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ABSTRACT 

Earthquake is one of the most devastating natural disasters. In the last few decades, many 

seismic mitigation techniques have been developed. They include passive, semi-active and 

active control which have been proven their effectiveness in events of earthquakes. Among 

them, base isolation has been regarded as a mature technology and commercialisation is 

common in earthquake-prone countries. This technology decouples the main structure from its 

foundation and effectively lengthens the natural period of vibration, away from resonance 

vibration. However, the lateral stiffness of base isolation devices is generally too low to resist 

serviceability lateral forces such as wind and flood which may cause unacceptable lateral 

movements of the structure. Added lateral stiffness and/or damping is usually required. On 

the other hand, the Earthquake Early Warning (EEW) system which uses different arrival time 

of seismic P and S waves is readily available in Japan, Taiwan, parts of China and Europe. 

This technology offers more possibilities for improvement of earthquake mitigation 

technique.  

This project develops a smart mechatronic base isolation system which can be triggered 

by the EEW system. It uses the earthquake early warning signals and nearby monitoring 

signals to determine the situation and automatically switches to the appropriate anti-seismic 

mode. In the first phase of research, a one-dimensional system is developed and tested on an 

electrical shake table. A prototype smart mechatronic base isolation system is developed. In 

this prototype design, electromagnetic shear keys which lock the base isolator are released 

either by simulated EEW signals or on-site accelerometers. The advantage of this design gives 
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the main structure a very strong stiffness under in-service condition (i.e. when there is no 

ground motion) while maximizing the effectiveness of base isolation when ground motion is 

anticipated. The system is fully automated, and the main structure is re-entered once ground 

motion ceases. In the second stage, a two-dimensional base isolation, created by low-friction 

linear bearings is developed and activation of base isolation is carried out by linear actuators. 

In the third stage, the system is developed further. Light Detection and Ranging (LIDAR) 

sensors are added to monitor position of base isolator in real-time, an active control strategy is 

added into the microcontroller and actuation is carried out by stepper motors. Using the 

feedbacks provided by the sensor the active base-isolation system re-position the main 

structure in real-time. The research presented in this thesis opens up new opportunities in 

future seismic risk mitigation of civil structures. By connecting the EEWS and mechatronic 

devices, the performance of traditional base isolation system can be enhanced.  

 

Keywords: earthquake early warning; base isolation; smart structures; internet of things; 

sensor; controller 
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INTRODUCTION 

1.1 Background of Seismic Structural Control 

Earthquakes occur every day. Most of them are small or occur in remote areas such as the 

sea floor that most people do not feel them. In areas with relatively concentrated populations, 

earthquakes of magnitude 5 or above may cause enormous casualties such as the earthquake 

in Central Nepal in 2015, Kyushu in Japan in 2016 and Sichuan in China in 2017. In the past, 

we have always stressed that the stiffer the structure, the more it is resistant to earthquakes. 

Shock-resistant structure is an important part of traditional building technology. It strengthens 

the walls and load-bearing columns and adds strength supplements to form a strong building. 

However, with the progress of civilisation and the development of science and technology, we 

have learned to isolate/reduce the power of earthquakes and developed further construction 

technology: seismic-free technology and seismic technology.  

Among these technologies, base isolation is regarded by earthquake experts as one of the 

most important achievements of earthquake engineering in decades. Isolation devices are 
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typically positioned at the base or at a certain location of the structure to isolate or reduce the 

transmission of earthquake energy to the superstructure. Thereby, this technique ensures the 

safety of buildings during an earthquake. Nowadays, numerous isolation devices have been 

studied and widely applied to provide a sufficiently safe isolation system between the 

superstructure and the foundation of the building [1]. They are broadly divided into two 

categories, namely elastomeric and sliding. Elastic bearings are usually composed of 

alternating rubber and steel plates. The rubber material provides damping elastic force, and 

the steel plates enhance vertical load capacity. Moreover, the lead core is added to some 

devices for further damping enhance. Recent developments and applications are summarized 

in [2]; Sliding isolation uses sliding material in the isolation layer such as low friction 

coefficient material, so that the upper structure of the foundation can only transmit limited 

earthquake force to achieve protecting the superstructure. The characteristic of low friction 

coefficient isolator is that the natural vibration period of the whole system before sliding is the 

same as the structural period. When sliding, the stiffness of the isolation layer is zero, and the 

natural vibration period of the whole system becomes infinite, so the sliding isolation can 

avoid any seismic waves. Related research and discussion are discussed in [3]. 

In general, base isolation systems reduce horizontal stiffness of a structure and avoid the 

dominant excitation frequency of earthquakes. However, wind loadings on structure attract 

considerable attention, particularly for base isolated structures whose elasticity is sensitive to 

wind excitations [4]. Henderson et al [5] discussed that the wind effect on base isolation 

indicates that the base isolation may amplify the response to the wind. Chen et al [6] 

conducted a statistical analysis to different base isolated structures to confirm the 

displacement response of wind. Liang et al [7] analysed the floor acceleration response of a 
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base isolated building to different average wind speeds to discuss the habitability of base 

isolated building.  

To solve the problem, Soong and Costantinou [8] explain how to introduce control 

strategies into civil engineering. Some kinds of forces from device adapt the main structure. 

Passive and active control represent innovative technologies for protection of structures 

against wind, earthquakes and other external loads. Thereby base isolation system may be 

improved by controlling engineering, and it has been investigating for years. Ramallo et al [9] 

proposed a smart base isolation strategy using magnetorheological (MR) dampers, and 

Yoshioka et al [10] experimentally demonstrate H-square (H2)/Linear–quadratic–Gaussian 

(LQG) damping strategy by a base-isolated two-degree-of-freedom building model with MR 

damper installed between the base and the ground. Chang et al [11] applies the active control 

technique by three actuators to a base isolated three-story two-bay steel building. Shook et al 

[12] do a comparative analytical and experimental study of several algorithms for the control 

of seismically excited base isolated structures.  

Although active control strategies theoretically solve the external load problem, there are 

still some difficulties in the process of the actual construction of the active control base 

isolation system such as construction cost, the energy required for the system operation [13, 

14] and the thermal shutdown of the actuator [15]. The compromise is to consider semi-active 

control which combines the advantages of active control and passive control. Various devices 

have been studied which involve (i) Stiffness control devices [16]; (ii) Electro-rheological 

dampers/magneto-rheological dampers [17]; (iii) Friction control devices [18]; (iv) Fluid 

viscous devices [19]; and (v) TMDs and TLDs [20]. However, semi-active control still has 
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limitations [21-23] that cannot be ignored such as (i) Modelling error; (ii) Time delay; (iii) 

Limited sensor and controller; (iv) Parameter uncertainties and system identification. 

Further, smart control includes control algorithms and actuators as well. The biggest 

difference is that no precise model of structure is needed. Control algorithm uses the system 

output feedback to adjust the system parameters, and then actuators accurately execute 

control. The principle is basically the same as the active control, but the system will achieve 

optimal control through repeated self-improvement. Cheng et al [24] demonstrated many 

applications to highlight the importance of system adaptability. Kim et al [25] proposed a new 

bio-inspired controller which developed through the integration of a brain emotional learning 

(BEL) algorithm. Amezquita-Sanchez et al [26] reviewed the main smart control applications 

to illustrate the pros and cons of smart actuators and control strategies tendencies. 

1.2 Research Motivations 

Throughout the history of mankind, earthquakes remain one of the most devastating 

natural disasters. In recent large earthquakes such as the 2011 Tohoku, Japan, 2011 

Christchurch, New Zealand and the 2015 earthquake in Nepal, tens of thousands of lives were 

lost and their economical and societal costs are enormously large. The Earthquake Early 

Warning (EEW) System is a promising technology that attempt to mitigate earthquake risks 

by providing warning messages to industries, public transportation such as rail companies, 

and to the general public via television, radio and personal communications. Japan is the first 

country in the world to implement a nationwide EEW system. The Japan Meteorological 

Agency (JMA) commenced the EEW service to advanced users in 2006 and the general 

public since 2007. The principle of EEW is that by utilising a sophisticated network of 
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seismometers, those located close to epicentre will detect P-waves of ground motion. At the 

seismic station, seismic intensity is instrumentally estimated considering accelerogram, 

amplitudes, frequency and durations [27]. The estimation is transmitted to JMA in real-time 

basis and then broadcasted to the public. P-waves travel faster than the more destructive 

S-wave, and the EEW may provide early warning, in the order of seconds to minutes, 

providing the valuable time to reduce seismic risks such as turning off certain industrial 

processes, reducing the speed of trains and the time to evacuate from buildings.  

On the other hand, with the advances of engineering technologies in the last hundred 

years, various strategies and methods have proven to enhance civil structures capabilities of 

withstanding earthquake loads. Among these technologies, base isolation is an effective 

technique, and it is generally accepted that it is a mature technology for seismic protection of 

civil structures. Base isolation systems shift the natural periods of the structures to long period 

range, typically to 2-4 seconds by physically decoupling the foundation and its superstructure. 

The decoupling is achieved by a number of techniques, and various base isolator designs have 

been studied and now available commercially that Warn et al [28] summarizes recent 

developments and applications. 

Indeed, base isolation systems reduce horizontal stiffness of a structure and avoid the 

dominant excitation frequency of earthquakes. Wind effects on base isolated structures are a 

practical concern, particularly for lightweight structures. Henderson et al [29] carried out 

wind tunnel tests on base isolated structures. Wind effects may cause unacceptably large 

displacement to the main structure. The topic has been studied by Chen et al [30] and 

concluded that hurricane wind loads on a certain base isolators may experience excessive 

displacements. Vulcano [31] compared earthquake and wind dynamic responses of 
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base-isolated buildings and concluded that serviceability – floor acceleration is a problem 

under strong wind and may cause discomfort to occupants. To mitigate the issue, Love et al 

[32] proposed the use of tuned liquid damper to reduce the motion of a base isolated structure. 

Base isolation system can be improved by control strategies that some kinds of active forces 

is delivered to the main structure. Smart base-isolation has been researched in the last two 

decades. However, base isolation systems with active control may imply difficulties in 

practical implementation. In particular, the force-delivering devices such as hydraulic 

actuators [33] will need to be switched on. Earthquake events are relatively rare in nature and 

having the system turned on will incur problems such as overheating and other maintenance 

issues [34]. For semi-active controlled systems, for example, the use of MR dampers [10], the 

problem of large power consumption seemed to be solved. However, semi-active control still 

requires careful system identification, tuning and control algorithm are complex to implement.  

Finally, following the above, the possibilities offered by EEWS may not be just an alert 

to the public. In highly urbanized areas, the time required to evacuate the entire building is 

much longer than the time provided by the EEWS [35]. In contrast, the protection of critical 

systems and the activation of seismic mechanisms appear to be more helpful to reducing 

losses and increasing the community resilience after earthquake.  

This project proposes the smart mechatronic base isolation system with the use of EEW 

signal provided by seismic stations which can immediately improve the structural responses 

subjected to the earthquake. Four conceptual frameworks of the proposed system are 

described and demonstrated by laboratory-scaled proof-of-concept experiments. The proposed 

system has the following advantages: 

(1) It possesses high lateral stiffness and strength in service condition, therefore, 
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wind-effects on main structure does not cause excessive displacement; 

(2) Precise model of the structure is unnecessary. System executes the control strategy 

through the information from EEWS and network of sensors. 

(3) It is mechanically re-centred, does not rely on elastic stiffness of dampers or concave 

surfaces; 

(4) It facilitates the use of linear motion guides, thus enable very low-friction base isolation 

and large design displacement; and 

(5) The comprehensive acceleration caused by the earthquake on the building is lower, and 

people in the building feel more comfortable. 

The conceptual design is presented, and subsequently an experimental investigation is 

described. 

1.3 Objective and Scope 

The concept of control engineering is introduced into structural design. Several structural 

responses, monitoring, mechatronics and seismic strategies are studied. This research is limited 

by the site and large scaled testing facilities. This research focuses on experimentally achieving 

a smart base isolation system in a small and simple version. Simulations and verifications will 

be respectively carried out on MATLAB, Arduino controller and a small-scale earthquake 

simulator. The concept of smart control is applied to the traditional Base Isolation. This 

includes detection, control and actuation. Based on the suddenly environmental alteration 

detected by either network of sensors or the Earthquake Early Warning (EEW), the actuators 

are activated to immediately respond to the change via isolating the building from the 

foundation to improve the engineering properties. Sensitivity, reliability and accuracy of signal 
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are also studied to include all scenarios. Then some potential controlling method will be 

investigated and demonstrated as a conceptual experiment. Finally, four historical earthquakes 

are practically simulated by shake table to verify the performance of proposed system and 

discussed results. 

The project will be achieved in four objectives. The first one is to conceptually develop a 

new mechatronic smart base isolation system that can be electronically triggered by either 

network of sensors or the Earthquake Early Warning System (EEWS). Many possibilities for 

combining structures with machines are discussed and defined herein, including the structure 

of the building, the seismic simulation of shake table, the specifications of controller, 

transmission protocols and the flows of proposed base isolation system. Secondly, such 

system is theorized using fundamentals of structural dynamics and control theories. Degree of 

freedom, equation of motion, structure model, relationship between friction and displacement, 

and control algorithm will be mathematically described to initially explore the system's 

possibilities and expected results. Next is to verify such system experimentally via a scaled 

experiment. Proposed systems will be achieved in a small but scaled lab version and the shake 

table will scaled simulate four major earthquakes: (1)1994 Northridge, (2)1995 Kobe, (3)1979 

El-Centro and (4)1992 Mendocino (data provide by Quanser Shake table II). Moreover, 

wireless sensors are mounted on the structure to record seismic responses at different 

locations. Finally, data is analysed on Matlab to compare the structure response and system 

performance under different conditions. 

1.4 Research Questions 

RQ1. What benefits do mechatronics and control systems add to the base isolation systems? 
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RQ2. How to effectively trigger the base isolation system by Earthquake Early Warning 

System and network of accelerometers? 

RQ3. How to improve engineering properties of the isolators? 

RQ4. Does active control help improve the base isolation system? 

1.5 Organization of Thesis 

This dissertation shows how mechatronics and earthquake early warning can be added to 

traditional base isolation system. The organization of this thesis is as follows. 

Chapter 2 reviews the literature in detail. Firstly, the structural control in the seismic 

structure is reviewed and divided into three types: passive control, active control and 

semi-active control. Next, earthquake early warning system and its possible applications are 

described. The final part focuses on reviewing the mathematical model of base isolation 

structure and describing its state equations for time domain. 

Chapter 3 introduces the monitoring of seismic structural response. It is used to trigger 

the proposed base isolation system and then implemented through the Arduino control 

platform. Through this chapter, for monitoring, several available signals (including sources, 

correctness and sensitivity), hardware designs (including control platform, circuit and sensors) 

and software designs (including system flow, decision making and network communication) 

can be roughly understood. 

In Chapter 4, we begin to demonstrate the proposed smart base isolation system. The first 

is to introduce the design concept and then propose the required experimental setups and 

instruments. A six-story building model is built and then installed on the base isolation 

system. The isolator uses two parallel low friction linear motion roller guides (also called 
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linear stages). The system uses Arduino control platform to receive external signals (EEW 

and sensor networks) and then commands the actuators to perform output. In 4-1 section, 

actuators act as shear keys which firmly connect the foundation in normal time. The system 

only activates when an earthquake is detected and then the actuators disconnect the 

foundation as performing traditional base isolation system. As a result, the proposed system 

reduces the structural response and enhance the resistance in serviceability conditions such as 

strong winds. 

Further, the base isolation system in Chapter 4 also considers the direction of earthquakes 

and the possibility of actual application. Another two parallel linear stages are mounted 

vertically on two parallel linear stages that means the building model can slide in two 

dimensions. In 4-2 section, electromagnets are tried to be used as the shear keys which 

follows the principle of attraction of the same polarity to connect the foundation in normal 

time. The system activates when an earthquake is detected, and then the electromagnets are 

discharged to disconnect the foundation. Moreover, earthquakes in different directions are 

simulated to test for structural response. As a result, the proposed system reduces the 

structural responses, but electromagnets are not recommended because the problem of 

overheating which can affect the magnetic force. In 4-3 section, the next part is installing four 

linear motors below the building on the foundation. A frame is built around the building 

which allows the linear motor to extend to secure the building in normal time and pull back 

when earthquake comes. Experiment result shows that the system can perform well when the 

earthquake at the beginning of the earthquake is small. 

In Chapter 5, the concept of active control is introduced. Sensors continuously detect 

structural responses as system input, and stepper motors are used to perform system output. 
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Control algorithm is adopted to stabilise the building during an earthquake. Building model is 

mounted on two parallel linear stages and touched by stepper motors. System operates all the 

time against environmental disturbances such as earthquake and wind, and the building 

always centres to the origin. However, experiments have shown that the PID controller can 

only effectively maintain the structure within the system range but not improve the structural 

response caused by the earthquake. 

Chapter 6 summarizes the thesis and discusses the future work. 
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LITERATURE REVIEW 

2.1 Structural Control in Seismic Structure 

With the development of multidisciplinary cooperation, controlling applications in civil 

engineering for earthquake resistance have been gradually valued. Early, scholars focus on 

materials selection to strengthen the building via the characteristics such as strength, stiffness 

and toughness, but the damaged structure is usually impossible to be 100 % repaired [36] after 

earthquake because of the difficulty of construction and the changes of characteristics. 

Recently, the concepts of control are introduced into civil engineering and separated into two 

methods: passive control and active control. By reducing the input or the effect of the seismic 

force, the ability of damping can be effectively increased to achieve the target of isolation. At 

first, passive control had been widely applied to many buildings by the applications of energy 

dissipation and isolation. This technology is to allow the seismic force to enter the structure 

and then utilise the certain implements such as bracing, shear wall, dampers, isolation or 

energy dissipation device to absorb/isolate seismic force [37]. Next, the concept of active 
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control includes detection, control and actuation [8]. Based on the suddenly environmental 

alteration detected by sensors, the controller can switch on the actuators to immediately 

respond to the change via reaction force to reduce the seismic response. Finally, semi-active 

control combines the advantages of passive control and active control. Active control adjusts 

the properties of the passive control device using less control force based on the sensors’ data 

to achieve optimal vibration control [38]. Overall, semi-active control is more stable and 

consumes less energy. 

2.1.1 Passive Control 

To reduce the damage of the earthquake to the building and improve safety, in the 

building structure, a nonlinear component is installed to consume the energy at the time of the 

earthquake. According to the damping technology applied by each building, it is mainly 

divided into two different damping strategies: resistant and isolation. Resistant technology is 

the use of a number of devices or structures in a building to absorb energy, such as beams and 

columns, shear walls or absorbers; isolation technology is to specially equip with an isolation 

layer to install isolation pads or dampers, so as to isolate most of the seismic energy.  

Common resistant structures mainly include steel structure, steel-concrete structure, 

frame structure, shear wall and brick-concrete structure. First of all, steel structure is a 

structure composed of steel materials which is light in weight and convenient in construction 

but has poor corrosion resistance and is non-refractory [39]. It is widely used in large 

buildings such as the Bird's Nest Stadium in China, the Eiffel Tower in France and the Golden 

Gate Bridge in the United States. Secondly, material of steel-concrete structure is reinforced 

concrete, for example, a mixture of steel, cement, gravel and water. This structure has good 
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seismic performance and durability, and is often used in high-rise residential and villas, but 

the cost is relatively high [40]. Thirdly, frame structure is composed of beams and columns 

connected by rebars. Beams and columns can work together to resist the horizontal and 

vertical loads of the building, but the wall in this structure does not bear the weight [41] and is 

only for the protection and separation. Fourthly, reinforced concrete wall are used to replace 

the beams and columns in the frame structure that can bear the internal forces caused by 

various loads but unfortunately cannot be applied to large space buildings [42]. This structure 

is called Shear wall. Finally, brick-concrete structure is a structure consisting of a small part 

of reinforced concrete and most of the brick wall. The resistance to pressure is high, but the 

bending and shear resistance are poor [43] which result in weak seismic performance. In 

conclusion, the resistant structure still has to bear most energy of the earthquake that this 

technology is just used as the second defence. 

The base isolation technology is one of the mature high-tech technologies which makes 

possible for buildings to not collapse in earthquake. Building with isolation technology only 

experiences a magnitude 5.5 earthquake when a magnitude 8 earthquake comes [1]. This 

technology not only reduces the damage caused by the earthquake, but also protects the 

decoration and important equipment. At present, because of the different materials of the 

isolation layer, it can be divided into three specific methods: rubber isolation bearing, sliding 

isolation, and damper isolation. However, it is worth noting that the design and construction 

of the isolation structure must be very rigorous, because the isolation layer is the extension of 

the column. Once the structure is flawed, it will cause irreparable damage to the main 

structure after the earthquake [44]. 
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In the early 20th century, the concept of Tuned Mass Damper (TMD) was proposed [45] 

which uses tuned methods to reduce the vibration. However, TMD system still has some 

shortcomings. First, the vibration control is very sensitive to the frequency of the earthquake. 

If the optimal frequency of TMD system deviates from the seismic frequency by more than 

5%, the control effect will decrease by about 30% [46]. Next, the substructure mass of TMD 

system has a great influence on the structural control ability. If the mass is insufficient, the 

control effect is usually poor [47]. Finally, TMD system mainly responds to linear frequencies 

and vibrations, so TMD system is ineffective for seismic control [48] because the structure 

may enter nonlinear frequencies and vibrations when earthquake comes. 

2.1.2 Active Control 

Active control technology is activated by external disturbances or internal responses. 

System continuously reads data from the sensors, and then calculates the required force for 

actuators to output. The control force which outputs to the structure will change the motion 

characteristics of the structure, thereby reducing the vibration response of the structure. Since 

the force of active control can change by the detected seismic wave, the seismic effect is 

basically independent of the seismic wave characteristics. So the seismic performance is 

better than the passive control. However, actuators usually requires huge energy or several 

devices to drive that makes this technology difficult to achieve in practical construction [34]. 

At present, the more mature active control technologies are: Hybrid Mass Damper (HMD), 

Active Mass Driver (AMD), Active Tendon System (ATS) and Active Bracing System (ABS) 

[49].  
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First of all, to improve the performance of passive control Tuned Mass Damper (TMD), 

Hybrid Mass Damper (HMD) was proposed [50] which is a combination of TMD and active 

control actuators. The system has the reliability of fail-safe, which means that TMD system 

can still play its passive control role and effect when HMD system fails [51]. When the time 

that the environmental disturbance is small, HMD system can switch to TMD system mode 

that active control actuator stops working to save energy and prolong its life. 

Next, AMD system controls the motion of the inertial mass to convert the vibration 

energy of the structure into the energy consumption of the movement of the AMD mass. The 

springs and dampers in the system can reduce the movement of the mass and allocate the 

proportion of various forces in the controlling process. The resultant force is the active control 

force applied by the AMD system to the structure. Although AMD mass is lighter than TMD 

and AMD system is more effective, the construction and the maintenance of AMD system are 

still more expensive and this technology involves reliability issues [52]. 

Last but not least, ATS system is similar to ABS system. Active control tendons/braces 

are placed on the facade of the building to effectively change the stiffness of the structure 

based on the data reads by sensors, and then enhance the seismic capacity of the structure. 

The earliest ATS models and dynamic characteristics were proposed in [53], and then Soong's 

team improved and designed better results [54, 55]. Similarly, the concept of ABS was first 

proposed in [56], and finally a two-way ABS control system was implemented by the Soong 

team [54, 55]. 
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2.1.3 Hybrid Control and Semi-active Control 

Hybrid control and semi-active control focuses on the controlling of the properties of 

passive system device. Sensors continuously collects data from external disturbances and 

internal structural reactions, and then changes the stiffness or damping coefficient of the 

structure in real time with less control force to reduce the structural response to achieve the 

seismic target. In other words, hybrid control and semi-active control can be said to be a 

combination of passive control and active control. The main difference is that the hybrid 

control applies active control to regulate the natural motion of passive control, while the 

purpose of active / semi-active control is to improve the control effect to the structure. The 

most common hybrid control is dominated by Hybrid Mass Damper (HMD), and the common 

semi-active control systems include Active Variable Stiffness (AVS), Active Variable 

Damping (AVD) and Active Variable Stiffness and Damping (AVSD). 

The HMD system adds Active Mass Damper system (AMD) to Tuned Mass Damper 

system (TMD). Unlike the AMD system that is directly attached to the structure, the AMD 

system is added to the TMD system so that it can be very small and light (about 10% to 15% 

of the mass of the TMD) [24]. Hybrid control mainly depends on the natural vibration of the 

TMD system, and the main goal of the AMD system here is to adjust the dynamic 

characteristics of the TMD system. The energy required by the HMD system and the force 

required to execute the control can be much smaller than the AMD system, but the equipment 

size and construction space requirements are high which is an application problem [57]. 

AVS system is activated by the sensors’ data to quickly lock the device to adjust the 

stiffness of the system, thereby reducing the response of the earthquake. Experiments in [58] 

show that the device of AVS system is relatively simple, requiring only a small amount of 
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control force to change the parameters of the structure, and the performance is obvious. 

However, the design and application of AVS system is still difficult because the stiffness of 

the structure itself is large, while the control device can only increase the stiffness. In other 

words, AVS system can work better in a less stiffness structure [59]. 

Similarly, AVD system is activated by sensor data to quickly adjust the damping 

coefficient to make the damping force close to the optimal control force, thereby achieving 

the semi-active control close to the active control. Here, the semi-active variable damping 

device requires the ability of continuously changing of damping force. Common dampers 

include controllable damping-viscous damper [60], magnetorheological fluid damper [61], 

electrorhelogical damper and piezoelectric friction damper [62]. 

Finally, AVSD system is actually a combination of AVS system and AVD system. The 

basic principle is to actively adjust the controllable passive device to achieve the optimal 

structural stiffness or damping based on the data read from sensors, so that the structural 

response during earthquake reduces as small as possible to achieve the seismic target. In [63], 

experiment shows that the displacement of the floor can be improved by more than 40%, and 

the acceleration can be improve by more than 25%. 

In conclusion, semi-active control combines the advantages of passive control and active 

control to quickly control the structure but requires only a small amount of energy to operate. 

In addition, the costs of construction and maintenance are lower, which is currently the most 

accepted seismic control method. 
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2.2 Earthquake Early Warning System 

From 2003 to 2007, Japan officially developed the Earthquake Early Warning (EEW) 

System and set up stations at frequent earthquakes areas throughout the country. The principle 

of EEWS is to utilise a complex network of observation stations and the time difference of 

seismic waves. As shown in Figure 2-2-1, when an earthquake occurs, the high frequency 

compressional P-waves which travel fastest (about 6-7 km/sec) and it is the first body wave 

which will be detected by a seismic station. The more destructive surface waves (S-waves) is 

slower and takes a longer time to arrive. According to the characteristics of the P wave 

(Primary Wave) in the seismic wave which is 1.73 to 1.85 times faster than the S wave 

(Secondary Wave) [64], after detecting the P wave, the seismic information such as the 

acceleration, amplitude, frequency and duration [27] are broadcasted to the whole country 

through radio waves which transmit much faster (about 300,000 km/sec). However, there are 

still some problems in EEWS. First, EEWS is only effective for the areas 70 kilometres away 

from the epicentre, and the areas within 70 kilometres is a blind zone for EEWS [65]. It is 

impossible to receive an earthquake warning before the arrival of strong earthquake. Second, 

EEWS uses the first 3 seconds of the P wave to make an estimate [66]. The earthquake scale 

is calculated from the main wave, and then the earthquake scale and maximum displacement 

are integrated to estimate the distance from the epicentre. Therefore, limited information 

possibly causes the EEWS to be inaccurate. 
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Figure 2-2-1 Schematic Diagram of Earthquake Early Warning system 

 

In Japan, EEW can provide earthquake warnings from a few seconds to a few minutes, 

providing coping time to response to the earthquake. Recently, there are many applications 

aiming at reducing larger earthquake disasters, such as shutting down system operations, 

reducing the speed of transportation, opening all exits and evacuating personnel [67]. Future 

applications should focus more on automation, with a view to doing more things in a limited 

amount of time, for example, activating devices, shutting down systems, and closing 

pipelines. 

2.3 Mathematical Model of Dynamic System of Base 

Isolation Structure 

First, the structure is assumed to be undamaged and linear, and no relative movement 

between base and foundation is assumed.  The shear building model is commonly adopted 

which assume the floor slabs are infinitely rigid and simplifies the n-level structure into 
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n-degree of freedom. The motions of the rigid floor plate are confined to two translations and 

one rotational motion. When the rigid-diaphragm assumption is made, a multi-degree of 

freedom system with DOF equals to n. Under 1-dimensional wind excitation, the following 

equation of motion can be written: 

 

(1) Mẍ + Cẋ + Kx = W 

 

where x is the relative displacement vector. M, C, and K are n × n mass, damping and stiffness 

matrices respectively. W is an (n × 1) wind-excitation vector.  

Then the addition of traditional base isolation layer causes relative movement between the 

building and the foundation. Equation of motion is written as follows. 

 

(2) M𝑏𝑖ẍ + C𝑏𝑖ẋ + F𝑏𝑖 = −M𝑏𝑖Γ𝑥̈𝑔 

 

where x is a vector of relative displacements corresponding to the degree of freedom. Mbi is 

mass matrix in which it contains mb (n+1 × n+1). Cbi is the corresponding damping matrix. Γ 

is a column of ones and 𝑥̈𝑔 is one-dimensional ground acceleration. F is the resilience force 

of the system. For a linear system F=Kx where K is the stiffness matrix. However, in a base 

isolated structure, the resilience force F will demonstrate some nonlinearity due to the base 

isolation system. Thus, we may write, 

 

(3) F = Kx + γ𝑓𝑓 
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where γ is a location matrix indicating the location of base isolation (which is at the base in 

this case), and ff is a nonlinear frictional force of the base isolation device. The Bouc-Wen 

resilience model [68] has been used to model elastomeric types [69] and sliding type [70] base 

isolators. Here, we assume a friction-based sliding isolation system and the frictional force (ff) 

is assumed proportional to weight of the main structure, the Bouc-Wen model can be written 

as, 

 

(4) 𝑓𝑓 = 𝜇𝑊𝑍 

where W is the weight of structure, m is the coefficient of friction and Z is a dimensionless 

parameter which is defined below: 

 

(5) 𝑌𝑍̇ = 𝐴𝑥̇ − 𝛾|𝑥̇|𝑍|𝑍|𝑛−1 − 𝛽𝑥̇|𝑍|𝑛 

 

where x is the relative displacement of dynamic system, Y is the elastic deformation, while A, 

b, g and n control the shape of hysteresis. Equation (4) and (5) may readily be coupled with 

equations of motion in a dynamic system. 
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SEISMIC STRUCTURAL RESPONSE 

MONITORING 

When an earthquake occurs, the high frequency compressional P-waves which travel 

fastest, and it is the first body wave which will be detected by a seismic station. The more 

destructive surface waves (S-waves) is slower and takes a longer time to arrive. The EEW 

makes use of this time difference. Seismic waves travel at 4-7 kilometres per second [71] 

which is significantly slower than the electromagnetic wave which travel at speed of light 

(300,000 km/sec). Thus, EEW observes the occurrence and P-waves by a network of 

seismometers distributed through the country, and system quickly analysis ground motion 

data and disseminate warning messages prior to the arrival of the S-waves [67]. 

In this experiment, the seismic monitoring system collects data from the network of 

sensors and EEWS from internet, and then filter out the important information. These sensors 

are placed at critical locations in the structure to detect the structural responses via controller. 

Data sensed from the sensors can be used for active control as the input of the algorithm or to 
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act as a trigger factor to activate the base isolation system. This chapter focuses on the seismic 

structure response monitoring system, which uses the EEWS from internet and the network of 

sensors to collect the seismic information. 

3.1 Seismic Monitoring System Architecture 

For the smart base isolation system to be activated, predefined trigger events are needed . 

A combination of sensors form the seismic monitoring system. In this project, the system has 

two trigger events: the signals from the EEWS and the network of sensors where the 

information is organized by Arduino control platform with Ethernet shield and sensors. The 

Ethernet shield is expanded on the controller, and as shown in Figure 3-1-1, according to the 

requirement, the sensors are set at different locations around the structure. 

 

 

Figure 3-1-1 Seismic Monitoring System Architecture 
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When an earthquake is detected, the observatory sends the earthquake signals 

immediately via the EEWS. The changed flag of EEWS is read by Ethernet shield from 

internet and then a signal is sent to the microcontroller to activate the system. Due to the fact 

that EEWS contains a blind zone where no early warning may be given due to proximity of 

epicentre [72], on-site monitoring of ground acceleration is required to ensure activation of 

base-isolation system as backup plan. Here, ground movement is constantly monitored by 

accelerometers set at the foundation level around the building. More accelerometers can 

effectively avoid accidental triggering of system due to malfunctions, signal noises from 

electronic instrumentation and local disturbance such as vibrations from vehicular traffic [73]. 

Once acceleration above a predetermined threshold is detected, the system is triggered. 

Moreover, displacement sensor constantly measures the displacement of base relative to its 

original position. Once the ground movement ceases the system will reset and push the 

building back to the origin. Since the devices are lightweight in comparison to the total 

gravity weight of the structure, the mechanism and its associated mechanical parts will be 

simple and inexpensive. Unlike conventional control systems, the proposed system does not 

require a very meticulous control strategy to be implemented. This enables a much lower cost 

of computational effort, hardware requirement and maintenance that a low-cost electronic 

controller board will suffice. In addition, malfunctioning of control system will not cause any 

damage or significant effect onto the structure. Long term maintenance will be easy and 

inexpensive. 
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3.2 Hardware Circuit Design 

 

Figure 3-1-2 Circuit Design of Seismic Monitoring System 

This section describes the hardware design of the seismic monitoring system. As shown 

in Figure 3-1-2, through the Arduino control platform, the seismic information collected from 

the system is used to trigger the proposed smart base isolation system. Here, the control 

platform and requirements, available seismic information, and network communications are 

listed and introduced. 

GND – 0V   SCL – Serial Clock 

VCC – 5V    SD0 - Serial Data Out 

SDA – Serial Data   CS – Chip Select 
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3.2.1 Control Platform and Requirement 

The seismic monitoring system is controlled by a microcontroller board (ATmega3289 

clocked at 18MHz) called Arduino MEGA 2560 where baud rate can be set from 300 Hz to 

115200 Hz. As shown in the left of Figure 3-2-1, this platform has 54 sets of digital 

input/output ports (14 of which can be used for PWM output), 16 analog inputs and a 16 MHz 

crystal oscillator [74]. Because of the built-in bootloader, it can be burned directly via USB 

instead of other external burners. The power supply can be powered by USB directly or by 

using an AC-to-DC adapter or battery. Moreover, the platform is inexpensive (about $38) and 

small in size. Its extensive library supports the execution of a variety of controllers, sensors 

and algorithms, so users can achieve their goals with minimal cost and complete design logic, 

making this platform much ideal for lab-scale machine experiments. 

 

  

Arduino MEGA 2560 Electronic Materials 

Figure 3-2-1 Arduino MEGA2560 and Electronic Materials 

For the requirement of the seismic monitoring system, the sensors used are 

accelerometers, flex-meters and distance sensors. Here, external power supply is not 

necessary, and Ethernet shield will be discussed later in the network communication section. 
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Therefore, the electronic materials are controllers, sensors, wires, resistors and breadboards as 

shown in the right of Figure 3-2-1.  

3.2.2 Accelerometers, Flex-Meters and Distance Sensor 

3.2.2.1 Accelerometer (ADXL345) 

The model of the accelerometer in this project is ADXL345 which is a small, low-power 

three-dimensional accelerometer with a measurement range of ±16g and a data output format 

of 16-bit binary complement [75]. It can be executed by Arduino control platform via SPI or 

I2C communication protocols. Its resolution can achieve up to 3.9mg/LSB to measure not 

only static acceleration of gravity but also measure the dynamic acceleration caused by 

motion or hitting. In other words, this sensor can detect if the device is tilted or moving. 

 

 
  

Accelerometer 

ADXL345 

I2C Protocol 

Pin Diagram 

SPI Protocol  

Pin Diagram 

Figure 3-2-2 Accelerometer ADXL345 and Pin Diagram 

As shown in the left of Figure 3-2-2, the ADXL345 accelerometer has eight pins: GND, 

VCC, CS, INT1, INT2, SD0, SDA, and SCL. The GND and VCC pin are responsible for the 

power supply. The CS pin determines the chip selection. The INT1 and INT2 pin output the 

interrupt. SDO, SDA, SCL are responsible for the serial transmission. There are two different 
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wiring methods because of different communication protocols: I2C and SPI. For I2C protocol, 

the pin diagram is shown in the middle of Figure 3-2-2, and for SPI protocol, the pin diagram 

is shown in the right of Figure 3-2-2. One thing to note here is to be careful not to make the 

voltage of the VCC pin higher than 3.6V to avoid burning the chip. 

3.2.2.2 Flex-Meter 

The flex-meter is actually a kind of variable resistor. One side of the sensor is printed 

with a polymer ink in which conductive particles are embedded. The ink is bent to cause the 

internal conductive particles to move away from each other, thereby increasing the resistance. 

When flex-meter is not bent, it is a 30K ohms resistor. The resistance can increase to 70k 

ohms at 90 degrees according to the bending angle (up to 90 degrees). 

 

 

 

 

 

 

 

Flex-Meter Flex-Meter Pin Diagram 

Figure 3-2-3 Flex-Meter and Pin Diagram 

As shown in Figure 3-2-3, the simplest circuit design of the flex-meter is to use the 

concept of voltage division. By connecting the flex-meter in series with a fixed resistor, the 

controller can read the voltage via the theory of series circuit, and then the angle and force of 



 

 

32 

 

the bending can be derived according to the datasheet. One thing to note here is the bending 

direction of the flex-meter is fixed. Bending in the other direction does not produce valid data 

and may damage the sensor. 

3.2.2.3 Distance Sensor 

On the Arduino control platform, the vl53l0x is one chose of the high-accuracy distance 

sensors. Without considering the color or the light reflectivity of the target, this sensor can 

measure the absolute distance within two meters, and the light source is completely invisible 

and harmless to the human eye. The measurement method is to use a new generation of 

time-of-flight (ToF) laser ranging which is a method of measuring distance based on the time 

difference between the emission and return of infrared light [76]. By using infrared light, it 

ensures less interference and makes it easier to distinguish natural light for higher 

performance and stability. 

 

 

Distance Sensor vl53l0 vl53l0x Pin Diagram 

Figure 3-2-4 Distance Sensor vl53l0 and Pin Diagram 

As shown in Figure 3-2-4, the VL53L0X sensor has six pins: VIN, GND, SCL, SDA, 

GPIO1, XSHUT. The GND and VCC pins are responsible for the power supply. SDA, SCL is 
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responsible for serial transmission. The XSHUT is responsible for turning the sensor on/off. 

This sensor uses the I2C protocol, and the pin diagram is shown in the right of Figure 3-2-4. 

3.2.3 Network Communication 

To obtain the signal of EEWS on the Internet, the Ethernet shield is chosen as one of the 

Arduino expansion boards that allows the Arduino control platform to connect to the Local 

Area Network (LAN) or the Internet. This package supports TCP/IP Protocols (TCP, UDP, 

ICMP, IPv4 ARP, IGMP, PPPoE, Ethernet) on the hardware circuit to reduce the burden of 

Arduino. It can achieve transmission speed up to 100MB / s [77] but only allow up to four 

connections at the same time. As shown in the left of Figure 3-2-5, the Ethernet shield has six 

status indicators: TX, RX, COL, FDX, 100, LNK. First, LNK, TX and RX indicate that data 

is being transmitted/received. COL indicates that a packet collision has occurred. FDX means 

that the network connection state now is full duplex. 100 indicates that the current 

transmission speed is 100 MB/s. 

 

  

Ethernet Shield Plugged Ethernet Shield on Controller 

Figure 3-2-5 Ethernet Shield and Ethernet Shield on Controller 
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For circuit design, Ethernet Shield has long pin header that can be plugged directly into 

Arduino control platform (as shown in the right of Figure 3-2-5) and retain the pin layout of 

the Arduino control platform, allowing users to stack more expansions boards as needed. One 

thing to note is that the communication protocol between the Arduino controller and ethernet 

shield is SPI, so communication and memory card read/write cannot both operate at the same 

time because they share the same SPI bus. 

3.3 Software Design 

The project will operate on the Arduino control platform, so an Arduino Integrated 

Development Environment (IDE) is required which includes text editors, code libraries, 

compilers and test platforms to simplify software development and to identify and minimize 

coding errors and misspellings. First of all, according to the operating system, the suitable 

Arduino IDE can be downloaded and installed for free from its official website. After the 

installation, the Arduino control platform connects the computer via the USB cable and then 

checks if the corresponding COM port appears. Once the environment is set down, the 

software design can begin. 

Arduino's software design is divided into two functions: setup and loop. The code in the 

setup( ) function will only be executed once the power is turned on or after pressing the 

RESET button, mainly responsible for parameter Initialisation and pin definition. And the 

code in the loop( ) function will be looped after the setup( ) function is executed, mainly 

responsible for the execution of the main functions and the input/output of the data. 
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3.3.1 Accelerometer 

This project employs two ADXL345 accelerometers for ground motion detection. In this 

experiment, considering the cost of the wiring and the complexity of the layout, the controller 

makes serial transmission with sensors via I2C protocol. Under this, according to [78, 79], the 

ADXL345 accelerometer can simultaneously support read/write of two devices with the 

pull-up resistor 4.7kΩ. When there is only one accelerometer is used, the SD0 pin is 

grounded, and the device address is 0x53. Here, the memory address 0xA6 is used for data 

writing and the memory address 0xA7 for data reading; when using two accelerometers, the 

SD0 pin is connected to 3.3V, and the device address is 0x1D. Here, the memory address 

0x3A is used for writing and memory address 0x3B for reading. 

 

 

Figure 3-3-1 The Flow Chart of Accelerometer ADXL345  

 

The flow chart of ADXL345 accelerometer is shown in Figure 3-3-1. The software 

design can be divided into three parts: enabling the I2C protocol, adjusting the mode of 

sensor, and reading the data. Firstly, in the setup( ) function, the Wire.begin( ) command is 

used to initialise the I2C communication, and then the Serial.begin() command is to set the 

data transmission rate in bits per second (also call baud rate) for serial transmission. Next, via 

the Wire.write( ) command, the DATA_FORMAT register 0x31 is for setting the sensing 

range from ±2g to ±16g, and the POWER_CTL register 0x2D is for switching the mode of 

Wire.begin( ) Serial.begin( ) Wire.write( ) Wire.read( )
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sensor such as measure, sleep and wakeup. Finally, after setting the transmission and the 

sensor mode, the Wire.read( ) command in the loop( ) function is used to continuously read 

the data from the sensor. 

3.3.2 Flex-Meter 

The control method of the flex-meter focuses on the concept of voltage division in the 

parallel circuit, so it is relatively simple in the software design part. However, as the 

controller's specifications and power supply are different, there will be some errors that need 

to be corrected, so the range of resistance values related to the bending angle needs more tests 

to be more accurate. 

 

 

Figure 3-3-2 The Flow Chart of Flex-Meter 

 

The flow chart of flex-meter is shown in Figure 3-3-2. The software design can be 

divided into three parts: enabling analog input, reading data, and data comparison. First, in the 

setup( ) function, the Serial.begin( ) command is used to set the data transmission rate, and 

then the pinMode( ) command is used to set the pin to perform analog input. Next, in the 

loop( ) function, the analogRead( ) command is used to read the voltage from the analog 

input to calculate the resistance value. Finally, use the map( ) command to compare the 

resistance values to the bend angle of sensor. 

Serial.begin(  ) pinMode(  ) analogRead(  ) map( )
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3.3.3 Distance Sensor 

In this project, the controller makes serial transmission with the sensor via the I2C 

protocol. Under this, according to [80], the distance sensor can simultaneously support 

read/write of multiple devices according to the device address. Here, you can use the 

lox.begin( ) command to define more device addresses to initialise more distance sensors. 

One thing to know is that the device address must be different from the default device address 

(0x29) and must not be lower than 0x7F. 

 

 

Figure 3-3-3 The Flow Chart of Distance Sensor vl53l0x 

 

The flow chart of the distance sensor is shown in Figure 3-3-3. Software design can be 

divided into two parts: enabling the I2C protocol and reading data. First, in the setup( ) 

function, the Wire.begin( ) command is used to initialise the I2C transmission, and then the 

Serial.begin( ) command is used to set the data transmission rate. Finally, the Wire.read( ) 

command in the loop( ) function is used to continuously read the data from the sensor. 

3.3.4 Ethernet Shield 

In this project, Ethernet shield is used to read the EEWS signals from the internet. To use 

the Ethernet expansion board, the Arduino IDE itself already has some basic libraries that can 

help activate the Ethernet shield, such as Wire.h, SPI.h and Ethernet.h. After setting the 

Wire.begin( ) Serial.begin( ) Wire.read( )
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environment, the device parameters have to be ensured that includes mac ID, IP address, IP 

port, DNS, gateway and subnet. Then the software design can begin. 

 

 

Figure 3-3-4 Ethernet Shield Flow Chart 

 

The flow chart of Ethernet shield is shown in Figure 3-3-4. The software design can be 

divided into three parts: enabling SPI transmission, enabling Ethernet shield and data reading. 

First, in the setup( ) function, the SPI.begin( ) and Serial.begin() commands are used to set 

the SPI transmission and data transmission rates. Next, the Ethernet.begin() command will 

activate the Ethernet shield. Finally, in the loop( ) function, use the client.read() command to 

get the information from the specified ethernet IP address. The only thing to note is that the 

client.stop( ) command must be use after all to free the memory for the next communication. 

This experiment will perform in the local area network and employ the Ethernet Shield 

embedded on the controller. The browser acts as the console, and the Ethernet shield acts as 

the monitoring server. Therefore, the computer operating the browser and the controller with 

the embedded Ethernet shield must be connected to the same network and assigned IP 

addresses. As shown in Figure 3-3-5, when no earthquake occurs, the EEWS system shows no 

earthquake and the base isolation system is off. When an earthquake is detected, the EEWS 

system updates the seismic flag and then commands the controller to activate the base 

isolation system. 

SPI.begin( ) Serial.begin( ) Ethernet.begin( ) client.read( ) client.stop( )
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No Earthquake and BI System Off Earthquake Comes and BI System On 

Figure 3-3-5 Ethernet Shield Test 

3.4 Summary 

In this chapter, control platform, sensor fusion and network communication are 

discussed to combine into a seismic structural response monitoring system. The first section, 

by the system architecture, provides a general understanding of the building model and sensor 

positions. The second section is about the specifications of the control platform, the functions 

of the sensors, and the mechanism of network communication. The last section discusses how 

to code to manipulate the control platform, sensors, and network communications. After the 

seismic structural response monitoring system is set up, and then the actuators are added as 

part of control, the proposed system is complete. 
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SMART MECHATRONIC BASE ISOLATION 

SYSTEM 

In chapter 4, the proposed system will be demonstrated and validated. Here, EEW is used 

to activate the base isolation system. The system begins with a conventional passive isolation 

system, but it is able to physically decouples the structure from its foundation. A multi-degree 

of freedom system is supported on an isolated base. The isolation system possesses its own 

stiffness and damping characteristics denoted by kb and cb. A flow-chart in Figure 4-1 shows 

the sequence of operation of the proposed system. During standby condition (i.e. with no 

ground motion), shear keys are engaged such that the structure is effectively not isolated. The 

shear keys provide high strength and stiffness against serviceability lateral forces such as 

design wind loads. When an earthquake is detected by EEW, a signal is sent to the 

microcontroller to disengage the shear keys from the foundation, and the system becomes 

passive base-isolated structure. Once acceleration above a predetermined threshold is 

detected, shear keys are disengaged via actuators. A distance sensor will constantly measure 

the displacement of structure relative to its original position. Once the ground movement 

ceases the system will reset and shear keys engage again. Since the shear keys are lightweight 

in comparison to the total gravity weight of the structure, the mechanism and its associated 

mechanical parts will be simple and inexpensive. Unlike conventional active or semi-active 

control systems, the proposed system does not require any control strategy to be implemented. 
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This enables a much lower cost of computational effort, hardware requirement and 

maintenance. A low-cost electronic controller board will suffice. The complexity of system 

identification for the purpose of tuning control strategies can also be avoided. In addition, 

unlike actively controlled systems, malfunctioning of control system will not cause any 

damage or significant effect onto the structure. Long term maintenance will be easy and 

inexpensive. 

 

Figure 4-1 Flow Chart of Smart Mechatronic Base Isolation System 

4.1 Solenoid Shear Keys 

4.1.1 Experimental Setup 

A lightweight six-storey frame made of aluminium, timber and acrylic glass is fabricated 

for this investigation. Four columns made of 5mm thick acrylic glass strips are connected to 

3mm thick timber boards which simulate floors. The frame (above the base isolation system) 

measures 280mm x 225mm x 900mm (height). The bottom storey is braced in out-of-plane 

direction to avoid torsional motion. The base of the frame is made of a 10mm thick plywood 

and secured on the shake table. Figure 4-1-1 shows an overview of the experimental setup. 

Steel blocks are positioned on each floor to simulate floor masses. The total weight of frame 

Initialisation

•Actuators Extend

•Shear Keys Engage

Standby

•Update Seismic Signal

Activation

•Actuators retract

•Shear Keys Disengage
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is 5.4kg (excluding base isolation system). The base isolation system is made up of two 

16mm diameter linear steel rails and four ball-bearing slide blocks which support base plate 

of the model frame, as shown in Figure 4-1-2. The linear rail and slide block system is 

typically used in manufacturing when a high load capacity and a linear motion is required. 

Figure 4-1-3 shows the close up view of the base isolation. Natural frequencies were 

determined by experimental modal method and the first three values are: 1.62Hz, 5.94Hz and 

11.5Hz. A free vibration test is conducted and its viscous damping ratio () is 2.85% 

determined by a fitted exponential curve, as shown in Figure 4-1-4. 

The experimental setup is secured on a Quanser Shake Table II which simulates ground 

motion in one dimension, aligning with the base isolation system. Four scaled historical 

earthquakes are simulated: 1979 El Centro, 1995 Kobe, 1994 Northridge and 1992 

Mendocino (data provide by Quanser Shake table II). The shake table is controlled via 

MATLAB SIMULINK and an algorithm is implemented to determine the desire position of 

the shake table measured accelerations yielded on the shake table are equivalent to the 

recorded values. Responses of the frame are measured independently by four accelerometers 

positioned at four locations: top of shake table, base (above base isolation), 3rd level and roof 

as shown. Each earthquake history is repeated three times:  

1. “Fixed based” - with the shear key is deployed and the base isolation has been disabled;  

2. “BI by EEW” - shear keys are disengaged prior to the ground shaking and base isolation 

is effective, representing a situation where EEW is effective forecasting the arrival of 

ground motion, and; 

3. “BI by sensor” refer to the situation which the shear keys are disengaged by the 

controller, when readings from accelerometers exceed the threshold value. 
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Figure 4-1-1 Overview of Experimental Setup 

 

Figure 4-1-2 Side View of Setup 
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Figure 4-1-3 Front View of Setup 

 

Figure 4-1-4 Free Vibration Test of Model Frame 
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4.1.2 Controller, sensors and actuators 

The smart base isolation requires connectivity between EEWS, network of sensors and 

actuators. In the experiment, the smart base isolation is controlled by Arduino microcontroller 

where the baud rate is set to 9600Hz. In order to monitor the status of EEWS, controller keeps 

reading the data from EEWS until the earthquake statement changes. Internet communication 

is carried out by an Ethernet shield plugged in the controller. As the backup plan, the 

proposed system also requires the network of sensors to trigger base isolation in the event 

which EEWS fails to provide advanced warning. Ground acceleration detection is made via 

two 3-axis digital accelerometers whose model is ADXL345. These accelerometers are very 

low cost and factory calibrated, and suitable for the present experiment. For the choice of 

communication protocols, I2C is chosen for the network of sensors in this project for its 

simpler connectivity with controller board because it only requires two signal lines connecting 

Serial Data Line (SDA) and Serial Clock Line (SCL). 

The requirements for the actuator in this smart system are low power supply 

consumption and fast reaction time. In the experiment, solenoids are chosen as shear keys. An 

electric solenoid works on the principle of electromagnet. It contains a coil that when 

energized it produces a controlled magnetic field through its centre. By placing a magnetic 

armature inside that field, the armature can move in or out of the coil. The use of solenoid is 

chosen due to its very rapid deployment and its simplicity in circuitry design. However, one 

drawback is that they require a higher voltage and a separate DC supply is required in the 

experiment. The solenoids in the experiment are powered by 12V DC and its circuit consists 

of diode, transistor and resistor. A simple circuit diagram of the experimental setup is shown 

in Figure 4-1-5. 
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Figure 4-1-5 Circuit Diagram of Smart Base Isolation System 

4.1.3 System Initialisation and Activation 

In system Initialisation stage the system has to reset the position of the main structure 

and deploy the shear keys. In the experiment, two electric linear actuators are selected to 

execute the system Initialisation. They are a kind of electric motors with a feedback signal 

such that the extension can be fed to microcontroller [81]. They are often used in 

manufacturing and robotics where linear motion is required. As shown in Figure 4-1-3, two 

Firgelli 100mm stroke linear actuators (peak force 31N at 7mm/s) are used. They share the 

GND – 0V 

VCC – 5V 
SDA – Serial Data 

SCL – Serial Clock 

SD0 - Serial Data Out 
CS – Chip Select 
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same power supply with the microcontroller board which simplifies the circuit design. In the 

system Initialisation stage, the actuators are programmed to fully extend (see Figure 6), which 

will push the main structure via a centre plate to its original position. This simple arrangement 

eliminates the need of a displacement sensor to monitor position of the main structure. Once 

shear keys are deployed the actuators will fully retract to avoid making contact with the base 

isolation system. Subsequently, the system enters service condition in which the 

microcontroller constantly refreshes the status with EEW and anticipates an earthquake 

signal. 

In the experiment, the base isolation can be activated by three methods: (1) signals from 

EEW via Ethernet shield, (2) triggered by readings from accelerometers (ADXL345) and (3) a 

manual switch. The manual switch facilitates adjustments and acts as a manual override, for 

example by a building manager in a real-life application. The threshold acceleration to trigger 

base isolation is set to 0.04g. This threshold value is arbitrarily set for the purpose of this 

experiment and can be programmed to any desirable value. Shear keys are only triggered 

when the average of both detected acceleration exceed this threshold simultaneously, because 

high sensitivity may cause unnecessary trigger [82]. 

4.1.4 Results and Discussions 

A total of 12 earthquake simulations were carried out and the test setup is robust and 

repeatable. Re-centring mechanism performed successfully after each ground motion ceases. 

Peak values of structural responses are shown in Table 4-1-1 and plotted against time in 

Figure 4-1-6 to Figure 4-1-9. For clarity only response on roof level is plotted.  It should be 

noted that these readings are independent of those recorded by accelerometers (ADXL345) 
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connected to the controller board. These measurements are filtered by 6th order Butterworth 

low-pass filter in MATLAB with cut-off frequency of 25Hz. The figures are arranged in the 

following sequence: (a) measured shake table accelerations, and roof accelerations - (b) Fixed 

based; (c) Base isolation triggered by EEW and (d) Base isolation triggered by on-site 

accelerometers.  

 

  
Fixed-base BI by EEW BI by sensor 

1979 El Centro Roof 0.6576 0.0908 0.3760 

  3rd floor 0.7065 0.1019 0.6280 

  Base 1.8112 0.1157 0.7659 

1994 Northridge Roof 0.5879 0.1047 0.4600 

  3rd floor 0.6857 0.1011 0.5408 

  Base 0.8903 0.1200 0.8383 

1995 Kobe Roof 0.8865 0.1300 0.1142 

  3rd floor 0.5818 0.0984 0.1183 

  Base 0.1759 0.1371 0.1421 

1992 Mendocino Roof 0.5240 0.1516 0.4113 

  3rd floor 0.4897 0.2437 0.4909 

  Base 0.557 0.3512 0.5669 

Table 4-1-1 Experimental Results (units in g) 

From Table 4-1-1, it is evident that the base isolation system, if triggered by EEW prior 

to arrival of ground motion significantly reduce the observed structural responses in all levels. 

If EEW fails and triggering is carried out by on-site sensor, significant benefits are observed. 

It should be noted that the measured acceleration at the base of Fixed-base model is larger 

than the peak acceleration of shake table. This is due to the construction of the model frame 
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that even when the shear key is deployed, slight movement of the base is unavoidable and 

ground shaking causes small impacts between shear keys and base.  

 

 

 

Figure 4-1-6 1979 El Centro Earthquake 

In Figure 4-1-6, the 1979 El Centro Earthquake is characterized by a strong motion 

within the first 2 seconds of the time history, causing the rapid response of the structure 

almost immediately in the “fixed based” test (the second of Figure 4-1-6). However, when 
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base isolation is triggered by EEW before the arrival of the shock waves, structural responses 

are significantly reduced (the third of Figure 4-1-6). On the other hand, when EEW fails to 

predict and the base isolation is triggered by on-site accelerometer (the forth of Figure 4-1-6), 

the main structure is excited as a fixed-base structure early in the ground shaking and 

structural response quickly diminished as the shear keys are disengaged. 

 

 

 

Figure 4-1-7 1994 Northridge Earthquake 
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In Figure 4-1-7, the 1994 Northridge Earthquake is characterized with a strong shaking 

early in time history, and overall performance of the smart base isolation system is similar to 

the previous earthquake time history – the EEW triggered (the third of Figure 4-1-7) shows 

substantial reduction in structural response, while the sensor triggered (the forth of Figure 

4-1-7) shows some strong structural responses early but quickly diminished due to the 

released shear keys.  

 

 

 

Figure 4-1-8 1995 Kobe Earthquake 
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Figure 4-1-9 1992 Mendocino Earthquake 

In Figure 4-1-8 the 1995 Kobe Earthquake is characterized by a mild ground shaking 

followed by a sever shaking in about 18 seconds. Here, the EEW triggered response (the third 

of Figure 4-1-8) show great similarity to the sensor triggered response (the forth of Figure 

4-1-8). This is due to the fact that the sensors have triggered the base isolation prior to the 

strong ground motion. In Figure 4-1-9, the 1992 Mendocino Earthquake is also characterized 
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by strong shaking early in the time history, thus the system performance is similar to those in 

observed in El Centro and Northridge earthquakes. 

4.2 Electromagnetic Shear Keys 

4.2.1 Experimental Setup 

In this experiment, the lightweight 6-layer test model is made of acrylic plastic and 

aluminium strips. The base plate is made of 3 mm thick wood and attached to the column by 

aluminium brackets. The steel block for weight gain is located in the centre of each layer so 

that the total mass of the entire model frame reaches 7.5 kg. The test model is fixed on two 

layers of mutually orthogonal linear guides, as shown in Figure 4-2-1. Ground motions are 

simulated by the Quanser Shake Table II. The response of test model is measured 

independently by three 3-axis 2.4 GHz wireless accelerometers (BeanDevice AX-3D) at three 

positions: top of shake table, base plate above isolation device, and roof level of the model. 

The sampling rate is set to 100Hz and the data is exported to MATLAB for further analysis 

via the BeanScape software. 

 

Figure 4-2-1 Overview of Electromagnetic Shear Keys Experiment Setup 
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Four major scaled historical earthquakes are simulated through the shake table: (1) 1979 

Imperial Valley, (2) 1995 Kobe, (3) 1994 Northridge and (4) 1992 Mendocino earthquakes 

(data provide by Quanser Shake table II). In Table 4-2-1, this experiment will perform three 

operational modes for analysis and comparison: 

Operational mode Means of trigger Scenario 

1. Fixed base Nil Both EEW and on-site sensors 

fail to detect ground shaking 

2. BI by EEW EEW signal activates the base 

isolation  

EEW signal received prior to 

arrival of ground shaking  

3. BI by sensor On-site accelerometers detect 

vibrations higher than 

predetermined threshold values 

EEW fails to detect incoming 

ground shaking 

Table 4-2-1 Operational Modes in Experiment 
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4.2.2 Controller, Sensors and Actuators 

 

Figure 4-2-2 Circuit Diagram of Smart Base Isolation System 

A simple circuit diagram of the experimental setup is shown in Figure 4-2-2. In this 

experiment, the controller of the smart base isolation system needs to be able to (1) initialise, 

(2) receive signals from the EEWS/ the network of sensors, and (3) activate the base isolation 

system. The Arduino MEGA2560 is selected as the control platform and plugged into a 

network expansion board (called Ethernet Shield) to connect to the Internet. The network of 

sensors employs two 3-D accelerometers (called ADXL345) for near-field acceleration 

sensing and selects the I2C protocol based on wiring cost. The shear keys are used to 

GND – 0V   SCL – Serial Clock 

VCC – 5V    SD0 - Serial Data Out 

SDA – Serial Data   CS – Chip Select 
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activate/stop the system are mounted in the isolation device using four electromagnets (shown 

in Figure 4-2-3). In this experiment, when the electromagnet is energized, the attractive force 

coupling structure and the foundation is instantly generated, and the attraction is stopped 

immediately after the power is turned off to activate the base isolation system. However, the 

more powerful electromagnet is driven by the higher voltage supply and the lower the 

resistance, which results in higher costs. 

  

Figure 4-2-3 Electromagnets and The Base of Structure 

After the system is activated, the network of sensors still continually senses the vibration. 

Once the vibration is less than the threshold for a period, the system begins to perform 

Initialisation. System Initialisation employs two linear motors (peak force 31N at 7mm/s) 

performing stretch and retract. When the linear motors are fully extended, the structure is 

pushed back to the origin and fixed to the foundation; when the linear motors are fully 

retracted, the structure can slide freely on the isolation device after releasing the attractive 

force from electromagnets. 

4.2.3 Initialisation and Activation of Base Isolation System 

When the system Initialisation, the controller resets the position of the structure by 

expanding the linear actuators. In the experiment, two linear actuators are used to perform 
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system Initialisation. When the linear motors are fully extended, the structure is pushed back 

to its original position and then the electromagnet is activated to connect the foundation to the 

structure as the shear keys. In the standby mode, the controller continuously updates the 

signals from the EEWS and the vibration data from the network of sensors. Once the flag of 

the earthquake changes, the attractive force from the electromagnet is released to activate the 

base isolation system. 

As a backup plan, sensors network’s frequency, detection range, sensing mode, and 

read/write can be set by code based on the requirements and the actual conditions to avoid 

unnecessary triggering. Here, this experiment sets the sensitivity range to 5 LSB (about 0.039 

g). 

4.2.4 Results and discussions 

 

Earthquake Position Fixed base BI by EEW BI by Sensor 

1994 

Northridge 

Ground level 0.1746 0.1512 0.1095 

Roof level 0.3358 0.2039 0.1805 

1995 

Kobe 

Ground level 0.1303 0.0620 0.0682 

Roof level 0.2961 0.1159 0.1730 

1979 

Imperial Valley 

Ground level 0.1257 0.0593 0.0717 

Roof level 0.2836 0.0837 0.0900 

1992 

Mendocino 

Ground level 0.0936 0.0548 0.1012 

Roof level 01746 0.1047 0.1897 

Table 4-2-2 Experimental Results (units in g) 

Table 4-2-2 shows the structural responses perceived on different modes at different 

locations. Obviously, the base isolation system triggered by EEWS can effectively improve 
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the structural response caused by the earthquake and will produce better performance when 

the seismic energy is large. The base isolation system triggered by sensors is also tested when 

EEWS fails. Similarly, the base isolation system triggered by the sensor can also effectively 

reduce the structural response, but the performance is slightly lower than the base isolation 

system triggered by the EEWS. This problem can be divided into two parts: the setting of the 

sensor threshold and the hysteresis of the electromagnet. First, low sensor threshold will cause 

unnecessary system trigger, so vibrations that do not exceed the threshold are still transmitted 

to the structure. Second, the magnetic force of the magnet depends not only on the strength of 

the external magnetic field, but also on the magnetization of the original magnet. Therefore, if 

an opposite magnetic field is not provided, the electromagnet still retains magnetism after the 

power is turned off. 

 

Figure 4-2-4 Structural Responses of 1994 Northridge Earthquake (attack angle = 45o) 

 



 

 

59 

 

In Figure 4-2-4, the structural responses of the 1994 Northridge earthquake are shown 

and compared in the "fixed base", "triggered by EEW " and "triggered by sensors" 

experiments. In the first row of Figure 4-2-4, the base isolation system triggered by the EEWS 

was fully activated before the earthquake, so the structural response was improved. When the 

EEWS fails, in the second row of Figure 4-2-4, some vibrations are still transmitted to the 

structure due to the late system trigger. It is worth noting that the larger vibrations measured 

in the 1.9th second of "triggered by EEW " and the 0.5th second in the "triggered by sensors" 

are caused by the structure hitting the boundary of the slide rails because of the insufficient 

range of the isolating device.  

 

 

Figure 4-2-5 Structural Responses of 1995 Kobe Earthquake (attack angle = 45o) 
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In Figure 4-2-5, the structural responses of the 1995 Kobe earthquake are shown and 

compared in the "fixed base", "triggered by EEW " and "triggered by sensors" experiments. In 

the first row of Figure 4-2-5, the base isolation system triggered by EEWS was fully activated 

before the earthquake, so the structural response was improved. When EEWS fails, in the 

second row of Figure 4-2-5, since a small vibration exceeding the sensor threshold occurs 

before a large vibration, the system triggers earlier, and the base isolation system performs 

better. It can be seen from this experiment that the earlier the system triggers, the better the 

system performance. 

 

Figure 4-2-6 Structural Responses of 1979 Imperial Valley Earthquake (attack angle = 45o) 

 

In Figure 4-2-6, the structural responses of the 1979 Imperial Valley earthquake are 

shown and compared in the "fixed base", "triggered by EEW" and "triggered by sensors" 

experiments. In the first row of Figure 4-2-6, the base isolation system triggered by the EEWS 
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was fully activated before the earthquake, so the structural response was improved. When the 

EEWS fails, like the 1995 Kobe earthquake, in the second row of Figure 4-2-6, the system 

triggers earlier because the small vibrations that exceed the sensor threshold occur before a 

large vibration, so the performance of the base isolation system is better. 

 

 

Figure 4-2-7 Structural Responses of 1992 Mendocino Earthquake (attack angle = 45o) 

 

In Figure 4-2-7, the structural responses of the 1992 Mendocino earthquake are shown 

and compared in the "fixed base", "triggered by EEW" and "triggered by sensors" 

experiments. In the first row of Figure 4-2-7, the base isolation system triggered by the EEWS 

was fully activated before the earthquake, so the structural response was improved. When 

EEWS fails, in the second row of Figure 4-2-7, some vibrations are still transmitted to the 

structure due to delayed system triggering. It is worth noting that the detected larger vibration 
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starting from the 0.7th second in the "triggered by sensors" is caused by the structure hitting 

the boundary of the slide rails because of the insufficient vibration range of Isolation device. 

4.3 Shear Keys with Linear Actuators 

4.3.1 Experimental Setup 

A light-weight, 6-level test model made of acrylic plastic and aluminium strips is used in 

the experimental investigation. Floor plates are made of 3mm thick timber boards and they are 

connected to columns via aluminium brackets. Steel masses are positioned centrally on each 

floor and the total mass of the model frame is 7.5kg. The test frame is affixed onto two layers 

of mutually orthogonal linear guide rails, as shown in Figure 4-3-1. A timber frame is built 

and secured on the shake table. Ground motions are simulated by the Quanser Shake Table II. 

The response of the frame is independently measured by three 3-axes 2.4GHz wireless 

accelerometers (BeanDevice AX-3D) located at three levels: top of shake table, base plate 

above base isolation, and roof level of the frame. Sampling rate was set to 100Hz and the 

BeanScape software was used to export data to MATLAB for further analysis. 
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Figure 4-3-1 The Overview of Experimental Setup 

Four major scaled historical earthquakes are simulated through the shake table: (1) 1979 

Imperial Valley, (2) 1995 Kobe, (3) 1994 Northridge and (4) 1992 Mendocino earthquakes 

(data provide by Quanser Shake table II). In order to demonstrate the effectiveness of the 

two-dimensional base-isolation system, the building was placed at an angle of 45 degrees on 

the shake table. This experiment will perform three operational modes for analysis and 

comparison: 

Operational mode Means of trigger Scenario 

1. Fixed base Nil Both EEW and on-site sensors 

fail to detect ground shaking 

2. BI by EEW EEW signal activates the base 

isolation  

EEW signal received prior to 

arrival of ground shaking  

3. BI by sensor On-site accelerometers detect 

vibrations higher than 

predetermined threshold values 

EEW fails to detect incoming 

ground shaking 

Table 4-3-1 Operational Modes in Experiment 
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4.3.2 Controller, Sensors and Actuators 

 

 

Figure 4-3-2 Electrical Diagram of Experimental Setup 

 

A simple circuit diagram of the experimental setup is shown in Figure 4-3-2. The 

controller of the proposed system mainly performs three functions: communication, sensing 

and execution. The experiments are completed on the Arduino MEGA control platform, 

which has 54 sets of digital input/output ports (14 of which can be used for PWM output), 16 

GND – 0V   SCL – Serial Clock 

VCC – 5V    SD0 - Serial Data Out 
SDA – Serial Data   CS – Chip Select 
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analog inputs and a 16 MHz crystal oscillator. Because of the built-in bootloader, it can be 

burned directly via USB instead of other external burners. The power supply can be powered 

by USB directly or by using an AC-to-DC adapter or battery. To obtain the signal of EEW on 

the Internet, the Ethernet shield is introduced which makes TCP/IP Protocols (TCP, UDP, 

ICMP, IPv4 ARP, IGMP, PPPoE, Ethernet) on the hardware circuit to reduce the burden of 

Arduino. An ethernet shield allows up to 4 connections at the same time and achieve 

transmission speed up to 100MB / s [77]. Furthermore, as a backup and avoiding the effects 

of blind zone caused by earthquakes nearby, the accelerometers ADXL345 are set up around 

the building. These sensors are factory calibrated and inexpensive, making them ideal for the 

experiment.  

Finally and most importantly, in order to enable multiple devices to be used 

simultaneously on the same platform, it is necessary to select the appropriate communication 

protocol for the requirements and layout. There are currently three communication protocols 

commonly used on controllers: I2C, SPI, and UART. Firstly, the earliest UART is not a very 

comprehensive communication method because it needs to be used with different ports and 

drivers, such as RS-232, RS-422, RS-485 [83]. Among them, RS-232 port is more popular 

whose advantage is that the line is simple (only two lines), but the disadvantage is that only 

one-to-one connection and the low speed (up to 115.2kbps). So UART communication 

protocol is not suitable for high-speed, large-scale transmission. Compared with I2C, SPI is 

full duplex and the speed of transmission is higher, but more wires are required and execution 

burden is greater. Because the EEW signal is small (less than 1KB [84]) and the scale is not 

large, the experiment uses I2C communication protocol. 



 

 

66 

 

The execution part of the system is relatively simple. Four linear motors (peak force 31N 

at 7mm/s) are used as actuators and shear keys to perform extension and retraction. When 

linear motors are fully extended, the building is pushed back to the starting point and fixed in 

the frame and on the foundation; when the linear motor is fully retracted, base isolation 

system is activated and the building can slide freely on the isolation device. The entire system 

does not require an external power supply, and the power is completely provided by the 

control platform. 

4.3.3 Initialisation and Activation of base isolation system 

When the system initialises, the controller resets the position of the structure by 

extending the shear keys. In the experiment, there will be four linear actuators to perform 

system Initialisation. They are motors with feedback signals that can be sent back to the 

controller to access the position of structure [81]. In addition, the device shares the same 

power supply as the controller, thus simplifying the circuit design. As shown in Figure 4-3-3, 

four Firgelli 100mm stroke linear actuators (peak force 31N, 7mm / s) are used. During the 

system Initialisation, the actuators are programmed to fully extend (see the right of Figure 

4-3-3), which push the structure back to its original position through the centre plate. The 

system then enters a service condition in which the controller continuously updates the signals 

of EEWS and the network of sensors. This simple arrangement can save the need of the 

displacement sensor to monitor the position of the main structure. Once the flag of earthquake 

changes, the actuators fully retract to switch on the base isolation system. 
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(A) Linear Motors 

 

(B)The Base of Structure 

Figure 4-3-3 Linear Motors and The Base of Structure 

 

There are two factors to activate the system: (1) the EEW signal from the Internet via 

Ethernet shield (2) unusual acceleration sensed by accelerometers around the building. First, 

after the Ethernet shield is turned on, it will continuously update the IP of the EEW signal. 

Once the earthquake signal is detected, the system will immediately activate the base isolation. 

Next, ADXL345 accelerometer is a small ultra-low-power 3-axis accelerometer with high 

resolution (3.9mg/LSB) and a measurement range of ±16g. Its frequency, detection range, 

sensing mode, and reading and writing can all be set by using the code based on the 

requirements and actual conditions. Unnecessary triggering often causes problems for users 

and residents [85]. This experiment sets the range of sensitivity to 5LSB (approximately 

0.039g). 

4.3.4 Results and Discussions 

Since the test object itself is robust and undamaged, after system Initialisation/reset, the 

experiment can be reproducible. Here, four well-known earthquakes are simulated in three 
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different scenarios. In order to skip the interference of noise in the environment, all data from 

sensors is filtered by 6th order Butterworth low-pass filter in MATLAB with cut-off 

frequency of 25Hz. Then the maximums for the structural responses at different places under 

different scenarios are shown in Table 4-3-2 and plotted accelerations against time in Figure 

4-3-4 to Figure 4-3-7. In figures, from left to right are (a) the Shake table, (b) the ground floor 

and (c) the roof, and from top to bottom are base isolation triggered (1) by EEWS, (2) by 

sensors, and no base isolation with (3) the fixed base. 

 

Earthquake Position Fixed base BI by EEW BI by Sensor 

1979 

Imperial Valley 

Ground level 0.0403 0.0232 0.0366 

Roof level 0.1385 0.0592 0.0795 

1992 

Mendocino 

Ground level 0.0698 0.0300 0.0520 

Roof level 0.1264 0.0662 0.0833 

1994 

Northridge 

Ground level 0.1649 0.0446 0.0448 

Roof level 0.3751 0.0773 0.0833 

1995 

Kobe 

Ground level 0.1302 0.0469 0.0739 

Roof level 0.2940 0.0873 0.0821 

Table 4-3-2 Measured Peak Absolute Acceleration (unit in g) 

Table 4-3-2 shows the building responses sensed at different locations in different 

scenarios when simulating four earthquakes. Obviously, the base isolation system triggered 

by the EEWS can greatly improve the structural response caused by the earthquake, and the 

better performance happens when the larger earthquake comes. This table also lists the 

performance of the base isolation system triggered by the sensors when EEWS fails. Similarly, 

the base isolation system triggered by the sensors can also effectively reduce the structural 
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response, but the performance is slightly inferior than the base isolation system triggered by 

the EEWS. This is due to that the retraction of the shear keys takes time. Insufficient range of 

the base isolation is likely to cause impact between the shear key and the frame, which results 

in the worse performance of the base isolation system. 

 

 

Figure 4-3-4 Structural Responses of 1979 Imperial Valley Earthquake (attack angle = 45o) 

 

From the first column of Figure 4-3-4, it is known that the 1979 Imperial Valley 

earthquake is characterized by strong vibrations starting at the 1.4th second that almost 

immediately causes a structural response in the "fixed base" experiment (third row). In the 

first row of Figure 4-3-4, the base isolation system triggered by EEWS has been fully 

activated before the arrival of the earthquake, so the structural response is greatly improved. 

When EEWS system fails, in the second row of Figure 4-3-4, the network of sensors detects 
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the activation threshold of the base isolation system at the 1.6th second and then begins to 

retract the shear keys. So the stronger structural response still exists when retracting the shear 

keys because of the insufficient sliding distance of isolation device. 

 

 

Figure 4-3-5 Structural Responses of 1992 Mendocino Earthquake (attack angle = 45o) 

 

The 1992 Mendocino earthquake is similar to the 1979 Imperial Valley earthquake which 

is characterized by strong vibration from the first second, as shown in the first column of 

Figure 4-3-5, the structural responses are shown in the "fixed basis" experiment. In the first 

row of Figure 4-3-5, the base isolation system triggered by EEWS is fully activated before the 

earthquake comes, so the structural response is greatly improved. When the EEWS fails, in 

the second row of Figure 4-3-5, the network of sensors detected the activation threshold of the 

base isolation system at the 1st second and then began to retract the shear keys. Likewise, due 
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to insufficient sliding distance of the isolation device, there is still a strong structural response 

when retracting shear keys. 

 

 

Figure 4-3-6. Structural Responses of 1994 Northridge Earthquake (attack angle = 45o) 

 

From the first column of Figure 4-3-6, the 1994 Northridge earthquake is characterized 

by a slight vibration from the 1.1th second to a strong vibration at the 2.6th second, and the 

structural responses are shown in the "fixed base" experiment. In the first row of Figure 4-3-6, 

the base isolation system triggered by EEWS was fully activated before the earthquake, so the 

structural response was greatly improved. When EEWS fails, in the second row of Figure 

4-3-6, because the stronger vibration occurs later, the network of sensors first detects the 

activation threshold of the base isolation system at the first second and then starts to retract 

the shear keys, so the system can complete the activation and have a better overall 

performance before the more destructive seismic wave comes. 
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Figure 4-3-7 Structural Responses of 1995 Kobe Earthquake (attack angle = 45o) 

 

The 1995 Kobe earthquake is similar to the 1994 Northridge earthquake which is 

characterized by a slight vibration from the 17th second to a strong vibration at the 19th 

second. As shown in the first column of Figure 4-3-7, the structural response is shown in the 

"fixed base" experiment. In the first row of Figure 4-3-7, the base isolation system triggered 

by EEWS is fully activated before the earthquake arrives, so the structural response is greatly 

improved. When EEWS fails, in the second row of Figure 4-3-7, because the stronger 

vibration occurs later, the network of sensors first detects the activation threshold of the base 

isolation system at the 17th second, and then starts to retract the shear key. Thereby the 

system can switch on early and have better overall performance before the more destructive 

seismic wave arrives. 
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4.4 Summary 

In Chapter 4, experimental setups and instruments of (1) solenoid shear keys, (2) 

electromagnetic shear keys, and (3) shear keys with linear actuators are proposed. Structure 

model and shake table are used to simulate earthquake experiments to verify the effectiveness 

of the proposed system. The experimental results show that, when earthquake comes, the 

structural responses are effectively reduced and the resistance to the load is enhanced. 

The main achievements of this chapter are: 

(1) The isolation device considers the direction of the earthquake and the possibility of 

practical application. Therefore, the isolation device is successfully designed that the building 

model can slide on the isolation device in two dimensions. 

(2) In the experiment of electromagnetic shear keys, the principle of the magnet “Like repel 

each other, unlike attract.” is introduced. The experimental results show that the proposed 

system effectively reduces the structural response when earthquake comes, but there are still 

some difficulties that may occur in actual construction. 

(3) The function of linear actuators is successfully maximized which not only act the role of 

shear keys to strengthen the stiffness of the building but also perform system Initialisation. 

Experimental results show that the system can effectively reduce the structural response of 

structures caused by earthquakes. 
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ACTIVE CONTROL 

BASE ISOLATION SYSTEM 

In chapter 5, the active control system is added to the design. This technology requires an 

external power source to activate the control devices and utilise actuators to generate the 

control force. The magnitude of the control force can be adjusted by a control algorithm. The 

control algorithm uses feedback from the sensors that are placed in strategic locations of the 

structure which measure excitations and/or responses of structure. Electrohydraulic or 

electromechanical actuators are typically used to produce active control force. This chapter 

presents a smart mechatronic base isolation system that employs active control strategy and a 

network of sensors to improve the structural response in the earthquake. In addition, the 

conceptual framework of the proposed system is demonstrated and verified by 

laboratory-scale proof-of-concept experiments. 



 

 

75 

 

5.1 State-Space Representation of Active Control System 

The equation of motion of a multi-degree-of-freedom system, following section 2-3, is 

written in state-space as: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐻𝑥̈𝑔 (1) 

in which 

A = [
0 𝐼

−𝑀−1 −𝑀−1𝐶
]; B = [

0
𝑀−1𝐷

]; H = [
0

−𝐼
] 

 

where 𝐼  is an identity matrix of appropriate size; 𝑀 , 𝐶  and 𝐾  are n × n  mass, 

damping and stiffness matrices respectively; 𝐷 is the location matrix of size n × m. u is a 

vector of control force of size m. Since the control of structural response is achieved by 

applying control forces that depend on the state of the system (that is x and ẋ), three factors 

related to the active control system are extremely important: (1) stability, (2) controllability 

and (3) observability. In other words, the active control system should be stable, controllable, 

and observable. These three factors are described in further detail below. 

 

5.1.1 Stability 

If 𝑢 is assumed to be in the form of equation (1), the controlled equation in the state 

space can be written in the following form: 

 𝑥̇ = 𝐴̅𝑥 + 𝐻𝑥̈𝑔 (2) 

in which 

 𝐴 = 𝐴 + [𝐵𝐾1 + 𝑉𝐶1]; 𝐻 = 𝐵𝐸 + 𝐻 (3) 
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The stability of a controlled system can be specified as the boundedness of the system 

state in time. Check the stability of the system by checking the basic dynamics of the system. 

Therefore, considering the following state equation: 

 𝑥̇ = 𝐴̅𝑥           𝑥(𝑡0) = 𝑥0 (4) 

The equilibrium state of the system is described by: 

 𝐴̅𝑥𝑒 = 0 (5) 

that is, 𝑥𝑒 = 0 is its unique equilibrium state if 𝐴 is non-singular. 

An equilibrium state should be stable in the sense of Lyapunov if for any 𝑡0 and any 

small value ε > 0 , there is a real number δ > 0, so that 

 ‖𝑥0 − 𝑥𝑒‖ ≤ 𝛿 (6) 

which implies ‖𝑥(𝑡) − 𝑥𝑒‖ ≤ 𝜀 for t ≥ 𝑡0 and ‖ ‖ indicates the Euclidean norm. 

Therefore, the Lyapunov stability ensures that the state of the system remains close to 

equilibrium at any time t by the initial state that closes to the equilibrium state [86]. 

The equilibrium state is asymptotically stable if it is stable and δ > 0 for any 𝑡0, so that 

again 

 ‖𝑥0 − 𝑥𝑒‖ ≤ 𝛿 (7) 

which implies that ‖𝑥(𝑡) − 𝑥𝑒‖ → 0 as t →∞. 

Therefore, in addition to being stable, when the initial conditions are close enough to the 

equilibrium state, the state asymptotically converges to 𝑥𝑒 [86]. Also, it can be easily shown 

that the equilibrium state indicates the stability in any solution. 

The requirements for the first stability condition are: (1) all eigenvalues of 𝐴̅ have 

non-positive real parts; (ii) for any zero real eigenvalues with k, there are exactly k linearly 
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independent eigenvectors [87]. The second stability condition requires that all eigenvalues of 

𝐴̅ have strictly negative real parts. 

5.1.2 Controllability 

If the system can be transferred from any initial state 𝑥(𝑡0) to any other state within a 

limited time interval by unconstrained control vector, the system can be seen as controllable at 

time 𝑡0. On the other hand, If the system is in state 𝑥(𝑡0) which can be determined by 

observing the output within a limited time interval, the system can be seen as observable at 

time 𝑡0. 

The concepts of controllability and observability are proposed by Kalman [88]. If the 

system is uncontrollable, there may be no solution to the control design. Although most 

physical problems are controllable and observable, the corresponding mathematical model 

may not always retain the properties of controllability and observability. Therefore, it is 

necessary to know the mathematical conditions when the model is controllable and 

observable. 

Consider the following system: 

 𝑿̇ = 𝐴𝑋 + 𝐵𝑢 (8) 

Note that Equation 8 does not have any excitation but applies unconstrained control 

forces to change the state of the system. If the system is controllable, then the controllability 

matrix given by [86] can be shown: 

 [𝐵 ⋮ 𝐴𝐵 ⋮ ⋯ ⋯ ⋮ 𝐴𝑛−1𝐵]
𝑛×𝑛𝑟

 (9) 

is of rank 𝑛; in which n is the size of 𝐴 matrix and 𝑟 is the size of the vector of control 

force 𝑢. Alternatively, the matrix contains n linearly independent column vectors. 
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There is an alternative form under the condition when system state is full controllable, 

for example, if the eigenvalues of A are different, the eigenvectors are different as well. Then 

a transformation matrix P can be found such that 

 𝑷−𝟏𝑨𝑷 = 𝑫 = 𝒅𝒂𝒊𝒈𝝀 (10) 

in which 𝒅𝒂𝒊𝒈𝝀 is a diagonal matrix of eigenvalues. With this transformation matrix, a new 

set of variables may be defined as: 

 𝐙 = 𝐏𝐱 (11) 

and a new set of equations in the transformed variable may be obtained as: 

 𝐙̇ = 𝑫𝒁 + 𝑭𝒖 (12) 

 𝐅 = 𝑷−𝟏𝑩 (13) 

The system is state-controllable only if the matrix 𝐅 does not have a row containing all 

zero elements. 

In the practical design of a control system, the control of the output is more important 

than the control of the state. Consider the following system: 

 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (14) 

 𝑦 = 𝐶𝑥 + 𝐷𝑢 (15) 

where 𝑌 is a vector of size 𝑚. Therefore, the sizes of other matrices are determined. If an 

unconstrained control vector 𝑢 can be constructed that converts any given initial output 

y(𝑡0) to any final output y(𝑡1) within a limited time interval 𝑡0 ≤ 𝑡 ≤ 𝑡1, then the systems 

described in equations 14 and 15 can be seen as completely output controllable. The 

mathematical condition for the controllability requires the controllability matrix 

 [𝐶𝐵 ⋮ 𝐶𝐴𝐵 ⋮ 𝐶𝐴𝑛𝐵 ⋮ ⋯ ⋯ ⋮ 𝐶𝐴𝑛−1𝐵 ⋮ 𝐷]
𝑛×(𝑛+1)𝑟

 (16) 

is of rank m. 
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5.1.3 Observability 

In order to study observability, the motion equation of the unforced system is employed 

to check. Consider the equations 

 𝒙̇ = 𝑨𝒙 (17) 

 𝒚 = 𝑪𝒙 (18) 

If each x(t) can be determined from the observation of y(t) over a limited time 

interval 𝑡0 ≤ 𝑡 ≤ 𝑡1, the system is completely observable. The concept of observability is 

important because in practice only a limited number of measurements are possible (of size m) 

and a complete state of the system may be required to generate control signals by means of 

control algorithm. 

It can be shown that the system in equations 17 and 18 is fully observable if and only if 

the 𝑛 × 𝑛𝑚 matrix 

 [𝐶∗ ⋮ 𝐴∗𝐶∗ ⋮ ⋯ ⋯ ⋮ (𝐴∗)
𝑛−1

𝐶∗
] (19) 

is of rank 𝑛 or has n linearly independent column vectors. 
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5.2 Experimental Setup 

 

 

Figure 5-2-1 Overview of Experimental Setup 

 

In this experiment, a lightweight six-story test model made of acrylic plastic, wood and 

aluminium is used. The floor is made of 3mm thick plank and connected to the four pillars by 

aluminium brackets. The bottom storey is supported in an out-of-plane direction to avoid 

torsional movement and steel masses are placed on each floor to increase the weight of 

structure, thereby the total mass of the model is 7.5 kg. The proposed smart base isolation 

system consists of two linear steel rails mounted on a 10 mm thick wooden board, four 

Stepper Motors 

Model Frame 

Accelerometers 

for building 

response 

measurements 

Shake Table 
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ball-bearing slide blocks supporting the structure and active control devices, as shown in 

Figure 5-2-1. The earthquake simulations are performed by the Quanser Shake Table II. The 

structural responses are measured independently by three 3-axis 2.4 GHz wireless 

accelerometers (BeanDevice AX-3D) at three locations: the shaker table, the base plate above 

the isolation device, and the roof of the structure. The sample rate is set to 100 Hz and the 

data is exported to MATLAB for further analysis via BeanScape software. 

Four major scaled historical earthquakes are simulated in one dimension through the 

shake table: (1) 1979 Imperial Valley, (2) 1995 Kobe, (3) 1994 Northridge and (4) 1992 

Mendocino earthquakes (data provide by Quanser Shake table II). In order to prove the 

effectiveness of the intelligent base isolation system, the experiment will perform two modes 

of operation for analysis and comparison: (1) base isolation without active control and (2) 

base isolation with active control 

 

Operational mode Scenario 

1. BI without  

active control 

The structure slides on the isolation device but the active control is disabling. 

2. BI with  

active control 

The structure slides on the isolation device and the active control is enabling. 

Table 5-2-1 Operational Modes in Experiment 
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5.3 Controller, Sensors and Actuators 

 

 

Figure 5-3-1 Electrical Diagram of Experimental Setup 

 

The circuit diagram of this experiment is shown in Figure 5-3-1. In this experiment, the 

controller of the smart base isolation system needs to be able to (1) receive signals from the 

network of sensors and (2) perform the active control. The proposed system is controlled by 

the Arduino MEGA2560 control platform whose baud rate is set at 9600Hz. In addition, an 

external power supply is connected to compensate for the lack of current provided by the 

GND – 0V 

VCC – 5V 
SDA – Serial Data 

SCL – Serial Clock 

SD0 - Serial Data Out 
CS – Chip Select 
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controller itself. The network of sensors employs a distance sensor to detect the position of 

the structure on the rails. The actuators work for active control that four stepper motors are 

mounted in the isolation device (as shown in Figure 5-3-2). This kind of motor can easily 

realise high-precision positioning only by pulse signal, and there is no electronic component 

such as an encoder inside. The structure of stepper motor is simple but it’s strong with less 

faulty and high stability. In this experiment, the network of sensors constantly detects the 

position of the structure on the rails. Based on the position change of the structure on the rails, 

in conjunction with the control algorithm (described in 5-3 section), the controller adjusts the 

speed and rotation of the motor to improve the structural response caused by the earthquake 

and maintains the structure within the system range. 

 

 

Figure 5-3-2 Stepper Motors and The Base of Structure 
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5.4 Active Control Strategy 

In controller applications, the most widely used control methods are proportional control, 

integral control and differential control, referred to as PID controllers. The PID controller has 

become one of the main technologies of industrial controller because of its simple structure, 

good stability and convenient adjustment. 

When the structure and parameters of the object cannot be fully grasped, or the accurate 

mathematical model cannot be obtained, the PID controller is the most convenient choice, and 

some applications use PI or PD control. Although the theory and applications of PID 

controllers are quite mature, there is still no good development in structural vibration control. 

There are several active structural vibration control methods that incorporate PID 

controller but totally different in flexibility and complexity, and each method has its own 

limitations [89]. In addition to researches based on PID control, discussions on the active 

structural vibration control are still limited. In the smart base isolation system, the PID 

controller can be corrected in real time through the proportional controller when the error is 

detected, but the disadvantage is that the steady-state error will occur after the load 

distribution changes. [90]. Thereby, the integral controller is to eliminate the steady-state error, 

but it causes instability because of the increased phase lag. Finally, the differential controller 

is used to improve the damping of the structure and the stability of the controller. 

In simple terms, the PID controller is the systematic error control that the control amount 

is calculated by using proportional, integral, and differential. If 𝑢(𝑡) is defined as the control 

output, the PID algorithm can be expressed below [91]: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∑ 𝑒(𝑡) + 𝐾𝑑[𝑒(𝑡) − 𝑒(𝑡 − 1)] + 𝑢0 
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where 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are respectively proportional gain, integral gain, and differential gain. 

𝑡 is the current time, 𝑒 is the error, and 𝑢0 is the control amount reference value. 

 

Figure 5-4-1 Simulink of PID Controller in Experiment 

In this experiment, as shown in Figure 5-4-1, MATLAB Simulink is used to execute the 

active control. Before using the controller, the optimal gains for P, I, and D also need to set 

for the optimal control. Here, the PID Tuner tool in Control System Toolbox is used for 

system identification. 

 

Figure 5-4-2 PID Tuner and System Identification in MATLAB 
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System identification is performed after the measured input and output data is imported 

into the PID Tuner. System identification includes selecting the plant model and the 

parameter values of the structure, which will match the simulated model output to the 

measured output data. As shown in Figure 5-4-2, after selecting the model, PID Tuner 

simulates the model and calculates the controller gain to provide a fast and stable response. 

5.5 Results and Discussion 

  
BI without AC BI with AC 

1979 El Centro 

  

Roof Level 0.4672 0.4049 

4th Floor 0.2050 0.2573 

Ground Level 0.0839 0.0965 

1994 Northridge 
 

Roof Level 0.0965 0.1014 

4th Floor 0.2058 0.1732 

Ground Level 0.1058 0.1519 

1995 Kobe 

  

Roof Level 0.0392 0.0711 

4th Floor 0.0390 0.0721 

Ground Level 0.1604 0.1547 

1992 Mendocino 

  

Roof Level 0.1060 0.1103 

4th Floor 0.0647 0.0654 

Ground Level 0.0368 0.0653 

Table 5-5-1 Experimental Results (units in g) 

 

Table 5-5-1 shows the structural responses sensed at different locations in different 

scenarios when simulating four earthquakes. Obviously, PID controller does not improve the 

structural responses of the earthquake, and the measured acceleration is greater than the 

acceleration measured when the controller is turned off. This is because the controller 
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continuously adjusts the structure position back to the set value, as shown in Figures 5-5-1 to 

Figure 5-5-4, the greater vibration results in the greater control output which cause the 

structural response greater. 

 

Figure 5-5-1. Structural Responses of 1994 Northridge Earthquake 
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Figure 5-5-2 Structural Responses of 1995 Kobe Earthquake 

 

Figure 5-5-3 Structural Responses of 1979 Imperial Valley Earthquake 
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Figure 5-5-4 Structural Responses of 1992 Mendocino Earthquake 

5.6 Summary 

In Chapter 5, the concept of active control was introduced. The sensors are applied to 

continuously detect the structural response as the system inputs, and then use stepper motors 

as actuators to stabilise the structure during the earthquake through the PID controller. 

Experimental results show that the system is capable of resisting loads caused by the external 

environment and keeping the building within a safe operating range. However, experiments 

have also shown that the application of PID controller to base isolated structure does not 

improve the structural response caused by earthquakes.  
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SUMMARY, CONCLUSIONS  

AND FUTURE WORKS 

6.1 Summary 

The main purpose of this research is to mechanize the traditional base isolation system. 

Existing seismic and construction methods have been reviewed and classified as passive 

control, active control and semi-active control. The earthquake early warning system is 

introduced as a popular topic in recent years and explored its application. Then, the motion 

equation of the base isolation system is reviewed and described. 

In order to realise the possibility of electro-mechanization, the seismic structural 

response monitoring system is organized, including control platform, network communication, 

handshake nodes and sensors. The software program is also coded according to the 

experiment requirements and objectives. 
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In the experimental part, the earthquake simulation is performed by the Quanser Shake 

Table II, and the wireless sensors are installed in different positions of the structure. Finally, 

the data is imported into MATLAB through BeanScape software for data analysis. 

The beginning of electro-mechanization of the base isolation system is to use the shear 

keys to switch modes of different structural characteristics to make up for the deficiency of 

the traditional base isolation device. Experiments have shown that the base isolation system 

triggered by EEWS has a significant improvement in the structural response caused by the 

earthquake. Then, according to the principle of magnet, the frictional force formula is used to 

investigate the possibility of electromagnet as shear key. Experiments have shown that the 

hysteresis effect of the electromagnet has little effect on the proposed system, but overall it 

performs well. Finally, considering the direction of the earthquake and the function of the 

base isolation system, a two-dimensional base isolation device is introduced, and four linear 

motors are used for the activation and Initialisation of the proposed system. Experiments 

show that the execution speed of the linear motors affects the system performance, but the 

base isolation system triggered by EEWS still performs well. 

The final goal is to achieve active control of the base isolation system. In conjunction 

with the motors and the sensors, the controller cooperates with the PID control algorithm to 

perform structural vibration control. Experiments show that the PID controller cannot 

effectively reduce the structural responses caused by earthquakes, but this controller can 

maintain the structure within the system range. 
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6.2 Conclusion 

This thesis proposes a smart mechatronic base isolation system that connects to the 

Earthquake Early Warning (EEW) system. When there is no earthquake, the structure on the 

sliding isolation device can be locked to achieve a strong lateral force resistance against the 

wind load. Therefore, excessive deformation due to strong wind can be prevented. The system 

includes a controller that can be programmed to continuously update signals from the EEWS 

and the network of sensors. When the controller receives the signal from the EEWS indicating 

that ground motion is about to occur, the shear keys which lock the structure and the isolation 

device will be released, allowing the superstructure to slide freely. After the ground motion 

stops, the actuator can be used to re-centre the superstructure to complete the system 

Initialisation. The system is fully automatic and repeatable. The isolation device uses very low 

friction linear guides. The performance of isolating ground vibrations is very good without 

adding stiffness or damping to the structure. As backup plan, the proposed system also 

includes the network of sensors for detecting ground motion. These sensors will replace the 

triggering in the event of EEW failure to activate the base isolation system. In addition, this 

thesis introduces the shake tables to simulate the vibration and a conceptual design 

laboratory-scaled model. The system is installed on the shake table for earthquake simulation. 

The tests are carried out under the following three conditions: (1) fixed base – when the shear 

keys lock the structure when ground motion; (2) base isolation triggered by EEW, and (3) 

base isolation triggered by the network of sensors. The experiment results show that the 

proposed smart mechatronic base isolation system can significantly reduce the structural 

response when earthquake occurs. This research suggests that the system can represent the 

next generation of seismic structures. 



 

 

93 

 

6.3 Research Questions 

RQ1. What benefits do mechatronics and control systems add to the base isolation 

systems? 

Zuk presented the earliest notion of active controlled structure in 1968. He distinguished 

between the active control, which is designed to reduce structural motion and that which 

generates structural motion. Kinetic structures belong to the second category, which control 

enclosed space through structural manipulation[92]. Earliest works on active structural control 

include prestressed tendon to stabilise tall structures, control of tall buildings by cables 

attached to jacks[87], and use of active systems which can provide increased strength to the 

structure to counter exceptional over-loading[93].  

As shown in Figure 6-3-1, feedback structure is quite common in most of the control 

concepts. External energy resources are essential for actuators to produce the required control 

force. According to the control strategy, active control can be classified as: open loop control 

system (when the left side loop of Figure 6-3-1 is operative); close loop control (when the 

right loop of Figure 6-3-1 is operative); and open–close loop control (when the both loops of 

Figure 6-3-1 are operative). An adaptive control system is a variation of open-close loop 

control with a controller which can adjust parameters of the system. The adaptive systems are 

generally used to control structures whose parameters are unknown and are based on tracking 

error between the measured response and the observed response. A learning control system 

can learn and switch over from open loop control system to close control system depending 

upon the requirements. 
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Figure 6-3-1 Active Control Flow Chart 

For the semi-active control, various devices have been used for the analysis, which 

involve (i) Stiffness control devices; (ii) Electro-rheological dampers/magneto-rheological 

dampers; (iii) Friction control devices; (iv) Fluid viscous devices; and (v) TMDs and TLDs. 

However, when implemented in the real world of engineering, many problems would still 

occur during the application, such as (i) Modelling error; (ii) Time delay; (iii) Limited sensor 

and controller; (iv) Parameter uncertainties and system identification; (v) Discrete time 

control; (vi) Reliability; and (vii) Cost-effectiveness and hardware requirement. As a result, 

the corresponding applications of the active control have also been studied.  

Control device and controller design are the main focus of the traditional active vibration 

control systems[94, 95]. Since the force exerted by the earthquake and wind on the structures 

are very huge and uncertain, these large civil structures require a large amount of energy to 

control it. The structural control can be classified as passive control which does not require an 
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external power source[16], and active control which uses sensors and active actuators to 

control the unwanted vibrations[44]. There are many active control devices designed for 

structural control applications[96]. The active mass damper (AMD) is the most popular 

actuator, which uses a mass without spring and dashpot[97]. 

In order to achieve a good performance, it is essential to design an effective control 

strategy, which should be simple, robust, and fault tolerant. Many attempts have been made to 

introduce advanced controllers for the active vibration control of building structures. Instead 

of changing the structure stiffness, a pole-placement 𝐻∞ control corresponding to a target 

damping ratio is proposed by Park[98]. In order to avoid the higher order problem in 𝐻∞ 

control, the balanced truncation is applied by [99]. According to [100], the genetic algorithm 

is used to determine the feedback control. There are several optimal control algorithms 

applied for the active vibration control of building structures, for example filtered linear 

quadratic control (LQ)[101], linear quadratic regulator (LQR)[102], and linear quadratic 

Gaussian (LQG)[103]. All these controllers are model-based, complex and demand the exact 

model of the building structure. Some model-free controllers, such as sliding mode control 

(SMC)[104], neural network control[105], and fuzzy logic control[106] are still complex. 

In recent years, PID control is widely used in industrial applications. Without model 

knowledge, PID control may be the best controller in real-time applications[107]. The great 

advantages of PID control over the others are that they are simple and have clear physical 

meanings. Although theory research in PID control algorithms is well established, it is still 

not well developed in structural vibration control. A simple proportional control is applied to 

reduce the building displacement due to wind excitation[108]. PD and PID controllers were 

used in the numerical simulations[109, 110]. A Proportional-integral (PI) controller with an 
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AMD is used to attenuate the structural motion due to earthquake[111]. However, these 

control results are not satisfactory, because it is difficult to tune PID gains to guarantee good 

performances such as rise-time, overshoot, settling time, and steady-state error[109]. 

Moreover, these works do not discuss the stability analysis of these active control systems. 

While there is no doubt about the advances in the structural control field, there still exist 

some areas which need more exploration[112]. The active devices have the ability to add 

force onto the building structure. A poorly designed controller will lead to an undesirable 

control performance, which can even damage the building. So it is desired to study the 

stability of the closed-loop system. Only a few structural controllers such as 𝐻∞ and SMC 

considers the stability in their design, whereas the other control strategies do not. However, 

these designs have concerned only the linear stiffness, since it represents a simple and 

efficient model at least for a small operational range. In practice, these building structures 

possess nonlinear behaviour like the hysteresis phenomenon[113]. Also, there is a lack of 

experimental verification of these controllers. The practical implementation of a controller 

will be challenging if these issues were not addressed. 

RQ2. How to effectively trigger the base isolation system by Earthquake Early Warning 

System and network of accelerometers? 

The technology of Earthquake Early Warning System (EEWS) is different from the 

traditional seismic report technology [114-120]. Traditionally, rapid determination of seismic 

parameters mainly depends on the P-wave and S-wave arrival time differences to determine 

the epicentre distance and position, so it usually takes at least several minutes or longer[121]. 

Instead, the signal of EEWS needs to be generated in few seconds after the seismic wave 
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reaches the station, and then there are three kinds of information which are interpretable: (1) 

whether it is an earthquake; (2) whether it is a large earthquake; (3) the location of the 

earthquake; (4) the earthquake strength. At present, the most common method is to use the 

first 3 seconds of P-wave data [64], which is mainly based on the fact that the waveforms and 

displacement peaks of seismic waveforms of earthquakes are not the same for rapid 

processing. 

In this project, EEWS is used to activate the base isolation system before earthquake 

waves arrived. In the experiment, controller keeps updating the data from EEWS centre until 

the earthquake statement changes. Signal is received by Ethernet shield mounted on controller 

whose transmission speed can reach 100MB/s [77], and the size of a warning is much less 

than 1KB (about 24 bytes)[84]. Currently, many mainstream SoCs (System on Chip) have 

built in the controllers for three popular communication protocols: I2C, SPI, and UART. 

Similarly, various sensors, touch controllers, fingerprint modules, Bluetooth modules, and 

WIFI modules are also compatible with one or more of these three methods[122]. The UART 

can only connect one-to-one, and the transmission speed is not fast (up to 115.2 kbps). The 

existing version is not only popular but also suitable for high-speed, high-volume 

transmission. Here, it is recommended to make trade-offs based on system requirements 

between the cost of topology and transmission speed. I2C requires only two signal wires, 

while SPI needs at least four. If there are multiple slave devices, more wires are inevitable; 

The general speed of I2C is 100kbs, 400kbps, and 1Mbps, while the speed of SPI can reach 

several Mbps or 10+ Mbps. After the earliest EEW signal received, the base isolation system 

is triggered. 
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As a substitute when the signal of earthquake early warning system fails receiving, 

accelerometers have the advantage of compensating for the blind area of earthquake early 

warning system. This device can measure acceleration by the deflection and the circuit. It 

consists of one cantilever and one weight whose working principle is to change the 

microstructure of the internal complementary metal oxide semiconductor (CMOS) when the 

accelerometer moves or rotates[123]. The capacitance value will change and then converts the 

signal to a specific output voltage. Namely, these sensors have the ability to keep monitoring 

the situation around including the vibration starts and finishes. In the experiment, 

accelerometers are arranged around the equipment and keeping sending the data to the 

controller. Once the data received shows the abnormal vibration, the base isolation system 

will be triggered immediately. The other issue is sensitivity. High sensitivity may cause 

unnecessary trigger which makes users troubled[82]. The range of vibration of the network of 

sensors is set in 0.04g. When the data detected is over, controller activates the base isolation 

system. At other time, system will not be triggered and check if the system is reset because 

this kind of vibration doesn’t cause any damage. 

RQ3. How to improve engineering properties of the isolators? 

Most of the base isolation system cannot avoid the isolation layer directly contacting the 

building, so one of the most important things is how to effectively reduce the friction force. 

According to the friction formula, the friction force is directly proportional to the friction 

coefficient and the normal force, so these two factors are the main directions we explore. In 

this project, choosing a low coefficient of friction is one of the most direct methods, but it still 

suffers from several shortcomings such as poor performance under strong wind due to its low 

lateral stiffness, limitations on axial capacity, P-delta effects, and poor re-centring properties, 
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etc. Therefore, the concept of magnet is proposed to improve the engineering properties of the 

isolators[124].  

Magnetic levitation, a method follows “The same polarity x repels each other, the 

opposite polarity attracts each other”, can float objects in the air without other external forces. 

At first step, solenoid is used to play a role as shear key which can firmly fix on the 

foundation. Normally, solenoid fully extends iron core making the structure not isolated for 

countering the effects of lateral load acting on a structure. In the event of earthquake, 

controller receives the signal and then solenoid attracts the iron core back from the foundation. 

Next, electromagnet is applied. The principle of polarity after power on causes the building 

and the isolator the same polarity and mutually exclusive. Under the conditions, the building 

can float on the isolator to eliminate friction. However, the weight of the building makes the 

normal force very large, so it needs huge power to generate enough repulsive force. Because 

this project is limited by the availability of funding and large-scale testing facilities, we can 

only achieve the normal force decreasing to partly eliminate friction. 

On the other hand, because earthquakes come from different directions, one-dimensional 

conceptual framework of proposed system is upgraded to be two-dimensional make it more 

comprehensive. At the same time, considering the possibility of construction and cost, the 

linear actuators are mounted above the isolation layer below the structure and the entire 

system is surrounded by a frame as the limitation of base isolation system. Normally, the 

actuators will extend completely to fix the building to the frame to achieve enough lateral 

stiffness. When earthquake occurs, the actuators will be retracted in time to start the base 

isolation like the most commonly used hydraulic actuators. As a result, the system can 

perform well when the earthquake at the beginning of the earthquake is small. 
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RQ4. Does active control help improve the base isolation system? 

Recently, Base Isolation systems are improved by control strategies that some kind of 

active forces are delivered to the main structure. Smart control has been researched in the last 

two decades. Ramallo et al (2002) presented a theoretical investigation into the topic and 

Yoshioka et al (2002) demonstrated experimentally the use of magneto-rheological (MR) 

dampers with laminated rubber base isolators. Clipped-optimal controller utilises H-square 

(H2)/Linear–quadratic–Gaussian (LQG) control strategy. Chang et al [125] experimentally 

investigated an active base-isolation system which and low-friction pendulum bearing 

integrated with hydraulic actuators. Oliveira et al compared four different control strategies 

and concluded that the Integral control algorithm outperform others based on numerical 

simulations [126]. 

However, actively controlled base isolation systems may imply difficulties in practical 

implementation. In particular, the force-delivering devices such as hydraulic actuators will 

need to be switched on. Earthquake events are relatively rare in nature and having the system 

turned on will incur problems such as overheating and other maintenance issues[127]. For 

semi-active controlled systems, for example, the use of MR dampers[128], the problem of 

large power consumption seemed to be solved. However, semi-active control still requires 

careful system identification[12], tuning and control algorithm are complex to implement. 

This article describes the conceptual framework and experimental investigation of a simple 

version of active control which is only activated when there is an earthquake. 

Next, active control of civil engineering structures has following components: (1) control 

devices should be large and strong enough to provide active control forces to act on massive 

and heavy civil engineering structures; (2) The structures are stationary, safe, and stable 
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without external dynamic disturbances; (3) Structural vibrations are mainly caused by external 

dynamic loads, which should be kept under control. These characters make civil engineering 

structures differ from other industries. The classical control theory only focuses on the initial 

conditions, such as the initial displacements and velocities. Consequently, there are usually no 

external loadings in the equations of motion. However, environmental loads, such as strong 

earthquake, wind gust, wave forces, etc. exist in practical situation in nature. 

6.4 Future Works 

The experiments have already proven that the proposed smart mechatronic basis isolation 

is feasible. However, full scale implementation still needs to be carried out in conjunction 

with other professional fields. They are briefly discussed below. 

First, traditional passive base isolation is a mature technology, and many different 

applications (such as lead-core laminated rubber bearings and friction pendulum) are 

commercially available. Although existing base isolation device can be considered, the 

proposed concept is to eliminate the requirement for lateral stiffness, so a special design can 

be conceived with the goal of minimizing lateral stiffness or friction. 

Second, regarding the power supply, in the experiment, the controller is running at 5.5V 

DC, and the power consumption of the sensors and actuators is very low. They can even run 

on batteries in fully scale implementation. However, the shear keys require sufficient stiffness 

to withstand all transverse shear of the primary structure, and of course represent a 

considerable mass. Therefore, a large amount of power is required to activate them, and 

uninterruptible power supply (UPS) needs to be considered to prevent power outages. 
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Third, the shear keys are mechanically operated by electromagnet. In a full-scale 

implementation, as discussed, the shear keys will provide sufficient stiffness, so it may be 

made of steel in forms of hollow pipes or even solid cross sections. As their weight increases, 

mechanical operation by electromagnets and electric/hydraulic linear actuators becomes 

increasingly infeasible. In addition, modern actuators have stall protection (stalling occurs 

when the load torque is greater than the shaft torque) to prevent hardware damage. The 

horizontal movement of main structure may cause slight misalignment between shear keys 

and the shafts that eventually causes the linear brake to stall. 

Fourth, since the proposed system requires the internet between the EEWS and the base 

isolation system, there may be network security issues. In future developments, encryption 

and decryption techniques can be used to ensure the correctness of the signals, or a separate 

network connection can be established between buildings and the EEWS. 

Last but not least, the controller and electronic devices including actuators may be 

inference to electromagnetic pulse (EMP), so the protection is required such as Faraday cage. 
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