_LED_TRIS

0x27
0x23

LATCbits.
TRISCbitE

LATC1
i.TRISCl

185

D. SYSTEM CONTROL BOARD FIRMWARE

#define Fey 40000000

/* System Globals */
#define ASSERTED
#define DEASSERTED
#deffine TRUE
tdefine FALSE

#define MTR_PULSE_WIDTH
#define CAM„TRIGO_PULSE_WIDTH
tdefine CAM_TRIG1_PULSE_WIDTH
tdefine BLO_PULSE_WIDTH
#define BL1_PULSE_WIDTH
tdefine FLO_PULSE_WIDTH
#define FL1_PULSE_WIDTH
tdefine MTR„DEFAULT_FREQ
#define PULSE_COUNTER_MAX

40
232 /*1800*/
232 /*1800*/
800
800
30500
30500
1600 /*
650

Hz */

/* Global Shutter Control */
/* Global Shutter Control */

#define CAL1BRATI0N_START_P0S 450

/* Pulse Count Constants for given positions */
/* Optisorter Original Holder Configuration */
#if 1
tdefine CAM0_PULSE_POSITION_DEFAULT
tdefine CAMl_PULSE_POSITION_DEFAULT
tdefine ACCEPT_ON_PULSE_POSITION_DEFAULT
tdefine ACCEPT_OFF_PULSE_POSITION_DEFAULT
#endif

1
320
450
175

/* PC Definitions
tdefine PCO
tdefine PCI
tdefine PC2
tdefine PC3

*/
0x01
0x02
0x03
0x04

/* I/O Definitions */
/* Pneumatic Controls
tdefine PNEU_MAIN
tdefine PNEU_UPPER
tdefine PNEU_ACCEPTO
tdefine PNEU_ACCEPT1
tdefine PNEU„ACCEPT2
tdefine PNEU_ACCEPT3

LATEbits.LATE2
LATEbits.LATEl
LATEbits.LATE3
LATEbits.LATE4
LATEbits.LATE5
LATEbits.LATE6

tdefine PNEU_.MAIN_TRIS
tdefine PNEU_UPPER_TRIS
tdefine PNEU„ACCEPTO_TRIS
tdefine PNEU._ACCEPT1_TRIS
tdefine PNEU__ACCEPT2_TRIS
tdefine PN£U__ACCEPT3_TRIS

TRISEbits.TRISEl
TRISEbits.TRISE2
TRISEbits.TRISE3
TRISEbits.TRISE4
TRISEbits.TRISE5
TRISEbits.TRISE6

/* LED Lighting Controls
tdefine IO_LED_BLO
tdefine I0_LED_BL1
tdefine IO_LED_FL0
tdefine I0„LED_FL1

LATDbits.LATD3
LATDbits.LATD4
LATDbits.LATD5
LATDbits.LATD6

tdefine IO_LED_BL0_TRIS
tdefine I0__LED_BL1„TRIS
tdefine IO_LED_FL0_TRIS
tdefine I0__LED_FL1_TRIS

TRISDbits.TRISD3
TRISDbits.TRISD4
TRISDbits.TRISD5
TRISDbits.TRISD6

/* Camera Trigger / Global Shutter Control
tdefine IO__CAM_TRIG0
tdefine I0__CAM_TRIG1

LATDbits.LATDl
LATDbits.LATD2

tdefine IO_CAM_TRIG0_TRIS
tdefine I0_CAM_TRIG1_TRIS

TRISDbits.TRISD2
TRISDbits.TRISDl

/* PC Power Sense */
tdefine PC„SENSE0
tdefine PC__SENSE1
tdefine PC SENSE2

PORTCbits.RC3
PORTCbits.RC4
PORTBbits.RB5

D. SYSTEM CONTROL BOARD FIRMWARE

#define PC_SENSE3 P0RTBbits.RB4

/* PC Power Control
#define PC_PWRO
#define PC_PWR1
#define PC_PWR2
#define PC_PWR3

LATBbits.LATBO
LATBbits.LATBl
LATBbits.LATB2
LATBbits.LATB3

/* Tristate for PC Sense inpusts */
#define PC_SENSEO„TRIS
ttdefine PC_SENSE1._TRIS
#define PC_SENSE2_TRIS
#define PC_SENSE3_TRIS

TRISCbits.TRISC3
TRISCbits.TRISC4
TRISBbits.TRISB5
TRISBbits.TRISB'1

/* Tristate. Control of PC PWR outputs
#define PC_PWRO_TRIS
#define PC_PWR1_TRIS
#define PC_PWR2„TRIS
ttdefine PC_PWR3_TRIS

TRISBbits.TRISBO
TRISBbits.TRISBl
TRISBbits.TRISB2
TRISBbits.TRISB3

/* E-Stop Inputs */
#define ESTOP_SIGO
#define EST0P_SIG1
#define ESTOP_SIG2
#define ESTOP_SIG3

PORTBbits.RB8
PORTBbits.RB9
PORTBbits.RBlO
PORTBbits.RBll

/* E-Stop Tristates */
#define ESTOP_SIG0_TRIS
#define EST0P_SIG1_TRIS
#define ESTOP_SIG2_TRIS
tdefine ESTOP_SIG3„TRIS

TRISBbits.TRISB8
TRISBbits.TRISB9
TRISBbits.TRISBlO
TRISBbits.TRISBll

#define IO_ESTOP_INT_TRIS TRISFbits.TRISF6

/* J.nterrput Register Definitions */
/* E-Stop Interrupt Control Registers
#define INT_ESTOP_CONbits INTCON2bits

/* E-Stop Interrupt Enable Register <BIT> */
#define INT_ESTOP_IE IECObits.INTOIE

/* E-Stop Interrupt Status Register <BIT> */
#define INT _ESTOP_..IF IFSObits.INTOIF

/* BI2C Inputs */
tfdefine BI2C_INT0
#define BI2C__INT1
#de£ine BI2C_INT2
#define BI2C_INT3

PORTGbits.RGO
PORTGbits.RGl
PORTFbits.RFO
PORTFbits.RFl

#define BI2C_.INT0_TRIS
#define BI2C_INT1_TRIS
#define BI2C__INT2_TRIS
#define BI2C_INT3_TRIS

TRISGbits.TRISGO
TRISGbits.TRISGl
TRISFbits.TRISFO
TRISFbits.TRISFl

tdefine IOJI2C_INT_TRIS
fldefine INT_BI2C_CONbits

TRISAbits.TRISA12
INTCON2bits

d e f i n e INT_BI2C_IE
d e f i n e INT J I 2 C _ I F

IEClbits.INT1IE
IFSlbits.INT1IF

/* 12C Bus Switch line control
#define I2CJUS_SW_AO_TRIS
#define I2C_BUS„SW_A1_TRIS

TRISFbits.TRISF8
TRISFbits.TRISF7

tfdefine I2C_BUS_SW_A0
#define I2C_BUS_SW_A1

LATFbits.LATF8
LATFbits.LATF7

/* OC Definitions */
/* Output Captuer Control Registers
#define OC_MTR_CTRL_CONbits
#de£ine OC„CAM_TRIG0_CONbits
tdefine OC_CAM_TRIGl_CONbits
#define OC LED BLO CONbits

OClCONbits
OC3CONbits
OC2CONbits
OC4CONbits

D. SYSTEM CONTROL BOARD FIRMWARE

#define OC_LED_BLl_CONbits
#define OC_LED_FL0_CONbits
#define OC_LED_FLl_CONbits

0C5C0Nbits
0C6C0Nbits
0C7C0Nbits

/* Start / Stop Registers */
#define OC_MTR_CTRL_R
#define OC_MTR_CTRL_RS

#define OC_CAM_TRIG0_R
#de£ine OC_CAM_TRIG0_RS
#define 0C„CAM_TRIG1_R
#define 0C_CAM_TRIG1_RS

#define OC_LED_BL0_R
tfdefine OC_LED_BL0_RS
#define 0C_LED_BL1_R
tfdefine 0C_LED_BL1_RS

Sdefine OC_LED_FL0_R
#define OC„.LED_FL0_RS
#define 0C_LED_FL1_R
#define 0C_LED_FL1_RS

0C1R /* Motor Control */
0C1RS

0C2R /* Camera Trigger 0 */
0C2RS
0C3R /* Camera Trigger 1 */
0C3RS

0C4R
0C4R
0C5R
0C5RS

0C6R
0C6RS
0C7R
0C7RS

/* LED Backlight 0 */

/* LED Backlight 1 */

/* LED Frontlight 0 */

/* LED Frontlight 1 */

/* Output Compare Interrupt Status Register <BIT> */
#define OC_MTR_CTRL_IF IFSObits.0C1IF

((define OC_CAM_TRIG0_IF
#define OC_CAM_TRIGl_IF

IFSObits.OC2IF
IFSlbits.OC3IF

#define OC_LED_BL0_IF
#define OC_LED_BLl_IF

IFSlbits.OC4IF
IFS2bits.OC5IF

#define OC„LED„FL0_IF
#define OC_LED_FLl_IF

IFS2bits.OC6IF
IFS2bits.OC7IF

/* Output Compare Interrupt Enable Register <BIT> */
#define OC_MTR_CTRL_IE IECObits.OC1IE

#define OC_CAM__TRIG0„IE
#define OC_CAM_TRIGl_IE

IECObits.OC2IE
IEClbits.OC3IE

#define OC_LED_BL0_IE
#define OC_LED_BLl_IE

IEClbits.OC4IE
IEC2bits.OC5IE

#define OC_LED_FL0_IE
#define OC_LED_FLl_IE

IEC2bits.OC6IE
IEC2bits.OC7IE

/* Input Capture Definitions */
/* Input Capture Control Registers
#define IC_.PS0.. CONbits
#define IC_PSl_CONbits
#define IC_PS2_CONbits
#define IC_PS3_CONbits

IClCONbits
IC2CONbits
IC3CONbits
IC4CONbits

/* Input Capture Interrupt Enable Register <BIT> */
#define IC__PS0_IE IECObits . IC1IE
#define IC__PS1_IE IECObits.IC2IE
#define IC_PS2„IE IEC2bits.IC3IE
#define 1C_PS3„IE IEC2bits.IC4IE

/* Input Capture Interrupt Status Register <BIT> */
#define IC_PS0„IF IFSObits.IC1IF
#define IC_PS1_IF IFSObits.IC2IF
#define 1C_PS2_IF IFS2bits.IC3IF
#define IC_PS3_IF IFS2bits.IC4IF

/* Timer Definitions */
/* Timer Control Registers */
#define TMR_BUS_SWITCH_CONbits
#define TMR_BUS_SWITCH_PR
((define TMR_BUS_SWITCH_TMR

T4CONbits
PR4
TMR4

/ * Timer Interrupt Enable Register <BIT> */
tfdefine TMR BUS SWITCH IE IEClbits.T4IE

D. SYSTEM CONTROL BOARD FIRMWARE

/* Timer Interrupt Status Register <BIT> */
#define TMR„BUS_SWITCH_IF IFSlbits.T4IF

/* Interrupt Service Routine Definitions */
#define isr_MTR_CTRL
#define isr_„CAM_TRIGO
tdefine isr_CAM_TRIGl
#define isr_LED_BLO
#define isr_LED_BLl
#define isr_LED_FLO
tdefine isr_LED_FLl

tdefine isr_PSO
#define isr_PSl
tdefine isr__PS2
tdefine isr_PS3

tdefine isr_BUS_SWlTCH

_0C1Interrupt
_0C2Interrupt
_0C3Interrupt
_0C4Interrupt
_0C5Interrupt
__0C6Interrupt
_0C7Interrupt

_IClInterrupt
_IC2Interrupt
_IC3Interrupt
_IC4Interrupt

_T4Interrupt

tdefine isr_ESTOP
tdefine isr„BI2C

_INTOInterrupt
_INTlInterrupt

/* Some dsPIC33 Constants
tdefine 0CM_D1SABLED
tdefine OCM_FORCE_HIGH
tdefine OCM_FORCE_LOW
tdefine OCM_TOGGLE
tdefine OCM_SINGLE_PULSE
tdefine OCM_CONT_PUI,SE
tdefine OCM_PWM_NOFAULT
tdefine OCM_PWM_FAULT

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

tdefine OCTSEL_TIMER2
tdefine OCTSEL_TIMER3

0x00
0x01

tdefine ICM_
tdefine ICM_
tdefine ICM_
tdefine ICM_
tdefine ICM_
tdefine ICM_
tdefine ICM_

DISABLED
RISE_FALL_EDGE
FALL_EDGE
RISE_EDGE
4TH_RISE_EDGE
.16TH_RISE_EDGE
,INTERRUPT__ONLY

0x00
0x01
0x02
0x03
0x04
0x05
0x07

tdefine ICTMR_TIMER2
tdefine ICTMR._TIMER3

0x01
0x00

/* Machine Specifics */
tdefine MACHINE_STOPPED
tdefine MACHINE_RUNNING
tdefine MACHINE_FAULTED
tdefine MACHINE_DEBUG

0x00
0x01
0x02
0x03

/* Defines for PC Power State bitmask */
tdefine PC_POWER„ON
tdefine PC_POWER_READY

0x01
0x02

/* Motherboard is not powered */
/* Inspect software is running */

tdefine RAMP_NONE
tdefine RAMP_UP
tdefine RAMP_DOWN

tdefine MOTOR__MIN_FREQ
tdefine I2C_BUS_SW_PR

tdefine PULSES_PER_HOLDER

tdefine T2TCKPS
tdefine T2PF

400
350

0x03
256

/* (350) Timer Period */

/* Number of pulses between holders (approx) */

/* Timer 2 Prescale factor register */
/* Timer 2 Prescale factor */

tdefine MAXJOBS

tdefine I2C_SLAVE_ADDRESS

128

0x44 /* 7-bit I2C Slave Address */

189

D. SYSTEM CONTROL BOARD FIRMWARE

fdefine BI2C_CHANNEL_I0_SIDE_PANEL 3
fdefine BI2C_CHANNEL_I0_FR0NT_PANEL 2

/* Front Panel Defines */
/* INPUTS */
fdefine FRONT_PANEL_PBl_bit 0x02
fdefine FRONT_PANEL_PB2_bit 0x04
fdefine FRONT_PANEL_SW_bit 0x01

/* Side Panel Defines */
/* INPUTS */
#define SIDE__PANEL_PB_bit 0x01

/* Global Structure Definitions
struct SYSTEM_STATUS (

unsigned state:2;

/* Power State of PCs */
struct PC_.PWR_STATOS (

unsigned state:2;

/* Job Structure */
struct JOB (

unsigned char job_id;
unsigned char data[32]
unsigned char be;

tendif /* COMMON_H */

D.2 job_ids.h

/* job_.Jds .h
i —==.— =—— = = i;= = = — — — — — — =;———— — = ^ = = =T — — = = — — — = — = =

* Contains job IDs for various system jobs

* Author: Neil Scott

* Date: September 17, 2007
*/

fifndef J0B_1DS_H
#define JOB_IDS_H

#define 12C1_REQUEST 0x02
#define MOTOR_PULSE 0x03
#define UART_REQUEST 0x04
fdefine I2C_BUS_SWITCH 0x05
fdefine I2C2._REQUEST 0x06
tdefine LCD_WRITE 0x07
#define LCD_WRITE_LOC 0x08
fdefine LCD._CLEAR 0x09
fdefine LCD_LED 0x0a
fdefine BI2C„EVENT 0x0b
fdefine PC_POWER_SET 0x0c
tdefine PC„POWER_RELEASE OxOd
tdefine HALT_SYSTEM Oxff

tendif / * JOB_IDS_H */

D.3 main.c

Control Board Firmware initial release
- Controls motor speed

190

D. SYSTEM CONTROL BOARD FIRMWARE

* - Controls lighting and provides camera triggers
* - Controls pneumatic valves to eject capsules
* - Monitors and reports system health
* - Tracks Capsules and provides a communication interface
* over I2C to each quadrant
* - RS-232 communication for reading statistical data
*
* Author: Neil Scott
* Date: May 28, 2007
*/

#include "common.h"
#include "delay.h"
#include "uartZ.h"
#include "uart_commands.h"

#de£ine LCD_LOCK_TIMEOUT 12

extern struct I2C_IO_EXP temp__sense;
extern struct I2C_IO_EXP io_side_panel;
extern struct I2C__IO_EXP io_front_panel;

/* Side Panel Bitmaps */
/* Outputs */
#de£ine SP_LED_bit 0x01
#define SP_BUZZ_bit 0x02
#define SP_AUX_AIR_bit 0x04
/* Inputs */
#define SP„SW_bit 0x01

/* Front Panel Bitmaps */
/* Outputs */
#define FP_LED_bit 0x08

volatile struct JOB job_list [MAX__JOBS] ;
volatile unsigned chair curr job;
volatile unsigned char last_job;
volatile char *PM_TITLE1 = { "-=PharrnaSorter=-" } ;
volatile char *PM_TITLE2 - {"I-START II-STOP"};

volatile unsigned char hb;
volatile unsigned char first_write_p = TRUE;

volatile unsigned int trigger__comp = 0;
volatile unsigned int extra_comp = 0;

volatile unsigned char lcd_lock = 0;
volatile unsigned char bi2c_lock = 0;

volatile unsigned char one_step = 0;

volatile unsigned char disable_count = 0;
volatile unsigned char enable_count = 0;

/* Initially in calibration mode to align holder */
volatile unsigned char calibration_mode = 1;
volatile unsigned char calibration_Jfound_zero = 0;

volatile unsigned char pcs_ready = 0;
volatile unsigned char pc_ready_done_flag = 0;

volatile unsigned char shutdown_start„timer_flag = FALSE;
volatile unsigned char shutdown_timer = SHUTDOWN_TIMER_DEFAULT;
volatile unsigned char shutdown_in_progress_flag = FALSE;
volatile unsigned char wait_to_halt_flag = FALSE;

volatile unsigned char prev_fp_sw_state;
volatile unsigned char fp_sw_state;

volatile unsigned int mtr_pulse_width;
volatile unsigned int mtr_running_freq;
volatile unsigned int cam_trigO_pulse_width;
volatile unsigned int carn_trigl_pulse_width;
volatile unsigned int bl0_pulse width;

191

volatile unsigned int bll__pulse„width;
volatile unsigned int f10_pulse_width;
volatile unsigned int fll_pulse_width;

volatile unsigned int camO_pulse_position;
volatile unsigned int caml_pulse_position;
volatile unsigned int accept_on_pulse_position;
volatile unsigned int accept_off_pulse_position;

extern char i2c__io_outdata;

/* Job Queue Get Next Available Job */
unsigned char get__next__job (void)
{
unsigned char j;

j = last_job + 1;

if (j > (MAX^JOBS - 1)) {
j - 0;

I

return j;
}

/* Job Queue Get Next Unserviced Job */
unsigned char get_next_curr_job (void)
{
unsigned char j;

j =-- curr„job + 1 ;

if {j > (MAX JOBS - 1)) {
j - 0;

}

return j;
}

/* Job Queue Add New Job */
void add_job (unsigned char job_id)
{

last._job-i-+;

if (last_.job > (MAX__J0BS - 1)) {
last_job = 0;

}

job_list[last_job].job_id = job_id;
}

/* Job Queue Clear last job */
void complete_job (void)
{
job_list[curr_job].be = 0;

curr__ job+ + ;

if (curr_job > (MAX_J0BS - 1)) {
curr__job = 0;

I
}

/* Configure PLL and WDT */
„FOSCSEL(FNOSC_PRIPLL);
_FOSC(FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_XT);
.J7WDT (FWDTEN_OFF);

/* Function Prototypes */

D. SYSTEM CONTROL BOARD FIRMWARE

v o i d i n i t _ i o (v o i d) ;
v o i d i r u t _ c b e c k (void) ;
v o i d i n j . t _ s y s (vo id) ;
void calibrate_sys(void);
void uart2_hdlr (void);
static inline void motor_step_hdlr (void);
void i2cl_request_hdlr (unsigned char i_job);
void i2c2_request__hdlr (unsigned char i_job) ;
void disable_motor (void);
void enable_motor (void);
void debug__mode (int set);
void set_pc_pwr (unsigned char pc);

/* Global Variables */
volatile unsigned char ramp_mode;
volatile unsigned int rnotor_speed; /* in Hz */
volatile unsigned int motor_speed_target; /* in Hz */
volatile unsigned char motor_stop_flag;
volatile unsigned char i2c_bus_lock;
volatile unsigned char i2c_bus_lock_count;
volatile unsigned char i2c_bs_active_bus;
volatile unsigned int pulse„counter; /* Track arm position in terms of motor step pulses */
volatile unsigned int cap_count;
volatile unsigned char capsule_passfail[4][16]; /* Store Pass/Fail result from inspections */
volatile unsigned char pc_pwr_release_flag = FALSE;
volatile unsigned char refresh_title„flag = FALSE;

/* System F'ault and Status Structure */
volatile struct SYSTEM_STATUS system_status;

/* PC Power State Structure */
volatile struct PCJ?WR_STATUS pc_pwr„status[4];

/* UART Buffers and Pointers */
extern struct UART_Rx uart__rx;
extern struct UART_Tx uart_tx;
unsigned char uart_rx_buf[MAX_UART_RX_BUF];
unsigned char uart__tx_buf [MAX„UART„TX_BUF] ;
unsigned char uart_cmd_flag;

/* Capsule Counters */
volatile unsigned long capsule_good_count[4];
volatile unsigned long capsule„bad_count[4];
volatile unsigned long capsule_total_count[4];

/* Output Compare Interrupt Service Routine for Motor PWM Control */
void

attribute _((interrupt, no_auto_psv)) isr_MTR_CTRL (void)
{
unsigned char tjob;

/* Clear Interrupt Flag */
OC_MTR_CTRL_IF - DEASSERTED;

if (calibration_mode) {
if (!calibration^ound_zero) {

if (pulse_counter == 0) {
calibration_found_zero = TRUE;
OC_MTR_CTRL_CONbits.OCM - OCM_DISABLED;
Delay (Delay_lS_Cnt);
OC._MTR„CTRL_CONbitS.OCM = OCM_CONT_PULSE;

}
}
else {

/* Find Start Pos */
if (pulse_counter == CALIBRATION_START_POS) {

/* Stop Motor */
OC_MTR_CTRL_CONbits.OCM - OCM_DISABLED;
calibration_mode = 0;

}
I

}

pulse_counter++;

193

D. SYSTEM CONTROL BOARD FIRMWARE

if ((pulse_.counter > PULSE_COUNTER_MAX) && (systern_status. state == MACHINE_RUNNING)) {
disable_motor{) ;
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
system_status.state = MACHINE_FAULTED;

)

motor_step_hdlr();
}

/* Output Compare Interrupt Service Routine for LED Backlight 0 */
void

attribute ((interrupt, no_auto_psv)) isr_LED_BLO (void)
(

/ * Clear Interrupt Flag */
OC_LED_BL0_IF = DEASSERTED;

/* Turn Off Output Compare Module */
OC_LED_BL0_CONbits.OCM = OCM_DISABLED;

)

/* Output Compare Interrupt Service Routine for LED Backlight 0 */
void

attribute ((interrupt, no_auto_psv)) isr_LED__BLl (void)
(

/ * Clear Interrupt Flag */
0C_LF.D_BL1_IF = DEASSERTED;

/* Turn Off Output Compare Module */
OC_LED_BLl,_CONbits.OCM = OCM_DISABLED;

)

/* Output Compare Interrupt Service Routine for Camera Trigger 0 */
void

attribute ((interrupt, no._auto_psv)) isr„CAM_TRIGO (void)
I
/* Clear Interrupt Flag */
OC_CAM_TRIG0_IF = DEASSERTED;

/* Turn Off Output Compare Module */
OC__CAM__TRIG0_CONbits.OCM = OCM_DISABLED;

/* Output Compare Interrupt Service Routine for Camera Trigger 0 */
void

attribute ((interrupt, nojuto_psv)) isr_CAM_TRIGl (void)
I
/* Clear Interrupt Flag */
0C_CAM_TRIG1_IF = DEASSERTED;

/* Turn Off Output Compare Module */
OC_CAM_TRlGl_CONbits.OCM = OCM_DISABLED;

)

/* Input Capture Interrupt Service Routine for Proximity Sensor PSO */
void

attribute ((interrupt, no_auto_psv)) isr_PS0 (void)
1
/* Clear Interrupt Flag */
IC_PS0_IF = DEASSERTED;

)

/* Input Capture Interrupt Service Routine for Proximity Sensor PS1 */
void

attribute ((interrupt, no_auto_psv)) isr_PSl (void)
(

/ * Clear Interrupt Flag */
IC_PS1_IF = DEASSERTED;

194

D. SYSTEM CONTROL BOARD FIRMWARE

/* Input Capture Interrupt Service Routine for Proximity Sensor PS2 */
void
_attribute ({interrupt, no„auto_psv)) isr_PS2 (void)

(
/ * Clear Interrupt Flag */
IC_PS2_IF - DEASSERTED;

/* Input Capture Interrupt Service Routine for Proximity Sensor PS3 */
void

attribute ({interrupt, no_auto_psv)) isr_PS3 (void)
{
unsigned char t job;
unsigned char i;
/* Clear Interrupt Flag */
IC_PS3__IF - DEASSERTED;

/* Reset pulse counter */
pulse_counter = 0;

/* Increment capsule counter */
cap_count++;
if (cap_count > 15) {

cap_count = 0;
I

for (i - 0; i < 4; i++) {
capsu]e_passfail[i][cap_count] = 0;
capsule_total_count[i]++;

}
I

/* Timer 2 Interrupt Service Routine */
void

attribute__((interrupt, no_auto_psv)) __T2Interrupt (void)
{
IFS0bits.T2IF - DEASSERTED;

/* Timer 4 Interrupt Service Routine */
void
... attribute ((interrupt, no_auto_psv)) isr_BUS__SWITCH (void)
{
/* Clear Interupt Flag */
TMR_BUS_SWITCH_IF = DEASSERTED;

LATCbitS.LATCl - DEASSERTED;
LATGbits.LATG6 = DEASSERTED;

/* Verify not between START and STOP */
if (l"2ClSTATbits.S) {

LATCbitS.LATCl - ASSERTED;
LATGbits.LATG6 = DEASSERTED;
return;

}

/* Cycle active bus */
switch (i2c_bs_active_bus) {

case 0:
I2C_BUS_SW_A0 = ASSERTED;
I2C_BUS_SW_A1 - DEASSERTED;
i2c_bs_active_bus = 1;
break;

case 1:
I2C_BUS_SW_A0 = DEASSERTED;
I2C_BUS_SW_A1 = ASSERTED;
i 2c_bs__a ct i ve_.bu s = 2 ;

195

D. SYSTEM CONTROL BOARD FIRMWARE

break;

case 2:
12C__BUS_SW_A0 = ASSERTED;
I2C_BUS_SW_A1 = ASSERTED;
i2c__bs_act ive_bus - 3;
break;

case 3:
I2C__BUS_SW_A0 = DEASSERTED;
I2C_BUS_SW_A1 - DEASSERTED;
i2c„_bs_active__bus = 0;
break;

default:
I2C__BUS„SW_A0 = DEASSERTED;
I2C_BUS_SW_A1 = DEASSERTED;
i2c__bs_active_bus = 0;
break;

/* Timer 5 Interrupt Service Routine */
void
.attribute ((interrupt, no__auto_psv)) _T5Interrupt (void)

{
unsigned char tjob;

/* Clear Interrupt Flag */
IESlbitS.T5IF = DEASSERTED;

/* Calculate Trigger Compensation */
if (rnotor_speed > 300) {

trigger_comp - (int) (0.09 * (double) motor_speed) - 34;
extra_comp = (int) 0.05 * (double) motor_speed;

}
else {

trigger_comp = 0;
}

/ * Tf Ramp Up */
i f (ramp_rnode == RAMP_UP) {

rnotor_speed++;
PR2 - (uns igned i n t) (((((d o u b l e) F e y) / (double) mo to r_speed) - 1.0) / (double) T2PF);
PNEU__MAIN - DEASSERTED;

}

/* If Ramp Down */
if (ramp_mode == RAMP_D0WN) {
motor__speed--;
PR2 - (unsigned int) (((((double) Fey)/ (double) motor_speed) -1.0) / (double) T2PF);

}

/* If desired speed reached - stop this timer */
if (motor_speed == motor_speed_target) {

T5C0Nbits.T0N = FALSE;
enable_count = 0;
if (mo t or_s t op_flag) {
disable__count = 0;

OC._MTR_CTRL_CONbits.OCM = OCM_DlSABLED;
PNEU_MAIN - ASSERTED;
motor_stop._f lag = FALSE;
refresh_title_flag - TRUE;

/* Timer 7 LCD Timer */
void
. attribute ((interrupt, no_auto_psv)) _T7Interrupt (void)

196

D. SYSTEM CONTROL BOARD FIRMWARE

/* Clear Interrupt Flag */
IFS3bits.T71F = DEASSERTED;

/* Disable Timer */
T7C0Nbits.T0N = FALSE;

refresh_title_flag = TRUE;
)

/* Timer 8 Interrupt Service Routine */
void

attribute ((interrupt, no_auto„psv)) _T8Interrupt (void)
f
unsigned char tjob;
unsigned char temp;

/* Clear Interrupt Flag */
IFS3bits.T8IF = DEASSERTED;

/* Release Soft Power SW */
if (pc_pwr_release_flag) (
pc_pwr_.release_flag - FALSE;
PC„PWR0 = FALSE;
PC_PWR1 = FALSE;
PC_PWR2 = FALSE;
PC_PWR3 = FALSE;

}

/* Look for shutdown request */
if (sbutdown_start_timer_flag) {

shutdown_timer— ;

if (!shutdown_timer) {
shutdown__start_timer_f lag
shuLdown_timer = SHUTDOWN
shutdown_in_progress_flag
wait_to_balt_flag = TRUE;

add_job (LCD_CLEAR);

tjob ~ get_next_job();
job_list[tjob].data[16]
job_list[tjob].data[17]
job_list[tjob].be = 16;
sprintf (job_list[tjob]
add^job (LCD_WRITE) ;

/* Initiate Shutdown */
PC_PWR0 = TRUE;
PC_PWR1 = TRUE;
PC_PWR2 = TRUE;
PC_PWR3 = TRUE;
pc__pwr_release„flag - TRUE;

]

/* Heartbeat LED */
if (hb > 5)
hb = 0;

else
hb++;

/* Add Job */
tjob - get_next_job() ;
job_list[tjob].be = 1;

/* Blink LEDs according to machine state */
if (systenustatus.state == MACHINE_RUNNING) (

job_list[tjob].data[0] = (hb > 3);
add_job (LCD_LED);

)
else if (system_status.state == MACHINE_FAULTED) (

job_list[tjob].data[0] = (bb % 2);

= FALSE;
_TIMER_DEFAULT;
= TRUE;

= i;
= 0;

data, "Shutting Down...");

197

D. SYSTEM CONTROL BOARD FIRMWARE

add_job (LCD_LED);
}
else if (!pcs_ready) {

job„list[tjob].data[0] = (hb % 3);
add_job (LCD_LED);
pc_ready„done„flag = TRUE;

)
else if {pc_ready_done_flag) {

pc„ready_done_flag = FALSE;
ref resh_title_flag =-• TRUE;

}
else if (shutdown_in_progress_flag) (

job_.list [t job) .data [0] = (hb % 2);
add_job (LCD_LED);

)
else {

job_list[tjob].data[0] = 1;
add^job (LCD_LED);

if (refresh_title_flag) (
refresb_title_flag = FALSE;
/* Display title message on LCD */
add_job (LCD_CLEAR);

tjob = get_next_job();
job_list[tjob).data[16] = 1;
job_list[tjob].data[17] = 0;
job_..list [t job] .be = 16;
sprintf (job_list[tjob].data, "%s", PM„TITLE1);
add_job (LCD_WRITE__LOC) ;

tjob = get_next„job();
job_list[tjob].data[16]
job_.list [t job] .data [17]
job_list[tjob].be = 15;
sprintf (job_list[tjob]

add_job (LCD_WRITE_LOC);
)

)

if (lcd_lock)
lcd_lock--;

A Update PC Power
i f (!PC.„SENSE0)

p c _ p w r _ s t a t u s [0]
e l s e {

pc ._pwr_s t a tu s [0]
p c _ p w r _ s t a t u s [0]

I

i f (!PC„SENSE1)
pc_pwr_status [1]

else {
pc_pwr_status[1]
pc_pwr_status[1]

)

if (!PC__SENSE2)
pc__pwr_status [2]

else {
pc_pwr_status[2]
pc_pwr_status[2]

)

if (!PC_SENSE3)
pc__pwr__status [3]

else {
p c _ p w r _ s t a t u s [3]
pc_pwr__sta tus [3]

}

/ * Halt Flag */

198

= 2 ;
= 0;

d a t a , " % s " , P M _ T I T L E 2) ;

s t a t e * /

s t a t e 1= PC„P0WER_0N;

s t a t e &= ~PCJ>0WER_0N;

s t a t e & = ~PC_POWER__READY;

. s t a t e 1= PC_P0WER_0N;

.state &= "PC_P0WER_0N;

.state & = ~PC_POWER_READY;

.state 1= PC_P0WER_0N;

.state & = "PC_P0WER_0N;

.state &= ~PC_POWER_READY;

.state 1= PC_P0WER„0N;

.state S= ~PC_P0WER_0N;

.state & = "PC_POWER_READY;

D. SYSTEM CONTROL BOARD FIRMWARE

if (wait_to__halt_flag) {
if (PC_SENSEO & PC_SENSE1 & PC_SENSE2 & PC_SENSE3)

add„job(HALT_SYSTEM);

/* Update PC Ready Signal */
pcs_ready = (pc_pwr_status[0].state & PC_POWER„READY) & (pc„pwr_status[1].state S PC_.POWER_READY)

S (pc_pwr_status[2].state S PC_POWER_READY) & (pc_pwr_status[3].state & PC„POWER_READY);

/* BI2C debounce Lock */
bi2c_lock = FALSE;

/* Timer 9 Interrupt Service Routine */
void

attribute ((interrupt, no__auto_psv)) _T9Interrupt (void)
1
static unsigned char data[2];
static unsigned char alternate;
unsigned char tjob;

/* Reset Timer 3 for Backlight control and Camera Trigger Control */
TSCONbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
if (lalternate) 1

OC_LED„BL0_CONbits.OCM = OCM_SINGLE_PULSE;
0C„LED_BLl_C0Nbits.0CM = OCM_SINGLE_PULSE;
OC_CAM._TRIG0_CONbits.OCM = OCM_SINGLE_PULSE;
alternate - 1;

)
else {

OC_LED_BLl„CONbits.OCM = OCM_SINGLE_PULSE;
OC_LED„BL0_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIGl_CONbits.OCM = OCM_SINGLE_PULSE;
alternate = 0;

T3C0Nbits.T0N = TRUE;

/* Clear Interrupt Flag */
IFS3bits.T9IF = DEASSERTED;

/* ESTOP Interrupt Service Routine */
void

attribute ((interrupt, no_auto_psv)) isr_EST0P (void)
1
unsigned char tjob;
unsigned char estop_source - Oxff;

IFSObits.INTOlF = DEASSERTED;

/* Determine Source of EStop */
if (!ESTOP_SIG0)

estop_source ~ 0;
if (!EST0P_SIG1)

estop_source += 1;
if (!ESTOP_SIG2)

estop_source += 2;
if (!ESTOP_SIG3)

estop_source += 3;

IO_LED_FL0 = TRUE;
IO_LED_FLI = TRUE;

/* Disable Motor */
disable_motor();

/* Turn OFF All PCs */

199

http://OC_CAM._TRIG0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

i f (!PC_SENSEO) (
t j o b = g e t _ n e x t _ j o b () ;
j o b _ l i s t [t j o b] . d a t a [0]
add_job(PC_POWER_SET);
t j o b - get_next__job () ;
j o b _ l i s t [t j o b] . d a t a [0]
add_job(PC_POWER_SET);

)
i f (!PC_SENSE1) {

tjob - get_next_job () ;
job_list[tjob].data[0]
add_job (PC_POWER__SET) ;
tjob - get_.next_ job () ;
job_list[tjob].data[0]
add_job (PC_POWER__SET) ;

)
if (!PC„SENSE2) {
tjob = get_next_job();
job_.list tt job] .data[0]
add_job(PC_POWER_SET);
tjob - get_next_job();
job_list[tjob].data[0]
add_job (PC„POWER__SET) ;

}
if (!PC._SENSE3) (

tjob = get„next_job();
job_listttjob].data[0]
add__ job (PC_POWER_SET) ;
tjob - get_next_ job () ;
job_list[tjob].data[0]
add_job(PC_POWER_SET) ;

/* Clear LCD */
add_job (LCD_CLEAR);

/* Display E-Stop Message */
tjob = get_next_job();
job_list[tjob].data[16] = 1;
job_iist[tjob].data[17] = 0;
job„list[tjob].be = 12;
sprintf {job_list[tjob].data,
add_job (LCD_WRITE);

"E-Stop F a u l t ") ;

3 y s t e m . _ s t a t u s . s t a t e = MACHINE_FAULTED;

void
attribute ((interrupt, no_auto__psv)) isr_Bl2C (void)

f
u n s i g n e d char t j o b ;

INT_BI2CJF = DEASSERTED;
i f (! b i 2 c _ l o c k) [

b i 2 c _ l o c k = TRUE;
t j o b = g e t _ n e x t _ j o b 0 ;
j ob__ l i s t [t job] .be = 1;

j o b _ l i s t [t j o b] . d a t a [0] = Oxff;
i f (!BI2C_INT0)

j o b _ l i s t [t j o b] . d a t a [0] = 0;
i f (!BI2C_INT1)

j o b _ l i s t [t j o b] . d a t a [0] = 1;
i f (!BI2C_INT2)

j o b _ l i s t [t j o b] . d a t a 10] = 2;
i f (!BI2C„INT3)

j o b _ l i s t [t j o b] . d a t a [0] = 3;

add__job (BI2CJ3VENT) ;

200

D. SYSTEM CONTROL BOARD FIRMWARE

int
main (void)
(
unsigned int i, j, c;
unsigned char data[2] = (0x01, 0x60);
unsigned char ret;
unsigned char tjob;
char lcd_msg[16];
int rval;

/* Configure Oscillator to run at 10MHz */
/* Fosc =-- Fin*M/(N1*N2I, Fey = Fosc/2 */
/* Fosc = 8M*40(2*2) = 80MHz */
PLLFBD = 38; /* M = 40 */
CLKDIVbits.PLLPOST = 0; /* Nl = 2 */
CLKDIVbits.PLLPRE = 0; /* N2 = 2 */
OSCTUN = 0 ; /* Tune FRC oscillator if FRC is used */

/* Wait for PLL to lock */
while (OSCCONbits.LOCK != 1)

/* Initialize I2C2 Module as Master */
init_i2c2 <);

/* Initialize System I/O, Timers, OCs, etc */
init_sys();

/* Initialize Panel I/O Expanders */
io_side_panel.i2c_addr = I2C_ADDR_SIDE_PANEL;
io_front_panel.i2c_.addr = I2C_ADDR_FRONT_PANEL;

io_side_panel . bi2c_channel = BI2C_CHANNEL__I0_SIDE_PANEL;
io__front_panel.bi2c__channel = BI2C„CHANNEL_I0_FR0NT„PANEL;

/* Side Panel */
io_side_panel.outp = Oxff;
io_side_panel.outp &- ~ SP__LED_bit ;
i2c_.io__exp_.write (&io_side„panel) ;

/* Front Panel */
].o_f ront_panel. outp ~ Oxff;
io_f ront__panel. outp & = ~FP_LED__bit ;
i2c_io_exp__write (& io_f ront_panel) ;

/* Blink HMI LEDs */
for (c = 0; c < 6; C++) (

if (io_side_panel.outp & SP_LED_bit)
io„side__panel. outp &= ~SP__LED_bit;

else
io_side_panel.outp 1= SP_LED_bit;

if (io__£ront_panel.outp S FP_LED_bit)
io„.f ront_panel. outp &- ~FP_LED_bit;

else
io_front_panel.outp |= FP_LED_bit;

12c_io_exp_write (&io_side__panel);
i2c„io_exp_write (&io_front_panel) ;
Delay (Delay_lS_Cnt/3);

/* Turn OFF LEDs */
io_side__panel. outp I- SP_LED_bit;
io_f ront._panel. outp I- F'P_LED_J}it;

i2c_io_exp__write (&io„side_panel) ;
i2c_io_exp_write (&io_front_panel)j

/* Set PC Power defaults */
pc_pwr_status[0].state = 0
pc_..pwr_status [1]. state - 0
pc_pwr_status[2].state - 0
pc_pwr__status [3] . state = 0

http://io_front_panel.i2c_.addr

/* Intialize LCD */
lcd__init () ;
lcd_print ("Initializing...", 15);

/* Initialize UART2 Module */
init_uart2 ();

/* Initialize I2C Slave Module */
init_i2c_slave ();

/* Initialize GPIO - Direction and Initial State */
iriit__io () ;

/* Turn ON main air supply - for calibration*/
PNEU_MAIN = DEASSERTED;

/* Calibrate Arm Position */
calibrate_sys();

/* Turn OFF Main Air */
PNEU_MAIN - ASSERTED;

/* Re-initialize */
i nit_sys () ;

/*- Enable Power on all PCs if not already on */
pcs_ready = FALSE;

pc_ready_done_flag = FALSE;

if (PC_SENSEO)

set_.pc_pwr {0) ;
if (PC_SENSE1)

set_pc_pwr (1) ;
if (PC„SENSE2)

set_pc_pwr (2) ;
if (PC_SENSE3)

set._.pc._pwr (3) ;

/* Initialize Job Dispatcher */
c u r r_ j ob = 0 ;

last„job = 0;

/* Reset Pass / Fail Array */
cap_count = 0;

for (j - 0; j < 4; j++)
for (i - 0; i < 16; i++)

capsu.le_passfail [j] [i] = 0;

/* Set bus switch to quadrant 1 (default for now) *

I2C_BUS„_SW__A0 - DEASSERTED;

I2C_BUS_SW_A1 = DEASSERTED;

/* System Check */
// init_check () ;

/* Turn ON LEDs */
io._side_panel .outp &= ~SP_LED_bit ;

io__front_panel. outp &= ~FP_LED_bit;

i.2c_io„exp_write {&io_side_panel) ;

i2c_io_exp_write (&io_front_panel);

/* Read data from I2C I/O Boards */
i2c_.io_.exp_read (&io_side_panel) ;

i2c_io_exp_read (&io_front_panel);

/* Display message waiting on PCs */
lcd__clear () ;

lcd„print("Waiting for PC", 14);

lcd_cursor_to{2, 0) ;

lcd__print ("ready signal. . . ", 15) ;

/* Current state of front panel switch */
i2c__io_exp__read (&io_f ront_panel) ;

D. SYSTEM CONTROL BOARD FIRMWARE

prev_fp_sw_state - {~io_front_panel.inp) & FRONT_PANEL_SW_bit;

/* The Main Loop */
while (1) {

if (curr_job != last_job) {
switch (job_list[get_next_curr_job()].job_id) {

case M0TOR_PULSE:
motor_step_hdlr ();
complete_job ();
break;

case LCD_WRITE:
lcd_cursor_to (job_list[get_next„curr_job()].data[16],0);
lcd_print (job_list[get_next„curr„job()].data, job_list[get_next_curr_job()]. be) ;
complete_job();
break;

case LCD_WRITE„LOC:
lcd_cursor_to {job_list[get_next_curr_job()].data[16],job_list[get_next_curr_job()].data[17])

lcd_print (job_list[get_next_curr_job()].data, job_list[get_next_curr_job{)].be);
complete_job();
break;

case LCD_CLEAR:
lcd__clear () ;
complete_job();
break;

case LCD_LED:
lcd_set_bl (job_list[get_next_curr_job()] .data [0]);
complete_job();
break;

case BI2C_EVENT:
/* Determine which BI2C line was triggered*/
switch {job_list [get„next_curr_job {)] . data [0]) {

case 0:

break;

case 1:
/* Front Panel */
/* Read I/O Inputs */
i2c_io_exp_read (&io_front_panel);

fp__sw__state - (~io_f ront_panel. inp) & FRONT_PANEL_SW__bit ;

/* Check I/O Inputs */
/* Check PB1 Pressed */
if ({~io_front_panel.inp) & FRONT_PANEL_PBl_bit) {

if (system_status.state != MACHINE_RUNNING)
enable_motor() ;

1
/* Check PB2 Pressed */
else if ((~io._front_panel.inp) & FR0NT_PANEL_PB2_bit) {

if (system_status.state == MACHINE^RUNNING)
disable_motor();

}
/* Check SN1 change of state */
if (fp_sw__state ! = prev_fp_sw_state) {
prev_fp_sw_state = fp_sw__state;
if ((~io_front_panel.inp) & FRONT_PANEL_SW_bit) {
/* Enable Debug Mode */
if (!shutdown_in_progress_flag) {

add_job (LCD_CLEAR);
t job = get_next_job();
job_list[tjob].data[16] - 1;
job_list[tjob].data[17] - 0;
job_list[tjob].be = 16;
sprintf (job__list[tjob].data, "HOLD TO SHUTDOWN");
add_job (LCD_WRITE);
t job = get__next_ job () ;
job_list[tjob].data[16] = 2;

http://~io._front_panel.inp

D. SYSTEM CONTROL BOARD FIRMWARE

job_list[tjob].data[17] = 0;
job_list[tjob].be = 15;
sprintf (job_list[tjob].data, " **************")
add_job (LCD_WRITE);
shutdown_start_timer_flag - TRUE;

]
)
else {

if (! shutdown_in__progress_f lag) {
add_job (LCD__CLEAR) ;
tjob = get_next_job();
j o b „ l i s t [t j o b] . d a t a [1 6] = 1;
j o b _ l i s t [t j o b] . d a t a [1 7] = 0;
j o b _ l i s t [t j o b] . b e = 13 ;
s p r i n t f (j o b _ l i s t [t j o b] . d a t a , " SHUTDOWN");
add_ job (LCD_WRITE);
tjob = get_next_job();
job_list[tjob].data[16] = 2;
job_list[tjob].data[17] = 0;
job_list[tjob].be = 14;
sprintf (job_list[tjob].data, " CANCELLED!");
add_job (LCD_WRITE);

/* Refresh LCD Title Timer */
T7C0Nbits.T0N = TRUE;
shutdown_start_timer_flag = FALSE;
sbutdown_timer = SHUTDOWN_TIMER_DEFAULT;

break;

case 2:
/* Side Panel */
/* Read I/O Inputs */
i2c_io._exp_read (& io_side_panel) ;

/* Check I/O Inputs */
/* Check PB Pressed */
if (("io_side_panel.inp) & SP_SW_bit) [

/* Turn ON or OFF AUX air supply */
io_side_panel.outp &= ~SP_AUX_AIR_bit;
//io_side_panel.outp &= ~SP_BUZZ_bit;

)
e l s e {

io_side_panel. outp |= SP_AUX_AIR__bit ;
//io_side_panel.outp 1= SP_BVZZ_bit;

)

break;

case 3:

break;

default:

break;

I
complete_job();

break;

case PC_POWER_SET:
/* Toggle power SW to specified motherboards for 400ms */
if (job_list[get_next_curr_job()].data[0] S 0x01)

PC_PWR0 = TRUE;
if (job_list[get_next_curr_job()].data[0] s 0x02)

PC_PWR1 = TRUE;
if (job_list[get_next_curr_job()].data[0] S 0x04)

PC_PWR2 = TRUE;
if (job_.list [get_next_eurr_job()] .data[0] & 0x08)

PC_PWR3 = TRUE;

pc_pwr_release_flag = TRUE;

204

complete_job();
break;

case PC_POWER_RELEASE:
PC_PWR0 = FALSE;
PC_PWR1 = FALSE;
PC_PWR2 = FALSE;
PC_PWR3 = FALSE;

complete_job{);
break;

case HALT„SYSTEM:
lcd_cursor_to (1, 0);
lcd_print (" Safe to Power", 14);
lcd_cursor_to (2, 0);
lcd_print (" Down Now!", 12);
while(1);
break;

default:
break;

)
)

)

return 0;
1

/* System Startup Check Routine (Debug)
* Flash some lights, switch air, etc.
* Used to verify system connections
*/

void
init_check {void)
1
unsigned char i;
Delay (Delay„lS_Cnt);

Delay (Delay_lS_Cnt/8) ;
PNEU__MAIN = DEASSERTED;
Delay (Delay_lS_Cnt/8);
PNEU_MAIN = ASSERTED;

Delay (Delay_lS_Cnt/8);
PNEU__UPPER = DEASSERTED;
Delay (Delay_lS_Cnt/8) ;
PNEU„.UPPER = ASSERTED;

Delay (Delay_lS_Cnt/8);
PNEU_ACCEPT0 = DEASSERTED;
Delay (Delay„lS„Cnt/8);
PNEU_ACCEPT0 = ASSERTED;

Delay (Delay_lS„Cnt/8);
PNEU_ACCEPT1 = DEASSERTED;
Delay (Delay_lS_Cnt/8);
PNEU_ACCEPT1 = ASSERTED;

Delay (De.lay_.lS_Cnt/8) ;
PNEU_ACCEPT2 = DEASSERTED;
Delay (Delay_lS_Cnt/8);
PNEU__ACCEPT2 = ASSERTED;

Delay (Delay„lS_Cnt/8);
PNEU_ACCEPT3 = DEASSERTED;
Delay (Delay_lS_Cnt/8) ;
PNEU_ACCEPT3 = ASSERTED;

Delay (Delay_lS_Cnt);
for (i = 0; i < 3; i + +) 1
PNEILMAIN = DEASSERTED;

D. SYSTEM CONTROL BOARD FIRMWARE

205

PNEU_UPPER = DEASSERTED;
PNEU_ACCEPTO = DEASSERTED;
PNEU_ACCEPT1 = DEASSERTED;
PNEU_ACCEPT2 = DEASSERTED;
PNEU_ACCEPT3 = DEASSERTED;

Delay (Delay_lS_Cnt/8);

PNEU_MAIN = ASSERTED;
PNEUJPPER = ASSERTED;
PNEIL.ACCEPTO = ASSERTED;
PNEU_ACCEPT1 = ASSERTED;
PNEU_ACCEPT2 = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;

Delay (Delay_lS_Cnt/8);
)

/* Cycle Lighting */
for (i = 0; i < 4; i++) (

IO_LED_FLl = DEASSERTED;
IO_LED_BL0 = ASSERTED;
Delay (Delay JS_Cnt/8);

IO_LED_BL0 = DEASSERTED;
IO_LED_BLl = ASSERTED;
Delay (Delay_lS_Cnt/8);

IO_LED_BLl = DEASSERTED;
IO_l.ED_FL0 = ASSERTED;
Delay (Delay_lS_Cnt/8);

IO_LED__FL0 = DEASSERTED;
IO_LED_FLl = ASSERTED;
Delay (Delay_lS_Cnt/8);

)

#if 1
for (i = 0; i < 5; i++) (

IO_CAM_TRIG0 = ASSERTED;
IO_CAM_TRIGl = ASSERTED;
Delay (Delay_lS_Cnt) ;
IO..CAM__TRIG0 = DEASSERTED;
IO_CAM_TRIGl = DEASSERTED;
Delay (Delay_lS_Cnt);

)
dendif

void
init_lo (void)
(
/* Turn OFF all pneumatic valves */
PNEU_MAIN = ASSERTED;
PNEU„UPPSR = ASSERTED;
PNEU_ACCEPT0 = ASSERTED;
PNEU_ACCEPT1 = ASSERTED;
PNEU..„ACCEPT2 = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;

/+ Set Tristate Mode of Pneumatics I/O */
PNEl)_MAIN._TRIS = FALSE;
PNEU_UPPER_TRIS = FALSE;
PNEU„ACCEPTO_TRIS = FALSE;
PNEU_ACCEPT1_TRIS = FALSE;
PNEU„ACCEPT2_TRIS = FALSE;
PNEU__ACCEPT3_TRIS = FALSE;

/* Turn OFF all LED back/front light controls */
IO_LED_BL0 = DEASSERTED;
IO_I,ED_BLl = DEASSERTED;
IO_LED_FL0 = DEASSERTED;
IO_LED_FLl = DEASSERTED;

D. SYSTEM CONTROL BOARD FIRMWARE

206

/* Set Tristate Mode of LED I/O
IO_LED_BL0_TRIS = FALSE;
I0„LED_BL1_TRIS = FALSE;
IO_LED_FL0_TRIS = FALSE;
I0_LED__FL1„TRIS = FALSE;

/* Turn OFF all Camera Trigger Signals */
IO_CAM_TRIG0 = DEASSERTED;
I0_CAM_TRIG1 = DEASSERTED;

/* Set Tristate mode of Camera Triggers */
IO_CAM_TRIG0_TRIS = FALSE;
I0_CAM_TRIG1_TRIS = FALSE;

/* Set Tristate mode for I2C
J.2C_BUS_SW_A0_TRIS = FALSE;
I2C_BUS_SW_A1_TRIS = FALSE;

Bus Switch */

/* Set Tristate mode for ESTOP Signals */
ESTOP_SIG0_TRIS = TRUE;
EST0P_SIG1_TRIS = TRUE;
EST0P_SIG2_TRIS = TRUE;
EST0P_SIG3__TRIS = TRUE;
A Set Tristate mode for ESTOP Interrupt (INTO) */
IO_ESTOP_INT_TRIS = TRUE;

/* Set Tristate mode for BI2C INT Signals
BI2C_INT0_TRIS = TRUE;
BI2C_INT1_TRIS = TRUE;
BI2C_INT2_TRIS = TRUE;
BI2C_INT3_TRIS = TRUE;

*/

/* Set Initial Value for PC Soft Power Control Outputs
/* Set Tristate mode for PC Soft Power Control */
PC_PWRO = FALSE;
PC_PWR1 = FALSE
PC_PWR2 = FALSE
PC_PWR3 = FALSE

PC_PWRO_TRIS = FALSE
PC_PWR1_TRIS = FALSE
PC_PWR2__TRIS = FALSE
PC_PWR3_TRIS = FALSE

/* Set Tristate mode for PC Soft Power Sense (inputs)
PC_SENSEO_TRIS = TRUE;
PC._SENSE1_TRIS = TRUE
PC_SENSE2_TRIS = TRUE
PC_SENSE3_TRIS = TRUE

PC_SENSEO = TRUE
PC_SENSE1 = TRUE
PC_SENSE2 = TRUE
PC.SENSE3 = TRUE

/* Perform System Initialization
* ~ Read current system parameters
* - Set Initial Outputs for system Parameters
* ~ Initial System Fault Check
*/

void
init_sys (void)
1
char i;

/* Setup some initial system parameters */
mtr_pulse_width = MTR_PULSE_WIDTH;
carn_trigO_pulse_width = CAM_TRIGO_PULSE_WIDTH;
cam_trigl_pulse_width = CAM_TRIG1_PULSE_WIDTH;
blO_pulse_width = BLO_PULSE_WIDTH;
bll_pulse_width = BL1_PULSE_WIDTH;

D. SYSTEM CONTROL BOARD FIRMWARE

f l O _ p u l s e _ w i d t h = FLO_J?ULSE_WIDTH;
f l l __pu l se_wid th = FL1_PULSE_WIDTH;

c a m O _ p u l s e _ p o s i t i o n = CAM0_PULSE_POSITION_DEFAULT;
c a m l . _ p u l s e _ p o s i t i o n = CAM1_PULSE__P0SITI0N_DEFAULT;
a c c e p t _ o n _ . p u l s e _ p o s i t i o n = ACCEPT_ON_PULSE_POSITION_DEFAULT;
accept_ .of _ _ p u l s e _ p o s i t i o n = ACCEPT_OFF_PULSE__POSITION_DEFAULT;

m t r _ r u n n i n g _ f r e q = MTR_DEFAULT_FREQ;

/ * Se t Analog Pins to Digital */
AD1PCFGL = Oxfff f ;
AD1PCFGH = Oxffff ;
AD2PCFGL = Oxffff ;

/ * Trigger Compensation */
i f (m o t o r _ s p e e d _ t a r g e t > 300) {

t r i g g e r _ c o r n p = (i n t) (0 .09 * (double) mo to r__speed_ ta rge t) -
)
e l s e {

t r i g g e r _ c o m p = 0;

/ * Reset counters */
f o r (i = 0; i < 4 ; i + +) {

capsule_good_count[i] = 0;
capsule_bad_count[i] = 0;
capsule__total__count [i] - 0;

/* Configure Timer2 for Output Capture */
T2CONbits.T32 = 0;
PR2 = (unsigned int) ((((double) Fey)/ (double) motor_speed) - 1.0);
PR2 = PR2 / T2PF;
T2CONbits.TON = 1;
T2CONbits.TCKPS = T2TCKPS;

/* Configure Timer3 for Output Compare */
PR3 = Oxffff;
T3CONbits.TCKPS = 2;
T3CONbits.TON = TRUE;

/* Configure Timer4 for I2C Bus Switch at about 12 kHz*/
TMR,..BUS_SWITCH_CONbits.TON = TRUE;
TMR_BUS_SWITCH_PR = I2C_BUS__SW_PR;

/* Div by 8 PS */
TMR_BUS_SWITCH_CONbits.TCKPS = 3;
TMR__BUS_SWITCH_IF = FALSE; /* Clear Interrupt Flag */
TMR...BUS_SWITCH„IE = TRUE; /* Enable Interrupt */

i2c_bus_lock = FALSE;
i2c„bus_lock_count = 0;
i?.c_bs_active_bus - 0;

/* Enable All Input Captures for Proximity Sensors */
IC_PS0_CONbits.ICM = ICM_FALL_EDGE;
IC._PS0_CONbits.ICTMR = ICTMR_TIMER2;
IC_PS0_IE = TRUE;

IC_PSl_CONbits.ICM = ICM_FALL_EDGE;
IC__PSl_CONbits.ICTMR = ICTMR_TIMER2;
IC_PS1_IE = TRUE;

IC_PS2_CONbits.ICM = ICM_FALL_EDGE;
ICJ?S2_CONbits. ICTMR = ICTMR_TIMER2;
IC_PS2_IE = TRUE;

IC_PS3._CONbits.ICM = ICM_FALL_EDGE;
IC_PS3„CONbits.ICTMR = ICTMR_TIMER2;
IC_PS3_IE = TRUE;

/* Enable Output Compare to generate LED Backlight Pulse */
OC_.LED_BL0_CONbits.OCM = OCM_DISABLED;
OC LED BL0 CONbits.OCTSEL = OCTSEL TIMER3;

http://IC_PS3._CONbits.ICM
http://OC_.LED_BL0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

OC_LED_BL0_R = 0;
OC._LED_BL0_RS = BLO_PULSE_WIDTH;

OC_LED_BLl_CONbits.OCM = OCM_DISABLED;
OC_LED_BLl_CONbits.OCTSEL = OCTSEL_TIMER3;
0C_LED_BL1..R = 0;
0C_LED_BL1_RS = BL1_PULSE_WIDTH;

OC_CAM_TRIG0_CONbits.OCM = OCM_DISABLED;
OC_CAM_TRIG0_CONbits.OCTSEL = OCTSEL_TIMER3;
OC_CAM„TRIG0_R = 0;
OC_CAM_TRIG0_RS = CAM_TRIGO_PULSE_WIDTH;

OC._CAM_TRIGl„CONbits . OCM = OCM__DISABLED;
OC_CAM_TRIGl_CONbits.OCTSEL = OCTSEL_TIMER3;
0C_CAM_TRIG1„R = 0;
OC_CAM_TRIGl_RS = CAM_TRIG1_PULSE_WIDTH;

/* Enable Output Compare to generate PWM for motor control */
/* Initially OFF */

OC„MTR_CTRL„CONbits.OCM = OCM_DISABLED;
/* Use Timer2 */

OC_MTR_CTRL_CONbits.OCTSEL = OCTSEL_TIMER2;

OC_MTR_CTRL_R = 0;
OC_MTR_CTRL_RS = MTR_PULSE_WIDTH;
OC_MTR_CTRL_IF = DEASSERTED;
OC_MTR_CTRL_IE = TRUE;

/* Configure Timer5 for Ramp Up/Down */
PR5 = 200;
TSCONbits.TON = FALSE;
T5CONbits.TCKPS = 3;
IFSlbits.T5IF = FALSE;
IEClbits.T5IE = TRUE;

ramp_.mode = RAMP_NONE;
motor_speed = MOTOR„MIN_FREQ;
motor_speed_target = MOTOR_MIN_FREQ;

/* Start Heartbeat Timer */
PR8 = 32535;
TBCONblts.TCKPS = 3;
TSCONbits.TON = TRUE;
IEC3bit.s.T8IE = TRUE;

/* LCD Timer */
PR7 = 65535;
T7CONbits.TCKPS = 3;
T7CONbits.TON = FALSE;
IFS3bits.T7IF = FALSE;
IEC3bits.T7IE = TRUE;

/* Start the Still Image Capture Timer */
PR9 = 30000;
T9CONbits.TCKPS = 3;
IEC3bits.T9IE = TRUE;

/* Setup InterruptO for E-Stop Interrupt */
INT_.ESTOP_CONbits.INT0EP = 1; /* Interrupt on negative edge */
INT_ESTOP_IF = DEASSERTED; /* Reset interrupt flag */
INT_ESTOP_IE = TRUE; /* Enable ESTOP interrupt */

/* Setup Interruptl for BI2C Interrupt */
INT_BI2C_CONbits.INT1EP = 1; /* Interrupt on positive edge */
INT„BI2C_IF = DEASSERTED;
INT_BI2C_IE = TRUE;

/* Check Motor Step Position. For given position trigger
* system functions
*/

static inline void motor_step_hdlr (void)

D. SYSTEM CONTROL BOARD FIRMWARE

{

unsigned char i;
unsigned char tjob;
unsigned int pc_test;

pc_test = pulse„counter + trigger_comp;

if (pc_test >= PULSES_PER_HOLDER) {
pc_test = (pulse_counter + trigger_comp) - PULSES_PER_HOLDER;

}

if (pulse_counter == accept_on_pulse_position) {
/* Enable Pneu Act - Station 0*/
if (cap_count < 1) {

if (capsule_passfail[0][cap_count + 15] == 2) {
PNEU_.ACCEPT0 = DEASSERTED;
capsule_good_count[0]++;

}
else if (capsule_passfail[0][cap_count + 15] == 1) {

capsule_bad„count [0] + + ;
}

}
else {

if {capsule__passfail [0] [cap_count - 1] == 2) {
PNEU_ACCEPT0 = DEASSERTED;
capsule_good_count[0]++;

}
else if (capsule__passfail [0] [cap_count - 1] == 1) {

capsule_bad_count[0]++;
}

I

/* Enable Pneu Act - Station 1*/
if (cap^count < 1) {

if (capsule__passfail [1] [cap_count + 15] == 2) {
PNEU_ACCEPT1 = DEASSERTED;
capsule_good__count [1] + + ;

}
else if (capsule_passfail[1][cap_count + 15] ==1) 1

capsule_bad__count[1]++;
}

)
else {

if (capsule_passfail [1] [cap„count - 1] =^= 2) {
PNEU_ACCEPT1 = DEASSERTED;
capsule_good_count[1]++;

)
else if (capsule_passfail[1][cap_count - 1] == 1) {

capsule_bad_count[1]+ + ;
)

}

/* Enable Pneu Act - Station 2*/
if (cap_count < 1) (

if (capsule_passfail[2][cap_count + 15] == 2) {
PNEIL.ACCEPT2 - DEASSERTED;
capsule_good_count[2]++;

}
else if (capsule_passfail[2][cap_count + 15] == 1) {

capsule_bad_count[2]++;
}

I
else {

if (capsule_passfail[2][cap_count - 1] == 2) {
PNEU_ACCEPT2 = DEASSERTED;
capsule_good._count [2] ++;

}
else if (capsule_passfail[2][cap_count - 1] == 1) {

capsule_bad_count[2]++;
}

}

/* Finable Pneu Act - Station 3*/
if (cap._count < 1) {

210

D. SYSTEM CONTROL BOARD FIRMWARE

if (capsule_passfail[3][cap_count + 15] == 2) {
PNEU_ACCEPT3 = DEASSERTED;
capsule_good_count [3] ++;

)
else if (capsule_passfail[3][cap_count + 15] == 1) {

capsule_bad_count[3]+ + ;
1

)
else {

if (capsule_passfail[3] [cap_count - 1] == 2) {
PNEU_ACCEPT3 = DEASSERTED;
capsule_good_count[3]+ + ;

}
else if (capsule_passfailf3][cap_count - 1] == 1) {

capsule_bad_count[3]++;
I

]
)

if (pulse_counter -= accept_off_pulse_position) {
PNEU_ACCEPTO = ASSERTED;
PNEU„ACCEPT1 = ASSERTED;
PNEU_ACCEPT2 = ASSERTED;
PNEU_ACCEPT3 = ASSERTED;

if (pc_test == camO_pulse_position) {
/* Enable TriggerO and BLO strobe */
/'* Reset Timer 3 for Backlight control and Camera Trigger Control */
T3C0Nbits.T0N = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BL0_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_TRIG0_CONbits.OCM = OCM_SINGLE_PULSE;

/* Enable Timer */
T3CONbits.TON = TRUE;

pc_test - pulse_counter + trigger_comp + extra_comp;

if (pc._test >= PULSES_PER_HOLDER| (
pc_test = (pulse_counter + trigger_comp + extra_comp) - PULSES_PER_HOLDER;

]

if (pc.„test == cainl_pulse_position) {
/* Enable Triggerl and BL1 strobe */
/* Reset Timer 3 for Backlight control and Camera Trigger Control */
T3CONbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BLl_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM„TRIGl_CONbits.OCM = OCM_SINGLE_PULSE;

/* Enable Timer */
T3CONbits.TON = TRUE;

)

if (pc_test == 470) {
if (one_step) {

/* Disable Motor */
OC_MTR_CTRL_CONbits.OCM = OCM_DISABLED;
/* Flash BLO and send trigger */
T3CONbits.TON = FALSE;
TMR3 = 0;

/* Enable Single Pulse Mode for LED Backlight Output Compare */
OC_LED_BL0_CONbits.OCM = OCM_SINGLE_PULSE;
OC_CAM_.TRIG0_CONbits.OCM = OCM_SINGLE_PULSE;

T3CONbits.TON = TRUE;
PNEU_MAIN = ASSERTED;

231

http://OC_CAM_.TRIG0_CONbits.OCM

D. SYSTEM CONTROL BOARD FIRMWARE

one_step = 0;
}

}

void
12c2_request_hcilr (unsigned char i_job)
{

unsigned char ret;
/ * Data formatted as follows

data[0] - I2C Slave Address
data[l] - Read/Write Direction
data [2-15] - I2C transfer buffer
be - holds data size (including byte 0 and 1)

*/

/* Check for Read / Write */
if (!job_list[i_job].data[l]) 1

ret = i2c2„write (job_list[i_job].data[0], *(job_list[i_job] .data + 2), job_list[i„job].be - 2);
}

/ * Handle incoming command from the UART2 module
*/

void
uart2_J-idlr (void)
<
unsigned char i = 0, err = 0, c;
unsigned char cmd;
unsigned char dat[2];
unsigned char tjob;
unsigned char tmp;
unsigned long ltmp;

/* Perform Error Check on data */
for (c = uart__rx. rd; c < uart_rx .rd + 3; C+ +) {

if ((uart_rx_buf[c] * uart„rx_buf[c+3]) 1= Oxff)
err++;

)

/* Respond accordingly */
if (err) {
U2TXREG = 0x15; /* NACK */

/* Reset buffer pointers equal */
uart„rx.rd - uart_rx.wr = 0;
uart„cmd_flag = 0;
return;

)
else {

U2TXREG - 0x06; /* ACK */
/* Wait for ACK msg to be sent */
while (!U2STAbits.TRMT)

cmd = uart_rx_buf[uart_rx.rd] ;

uart_rx.rd+ + ;
if (uart._rx.rd >= MAX_UART_RX_BUF)

uart_rx.rd = 0;

for (; i < 2; i++) {
dat [.1] = uart_rx__buf [uart_rx . rd] ;

uart_rx.rd++;
if (uart_rx.rd >= MAX_UART„RX_BUF)

uart_rx.rd = 0;
}

switch (cmd) (
/* Set Commands */
case UARTCMD SET MOTOR STAT:

switch (dat[0]) (
case Oxff:
/* Enable Motor */
enable_motor();
break;

default:
/* Disable Motor */
disable„inotor ();
break;

)
break;

case UARTCMD„SET_MOTOR_FREQ:
rnotor_speed_target = dat[l];
motor_speed_target l~ dat[0] << 8;

if (motor_speed_target < MOTOR_MIN__FREQ)
motor__speed_target = MOTOR_MIN_FREQ;

jntr_running_f req - motor_speed_target ;

/* If Running, ramp appropriately */
if (OC_MTR_CTRL_CONbits.OCM) (

if (motor_speed_target > motor_speed) {
ramp_mode = RAMP_UP;
TSCONbits.TON = TRUE;

1
else if (motor_speed_target == motor_speed) {
/* Do Nothing */

}
else {

rampjnode = RAMP_DOWN;
T5C0Nbits.T0N = TRUE;

}
)

break;

case UARTCMD_SET_BLO_WIDTH:
/* Set BLO Pulse Width */
MO_pulse_widtb = dat[l];
blO_pulse_widtb 1= (dat[0] << 8);
OC_LED_BL0_RS = blO_pulse_width;
break;

case UARTCMD_SET_BL1_WIDTH:
/* Set BL1 Pulse Width */
bll_pulse„width = dat[l];
bll_pulse_width [= (dat[0] << 8);
0C_LED_BL1_RS = bll_pulse_width;
break;

case UARTCMD_SET_FLO_WIDTH:
/* Set FLO Pulse Width */
fIO„pulse_width = dat[1];
flO_pulse_width |= (dat[0] << 8);
OC_LED_FL0__RS = f 10_pulse_width;
break;

case UARTCMD_SET_FL1_WIDTH:
/* Set FL1 Pulse Width */
fll_pulse_widtb = datfl);
fll_pulse__width I = (dat[0] << 8);
0C__LED_FL1_RS = f ll„pulse_width;
break;

case UARTCMD_RESET_COONTERS:
/* Reset capsule counters */
for (i = 0 ; i < 4; i++) (

capsule_good_count[i] = 0;
capsule_bad_count[i] - 0;

)
break;

D. SYSTEM CONTROL BOARD FIRMWARE

213

case UARTCMD_DEBUG_MODE:
/* Set in debug mode */
switch {dat [0]) {

case Oxff:
debug__mode {1) ;
break;

default:
debug._mode (0) ;
break;

}

break;

case UARTCMD_ONE_STEP:
/* Set in debug mode */
if (dat[0] == Oxff) {

/*• Display Message on LCD */
add_job (LCD„CLEAR);
tjob = get_next_job();
job_list[tjob].data[16] = 1;
job_list[tjob].data[17] = 0;
job__list [t job] .be = 14;
sprintf (job_list[tjob].data, " One-Step Mode");
add_job (LCD__WRITE) ;

one._step = 1;
OC„MTR__CTRL_CONbits.OCM - OCM_CONT_PULSE;

PNEU__MAIN = DEASSERTED;
}

break;

case UARTCMD_POWER_ON_PCS:
tjob = get_next_job{);
job_list[tjob].data[0] - dat[0);
add„job(PC_POWER_SET);
break;

case UARTCMD_SET_CAM0_PULSE_POS:
carnO__pulse_position = dat [1] ;
camO__pulsexposition |= (dat[0] << 8) ;
break;

case UARTCMD_SET_CAM1_PULSE_P0S:
caml__pulse_position = dat [1] ;
carnl_pulse_position |= (dat[0] << 8);
break;

case UARTCMD_SET_ACCEPT_ON_PULSE_POS:
accept__on_pulse_position = dat [1] ;
accept_on_pulse_position |= (dat[0] << 8) ;
break;

case UARTCMD_SET_ACCEPT_OFF_PULSE_POS :
accept__of f_pulse_position = dat [1] ;
accept__of f_pulse_position | = {dat [0] << 8) ;
break;

/* Get Commands */
case UARTCMD_GET_MOTOR_STAT:

/* Respond with Motor Status - on / off */
U2TXREG = (OC„MTR_CTRL_CONbitS.OCM) ? Oxff : 0x00;
break;

case UARTCMD_GET_MOTOR_FREQ:
/*• Respond with motor pulse freq */
U2TXREG - (mtr_running_freq >> 8) & OxOOff;
U2TXREG = mtr_running_freq & OxOOff;
break;

case UARTCMD GET BL0 WIDTH:

D. SYSTEM CONTROL BOARD FIRMWARE

/* Respond with BLO pulse width */
U2TXREG = (blO_pulse_width >> 8) s Oxff;
U2TXREG = blO_pulse_width S Oxff;
break;

case UARTCMD_GET_BL1_WIDTH:
/* Respond with BL1 pulse width */
U2TXREG = (bll_pulse_width >> 8) & Oxff;
U2TXREG = bll_pulse_widtb i. Oxff;
break;

case UARTCMD_GET_FLO„WIDTH:
/* Respond with FLO pulse width */
U2TXREG = (flO_pulse„widtb >> 8) s Oxff;
U2TXREG = flO„pulse_width & Oxff;
break;

case UARTCMD_GET_FL1_WIDTH:
/* Respond with FL1 pulse width */
U2TXREG = (fll_pulse_width >> 8) S Oxff;
U2TXREG = fll„pulse_width S Oxff;
break;

case UARTCMD_GOOD_COUNT:
/* Respond with Good capsule counter value - 4 bytes */
switch (dat[0]) {

case 1:
Itmp = capsule_good_count[0] ;
U2TXREG = (ltmp >> 24) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S Oxff;
while (U2STAbits.DTXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp s Oxff;
break;

case 2:
ltmp - capsule_good_count [1] ;
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAblts.UTXBF);
U2TXREG = ltmp & Oxff;
break;

case 3:
ltmp = capsule„good_count[2];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAbits.UTXBF) ;
U2TXREG = ltmp S Oxff;
break;

case 4:
ltmp - capsule_good_count[3];
U2TXREG = (ltmp >> 24) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) 4 Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp S Oxff;
break;

default:
break;

)
break;

case UARTCMD_BAD_COUNT:

/* Respond with Bad capsule counter value - 4 bytes */

21E

D. SYSTEM CONTROL BOARD FIRMWARE

switch (dat[01) {
case 1:

ltmp = capsule_bad_count[0];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp » 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp 5, Oxff;
break;

case 2:
ltmp = capsule_bad_count[1];
U2TXREG = (ltmp » 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

case 3:
ltmp = capsule_bad_count
U2TXREG = (ltmp >> 24) S
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) S
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

case 4:
ltmp = capsule_bad„count[3];
U2TXREG = (ltmp >> 24) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) 6. Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

[2];
Oxff

Oxff

Oxff;

default:
break;

)
break;

case UARTCMD__TGTAL_COUNT:
/* Respond with Bad capsule counter value
switch (dat[0]) (

case 1:
ltmp = capsule„total_count[0];
U2TXREG = (ltmp >> 24) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAblts.UIXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp S Oxff;
break;

case 2:
ltmp - capsule_total_count[1];
U2TXREG = (ltmp >> 24) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) S Oxff;
while (U2STAblts.UTXBF);
U2TXREG = ltmp & Oxff;
break;

case 3:
ltmp - capsule_total_count[2];
U2TXREG = (ltmp >> 24) i Oxff;
while (U2STAbits.UTXBF);

4 bytes */

216

D. SYSTEM CONTROL BOARD FIRMWARE:

U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

case 4:
ltmp = capsule_total_count[3];
U2TXREG = (ltmp >> 24) S Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 16) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = (ltmp >> 8) & Oxff;
while (U2STAbits.UTXBF);
U2TXREG = ltmp & Oxff;
break;

default:
break;

case UARTCMD_GET_CAM0_PULSE_POS:
/-* Respond with motor pulse freq */
U2TXREG = (camO_pulse_position >> 8) & OxOOff;
U2TXREG •= camO_pulse_position S OxOOff;
break;

case UARTCMD_GET_CAM1_PULSE_P0S:
/* Respond with motor pulse freq */
U2TXREG = (caml_pulse„position >> 8) & OxOOff;
U2TXREG = caml_pulse„position s OxOOff;
break;

case UARTCMD„GET_ACCEPT_ON_PULSE_POS:
/* Respond with motor pulse freq */
U2TXREG = (accept„on„pulse_position >> 8) & OxOOff;
U2TXREG = accept_on_pulse_position & OxOOff;
break;

case UARTCMD_GET_ACCEPT_OFF_PULSE_POS:
/* Respond with motor pulse freq */
U2TXREG - (accept_off_pulse_position >> 8) S OxOOff;
U2TXREG = accept„off_pulse_position 4 OxOOff;
break;

case UARTCMD_GET_PC_PWR_STATE:
/* Respond with power state of PCs */
tmp = 0;
tmp |= pc.jowr_status [0] . state & 0x03;
tmp |= ((pc_pwr_status[1].state << 2) & 0x0c)
tmp 1= ((pc_pwr_status(2].state << 4) & 0x30)
trnp I =-- ((pc_pwr_status[3].state << 6) & OxcO)
U2TXREG = tmp;

break;

default:
/* Do nothinq */
break;

)

/* Set buffer pointers equal */
uart_rx.rd - uart„_.rx.wr = 0;
uart_cmd„flag - 0;

//complete_job () ;

void
enablejotor (void)
{
unsigned char tjob;
char msg[16];

217

D. SYSTEM CONTROL BOARD FIRMWARE

systern_status. s t a t e = MACHINE_RUNNING;
/ * Enable Motor */
motor_.speed„target - mtr_running_freq;

adcLjob (LCD_CLEAR) ;

/* Display Message on LCD */
tjob = get._next_job () ;
job_.list [t job] .data [16J = 1;
job_list[tjob].data[17] = 0;
job_list[tjob].be = 13;
sprintf (job_list[tjob].data, "Motor Enabled");
add_job (LCD_WRITE);

t job ^ ge t_nex t „ job0 ;
j o b _ l i s t [t j o b] . d a t a [1 6] = 2;
j o b _ l i s t [t j o b] . d a t a [1 7] = 0;
sp r in t f {rrisg, "Speed; %d Hz", motor_speed_target);
j o b _ l i s t [t j o b] . b e = s t r l e n (msg);
sp r in t f (j o b _ l i s t [t j o b] . d a t a , msg) ;
add„Job (LCD„WRITE) ;
lcd_lock = LCD_LOCK_TIMEOUT;

if (motor_speed < motor_speed_target) {
OC_MTR_CTRL_CONbits.OCM = 0CM_C0NT„PULSE;
ramp_rnode = RAMP_UP;
motor_stop_flag = FALSE;
T5C0Nbits.T0N = TRUE;

void
disable_rnotor (void)
(
unsigned char tjob;

if (systern_status. state = MACHINE_RUNNING)
systenustatus.state = MACHINE_STOPPED;

add job (LCD_CLEAR);

/* Display Message on LCD */
tjob - get„next_job();
job__list [tjob] .data [16] = 1;
job_list[tjob].data[17] = 0;
job_list[tjob].be = 14;
sprintf (jobjist [tjob] .data, "Motor Disabled");
add_job (LCD_WRITE);

lcd„lock = LCD_LOCK„TIMEOUT;

rriotor_speed_target = MOTOR_MIN_FREQ;
if (motor_speed > motor_speed„target) {

ramp^mode = RAMP_D0WN;
motor„stop_f lag = TRUE;
TSCONbits.TON = TRUE;

void
debug_mode (int set)
(
int t j ob;

/* Display Message on LCD */
add_job (LCD_.CLEAR) ;
tjob = get._next_job () ;
j o b „ l i s t [t j o b] .data[16] = 1 ;
j o b _ l i s t [t j o b] . d a t a [1 7] = 0;
j o b _ i i s t [t j o b] . b e = 13;
sp r in t f (j o b _ l i s t [t j o b] . d a t a , " Debug Mode");

2U

add„job (LCD_WRITE);

if (set) 1
if (system_status.state == MACHINE_RUNNING)

di sable_motor{);

system_status.state = MACHINE_DEBUG;

/* Display Message on LCD */
tjob - get_next_job();
job._list [t job] .data[16) = 2;
job_.list [t job] .data [17] = 0;
job_list[tjob].be = 12;
sprintf (job__list [t job] .data, " Enabled");
add_job (LCDJRITE) ;

/* Enable Timer 9 */
T9C0Nbits.T0N = TRUE;

)
else {

systern_.status. state = MACHINE__STOPPED;

/* Display Message on LCD */
tjob = get_next_job();
job_list[tjob].data[16] = 2;
job_list[tjob].data[17] = 0;
job_list[tjob].be = 13;
sprintf (job_.list [t job] .data, " Disabled");
add_job (LCD_WRITE) ;

/ * Disable Timer 9 */
T9C0Nbits .T0N = FALSE;

)
1

v o i d
calibrate_sys (void)
(
/* initially set to 1 (arbitrary) */

pul se._counter - 1;

raotor_stop_flag = FALSE;

/* Write to LCD */
lcd_clear ();
lcd_print ("Calibrating...", 14);
/* Align to Zero Position */
/* Set Motor Speed */
PR2 = 0x03ff;
T2C0Nbits.T0N = 1;

/* Enable Calibration Mode */
calibration_mode - 1;

/* Start Motor */
/* Initially OFF */

OC_MTR_CTRL_CONbits.0CM = OCM_DISABLED;
/* Use Timer2 */

OC__MTR_CTRL_CONbits.OCTSEL = 0CTSEL_TIMER2;
OC_MTR_CTRL_CONbits.OCM = 0CM_CONT_PULSE;

/* Wait for calibration to complete */
while (calibration__mode) ;

void
set._pc_pwr (unsigned char pc)
1
/* Check pc number, if Oxff, power all */
if (pc == Oxff) f

D. SYSTEM CONTROL BOARD FIRMWARE

219

D. SYSTEM CONTROL BOARD FIRMWARE

/* Switch PWR SW signal to ALL MBs to ON */
PC_PWRO = TRUE;
PC_PWR1 = TRUE;
PC..PWR2 = TRUE;
PC_PWR3 = TRUE;

/* Delay for 400 ms */
Delay (Delay_lmS_Cnt * 400);

/* Switch PWR SW signal to ALL MBs to OFF */
PC_PWR0 = FALSE;
PC_PWR1 = FALSE;
PC_PWR2 = FALSE;
PC„PWR3 = FALSE;

1
else if (pc ==0) {

/* Switch PHP. SW signal to MB 0 to ON */
PC_PWR0 = TRUE;

/ * Delay for 400 ms */
Delay (Delay_lmS_Cnt * 4 0 0) ;

/ * Swi tch PWR SW signal to MB 0 t o OFF */
PC_PWR0 = FALSE;

)
e l s e i f (pc = ^ 1) {

/ * Switch PWR SW signal to MB 1 to ON */
PC_PWR1 = TRUE;

/* Delay for 400 ms */
Delay (Delay_lmS_Cnt * 400);

/* Switch PWR SW signal to MB 1 to OFF */
PC_PWR1 = FALSE;

)
else if (pc ==2) (

/* Switch PWR SW signal to MB 2 to ON */
PC_PWR2 = TRUE;

/ * Delay for 400 ms */
Delay (Delay_lmS_Cnt * 4 0 0) ;

/ * Switch PWR SW signal to MB 2 to OFF */
PC_PWR2 = FALSE;

)
e l s e i f (pc == 3) {

/ * Switch PWR SW signal to MB 3 to ON */
PC__PWR3 = TRUE;

/ * Delay for 400 ms */
Delay (Delay_lmS_Cnt * 4 0 0) ;

/ * .Switch PWR SW signal to MB 3 to OFF */
PC_PWR3 = FALSE;

)

D.4 i2c_slave.h

/ * i2c_slave.h

* Routines to handle I2C Slave module
* slave, and 12C_2 for master.

* Author: Neil Scott
* Date: September 12, 200 7
*/

#ifndef I2C_SLAVE_H
#define I2C_SLAVE_H

Uses I2C_1 module for

220

D. SYSTEM CONTROL BOARD FIRMWARE

#include <p33FJ256GP710.h>
#include "common.h"

void init_i2c_slave(void);

#endif /* I2C_SLAVE_H */

D.5 i2c_slave.c

/ * 12c_slave.c

Routines to handle I2C Slave module. Uses I2C_1 module for
slave, and I2C_2 for master.

* Author: Neil Scott
* Date: September 12, 2007
*/

#include "common.h"

#define I2C1_FREQ 100000 /* Hz */
#define I2C1_BRG 363 /* ((Fey / I2C2_FREQ) - (Fey / 1111111)) - 1 */

extern struct JOB job_list[MAX_JOBS];
extern int cap„id;
extern unsigned char cap_count;
extern unsigned char capsule_passfail[4][16];
extern volatile unsigned char i2c__bs_active_bus;
extern volatile struct PC_PWR_STATUS pc_pwr_status[4];

volatile unsigned char i2c„cmd;
volatile unsigned char i2c_data;

volatile unsigned char i2cl_data_flag;
volatile unsigned char i2cl_addr_flag;
volatile unsigned char i2cl_cmd_flag;
volatile unsigned char i2cl_last_cmd;

/* Interrupt Service routine for I2C Slave module */
void
„ attribute___((interrupt, no„auto_psv)) _SI2ClInterrupt (void)
{
unsigned char tjob;
unsigned char tmp;
static unsigned char i_job;
unsigned char cap_id;
static unsigned char cmd;
unsigned char data;
unsigned char buf;
unsigned char be;

/* Reset 12C Bus Switch Timer */
TMR_BUS_SWITCH_TMR - TMR_BUS_SWITCH_PR/4;

/* Create a Job */
if (!I2ClSTATbits.R_W) {
buf - I2C1RCV;
be = 1;

I
else {

tmp = I2C1RCV;
be - 0;

/* Clear Interrupt Flag */
IFSlbits.Sl2ClIF - 0;

if (be) {
/* Unload Address from Receive Buffer */

D. SYSTEM CONTROL BOARD FIRMWARE

i f (! i 2 c l _ a d d r _ f l a g) f
i 2 c l _ a d d r _ f l a g = TRUE;
r e t u r n ;

/* Get Command */
i f (! i 2 c l _ d a t a _ f l a g) {

crnd = buf ;
i 2 c l _ d a t a j l a g = TRUE;
r e t u r n ;

1
)
e l s e {

I2C1TRN = c a p _ c o u n t ;
I2ClC0Nbits.SCLREL = TRUE;

}

switch (cmd) {
case I2CCMD„GET„CAPID:

/* Check for read */
if (!bc) (

12C1TRN = cap_count;
I2ClC0Nbits.SCLREL = TRUE;

i2ci_data_flag = FALSE;
i2cl__addr_£lag = FALSE;

)
break;

c a s e I2CCMD_SET_PF:
d a t a - buf;
c a p ^ i d = ((OxfO S d a t a) >> 4) S OxOf;
c a p s u l e _ _ p a s s f a i l [i2c__bs_act i v e _ b u s] [c a p _ i d] = d a t a & OxOf;

i 2 c l _ d a t a _ f l a g = FALSE;
i 2 c l „ a d d r j l a g = FALSE;

break;

case I2CCMD_SET_PC_.READY:
data = buf;
if (data)
pc__pwr_status [i2c_bs_active_bus] .state |= PC_POWER_READY;

i2cl_.data_flag = FALSE;
12cl_addr_„flag = FALSE;

break;

default:
break;

void
init_„i2c_slave (void)
(
/* Enable J2C1 module as Slave */
I2ClCONbits.I2CEN = TRUE;

/* Set for 7-bit Address mode */
I2ClCONbits.A10M = FALSE;

/* Disable Master Interrupt */
IEClbits.MI2ClIE = FALSE;

/* Enable Slave Interrupt */
IEClbits.SI2ClIE = TRUE;

/* Set interrupt priority of SI2C1IE */
IPC4bits.SI2ClIP = 0x06;

/* Clear Interrupt Flag */

222

D. SYSTEM CONTROL BOARD FIRMWARE

].FSlbits.SI2ClIF = DEASSERTED;

/* Set SCL1 and SDA1 as open drain */
0DCGblts.0DCG2 = TRUE; /* SCL1 */
0DCGbits.0DCG3 = TRUE; /* SDA1 */

/* Set I.2C Clock Rate */
I2C1BRG = I2C1_BRG;

/* Set I2C1 Slave Address */
I2C1ADD =•• I2C_SLAVE_ADDRESS;

/* Clear Last Start and Set Last Stop Flag */
IZClSTATbits.P = 1;
I2ClSTATbits.S = 0;

i2cl_data_flag = FALSE;
12cl_addr_flag = FALSE;
i2cl_.crnd_flag = FALSE;

)

D.6 i2c_commands.h

/* i2c_commands.h

* Definitions for I2C slave module commands.
*
* Author: Neil Scott
* Date: September 17, 2007
*/

(tifndef I2C__COMMANDS_H
#define I2C__COMMANDS_H

#define I2CCMD_GET_CAPID OxAO /* Get Capsule ID */
#define I2CCMD_SET_PF 0x80 /* Set Pass/Fail */
#define I2CCMD_SET_PC_READY 0x81 /* Set Ready Flag for Inspect Software */

tfendif /* I2C_C0MMANDS_H */

D.7 i2c_2.h

/* i2c_2.h

* Routines to handle I2C Master module using polling. The
* I2C_2 module is used as the master, and I2C_1 module is
* used as the slave.

* Author: Neil Scott
* Date: August 06, 2007
*/

#ifndef I2C_2_H
#define I2C_2_H

#include <p33FJ256GP710.h>

void init_i2c2 (void);
char i2c2___write {unsigned char addr, const unsigned char *buf, unsigned char len) ;
char 12c2_reaci (unsigned char addr, unsigned char *buf, unsigned char len);

#endif /* I2C_2_H */

D.8 i2c_2.c

223

D. SYSTEM CONTROL BOARD FIRMWARE

/* i2c_2.c

* ======== =========== ======================= === = ==== = == = = = —
* Routines to handle I2C Master module using polling. The
* 12C_2 module is used as the master, and 12C_1 module is
* used as the slave.

* Author: Neil Scott
* Date: August 06, 2007

#include "i2c„2.h"
#include "common.h"

#define ACK._TIMEOUT 4 0
tfdefine I2C2__FREQ 100000
#define I2C2_BRG 363

/* Hz */
/* ({Fey / I2C2_FREQ) - (Fey / 1111111)) - 1 */

tdefine TIMEOUT_SEN 2500
#define TIMEOUT_TRN 800
#de£ine TIMEOUT_PEN 250
#define TIMEOUT_ACKSTAT 350
#define TIMEOUT_TBF 250
#define TIMEOUT_RCEN 250
fldefine TIMEOUT_JDONE 250

/* Start Enable Response Timeout */

volatile unsigned char jDone;

/* I2C2 Master Module Interrupt Service Routine */
void
..attribute ((interrupt, no_auto_psv)) _MI2C2Interrupt (void)
I
jDone = 1;

/* Clear Interrupt Flag */
IFS3bits.MI2C2IF = DEASSERTED;

void
init_i2c2 (void)
(
/* Set SCL2 and SDA2 as open drain */
ODCAbits.ODCA2 = TRUE; /* SCL2 */
ODCAbits.ODCA3 = TRUE; /* SDA2 */

/* Set I2C Clock Rate */
I2C2BRG = I2C2JRG;

/* Enable the I2C Module as Master */
I2C2CONbits.I2CEN = TRUE;
/* Enable Master Interrupt */
IEC3bits.MI2C2IE = TRUE;
/+ Clear Interrupt Flag */
IF'S3bits.MI2C2IF = DEASSERTED;

/* Reset Done Flag */
jDone - 0;

/* Returns zero on success */
char
i2c2._write (unsigned char addr, const unsigned char *buf, unsigned char len)
{
unsigned char count = 0;
unsigned int timeout - 0;

jDone - 0;
I2C2CONbits.SEN = TRUE;
Nop();
timeout = TIMEOUT_SEN;

while {!jDone && timeout)
timeout—;

)

if (!timeout) {

return ERR_I2C_MASTER_.START;
)

jDone - 0;
I2C2TRN = (addr << 1);
Nop();
timeout = TIMEOUT„TRN;

while (!jDone && timeout) {
timeout--;

}

if (!timeout) {
return ERR_I2C_MASTER_TRN;

1

/* Check for ACK */
if (I2C2STATbits.ACKSTAT) 1

return ERR_I2C_MASTER_NACK;
)

Nop ();

for (; count < len; count++) {
I2C2TRN = buf[count];
timeout = TIMEOUT_TBF;
Nop();
jDone = 0;
timeout = 2000; //TIMEOUT_JDONE;

while (!jDone && timeout) {
timeout--;

)

if (I2C2STATbits.ACKSTAT) (
return 1;

)

if (!timeout) {
return 1;

)

Nop();
)

jDone = 0;
I2C2CONbits.PEN = TRUE;
Nop();
Nop();

while {!jDone);

return 0;

)

/* Returns non-zero on success */
char
i2c2_read (unsigned char addr, unsigned char *buf,
(
unsigned char count = 0;
unsigned int timeout ^ 0;

jDone ^ 0;
I2C2CONbits.SEN = TRUE;
Nop();
Nop();
t i m e o u t = TIMEOUT_SEN;

w h i l e (! jDone && t i m e o u t) (
t J.meout— ;

D. SYSTEM CONTROL BOARD FIRMWARE

unsigned char len)

D. SYSTEM CONTROL BOARD FIRMWARE

}

if (!timeout) {
return -1;

)

/* For Read, bit 0 must be high */
jDone = 0;
I2C2TRN = (addr << 1) [0x01;
Nop();
timeout = TIMEOUT_TRN;

while (!jDone && timeout) {
timeout—;

)

if (!timeout) {
return ERR_I2C_MASTER_TRN;

}

/* Check for ACK */
if (I2C2STATbits.ACKSTAT) (

return 1;
)

Nop();

for (; count < len; count++) {

jDone = 0;

/* Enable Receive Mode */
I2C2.CONbits.RCEN = TRUE;

timeout = TIMEOUT_RCEN;

while (!jDone && timeout) {
timeout--;

)

buf[count] = I2C2RCV;

/* If last byte, set to NACK, otherwise set to ACK */
if (count == (len - 1)) {

/* Set to send NACK */
I2C2CONbits.ACKDT = ASSERTED;

}
else (

/* Set to send ACK */
I2C2CONbits.ACKDT = DEASSERTED;

)

jDone - 0;

/* Generate ACK */
I2C2CONbits.ACKEN = TRUE;

while (!jDone);

)

jDone = 0;
I2C2CONbits.PEN = TRUE;
Nop();
timeout = TIMEOUTJEN;

while (!jDone && timeout) {
t imeout — ;

)

return 0;

)

226

http://I2C2.CONbits.RCEN

D. SYSTEM CONTROL BOARD FIRMWARE

D.9 i2c_io_exp.h

/* i2c_io_exp. h
* — • = : = ; = = = = = = = = — — — — ^ — — — — — = = = = — = = — — — = = = ^ = — = — — — — — = — — = — —

* Contains definitions for I2C I/O Expansion board

* Author; Neil Scott

* Date: January 28, 2008
*/

ftifndef I2C„I0_EXP_H
#define I2C_I0_EXP_H

/* I2C I/O Expansion Board abstraction */
struct I2C_I0_EXP
{
unsigned char i2c_addr;
unsigned char bi.2c_channel;
unsigned char inp;
unsigned char outp;
unsigned char ts_i2c_addr;
unsigned char ts_conf_reg;
unsigned char ts„temp_reg[2];

/* Function Prototypes */
int i2c_io_exp__write (struct I2C_I0_EXP *io_exp);
int i2c_io_exp_read (struct I2C_I0_EXP *io_exp);
int i2c_io_exp_set_ts_conf (struct I2C_I0_EXP *io__exp);
int i2c_io_exp_get_ts_conf (struct I2C_I0_EXP *io__exp);
int ;i. 2c_io_.exp_get._ts_temp (struct I2C_I0_EXP * io„exp) ;

#endif /* I2C_I0_EXP_H */

D.10 i2c_io_exp.c

/* i2c_io__exp. c

* Routines to communicate with I/O expansion boards.

* Author: Neil Scott
* Date: January 28, 2008
*/

#include "i2c_io_exp.h"

struct I2C_I0_EXP temp„sense;
struct I2C_I0_EXP io_side_panel;
struct I2C_I0_EXP io_front_panel;

/* Perform I2C request to write output data to the specified I2C I/O Expansion board */

int i2c_io_exp_write (struct I2C_I0_EXP *io_exp)
I
unsigned char data[2];

/* Must write OxFF to input port of NXP PCA8575 */
data[0) = Oxff;

/* Copy output data from structure */
data[l] ̂ io_exp~>outp;

/* Send data to device */
return (i2c2_write (io_exp->i2c_addr, data, 2));

I

/* Perform I2C request to read input data from specified I2C I/O Expansion Board */
int i2c_io_exp_read (struct I2C_I0_EXP *io_exp)
(
unsigned char data[2];

227

D. SYSTEM CONTROL BOARD FIRMWARE

int ret;

ret = i2c2_read (io_exp->i2c_addr, data, 2);

/* Copy data read from device to structure */
io_exp->inp = data[0];
io_exp->outp = data[l];

return ret;
}

/* Set the configuration register of the I2C temperature sensor */
int 12c„io_exp__set_ts__conf (struct I2C_IO_EXP *io_exp)
{
unsigned char data[2];

/* To select Configuration register, first byte is OxOl */
data [0] - 0x01;
data [2] = io_exp->ts_conf_reg;

return (i2c2__write (io__exp->ts_i2c_addr, data/ 2)) ;
}

/* Read the configuration register of the I2C temperature sensor */
int i2c__io__exp._get_ts_conf (struct I2C_IO_£XP *io_exp)
{
unsigned char dataL2];
int ret;

/* To select Configuration register, must write OxOl */
data [0] = 0x01;

if (ret - i2c2_write {io_exp->ts_i2c_addr, data, 1)) {
return ret;

ret - i2c2_read (io_exp->ts_i2c_addr, data, 1);
io_exp->ts_conf_reg = data[0];

return ret;
}

/* Read the temperature register of the I2C temperature sensor */
int i.2c_io_exp_get_ts„temp (struct I2C_I0_EXP *io_exp)
{
unsigned char data[2];
int ret;

/* To select Temperature register, must write OxOO */
data [0] - 0x00;

if (ret = i2c2_write (io_exp->ts_i2c_addr, data, 1)) {
return ret;

)

ret = i2c2_read (io_exp->ts_i2c_addr, &io_exp->ts_temp_reg, 2);

return ret;

)

D . l l lcd_i2c.h

/* J cd_i2c. h

* Header file for LCD module controlled over I2C using
* I/O Extender.

* Author: Neil Scott

D. SYSTEM CONTROL BOARD FIRMWARE

* Date: August 14, 2007

* Standard HITACHI LCD (HD44780) Pinout:

* 1 - GND

* 2 - 5V
* 3 - LCD Driver Vee
* 4 - RS
* 5 - R/W
* 6 - Enable
* 7-14 - DATAO to DATA7
* 15 - LED+
* 16 - LED-

iifndef LCD_I2C_H
tfdefine LCD_I2C_H

#define I2C_LCD_SLAVE_ADDR

/* Bitmasks */
#define bmLCD_RS
//tdefine bmLCD_RW
#define bmLCD_PWR
#define bmLCD_EN
tdefine bmLCD_LED

fldefine bmLCD_DATAO
#define bmLCD_DATAl
#define bmLCD_DATA2
fldefine bmLCD_DATA3

#define bmLCD„DATA4
#define brnLCD_DATA5
#define bmLCD_DATA6
#define bmLCD_DATA7

0x27 /* 7-bit addr */

0x01
0x02
0x02
0x04
0x08

0x00
0x00
0x00
0x00

0x10
0x20
0x40
0x80

/* Shorted to GND for write */

/* Function Prototypes */
char lcd_init (void);
char lcd_push._nibble (char nibble) ;
char lcd_write_cmd (char cmd);
char lcd_.write_data (char data) ;
char lcd_set_bl (char state);
char lcd__cursor_to (char line, char x);
char lcd_print (char *msg, char len);
char lcd_clear (void);
char lcd_print__loc (char *msg, char line, char x);

#endif /* LCD_I2C_H */

D.12 lcd_i2c.c

/* lcd_,i2c.c

* Routines to display text on LCD through I2C I/O expander.
* Requires the I2C routine function 12c2_write I) .

Author: Neil Scott
Date: August 14, 2007

#include "common.h"
#include "lcd_i2c.h"

#define DELAY_LCD_EN (Delay200uS_count*3)

extern struct I2C_IO„EXP io_front_panel; /* Front Panel I2C Exp controls LCD */

char
push_nibble (char nibble)

229

D. SYSTEM CONTROL BOARD FIRMWARE

I
char val;
char ret;

val = Oxff;

/ * Clear DATA bits */
i o _ f r o n t _ p a n e l . o u t p |= (brnLCD_DATA4 I bmLCD_DATA5 I brnLCD_DATA6 I bmLCD_DATA7) ;

i f (n i b b l e & 0x01)
i o _ f r o n t _ p a n e l . o u t p &= ~brnLCD_DATA4;

i f (n i b b l e s 0x02)
i o _ f r o n t _ p a n e l . o u t p s= "bmLCD_DATA5;

i f (n i b b l e & 0x04)
i o _ f r o n t _ p a n e l . o u t p &= ~bmLCD__DATA6;

i f (n i b b l e S 0x08)
i o _ f r o n t _ p a n e l . o u t p &= ~bmLCD_DATA7;

i o _ f r o n t _ p a n e l . o u t p | = bmLCD_EN;

/ * Se t DATA line */
r e t - i 2 c _ i o _ e x p _ w r i t e (& i o _ f r o n t „ p a n e l) ;

/ * Error during I2C write */
i f (r e t) (

r e t u r n r e t ;
}

D e l a y j s (DELAY_LCD_EN);

/ * Set EN */
io__ti :or i t„panel . o u t p & = ~bmLCD_EN;
r e t - 1 2 c _ i o _ e x p _ w r i t e (& i o _ f r o n t _ p a n e l) ;

D e l a y j s (2*DELAY_LCD_EN) ;

/ * Release EN */
i o _ f r o n t _ p a n e l . o u t p |= bmLCD_EN;
r e t - i 2 c _ i o _ e x p _ w r i t e (& i o _ f r o n t _ p a n e l) ;

Delay_.Us (DELAY_.LCD_EN) ;

r e t u r n 0;
)

char
l cd_wr i t e_c rnd (char cmd)
(
char val;
char ret;

/* Set RS to LOW */
io__f ront_panel. outp |- brnLCD__RS;

/* Push High Nibble then Low Nibble */
val = (cmd >> 4) S, OxOf;
ret - pusb_nibble (val);

if (ret)
return ret;

Delay_Us (DELAY_LCD_EN);

val '̂ cmd & OxOf;
push_nibble (val);

Delay_Us (DELAY_LCD_EN);

return 0;

)

char

lcd_write._data (char data)
(
char val;
char ret;

/* Set RS HIGH */
io__f ront_panel. outp &= ~bmLCD_RS;

/* Push High Nibble then Low Nibble */
val = (data >> 4) s OxOf;
ret ~ push_nibble (val);

if (ret)
return ret;

Delay^Us (DELAY_LCD_EN);

val = data S OxOf;
pusn_nibble (val);

Delay_Us (DELAY_LCD_EN);

return 0;

)

char
lcd_init (void)
f
char ret;

/* Set Default Output Data */
/* Inputs all high */
io_front._panel.outp = bmLCD_LED I bmLCD_RS I bmLCD

bmLCD_DATA6 I bmLCD_DATA7;
ret ^ i2c_io„exp_write (&io_front_panel);

ret =-- push_nibble (0x02);

if (ret) {
return ret;

1

/ * Initialize LCD in 4-bit mode */
Delay (20 * Delay_lrnS_Cnt) ;
push_nibble (0x02);
Delay(20 * Delay_lmS_Cnt);
pusn_riibble (0x08);
Delay(20 * Delay_lmS_Cnt);
push_nibble (0x00);
Delay(20 * Delay_lmS_Cnt);
push_nibble (0x0c); /* Enable Displ
Delay(20 * Delay_lmS_Cnt);
push_nibble (0x00);
Delay (20 * De.lay_lmS_Cnt) ;
push_nibble (0x01);
Delay(20 * Delay_lmS_Cnt);
push_nibble (0x00);
Delay(20 * Delay_lmS_Cnt);
push_nibble (0x06);
Delay(20 * Delay_lmS„Cnt);
push_nibble (0x00);
Delay (20 * Delay_lmS_Cnt);
push_nibble (0x01);
Delay(20 * Delay_lmS„Cnt);

return 0;
}

char
lcd_set_bl (char state)
(
char ret;

D. SYSTEM CONTROL BOARD FIRMWARE

.PWR [bmLCD_EN I bmLCD_DATA4 I bmLCD_DATA5 I

- No Blinking Cursor */

http://io_front._panel.outp

D. SYSTEM CONTROL BOARD FIRMWARE

/*• Turn off back-light */
if (! state)

io_front_panel.outp != bmLCD_LED;
else

io__f ront__panel. outp & = ~bmLCD__LED;

ret - i2c__io_exp_write (&io_f ront_panel) ;

if (ret) {
return ret;

Delay (DELAY_LCD__EN) ;

return 0;

void

lcd_cursor_to (char line, char x)
{

char i;

1cd_write_cmd (0x02) ;

x += (line - 1) * 40;

f o r (i = 0 ; i < x ; i++)
l cd_wr i t e_c rnd (0x14) ;

char
icd_print (char *msg, char len)
{
char i;
char ret;

for (i = 0; i < len; i++) {
ret = lcd_write_data (msgti]);

if (ret)
return ret;

Delay (DELAY_LCD_EN);

return 0;
}

char
lcd_clear (void)
{

char ret;

ret - lcd_write_.cmd (0x01) ;

Delay (DELAY_LCD_EN*5);

if (ret)
return ret;

return 0;

char
lcd_print_loc (char *msg, char line, char x)
{
char i;
char ret;

232

D. SYSTEM CONTROL BOARD FIRMWARE

/* Go Home */
ret = lcd_write_cmd (0x02);

if (ret) (
return ret;

Delay (DELAY_LCD_EN*5);

/* Goto location */
x += (line - 1) * 40;

for (i = 0; i < x; i++)
lcd„.write_cmd (0x14);

for (i = 0; i < strlen(msg); i++) {
lcd„write_data (rnsgii]);

return 0;

)

D.13 uart .commands, h

/ * uart_commands. h

* Definitions for UART commands.

Author:
Date:

Neil Scott
August 10, 2007

#ifndef UART._COMMANDS_H
#define UART_COMMANDS_H

/* System Control - Set Commands */
/* Enable or Disable Motor */
#define UARTCMD„SET_MOTOR_STAT 0x90
/* Set Motor Speed */
#define UARTCMD._SET_MOTOR_FREQ 0x91
/* Set pulse width for BLO */
#define UARTCMD_SET_BLO„WIDTH 0x92
/* Set pulse width for BL1 */
#define UARTCMD_SET_BL1„WIDTH 0x93
/* Set pulse width for FLO */
tfdefine UARTCMD_SET_JLO_WIDTH 0x94
/* Set pulse width for FL1 */
#define UARTCMD_SET_FL1_WIDTH 0x95

/* Set motor pulse position for CAMO */
#define UARTCMD._SET_CAM0_PULSE_POS 0x9A
/* Set motor pulse position for CAM1 */
#define UARTCMD_SET„CAM1_PULSE_P0S 0x9B
/* Set motor pulse position for ACCEPT ON */
#define UARTCMD_SET_ACCEPT_ON_PULSE„POS 0x9C
/* Set motor pulse position for ACCEPT OFF */
#define UARTCMD_SET_ACCEPT_OFF_PULSE_POS 0x9D

/* Toggle power SW for 400ms to PC MBs */
#define UARTCMD_POWER_ON_PCS 0x9E

/* System Control - Get Commands */
/* Enable or Disable Motor */
#define UARTCMD_GET__MOTOR_STAT 0x10
/* Get Motor Speed */
#define UARTCMD_GET_MOTOR_FREQ 0x11
/* Get pulse width for BLO */
#define UARTCMD_GET_BL0_WIDTH 0x12
/* Get pulse width for BL1 */
#define UARTCMD_GET_BL1„WIDTH 0x13
/* Get pulse width for FLO */

233

D. SYSTEM CONTROL BOARD FIRMWARE

ttdefine UARTCMD_GET_FLO_WIDTH 0x14
/* Get pulse width for FL1 */
#define UARTCMD_GET_FL1_WIDTH 0x15

/* Get motor pulse position for CAMO */
#define UARTCMD_GET_CAM0_PULSE_POS OxlA
/* Get motor pulse position for CAM1 */
#define UARTCMD_GET_CAM1_PULSE_P0S OxlB
/* Get motor pulse position for ACCEPT ON */
#define UARTCMD_GET_.ACCEPT_ON_PULSE„POS OxlC
/* Get motor pulse position for ACCEPT OFF */
#define UARTCMD„GET_ACCEPT_OFF_PULSE„POS OxlD

/* Retrieve the power state of all PCs */
#define UARTCMD_GET_PC_PWR_STATE OxlE

/* Inspection Status */
/* Get good capsule count for specified quadrant */
#define UARTCMD_GOOD_COUNT 0x21
/* Get reject capsule count for specified quadrant */
#define UARTCMD_BAD_COUNT 0x22
/* Get total capsule count from specified quadrant */
#define UARTCMD_TOTAL„COUNT 0x23
/* Reset the counters */
Sdefine UARTCMD_RESET_COUNTERS OxAF

/* Fault Registers */
/* Get fault count */
#define UARTCMD_FAULT_COUNT OxFO
/* Get fault code of previous fault */
#define UARTCMD_FAULT_CODE OxFl

/ * Debug Modes */
/* Set in debug mode so Images are acquired when motor is off */
d e f i n e UARTCMD_J3EBUG_M0DE OxDD
/ * Make system step one capsulef fires BL and trigger */
fldefine UARTCMD„_ONE_STEP OxDE

e n d i f / * UART_COMMANDS._H */

D.14 uart2.h

/ * UART Routines for UART2 Module */

(tifndef UART2„H
#define UART2__H

tdefine MAX_UART_RX_BUF 4 0
fdefine MAX_UART_TX_BUF 4 0

struct UART„Rx
(
unsigned char wr;
unsigned char rd;

);

struct UART_Tx
f
unsigned char wr;
unsigned char rd;
unsigned char tx_complete_flag;

void init_uart2 (void);
void attribute ((interrupt, no_auto_psv)) _U2RXIriterrupt (void) ;
void attribute ((interrupt, no_auto_psv)) _U2TXInterrupt(void) ;

D.15 uart2.c

234

D. SYSTEM CONTROL BOARD FIRMWARE

/* uart2.c

* Routines to handle the UART2 module

* Author: Neil Scott

* Date: August 01, 2007
*/

#include "common.h"
#include "uart2.h"

#define FCY 40000000 /* 40MHz Clock */
#define BAUDRATE 57 600 /* 38400 baud */
fdefine BRGVAL ((FCY/BAUDRATE)/16)-1 /* Baud Rate Generator Register Value */

extern volatile struct SYSTEM_STATUS system_status;
extern unsigned char rarnp_ntode;
extern unsigned int motor_speed;
extern unsigned int motor_speed_target;
extern unsigned int temperature;

extern unsigned char uart_rx„buf[MAX_UART_RX_BUF);
extern unsigned char uart_tx_buf[MAX_UART_TX_BUF];
extern unsigned char uart_cmd„flag;

extern unsigned char curr__job;
extern unsigned char last_job;
extern struct JOB job_list[MAX_J0BS] ;

struct UART_Rx uart__rx;
struct UART_Tx uart_tx;

volatile unsigned char uart_byte_count;
volatile unsigned char uart„set_motor_speed;

/* Handle UART2 Interrupts */
void

attribute ((interrupt, no_auto_psv)) _U2RXInterrupt(void)
(
unsigned char next;

/* Clear Interrupt Flag */
IFSlbits.U2RXIF = DEASSERTED;

/* Put data in the circular in-buffer */
if (U2STAbits.URXDA) {

uart_rx_buf[uart_rx.wr) = OxOOff S U2RXREG;

/* Increment buffer Write Address */
uart_rx.wr++;
if (uartjx.wr >= MAX„UART_RX_BUF)

uart_rx.wr = 0;
)

if (uart._rx.wr -- (uart_rx.rd +6)) {
uart2_hdlr () ;

)

void
attribute ((interrupt, no_auto_psv)) _U2TXInterrupt (void)

(
/* Clear Interrupt Flag */
IFSlbits.U2TXIF = DEASSERTED;

)

void
init__uart2 (void)
(
/* Configure UART2 Module */
U2MODEbits.UARTEN = 0; /* Disabled for now */
U2MODEbits.USIDL = 0; /* Continue in Idle */

D. SYSTEM CONTROL BOARD FIRMWARE

U2M0DEbits.
U2M0DEbits.
U2M0DEbits.
U2M0DEbits.
U2M0DEbits.
U2M0DEbits.
U2M0DEbits
U2M0DEbits
U2M0DEbits
U2M0DEbits

IREN = 0;
RTSMD = 0;
UEN = 0;
WAKE = 0;
LPBACK = 0;
ABAUD = 0;
URXINV = 0;
BRGH = 0;
PDSEL = 0;
STSEL = 0;

RTS disabled */

/* No IR translation */
/* Simplex Mode */
/* TX, RX enabled; CTS,
/* Since always awake */
/* No loopback */
/* Disable Auto Baud Detect */
/* Do not invert receive polarity bit
/* Not High Baud Rate (standard mode)
/* No Parity */
/* 1 - Stop Bit */

U2BRG = BRGVAL; /* Set to 38400 baud */

U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits.
U2STAbits
U2STAbits.
U2STAbits

0;

UTXISEL1 = 0;
UTXINV = 0;
UTXISELO = 0;
UTXBRK = 0;
UTXEN = 0;
UTXBF =
TRMT = 0
URXISEL
ADDEN = 0;
RIDLE = 0;
PERR = 0;
FERR = 0;
OERR = 0;
URXDA = 0;

0;

IFSlbits.U2TXIF = 0;
IEClbits.U2TXIE = 1;
IFSlbits.U2RXIF = 0;
IEClbits.U2RXIE = 1;

/* Clear TX Interrupt Flag */
/* Enable TX Interrupt */
/* Clear RX Interrupt Flag */
/* Enable RX Interrupt */

U2MODEbits.UARTEN = 1;
U2STAbits.UTXEN = 1;

uart_rx.rd - 0
uart_rx.wr - 0
uart__tx.rd ^ 0
uart_tx.wr = 0

236

Appendix E

Host PC Software

This chapter contains all source code developed for the host PC excluding the image processing

library (liblP).

E.l inspect

The main inspect software that facilitates inspection. Uses POSIX threads to parallelize image

acquisition and inspection. Uses liblP image processing library object to perform image analysis.

E . l . l Makefile

TOP_SRC
CC
#CFLAGS
CFLAGS
LDFLAGS
INCLUDE
CLEANFII
OBJS

= ../../..
= g+ +
= -02 -fno-rtti -fno-exceptions
= -g -02
= -lusb -ltiff -lptbread
= -I. -I../lib -I../libIP -1$(T0P_SRC)/firmware/fx2_

.-ES = inspect test„ip
= ../lib/pm_cam.o \

. /.lib/pm_prims .o \

./lib/imgusb.o \

. /lib/tirne_calculations .o \

./liblP/ip.o \

. /lib/img_conv . o \

. /lib/bayer.o

_revB/firmware/include

a].l: inspect test_ip

inspect: inspect.cc ../libIP/ip.o
$(CC) $< $(CFLAGS) $(LIB) $(LDFLAGS) $(INCLUDE) $(0BJS) $(DEFS) -o $@

test_ip: test_ip.cc ../liblP/ip.o
$(CC) $< $(CFLAGS) $(LIB) $(LDFLAGS) $(INCLUDE) $(0BJS) $(DEFS) -o $@

clean:
rm $(CLEANFILES)

237

E. HOST PC SOFTWARE

Dependencies

E.1.2 inspect.h

/ * Filename:
* inspect.h

* Description:
* Header file for inspect.cc
* Stores constants, structs and prototypes

* Author:
* Neil Scott
*
* Date
* May 5, 2008

/* Camera Position Constants */
tdefine PM_CAM_POS_BOTTOM 0x04
tdefine PM_CAM„POS„CENTER 0x01
tdefine PM_CAM_POS_LEFT 0x02
#de£ine PM_CAM_POS_RIGHT 0x03

/* FPGA Registers */
#de£ine FPGA_REG_COLS
#de£ine FPGA_REG_ROWS

0x03
0x02

#define FPGA_REG_PX_COUNT_HI
#define FPGA_REG_PX_COUNT_LOW

0x06
0x07

#define FPGA_REG„RESET 0x01

#de£ine FPGA_REG_DATA„MODE 0x04

tdefine FPGA_DATA_MODE_NN 0x04

#define FPGA_.DATA_MODE_RAW 0x02
tdefine FPGA_DATA_MODE_TEST 0x00

#define NUM_THREADS
tdefine MAX_DEV_COUNT
#define MAX_QUADRANT

/* Image defaults */
#define MI_WINDOW_HEIGHT_MAX 1536
#define MI_WINDOW_WIDTH_MAX 2048
#define MIJYTES_PER_PX 1

/* Micron sensor defaults */
#define DEFAULT_WINDOW_HEIGHT 1024
#define DEFAULT__WINDOW_WIDTH 1024
#define DEFAULT_IMAGE_HEIGHT 512
tdefine DEFAULT_IMAGE_WIDTH 512
#define DEFAULT„COL_SKIP 1
#define DEFAULT_ROW_SKIP 1
#define DEFAULT_COL_START 2 8
tdefine DEFAULT._ROW_START 80
//tdefine MI_BINNING_MODE 0x01

/* FPGA power/reset */
tdefine FPGA_POWER_ON 1
tdefine FPGA_POWER_OFF 0
#define FPGA_RESET_ENABLE 1
#define FPGA_RESET^DISABLE 0

/* 2X binning */

/* Output Messaging
tdefine OUTJMSG
tdefine OUT_ERR_MSG

>/
stdout
stderr

/* Inspection Fail Return Codes */
tdefine IP_FAIL_GENERAL -20
tdefine IP_FAIL_WR0NG_C0L0UR -7

238

#define IP__FAIL_CAPSULE_LENGTH -6
#define IP_FAIL„SURFACE_FLAW -5
#define IP_FAIL„WRONG_BODY -4
#define IP_FAIL_CAP_RADIUS -3
#define IP_FAIL„MISSING_CAP -2
#define IP_FAIL_HOLDER_ONLY -1
#define IP_FAIL_DIMENSION

/* Capsule P/F Array */
#define CAPSULE„BUFFER_SIZE 16

/* Thread Data structure */
struct thread_data {

int cam_.id;
int cam_pos;
int cam_quad;
int cam_master;
int thread„id;
int local„cap_id;
int rernote_cap__id;
int capsule_count;
int buffer_id;
int insp_result;

/* camera index */
/* camera position (angle) */
/* camera location (quadrant)
/* camera master flag */
/* thread index */
/* local capsule index */
/* remote capsule index */
/* capsule count */
/* buffer index */
/* result of inspection */

};

v o i d c l e a n u p (v o i d) ;
v o i d pr in t_cam__loc (i n t carn_id) ;
v o i d cam__reg_setup (i n t cam_id) ;

E.1.3 inspect.cc

/ * Filename:
* inspect.cc

* Description:
* Capsule inspection application. This application retrieves images from
* camera sensor, performs inspection using image processing and returns a
* inspection result to the camera.

* Author:
* Neil Scott

Date:
April 16, 200 7

Updated:
May 5, 2008
Aug 19, 2008 - Version 0.8 Using IP class instead of functions

(less memory allocation and deallocation),

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include <usb.h>
#include <linux/usbdevice_fs.h>
#include <list>
#include <tiffio.h>
#include <pthread.h>
#include <time.h>

#include "img_conv.h"
#include "bayer.h"
#include "imgusb.h"
#include "pm__prirns. h"
#include "pm._ids . h"
#include "pm_cam.h"
#include "time__calculations . h"
#include "rni__regs .h"

E. HOST PC SOFTWARE

#include "fx2cam_ids.h"
#include "fx2cam„commands.h"
#include "fx2cam_i2c_addr.h"

include "i p.h"
#include "inspect.h"

#define SHOW_TIME
#define DEBUG
//^define SW_INTERPOLATION
#define IP_DETAILS 1

#define STATS_UPDATE_INTERVAL 2.0/* s */
#define CONF_PARAMS_COUNT 7

const char APP_TITLE[] - "inspect";
const char APP_VERSION[] - "0.8";

char STAT_FILE_HTML[80]
char STAT_FILE_CSV[80]
char IMAGE_DIR[80]
static char C0NF_FILE[]

/* Default Camera Gains
short int
short int
short int
short int
short int

= " /opt/pill_machine/statistics . html "
= "/opt/pill_machine/statistics.csv";
= "/images/";
= "inspect.conf";

*/
CAM„GAIN_LEFT - OxOaOa;
CAM_GAIN_RIGHT - OxOaOa;
CAM_GAIN_CENTER = OxOaOa;
CAM_GAIN_BOTTOM - OxOaOa;
CAM_GAIN„DEFAULT = OxOaOa;

/* Application Total Running Time */
double inspect_rate_start_time;
double inspect_rate_end__tirne;

/* Cyclic Buffers used for image data for various cameras and threads */
unsigned char *buf[NUM_THREADS*MAX_DEV_COUNT];

/* Globals used for pmcam class members */

i n t
pm__cam
s t r u c t u s b _ d e v i c e
s t r u c t usb__dev_handle
int

dev_count;
* *pcam;
* *pm_dev;
* *prn_dev_hdl ;

/* number of matching USB devices */
/* pm_cam class for each device */
/* libusb device pointer */
/* libusb device handle */

/* Global Image Processing Class Array */
pmlP **pm__IP;

cam„master_index ~ Oxff; /* camera master index */

/* Image Processing Classes */

/* Application Flags defaults (global) */

bool
bool
bool
bool

inspect_p = true;
verbose_p = false;
write_raw_p = false;

/* Perform inspection */
/* Don't be verbose */
/* Don't write RAW data to file */

write_tiff_p = false; /* Write image to TIFF file */

/* Interrupt Signal Event */
bool sig_int_p - false;
int sig__int_count = 0;

/* Capsule Counter */
long cap„count_good = 0;
long cap_count_bad - 0;
long capsule„count = 0;

/* Capsule pass/fail Array */
int * *capsule_passfail;
int prev_remote_capsule_id[CAPSULE_BUFFER_SIZE]

/* Camera Position String Identifier */
char *pos„str[] - {"UNDEFINED", "CENTER", "LEFT", ^IGHT", "BOTTOM"} ;

/* Image Processing Thread Data array */
struct tbread_data ip_data[NUM_THREADS * MAX_DEV_COUNT];
pthread_t ip_threads [MAX_DEV__COUNT * NUM_THREADS]; /* Image Processing Threads */

240

E. HOST PC SOFTWARE

pt hreo d_a 11 r_t ip_attr; /* POSIX Thread Attributes - IP threads */

/* Alignment Counter */
int misalignment_counter = 0;

int data_flush^counter = 0;

/* Function Prototypes */
int read_conf_var (char *conf_file, char *keyword, char *value);

void clear_stats_files (void) ;

/* Find USB Device on bus */
struct usb_device *

find_device (const char *bus, const char *dev)

{
for (usb_bus *b = usb_busses; b; b = b->next) {

if (Istrcmp (b->dirname, bus)) {
for (struct usb_.device *d = b->devices; d; d = d->next) {

if (!strcmp (d->filename, dev))
return (d);

}
}

return (NULL);

/* Interrupt signal handler */
void

handle_sig_int (int dummy)

{

fprintf (OUT_MSG, "Interrupt signal caught...\n");

s i g_ i n t_p = t rue;

if (!sig„int_count) {

/* Start Timer for capsule count */
.inspect_rate„end__time = get_elapsed_t ime () ;

}

s ig__i nt_count -i- + ;

if (sig_int_count > 2)
cleanup ();

/* Output
void

usage (voi

i
fprintf
fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf
fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

fprintf

Applicatic

d)

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

(stderr, '

usage: %s [OPTION]\n", APP_TITLE);

\nInspection Options:\n");

--disable_ip, -id Disable inspection\n");

--write_raw, -raw Write image buffer to data file\n");

--write_tiff, -wt Write image data to TIFF file\n");

\nApplication Options:\n");

--help, -h

—verbose, -v

\nFPGA Options:\n");

—fpga_data_nn

—fpga_data_raw

— fpga_data__test

\nSensor Options:\n");

—load_eeprom, -le

\ n \ n ") ;

Display this help screen\n");

Show verbose messaging\n");

Set FPGA output mode to Nearest Neighbour\n");

Set FPGA output mode to RAW sensor data\n");

Set FPGA output mode to test data\n");

Load Window Settings from E E P R O M W) ;

/* Image processing thread */
void *

tinspect (void *tdata)

{

struct thread_data *targ;

241

http://usb_.de
file:///nApplication
file:///nFPGA
file:///nSensor

E. HOST PC SOFTWARE

int c_id;
int t_id;
int local_cap_id;
int cam_quad;
int carn__pos ;
bool cam_master;
int buf_index;
int buf_count;
int ret;
int insp_retval;
char filename_raw[100];
char filename[100];
FILE *fp;
long cap__count;
unsigned char *gray; /* buffer to hold grayscale data if interpolating in s/w +/
unsigned char *rgb; /* buffer to hold interpolated image data for s/w interpolation */

/* our camera uses this t i l e */
BayerTile bayer_tile = BAYER_TILE_GBRG;
TIFF *:i mg;

/* Detach this thread */
ret = pthread_detacb (pthread_self());

if (ret) {

fprintf (stderr, "Error - pthread_detach: %s\n", strerror (ret));
)

/* Get Thread ID */
targ ~ (struct thread_data *) tdata;
c._id = targ->cam_id;
t_id = targ-->thread_id;
carn,_quad = targ->carn_quad;
cam_pos = targ->cam_pos;
carrwnaster = targ->cam„master;
buf_index = targ->buffer_id;
local_cap_id = targ->local_cap_id;
cap_count = targ->capsule_count;

/* Software Interpolation */
flifdef SW„INTERPOLATION
/* allocate grayscale buffer */
gray = new unsigned char [pcam [c__id] ->get_image__width () *pcam [c„id] ->get_iniage_height ()] ;
/* allocate RGB buffer */
rgb = new unsigned char [pcam[c_id]->get_image_width()*pcam[c_id]->get_image_height{)*3];

/* user bayer.h to conver to grayscale (error in bayer2gray) */
gp_bayer_decode (buf[buf_index],
pcam[c„id]->get_image_width() ,
pcam|c_id]->get„image_height() ,
rgb,
bayer_tile) ;

rgb2grayscale (rgb, gray, pcam[c_id]->get„image_width() * pcam[c_id]->get_image_height());
jfendif /* SW_INTERPOLATION +/

/* Perform Inspection */
if (inspect_p) {

if (verbose_p)
fprintf (OUTJV1SG, "Performing Inspection : \n=====================\n\n") ;

#ifdef SW^INTERPOLATION
/* Inspect SW Interpolated Image */
insp._retval = pm_IP [c_id]->inspect (gray, NULL, NULL);
#else
/* Inspect HW Interpolated Image */
insp_retval = pm_IP[c_id]->inspect(buf[buf„index], NULL, NULL);
fprintf (stdout, "IP: RET = %d\n", insp_retval);
ttendif /* SW_INTERPOLATION */

targ->insp_result = insp_retval;
capsule__passfail [c„id] [local_cap_id] - insp_retval ;

} /* inspect_p */

/* Make a filename */

242

E. HOST PC SOFTWARE

sprintf (filename, "/images/IMG%04d_Q%d„%s", cap_count, carn_quad, pos_str[cam_pos]);
sprintf (filename_raw, "/images/raw/IMG%04d_Q%d_p%d.dat", cap_count, cam_quad, carn_pos);

//TODO -- ADD Failure Code Identifiers //
if (insp_retval == IP_FAIL_HOLDER_ONLY) {

sprintf (filename, "%s_FAIL_HOLDER_ONLY.tiff", filename);
}
else if (insp_retval == IP_FAIL_DIMENSION) {

sprintf (filename, "%s„FAIL_DIMENSION.tiff", filename);
}
else if (insp_retval < IP_FAIL__HOLDER_ONLY) {

sprintf (filename, "%s_FAIL_GENERAL.tiff", filename);
I
else {

sprintf (filename, "%s.tiff", filename);
}
//TODO//

fprintf (stdout, "TIFF FILENAME: %s\n", filename);

/* Write buffer directly to file - no interpolation performed */
if (write__tif f_p) (

#ifdef SW_INTERPOLATION
pcam[c_id]->write_tiff (gray, filename, pcam[c_id]->get_image_width() , pcam[c_id]->get_image_height

0);
#else
pcarn [c__id] ->write_tiff (buf [buf_index] , filename, pcam[c_id] ->get_irnage„width () , pcarn Lc_id] ->

get_image_beight()) ;
#endif
if (verbose__p)

fprintf (stdout, "TIFF File Written (%s)\n", filename);
}

if (w r i t e._r a w_p) {
/* Write raw data to disk */
fp = fopen (filename_raw, "wb");
fwrite (buf[buf_index], 1, (pcam[c_id]->get_image_widtn() * pcam[c_id]->get_image„height ()), fp) ;
if (verbose_p)

fprintf (stdout, "\nRAW Image file created: %s\n", filename_raw);
fclose (fp);

}

#ifdef SW_INTERPOLATION
delete gray;
delete rgb;
#endif

pthread„exit(NULL);
}

/* Grab frame thread */
void *
tgrab_frame (void *tdata)
{
struct thread_data *targ;
int c_.id;
int t_id;
int p_id;
int cam__quad;
int cam„pos;
bool cam_master;
int buf_index;
int buf_count;
int cap_count;
int local_cap_id;
int remote_cap_id;
int ret;
char flush_bufLMI„WINDOW_HEIGHT„MAX*MI„WINDOW_WIDTH_MAX];

/* Get Thread ID */
targ = (struct thread_data *) tdata;
c_id = targ~>cani_id,-
t_id = targ-->thread_id,-

243

file:///nRAW

E. HOST PC SOFTWARE

cam_quad = targ->cam_quad;
carn_pos = targ->carn_pos;
cam„master = targ->cam_master;
buf_index = targ->buffer_id;
cap.„count = targ->capsule_count;
remote_cap_id = targ->remote_cap_id;
local_cap_id = targ->local_cap_id;

if (verbose_p)
fprintf (OUT_MSG, "Grabbing Frame... (t_id = %d; c_id - %d)\n", t_id, c_id);

/* Grab Image Data - store in global buffer */
ret = pcam [c_id] ->grab__f rame (buf[buf_index]);

/*• check ret urn */

i f (r e t != (p c a m [c _ i d] - > g e t _ i m a g e _ h e i g h t () * p c a m [c _ i d] - > g e t _ i r n a g e _ w i d t h ())) {
f p r i n t f <OUT_ERR_MSG, " g r a b _ f r a m e : ERROR!\n");

}

if (verbose_p)
fprintf (OUT_MSG, "Frame Successfully Acquired: (t_id - % d) , cap_count = %d\n", t_id, cap_count);

/* If this is the master camera, retrieve capsulelD */
/* Send Control message to control board to fetch capsule ID */
if (canwnaster) {

char data[3];

int. insp_result = 0;

int no_cap_.check = 0;

da ta fOj = OxAO;
r e t - pca rn [cam_mas t e r_ index] ->wr i t e_cmd (VENDOR_REQUEST_OUT,

VRQ__I2C_WRITE,
CB_I2C._ADDR,

0,
d a t a ,

1) ;
i f (r e t < 0)

fprintf (OUT_ERR_MSG, "Error retrieving Capsule ID from system controller\n");

ret = pcam[cam_master_index]->write_cmd (VENDOR_REQUEST_IN,

VRQ_I2C_READ,

CB_I2C_ADDR,

0,

data,

l) ;

if (ret < 0)
fprintf (OUT_ERR_MSG, "Error retrieving Capsule ID from system controller\n");

remote__cap_id = data[0];

targ->remote_cap_id = remote__cap„id;

/+ from previous inspection */
int prev_local_cap_id;

if {local_cap__id == 0)

prev__local_cap_id = 15;

else

prev__local_cap__id = local„cap_id - 1;

fprintf (stdout, "prev_local_cap__id = %d\n"

"prev_remote_cap_id[prev_local_capsule_id] = %d\n",

prev_.local__cap_id,

prev__remote_.capsule_id[prev„local_cap„id]) ;

/* process inspection results */
insp_result = capsule_passfail[0][prev_local_cap_id] == 0;

for (int i = 0; i < dev_count; i++) {

fprintf (stdout, "capsule_passfail[%d][%d] = %d\n", i, prev_local_cap_id, capsule_passfa.il [i][

prev_local_cap_id]);

}

for (int j =•• 1; j < dev_count; j++)

244

http://capsule_passfa.il

E. HOST PC SOFTWARE

i n s p _ _ r e s u l t += c a p s u l e _ p a s s f a i l [j] [p r e v _ l o c a l _ c a p _ i d] == 0;

no_.cap__check = 0;

/ * TODO */

/* pass all if not inspecting */
if (!inspect_p)

inspiresuit = dev_count;

if {insp_result == dev_count)

cap_count_good++;
else {

for (int. x = 0; x < dev__count; x++) (
no__cap_check |= (capsule_passfail[x][prev_local_cap_id] == IP„FAIL_HOLDER_ONLY);

}

if (!no_cap_check)

cap_count__bad++;

}

i f (ve rbose_p)
f p r i n t f (OUTJVISG, " C a p s u l e I D : %d\n", r e m o t e _ c a p _ i d) ;

/ * respond to control board with result from previous capsule */
/* Build control message */
d a t a [0] = 0x80;
d a t a [l] = ((i n s p _ r e s u l t == dev_coun t) ? 2 : 1) ;
d a t a [1] |= (p r e v . _ r e m o t e _ c a p s u l e _ i d [p r e v _ l o c a l _ c a p „ i d] << 4) & OxfO;

r e t - pcam[cam_master_index]->write_crnd(VENDOR_REQUEST_OUT,
VRQ_I2C_WRITE,
CB„I2C_ADDR,
0,
d a t a ,
2) ;

i f (r e t < 0) {
fprintf (OUT__ERR_MSG, "Error sending pass/fail result to system control board\n");

}
else {

fprintf (OUT_MSG, "%04d: %s message successfully sent to system control board (CapsulelD = %d)\n"

capsule_count, (insp_result == dev_count) ? "PASS" : "FAIL",

prev__rernote_capsule_.id [prev_local_cap_id]) ;

}

}

bool p_a1i gn_ma rk e r = true;

int image_width = pcam [c_id] ->get_image_width () ;

int image__height = pcam [c_id] ->get__image_heigbt () ;

•if if 1

/ * Check last six pixels for alignment marker */
f o r (i n t i - 0; i < 6; i+=2) {

if ((buf[buf„index][image„width*image_height - i - 2] != Oxaa) II (buf[buf_index][image_width*

image_height - i - 1] != Oxaa)) {

p_align_marker = false;

break;

I

}

if (!p_align_marker) {

misalignment__counterH-+;

fprintf (stderr, "\n\n"

"****************** ALIGNMENT ERROR *******************\n"

"**+***\n"

" \ n \ n ") ;

/* Attempt to recover */
/* Purge data using libusb bulk read */
/* Stop the EP so libusb can use i t */
pcam[c„id]->ep_stop();

245

E. HOST PC SOFTWARE

for (int i = 0; i < 1; i++) {
ret = usb_bulk_read (pm_dev_hdl[c_id], 0x82, (char *) buf[buf_index], pcam[c_id]->

get_window_width () * pcam [c_id] ->get__window_height () , 20) ;

if (ret < 0)
fprintf (stderr, "ERROR::::: %s\n", usb_strerror());

if (!(ret > 0))
break;

}

/* Restart the EP */
pcam[c_id]->ep_start();

/* Put FPGA into reset */
if (!pcam[c_id]->cam„fpga_reset (FPGA_RESET__ENABLE))

fprintf (stderr, "Error putting FPGA into reset [Device %d]\n", c_id);

usleep (25000);

if (!pcam[c_id]->cam_fpga_reset (FPGA_RESET_DISABLE))
fprintf (stderr, "Error taking FPGA out of reset [Device %d]\n", c_id);

ret - pcam[c_id]->write_cmd (VENDOR_REQUEST__OUT, VRQ_FPGA_FLUSH, 0, 0, NULL, 0);

if (ret < 0)
fprintf (stderr, "Error purging FPGA [Device %d] : %s\n", c_id, usb_strerror ()) ;

}
#endif

/* create image processing thread */
/* thread id */
i p _ d a t a | b u f _ i n d e x] . cam_id = c__id;
i p _ d a t a [b u f _ i n d e x] . c a m _ p o s = p c a m [c _ i d] - > g e t _ c a m _ p o s i t i o n () ;
i p _ d a t a [b u f _ i n d e x] . c a m _ q u a d = p c a m [c _ i d] - > g e t _ _ c a m _ q u a d r a n t () ;
i p _ d a t a [bu f_ index] . cam_rnaster = p c a m [c _ i d] ->get„cajTL_master () ;
i p _ d a t a [buf_.index] . t h r e a d _ i d = t _ i d ;
i p _ d a t a [bu f_ index] .buf fer_ . id = b u f _ i n d e x ;
i p _ d a t a [b u f _ i n d e x] . l o c a l _ c a p _ i d = l o c a l _ c a p _ i d ;
i p _ d a t a [b u f _ i n d e x] . c a p s u l e _ c o u n t = c a p s u l e _ c o u n t ;
i p _ d a t a [b u f _ i n d e x] . i n s p _ r e s u l t = - 1 ;

/ * c r e a t e image processing thread */
r e t ^ p t h r e a d „ c r e a t e (& i p „ t h r e a d s [b u f _ i n d e x] ,

& i p _ a t t r ,
t i n s p e c t ,
(v o i d *) & i p _ d a t a [b u f _ i n d e x]) ;

p t h r e a d _ e x i t (NULL);
}

/ * Supervisory Thread

* To provide fix for occasional startup hang, monitors capsule count
* and if does not increment for 5 seconds, shutdown app. External
* script required to start-up again.

*/
v o i d *
tsupervisory (void *tid)
{
long last_count;

while (1) {
last.„count = capsule_count;
usleep (5000000);

if (last_count == capsule__count) {
if (capsule_count < 20) {

cleanup ();
exit (1);

}
}

/* Main Function
*
* Finds and configures all cameras and starts main loop
*/

int
main (int argc, char *argv[])
{

// Data Acquisition Threads
pthread„t acq_threads[MAX_DEV_COUNT * NUM_THREADS];

// POSIX Thread Attributes
pthread„attr_t acq_attr;

// Supervisory Thread
pthread„t supervisor_thread;

struct thread._data acq_data [NUM_THREADS * MAX_DEV_COUNT];

int ret;
int window_width - DEFAULT_WINDOW_WIDTH;
int window_height = DEFAULT_WINDOW_HEIGHT;
int image_width - DEFAULT_IMAGE_WIDTH;
int image_height - DEFAULT_IMAGE_HEIGHT;
int col_skip - DEFAULT„COL_SKIP;
int row_skip - DEFAULT_ROW_SKIP;
int col_start = DEFAULT„COL_START;
int row^start = DEFAULT_ROW_START;

bool fpga_data_rm_p = true;
bool fpga_data_raw_p = false;
bool fpga_data_test_p = false;

bool load_window_eeprom_p - false;

/* Create String Start Time Stamp */
char start_time„stamp[100] ;
char update__time_stamp [100] ;
t ime_t tin_s t amp;
struct tm *tmstmp;
tm„starnp = time (NULL) ;
trnstnip = localtime (&tm_.stamp) ;
strftirne (start_time_stamp, sizeof(start_time„stamp), "%a %d %b %Y %H

/* parse argument list */
for (int i = 1; i < argc; i++) {

if (!strcmp(argv[i], "—help") || !strcmp(argv[i], "-h")) {
usage () ;
exit (1);

}

if (!strcmp(argv[i] , "—verbose") | I !strcmp(argv[i], "-v")) {
verbose._p = true;

if (! strcmp (argv [i] , "—disable„_ip") II ! strcmp (argv [i] , "-id")) {
i n spe ct_p = false;

if (!strcmp(argv[i] , "—write_raw") || !strcmp(argv[i], "-raw"))
write_raw_p = true;

if (!strcmp(argv[i], "—write_tiff") I I !strcmp(argv[i], "-wt")) {
writ e_t i ff_p - t rue;

if (!strcmp(argv[i], "—fpga_data_nn"))
fpga_data__rm_p = true;

if (!strcmp(argv[i], "—fpga_data„raw")) {
fpga._data„nn_p = false,-
fP9a_._data_raw_p = true;

E. HOST PC SOFTWARE

1

if (!strcmp(argv[i], "—fpga_data_test")) {
fpga_data__nn_p = false;
fpga_data_test_p = true;

}

if (!strcmp(argv[i], "—load_eeprom") II !strcmp(argv[i], "~le"))
load_window_eeprorn_p = true;

)

/* print application title */
if (verbose_p) {

fprintf (OUT_MSG, "%s v%s\n", APP_TITLE, APP_VERSION);
for (int i = 0; i < (strlen(APP_TITLE)+strlen(APP„VERSION)+2); i++)

fprintf (OUTJ1SG, "=");

fprintf (OUT_MSG, "\n");

char *conf_params [] = { "stats„html_file", "stats_csv_f ile" , "image_dir"/ " lef t„.gain" , "right_.ga in " , "
center_gain", "bottom_gain"};

char conf_value[80];

/* Look for configuration file */
for (int i = 0; i < CONF_PARAMS„COUNT; i++) (

ret = read_conf_var (CONF_FILE, conf_params[i], conf„value);
if (Iret) (

if (!strcmp(conf„params[i] , "stats_html_file")) {
sprintf (STAT_FILE_HTML, "%s", conf^value);
fprintf (stdout, "STAT_FILE_HTML: %s\n", STAT„FILE_HTML);

if (!strcmp(conf_params[i], "stats_csv_file")) {
sprintf (STAT_FILE_CSV, "%s", conf__value) ;
fprintf (stdout, "STAT_FILE_CSV: %s\n", STAT_FILE_CSV);

}

if (!strcmp(conf_params[i], "image^dir")) {
sprintf (IMAGE_DIR, "%s", conf__value) ;
if ((IMAGE_DIR[strlen(IMAGE_DIR)-1]) != '/')

sprintf (IMAGE_DIR, "%s/", IMAGE_DIR);

fprintf (stdout, "IMAGE_DIR: %s\n", IMAGE_DIR);
}

if {istrcmp(conf„params[i], "left_gain")) {
sscanf (conf_value, "0x%04x", &CAM__GAIN_LEFT) ;
fprintf (stdout, "CAM_GAIN_LEFT: 0x%04x\n", CAM_GAIN_LEFT) ;

>

if (!strcmp(conf_params[i], "right_gain")) {
sscanf (conf_value, "0x%04x", &CAM_GAIN_RIGHT);
fprintf (stdout, "CAM„GAIN_RIGHT: 0x%04x\n", CAM_GAIN_RIGHT) ;

)

if (!strcmp(conf_params[i], "center_gain")) {
sscanf (conf_value, "0x%04x", &CAM_GAIN_CENTER);
fprintf (stdout, "CAM_GAIN_CENTER: 0x%04x\n", CAM„GAIN_CENTER) ;

I

if (!strcmp(conf_params[i] , "bottom_gain")) {
sscanf (conf_value, "0x%04x", SCAM_GAIN_BOTTOM);
fprintf (stdout, "CAM_GAIN_BOTTOM: 0x%04x\n", CAM_GAIN_BOTTOM);

I
}
else {

fprintf (stdout, "Error Processing Configuration File \"%s\"...\n", CONF_FILE);
break;

}
)
/* find camera (s) */
/* Search the USB bus for all cameras */
/* Search for the device on the USB bus */

248

/* Initialize USB - libusb library */
if (verbose_p)

fprintf (OUT_MSG, "Initializing USB library ...\n");

/* Initialize libusb */
pm_init„usb ();

/* Get the number of cameras found connected to the system */
dev__count = pm_get„device_count () ;

/* Search for new Device use first instance found */
if (verbose„p)

fprintf (OUT_MSG, "Searching for devices ...\n");

if (!dev_count) {
fprintf (OUT_ERR_MSG, "No devices connected ...\n");

return -1;
}

if (verbose_p)
fprintf (OUT„MSG, "Found %d camera(s)\n", dev_count);

/*• Allocate memory for pointers to device handles */
pm_dev ~ new struct usb_device *[dev_count];
pm__dev__hdl = new struct usb_dev__handle * [dev_count] ;
pcarn = new pm__carri * [dev_count] ;

/* Allocate Memory for image buffer */
for (int i = 0; i < dev_count; i++)

for (int j - 0; j < NUM_THREADS; j++)
buft (i * NUM_THREADS) + j] = new unsigned char [MI_WINDOW_WIDTH_MAX*

MI__WINDOW„HEIGHT_MAX*
MI_BYTES_PER_PX);

/* Allocate Memory for capsule pass/fail results */
capsule_passfail = new int *[dev_count];
for (int i = 0; i < dev_count; i++)

capsule_passfail [i] - new int [CAPSULE__BUFFER_SIZE] ;

/* Fill Device Pointers */
for (int i = 0; i < dev_count; i++) {
pm_dev [i] •- pm„f ind_camera (i) ;

if (pm„dev[i] == 0) {
fprintf (stderr, "%s: Unable to find device...\n", APP_TITLE);
return -1;

}

if (prn__camera„conf igured (prn_dev [i])) {
if (verbose__p)

fprintf (0UT_MSG, "Device %02d is configured...\n", i);
1
else if (pm_camera__unconf igured (pm__dev[i])) {

if (verbose_p)
fprintf (0UT__MSG, "Device %02d is unconf igured ... \n" , i) ;

}
else {

fprintf (stderr, "%s: Unrecognized Device ID...\n", APP_TITLE);
return -1;

)

/ * TODO: Handle Unconfigured Device by uploading firmware */

/* Create a device handle for the device found */
pm_dev_hdl [i] = pm._open„ in t e r f ace (pm_dev [i] ,

USB_PM_DEV_IF_DEFAULT,
USB_PM_DEV_ALT_IF_DEFAULT) ;

i f (!prn„dev_hdl [i]) {
fprintf (stderr, "%s: Unable to claim device interface on device %02d
exit (1);

1

if (verbose„_p)

E. HOST PC SOFTWARE

fprintf (OUT_MSG, "Device %02d Interface Claimed. .. \n", i);

/* Create an instance of the PM_CAM class for the device handle create */
//PM_CAM_BLOCK_SIZE, 64) ;

pcarn[i] = new pm_carn (pm_dev_hdl [i] , 8*1024, 64);

/* Set verbose messaging */
pcam [i] ->verbose_p ••= verbose_p;

/* initialize camera (s) */

/* if using eeprom window settings, load them */
if <load_window_eeprom_p) {

for (int i - 0; i < dev_count ;i++) {
/* Get Window width */
ret = pcam[i]->read_window_params();

if (ret < 0)
fprintf (stderr, "Error retrieving window parameters [DEVICE %d\n", i) ;

/* TODO: Debug -
#ifdef DEBUG
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
fprintf (stdout,
#endif

Write to screen */

"Window Parameters for Camera %d\n", i);
"EEPROM WINDOW_WIDTH: 0x%04x\n", pcam[i]->get_eeprom_window_width{));
"EEPROM WINDOW_LENGTH: 0x%04x\n", pcam[i]->get_eeprom._window_height());
"EEPROM WINDOW_COL_START: 0x%04x\n", pcam[i]->get_eeprom_window_col_starL())j
"EEPROM WINDOW_ROW_START: 0x%04x\n", pcam[i]->get_eeprom_window_row_start()),
"EEPROM WINDOW_COL_SKIP: 0x%04x\n", pcam[i]->get_eeprom_window_col_skip ());
"EEPROM WINDOW_ROW_SKIP: 0x%04x\n", pcam[i]->get_eeprom„window_row_skip () };

/* DEBUG */

/* get camera location (quadrant and position) */
for (int i = 0; i < dev_count; i++) {

ret = pcam [i] ->get_cam__location () ;

if (ret < 0)
fprintf (stderr, "Error retrieving camera location [DEVICE %d]\n", i);

else if (verbose_p)
print__cam_loc (i) ;

/ * Set. master index, should only find one */
i f (pcam[i] ->get__cam_master ())

carn_master ._index = i ;

/* reset fpga */
for (int i = 0; i < dev_count; i++) {

if (!pcamfi]-->cam_fpga_reset (FPGA_RESET_ENABLE))
fprintf (OUT_ERR_MSG, "Error putting FPGA into reset [Device %d]\n", i);

}

usleep (200000);

for (int i = 0; i < dev_count; i++) {
if (!pcam[i]->cam_fpga_reset (FPGA_RESET_DISABLE))

fprintf (OUT_ERR_MSG, "Error taking FPGA out of reset [Device %d]\n", i);

usleep (250000);

/* Reset MI Sensor */
for (int i = 0; i < dev_count; i++) {

ret - pcanifi]->write_reg (MI„REG_RESET, 1) ;

usleep (200000);
ret | - pcam[i]->write_reg (MI_REG_RESET, 0);

if (ret < 0) {
fprintf (stderr, "Error resetting MI sensor [Device %d]\n", i);

250

E. HOST PC SOFTWARE

usleep (50 00);
)

/* set camera registers */
for (int i = 0; i < dev_count; i++) {

if (load_window_eeprom__p) {
pcam[i]->set_window_width_skip (pcam[i]->get„eeprom_window_width(), pcam[i]->

get_eeprom_window_col_skip());
pcarn [i] ->set_window_height_skip {pcam [i] ->get_eeprom_window_height () , pcarn [i] ->

get_eeprom_window__row_skip ()) ;
pcarn [i] ->set_window_col_start (pcam [i] ->get_eeprom_window_col_start ()) ;
pcarn [i] ->set_window_row_start (pcam [i] ->get_eeprorn_window_row__start ()) ;

}
else {

pcam[i j->set_window_width_skip (window_width, col__skip);
pcam[i]->set_window_.height_skip (window_height, row_skip);
pcam[i]->set_window_col_start(col_start);
pcam[i]->set„window_row_start(row_start);

1

/* other MI sensor registers */
cam_reg_setup(i);

usleep (100000);
)

/* set fpga registers */
for (int i = 0; i < dev_count; i++) {
/* Write FPGA registers */
/'* Set Window Size */
ret - pcamfi]->fpga_write_reg (FPGA_REG„COLS, (pcam[i]->get_image_width() -- 1));

if (ret < 0) {
fprintf (stderr, "Error setting FPGA register 0x02\n");

}
else {

fprintf (stdout, "Successfully set FGPA window width register\n");
}

ret = pcam[i]->fpga_write_reg (FPGA_REG_ROWS, (pcam[i]->get_image__height() - 1));

if (ret < 0) {
fprintf (stderr, "Error setting FPGA register 0x03\n");

I
else {

fprintf (stdout, "Successfully set FGPA window height register\n");
}

/* Totai Pixel Count */
ret = pcam[i]->fpga_write_reg (FPGA_REG_PX_COUNT_HI, (pcam[i]->get_image_width() * pcam[i]->

get._image_height ()) >> 16);
ret = pcam[i]->fpga_write_reg (FPGA_REG„PX_COUNT_LOW, (pcam[i]->get_image_width () * pcam ("i]->

get_image__height ()) & Oxffff) ;

if (ret < 0) {
fprintf (stderr, "Error setting FPGA pixel count register!\n");

}
else {

fprintf (stdout, "Successfully set FGPA window height register\n");
}

/* Take FPGA out of reset */
ret = pcam[i]->fpga_write_reg (FPGA_REG_RESET, 0x0000);

if (ret < 0) {
fprintf (stderr, "Error setting FPGA register 0x01 (RESET)\n");

}
else {

fprintf (stdout, "Successfully reset FPGA\n");
}

/* Set FPGA Output Mode */
if (fpga_data_nn_p) {

251

E. HOST PC SOFTWARE

ret = pcarn[i]->fpga_write_reg (FPGA_REGJ)ATA_MODE, FPGA_DATA„MODE_NN) ;
if (verbose_p)

fprintf (OUT_MSG, "FPGA data mode set to nearest neigbbor\n");

if (fpga_data„raw_p) {
ret = pcam[i]->fpga_write_reg (FPGA_REG_DATA_MODE, FPGA_DATA_MODE_RAW);
if (verbose_p)

fprintf (OUT_MSG, "FPGA data mode set to raw data\n");

)

if (fpga_data_test_p) i
ret = pcam[i]->fpga_write_reg (FPGA_REG„DATA_MODE, FPGA_DATA_MODE_TEST)
if (verbose_p)

fprintf (OUT_MSG, "FPGA data mode set to test sequenceW) ;

/* Set application signal handling */
signal (SIGINT, bandle_sig_int);

int num_bytes;
unsigned char cap_id;

for (int i = 0; i < dev_count; i++) I
/* Get Window Size */
num._bytes = pcam [i] ->get_image_widtb (} * pcam [i]->get_image_height () ;

)

/* Try to clear buffer */
if (verbose_p)

fprintf (OUT._MSG, "Purging FPGA data . . . \n") ;

for (int 1 = 0; i < dev_count; i++) (
ret = 1;

for (int j = 0; j < NUM__THREADS; j++) (
if (ret > 0) {

ret = usb_bulk_read (pm_dev_hdl[i], 0x82, (char *) buf[i*NUM_THREADS], 1024*768, 150);

if (verbose_p)
fprintf (OUT_MSG, "Data received from purge [Device %d]: ret = %d\n", i, ret);

if (ret < 0)
fprintf (OUT.._ERR_MSG, "usb_bulk_read () error - %s\n", usb_st rerror ()) ;

else
pcam[i]->write_tiff (buf [i*NUM_THREADS] , "PURGE . tiff " , pcam [i] ->get„irnage_width () , pcarn[i]->

get_image_height 0) ;

for (int i = 0; i < dev_count; i++) {
ret = pcam[i]->write_cmd (VENDOR_REQUEST_OUT, VRQ_FPGA_FLUSH, 0, 0, NULL, 0);
if (ret < 0)

fprintf (OUT_ERR„MSG, "Error purging FPGA [Device %d]: %s\n", i, usb_strerror());
1

/* Flush STDOUT */
fflush (OUT_MSG);

/* Allocate URBs for IMGUSB class */
for (int i = 0; i < dev_count; i++) (
pcam[i]->imgusb_allocate_urbs();

}

for (int i = 0; i < dev__count; i++) [
if (verbose_p)

fprintf (OUT_MSG, "Starting bulk end-point [Device %d]\n", i);

/* Start Bulk EP */
pcamfi]~>ep_start ();

252

E. HOST PC SOFTWARE

}

if (cairi_master_index ! = Oxf f) {
/* Send Ready Signal to System Controller */
for {int i=0; i<4; i++) {

char cb_ready = 0x81;
pcarn[cam_mas'ter_index]->write_cmd (VENDOR_REQUEST_OUT,

VRQ_I2C_WRITE,
CB_I2C_ADDR,
0,
(char *) &cb_.ready,
1) ;

usleep {10000* (pcam [cam_master_index] ->get_cam_quadrant ()+1));
}

}

/* Set Thread detached attribute */
ptbread__attr_init (&acq_attr);
pthread_attr_setdetachstate (&acq_attr, PTHREAD_CREATE_JOINABLE);

pthread_attr_init (&ip„attr);
pthread_attr_setdetachstate (&ip_attr, PTHREAD_CREATE_JOINABLE);

int capsule_id = 0;
int buffer_count = 0;
int no__cap_check = 0;
int 1ocal_cap„id = 0;
int remote_cap_id = 0;
int cam__bottom_index = Oxf f;
char data[16];
int status;
int insp_result;
FILE *fp_stats_html = NULL;
FILE *fp_stats_csv = NULL;
double last_stat_update_time = get_elapsed__time();

/* Statistics Variables */
long ernpty_holder_count;
double good_cap_percentage;
double bad_cap__.per cent age;
double empty_holder_percentage;
double elapsed_time;
double inspection„rate;
double eff_inspection_rate;
short int va1;

/* create image processing classes (one for each device) */
pm_IP = new pmlP* [dev__count] ;

for {int i^0; i < dev__count; i + +) {
pm_IP[i] = new pmlP(pcam[i]->get_image_width(),

pcam[i]->get_image_height(),
pcam [i] - > g e t _ c a r n _ p o s i t i o n () ,
IP_DETAILS);

}

/* reset inspection results */
for (int i = 0; i < dev^count; i+ +)

capsule_passfail[i][15] = -1;

/* Write Blank stats files (HTML / CSV) */
clear_stats_files();

/* Create Supervisory Thread */
int t=l;
ret = ptbread_create (& supervisor_tbread,
NULL,
tsupervisory,
(void *) t) ;

/* program main loop */
while (!sig_int_p) {

/* set thread arguments */

253

E. HOST PC SOFTWARE

for (int i = 0; i < dev_count; i++) {
/* acquire top camera images first (for synchronization) */
if (pcam[i]->get_cam„position() == PM_CAM_P0S_B0TT0M) {

cam_bottom_index = i;
continue;

}

/* thread id */
acq_data[i*NUM_THREADS+buffer_count].cam_id = i;
acq_data fi*NUM_THREADS+buffer_count] .cam_pos = pcam[i] ->get_cam_position();
acq_data[i*NUM_THREADS+buffer_count] .cam_quad = pcam[i]->get__cam_quadrant {);
acq_data[i*NUM_THREADS+buffer_count].cam_master = pcam[i]->get_cam_master();
acq_data[i*NUM_THREADS+buffer_count].thread_id = i * NUM„THREADS + buffer„count;
acq_data[i*NUM_THREADS+buffer_count].buffer_id = i * NUM_THREADS + buffer„count;
acq_data[i*NUM_THREADS+buffer_count].local_cap_id = local_cap_id;
acq_data[i*NUM_THREADS+buffer_count].remote_cap_id = remote_cap_id;
acq_data[i*NUM_THREADS+buffer_count].capsule_count = capsule_count;

/* create image acquisition threads */
ret - pthread_create (&acq„threads[i*NUM_THREADS + buffer_count],

&acq__attr,
tgrab_frame,
(void *) &acq_data[i*NUM_THREADS + buffer_count]) ;

if (ret) {
fprintf (OUT_ERR__MSG, "Error - pthread_create() : %s\n", strerror (ret));

}
}

/* start inspection rate counter on first capsule */
if (capsule_count == 1) {
/* Start Timer for capsule count */
inspect_rate_start_time = get_elapsed_time {) ;

/* join grab image threads */
for (int i = 0; i < dev_count; i++) {
if (pcam[i]->get_cam_position() == PM_CAM_P0S_B0TTOM)

continue;

/* Join Threads to Main */
ret - ptriread__join (acq_threads[i*NUM_THREADS buffer_count], (void **) sstatus);

/* Top View Images Acquired Here */
if (verbose_.p) fprintf (stdout, "\n\ri*

********************\n\n\n") ;
*T0P VIEW IMAGES ACQUIRED

/*• Now acquire bottom camera image (if it exists)
if (cam__bottom_index != Oxff) {

int i = cam_bottom_index;

/* thread id */
acq_data [i*NUM_THREADS+buffer_count] .cam_id = i;
acq__data [i*NUM_THREADS+buffer_count] . cam_pos = pcam [i] ->get__cam__posit ion () ;
acq_data[i*NUM„THREADS+buffer_count] .cam_quad = pcam[i]->get_cam_quadrant ();
acq_data U*NUM_THREADS+buffer_count]
acq„data[i*NUM_THREADS+buffer„count]
acq_data[i*NUM_THREADS+buffer_count]
acq„data[i*NUM_THREADS+buffer_count]
acq_data[i*NUM_THREADS+buffer_count]

carrwnaster = pcam [i] ->get_cam_master () ;
thread_id - i * NUM_THREADS + buffer„count;
buffer_id - i * NUM_THREADS + buffer_count;
local_cap_id = local_cap_id;
remote_cap_id = remote_cap_id;

acq_data [i*NUM_THREADS+buf f er_count] . capsule___count = capsule„count;

/* create image acquisition threads */
ret = pthread_create (&acq__threads [i*NUM_THREADS + buffer_count],

&acq„attr,
tgrab_frame,
(void +) &acq_data[i*NUM_THREADS + buffer_count]) ;

if (ret) {
fprintf (OUT_ERR_MSG, "Error - pthread„create() : %s\n", strerror (ret));

/* Join Threads to Main */

file:///n/ri*

E. HOST PC SOFTWARE

ret - pthreacLjoin (acq__threads [i*NUM_THREADS + buf fer_count] , (void **) ^status);
}

/* Bottom Camera Image Acquired */
if (cam_bottom__index ! = Oxf f)

if (verbose_p) fprintf (stdout, "\n\n**************************BOTTOM VIEW IMAGES ACQUIRED
******************************\n\n\n");

/* get remote capsulelD from master cam */
if (cam_master_index != Oxff)

remote_cap_id = acq„data[cam_master_index*NUM_THREADS+buffer_count].remote_cap_id;

/* remote capsulelD */
if (verbose_p) fprintf {stdout, "REMOTE CAPSULEID: %d\n", remote_cap_id);

/* increment capsule counter */
capsule_.count++;

/*• set previous remote to local capsulelD */
prev_remote__capsule_id[local_cap_id] = remote_cap_id;

/* increment local capsule_id counter */
local_cap_id++;
if (local_cap_id == CAPSULE_BUFFER_SIZE)

local_cap_.id = 0;

/ * clear capsule pass/fail result for upcoming capsule */
for (int i = 0; i < dev_count; i++)

capsule_passfail[i][local_cap_id] = -1;

/* increment buffer counter for cyclic buffer */
buffer_count++;
if {buffer_count == NUM_THREADS)
buffer_count = 0;

/* Check stats update timer */
if ((get„elapsed_time() - last_stat_update_time) < (STATS_UPDATE_INTERVAL))

continue;
else

last_stat„update__t ime - get„elapsed_time () ;

/* updata statistics file results */
fp__stats_html = fopen (STAT_FILE_HTML, "w");
fp_stats_csv = fopen (STAT_FILE„CSV, "w");

/* Make sure files were created */
if ((fp_stats._html == NULL) || (f p_stats_csv == NULL)) {

fprintf (stderr, "Error: Error creating stats files!\n");
continue;

}

inspect_.rate_end_time = get._elapsed_time () ;
tm_stamp = time(NULL);
tmstmp = localtime(&tm_stamp);
strftime (update_time_stamp, sizeof(update_time_stamp), "%a %d %b %Y %H:%M:%S %z", tmstmp);

/* calculate statistic parameters */
ernpty„holder_count = capsule_count ~ (cap_count_good + cap_count_bad);

good_cap_percentage = (double)cap_count_good/(cap_count__good+cap_count_bad)*10Q.0;
bad_cap„percentage = (double) cap_.count_.bad/ (cap_count_good+cap_count_bad) *100 . 0;
empty_holder_percentage = (double) (capsule_count - (cap_count_good+cap„count_bad)) /capsule...count

*100.0;

/* seconds */
elapsed__time = (inspect_rate_end__time - inspect_rate_start_time) ;

/* caps/min */
inspection_rate = 60 * capsule_count / elapsed_t irne;

/* caps/min */
ef f__inspection__rate = 60 * (cap_count_good+cap_count_bad) / elapsed„time;

/* HTML Output */
/* Header */
if (cam__rnaster_index ! = Oxf f)

255

http://cap_.count_.bad/

E. HOST PC SOFTWARE

fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</
head>\n",

pcam [cam_master._index] ->get_cam_quadrant ()) ;
else

fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</
head>\n",

Oxff);

/* Title */
fprintf (fp_stats_html, "\n\t<body>\n\t\t<h2>Q%d - Inspection Statistics</h2>\n");

/* results table */
fprintf (fp_stats__html, "\t\t<table width=420 border=l, cellpadding=2 cellspacing=0>\n");
fprintf (fp„stats_html, "\t\t\t<tr><td colspan=2 align-center bgcolor=\"#cOcOcO\">Inspection

Results</bx/tdx/tr>\n") ;
fprintf (fp_stats_html, " \t \t \t<tr><td>Good Capsules</bx/td><td>%d (%.3g\%)</td></tr>\n",
cap_count_good, good„_cap__per cent age) ;

fprintf (fp__stats_htrnl, " \t\t\t<tr><td>Bad Capsules</bx/td><td>%d (%.3g\%)</tdx/tr>\n",
cap_count_bad, bad_cap__per cent age);

fprintf (fp_stats_html, "\t\t\t<tr><td>Empty Holders</td><td>%d (%.3g\%)</td></tr>\n",
empty__holder_count, empty_holder_percentage);

fprintf (fp„statsj~itrnl, "\t\t\t<trxtdxb>Total Capsules</td><td>%d</td></tr>\n",
capsule_count);

fprintf (fp_stats__html, " \t \t \t<tr><td>Misaligned Images</bx/td><td>%d</tdx/tr>\n" ,
rnisalignment_counter) ;

fprintf (fp_stats_html, "\t\t\t<tr><td colspan=2 align=center bgcolor=\ " #c0c0c0\ "xb> Inspection
Rate</bx/tdx/tr>\n") ;

fprintf (fp_stats_html, " \t \t\t<tr><td>Elapsed Time</bx/td><td>% . 5g s</tdx/tr>\n " ,
((inspect_rate_end_time - inspect_rate_start_time)));

fprintf (fp_.stats_html, " \t\t\t<tr><td> Inspection Rate</bx/td><td>% . 5g caps/rnin</tdx/tr>\n" ,
60 * capsule__count / {inspect_rate_end_time - inspect_rate_start_tirne)) ;

fprintf (fp_stats_htrnl, " \t\t \t<tr><td>Ef f ective Inspection Rate</bx/tdxtd>% . 5g caps/mm</td
></tr>\n",

60 * (cap_count_good+cap„count_bad) / (inspect_rate_end_time - inspect__rate_sta rt_t irne)) ;

fprintf (fp_stats._html, "\t\t</table>") ;

/* HTML Closing */
fprintf (fp_stats_html, " \t\t<p><br/x/p>\n\t\t<hr/>\n\t\t<pxi>Last Updated: %s</i></p>",

update_time_stamp) ;
fprintf (fp_stats_html, "\t</body>\n");
fprintf (fp_stats_html, "</html>\n");

fclose (fp_stats__html);

/* CSV File Output */
if (cam_master_index != Oxff)

fprintf {fp__stats_csv, "Quadrant, %d\n", pcarn [cam_master_index] ->get__cam_quadrant {)) ;
else

fprintf <fp_stats_csv, "Quadrant, UNKNOWN\n");

fprintf (fp_stats_.csv, "Start Time, %s\n", start_time_stamp);
fprintf (fp_stats_csv, "Last Updated, %s\n", update_time_stamp);
fprintf (fp_stats_csv, "\nInspection Results, Count, Percentage\n");
fprintf (fp_stats_csv, "Good Capsules, %d, %.3g\%\n", cap__count_jgood, good_cap_percentage);
fprintf (fp_stats_csv, "Bad Capsules, %d, %.3g\%\n", cap_count_bad, bad_cap_percentage);
fprintf (fp_stats_csv, "Empty Holders, %d, %.3g\%\n", empty_holder_count, empty_holder_percentage);
fprintf (fp_.stats_csv, "Total Capsules, %d\n", capsule_count);
fprintf (fp__stats_csv, "Misaligned Images, %d\n", misalignment_counter);
fprintf (fp_stats_csv, "\nInspection Rate\n");
fprintf (fp_.stats_csv, "Elapsed Time, %.3g, seconds\n", elapsed_time) ;
fprintf (fp__stats„csv, "Inspection Rate, %.3g, caps/min\n", inspection_rate);
fprintf (fp__stats_csv, "Effective Inspection Rate, %. 3g, caps/min\n", ef f_inspection_._rate) ;

fclose (fp_stats_csv);
/* while */

256

file:///nInspection
file:///nInspection

E. HOST PC SOFTWARE

/* cleanup */
cleanup ();

/* success */
return 0;

void
cleanup (void)

/ * s t o p bulk endpoint */
f o r (i n t i = 0; i < d e v _ c o u n t ; i++)

p c a m [i] - > e p „ s t o p () ;

/ * close USB device handles */
f o r (i n t i = 0; i < d e v _ c o u n t ; i++) {

prn_close <pm_dev_hdl [i]) ;

delete pm_IP;
delete pcam;
delete pm_dev;
delete pm„dev_ndl;

exit(0) ;

void
print.. cam_loc (int cam_id)
{
/=*- Output this information */
if (vcrbose_p) {

fprintf (0UT_MSG, "CAMERA %d:\n=========\n", cam_id);
fprintf (0UT__MSG, "\tQuadrant: %d\n", pcam[cam_id]->get_cam_quadrant());
fprintf (OUT_MSG, "\tPosition: %d (%s)\n", pcam[cam_id]->get_cam_position(),
pos_str[pcam[cam_id]->get_cam_position()]);

fprintf (OUT_MSG, "\tMaster: %s\n", ((pcam[cam_id]->get_cam_master()) ? "Yes" : "No"
fprintf (OUT_MSG, "\n");

void
cam_reg_setup (int cam_id)
{
short va.l;

/ * Set Camera Registers */
/* Column and Row start */
//pcam[cam_id] ->write_reg (MI_REG_COLUMN__START, DEFAULT_COL__START);
//pcam[cam_id] ->write_reg (Ml_REG_ROW_START, DEFAULT_ROW_START) ;

/* Blanking Regions - Defaults (H=142, V=25) */
//1210

pcam[cam_id]->write_reg(MI„REG_HORIZ_BLANKING, 1 0 2 3) ;
//830

p c a m [c a m _ i d] - > w r i t e _ r e g (MI_REG_VERT_BLANKING, 5) ;

/ * Global Gain */
/* Read in from conf file */
if (pcam[cam_id]->get_cam_position{) == PM_CAM_POS_BOTTOM) {
pcam[cam„id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_BOTTOM);

}
else if (pcam[cam_id]->get_cam_position() == PM__CAM_POS_CENTER) {

pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_CENTER);
}
else if (pcam[cam_id]->get_cam_position () == PM__CAM_POS_LEFT) {

pcam[cam_id]->write_reg(MI_REG__GLOBAL_GAIN, CAM_GAIN_LEFT);
}
else if (pcam[cam_id]->get_cam_position () == PM__CAM_POS_RIGHT) {

pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_RIGHT);

257

file:///tPosition
file:///tMaster

E. HOST PC SOFTWARE

)
else {
pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, CAM_GAIN_DEFAULT);

)

/* For Left Camera, increase analog gain */
if (pcam[cam_id]->get_cam_position() == PM_CAM_POS_LEFT) (
pcam[cam_id]->write_reg(MI_REG_GLOBAL_GAIN, OxOaOf);

)

*if 0
/* Individual Channel Gains */
pcam[cam_id]->write_reg(MI_REG_RED_GAIN, OxOOOf);
pcam[cam_id]->write_reg(MI_REG_GREEN1_GAIN, 0x002f);
pcam[cam._id]->write_reg(MI„REG_GREEN2_GAIN, 0x002f) ;
pcam[cam_id]->write_reg(MI_REG_BLUE_GAIN, OxOOOf);

/* Black Level */
pcam[cam_id]->write_reg(MI_REG_BLACK_LEVEL, 0x00a8);
ifendif

/* As per MT9T001 datasheet (p.13) */
pcam[cam__id] ->read_reg (0x4E, &val);
val S= Oxffef;
val 1= 0x0020;
pcam [cam_id] ->write_reg {0x4E, val) ;

*i£ 1
/* Set Trigger Mode */
pcam[cam_id]->read_reg (MI„REG_READ_MODE_l, Sval);
val s= Oxbfff;
val 1= 0x0100;
pcam[cam_id]->write_reg (MI_REG__READ_MODE_l, val);
lendif

#if 0
/* TODO: Putting in Test Data Mode */
pcam[cam_id]->read„reg (MI_REG_OUTPUT_CONTROL, sval);
val 1= 0x0040; // bit 6 set for test data mode
pcam[cam_id]->write_reg (MI_REG_OUTPUT_CONTROL, val);

pcam[cam_id]->write_reg (MI_REG_TEST_DATA, 0x0000);
/* */
#endif

/ * Over-ride Black level calibration */
#if 0
pcam [carn_id] ->read__reg (0x62, &val);
val 1= 0x0003;
pcam[cam_id]->write_reg (0x62, val);
#endif

dif 1
/* Set Read Mode 3 register for global shutter control (pg. 23 MT9T001 Datasheet) */
pcam[cam_id]->read_reg (MI_REG_READ_MODE_3, Sval);
val |= 0x0003;
pcam[cam_id]->write_reg (MI__REG_READ_MODE_3, val);
pcam[cam_id]->write_reg (MI_REG_SHUTTER_WIDTH, 1);
Jendif

/ * read_conf_var {)

* reads variable from configuration file

* con f_ file ~ configuration file string
* keyword - variable keyword
* value - value (if found)

* returns:
* 0 - on success
* -1 -• on file error

258

E. HOST PC SOFTWARE

* -2 - on invalid keyword
* -3 - on keyword not found
*/

int
read_conf_var (char *conf_file, char *keyword, char *value)
{
FILE *fp=NULL;
int len;
char str [80];
char *pch;
int leq;

if (keyword == NULL)
return -2 ;

len - strlen(keyword);

if (len > 77)
return -2;

if (conf_file) {
fp = f open {conf_.f ile, "r ") ;
if (fp == NULL)

return -1;
}
else

return -1;

if (fseek(fp, 0, SEEK_SET)) {
fclose (fp);
return -1;

}

for (;;) {
fgets (str, 80, fp);
if (ferror(fp) || feof(fp))

return -3;

len - strlen (str);

/* look for comment character */
if {istrncmp ("#", str, 1))

continue;

if (strncmp (keyword, str, strlen(keyword)) == 0) {
if (str[len-1] == '\n')

str [— len] = 0;

/* find equal sign */
pen = strrchr(str, '=');
leq = pch-str+1;

sprintf (value, "%s", &str[leq]);

/* trim spaces */
while (value [0] == ' ') strcpy(value, value+1) ;

break;
)

}

fclose (fp);

/* success */
return 0;

}

void
clearestats_files (void)
{
FILE *fp_stats_html;
FILE *fp_stats_csv;

259

E. HOST PC SOFTWARE

/* updata statistics file results */
fp_stats_htrnl = fopen (STAT_FILE JTML, "w");
fp_stats_csv = fopen (STAT_FILE_CSV, "w");

/* Make sure files were created */
if ((fp_statsjrtml == NULL) I I (fp_stats_csv == NULL)) (

fprintf (stderr, "Error: Error creating stats files!\n");
)

/* calculate statistic parameters */
int empty_holder„count - 0; // capsule__count - (cap_count_good + cap_count_bad) ;

double good_cap_percentage - 0.0;
double bad_cap_percentage = 0.0;
double empty„holder_percentage ~ 0.0;

double elapsed_time = 0.0;
double inspection_rate = 0.0;
double eff_inspection_rate = 0.0;

/* HTML Output */
/* Header */
if (carn__master_index != Oxff)

fprintf (fp_stats_html, "<html>\n\t<head>\n\t\t<title>Q%d - Inspection Statistics</title>\n\t</head
>\n",

0);
else

fprintf (fp_stats_html, "<htral>\n\t<head>\n\t\t<title>Q%d - Inspection Statist ics</t.i tle>\n\t</head
>\n",

0) ;

/ * Title */
f p r i n t f (f p _ s t a t s _ h t m l , " \ n \ t < b o d y > \ n \ t \ t < h 2 > Q % d - I n s p e c t i o n S t a t i s t i o s < / h 2 > \ n ") ;

/ * r e s u l t s t a b l e */
f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t < t a b l e wid th=420 b o r d e r = l , c e l l p a d d i n g = 2 c e l l s p a c i n g = 0 > \ n ") ;
f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d c o l s p a n = 2 a l i g n = c e n t e r b g c o l o r = \ " # c 0 c 0 c 0 \ " > < b > l n s p e c t i o n

R e s u l t s < / b x / t d x / t r > \ n ") ;
f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d x b > G o o d C a p s u l e s < / b x / t d x t d > % d (% . 3g\%) < / t d x / t r > \ n " ,

c a p _ c o u n t _ g o o d , good_cap__percentage) ;

f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d x b > B a d C a p s u l e s < / b x / t d > < t d > % d (% . 3g\%) < / t d x / t r > \ n " ,
c a p _ c o u n t _ b a d , b a d „ c a p _ p e r c e n t a g e) ;

f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d x b > E m p t y H o l d e r s < / b x / t d > < t d > % d (% . 3g\%) < / t d x / t r > \ n " ,
empty_ .ho lde r_coun t , e m p t y _ h o l d e r _ p e r c e n t a g e) ;

f p r i n t f (f p _ s t a t s „ h t r n l , " \ t \ t \ t < t r x t d x b > T o t a l C a p s u l e s < / b > < / t d x t d > % d < / t d x / t r > \ n " ,
c a p s u l e _ c o u n t) ;

f p r i n t f (f p _ s t a t s „ h t m l , " \ t \ t \ t < t r x t d > < b > M i s a l i g n e d I m a g e s < / b x / t d x t d > % d < / t d x / t r > \ n " ,
m i s a l i g n r n e n t _ c o u n t e r) ;

f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d c o l s p a n = 2 a l i g n = c e n t e r b g c o l o r = \ " # c 0 c 0 c 0 \ " > < b > I n s p e c t i o n Rate
< / b x / t d > < / t r > \ n ") ;

f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t \ t < t r x t d x b > E l a p s e d T i m e < / b x / t d x t d > % . 5g s < / t d x / t r > \ n " ,
((i n s p e c t „ r a t e _ e n d _ _ t i r n e - i n s p e c t _ r a t e _ s t a r t „ t i m e))) ;

f p r i n t f (f p _ s t a t s _ b t m l , " \ t \ t \ t < t r x t d x b > I n s p e c t i o n R a t e < / b > < / t d x t d > % . 5g c a p s / m i n < / t d x / t r > \ n " ,
0) ;

f p r i n t f (f p _ s t a t s _ h t r n l , " \ t \ t \ t < t r x t d x b > E f f e c t i v e I n s p e c t i o n R a t e < / b x / t d x t d > % . 5g c a p s / m i r x / t d x /
t r > \ n " ,

0) ;

f p r i n t f (f p _ s t a t s _ h t m l , " \ t \ t < / t a b l e > ") ;

/* HTML Closing »/
fprintf (fp_stats_Jitml, "\t\t<p><br/x/p>\n\t\t<hr/>\n\t\t<pxi>Last Updated: %s</ix/p>", " ") ;
fprintf (fp_stats_html, "\t</body>\n");
fprintf (fp_stats_Jvtml, "</html>\n") ;

fclose (fp_stats_html);

260

E. HOST PC SOFTWARE

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

fclose
}

<fp_
(fP-
UP-
(fp_
(fp_
(fP-
(fp_
<fp_
(fP-
<fp_
(fp_
(fp_

_stats_csv,
_stats_csv,
_stats__csv,
_stats_csv,
_stats_csv,
_stats_csv,
_stats„csv,
_stats_csv,
_stats_csv.
_stats_csv,
_stats_csv,
_stats_csv,

(fp_stats_csv);

/* CSV File Output */
if (cam_master__index ! = Oxf f)

fprint f {fp_stats_csv, "Quadrant, %d\n", pcam[cam__master_index]->get_cam_quadrant {));
else

fprintf (fp_stats_csv, "Quadrant, UNKNOWN\n");

"Start Time, %s\n", " ") ;
"Last Updated, %s\n", " ") ;
"\nInspection Results, Count, Percentage\n");
"Good Capsules, %d, %.3g\%\n", cap_count_good, good„cap_percentage);
"Bad Capsules, %d, %.3g\%\n", cap_count_bad, bad__cap_percentage) ;
"Empty Holders, %d, %.3g\%\n", ernpty_holderecount, empty_holder„percentage);
"Total Capsules, %d\n", capsule_count);
"Misaligned Images, %d\n", misalignment_counter);
"\nInspection Rate\n");
"Elapsed Time, %.3g, seconds\n", 0) ;
"Inspection Rate, %.3g, caps/rnin\n", 0) ;
"Effective Inspection Rate, %.3g, caps/min\n", 0);

E.1.4 inspect, conf

Configuration file used by inspect.
Configuration File for inspect
Used to define application parameters including
camera sensor gains

#Application Parameters
stats._html_file = /opt/pill_machine/statistics.html
stats_csv_file = /opt/pill_machine/statistics.csv
image_dir = /images

#Camera Gains
left_gain - 0x0a2f
right„gain = OxOaOf
center_gain - OxOaOa
bo 11 om_g ain = OxOaOa

E.2 test_ip

An offline test application to verify the functionality of the image processing algorithm.

E.2.1 test_ip.cc
/* test^ip.cc

* Utility to verify the functionality of the image processing library
* offline. Input files are specified along with a position ID.

* Author: Neil Scott
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <tiffio.h>

#include "ip.h"

void
usage (void)

261

file:///nInspection

E. HOST PC SOFTWARE

fpr in t f (stele r r ,
fp r in t f (s tder r ,
fp r in t f (s tder r ,
fp r in t f (s tde r r ,
fp r in t f (s tder r ,
fp r in t f (s tder r ,
fp r in t f (s tder r ,

"Usage:\n");
" ip_test -p [POSITION)
"Position IDs:\n");
" 1 -- Center\n") ;
" 2 - Left\n");
" 3 - Right\n");
" 4 - Bottom\n");

file.tiff\n\n");

int
main (int argc, char *argv[])
{
TIFF *img;
unsigned char *Y, *U, *V;
int CAM„POS - 1, DETAILS - 1;
pmlP * *pm_ip;

int width, height;
char filename[80];
unsigned char R, G, B;
ui.nt32 *raster;
int ret;
int pos;

fprintf (stdout, "Image Processor Test App.\n");

if (argc < 4) {
usage ();
return -1;

for (int i = 0; i < argc; i++) {
if (!stremp(argv[i], "-p")) {

sscanf (argv[i+l], "%d", &pos);
i++;

I

strcpy (filename, argv[argc-1]);

if ((img - TIFFOpen (filename, "r")) == NULL) {
fprintf (stderr, "Error loading image file!\n");
return -1;

TIFFGetField (img, TIFFTAG_IMAGEWIDTH, &width);
TIFFGetField (img, TIFFTAG_IMAGELENGTH, Sheight);

/* Allocate Memory */
raster ^ (uint32 *) malloc (sizeof (uint.32) * width * height);

/* Load image to buffer */
TIFFReadRGBAImage (img, width, height, raster, 0);

/* Convert RGB image to Grayscale */
/* Allocate memory for grayscale buffer */
Y = (unsigned char *) malloc(sizeof (char) * width * height),

int rn = 0;
uns igned int p i x ;

for (int e = height - 1; e != -1; e--)
for (int c - 0; c < width; C++) {
R = TIFFGetR(raster[e * width + c])
G = TIFFGetG (raster [e * width + c])
B - TIFFGetB(raster[e * width + c])

pix = (unsigned int) (0.299 * (double) R + 0.587 * (double) G + 0.114 * (double) B + 0.5);

if (pix > 255) pix = 255;
if (pix < 0) pix - 0;

262

E. HOST PC SOFTWARE

Y[m++] = (unsigned char) pix;
1

prn_ip = new pmIP*[l];

pm_ip[0] = new prnlP (width, height, pos, DETAILS);

r e t = pm._ip[0] ->inspect (Y, NULL, NULL);

/ / r e t = inspect (Y, NULL, NULL, width, height, pos, DETAILS),
if (ret)

fprintf (stdout, "Inspection FAILED\n");
else

fprintf (stdout, "Inspection PASSEDXn");

fprintf (stdout, "ret = %d\n", ret);

/* cleanup */
free (Y);
free (raster);
TIFFClose (irng) ;

return 0;
)

E.3 camJnit

This application is used to initialize the camera for first time use. The quadrant, position and

master flag are set using this utility. The ability to read/write any arbitrary register of the camera

EEPROM exists with this utility.

E.3.1 Makefile

TARGET = cam__init
CC = g++
LDFLAGS = -lusb
INCLUDE = -I../../firmware/fx2_revB/firmware/include
CFLAGS = -02

all: $(TARGET)

$(TARGET): $(TARGET).cc
$(CC) $(TARGET).cc $(CFLAGS) $(LDFLAGS) $(INCLUDE) -o $(TARGET)

clean:
rm S(TARGET)

E.3.2 camJnit.cc

/* cam_init.cc

* Load USB PID/VID information into camera EEPROM. Also writes camera
* location information, ie. quadrant and camera position.

*
* Author: Neil Scott
* Date: July 28, 2007
*/

#include <iostream>
#include <usb.h>
#include "fx2cam_commands.h"

263

((define VERSION "0.01

#define FX2_VID Oxabcd
#define FX2_PID 0x0201

#define VENDOR_REQUEST_IN OxCO
#define VENDOR„REQUEST_OUT 0x40

#de£ine VRQ_EEPROM_READ„LG 0xE6
#define VRQ_EEPROM_WRITE_LG 0xE7
#define VRQ_I2C_READ 0x81

#define EEPROM_HEADER_SIZE 8 //bytes
#de£ine EEPROM_SIZE 16*1024 // 128kbits = 16kB

#define EEPROM_QUADPOS_START_ADDR 0x10
#define EEPROM_QUADPOS_LENGTH 3

/* EEPROM Header contains VID/PID/DID according to FX2 TRM (pg. 3.4)

* For a CO Load (Only VID/PID/DID - Host loads firmware)
* EEPROM ADDR CONTAINS
* 0 OxCO
* 1 VID (low)
* 2 VID (high)
* 3 PID (low)

4 PID (high)
5 DID (low)

* 6 DID (high)
* 7 Configuration Byte (Set to 0) (FX2 TRM pg. 3

* VID: OxABCD; PID: 0x0201; DID: 0x0101

*/
unsigned char EEPROM_HEADER[] = (OxcO, Oxcd, Oxab, 0x01, 0x02, 0x01, Ox

char *pos„str[] = ("UNDEFINED", "CENTER", "LEFT", "RIGHT", "BOTTOM"};

/* List all devices on the USB bus. Mark matching VID/PID
*/

void
show__bus (void)
{

for (usb_bus *bus - usb_busses; bus; bus - bus->next))
for (struct usb_device *dev = bus->devices; dev; dev = dev->next)

fprintf (stdout, "bus %s dev %s: ID %04x;%04x", bus->dirnarne,
dev->f ilenarne,
dev->descriptor.idVendor,
dev->descriptor.idProduct) ;

if (dev->descriptor.idVendor == FX2_VID ss
dev->descriptor.idProduct == FX2_PID) 1

std::cout << " <--";

std;:cout << std::endl;
)

)

/ * Search bus for specific device
*/

s t r u c t usb_device *
f i nd_dev ice (const char *bus, const char *dev)
1

for {usb_bus *b ^ usb_busses ; b ; b = b->next) {
i f {Istrcrnp (b->dirname, bus)) {

for (s truct usb_device *d = b - > d e v i c e s ; d; d = d->next) {
i f (!s t rcmp (d->f ilenarne, dev))

return (d);

E. HOST PC SOFTWARE

return (NULL);

/* Sequentially write data to EEPROM starting at addr
*/

int
write_eeprom (struct usb_dev_bandle *usb_hdl, int addr, char *data, int len)
i
int ret;
/* Verify len is no more than 64 bytes */
if (len > 64)

return -1;

ret - usb__control_msg (usb_.hdl,
VENDOR_REQUEST._OUT,
VRQ_.EEPROM_WRITE_LG,
addr,
0,
(char *) data,
len,
500) ;

return ret;

/* Output application usage
*/

void
usage (void)
{
std:
std:
std:
std:
std:
std:

std:
std:

std:

std
std
std

std
std
std
std

<<

: cout
: cout
: cout
: cout
: cout
: cout
co mm
: cout
: cout
flag1

:cout «
::end!;
:cout <<
:cout <<
:cout <<
EEPROM"
:cout <<
:cout <<
:cout <<
:cout <<

"Usage: carruinit -d=[BUS.DEV]
"Camera first time setup." <<
" -d, --device
" -q, —quadrant
" -p, —position
" -m, --master
th control board" << std::endl
" -r, --read
" --quickread
std::endl;

-s, --save <FILENAME>

[OPTIONS]..." << std::endl;
std::endl << std::endl;

Specify device to target a
Specify camera quadrant" <
Speci fy camera position" <
Specify camera as quadrant

Retrieve ALL EEPROM data t
Retrieve the camera quadra

-1, --list
—blank

-w, --write„eeprom [ADDR]
std::endl;
-rb, --read_eeprom [ADDR]
-rp, -~reload_params

[VAL]

s BUS.DEV" << std::endl;
< std::endl;
< std::endl;
master (responsible for

o screen" << std:lendl;
nt, pos it ion and master

Read data from EEPROM and save to <FILENAME>" << std

List all devices on USB bu
Clear EEPROM memory with 0
Write a value to a specifi

std::endl << "cam_init v"

Read a specific byte of EE
Reload window parameters f.
*ADDR and VAL are decimal

<< VERSION << std::endl;

s" << std::endl;
xff" << std::endl;
c memory location of the

PROM memory" << std::endl;
rom EEPROM" << std::endl;
numbers" << std : : end.l;

int
main (int argc, char [argv[])

-- NULL; char * u sb_bu s_dev
char bus[4], dev[4];
int quadrant, position, master = 0;
bool device._p = false;
bool bus_dev_p - false;
bool 1ist„only_p = false;
bool quadrant_p = false;
bool position_p = false;
bool master_j? = false;
bool read_p = false;
bool save_p = false;
bool quick_read_p = false;
bool blank_p = false;
bool write_eeprom_p = false;

265

E. HOST PC SOFTWARE

bool read„eeprom_p = false;
bool reload_params_p = false;
char we_data;
int we_addr;
int re,_addr;
char data[64] ;
int ret;
int byte„„count, len;
char filename[128];
FILE *fp;

if (argc < 2) [
usage ();
return -1;

}

/* Loop through command line arguments */
for {int i ---- 0; i < argc; i + +) {

if (!strncmp(argv[i], "--device^", 9)) {
usb_bus_dev = argv[i] + 9;

I

if (! strncmp (argv [i] , "-d=", 3D {
usb_bus„dev ~ argv[i] + 3;

if (!strcmp ("--quadrant", argv[i]) | | !strcmp ("-q", argv[i]))
quadrant__p = true;
sscanf (argv[i+1], "%d", &quadrant);

if (!strcmp("--position", argv[i]) || !strcmp ("-p", argv[i]))
position_p = true;
sscanf (argv [i-t-1] , "Id", Sposition) ;

if (!strcmp ("--master", argv[i]) | I !strcmp ("-m", argv[i])) {
ma s t e r_p = t rue;
sscanf (argv[i+l], "%d", &master);

if (master)
master = 1;

if (!strcmp("--read", argv[i]) II !strcmp ("-r", argv [i]))
read_p = true;

if (!strcmp("--quickread", argv[i])) {
quick_read_p - true;

if (!strcmp("—save", argv[i]) || Istrcmp ("-s", argv[i])) {
save_p = true;

if (argc < i + 2) {
std::cerr << "You must specify a valid filename!" << std::endl;
return -1;

}

sscanf (argv[i+l], "%s", ̂ filename);
}

if (!strcmp("—list", argvfi]) I I Istrcmp ("-1", argvfi])) {

!ist_only_p = true;
}

if (!strcmp("—blank", argv[i])) {

blank._p = true;
I

if (! strcmp ("--write_eeprorn" , argv [i]) | | ! strcmp ("-w" , argv [i])) {
if (argc < (i+3)) {

std::cerr << "Memory location and value must be specified!" << std::endl;

266

E. HOST PC SOFTWARE

return -1;
}

write_eeprom_p = true;
sscanf (argvfi+1], "%d", &we_addr);
sscanf (argv[i+2], "%d", &we_data);
fprintf (stdout, "WRITE EEPROM ADDRESS: ADDR = 0x%02x, DATA = 0x%02x\n\n", we_addr, we^data);
i+=2;

}

if (!strcmp("--read_eeprom", argv[i]) |j Istrcmp ("-rb", argv[i])) {
if (argc < (i + 2)) {

std::cerr << "Memory location must be specified!" « std::endl;
return -1;

}

read„eeprom_p = true;
sscanf (argv[i+1], "%d", &re_addr);
i + + ;

f

if {! strcmp ("—reload_params", argv[i]) || Istrcmp {"-rp", argv[i])) {
reload_params„p = true;

I
I

/* Initialize libusb */
usb_init ();
usb_.f ind__.busses () ;
usb_find_devices ();

if (1 ist_only_.p) {
show_bus {);
return -1;

}

if (usb_bus._dev !- NULL) {
/* Extract BUS and DEVICE from command line arguments */
const char *p = strchr {usb_bus_dev, ' . ') ;
if dp) {

std::cerr << "Illegal/nonexistant device " << usb_bus_dev << "." << std::endl;
return -1;

}
strncpy (bus, usb„_bus_dev, p - usb_bus_dev) ;
bustp -- usb_bus_dev] = '\0';
Strcpy (dev, p+1);

}
else {

std::cerr << "USB bus and device not specified!" << std::endl;
usage ();
return -1;

}

struct usb„device *usb_dev;
/* Find device at location specified */
usb„dev = find_device (bus, dev) ;

if (usb_dev — NULL) {
std::cerr << "Unable to find device!" << std::endl;
return -1;

}

std::cout << "Device Found. (ID: " << std::hex;
std::cout << usb_dev->descriptor.idVendor;
std::cout << ":" << usb_dev->descriptor.idProduct << ") " << std::endl ;

struct usb_dev__handle *usb_hdl;

usb_hdl = usb_open (usb„dev);
if (!usb_hdl) {

std::cerr << "Error Opening Device: " << usb_strerror() << std::endl;
return -1;

}

267

E. HOST PC SOFTWARE

if (usb„set__configuration (usb_hdl, 1) < 0) {
std::cerr << "Error setting configuration: " << usb_strerror() << std::endl;
return -1;

1

if (usb_clainuinterface (usb_hdl, 0) < 0) (
std::cerr << "Error claiming interace: " << usb„strerror() << std::endl;
return -1;

(

if (usb_set„_altinterface (usb_hdl, 0) < 0) (
std::cerr << "Error setting alternative interface: " << usb_strerror() << std::endl;
return -1;

)

if (save_p) {
ip ^ fopen (filename, "wb");

if (fp == NULL) {
std::cerr << "Error opening file: " << filename << std::endl;
usb_close (usb_hdl);
return -1;

)
}

/* Read Contents */
if (read_p 1 save_p) {

/* Read Contents of Serial EEPROM - VRQ_EEPROM_READ_LG (16-bit address)
* wValue: Start Address
* wLength: Length of data (64 bytes max because using EP0)
*/

/* Read ALL data */
Jen = EEPROM_SIZE;
while (len) {

if (len < 64)
byte_count - len;

else
byte_count - 64;

ret - usb_control_msg (usb„hdl,
VENDOR_REQUEST_IN,
VRQ_EEPROM_READ_LG,
(EEPROM_SIZE - len),
0,
data,
byte_count,
1500) ;

if (ret < 0) {
std::cerr << "Error Reading EEPROM Data: " << usb_strerror() << std::endl;
usb_close (usb_hdl);
return -1;

)

if (read„p) (
for (int i = 0; i < byte_count; i++) {

//std::cout « std:.-hex « data[i] << "
fprintf (stdout, "%02x ", (unsigned char) data[i]);
if (!((i+1) % 16)) (

std::cout << std::endl;
)

)
I

if (save_p) (
fwrite (data, byte„count, 1, fp);

)

len -= byte_count;
)

if (save_p) {
fclose (fp);

)

268

E. HOST PC SOFTWARE

std::cout << std::endl;
usb_close (usb_hdl);
return 0;

1

if (blank__p) (
i n t err__count = 0;

f o r (i n t i = 0; i < 64; i++)
d a t a [i] = Oxff;

f o r (i n t i = 0; i < (EEPROM_SIZE/64) ; i++) I
r e t - u sb_con t ro l_ jn sg (u s b _ h d l ,

VENDOR_REQUEST_OUT,
VRQ_EEPROM„WRITE_LG,
i * 6 4 ,
0,
(char *) data,
61,
1500);

if (ret < 0) (
fprintf (stderr, "Error writing data to EEPROM - %s\n", usb_strerror());
err__count-H-;

)

fprintf (stdout, "%.4g%% complete.\n", ((double) (i + 1) / (double) (EEPROM_SIZE/64))* 100.0);

)

if (err_count)
fprintf (stderr, "\n\nErrors occurred while blanking EEPROM!\n");

else
fprintf (stdout, "\n\nBlanking EEPROM successful!\n");

usb_close (usb_bdl);
return 0;

)

if (quick„read_p) {
/* Read Quadrant, Position and Master flag from EEPROM */
ret = usb_control_rnsg (usb_hdl,
VENDOR„REQUEST_IN,
VRQ„EEPROM„READ_LG,
EEPROM_QUADPOS_START_ADDR,
0,
(char *)data,
EEPROM__QUADPOS_LENGTH,
500);

/* verify data +/
if ((unsigned) data[0] > 4) (

fprintf (stderr, "Camera not configured!\n");
usb_close (usb_hdl);
return (-1);

(

if ((unsigned) data[l] > 4) (
fprintf (stderr, "Invalid Position!\n");
usb_close (usb_hdl);
return (-1);

)
std::cout << "Quadrant: " << (int) data[0] << std::endl;
stdrrcout << "Position: " << pos_str[data[1]] << std::endl;
std::cout << "Master: " << ((data[2]) ? "Yes" : "No") << std::endl;
usb_close (usb_hdl);
return 0;

)

if (write__eeprom_p) {
ret -- write_eeprom (usb_hdl, we_addr, &we_data, 1);
if (ret < 0)

std::cerr << "Error writing EEPROM data!" << std::endl;
else

269

file:///n/nErrors
file:///n/nBlanking

E. HOST PC SOFTWARE

std::cout << "Data successfully written to EEPROM..." << std::endl;

usb_close (usb_hdl);
return 0;

)

if (read_eeprorn_p) {
ret ^ usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ„EEPROM_READ_LG,
re_addr,
0,
(char *)data,
1,
500) ;

fprintf (stdout, "0x%02x: %d\n\n", re_addr, (unsigned char) data[0]);
usb_._ciose (usb_hdl);
return 0;

)

if (reload_.params__p) {
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ__GET__WINDOW_PARAM,
0,
VRQ_UPDATE__P ARAMS,
(char *)data,
1,
500) ;

if (ret < 0)
fprintf (stderr, "Error reloading window parameters: %s\n", usb_strerror());

else {
if (data[0) != 0x08)

fprintf (stderr, "Error reloading window parameters: ACK not received!\n");
else

fprintf (stdout, "Successfully reloaded window parameters ...\n");
)

usb_close (usb hdl);
return 0;

1

if (!(quadrant_p && position_p)) {
std::cerr << "Quadrant and Position must be specified at command line!" << std::end.l
usb_close (usb_hdl);
return -1;

)
else {

std
std

:cout << "Quadrant: " << guadrant << std::endl;
:cout << "Position: " << pos_str[position] << std::endl;
:cout << "Master: " << ((master) ? "Yes" : "No") << std::endl;

/* Write Header Data */
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_OUT,
VRQ„EEPROM_WRITE_LG,
0,
0,
(char *) EEPROM_HEADER,
EEPROM„HEADER_SIZE,
500) ;

if (ret < 0) {
std::cerr << "Error writing to EEPROM: " << usb_strerror() << std::endl;
usb_close (usb__hdl);
return -1;

/* Write Position and Quadrant Data - Stored at address - 0x0010 */
data[0] -- quadrant;
data[l] - position;
data[2] = master;

270

E. HOST PC SOFTWARE

ret - usb_control__msg (usb_hdl,
VENDOR_REQUEST_OUT,
VRQ_EEPROM__WRITE_LG,
0x10,
0,
(char *) data,
0x3,
500) ;

if (ret < 0) (
std::cerr << "Error writing to EEPROM: " << usb_strerror() << std::endl;
usb„close (usb_hdl);
return -1;

usb__ciose (usb_hdl);

return 0;

E.4 fpga_loader_ss

This application is used to load a .bin/.bit FPGA configuration file generated using Xilinx ISE to

the FPGA of the USB2.0 camera.

E.4.1 Makefile

TOP_SRC = . ./. .
CC - g++
CFLAGS = -02
LDFLAGS - -lusb
INCLUDE - -1$(TOP_SRC)/firmware/fx2/firmware/include
CLEANFTLES - fpga_loader_ss

a J i : fpga__ioader__ss

fpga_,loader_ss: fpga_loader_ss.cc
$(CC) $< 3(CFLAGS) $(LIB) S(LDFLAGS) $ (INCLUDE) ${OBJS) $(DEFS) -o $@

clean:
rrn $ (CLEANFILES)

Uependencies
fpga_loader_ss: $(TOP_SRC)/firmware/fx2/firmware/include/fx2cam_commands.h

E.4.2 fpga_loader_ss.cc

/*
* FiJename:
* fpga_load_ss.cc

* Description:
* application to load FPGA firmware using slave-serial method.

* Author:
* Nell Scott

* Date:
* May 4, 2007
* May 21, 2007 - Added error handling for unspecified bit file

i n c l u d e < s t d i o . h >

27.1

E. HOST PC SOFTWARE

Sinclude <stdlib.h>
#include <signal.h>
#include <string.h>
#include <umstd.h>
((include <usb.h>

#include "f x2cam._commands. h"

Sinclude "fx2cam_i2c_addr.h"

fdefine DEBUG

#define VERSION " 0 . 01'

#define FX2_MAX_DEVICES

#define FX2_CAM_VENDOR_ID

#define FX2_CAM_.PRODUCT_ID

16

Oxabcd

0x0201

#define FPGA_POWER_ON
#define FPGA_POWER_OFF

0x01

0x00

#define FPGA_RESET_ENABLE

#de£ine FPGA_RESET_DISABLE

0x01

0x00

/* Global Variables */
char

void
s h o O u s (void)
(
for (usb_bus *bus = usb_busses; bus

for (struct usb_device *dev - bus
fprintf (stdout, "bus %s dev
bus->di rnarne,
dev->filename,
dev->descriptor.idVendor,
dev->descriptor.idProduct);

*app_title=("Xilrnx Slave-Serial FPGA Loader"};

s:

bus = bus->next) {
'devices; dev; dev
ID %04x:%04x",

dev->next) {

if (dev->descriptor.idVendor == FX2_CAM_VEND0R_1D &&
dev->descriptor.idProduct == FX2_CAM_PR0DUCT_ID) {

fprintf (stdout, " <--");
i
fprintf (stdout, "\n");

struct usb_device *
find_device (const char *bus, const char *dev)
(

f o r (usb_bus *b = u s b _ b u s s e s ; b ; b = b - > n e x t) {
i f (I s t r c m p (b->di rna jne / b u s)) (

f o r (s t r u c t u s b _ d e v i c e *d - b - > d e v i c e s ; d; d - d ->nex t)
i f (I s t r c m p (d->f i l enarne , dev))

r e t u r n (d);
}

1

r e t u r n (NULL);

void
usage (voi

fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

d)

(stderr,
(stderr,
(stderr,
(stderr,
(stderr,
(stderr.
(stderr,
(stderr,

'Usage fpga_load_ss [0
'Options:\n") ;
' -h,
' ~v,
' -d.
' -1,

' "P.
' -r,

--help
—verbose
—device^BUS.DEV
— list
—power <state>
--reset

IONS]... [BIT FILE]\n");

Display this help screen\n");
Increase verbosity\n");
Select the bus and device to use\n");
List the devices on the USB bus\n");
Soft power control to FPGA [on / off]\n");
Soft reset to FPGA (once configured)\n");

272

E. HOST PC SOFTWARE

fprintf (stderr, " -V, —version Display version information\n");
fprintf (stderr, "\n\n");
fprintf (stderr, "[BIT FILE] is the path to the BIT file generated using ISE\n"
fprinLf (stderr, " 'path/foo.bit'\n");

void
print_vers.i. on (voi
{
fprintf (stdout,
fprintf (stdout,

"%s v%s\n", app_title, VERSION);
"2007 Neil Scott, University of WindsorW);

int
main (char argc, char **argv)

int
char
struct
struct
struct
struct
int
int
FILE
char
int
bool
bool
bool
bool
int
char
int
char

ret;
data [64];
usb_bus *usb_bus;
usb_device *fx2_dev_list[FX2_MAX_DEVICES]
usb„dev_handle *usb_hdl;
usb_device *usb_dev;
dev_count = 0;
h, i;
*fp;
filename[80];
fsize, byte„count, rval;
p_verbose = false;
p_„list„only =• false;
p_. f pga_power_only = false;
p_fpga__reset_only = false;
fpga_power_state;
*usb_bus_dev = NULL;
option_count = 0;
msg[80];

/* Check argument count */
if (argc < 2) {

usage ();
return (1);

/* Parse command line arguments */
for (int 1 = 0 ; i < argc; i++) {

if ((Istrcmp (argv[i], "--help")) II
usage ();
return 1;

(Istrcmp (argv[i], "-h"))) |

if ((Istrcmp (argv[i],
print_version ();
return 1;

-version")) M (istrcmp (argv[i], "-V"))) {

if ((Istrcmp (argv[ij,
p_ve rbo s e = true;
option„count++;

-verbose")) || (Istrcmp (argv[i], -V))) {

if ((Istrcmp (argv[i],
p._liSt.„.only = true;
option_count++;

- - l i s t ")) I! (Istrcmp (a rgv[i] , - 1 "))) {

i f (I strncrnp (a r g v [i] , H-d=", 3)) {
usb_bus„dev = a rgv[i] + 3;
option_count++;

i f (!strncrnp (a rgv [i] , "--device=
usb_bus_dev = a rgv[i] + 9;
option__count++;

9))

273

}

if ((!strcmp (argv[i], "—power")) j | (!strcmp (argv[i], "-p")>)
if ((Istrcmp (argv[i+l], "on")) II (istrcmp (argv[i+l], "off"))
P_£ pga._power_only = true;
if (Istrcmp (argv[i+l], "on")) {

fpga_power_state = FPGA_POWER_ON;
}
else {

fpga_power_state = FPGA_POWER_OFF;
}

j + + ;

option_count++;
}

}

if ((!strcmp (argv[i], "—reset")) II (!strcmp (argv[i], H-r")))
p_fpga__reset_only = true;
option__eount++;

}
I

/* Initialize libusb */
u sb .. i n i t () ;

u sb_f i n d__bu s s e s () ;

usb_find__devices 0 ;

/* Print Application Name */
if (p_verbose) {

sprintf (msg, "%s (v%s)\n", app_title, VERSION);

fprintf (stdout, "%s", msg);
for (int j ̂ 0; j < strlen (msg) - 1; j++))

fprintf (stdout, "=");
}
fprintf (stdout, "\n\n");

}

/* Check if only listing bus */
if <p_list_only) {

show„bus ();
return (0) ;

}

/* Ensure a bus and device were specified */
if (usb._bus_dev == NULL) {

fprintf (stderr, "You must speci fy a device to program!\n");
return (1);

}

/* Search the USB bus for the Device Specified */
char bus [FX?._MAX_DEVICES] , dev [FX2_MAX_DEVICES] ;

const char *p = strchr (usb_bus_dev, ' . ');
if dp) {

fprintf (stderr, "Illegal/nonexistant device %s.\n", usb_Jbus_dev);
return (1);

}

strncpy (bus, usb_.bus_dev/ p - usb_bus_dev) ;
bus[p - usb_bus__dev] = '\0';
strcpy (dev, p+1);
usb„dev = find_device (bus, dev);

if (usb_dev == NULL) {
fprintf (stderr, "Illegal/nonexistant device: %s.\n", usb_bus_dev)
return (1);

}

if (p__verbose) {
fprintf (stdout, "Device Found. (ID: %04x:%04x)\n",
usb_dev->descri.ptor. idVendor,
usb._dev->descriptor . idProduct) ;

E. HOST PC SOFTWARE

if (p_verbose) {
fprintf {stdout, "Claiming Device ...\n");

}

usb_hdl = usb_open (usb„dev);
if (!usb„hdl) {

fprintf (stderr, "Error Opening Device: %s\n", usb_strerror()) ;
return (1);

}

/* Set Configuration */
if (usb_.set_configuration (usb_hdl, 1} < 0) {

fprintf {stderr, "Error setting configuration: %s\n", usb__strerror());
return (1);

}

/*• Claim Device */
if (usb_claim_interface {usb_hdl, 0) < 0) {

fprintf (stderr, "Error claiming device interface: %s\n", usb_strerror());
return (1);

}

/* Set Alt interface */
if (usb_set__a It interface (usb_hdl, 0) < 0) {

fprintf (stderr, "Error setting alternative interface: %s\n", usb_strerror())j
return (1);

)

/* FPGA Power Only */
if (p_fpga.__power_only) {
/* Corjt.ro! Message to FX2 to Power on/off FPGA */
ret = usb_control„msg (usb__hdl,
VENDOR_REQUEST_IN,
VRQ_FPGA_POWER,
fpga_power_state,
0,
data,

500) ;

if (ret < 0) {
fprintf (stderr, "Error setting FPGA power state: %s\n",

(fpga_power__state == FPGA_POWER_ON) ? "on" : "off");
}
else {

if (data [0] == 0x08) {
fprintf (stdout, "FPGA power state set: %s\n",

(fpga_power_state == FPGA_POWER_ON) ? "on" : "off");
}
else {

fprintf (stderr, "Error setting FPGA power state: NACK received\n");

usb_close (usb_hdl);
return 0;

/* FPGA Reset Only */
if (p._fpga_reset_only) {
/* Control Message to FX2 to Soft-Reset FPGA */
ret = usb_contro]_msg (usb_hdl,
VENDOR„REQUEST_IN,
VRQ_FE>GA_RESET,
FPGA„RESET_ENABLE,
0,
data,
1,
500) ;

if (ret < 0) {
fprintf (stderr, "Error on FPGA soft-reset\n");

275

http://Corjt.ro

E. HOST PC SOFTWARE

)
else if (data[0] == 0x08) {

fprintf (stdout, "FPGA successfully put into reset\n");
1
else {

fprintf (stderr, "Error on FPGA soft-reset\n");
)

usleep (250000); /*250ms delay */

ret - usb_control_msg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ„_FPGA_RESET,
FPGA_RESET_DISABLE,
0,
delta,
1,
500) ;

if (ret < 0) (
fprintf (stderr,

}
else if (data[0] =

fprintf (stdout,
)
else {

fprintf (stderr,
I

if (p._verbose)
fprintf (stdout, "Closing USB device. . An") ;

/* Close USB handle */
usb„dose (usb_hdl);
return 0;

)

/* Check for program file */
if (option_count > (argc - 2)) {

fprintf (stderr, "Bit File not specified!\n");
usage ();
usb_close (usb_bdl);
return 1;

}

/* Get File */
if (!p_-list„only) {

strcpy (filename, argv[argc-1]);

fp = fopen (filename, "rb");

if (fp == NULL) i
fprintf (stderr, "Error opening file (%s)!\n");
usb_close (usb_hdl);
return 1;

)
)

/* get .bit file size */
fseek (fp, 0, SEEK_ENDj;
fsize = ftell (fp);
rewind (fp);

if (p.._verbose) fprintf (stdout, "File Size: %dkb (%d bytes) \n", (fsize+1) / 1024, fsize+1);

if (p_yerbose) fprintf (stdout, "Starting FPGA Configuration...\n");

if (p_verbose) fprintf (stdout, "Enabling Power to FPGA...\n");

/* send command to enable power to FPGA */
ret ^ usb_control_msg { usb_hdl,
VENDOR_REQUEST_IN,
VRQ_FPGA_POWER,
FPGA_POWER„ON,

276

"Error on FPGA soft~reset\n");

0x08) (
"FPGA successfully taken out of reset\n");

"Error on FPGA soft-reset\n");

E. HOST PC SOFTWARE

0,
data,
1,
500) ;

if (ret < 0)
fprintf (stderr, "ERROR: usb_control_msg() - %s\n", usb_strerror());

else {
/* ensure FPGA was powered */
if (data[0] != 0x08) (

fprintf (stderr, "Acknowledge not received, unable to power FGPA!\n");
usb__close (usb_hdl);
return (1) ;

)
1

/* Allow FPGA to power up */
usleep (250000);

if (p_verbose) fprintf (stdout, "Holding FPGA in reset...\n");

/* send command to hold FPGA in reset after configuration */
ret - usb_.control_jnsg (usb_hdl,
VENDOR_REQUEST_IN,
VRQ_FPGA_RESEI,
FPGA_RESET_ENABLE,
0,
data,
1,
500) ;

if (ret < 0)
fprintf (stderr, "ERROR: usb„control_msg() - %s\n", usb_strerror());

else {
/* ensure FPGA was powered */
if (data[0] !- 0x08) (

fprintf (stderr, "Acknowledge not received, unable to hold FGPA in reset!\n");
usb_ciose (usb_ndl);
return (1);

)
1

/* send fpga load start to FX2 */
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_.IN,
VRQ_FPGA__LOAD_SS,
0,
FPGA_LOAD„START,
data,
2,
500) ;

if (ret < 0)
fprintf (stderr, "ERROR: usb_control_msg() - %s\n", usb__strerror ()) ;

/* check return to ensure start was successful */
if (data[l] != 0x08) I

fprintf (stderr, "Acknowledge not received!\n");
)
if (data[0] != 0x01) (

fprintf (stderr, "Error starting serial mode configuration!\n");
usb_clcse (usb_hdl);
return (1);

)

byfe_count - fsize;
bool ptoggle - false;
int progress_update;
int progress_count = 0;

progress_.update = (fsize / 64) / 50;

if (p_verbose) {
fprintf (stdout, "Configuration Progress:\n");

277

E. HOST PC SOFTWARE

fprintf (stdout, "10 25 50 75 100 I \n ") ;

)

/* build 64 byte packets to send to FX2 */
while (byte_count > 64) {

if ((rval = fread (data, 1, 64, fp)) > 0) (
ret = usb_control_msg (usb_hdl,
VENDOR_REQUEST_OUT,
VRQ_.FP G A _LOAD_S S,
rval,
FPGA_LOAD__DATA,
data,
rval,
1500);

if (ret < 0)
fprintf (stderr, "ERROR on VRQ„FPGA_L0AD_SS - FPGA__LOAD_DATA: usb_control_rnsg() - %s\n"

usb_strerror());

if (p__verbose) {
if (progress_count ~- progress_update) {

fprintf (stdout, " = ") ;
fflush (stdout);
progress__count - 0;

)
else

progress_count++;

byte_oount -= rval;

if (DEBUG) fprintf (stdout, "byte_count = %d\n", byte_count);

usleep(5);
)

if (byte_count) {
if ((rval = fread (data, 1, byte„count, fp)) > 0) (

ret ^ usb_control_insg { usb_hdl,
VENDOR__REQUEST__OUT,
VRQ_FP G A__L0AD_. S S,
rva 1,
FPGA_LOADJ)ATA,
d a t a",

rva 1,
200) ;

if (ret < 0)
fprintf (stderr, "ERROR on VRQ_FPGA„LOAD_SS - FPGA_LOADJ3ATA: usb_control_msg() - %s\n"

usb__strerror 0);

byte__count -= rval;

if (DEBUG) fprintf (stdout, "byte_count = %d\n", byte_count);

if (p_verbose) fprintf(stdout, "\n");

usleep(200000);

/* ensure the done bit is set */
ret -~- usb__control_msg (usb_hdl,
VENDOR__REQUEST_IN,
V RQ_FP G A__L0 AD_S S,
0,
FPGA_LOAD_CHECK_D0NE,
data,
2,
30000);

if (ret < 0)

278

E. HOST PC SOFTWARE

fprintf (stderr, "ERROR on VRQ_FPGA_LOAD„SS - FPGA_LOAD_CHECK_DONE: usb_control_msg0 - %s\n",
usb_strerror()) ;

/* check return */
if (data[l] != 0x08) (

fprintf (stderr, "Acknowledge not received!\n");
)
if (data[0] != 0x01) (

fprintf (stderr, "Done indication not received by device!\n");
)
else {

if (p_.verbose) fprintf (stdout, "Programming Successful!\n");
}

/* Control Message to FX2 to Soft-Reset FPGA */
ret - usb_control_msg (usb__hdl,
VENDOR„REQUEST_IN,
VRQ__FPGA_RESET,
FPGA_RESET_ENABLE,
0,
data,
1,
500) ;

if (ret < 0) {
fprintf (stderr, "Error on FPGA soft-reset\n");

)
else if (data[0] == 0x08) (

fprintf (stdout, "FPGA successfully put into reset\n");
)
else {

fprintf (stderr, "Error on FPGA soft-reset\n");
)

usleep (250000); /*250ms delay */

ret - usb__control_msg (usb__hdl,
VENDOR._REQUEST_IN,
VRO_FPGA„RESET,
FPGA„RESET_DISABLE,
0,
data,
1,
500) ;

if (ret < 0) (
fprintf (stderr, "Error on FPGA soft-reset\n");

)
else if (data[0i == 0x08) {

fprintf (stdout, "FPGA successfully taken out of reset\n");
)
else {

fprintf (stderr, "Error on FPGA soft-reset\n");
)

if (p_verbose) fprintf (stdout, "Closing USB device...\n");

usb_close (usb_hdl);

return 0;

(

E.5 pyWindowConfig

E.5.1 pyWindowConfig.py

#!/usr/bin/env python

import pygtk
import gtk
import os

279

E. HOST PC SOFTWARE

import pexpect

PM_EEPROM_WIDTH_HIGH_ADDR - 0x20
PM„EEPROM__WIDTH_LOW_ADDR - 0x21
PM_EEPROM.._LENGTH_HIGH_ADDR = 0x22
PM_EEPROM_LENGTH_LOW_ADDR = 0x23
PM_EEPROM__COL_START_HIGH_ADDR - 0x24
PM_EEPROM..„COL„START_LOW__ADDR = 0x25
PM_EEPROM_ROW_START_HIGH_ADDR = 0x26
PM__EEPROM„ROW_START_LOW_ADDR - 0x27
PM_EEPROM_COL_SKIP_ADDR = 0x28
PM_EEPROM__ROW_SKIP_ADDR = 0x29

USB.list = [None] *16
USRposition=[None]*16
cmd=''
options-''

class gEEPROMConfig:
def on^close(self, widget, event, data=None):

gtk.main__quit()
return False

def list_.usb (self) :
global USBposition
x ^ os.popen ('Isusb', "r")
y - 0;
found = 0;
while 1:

line = x.readline()
line - line.rstripO
USBlist[y] = list

if 1ine.count('abed') :
USBlist[found] - line
print found
print USBlist[found]

Get position
bus - USBlist[found][4:7]
dev = USBlist[found][15:18]
z = os.popen('./cam_init -d=' + bus + '.' + dev + ' —quickread')
quad = z.readline(}
quad = z.readlineO
quad = quad[14]
pos ^ z.readlineO
pos = pos[14:]
pos = pos.rstripO
USBposition[found] = 'Q' + quad + ': ' + pos

print 'Q:' + quad
print ' P: ' + pos

self.USBcbUSB.insert_text(found, line + ' - [Q' + quad + ':' + pos + ']')
found = found + 1

Y = y+1

if not line: break;
if not found:

self.error = gtk.MessageDialog(self.options, gtk.DIALOG_MODAL, gtk.MESSAGE_INFO,
gtk.BUTTONS_OK, 'No Devices Found!')

self.error.connect{"response", self.on_close)
self.error.show_all()

else:
self-USBcbUSB.set__active(0)
self.usblist.sbow_all()

def read_eeprom__data (self) :
global crnd

Opts - ' -rb ' + str(PM_EEPROM_WIDTH_HIGH_ADDR)
z - os.popen (crnd + opts)

280

E. HOST PC SOFTWARE

r = z. readline {)
r = z .readline()
val_hi = int(r[5:])

opts = ' -rb ' + str(PM_EEPROM_WIDTH_LOW_ADDR)
z - os.popen (cmd + opts)
r = z.readline()
r ^ z .readline 0
val_lo = int(r [5:])

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str(val)
self.OPTentryWidth.set_text(str(val))

opts = ' -rb ' + st.r(PM_EEPROM_LENGTH_HIGH_ADDR)
z = os.popen (cmd + opts)
r ^ z .readline()
r = z.readlineO
val_hi = int(r[5:])

opts = ' -rb ' + str(PM_EEPR0M_LENGTH_LOW_ADDR)
z - os.popen (cmd + opts)
r ^ z .readline 0
r = z.readline()
val_lo = int(r[5:J)

val = (val„hi << 8) + val_lo
print 'RESULT: ' + str(val)
seJ f.OPTentryLength.set_text(str(val))

opts = ' -rb ' + str(PM_EEPROM_COL_START_HIGH_ADDR)
z ^ os.popen (cmd + opts)
r = z .read!:ne 0
r ^ z.readline()
val_hi = int(r[5:])

opts = ' -rb ' + str(PM_EEPROM_COL_START_LOW_ADDR)
z - os.popen (cmd + opts)
r = z. readline ()
r = z.readline 0
valjo = int (r[5:))

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str (val)
self.OPTentryXStart.set_text(str(val))

opts = ' -rb ' + str(PM_EEPROM_ROW_START_HIGH_ADDR)
z ^ os.popen (cmd 4- opts)
r - z.readline()
r = z .readline 0
val_hi = int(r[5:])

opts = ' -rb ' + str (PM_EEPROM_ROW__START_LOW__ADDR)
z = os.popen (cmd + opts)
r = z . readline ()
r ^ z.readline()
val_lo = int(r[5:J)

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str (val)
self.OPTentryYStart.set_text(str(val))

opts = ' -rb ' + str(PM_EEPROM_COL_SKIP_ADDR)
z = os.popen (cmd + opts)
r = z.readline 0
r •- z . readline ()
val = int(r[5:])

281

E. HOST PC SOFTWARE

print 'RESULT: ' + str(val)
se.l f.OPTentryXBin.set_text (str (val))

opts - ' -rb ' + Str(PM_EEPROM_ROW_SKIP_ADDR)
z - os .popen (crnd + opts)
r - z.readline()
r = z.readline()
val = int(r[5:))

print 'RESULT: ' + str(val)
self.OPTentryYBin.set_text(str(val))

def options._on_ok (self, widget) :
#w r i t e eeprom data
global cmd, options

val - int(self.OPTentryWidth.get_text())
val_h:L = val >> 8
val._.lo = val & Oxff
options = ' -w ' + str (PM_EEPROM_WIDTH_HIGH_ADDR) + ' ' + str(val_hi)
print crnd + options
os.system(cmd + options)
options = ' -w ' + str (PM_EEPROM_WIDTH_LOW_ADDR) + ' ' + str(val_lo>
print cmd -I- options
os . system (crnd + options)

val =- int (sel f . OPTentryLength . get_text ())
val_hi - val >> 8
val„lo = val & Oxff
options - ' -w ' + str(PM_EEPROM_LENGTH„HIGH_ADDR) + ' ' + str(val_hi)
print cmd + options
os.system(cmd + options)
options = ' -w ' + Str(PM_EEPROM_LENGTH_LOW_ADDR) + ' ' + str(val_lo)
print cmd + options
os.system(cmd + options)

val = int(self.OPTentryXStart.get_text())
val.._hi = val >> 8
val__lo -= val & Oxff
options = ' -w ' + str <PM_EEPROM_COL_START_HIGH_ADDR) + ' ' + str(val_hi)
os.system(cmd + options)
print cmd + options
options - ' -w ' + str(PM„EEPROM_COL_START_LOW_ADDR) + ' ' + str(val_lo)
print cmd + options
os.system(cmd + options)

val = int(self.OPTentryYStart.get_text<))
val_hi - val >> 8
val_lo = val & Oxff
options = ' -w ' + str(PM_EEPROM_ROW_START_HIGH_ADDR) + ' ' + str(val_hi)
print cmd + options
os.system(cmd -t- options)
options - ' -w ' + str(PM_EEPROM_ROW_START_LOW_ADDR) + ' ' + str(val_lo)
print cmd + options
os.system(cmd + options)

val =•• int (self .OPTentryXBin .get_text ())
options = ' -w ' + str(PM_EEPR0M_ROW_SKIP_ADDR) + ' ' + str (val)
print cmd + options
os.system(cmd + options)

val - int(self.OPTentryYBin.get_text())
options - ' -w ' + str(PM_EEPROM_COL_SKIP_ADDR) + ' ' + str (val)
print cmd + options
os.system(cmd + options)

ireload EEPROM data
options - ' -rp'
os.system(cmd + options)

282

E. HOST PC SOFTWARE

def options_on_cancel (self, widget):
gtk.main_quit()

def on_error„ok (self,widget,event):
self.error.hide„all()

def usb_on_ok (self, widget):
global cmd
global USBposition

selected = self.USBcbUSB.get_active()
bus = uSB.li.st [selected] [4 :7]
dev = USBlist[selected][15:18]

cmd = ' ./carn__init -d=' + bus + ' .' + dev

self.options.set_title(self.options.get_title() + ' - [' + USBposition[selected] + ']')
self.read_eeprom_data{)

self.usblist. hide__all {)

def init (self) :
self.threads = 0
self . options = gtk.WindowO
self.usblist = gtk.WindowO
self.usblist.set_modal(True)
self.usblist.set_transient_for(self.options)

self.options.connect("delete_event", self.on_close, None)
self.options.connect("destroy", self.on_close, None)

^Options List
self.options.set_border„widtb(5)
self.options.set_title("Window Options")

DFrame
self.OFTvbTop = gtk.VBox(False,5)
self.options.add(self.OPTvbTop)

self .OPTf rarne = gtk. Frame (label="Window Options")
self.OPTvbTop.add (self.OPTframe)

self .OPTvbF'rame = gtk .VBox (False, 5)
se1f.OPT frame.add (self.OPTvbFrame)

#width
self.OPThbWidth = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbWi dth)

self.OPTlblWidth = gtk.Label("Width")
self.OPThbWidth.add (self.OPTlblWidth)

self.OPTentryWidth = gtk.Entry()
self.OPThbWidth.add (self.OPTentryWidth)
//self .OPTentryWidth. set_text ('2048')

tilenqth
self.OPThbLength = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbLength)

self.OPTlblLength = gtk.Label("Length")
self.OPThbLength.add (self.OPTlblLength)

self.OPTentryLength --- gtk.Entry!)
self.OPThbLength.add (self.OPTentryLength)
fself.OPTentryLength.set_text ('1536')

txstart
self.OPThbXStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXStart)

self.OPTlblXStart = gtk.Label("X-Start")
self.OPThbXStart.add (self.OPTlblXStart)

283

http://uSB.li.st

E. HOST PC SOFTWARE

self .OPTentryXStart = gtk.EntryO
self.OPThbXStart.add (self.OPTentryXStart)
self .OPTentryXStart. setjext ('28')

tystart
self.OPThbYStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbYStart)

self.OPTlblYStart = gtk.Label("Y-Start")
self.OPThbYStart.add (self.OPTlblYStart)

self .OPTentryYStart = gtk.EntryO
self.OPThbYStart.add (self.OPTentryYStart)
self .OPTentryYStart. setjext (' 16')

ffxbin
self.OPThbXBin = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXBin)

self.OPTlblXBln = gtk.Label("X-Bin")
self.OPThbXBin.add (self.OPTlblXBin)

self .OPTentryXBin = gtk.EntryO
self.OPThbXBin.add (self.OPTentryXBin)
self.OPTentryXBin.set„text(' 1')

#ybi n
self.OPThbYBin = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbYBin)

self.OPTlblYBin = gtk.Label("Y-Bin")
seJ f.OPThbYBin.add (self.OPTlblYBin)

self .OPTentryYBin = gtk.EntryO
self.OPThbYBin.add (self.OPTentryYBin)
self.OPTentryYBin.set_text('1')

ibut tons
self.OPThbBtns = gtk.HBox (True, 5)
self.OPTvbTop.add (self.OPThbBtns)

self.OPTbtnCancel = gtk.Button("_Cancel")
self.OPTbtnCancel.connect ("clicked", self.options_on_cancel)
self.OPThbBtns.add (self.OPTbtnCancel)

self.OPTbtnOK - gtk.Button("„Ok")
self.OPTbtnOK.connect ("clicked", self.options_on_ok)
self.OPThbBtns.add (self.OPTbtnOK)

i self.OPTframe - gtk.Frame(label="Window Options")
f self .OPTvbTop.add (self.OPTframe)

#USB I,ist window
self.usbiist. set_border__width (5)
self.usblist.set_title ("Select USB Device...")
self.USBvbTop = gtk.VBox(False, 3)
self.usblist.add(self.USBvbTop)

self.USBcbUSB - gtk.combo_box_new_text() ;
self.USBvbTop.add (self.USBcbUSB)

self.USBbtnOK = gtk.Button("_Ok")
self.USBvbTop.add (self.USBbtnOK)
self.USBbtnOK.connect ("clicked", self.usb_on_ok)

self. list__usb ()

self.options.show„all0

def ma i n(se1f) :
gtk.main()

284

E. HOST PC SOFTWARE

if name == " main " :
app = gEEPROMConfig()
app.main()

E.6 pyCamCal

E.6.1 pyCamCal.py

fl!/usr/bin/env python

import pygtk

import gt k

import os

import pexpect

PM_„EEPROM_WIDTH_HIGH_ADDR = 0x20

PM_EEPROM_WIDTH_LOW_ADDR = 0x21

PM_EEPROM_LENGTH_HIGH_ADDR = 0x22

PM._EEPROM_LENGTH_LOW_ADDR = 0x23

PM._EEPROM_COL__START_HIGH_ADDR = 0x24

PM__EEPROM_COL_START_LOW_ADDR = 0x25

PM_.EEPROM__ROW_START_HIGH_ADDR = 0x26

PM_EEPROM_R0W_START_L0W_ADDR = 0x27

PM_EEPROM_COL_SKIP_ADDR = 0x28

PM_EEPROM_.ROW_SKIP_ADDR = 0x29

USBlist=[None] *16
USBposition=[None]*16
cmd-' '
opti ons--' '

class gEEPROMConfig:

def on_close(self, widget, event, data^None):

gt k .inain_qui t {)

return False

def list_usb (self):

global USBposition

x - os.popen ('isusb', "r")

y =- 0;

found --;-• 0;

while 1:

line - x.readline()

line •-= line . rstrip ()
USBlist[y] - list

if line.count('abed'):

USBlist[found] = line

print found

print USBlist[found]

Get position
bus = USBlist[found][4:7]

dev - USBlist[found][15:18]

z - os.popen('./cam_init -d=' + bus + ' .' + dev + ' --quickread')

quad = z.readline()

quad = z.readline()
quad = quad[14]
pos = z.readline()

pos = pos[14:]
pos = pos.rstrip{)

USBposition[found] = '0' + quad + ': ' + pos

print 'Q:' + quad

print ' P : ' -t- pos

self.USBcbUSB.insert_text(found, line + ' - [Q' + quad + ':' + pos + ']')

found = found + 1

y - y+i

285

E. HOST PC SOFTWARE

i f not line: break;
if not found:

self .error - gtk . MessageDialog (self . options, gtk . DIAL0G_IV10DAL, gtk.MESSAGE_INFO,
gtk.BUTTONS_OK, 'No Devices Found!')

self.error.connect("response", self.on_close)
self.error.show_all()

else:
self.USBcbUSB.set_active(0)
self.usblist.show_all()

def read_eeprom_data (self):
global cmd

opts =-- ' -rb ' + str (PM_EEPROM_WIDTH_HIGH__ADDR)
z ^ os.popen (cmd + opts)
r --• z . readline ()
r ^ z.readline()
val_.hi - int (r [5:])

opts = ' -rb ' + str(PM„EEPROM_WIDTH_LOW_ADDR)
z ^ os.popen (cmd + opts)
r - z.readline ()
r -• z . read.I ine ()
val_io = int (r[5:])

val = (val_hi << 8) + val„lo
print 'RESULT: ' + str(val)
self.OPTentryWidth.set_text(str(val))

opts - ' -rb ' + str(PM_EEPROM_LENGTH_HIGH_ADDR)
z = os.popen (cmd + opts)
r = z.readline ()
r ™ z.readline()
val_hi - int (r[5:])

opts = ' -rb ' + str<PM_EEPROM_LENGTH_LOW_ADDR)
z = os.popen (cmd + opts)
r = z . readline()
r = z.readline()
val_lo - int (r[5:])

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str (val)
self.OPTentryLength.set_text(str(val))

opts - ' -rb ' + str(PM_EEPROM_COL_START_HIGH_ADDR)
z = os. popen (cmd 4- opts)
r = z.readline()
r = z.readline()
val_hi = int (r [5:])

opts = ' -rb ' + str(PM_EEPROM_COL_START_LOW_ADDR)
z •-= os.popen (cmd + opts)
r = z.readline()
r =- z . readline ()
val_lo = int (r[5:])

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str(val)
self.OPTentryXStart.set_text(str(val))

opts - ' -rb ' + str(PM„EEPROM_ROW_START_HIGH_ADDR)
z = os.popen (cmd + opts)
r = z.readline()
r - z.readline()
val.„hi - int (r [5:])

286

E. HOST PC SOFTWARE

opts = ' -rb ' + str (PM_EEPROM_ROW_.START_LOW_ADDR)

z ^ os.popen (cmd + opts)
r = z.readline()
r = z.readline()
val_lo = int (r[5:])

val = (val_hi << 8) + val_lo
print 'RESULT: ' + str(val)
self.OPTentryYStart.set_text(str(val))

opts = ' -rb ' + str(PM_EEPROM_COL_SKIP_ADDR)

z = os.popen (cmd + opts)
r = z.readline ()
r = z.readline()
val = int (r [5 :])

print 'RESULT: ' + str(val)
self.OPTentryXBin.set_text(str(val))

opts - ' -rb ' + str(PM„EEPROM_ROW_SKIP_ADDR)
z ^ os.popen (cmd + opts)
r - z.readlJ ne()
r = z.readline{)
val = int (r[5:])

print 'RESULT: ' + str(val)
self .OPTen tryYBin . set__t ext (str (val))

def options_on_ok (self, widget):
#write eeprom data
global cmd, options

val - int(self.OPTentryWidth.get_text())
val_hi - val >> 8
val_lo = val & Oxff
options = ' -w ' + str (PM_EEPROM_WIDTH_HIGH_ADDR) + ' ' + str(val_hi.)
print cmd + options
os.system(cmd + options)
options = ' -w ' + str(PM_EEPROM_WIDTH_LOW_ADDR) + ' ' + str(val_lo)
print cmd + opt ions
os.system(cmd + options)

val = int(self.OPTentryLength.get_text{))
val_hi = val >> 8
val_lo = val & Oxff
options = ' -w ' + str(PM_EEPROM_LENGTH_HIGH_ADDR) + ' ' + str(val_bi)
print cmd + options
os.system(cmd + options)
options = ' -w ' -i- str (PM_EEPROM_LENGTH_LOW_ADDR) + ' ' + str(val_lo)
print cmd + options
os.system(cmd + options)

val = int(self.OPTentryXStart.get_text())
val._.hi = val >> 8
val_.lo = val & Oxff
options = ' -w ' + str (PM_EEPROM_COL_START_HIGH_ADDR) + ' ' + str(val_hi)
os.system(cmd + options)
print cmd + options
options - ' -w ' + str(PM_EEPROM_COL_START_LOW_ADDR) + ' ' + str(vai_lo)
print cmd + options
os.system{cmd + options)

val - int(self.OPTentryYStart.get_text())
val._hi = val >> 8
val_lo - val & Oxff
Options = ' -w ' + str (PM_EEPROM_ROW_START„HIGH_ADDR) + ' ' + str(val_hi)
print cmd + options
os.system(cmd + options)
options = ' -w ' + str(PM_EEPROM_ROW__START_LOW_ADDR) + ' ' + str(val_lo)

287

E. HOST PC SOFTWARE

print cmd + options
os . system(cmd + options)

val - int(self.OPTentryXBin.get_text())
options = ' -w ' + str(PM_EEPROM„ROW_SKIP„ADDR) + ' ' + str(val)
print cmd + options
os.system(cmd + options)

val - int (self.OPTentryYBin.get_text{))
options = ' -w ' + str(PM_EEPROM_j:OL_SKIP_ADDR) + ' ' + str(val)
print cmd + options
os.system(cmd + options)

ireload EEPROM data
options = ' -rp'
os.system(cmd + options)

def options_on_cancel (self, widget):
gtk . main__quit ()

def on_.error_ok (self, widget, event) :
self.error,hide_all()

def usb__on__ok (self, widget):
global cmd
global USBposition

selected - self.USBcbU3B.get_active()
bus - USBlist[selected][4:7]
dev - USBlist[selected][15:18]

cmd -- ' ./carn_init --d=' + bus + ' .' + dev

self . options . set__title (self . options .get__title () + ' - [' + USBposition [selected] + ']')
self . read...eeprom_data ()

self.usblist.hide_all()

def init_ (self) :
self.threads ^ 0
self.options = gtk.Window()
self.usblist = gtk.Window()
self .usblist. set_rnodai (True)
self . usblist. set__transient_f or (self . options)

self.options.connect("delete_event", self.on_close, None)
self.options.connect("destroy", self.on_close, None)

iOptions List
self.options.set_border_width (5)
self.options.set_title("Window Options")

iFrame
self.OPTvbTop = gtk.VBox(False,5)
self.options.add(self.OPTvbTop)

self.OPTframe = gtk.Frame(labels"Window Options")
self.OPTvbTop.add (self.OPTframe)

self.OPTvbFrame •-= gtk . VBox (False, 5)
self.OPTframe.add (self.OPTvbFrame)

#width
self.OPThbWidth - gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbWidth)

self.OPTlblWidth - gtk.Label("Width")
self.OPThbWidth.add (self.OPTlblWidth)

self .OPTentryWidth = gtk.EntryO
self.OPThbWidth.add (self.OPTentryWidth)
itself .OPTent ryWidth . set_ text ('2048')

if length

288

E. HOST PC SOFTWARE

self.OPThbLength = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbLength)

self.OPTlblLength = gtk.Label("Length")
self.OPThbLength.add (self.OPTlblLength)

self.OPTentryLength = gtk.Entry()
self.OPThbLength.add (self.OPTentryLength)
iself.OPTentryLength . set_text (' 1536')

nxstart
self.OPThbXStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXStart)

self.OPTlblXStart = gtk.Label("X-Start")
self.OPThbXStart.add (self.OPTlblXStart)

self .OPTentryXStart = gtk.EntryO
self.OPThbXStart.add (self.OPTentryXStart)
sel f .OPTentryXStart. set_.text ('28')

ftystart
self.OPThbYStart = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbYStart)

self.OPTlblYStart = gtk.Label("Y-Start")
self.OPThbYStart.add (self.OPTlblYStart)

self .OPTentryYStart = gtk.EntryO
self.OPThbYStart.add (self.OPTentryYStart)
self .OPTentryYStart .set__text (' 16')

flxbin
self.OPThbXBin - gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbXBin)

self.OPIlblXBin = gtk.Label("X-Bin")
self.OPThbXBin.add (self.OPTlblXBin)

self .OPTentryXBin = gtk.EntryO
self.OPThbXBin.add (self.OPTentryXBin)
self .OPTentryXBin. set_text 0 1')

J/ybin
self.OPThbYBin = gtk.HBox(True, 5)
self.OPTvbFrame.add (self.OPThbYBin)

self.OPTlblYBin = gtk.Label("Y-Bin")
self.OPThbYBin.add (self.OPTlblYBin)

self .OPTentryYBin = gtk.EntryO
self.OPThbYBin.add (self.OPTentryYBin)
self.OPTentryYBin.set_text(' 1')

^buttons
self.OPThbBtns = gtk.HBox (True, 5)
self.OPTvbTop.add (self.OPThbBtns)

self.OPTbtnCancei = gtk.Button("_Cancel")
self. OP Tbtn Cancel, connect ("clicked", self .options__on_cancel)
self.OPThbBtns.add (self.OPTbtnCancei)

sel f.OPTbtnOK = gtk.Button("_0k")
self.OPTbtnOK.connect ("clicked", self.options„on_ok)
self.OPThbBtns.add (self.OPTbtnOK)

self.OFTframe - gtk . Frame (label~"Window Options")
self .OPTvbTop.add (self.OPTframe)

tUSB List window
self.usblist.set„border_width(5)
self .usblist. setjitle ("Select USB Device...")
self.USBvbTop = gtk.VBox(False, 3)

289

E. HOST PC SOFTWARE

self.usblist.add(self.USBvbTop)

self.USBcbUSB - gtk.cornbo_box_new_text () ;
self.USBvbTop.add (self.USBcbUSB)

self.USBbtnOK - gtk.Button("_0k")
self.USBvbTop.add {self-USBbtnOK)
self.USBbtnOK.connect ("clicked", self.usb„on_ok)

self.list_usb()

self . options . show_al. 1 ()

def main(self):
gtk.main()

if name == " main. _" :
app - gEEPROMConfigO
app.main{)

E.7 Human Machine Interface (w32)

The HMI application was develped in Microsoft Visual Basic 6.

E.7.1 frmMain.frm
VERSION 5.00
Object = "(5E9E78A0-531
Object = "(648A5603-2C6
Object = "(48E59290-988
Begin VB.Form frmMain

BorderStyle =
Caption -
ClientHeight -
ClientLeft
ClientTop
Clientwidth
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
LinkTopic -
MaxButton
MinButton =
ScaleHeight
ScaleWidth
StartUpPosition -
Begin VB.Frame fran

Caption
BeginProperty Fon

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Left
Tablndex
Top

B-11CF-91F6-C28 63C385E30)#1.0#0'
E-101B-82B6-000000000014)#1.1#0'
0-llCF-9754-00AA00C00908)#1.0#0'

0 'None
"PM Control Panel"
9000
0
0
12000

"Tahoma"
8.25
0
400
0 'False
0 'False
0 'False

"Forinl"

0 'False
0 'False
9000
12000
2 'CenterScreen
eShutdownVerify

"Question"
nt

= "Tahoma"
14.25
0
400
0 'False
0 'False
0 'False

3615
4920
23
3720

"MSFLXGRD.OCX"
"MSCOMM32.0CX"
"MSINET.OCX"

290

E. HOST PC SOFTWARE

Width = 7695
Begin VB.PictureBox Picturel

BorderStyle
Height
Left
ScaleHeight
ScaleWidth
Tablndex -
Top
Width
Begin VB.CommandB

Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic
Strikethrou

EndProperty
Height
Left
Tablndex
Top
Width

End

0 'None
3135
120
3135
7335
24
360
7335

utton cmdShu
"NO"

Font

gh

"Ta
15.
0
700
0
0
0

855
4200
27
2040
1935

Begin VB . CommandButton cindShu
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic
Strikethrou

EndProperty

"YES"
Font

igh

"Ta
15.
0
70C
0
0
0

tdownNo

homa"
75

'False
'False
'False

tdownYes

homa"
75

i

'False
'False
'False

Height
Left
Tablndex
Top
Width

855
1080
26
2040
1935

End
Begin VB.Label lblShutdownVerify

Alignment -
Caption
BeginProperty Font

Name
Size
Charset
Weight
Under]ine
Italic
Strikethrough

EndProperty
Height
Left
Tablndex
Top
Width

End
End

End
Begin VB.Frame frameStats

2 'Center
"Are you sure you wish to shutdown?'

"Tahoma"
24
0
400
0
0
0

'False
'False
'False

1575
0
25
360
7215

Caption
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

"Statistics"

"Tahoma"
14 .25
0
400
0
0
0

'False
'False
'False

291

E. HOST PC SOFTWARE

EndProperty
Height
Left
Tablndex
Top
Width

5775
5040
18
1200
5295

Begin InetCtlsObjects.Inet inetDownload
Left = 240
Top = 144 0
_ExtentX = 1005
_ExtentY = 1005
Jersion = 393216
Protocol = 4
URL = "http://"
RequestTimeout = 4

End
Begin VB.Timer tmrStats

Interval = 2000
Left = 840
Top = 1560

End
Begin MSFlexGridLib.MSFlexGrid gridStats

Height
Index -
Left
Tablndex
Top
Width
_ExtentX
_ExtentY
_Version -
AllowBigSelection=
ScrollBars =
Appearance

1455
0
0
21
0
5055
8916
2566
393216
0 'False
0
0

BeginProperty Font (0BE35203-8F91-11CE-9DE3-00AA004BB851)
"Arial"
14.25
0
400
0 'False

'False
'False

Name
Size
Charset
Weight
Underline
Italic = 0
Strikethrougb - 0

EndProperty
End

End
Begin MSCommLib.MSComm Comirt

Left = 864 0
Top = 120
_ExtentX = 1005
_ExtentY = 1005
.Version = 393216
DTREnable = -1 True
BaudRate = 57600

End
Begin VB.Frame frameShutdownWait

Height = 2055
Left = 4680
Tablndex = 28
Top = 480
Width = 6615
Begin VB.Timer trnrShutdown

Enabled = 0 'False
Interval = 350
Left = 0
Top = 1560

End
Begin VB.Label lblShutdownWait

Alignment - 2 'Center
BackStyle - 0 'Transparent
Caption = "Please wait while the system shuts down..,
BeginProperty Font

Name = "Tahoma"
Size = 24
Charset = 0

292

http://

E. HOST PC SOFTWARE

'False
'False
'False

Weight = 4C
Underline = 0
Italic = 0
Strikethrough - 0

EndProperty
Height = 1215
Left = 240
Tablndex = 29
Top = 12 0
Width = 6135

End
Begin VB . Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Visible
Width

SH00004000&
1 'Opaque
255
5
5640
1200
0 'False
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Visible
Width

&H00004000&
1 'Opaque
255
6
5880
1200
0 'False
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Width

&H00004000&
1 'Opaque
255
4
6120
1560
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Width

SH00004000&
1 'Opaque
255
3
5760
1560
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Width

SH00004000S
1 'Opaque
255
2 •
5400
1560
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top
Width

&H00004000S
1 'Opaque
255
1
5040
1560
255

End
Begin VB.Shape shapeShutdownAnirnation

BackColor
BackStyle
Height
Index
Left
Top

SH00004000S
1 'Opaque
255
0
4680
1560

293

E. HOST PC SOFTWARE

Width
End

End

255

Begin VB.CommandButton cmdShutdown
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic
Strikethroi

EndProperty
Height
Left
Tablndex
Top
Width

End

=
Font

igh

=
=
=
=
=

"SHUTDOWN"

- "Tahoma"
14.25
0
700
0 'False
0 'False
0 'False

495
4800
19
7800
3255

Begin VB.CommandButton cmdCalMode
Caption
E;nabled
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

End

=
=
=
=
=

"CALIBRATION MODE
0 'False

- "Tahoma"
14.25
0
700
0 'False
0 'False
0 'False

4 95

4800

20
7200

3255

Begin VB.CommandButton cmdControlScr
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

End

=
=
=
=
=

"CONTROL/MONITOR"

- "Tahoma"

14.25

0
700
0 'False
0 'False
0 'False

1095
1080
6
6720
3255

Begin VB.Frame frameQuadMonitor
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

=
=
=
=
=

"Quadrant Monitor

- "Tahoma"
14.25
0
400
0 'Faise
0 'Faise

= 0 'False

3855

120
12
3240
4575

Begin VB.Timer tmrUART
Interval
Left

1000
372 0

294

E. HOST PC SOFTWARE

Top = 360
End
Begin VB.Label lblQPercent

Alignment
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic
Strikethrov

EndProperty
Height
Index
Left
Tablndex
Top
Width

End

=
=

Font

igh

=
=
=
=
=
=

2 'Cent
"0%"

:er

- "Arial"
18
0
400
0
-1 '
0

375
3
840
33
1320
975

Begin VB.Label lblQPercent
Alignment
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Stri ketbrough
EndProperty
Height
Index
Left
Tablndex
Top
Width

End

=
=
=
=
=
=

' F'alse
'True
'False

2 'Center
" 0 % "

= "Arial"

18
0
400
0
-1
0

375
2
1080
32
2040
975

Begin VB.Label lblQPercent
Alignment
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height
Index
Left
Tablndex
Top
Width

End

=
=
=
=
=
=

'False
'True
'False

2 'Center
"0%"

"Arial"
18
0
400
0
-1
0

375
1
720
31
2760
975

Begin VB.Label lblQPercent
Alignment
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height
Index
Left

=
=
=

2 ' Cen
"0%"

'False
'True
'False

ter

"Arial"
18
0
400
0
-1
0

375
0
2160

'False
' True
'False

295

E. HOST PC SOFTWARE

Tablndex
Top
Width

End

=
=
=

Begin VB.Label lblM
Alignment
BackStyle
Caption
BeginProperty

Name
Size
Cbarset
Weight
Underline
Italic
StrikethroL

EndProperty
Height
Left
Tablndex
Top
Width

End

=
=
=

Font

igh

=
=
=
=
=

30
480
975

2 'Center
0 'Transparent
"M"

= "Tahoma"
14.25
0
700
0 'False
0 'False
0 'False

375
1800
17
1920
615

Begin VB.Label lblQuad
BackStyle
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Stri kethrough
EndProperty
Height
Index
Left
Tablndex
Top
Width

End

=
=
=
=
=
• - =

0 'Transparent
"Label1"

= "Tahorna"
14.25
0
700
0 'False
-1 'True
0 'False

375
3
0
16
0
1335

Begin VB.Label lblQuad
BackStyle
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height
Index
Left
Tablndex
Top
Width

End

=
=
=
=
=
=

Begin VB.Label lblQua<
BackStyle
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height =

0 'Transparent
"Label1"

"Tahoma"
14.25
0
700
0 'False
-1 'True
0 'False

375
2
0
15
0
1335

:1
0 'Transparent
"Label 1"

- "Tahorna"
14.25
0
700
0 'False
-1 'True
0 'False

375

296

E. HOST PC SOFTWARE

Index
Left
Tablndex
Top
Width

End
Begin VB.Label

BackStyle
Caption

=
=
=
=
=

IbiQuad

=
=

BeginProperty Font
Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Index
Left
Tablndex
Top
Width

End
Begin VB.Shape

BackStyle
BorderWidth
Height
Left
Shape
Top
Width

End
Begin VB.Shape

BackStyle
Height
Index
Left
Top
Width

End
Begin VB.Shape

BackColor
BackStyle
Height
Index
Left
Top
Width

End
Begin VB.Shape

BackStyle
Height
Index
Left
Top
Width

End
Begin VB.Shape

BackStyle
Height
.Index
Left
Top
Width

End
End

=
=
=
=
=
=

shapeMol

=
=
=
=
=
=
=

boxQuad

=
=
=
=
=
=

boxQuad

=
=
=
=
=
=
=

boxQuad

=
=
=
=
=
=

boxQuad

=
=
=
=
=
=

Begin VB.Timer tmrERR
Interval
Left
Top

End

1
0
14
0
1335

0 'Transparent
"Labell"

"Tahoma"
14.25
0
700

0 'False
-1 'True
0 'False

375
0
24 00
13
1680
1335

tor
1 'Opaque
2
855
1680
2 'Oval
1680
855

1 'Opaque
2175
3
360
1320
2175

SH0000C000&
1 'Opaque
2175
2
120
360
2175

1 'Opaque
2175
1
2400
480
2175

1 'Opaque
2175
0
2160
1320
2175

750
240
4440

Begin VB.CommandButton cmdExit

297

Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

=
=
=
=
=

"EXIT"

"Ta
21 .
0
700
0
0
0

1095
8520
5
6960
1815

horna"
75

'False
'False
'False

End
Begin VB.Frame frameMotorControl

Caption = "Motor Control"
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
Height
Left
Tablndex ~
Top
Width
Begin VB.PictureBox

Appearance
BackColor
BorderStyle
BeginProperty Foi

Name
Size
Charset
Weight
Underline
11 a 1 i c

Strikethrough
EndProperty
ForeColor
Height
Left
ScaleHeight
ScaleWidth
Tablndex
Top
Width

"T,
14
0

ahoma"
.25

400
0
0
0

2415
120
0
840
4455

'False
'False
'False

pbMotorControl
0 'Flat
&H80000005&
0

nt

=
=
=
=
=
=
=

'None

"MS Sans Serif
8.25
0
400
0 'False
0 'False
0 'False

SH80000008S
1935
120
1935
4215
1
360
42

Begin VB. ComrnandButton
BackColor
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
=

Font

Strikethrough
EndProperty
Height
Left
Style
Tablndex
Top
Width

=
=
=
=
=
=

15
cmdStop
&H000000C0S
"STOP"

= "Tahoma"
15.75
0
700
0 'False
0 'False
0 'False

735
2280
1 'Graphical
11
1200
1695

End
Begin VB.ComrnandButton cmdStart

BackColor = &H0000C000S

E. HOST PC SOFTWARE

Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic
StriketnroL

EndProperty
Height
Left
Style
Tablndex
Top
Width

End

=
Font

lgh

=
=
=
=
=
=

"START "
"Tahoma"
15.
0
700
0
0
0

735
240

75

'False
'False
'False

1 'Graphical
10
1200
1695

Begin VB.CommandButton cmdMot
Caption
BeginProperty

Name
Size
Charset
Weight
Underline
Italic

=
Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

=
=
=
=
=

" + "

"Ta
14.
0
700
0
0
0

495
3600
4
0
615

orSpeedUP

noma"
25

'False
'False
'False

gin VB.CommandButton cmdMotorSpeedDOWN
Caption ~ "-"

End

BeginProperty
Name
Size
Charset
Weight
Underline
Italic

Font

Strikethrough
EndProperty
Height
Left
Tablndex
Top
Width

jin VB.TextBox
Alignment
BackColor
BeginProperty

Name
Size
Charset
Wei.ght
Underline
Italic

=
=
=
=
=

"Ta
14 .
0
700
0
0
0

495
3600
3
600
615

txtMotorSpee

=
=

Font

Strikethrough
EndProperty
Height
Left
Tablndex
Text
Top
Width

=
=
=
=
=
=

noma"
25

'False
'False
'False

:d
2 'Center
&H0080FFFFS

"Ta
14 .
0
700
0
0
0

480
2280
2
"1000"
360
1215

noma"
25

'False
'False
'False

End
Begin VB.Label l b l M o t o r S p e e d

B a c k S t y l e
C a p t i o n
B e g i n P r o p e r t y Font

0 ' T r a n s p a r e n t
"SPEED (H z) : "

299

E. HOST PC SOFTWARE

Name
Size
Charset
Weiqht
Underline
Italic

- "Tahoma"
15.75
0
700
0 'False
0 'False

Strikethrough = 0 'False
EndProperty
Height
Left
Tablndex
Top
Width

End
End

Begin VB.Line lineSBMa
Visible -
XI
X2
Yl
Y2

End
Begin VB.Label sbMain

Appearance
BackColor =
BorderStyle
Caption -
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
ForeColor =
Height
Left
Tablndex
Top
Width

End
Begin VB.Shape shapeBc

He.i ght
Left
I'op ~
Width

End
Begin VB.Label lblScrT

Alignment -'
BackStyle
Caption -
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
ForeColor
Height
Left
Tablndex ~
Top
Width

495
120
9
360
2175

in
0 'False
360
6480
8160
8160

0 'Flat
&H80000005&
1 'Fixed Single
"Label1"

- "Arial"
14.25
0
400
0 'False
0 'False
0 'False

&H80000008S
375
720
22
8040
4935

rder
855
0
0
1335

'itle
2 'Center
0 'Transparent
"Control/Monitor"

- "Tahoma"
21.75
0
400
0 'False
0 'False
0 'False

SHOOFFB'FFFS
615
480
7
0
9975

End
Begin VB.Label IblScrTitleShadow

Alignment = 2 'Center
Appearance - 0 'Flat
BackColor = &H8000000D&

300

E. HOST PC SOFTWARE

BorderStyle
Caption =
BeginProperty Font

Name
Size
Charset
Weight
Underline
Italic
Strikethrough

EndProperty
ForeColor =
Height
Left
Tablndex =
Top
Width

End
Begin VB.Line LineBottom

1 'Fixed Single
"Control/Monitor"

"Tahoma"
21 .75
0
400
0
0
0

'False
'False
'False

&H8Q000008&
615
120
8
480
9975

BorderWidth = 2
Visible = 0 'False
XI = 1080
X2 - 10800
Yl = 6120
Y2 = 612 0

End
Begin VB.Shape shapeControlBox

BackColor = &H8000000C&
BackStyle ^ 1 'Opaque
Height = 735
Left = 0
Top = 7200
Width = 2655

End
End
Attribute VB_Name = "frmMain"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB__PredeclaredId = True
Attribute VB._Exposed = False
Option Explicit

Private Declare Function InitCommonControls Lib "comctl32.dll" () As Long
Private Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Const MACHINE._NAME As String = "PharmaSorter"

Const MOTOR_SPEED__INC = 100
Const MOT0R_SPEED_MAX =- 2000
Const motor_speed_min = 500

Const PC_STATE_OFF = 1
Const PC__STATE„BOOTING = 2
Const PC_STATE_READY = 3

Dim pc_states(4) As Integer
'Information Messages
Const INFO__READY As String = " READY. .
'Warning Messages
Const WARNING_PCS_NOT„READY As String
'Error Messages

WAITING FOR INSPECTION PCs TO BOOT!

Private Sub cindCont rol Scr_Click ()
lblScrTitle.Caption = "Control/Monitor"
IblScrTitleShadow.Caption = lblScrTitle.Caption
frameMotorControl.Visible = True
f rameQuadlYionitor. Visible ~ True
frarneStats .Visible = True
frameShutdownVerify.Visible - False
f rarneShutdownWait. Visible - False

End Sub

Private Sub cindExit_Click ()
End

301

E. HOST PC SOFTWARE

End Sub

Private Sub crndMotorSpeedDOWN_Click ()
Dim MotorSpeed As Integer
Dim Speed_Low As Integer
Dim Speed_High As Integer

MotorSpeed = CInt(txtMotorSpeed.Text)

If Not (MotorSpeed Mod 100) = 0 Then
MotorSpeed = MotorSpeed - MotorSpeed Mod 100

End If

If MotorSpeed > motor_.speed_min Then
MotorSpeed = MotorSpeed - MOTOR_SPEED_INC
txtMotorSpeed.Text = MotorSpeed

Else
Beep

End If

' Send UART Command to set speed
Speed_Low = MotorSpeed And &HFF
Speed.High = (MotorSpeed And &HFF00) / 256

uart_cmd_set UARTCMD__SET_MOTOR_FREQ, Speed_High, Speed_Low
End Sub

Private Sub cmdMotorSpeedUP_Click()
Dim MotorSpeed As Integer
Dim Speed_Low As Integer
Dim Speed_High As Integer

MotorSpeed = CInt(txtMotorSpeed.Text)
If Not (MotorSpeed Mod 100) = 0 Then

MotorSpeed = MotorSpeed - MotorSpeed Mod 100
End If

If MotorSpeed < MOTOR_SPEED_MAX Then
MotorSpeed = MotorSpeed + MOTOR_SPEED_INC
txtMotorSpeed.Text = MotorSpeed

Else
Beep
Exit Sub

End If

' Send OART Command to set speed
Speed_Low = MotorSpeed And SHFF
Speed_High = (MotorSpeed And &HFFO0) / 256

uart_.cmd_set UARTCMD_SET_MOTOR_FREQ, Speed_High, Speed_Low
End Sub

Private Sub cmdShutdown_Click()
lblScrTitle.Caption = "System Shutdown"
IblScrTitleShadow.Caption = lblScrTitle.Caption
frameMotorControl.Visible = False
f rarneQuadMonitor . Visible - False
f rarneStats . Vi sible = False
f rarneShutdownVerify. visible - True

End Sub

Private Sub cmdShutdownNo„Click()
cmdControiScr_Click

End Sub

Private Sub cmdShutdownYes„Click()
f rarneShutdownVerif y .Visible = False
frameShutdownWait.Visible = True
tmrShutdown.Enabled ^ True

'Send Shutdown Command

302

E. HOST PC SOFTWARE

cmdStop_Cl ick
u a r t _ c m d _ s e t UARTCMD_SHUTDOWN, &HFF, &HFF

End Sub

Private Sub cmdStart_Click()
Dim iRetVal As Integer

'Send Start Motor command to system controller
iRetVal = uart_cmd_set(UARTCMD_SET_MOTOR_STAT, SHPF, &HFF)

shapeMotor.BackColor = GUI_GREEN_BRIGHT
End Sub

Private Sub cmdStop_Click()
Dim iRetVal As Integer

'Send Stop Motor command to system controller
iRetVal = uart_cmd_set(UARTCMD_SET_MOTOR_STAT, SHO, SHO)

ShapeMotor.BackColor = GUI_RED_BRIGHT
End Sub

Private Sub Form_Initialize()
In itCommonControls

End Sub

Private Sub Form_L,oad()
Dim I As Integer
Dim data() As Byte
Dim buffer As Variant
Dim ret As Integer

'Get current motor speed
ret = uart_cmd_get (UARTCMD_G£T_M.OTOR_FREQ, 0, 0, buffer)

If (ret) Then
MsgBox "Unable to connect to " & MACHINE_NAME, vblnforrnation + vbOKOnly
End

End If

data = buffer

txtMotorSpeed.Text = data(2) * 256 + data(4)

'Get current motor state
ret = uart__crnd„get (UARTCMD_GET_MOTOR_STAT, 0, 0, buffer)

data = buffer

If data(2) = SHFF Then
shapeMotor.BackColor = GUI„GREEN_BRIGHT

Else
ShapeMotor.BackColor = GUI_RED_BRIGHT

End If

tmrERR.Enabled = True
sbMain.Caption = " WAITING FOR INSPECTION PCs TO BOOT!"

' Set PC states to red for now
For I = boxQuad.LBound To boxQuad.UBound

boxQuad(I).BackColor = GUI_RED
Next I

' Fill in labels for flexgrid
With gridStats(0)

.Rows - 9

.Cols = 5

.Col = 0
For I = 0 To .Rows - 1

.Row - I

.CellFontBold = True
Next I

303

E. HOST PC SOFTWARE

.Row = 0
For I = 0 To .Cols - 1

.Col - I

.CellFontBold = True
Next I

End

'Set

. Row -
For I =

0
1 To 4

.Col = I

.Text = "Q" & I
Next I

.Col =

. Row =

.Text =

. Row -

.Text =

. Row =

.Text =

. Row =

.Text =

. Row =

.Text =

. Row -

.Text. =

. Row =

.Text =

. Row -

.Text =
With

0
1
"GOOD"

.Row + 1

"BAD"
.Row + 1

"EMPTY"
.Row + 1

"TOTAL"
.Row + 1

"GOOD (%)"

.Row + 1

"MISALIGN"
.Row + 1

"RATE (cap/m
.Row + 1

"EFF. RATE"

; Default Screen
cmdControlS

End Sub
cr_Click

Private Sub Form_Resize{)

'On Error GoTo ErrHdlr

Dim 1 As Integer

' Position Objects
sbMain.Top ^ Me.Height - sbMain.Height
sbMain.Left = 0
sbMain.Width = Me.Width

IblSorTitleShadow.Left = BORDER_SPACE
IblScrTitleShadow.Top = BORDER_SPACE
IblScrTitleShadow.Width = Me.Width - BORDER_SPACE * 2
IblScrTitle.Left = BORDER_SPACE - 20
IblScrTitJ.e.Top == BORDER„SPACE - 20
lb.l.ScrTitle.Width = Me.Width - BORDER_SPACE * 2

cmdExit.Left = Me.Width - cmdExit.Width - BORDER_SPACE
cmdExit.Top = Me.Height - cmdExit.Height - sbMain.Height - BORDER^SPACE * 3 / 2

cmdControlScr.Left = BORDER__SPACE
cmdControl.Scr.Top = Me. Height - cmdExit. Height - sbMain. Height - BORDER„SPACE * 3 / 2

cmdShutdown.Left = CmdControlScr.Left + cmdControlScr.Width + BORDER_SPACE
cmdSbutdown.Top = cmdControlScr.Top + cmdShutdown.Height + BORDER„SPACE / 2

cmdCalMode.Left = cmdControlScr.Left + cmdControlScr.Width + BORDER_SPACE
cmdCalMode .Top = cmdControlScr.Top

frameMotorControl.Left = BORDER_SPACE
frameMotorControl.Top = IblScrTitle.Top + lblScrTitle.Height + BORDER_SPACE

frameQuadMonitor.Left = BORDER_SPACE
frameQuadMonitor.Top = frameMotorControl.Top + frameMotorControl.Height + BORDER_SPACE
frameOuadMonitor.Height = cmdExit.Top - frameQuadMonitor.Top - BORDER__SPACE * 2
frameQuadMonitor.Width = frameMotorControl.Width

304

http://cmdControl.Scr.Top

E. HOST PC SOFTWARE

'Size quadrant boxes
For I = boxQuad.LBound To boxQuad.UBound

If (frameQuadMonitor.Height > frameQuadMonitor.Width) Then
boxQuad(I).Width = (frameQuadMonitor.Width - BORDER_SPACE / 2) / 2
boxQuad(I).Height = boxQuad(I).Width

Else
boxQuad(I).Width = (frameQuadMonitor.Height - BORDER_SPACE * 2) / 2
boxQuad(I).Height = boxQuad(I).Width

End If
Next I

'Arrange quadrant boxes
' 03 I Q2

' 04 I 01
boxQuad(0).Left
boxQuad(1).Left
boxQuad(2).Left
boxQuad(3).Left

frameQuadMonitor.Width / 2
frameQuadMonitor.Width / 2
boxQuad(0).Left - boxQuad(0).Width
boxQuad(0).Left - boxQuad(0).Width

boxQuad(0).Top = frameQuadMonitor.Height / 2 + BORDER_SPACE / 2
boxQuad(3).Top = frameQuadMonitor.Height / 2 + BORDER_SPACE / 2
boxQuad(1).Top = boxQuad(0).Top - boxQuad(0).Height ' - BORDER_SPACE / 8
boxQuad(2).Top = boxQuad(0).Top - boxQuad(0).Height ' - BORDER_SPACE / 8

'Quadrant labels
IblQuad(O).Left = boxQuad(0).Left + boxQuad(0).Width
IblQuad(O).Top = boxQuad(0).Top + boxQuad(0).Height -
IblQuad(0).Alignment = 1 ' vbAlignRight

- lblQuad(O).Width
lblQuad(O).Height

BORDER_SPACE / 4

IblQuad(l).Left = boxQuad(1).Left + boxQuad(1).Width
IblQuad(l).Top = boxQuad (1) .Top '+ IblQuad (11 . Height
IblQuad(1).Alignment = 1 ' vbAlignRight

IblQuad(1).Width - BORDER_SPACE / 4

IblQuad(2).Left = boxQuad(2).Left + BORDER_SPACE / 4
lblQuad(2).Top = boxQuad(2).Top
IblQuad(2).Alignment = 0 ' vbAlignleft

lblQuad(3) .Left = boxQuad (3) .Left + BORDER_SPACE / 4
lblQuad(3).Top = boxQuad(3).Top + boxQuad(3).Height -
IblQuad(3).Alignment = 0 ' vbAlignLeft

lblQuad(3).Height

'Good cap percentage labels
For I = lblQPercent.LBound To IblQPercent.UBound

IbiQPercent(I).BackStyle = vbTransparent
IblQPercent(I).Left = (boxQuad(I).Left + boxQuad(I).Width / 2)
IbiQPercent(I).Top = (boxQuad(I).Top + boxQuad(I).Height / 2) •

Next I

- lblQPercent(I).Width / 2
lblQPercent(I).Height / 2

For I =-- IblQuad.LBound To IblQuad. UBound
IblQuad(I).Caption = "Q" s CInt(I + 1)

Next I

shapeMotor.Left = (frameQuadMonitor.Width - shapeMotor.Width) / 2
shapeMotor.Top = boxQuad(0).Top - (shapeMotor.Height / 2)

IblM.Left = (frameQuadMonitor.Width - lblM.Width) / 2
Ib.lM.Top = boxQuad (0) .Top - (lblM.Height / 2)

'Statistics
irameStats.Top = frameMotorControl.Top
frarneStats.Height = cmdExit.Top - f rameStats. Top - BORDER_SPACE * 2

f rameStats.Left = f rameMotorControl .Left + f rameMotorControl .Width + BORDF,R_SPACE
frarneStats.Width = Me.Width - frameStats.Left - BORDER_SPACE

For I = gridStats.LBound To gridStats.UBound
gridStats(I).Left = BORDER_SPACE / 2
gridStats(I).Width = frarneStats.Width - BORDER_SPACE
gridStats(I)-Height = (frarneStats.Height) / gridStats.count -
gridStats(I).Top = (I * (gridStats(gridStats-LBound).Height)

Next I

(BORDER_SPACE >
- BORDER_SPACE)

3)
I- BORDER_SPACE

'Data Grid

305

E. HOST PC SOFTWARE

With gridStats(0)
.ColWidth(O) = 2000

For I = 1 To .Cols - 1
.ColWidth(I) = (.Width - .ColWidtb(0)) / (.Cols - 1) - 20

Next I

For I = 0 To .Rows - 1
.RowHeight(I) = (.Height) / (.Rows) - 10

Next I
End With

'Shutdown
f rameSbutdownVerify .Left = (Me.Width - frameShutdownVerif y .Width) / 2
frameShutdownVerify.Top = (cmdExit.Top - lblScrTitle.Top + IblScrTitle.Height - frameShutdownVerify

.Height) / 2
frameShutdownWait.Left = (Me.Width - frameShutdownWait.Width) / 2
frameShutdownWait.Top = (cmdExit.Top - IblScrTitle.Top + IblScrTitle.Height - frameShutdownWait.

Height) / 2

LineBottom.Yl " cmdExit.Top - BORDER_SPACE
LineBottom.Y2 = cmdExit.Top - BORDER_SPACE
LineBottom.Xl = BORDER_SPACE
LineBottorn.X2 = Me.Width - BORDER_SPACE

lineSBMain.BorderWidth = 3
lineSBMain.Yl = SbMain.Top
LineSBMain.Y2 = sbMain.Top
lineSBMain.XI = 0
LineSBMain.X2 = Me.Width

shapeControlBox.Left = BORDER_SPACE / 2
shapeControlBox.Width = Me.Width - BORDER_SPACE
shapeControlBox.Top = cmdExit.Top - BORDER_SPACE
shapeControlBox.Height = cmdExit.Height + BORDER_SPACE * 2

shapeBorder.Left = 0
shapeBorder.Top = 0
shapeBorder.Width = Me.Width
shapeBorder.Height = Me.Height

' Colours
pbMotorControl.BackColor = frameMotorControl.BackColor

Errlidlr:
' 1 don't care if it gets here

End Sub

Private Sub tmrERR_Timer()
Dim pc_ready As Integer
Dim bWarning As Boolean
Dim bError As Boolean
Dim I As Integer

'Are all inspection PCs up and running?
For I = 0 To 3

If (pc_states(I) = PC_STATE_READY) Then
pc__ready = pc_.ready + 1

End If
Next 1

If Not pc_ready - A Then
bWarning -= True
sbMain.Caption = WARNING_PCS_NOT_READY

Else
bWarning = False
sbMain. Caption = INFOJEADY

End If

' Flash Banner
If bWarning = True Then

If (sbMain.BackColor = vbYellow) Then
sbMain.BackColor = Me.BackColor

Else

306

E. HOST PC SOFTWARE

sbMain.BackColor - vbYellow
End If

Elself bError = True Then
If (sbMain.BackColor = vbRed) Then

sbMain.BackColor = Me.BackColor
Else

sbMain.BackColor = vbRed
End If

Else
If Not (sbMain.BackColor = Me.BackColor) Then

sbMain.BackColor = Me.BackColor
End If

End If
End Sub

Private Function uart_cmd_get(cmd As Integer, value_hi As Integer, value„low As Integer, ByRef data As
Variant) As Integer

On Error GoTo ErrHdlr

Dim sData As String
Dim count As Integer

Dim buffer As Variant

count = 0

Dim x As Byte
Dim check(3) As Byte
check(0) = cmd
check (0) - Not check(0)
check (1) ~ value_hi
check {1) - Not check(l)
check (2) ^ value_low
check (2) •-•= Not check (2)

'Send data to serial port
If (Comm.PortOpen = False) Then

Comrn. PortOpen = True
End If

' command
Comrn.Output = Chr(cmd)
Comrn. Output = Chr (value_hi)
Comm . Output = Chr (value._low)

' data check
Comm.Output = Chr(check(0))
Comm.Output = Chr(check(1))
Comm.Output - Chr(check(2))

Sleep 4 5

' check for ack

While (Comrn. InBuf ferCount > 0)
count = count + Cornm. InBuf ferCount
bu f fe r = buffer & Comm.Input
'DoEvents

Wend

If (count < 2) Then
uart_cmd_get = 1

Else
uart_cmd..„get = 0

End If

:lata = buffer

If (buffer (0) <> 6) Then
MsgBox "Error during communication (NACK received)!", vbCritical

End If

307

E. HOST PC SOFTWARE

Comm.PortOpen = False

Exit Function
ErrHdlr:

If Err.Number = 8002 Then
MsgBox "Invalid Port Selected...", vbCritical + vbOKOnly

End If

uart__crnd_get = 1
End Function

Private Function uart_cmd_set(cmd As Integer, value__hi As Integer, value_low As Integer) As Integer
Dim buffer As Variant
Dim data() As Byte
Dim x As Byte
Dim check (3) As Byte

check(0) = cmd
check(0) - Not check(0)
check (1) = value_hi
check (!) = Not check(1)
check (2) -- value_low
check (2) = Not check (2)

'Send data to serial port
If (Comm.PortOpen = False) Then

Ccmm.PortOpen = True
End If

' commond
Comm . Output =• Chr (cmd)
Comm.Output = Chr(value_bi)
Comm.Output = Chr(value_low)

' data check
Comm.Output - Chr{check{0))
Comm.Output - Chr(check{1))
Comm.Output - Chr(check(2))

Sleep 65

While (Comm.InBufferCount > 0)
buffer = Comm.Input
'DoEvents

Wend

data = buffer
' check for ack

x = data(0)
If (x <> 6) Then

uart_cmd_set = 1
Else

uart_cmd_set - 0
End If

Comm.PortOpen = False

End Function

Private Sub tmrShutdown_Timer()
Static I, J, F As Integer
Dim buffer As Variant
Dim data() As Byte
Dim c As Integer

1 = 1 + 1
J - J + 1
If I > shapeShutdownAnimation.UBound Then

I = shapeShutdownAnimation.LBound
End If

If J > shapeShutdownAnimation.UBound Then

308

E. HOST PC SOFTWARE

J •= shapeShut down Animation . LBound
End If

If F = 0 Then
I = shapeShutdownAnimation.LBound
J - shapeShutdownAnimation.UBound
F = 1

End If

shapeShutdownAnimation(J).BackColor = shapeShutdownAnimation(I).BackColor
shapeShutdownAnimation (I) .BackColor = vbGreen

uart._cmd._get UARTCMD_GET_SHUTDOWN_STATUS, 0, 0, buffer

data{) - buffer

If data(2) Then
' Shutdown complete
iblShutdownWa.it .Caption = "System is now safe to power down..."
For c - shapeShutdownAnimation.LBound To shapeShutdownAnimation.UBound

shapeShutdownAnimation(c).BackColor - vbGreen
Next c

Irnr Shut down .Enabled = False
'Sleep (4000)
'Shell "shutdown -s -t 10", vbNormal Focus

End If
End Sub

Private Sub tmrStats_Timer()
On Error Resume Next

Dim bytes() As Byte
Dim f nurn As Integer

' Grab Files from Inspection PCs
' Check state of inspection PCs
If (pc__states (0) - PC_STATE_READY) Then

inetDownioad.Protocol = icHTTP
inetDownload.URL - "HTTP://192.168.1.101/statistics-csv"
bytes() - inetDownioad.OpenURL(inetDownioad.URL, icByteArray)
'bytes () - inetDownioad.Open URL("http://I 92.168.1.101/statistics.csv", icByteArray)

fnum = FreeFile
Open "C:\tmp\stats_Ql.csv" For Binary Access Write As #fnum

Put #fnum, , bytes()
Close #fnum

End If

If (pc_states(1) = PC_STATE_READY) Then
bytes{) - inetDownload.OpenURL("http://192.168.1.102/statistics.csv" , icByteArray)

f nurn = FreeFile
Open "C:\tmp\stats__Q2.csv" For Binary Access Write As #fnum

Put tfnum, , bytes()
Close Ifnurn

End If

If (pc_states(2) = PC_STATE_READY) Then
bytes() - inetDownload.OpenURL("http://192.168.1.103/statistics.csv", icByteArray)

fnum - FreeFile
Open "c:\tmp\stats_Q3.csv" For Binary Access Write As #fnum

Put ttfnum, , bytes()
Close #fnum

End If

If (pc_states (3) - PC_STATE_READY) Then
bytes() = inetDownload.OpenURL("http://l92.168.1.104/statistics.csv", icByteArray)

fnum = FreeFile
Open "C:\TMP\stats_Q4.csv" For Binary Access Write As #fnum

Put # fnum, , bytes()

http://uart._cmd._get
http://iblShutdownWa.it
HTTP://192.168.1.101/statistics-csv
http://I
file:///tmp/stats_Ql
http://192.168.1.102/statistics.csv
file://C:/tmp/stats__Q2.csv
http://192.168.1.103/statistics.csv
file:///tmp/stats_Q3
http://l92.168.1.104/statistics.csv
file://C:/TMP/stats_Q4.csv

E. HOST PC SOFTWARE

Close #fnum
End If

Dim fieldArray() As String
Dim I, J As Integer
Dim lineRead As String
Dim QuadNum As Integer
Dim sFileName As String

For QuadNum = 1 To 4
If pc„states(QuadNum - 1) = PC_STATE_READY Then

'Open Fi1e

sFileName = "C:\tmp" & "\stats„.Q" & QuadNum & ".csv"

Open sFileName For Input As #1

While Not E0F(1)
Line Input #1, lineRead
lineRead ^ Replace(lineRead, vbLf, ",")
fieldArray = parseCsv(lineRead)
'Parse through CSV looking for specific parameters
If lineRead <> "" Then

With gridStats(0)
For I = 0 To UBound(fieldArray)

.Col = QuadNum
If InStrd, fieldArray (I) , "Good", vbTextCompare) Then

.Row = 1

.Text = fieldArrayd + 1)
End If
If InStrd, fieldArrayd), "Good", vbTextCompare) Then

.Row - 5

.Text = fieldArrayd + 2)
IblQPercent (QuadNum - 1).Caption = fieldArrayd + 2)

End If
If InStrd, fieldArrayd), "Bad", vbTextCompare) Then

.Row = 2

.Text = fieldArrayd + 1)
End If
If InStrd, fieldArrayd), "Empty", vbTextCompare) Then

.Row ~ 3

.Text = fieldArrayd + 1)
End If
If InStrd, fieldArrayd), "Total", vbTextCompare) Then

.Row = 4

.Text = fieldArrayd + 1)
End If
If InStrd, fieldArrayd), "Effective Inspection Rate", vbTextCompare) Then

.Row = 8

.Text = fieldArrayd + 1)
End If
If (InStrd, fieldArray (I) , "Inspection Rate", vbTextCompare) And _

InStrd, fieldArrayd), "Effective", vbTextCompare) = False) Then
.Row = 7
.Text = fieldArrayd + 1)

End If
If InStrd, fieldArray (I) , "Misaligned", vbTextCompare) Then

.Row = 6

.Text = fieldArrayd + 1)
End If

Next
End With

End If
Wend

Close #1

Else
' Blank entire column
gridStats(0).Col = QuadNum
For J = 1 To gridStats(0).Rows - 1

gridStats(0).Row = J

310

file://C:/tmp

E. HOST PC SOFTWARE

gridStats(0).Text - ""
Next J

End If

Next QuadNum

End Sub

Private Sub tmrUART_Timer()
On Error GoTo ErrHdlr

Dim cmd As Integer
Dim value_hi As Integer
Dim volue_low As Integer
Dim sData As String
Dim buffer As Variant
Dim dataO As Byte
Dim count As Integer
Dim ret As Integer
Dim x As Byte

count = 0

ret = uart_cmd_get(UARTCMD_GET_PC_PWR_STATE, 0, 0, buffer)

If (ret) Then
GoTo ErrHdlr

End If

data = buffer

If (data(0) <> 6) Then
MsgBox "Error during communication (NACK received)!", vbCritical

End If

x = data(2)

If ((x And SH3) = &H3) Then
'lblPCStatus10).Caption = "Online"
boxQuad(0).BackColor = vbGreen
pc_states(0) = PC_STATE_READY

Elself (x And SHI) Then
' lblPCStatus (0) .Caption = "Booting Up..."
boxQuad(0).BackColor = vbYellow
pc._states (0) = PC_STATE_BOOTING

Else
'lblPCStatus(0).Caption = "Offline"
boxQuad(0).BackColor = vbRed
pc_„states (0) = PC_STATE_OFF

End If

If ((x And &HC) = SHC) Then
'lblPCStatus II) .Caption = "Online"
boxQuad(1).BackColor = vbGreen
pc_states(l) = PC__STATE_READY

Elself (x And &H4) Then
'lblPCStatus ID .Caption = "Booting Up..."
boxQuad(1).BackColor = vbYellow
pc_states(l) = PC_STATE_BOOTING

Else
'lblPCStatus (1) .Caption = "Offline"
boxQuad(1).BackColor = vbRed
pc_states(l) = PC_STATE„OFF

End If

If ((x And &H30) = SH30) Then
'lblPCStatus 12) .Caption = "Online"
boxQuad(2).BackColor ^ vbGreen
pc_states(2) = PC_STATE„READY

Elself (x And SH10) Then
'lblPCStatus 12) .Caption = "Booting Up..."
boxQuad(2).BackColor - vbYellow
pc„states(2) = PC_STATE_BOOTING

Else

311

'lblPCStatus(2).Caption = "Offline"
boxQuad(2).BackColor = vbRed
pc„states(2) = PC_STATE_OFF

End If

If ((x And SHCO) = SHCO) Then
'lblPCStatus(3).Caption = "Online"
boxQuad{3).BackColor - vbGreen
pc_states(3) = PC_STATE_READY

Elself (x And SH4 0) Then
'lblPCStatus (3).Caption = "Booting Up..."
boxQuad(3).BackColor = vbYellow
pc_states(3) = PC_STATE_BOOTING

Else
'lblPCStatus (3).Caption = "Offline"
boxQuad(3).BackColor = vbRed
pc_states<3) = PC_STATE_OFF

End If

'Get current motor state
ret = uart„cmd_get(UARTCMD_GET_MOTOR_STAT, 0, 0, buffer)

data ^ buffer

If data (2) = SHFF Then
shapeMotor.BackColor = GUI_GREEN_BRIGHT

Else
shapeMotor.BackColor = GUI_RED„BRIGHT

End If

Exit Sub

ErrHdlr:

End Sub

E.7.2 modGUIConsts.bas

Attribute VB_Name = "modGUIConsts"
Global Const BORDER_.SPACE As Integer = 250

Global Const GUI_GREEN_BRIGHT As Long = &H30FF30
Global Const GUI_YELLOW_BRIGHT As Long = SH30FFFF
Global Const GUI_RED_BRIGHT As Long = SH3030FF

Global Const GUI_..GREEN As Long = &HE000&
Global Const GUI_YELLOW As Long = (.HF0F0S
Global Const GUI_RED As Long = SHEOs

E.7.3 modCSVParser.bas

Attribute VB_.Name = "modCSVParser"

Function parseCsv (lineln As String) As String()
Dim s As String
Dim local_s As String
Dim nl As Integer
Dim n2 As Integer
Dim str2 As String
Dim I As Integer
Dim strTempO As String
T - 0
s ~ Trim(1ineln) ' remove spaces, if any

While Len(s)
ReDim Preserve strTemp(I) ' Didnt want to have fixed fields,
' dont know how to dynamically allocate, hence .. .
If Mid$(s, 1, 1) = »««" xhen ' if already in quotes . . .
strTemp(I) - MidS(s, 2, XnStr<2, s, """") - 2) 'find 2nd ""
Else: If InStr(s, ",") Then strTernp(I) = Mid$(s, 1, InStr(s,

E. HOST PC SOFTWARE

End I f
's = Mid$(s, Len (strTemp fi)) + 1)
n2 = I n S t r (L e n (s t r T e m p (I)) Or 1, _
I f n2 Then s = T r i m (M i d S (s , r>2 +]
I =] +]
Wend
p a r s e C s v = s t rTemp
End Func t ion

", ")
E l s e s " ' ' clip till next

E.7.4 modUARTCommands.bas

Attribute VB_Narne = "modUARTCommands"

'/* uart__commands. h

' * Definitions for UART commands.

' * Author: Neil Scott
' * Date: August 10, 2007

'/* System Control - Set Commands */
Global Const UARTCMD_SET__MOTOR_STAT = 5H90 '/* Enable or Disable Motor */

'//define UARTCMD_SET_MOTOR_STAT 0x90
Globa l Cons t UARTCMD_SET_MOTOR__FREQ = SH91

'idefine UARTCMD_SET_BLO_WIDTH 0x92
' #def ine UARTCMD_SET,_BL1_WIDTH 0x93
' t'define UARTCMD_SET_FLO__WIDTH 0x94
'Idefine UARTCMD_SET_FL1_WIDTH 0x95

' tide fine UARTCMn_SET_CAM0_PULSE_POS
' //define UARTCMD_SET_CAM1_PULSE_P0S
' {/define UARTCMD_SET_ACCEPT_ON_PULSE_POS

' //define UARTCMD_.SET__ACCEP2
OFF */'

^OFF_PULSE_POS

/* Enable or Disable Motor */
'/* Set Motor Speed */

/* Set pulse width for BhO */
/* Set pulse width for BL1 */
/* Set pulse width for FLO */
/* Set pulse width for FL1 */

0x9A /* Set motor pulse position for CAMO */
0x9B /* Set motor pulse position for CAM1 */
0x9C /* Set motor pulse position for ACCEPT ON

0x9D /* Set motor pulse position for ACCEPT

Global Const UARTCMD_POWER_ON_PCS = &H9E

Global Const UARTCMD._SHUTDOWN = &H9F

'/* .System Control - Get Commands */
Global Const UARTCMD__GET._MOTOR_.STAT = SH10

Global Const UARTCMD_GET_MOTOR_FREQ = &H11

Global Const UARTCMD_GET_BLO_WIDTH = &H12

Global Const UARTCMD_GET_BL1_WIDTH = SH13
Global Const UARTCMD_GET_FLO_WIDTH = &H14

Global Const UARTCMD__GET_FL1_WIDTH = SH15

'{/define UARTCMD_GEI_CAM0_PULSE_POS OxlA
'{/define VARTCMD_GET_CAM1_PULSE_P0S OxlB
'//define UARTCMD_GET_ACCEPT_ON_PULSE_POS OxlC
'tdeflne UARTCMD_GET__ACCEPT__OFF_PULSE_POS OxlD

' /* Toggle power SW for 400ms to PC MBs */
'/* Put system in shutdown mode */

'/* Enable or Disable Motor */
'/* Get Motor Speed */
'/* Get pulse width for BLO */
'/* Get pulse width for BL1 */
'/* Get pulse width for FLO */
'/* Get pulse width for FLJ. */'

/* Get motor pulse position for CAMO */
/* Get motor pulse position for CAM1 */

/* Get motor pulse position for ACCEPT ON */
/* Get motor pulse position for ACCEPT OFF */

Global Const UARTCMD_GET_PC_PWR_STATE = SH1E

Global Const UARTCMD_GET_SHUTDOWN_STATUS = SH1F

'/* System Monitors */
Global Const UARTCMD_GET_TEMP_SP = SH30

Global Const UARICMD_GET__TEMP_FP = SH31

'/* Inspection Status */
Global Const UARTCMD__G00D_C0UNT = &H21

*/
Global Const UARTCMD_BAD_COUNT = &H22

quadrant */
Global Const UARTCMD_T0TAL_C0UNT = SH23

quadrant */
'//define UARTCMD_RESET_COUNTERS OxAF

'/* Retrieve the power state of all PCs */
'/* Retrieve status of shutdown (complete?) */

'/* Get Temperature from Side Panel Sensor */
'/* Get Temperature from Front Panel Sensor */

'/* Get good capsule count for specified quadrant

'/* Get reject capsule count for specified

'/* Get total capsule count from specified

/* Reset the counters +/'

313

http://UARTCMD__GET._MOTOR_.STAT

E. HOST PC SOFTWARE

'/* Fault Registers */
'fdefine UARTCMD_FAULT_COUNT OxFO /* Get fault count */
'fdefine UARTCMD_FAULT_CODE OxFl / * Get fault code of previous fault */

'/* Debug Modes */

Global Const UARTCMD_DEBUG„MODE = &HDD '/.* Set in debug mode so images are acquired
when motor is off */

Global Const UARTCMD_ONE„STEP = SHDE '/* Make system step one capsule, fires BL and
trigger */

314

VITA AUCTORIS

Neil Scott was born in Sarnia, Ontario, Canada. He received his Bachelor of Applied Science

degree in Electrical Engineering from the University of Windsor, Ontario, Canada in 2006. He is

currently working towards a Master of Applied Science degree in Electrical Engineering. His primary

area of research is the development of a high throughput inspection system for quality control of

pharmaceutical capsules. His main area of expertise lies in hardware design, software and firmware

development. His research involves USB device development, embedded system design with a focus

on high-level programming languages, primarily C and C++.

315

	An Integrated Control and Data Acquisition System for Pharmaceutical Capsule Inspection
	Recommended Citation

	ProQuest Dissertations

