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SUMMARY 

The latest technological trend worldwide, is automation. Reducing human labour and 

introducing robots to do the work is a pure business decision. The reason for automating a 

plant can be some, or all, of the following: 

• Improve productivity 

• Reduce labour and equipment costs 

• Reduce product damage 

• System reliability can be monitored  

• Improves plant safety 

 

When the automation process is started, Automatic Guided Vehicles (AGVs) will be one of 

the first commodities that can be used. The reason for this is that they are so versatile. They 

can be programmed to follow specific paths when moving material from one point to another 

and the biggest advantage of all is that they can operate for twenty four hours a day. 

 

Automatic Guided Vehicles are developed for many different applications and therefore 

many different types of AGVs are available. All AGVs are equipped with sensors so that 

they are able to “see” what is happening around them. Since the AGV must be able to 

function without any human help or control, it must be able to navigate through the work 

environment. In this study a remote control car was converted to an AGV and thorough 

research was done on the different types of sensors that can be used to make the AGV more 

intelligent when it comes to navigating in an unknown environment.  
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OPSOMMING 

Outomatisering is die nuutste neiging wêreldwyd. Deur hande arbeid te verminder en eerder 

robotte te gebruik om die werk te doen, is definitief ‘n besigheidsbesluit. Redes vir die 

automatisering van ’n aanleg kan van die volgende of selfs almal insluit: 

• Verbeter produktiwiteit 

• Verlaag arbeid en toerustingkostes 

• Verminder produkbeskadiging 

• Stelselbetroubaarheid kan gemonitor word  

• Verbeter aanlegveiligheid 

Wanneer daar met die outomatiseringsproses begin word, is Outomaties Geleide Voertuie 

(OGV) een van die eerste hulpmiddels wat gebruik kan word. Die rede hiervoor is dat OGVs 

so veelsydig is. Die Outomaties Geleide Voertuie  kan geprogrammeer word om ‘n spesifieke 

roete te volg terwyl hulle materiaal van een punt na ‘n ander vervoer. Die grootste voordeel 

van OGVs is dat hulle vir die volle vier-en-twintig uur van ‘n dag kan werk. 

 

Outomaties Geleide Voertuie word vir verskillende toepassings ontwikkel en daarom is daar 

baie verskillende tipes OGVs beskikbaar. Alle OGVs word toegerus met sensors om te kan 

“sien” wat rondom hulle gebeur. Aangesien ‘n Outomaties Geleide Voertuig sonder enige 

menslike hulp moet kan funksioneer, is dit nodig dat hierdie OGV op sy eie deur die werk 

omgewing moet kan navigeer. In hierdie studie word ‘n afstandbeheerde motor omgeskakel 

na ‘n Outomaties Geleide Voertuig en ‘n deeglike navorsingstudie is gedoen op die 

verskillende tipes sensors wat gebruik kan word om die OGV meer intelligent te maak as dit 

by navigering in ‘n onbekende omgewing kom.  
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Chapter 1 

Introduction to Automatic Guided Vehicles 

1.1 Introduction 

It is a fact that robots are here to stay. They have become a part of our daily lives, making the 

execution of tasks effortless. When it comes to automation, robots are frequently used to do 

the tasks that humans were required to perform a few years back.  A mobile robot is often 

alternately referred to as an Automatic Guided Vehicle (AGV).  

 

AGVs can be used in every step of a production process, from the handling of raw materials 

up to where the finished product is loaded onto the ship, airplane or truck for transportation 

to the wholesaler.  

 

AGVs are used in many different industries. Typical industries are [1]: 

• Aerospace and defence, see Figure 1.1 [2] 

• Automotive, see Figure 1.2 and 1.3 [2] 

• Food and beverage 

• Paper handling, printing and publishing, see Figure 1.4 [2] 

• Chemical processing 

• Plastics 

• Primary metal industries 

• Recycling 
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• Warehousing 

 

 
© 2001-2005 AGV Products 

Figure 1.1: AGV used in an airplane-manufacturing plant 

 

 
© 2001-2005 AGV Products 

Figure 1.2: AGV in the automotive industry 
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© 2001-2005 AGV Products 

Figure 1.3: AGVs used in a tractor-manufacturing plant 

 
© 2001-2005 AGV Products 

Figure 1.4: AGVs in the paper-handling industry 

 

Using AGVs offers a lot of advantages, such as [1]: 

• Less handling damage 

• Can be interfaced with other systems 

• AGV provides predictable and reliable operation 

• Can move material over long distances 

• Improved productivity (can work twenty four hours a day, no sick leave, etc.) 
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Recently, a lot of research has been published in the field of Automatic Guided Vehicles. In 

this project the possibility to develop an AGV base making use of a remote control car will 

be investigated. This newly developed AGV base also needs to be equipped with the correct 

sensors to be able to function as an AGV in any environment [3]. 

 

1.2 Development of the AGV 

The first Automatic Guided Vehicles were introduced in the 1950s. The definition of an 

AGV can be simplified by saying that it is a “driverless” vehicle powered by an electric 

motor and batteries [4][5], or it can be said that an AGV is an unmanned vehicle that is 

controlled by a computer [6, p.3]. An ordinary human driven forklift can be seen in 

Figure 1.5 [7] and the AGV equivalent of a forklift can be seen in Figure 1.6 [1].  

 
Copyright © Toyota Canada Inc. 

Figure 1.5: Forklift that needs a human driver 
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Figure 1.6: Example of an AGV that can do the work of a fork lift 

 

Initially wire guidance was used for navigational purposes. AGVs today, however, in most 

cases make use of laser guidance. The object detection of AGVs was done by using 

mechanical bumpers instead of using sensors, which seems to be the current trend. 

 

According to Dematic Global [8], over three thousand AGV systems have been installed 

during the past 50 years. These systems range from a small number of AGVs, one to three 

AGVs working together, up to more than 100 AGVs working in one system [8].  

 

The AGV industry is unquestionably growing and more developments in this field are 

definitely required.  

 

1.3 Problem Statement 

What are the characteristics of an AGV and how can an AGV be developed using a remote 

control car as a starting point? The project objectives are discussed in more detail in 

Section 1.4. 
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1.4 Project Objectives 

A remote control car is to be taken and converted to form the base of an AGV. This AGV 

will need a number of sensors to be able to function automatically in any environment. These 

sensors must address the following problems that an AGV could experience whilst moving in 

any given environment: 

• Automatically controlling the speed and direction of travel 

• Observing and avoiding objects that are in the way of the AGV 

• Navigate through the environment 

• Be monitored using a personal computer (PC) and communicating with this PC to 

obtain essential data from the AGV that can be stored and used for analysis of the 

AGV performance 

 

1.5 Hypothesis 

The AGV that will be developed within this study must be able to do the following without 

any human help: 

• Control and monitor direction and speed of the AGV 

• Navigate through an unknown environment to get from point A to point B 

• Detect and avoid any obstacles in its way 
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1.6 Research Method 

The development cycle of this AGV is shown in Table 1.1: 

Table 1.1: Development cycle of AGV for the purpose of this research 

1 

Obtaining a suitable 

RC car to use as an 

AGV base 

 

               
 

2 

Controlling the motors 

using microcontrollers 

 

3 

Establish a 

communication method 

between PC and AGV 
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4 

Adding sensors to 

monitor speed, 

direction and distance 

travelled 

 

 

 

 

 

 

5 

Find a suitable system 

to use for navigation 

 

 

 



 9 

6 

Find a suitable way to 

avoid objects 

 

 

 

7 

Combining all modules 

to construct an AGV 

 

 

 

 

 

The remote control car that was dismantled and used is a TAMIYA 4WD, shaft-driven with 

TT-01 chassis. The newly formed AGV base was equipped with sensors to be able to control 

and monitor the AGV. These sensors included the following: 

• Hall effect sensors for determining the speed, distance and acceleration 

• Potentiometer for direction sensing, and determining the angle of the wheels 
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• Ultrasound and IR sensors for beaconing 

• IR sensors for object detection 

 

1.7 Outline of the Dissertation  

The structure of this dissertation is as follows: 

• Chapter 2  

The available technologies within the AGV environment are discussed.  

• Chapter 3  

The researcher will discuss the AGV base and the sensors placed on the base for 

controlling and monitoring the speed, direction and distance travelled. The 

communication method used between PC and AGV will also be discussed. 

• Chapter 4 

A clear explanation of the beaconing system used for navigation will be given. 

• Chapter 5 

The operation of the GP2D12 infra red sensors for object detection is explained. 

• Chapter 6 

The conclusion of the dissertation, as well as possible future work that can come from 

this dissertation will be discussed. 
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Chapter 2 

Available Automatic Guided Vehicle Technologies 

2.1 Introduction 

Automatic guided vehicles (AGVs) are an exiting and developing technology when it comes 

to material-handling in industrial environments. The use of these vehicles will inevitably 

increase productivity and efficiency. A fleet of AGVs can be programmed to operate for 

twenty-four hours a day and these AGVs are remotely monitored by using sensors to obtain 

data pertaining to the physical state of the AGV as well as the ambient environment. This 

chapter will focus on the discussion of the AGV’s basic characteristics.  

 

In the following sections we will look at the available AGV technologies. 

 

2.2 AGV Technologies 

Automatic Guided Vehicles were first introduced in the 1950s. An AGV is an unmanned 

vehicle that is controlled by an onboard computer [1, p.6] and powered by batteries. The first 

AGV was a modified towing truck - it was used to pull a trailer and the navigation was done 

by following an overhead guide wire [2]. During the 1970’s, a new AGV known as the unit 

load was developed, as can be seen in Figure 2.1 [2]. 
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Figure 2.1: Unit Load AGV 

 

AGVs were used as tuggers (trailer AGVs) as well as for carrying small loads. This has 

changed dramatically, as today, AGVs can be equipped with tools like robot arms and 

grippers to form forklifts such as the model in Figure 2.2 [3], unit load carriers, side loading 

and high-lifting AGVs, tuggers and transport carts, just to name a few [4][5].  

 

Figure 2.2: Example of a forklift AGV 
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AGVs can be different sizes and can carry different loads, from no load up to a few tons. The 

environment in which AGVs function can differ from air-conditioned offices with carpet 

floors to hospital hallways, factories with concrete floors and even outdoors, such as harbour 

docksides or even military environments. 

 

The modern AGV is controlled by a microprocessor and some sensors. These sensors are 

responsible for being the “eyes” of the AGV. These sensors must help with the following 

tasks: 

• Monitoring the physical condition of the AGV – speed, battery power, distance 

travelled, etc 

• Object detection and avoidance 

• Navigation  

• And many more 

 

AGVs are normally powered by batteries. To get optimum working time from the AGV, 

battery power must be used effectively. 

The benefits of AGVs include the following [5][6, p.3]: 

• Reduces labour costs 

• Increases productivity and dependability 

• Less damage to products due to handling 

• Increased safety 

• AGVs can be reprogrammed to follow different routes, thus this method of handling 

material is much more flexible than, for example, conveyor belts 



 15 

The following recommendations for AGV safety should be followed [2]: 

• The travel paths of the AGVs should be clearly marked so that people know which 

areas to avoid - this includes the turning areas of the AGVs. 

• Workers must be trained to be on the lookout for AGVs and to keep clear of an AGV 

path if  a vehicle is approaching. 

• When working close to or on an AGV path, cones (obstacles) should be placed 

around the area concerned to protect the workers. 

 

2.3 Motors and Speed control 

One of the biggest challenges in building an AGV is controlling its motors. There are 

different types of motors available with different ratings. These include DC motors, 

Brushless DC motors, AC motors and Servomotors.  

 

Preferably, microcontrollers must not be used to drive the DC motors directly. It is made  

even more complicated if the motor needs to be bidirectional. This section explains the basic 

principles of selecting and controlling the motors. 

 

The choice of a motor for an AGV helps to define the capabilities of the rest of the system 

[7, p.3].   

• The torque determines the maximum weight of the AGV, as well as the ability of the 

AGV to go uphill easily.  Torque is the force applied to an object on an axle that 

causes the object to rotate around the axle [7, p.4]. 
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• The motor’s maximum loaded RPM, along with the torque, size, weight and wheel 

size of the AGV. The wheel size determines the maximum speed that the AGV will 

be able to travel. 

• The motor’s voltage determines the battery voltage required. 

• The motor’s minimum, average and maximum currents will determine the size of the 

battery needed. 

 

There are four basic ways to control the speed of a motor: 

• By using mechanical gears to achieve the desired speed. 

• Changing the motor’s voltage with a series resistor. By using this method, the torque 

is reduced and the motor might even stall due to the fact that the motor will draw 

more current. More current will result in an increase in voltage across the series 

resistor. This will result in less voltage across the motor. This method can thus be 

labelled as inefficient. 

• Pulse width modulation. The amplitude stays constant and the width of the pulses is 

varied. PWM is a powerful technique for using microcontrollers to control analogue 

circuits. By controlling analogue circuits digitally, cost and power consumption can 

be reduced [8]. 

• Pulse frequency modulation (PFM). Amplitude is kept constant and the  turn on time 

of the transistors are varied.   

  

One of the biggest problems in delivering power to a load (in this case the motor) is the 

amount of power that is lost and the heat generated. AGVs are powered by batteries. 
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Therefore, to get optimum working time from the battery, the power must be used 

effectively. Using PWM to control the motors will use less power. When using PWM instead 

of constantly applying power, a pulse train with a fixed amplitude and frequency is applied. 

Only the width of the pulses is varied. This will cause the average output voltage to be the 

same as the input voltage, but the amount of power used is reduced. Figure 2.3 is an example 

of a signal with different duty cycles. The duty cycle is the ratio of the time-high relative to 

the period expressed as a percentage value.  

 

                        

                        
10 % duty cycle 

                                   

                        

                        
50 % duty cycle 

                                   

                        

                        
90 % duty cycle 

 

Figure 2.3: PWM signals of varying duty cycles 

 

One of the advantages of PWM, as can be seen in Figure 2.3, is that the signal is digital - it is 

either on or off, high or low. By keeping the signal digital, noise effects are minimized [8].  

 

An H-bridge circuit makes it possible to run the dc motor in both directions and control the 

servomotor. The best solution to control the dc motor is with PWM and an H-bridge circuit, 

like the one that can be seen in Figure  2.4 [9]. 
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Figure 2.4:  H-bridge circuit 

 

Only two of the Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are on at a 

time. If the motor is to turn forward the one transistor is pulsed and the other transistor is kept 

at 5 V and vice versa. Short pulses on the base of the appropriate transistor means that the 

motor is running slowly and longer pulses will make the motor run faster. Pulse width 

modulation is used to control the amount of current flowing through the motor [8]. The P-

channel MOSFETs on top can source power and the N-channel MOSFETs at the bottom can 

sink power [10]. 

 

An H-bridge circuit can be constructed with relays, transistors or field-effect transistors 

(FETs). When using transistors or FETs, the motor can be better controlled by using PWM. 

Higher currents can be reliably switched using FETs and transistors rather than relays. When 

using transistors, diodes should be connected across each transistor (collector-emitter) to 

protect the transistors from the back EMF that is generated by the motor’s coil when the 

power is switched on and off. These diodes are called flyback diodes. MOSFETs are much 
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more efficient than transistors, as they provide much more current without dissipating too 

much heat. MOSFETs usually have the flyback diodes built in [11]. 

 

By using capacitors, the electrical noise caused by motors, due to back EMF, can almost be 

eliminated. The back EMF of the motor is directly proportional to the angular velocity of the 

motor. The capacitors must be connected between the motor terminals and the case of the 

motor. The capacitors must be mounted directly onto the motor - if it is placed on the circuit 

board the leads from the motor to the capacitors become antennas that will enhance 

electromagnetic interference (EMI) [7, p.9]. The value of the capacitors must be in the nF 

range, up to 100 nF and breakdown voltages of 300 V. The capacitors will absorb the energy 

stored in the inductive windings of the motor.   

 

A servomotor is used to direct the AGV. The basic construction and operation principles of a 

servomotor are basically the same as that of a conventional induction motor. The only 

difference is that servomotors have been redesigned to meet high precision, high speed, high 

frequency positioning and speed control of the mechanical parts [12]. There are basically 

three types of servomotors; AC and DC servomotors and stepper motors. The AC 

servomotors can be divided into two groups; synchronous (or DC Brushless) and induction-

type servomotors [12].  

 

Some important characteristics of servomotors are [12]: 

• Motor speed is proportional to supply voltage 

• Motor torque is proportional to supply current 
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• Motor output power is proportional to the speed multiplied by the torque and the 

input power is proportional to the supply voltage times the supply current 

• Temperature has an influence on the operation of the motor 

 

The shaft of the servomotor can be positioned to a specific angular position by sending a 

signal to the servomotor. The servomotor is smaller than the DC motor and it has built-in 

control circuitry.  

 

2.4 Sensors 

Sensors are needed to provide information about the AGV’s surrounding environment and 

the state of the vehicle itself. In this study, sensors must be used for navigation and object 

avoidance as well as for monitoring the state of the AGV, more specifically the speed and the 

steering of the AGV. To determine the distance from obstacles, remote sensing is needed. 

Remote sensing means that observations or measurements of the obstacle can be made from a 

distance. Sensors can be grouped in two categories, i.e. active and passive sensors.  

 

Active sensors determine the state of the AGV’s environment by transmitting and receiving a 

signal. Some examples of active sensors are: 

• Laser Range Finders 

• Radar 

• Ultrasonic sensors 

• Infrared sensors 
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Passive sensors, on the other hand, do not emit signals but collect data through observation. 

Passive sensors can further be divided into two more groups, internal or external. Internal 

sensors are used to collect data concerning the vehicle’s state, such as motor velocity or  the 

steering angle. External sensors are used to determine the state of the vehicle’s environment, 

such as range or proximity. Some examples of passive sensors are: 

• Potentiometers 

• Tachometers 

• Encoders 

• Tactile sensors 

• Cameras 

 

2.5 Navigation of AGVs 

Several methods of guidance and navigation are implemented. The general problems 

concerning AGV navigation can be summarized as three questions [13, p.10]: 

• Where am I? 

• Where am I going? 

• How will I get there? 

Since the 1970s, until about ten years ago, most AGVs used wire guidance, which is 

electromagnetic wires buried in the floor, for navigation purposes. The first thing that comes 

to mind when thinking of navigation is the Global Positioning System (GPS). The AGV in 

this project will only be used indoors, thus the GPS is not an option. GPS systems do not 

function very accurately indoors. Through the years different methods have been developed 

and researched. The future might even be an indoor global positioning system (GPS) [5]. 
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AGVs that are used in manufacturing plants mostly use tracks to keep them on course.  These 

tracks can be a groove in the floor, a wire buried in the floor or even a strip of tape attached 

to the floor. It is difficult to implement the groove and wire method in an existing building, as 

revamping must be done and this may delay production, or the plant may have to be closed 

for a while. Using the strip method is much easier, but then the maintenance is much higher 

since the strip must be replaced after a certain period of time due to corrosion, tearing etc. 

Since it was not always possible to change the environment and install guide wires, other 

methods had to be utilized for guidance and navigation, and these includes [7, p.2]: 

• Laser scanners 

• Microwave transponders 

• Inertia gyros 

• Ultrasonic sensors 

• Embedded magnets 

• Camera vision 

 

2.5.1 Wire Guidance 

Wire guidance is one of the most popular navigation methods for industrial robots [14]. It is 

based on passing current through a conductor or wire, which then creates an electromagnetic 

field around the conductor.  The closer the AGV gets to the conductor, the stronger the 

magnetic field.  When an electromagnetic field is passed through a coil, it induces a voltage 

across the ends of the coil, which is proportional to the field strength.  In this case, the AGV 

is equipped with guide and cross-antennas.  The guide antenna must be centered over the 

guide wire.  The cross antenna is used to pick up the intersections of the cross-wires.  The 
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guide-antenna has two coils, one coil on each side of the guide-wire.  The difference in 

voltage between the two coils is amplified and this creates the steering signal.  When the 

antenna is centered over the guide-wire, the voltages in the two coils will be equal thus, the 

AGV is on the right track and no steering adjustments will be made.  If the AGV deviates to 

the left or right, the voltage in the one coil will increase and decrease in the other.  This will 

result in a steering adjustment.  To monitor the position of the AGV, cross-wires are installed 

in the floor.  The cross antenna of the AGV picks up these intersections and, in this way, it 

can determine the position of the AGV [4]. 

 

2.5.2. Painted Line Guidance 

This method is very similar to wire guidance. Lines are painted on the floor using visible or 

invisible fluorescent dye and sensors are used to detect these lines and follow them. The 

advantage of this method is that the paths can be fixed and are easy to alter. The 

disadvantages are [14]: 

• Network of routes should be kept simple. 

• The lines must be repainted from time to time due to general deterioration. 

• Lines can be obscured by objects thus disabling the AGV guidance. This is why 

object avoidance is so crucial. 

 

2.5.3. Laser Guidance 

When using laser guidance the AGV is equipped with a laser scanner that gives out X and Y 

coordinates.  The laser scanner must be mounted as high as possible on the AGV, so that it is 
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highly visible to the targets.  The targets are made of reflective tape. A minimum of three 

targets must be detected before the system can produce the coordinates.  The targets can be 

up to 30 metres from the AGV.  The laser scanner will measure the distance and the angle to 

each target, and its output will be an X and Y coordinates [2, p.2].  AGVs used in the Ohio 

State University Medical Center (OSUMC) are used as transporters. The AGVs are used to 

move materials around the hospital, including carrying the patients’ meals, linen, supplies 

and waste between the patient wings and service floors, with interfaces to the kitchen, 

laundry, supply and trash areas. These AGVs make use of laser guidance for navigation 

around the hospital. A rotating infrared light on top of the transporters hits multiple reflectors 

attached to the walls. The transporters catches the reflections and uses the information to 

calculate its position. The transporters has a map stored in its memory to plot its exact 

position [15]. 

 

Laser guidance is currently one of the most popular methods used in the AGV industry. 

 

2.5.4. Inertial Guidance 

This method uses magnets/gyroscopes, and sometimes accelerometers, to measure the rate of 

rotation and acceleration.  A magnet position sensor is mounted onto the AGV and used to 

detect small magnets installed in the floor.  It also has gyroscope technology that helps the 

AGV go in the right direction.  Usually there is a pair of magnets placed every five to ten 

metres.  The gyro sensor gives the direction of the vehicle and provides an output voltage that 

is proportional to the rate of turn.  The gyro sensor uses the Coriolis Effect to detect the 

angular rate [4]. A problem with this method is the high cost, as highly accurate gyros are 
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very expensive [16, p.21]. Another type of gyroscope, known as the gyrocompass, is also 

available. It can align itself with the earth’s rotational axis, but it also tends to be a large and 

costly instrument [17, p.2]. 

 

2.5.5. Path-Tracking 

The Path-Tracking method was one of the possible solutions to the navigation problem due to 

the fact that it is said to be very accurate and, therefore, it is discussed in much more detail 

than the rest of the possibilities. Path-Tracking is another option for AGV navigation, and 

this process is concerned with determining the speed and steering settings at each instant of 

time. This is needed for the AGV to follow a certain path. A path consists of a set of points 

representing specific coordinates in a particular route. Path-Tracking consists of two parts. 

The first part is the Recoding Phase, where a human operator manually takes the AGV along 

a predefined path and the AGV records it. The second part is the Path-Tracking Mode - in 

this mode the AGV takes control and follows the recorded route as closely as possible. If the 

AGV comes across static obstacles it will take a detour around it and then return to the 

original route [1, pp.6, 13]. There are different types of Path-Tracking algorithms available. 

Three of these methods are: 

• Follow-the-Carrot method 

This method is quite simple, all one has to do is obtain a goal point then aim the AGV 

towards that point. A line is drawn from the center of the AGV’s coordinate system at 

right angles to the path. From this the orientation error can be determined, thus the 

AGV knows after a few calculations how many degrees it needs to turn in which 
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direction to reach the goal point or the carrot point. An orientation error of 0° 

indicates that the AGV is pointing directly towards the goal point. 

See Figure 2.5 for an illustration of the Follow-the-Carrot Path-Tracking method. 

 

Figure 2.5: Follow-the-Carrot Path Tracking method 

 

Although this method is easy to understand and simple to implement, it has a few 

major drawbacks [1, p.14]: 

o The AGVs using this method tends to cut corners - this happens because the 

AGV will try to immediately turn towards each new carrot point. 

o The vehicle could oscillate about the path, particularly if the look-ahead 

distance is small or if the vehicle is travelling at higher speeds. 

 

• Pure Pursuit method 

The basic concept of this method is to calculate the curving that will take the AGV 

from its current position to a goal point. The goal point is determined in the same 

manner as for the Follow-the-Carrot method. A circle is then defined so that it is 

possible to pass through both the AGV’s current position and the goal point. Finally 
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an algorithm must be developed to choose a steering angle for the AGV, as illustrated 

in Figure 2.6 [1, p.15].  

 

In Figure 2.6: 

� D is the distance between the current vehicle position and the goal point 

� ∆x is the x-offset of the goal point from the origin 

� 1/γr is the radius of the circle that goes through both the center of the AGV and 

the goal point. 

Figure 2.6: Pure Pursuit Path-Tracking method 

 

According to tests done by Lundgren [1] the Pure Pursuit method shows better results 

than the Follow-the-Carrot method. There was less oscillation and the AGV had more 

accuracy at the curves [1, p.16]. 

 

• Vector Pursuit or Screw-Tracking method 

Vector Pursuit is a more recent Path-Tracking method that uses the theory of screws. 

The Screw Theory can be used to represent the motion of any rigid body in relation to 

a given coordinate system. Any instantaneous motion can be described as a rotation 
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about a line in space with a related pitch. This method was developed in order to get 

the AGV to not only arrive at the goal point, but to also have the right orientation and 

curvature. A screw consists of a centerline and a pitch. A line can be represented 

using only two points (r1 and r2), evident in Figure 2.7. The same line can also be 

defined as a unit vector (S) [1, p.17].  

 

 

 

 

 

 

Figure 2.7: A line represented by two vectors. 

 

An instantaneous motion of a rigid body can be illustrated as a rotation about a line in 

space with an associated pitch. Line S becomes the screw, with a certain pitch (h) and 

a certain velocity [1, p.17]. 

 

All three methods use a look-ahead point - this is a point on the path that is a certain distance, 

(L), away from the orthogonal projection of the AGV’s current position. Changing the look-

ahead point can have great effect on the performance of the system. If the distance increases 

the number of oscillations will reduce, thus ensuring the smooth tracking of the path. The 

downside to this is that the vehicle will now start to cut corners [1, p.19].  
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2.5.6. Dead Reckoning 

Dead Reckoning is a method of estimating the position of the AGV based on speed, direction 

and the time that has elapsed since the last known position. The easiest way to implement 

Dead Reckoning is by using a method called Odometry. Odometry is one of the most widely 

used navigation methods for robot navigation. Odometry provides information about vehicle 

displacement based on the rotation of the AGV’s wheels. This rotation can be measured in 

different ways, for instance wheel or shaft encoders, Hall Effect sensors etc [1, p.10]. The 

advantage of using this method is that it is very cheap compared to other methods such as 

GPS (Global Positioning Systems) or even ground beaconing systems, it is self-contained and 

it is always capable of providing the vehicle with an estimation of its position [16, p.20]. 

Odometry can be used with high sampling rates and it does not require complex 

mathematical calculations. The disadvantage of odometry, however, is that it tends to 

accumulate errors over time. A rule of thumb is that a small or medium sized AGV 

accumulates at least 10 cm of error for every 10 m of travel on a smooth surface [14]. There 

are mainly two types of errors [1, p.13][14]: 

• Systematic errors 

o Unequal wheel diameters 

o Average of both wheel diameters differ from nominal diameter 

o Misalignment of wheels 

o Uncertainty about the effective wheelbase 

o Limited encoder resolution 

o Limited encoder sampling rate 

• Non-systematic errors 
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o Travel over uneven floors 

o Travel over unexpected objects on the floor 

o Wheel-slippage due to 

� Slippery floors 

� Over acceleration 

� Fast turning (skidding) 

� External forces (interaction with external bodies) 

� Internal forces (e.g. castor wheels) 

� Non-point wheel contact on the floor 

Systematic errors are worse than non-systematic errors due to the fact that they build up 

constantly. 

The main problem with this method is wheel-slippage [18, p.2]. 

 

A magnetic compass can also be used to provide heading information. Compassing is one of 

the only methods that can provide absolute heading information without external references 

for calibration [17]. 

 

2.5.7. Beaconing 

One system that navigates by means of beaconing is Cricket, which was developed and tested 

by Priyantha, Chakraborty, and Balakrihnan [19]. A beacon is a small device that is attached 

to some location within the space of operation. Each mobile and static node needs to get 

information from the beacons and, in order to do this, each of them needs a receiver or, as 

Priyantha et al. [19] calls it, a listener. A listener is a small device that listens to the messages 
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from the beacons and uses this information to determine its current position [19]. In this 

particular study they first tried to use a purely RF-based system, but they did not get the 

wanted results. It was therefore decided to use a combination of RF and ultrasound to enable 

the listener to determine the distance to the beacons. The RF and ultrasonic signals are sent 

simultaneously from the beacon. The listener first receives the RF signal, it uses the first few 

bits as training information and then the listener turns on its ultrasound receiver. Only then 

does the listener start listening for the ultrasonic pulse, which arrives a short time later since 

the speed of sound in air is much slower than the speed of light in air. The receiver then uses 

the difference in time between the receipt of the RF signal and ultrasonic pulse to determine 

the distance to the beacon [19]. The use of the signal’s Time-of-Flight is not a new concept 

for measuring distance – bats, for instance, also use the same concept to navigate. Another 

common example is to use the time elapsed between observing the lightning and hearing the 

thunder to estimate the distance to the lightning.  

 

To avoid RF and ultrasound pulses from different beacons being correlated incorrectly, [18] 

it was decided not to use a fixed transmission schedule, but rather choose transmission times 

randomly with a uniform distribution within the interval. This means that each beacon’s 

broadcasting is independent of the other beacons [19]. 

 

When the Beaconing System is used, the robot can compute its absolute position by 

measuring the distance and direction to three or more beacons [16, p.21]. 
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2.5.8. Proximity Detection 

Proximity sensors can be used when [18, p.2]: 

� The object naturally transmits a signal. 

� The object has its own transmitter. 

� Reflection – a signal is transmitted to the object and the same signal is once again 

received by the transmitter. 

For the first two methods, passive sensors are needed, and for the latter, active sensors are 

used.  

 

Proximity detectors have been proven to not be able to provide a solution for AGV 

navigation on their own. They can, however, be used in conjunction with other methods to 

improve the AGVs navigation skills [18, p.2]. 

 

2.5.9. Landmark Navigation 

In this navigation method, distinctive artificial landmarks are placed at known locations 

within the environment. The advantage of using artificial landmarks is that they can be 

designed for optimal detectability. As with beaconing, at least three landmarks should be 

visible to allow the AGV to determine its position [16, p.21].  

 

2.5.10. Tactile Detection 

This method involves some interaction between the AGV and the environment. This implies 

physical contact and requires [18, p.2]: 
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� Contact that does not harm the AGV or environment 

� Identifying the contact 

� Developing a strategy for scanning the environment 

This method is very hazardous as it relies on physical contact [18, p.2]. 

2.6 Determining Distance and Speed of Other Objects 

Due to the fact that the AGV must navigate through an unknown environment, the object 

detection must be done from a distance.  The AGV must have enough time to stop, turn or 

accelerate to avoid an obstacle.  It is better to totally avoid the collision than to only be able 

to detect it once it has happened.   

 

Up to about ten years ago the obstacle detection systems of AGVs consisted mostly of 

mechanical bumpers, which were emergency stops that stopped the AGV when it came in 

contact with anything [1, p.1]. Since then, other methods have been explored to detect and 

avoid obstacles. Of these, the most common methods are: 

• Stereovision 

• Ultrasonic sensors 

• Infrared sensors 

• Laser sensors 

 

Stereovision was not considered in this study due to the fact that it is considerably more 

expensive than the other methods. It is also a specialised field and could prove to be a project 

all on its own. 
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2.6.1 Ultrasonic Sensors 

Ultrasonic sensors use the velocity of sound in air to measure distance from a beacon, or 

object, to the receiver. The velocity of sound depends on environmental factors such as the 

ambient temperature and humidity. Within a building these properties can exhibit both 

temporal and spatial variations. Temporal variations are variations that occur during different 

times of the day or seasons of the year. Spatial variations are variations of temperature and 

humidity due to effects such as direct sunlight falling in different sections of a room, the 

presence of heaters and air conditioners within a room, etc [16, p.5]. 

 

Ultrasonic sensors usually work on a frequency of about 40 kHz. Distance is determined by 

using the Time-of-Flight method. The distance l to a reflected object is calculated by  

2

ct
l =        [2.1] 

where c is the speed of sound and t is the round-trip time-of-flight, as shown in Figure 2.8 

[20]. 

 

Figure 2.8: AGV using ultrasound for object detection 

 

 

Figure 2.9 shows a model of the waves that would be reflected if there were two objects in 

front of the AGV. 
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l 



 35 

 

Figure 2.9: A model of reflected waves 

 

Since one uses a receiver and a transmitter sensor next to each other, the receiver picks up a 

direct wave from the transmitter, as is clearly shown in Figure 2.9. This direct wave must be 

neglected in order for the AGV to obtain correct information [20]. 

 

The advantages of this system are that it is cost-effective and very simple to implement. 

However, there are some limitations as well. Common to all sonar-ranging systems is the 

problem of sonar reflection - when the object is at an angle, the range computed will be the 

closest point to the object. In the case of ramps or dips in the floor, the sensor will detect the 

ground as an obstacle. 

 

2.6.2 Infrared Sensors 

Infrared sensors can be used to measure: 

• Ambient light 
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• Light reflected from obstacles 

The values returned by these proximity measurements depends on factors such as the colour, 

shape and intensity of the obstacle detected, as well as the distance to the obstacle [1, p.8]. 

According to Lundgren [1], white objects are preferred - the darker the objects became the 

worse the level of accuracy. 

 

The principle being explored in this study is based on Time-of-Flight methods, similar to 

ultrasound. An IR signal is transmitted and the receiver waits for a response. The time it took 

from when the signal was transmitted up until it was received is used to determine the 

distance from the object. Infrared sensors from the Sharp range, such as the GP2D12 or 

GP2D02, can be used for this application. 

 

2.6.3 Laser Range-Finding 

Several methods of laser range-finding have been developed, including: 

• Time-of-flight measurement 

• Phase shift measurement 

• Triangulation 

• Absolute interferometry 

Laser range-finders provide fast, high-resolution readings over a long measurement range. 

Laser range-finders also have the ability to produce 2D and 3D contours of surrounding 

terrain. The biggest limitation experienced with regard to the laser range-finder is that it is 

one of the most expensive sensor systems available.  
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2.7 Communication 

A communication method is needed between different AGVs, between the AGV and the user 

as well as between the AGV and destinations.  Different possibilities are available: 

• Infrared communication 

• Laser communication 

• Radio frequencies 

• Bluetooth, etc. 

 

In this project the chosen method for communication between the different entities is radio 

signals, or, more specifically Bluetooth. The reason for this will become evident in the next 

few pages. 

 

The ideal radio signal will have high speeds, use as little energy as possible and travel far 

distances.  This ideal wave will make the process of data transfer fast (millisecond range) at 

great distances and will use very little battery power [21].  In reality, this is impossible, due 

to the fact that the faster the data travels and the greater the distance, the more energy is 

needed.  It is impossible to achieve all three: 

• Fast data transmission 

• Greater distances 

• Very little energy 

This is why different methods were developed to transfer data, each method with its own 

advantages.  The characteristics of different Wireless Area Networks (WAN) can be seen in 

Table 2.1, and typical examples in Table 2.2 [22]. 
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Table 2.1:  Characteristics of different Wireless Area Networks 

Wide Area Network (WAN) Range Power Drain Transmit speed 

Wireless Personal Area Network (WPAN) 10 m Low 800 Kbps 

Wireless Local Area Network (WLAN) 100 m Medium 11 Mbps 

Wireless Wide Area Network (WWAN) 2 – 3 km High 14.4 – 56 Kbps 

Wireless Metropolitan Area Network (WMAN) 30 km Very High 1.5 Mbps 

Wireless Global Area Network (WGAN) 500 – 1500 km High 64 Kbps 

 

Since AGVs are powered by batteries, one of the most important issues to look at was power 

consumption.  In Table 2.1, it is clear that the WPANs use the least amount of power, thereby  

making Bluetooth the obvious choice.   

 

Table 2.2:  Examples of different Wireless Area Networks 

WAN Example 

WPAN Bluetooth 

WLAN Wi-Fi 

WWAN GSM, CDMA, GPRS, CDPD, TDMA 

WMAN Sprint fixed wireless 

WGAN Satellite 

 

 

Bluetooth is a wireless technology intended for short range wireless radio links.  The primary 

features of Bluetooth can be summarized as follow [9]: 

• Voice and data capabilities 
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• Robustness 

• Low complexity 

• Low power consumption 

• Low cost 

Bluetooth operates in the range of 2.4 to 2.48 GHz.  The advantage of this is that these 

frequencies will be the same worldwide and any Bluetooth device can connect to any other 

Bluetooth device within range.  Each Bluetooth device can communicate with up to seven 

other devices.  A Bluetooth network is called a piconet.  One Bluetooth device can be part of 

many piconets [22]. The disadvantage of using Bluetooth is its limited range. 

 

To establish a connection between two Bluetooth devices, the one device must request a 

connection and the other must accept.  Security is very important.  The AGV should receive 

its commands from one point or person only.  If the security level was low, any Bluetooth 

device will be able to communicate with the AGV and this could be a safety risk.  Bluetooth 

has the following methods for security.   

• Authentication is used to verify the identity of the other device - it requires a passkey 

from the remote device.   

• Authorisation is a Yes-or-No security – it is limited to “yes you may connect” or “no 

you may not connect” 

• Every Bluetooth device has a unique identity or device address -  it is assigned to the 

device during manufacturing and the Bluetooth Device Address (BDA) is usually 

displayed in hexadecimal format. 
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• Link key is a unique, internally generated, access code.  Link Keys are generated 

automatically when devices connect. 

• Connected devices share a unique Link Key, which they exchange each time they 

connect. 

The fact that Bluetooth has low power consumption is the only factor that is limiting the 

range. The only way to have low power consumption is to transmit weak signals, typically in 

the range of 1 mW. Although this signal is very weak, it can still transmit through walls [9]. 

 

2.8 Batteries 

Different batteries have different voltage and power ratings and may also not be able to 

deliver infinite currents. The power rating is usually indicated in Ampere-Hour, if the battery 

was rated 1 Ah it means the battery can supply one ampere for one hour.  When more than 

one battery is connected in series it, will increase the voltage, and when it is connected in 

parallel, it will increase the current [23]. 

 

There are many different battery types, such as: 

• Nicle cadmium (NiCd) 

• Lead acid 

• Lithium Ion 

• Alkaline 

 

Different types of batteries with the same voltage usually have different current capabilities. 

The most common battery type is Alkaline batteries and they also happen to be the cheapest. 
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The problem with alkaline batteries is that they have a low power capacity and they are not 

rechargeable. Lead acid batteries are rechargeable, inexpensive, work well with solar 

powered applications and are frequently used for large, low performance type robots. Lead 

acid batteries have the highest power-to-size ratio, but have the disadvantage of being big and 

heavy [2]. Nickel Cadmium (NiCad) batteries have the highest current output and are not too 

expensive, they can also be charged much faster than, for instance, Lead acid. A faster 

charging time means that the AGV will be working more. By increasing the charging current, 

the battery can be charged in as little as ten minutes [2]. Nickel Metal Hydride batteries have 

a good current output and have a high energy capacity. Lithium (Li-ion) batteries are the 

latest technology and have the same capabilities as NiMHs and NiCads, but the advantage  is 

that it weighs up to 35% less. The disadvantage, however is that it is very expensive.  

 

Since the remote control car that will be transformed into an AGV has a NiCad battery 

already, the obvious choice for a battery will be the NiCad. The battery of an AGV must be 

monitored continuously.  Battery charging stations can be placed throughout the plant, at 

loading points, turning points, docking stations etc.   
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Chapter 3 

Automatic Guided Vehicle Principles 

3.1 Remote Control Car 

The car being used for this project is a TAMIYA 4WD shaft-driven TT-01 chassis. Figure 

3.1 shows the remote control (RC) car before any changes were made and Figure 3.2 

illustrates the AGV base [1]. 

 

Figure 3.1: Remote Control Car 

 
 

 

Figure 3.2: The AGV base before any changes were made 
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The overall length of the car is 441 mm and it is 185 mm wide. The car is powered by a 

7.2 V 1500mAh NiCd battery.  It has one DC motor for moving forward and backwards and 

a servomotor for steering.  It has a remote control that works at 27 MHz.  The receiver unit is 

the control unit of the car and it transfers the received commands to the motor and servo [1].   

 

3.2 Hardware of AGV 

The hardware of the AGV will consist of the following  

• DC motor and H-bridge circuit for moving forward and backward 

• Servo motor for steering 

• Control unit with a microcontroller 

• Bluetooth modules for communication 

• Sensors for navigation and object avoidance 

• Sensors for determining speed and direction 

• Batteries to supply power 

 

It is very important to have a base that is very light; a heavy base will consume a lot of power  

and cause a reduced battery life [2]. 
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Figure 3.3: Complete system 

 

The complete system can be seen in Figure 3.3. In front is the AGV base with the controller 

board, Bluetooth module and all the other parts, such as the batteries and motors. All sensors 

are placed directly onto the AGV. A PIC18F242 microcontroller is used to collect the data. 

The data is sent to a PC via Bluetooth and the data is used in LabView. Data is also sent from 

LabView to the AGV. The LabView interface displays the measured values and has controls 

to manually control the vehicle. On the left is a simple gaming joystick that can also be used 

to manually control the AGV. The PCB (Board) that was developed can be seen in 

Figure 3.4. 
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Figure 3.4: Complete PCB 

 

3.3. Motors and Their Control 

The first step in changing the RC car into an AGV is to investigate how the motors are going 

to be controlled.  A DC motor is used for forward and backward movement and a Futaba 

Servo motor is used for steering. See Figure 3.5 for an example of a DC motor. 

 

Figure 3.5:  DC motor in RC car 
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The DC motor inside the RC car is kept as it is, but the speed control of the RC car is 

replaced by an H-bridge circuit, as shown in Figure 3.6 [2].   

 

The H-bridge circuit makes it possible to run the DC motor in both directions with only one 

power supply.  The output voltage is controlled by pulse width modulation (PWM) - this 

technique is widely used and very well known [3]. The longer the pulse, the faster the AGV’s 

motor will be turning. The PWM signals are generated by the microcontroller.  
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Figure 3.6:  H-bridge circuit. 

 

A microcontroller (PIC18F242) from Microchip will be used to control the motors and 

steering of the AGV.  This microcontroller was chosen due to the fact that it has 4 Timers, 

USART, external interrupts, analogue inputs, PWM and it is rewritable.  The external 

interrupts are used for the inputs coming from the Hall-Effect sensors. One of the analogue 

inputs is used for the input from the potentiometer at the steering. Timer0 is used to 
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communicate with the PC at fixed intervals. Timer1 is used to set the cycle for the PWM. 

The PWM feature is used for controlling the servomotor (steering). The USART is needed 

for RS232 communication between the PIC and the Bluetooth module (HPS-120).   

 

The initial high current drawn by the motor causes the PIC to reset [2]. The maximum current 

value measured by switching on the AGV, in other words the motor, was 4,2 A. To 

compensate for this amount of current, the tracks on the PCB was made much wider. Due to 

this high current and the problem of the PIC resetting, it was necessary to use two batteries.  

One battery is used to power the motor and H-bridge circuit and the other to power the 

control unit and the servomotor.  A Futaba S-148 servomotor is used and is shown in 

Figure 3.7. [4].  

 

Figure 3.7:  Futaba S-148 Servomotor 

 

A servomotor is used to direct the AGV.  The shaft of the servo can be positioned to a 

specific angular position by sending a coded signal to the servomotor [5, p178].  The 

servomotor is smaller than the DC motor and it has built-in control circuitry, as well as a gear 

reduction system to produce a large amount of torque [5, p.179]. The servomotor draws 

power proportional to the mechanical load.  The speed at which the servo is turning depends 
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on how far it is from the desired position. The  servo will spin as fast as possible until it gets 

close to the desired position, then it will slow down to avoid overshooting [6]. The inside of a 

servomotor is shown in Figure 3.8. [4].     

 

Figure 3.8:  The inside of a servo motor 

 

As seen in Figure 3.8., the inside of the motor consist of the control circuitry, the motor, a set 

of gears and the case.  The potentiometer is used to sense the position of the shaft. If the 

position is not correct the internal control circuitry is used to turn the motor in the correct 

direction to obtain the desired angle [5, p.179]. There are three wires going to the servo, one 

is for power (+5 V), ground and a control wire.  The amount of power applied to the motor 

by the control circuitry is proportional to the distance that it needs to travel.  This means that 

if the shaft needs to turn a large distance, the motor will run at full speed and when it needs to 

turn only a little bit, the motor will run at a slower speed.  This is called proportional control 

[4].   

 

The control wire is used to give the commands to the servo.  The angle is determined by the 

duration of the pulse applied to the control wire.  The length of the pulse will determine how 

far the motor turns.  A 1.6 ms pulse will make the motor turn to the 90° position.  If the pulse 
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is shorter than 1.6 ms the motor will turn the shaft closer to 0° and when the pulse is longer 

than 1.6 ms the shaft turns closer to 180°, as illustrated in Figure 3.9.  In the RC car, the 

mechanical layout is designed so that when the shaft turns to the 0° position, the wheels will 

turn right, and when the shaft turns to the 180° position, the wheels will turn left. 

 
 

Figure 3.9:  Shaft positions. 

 

3.4 Speed and Steering 

Hall-effect sensors are used to measure speed, acceleration and the distance travelled by the 

AGV. Hall-effect sensors work with magnetism. As a magnet comes closer to the sensor, the 

voltage of the sensor will increase with a few hundred millivolts. This sensor was chosen 

since it is immune to most environmental noises such as vibration, moisture, ambient 

lighting, dust, etc. [7]. Ten small magnets are mounted on the inside rim of the wheel to be 

able to determine the speed of the wheel, as shown in Figure 3.10. The amount of wheel 

rotations can also be determined as well as the distance travelled. One rotation of the wheel is 

20 cm, therefore the hall-effect sensor will be able to give data for every 2 cm that is 

travelled.  

180° 0° 

90° 
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Figure 3.10: Wheel of AGV with magnets on 

 

A bracket was made to mount the hall-effect sensor onto the side-shaft hub, as shown below 

in Figure 3.11. Another sensor was mounted on the gearbox of the AGV and four magnets on 

the gears next to the motor, but they were not used during this study (see  Figure 3.12). 

 

Figure 3.11: Hall-effect sensor mounted onto side-shaft hub 
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Figure 3.12: Hall-effect sensor mounted onto gearbox 

 

If a magnet is directly in front of the sensor, the output voltage of the hall-effect sensor 

increases from 2.5 V to approximately 2.8 V. The sensitivity of the hall-effect sensor 

(UGN3503) used in this study is approximately 1.3 mV/G provided that the supply voltage is 

5 V [7]. To be able to determine the speed of the AGV, the number of rotations of the wheel 

in one second should be calculated. Every ten 2.8 V readings equals one rotation. A 

comparator circuit, shown in Figure 3.12., was used to provide a digital input, between 3 V 

and 5 V, to port B of the microcontroller (PIC18F242).  
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Figure 3.13: Comparator circuit 

 

The preset resistors R8 and R9, in Figure 3.13, are used to calibrate the comparator. For one 

rotation of the wheel, ten digital inputs must be counted for one rotation, as illustrated 

Figure 3.14. The measurements were done using LabView. 

 

Figure 3.14: Input from hall-effect sensor to microcontroller 
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To measure the angle of the steering, a precision potentiometer is used, as shown in 

Figure 3.15. Due to the steering brackets of the AGV, only half a turn of the potentiometer 

could be used. The potentiometer has an analogue output voltage between 0.4 and 0.8 V. If 

the potentiometer is connected to a stable input voltage, the output voltage will vary at any 

radial movement. The output voltage values are then used to determine the angle of the 

wheels. The signal from the potentiometer is connected to one of the analogue inputs of the 

microcontroller (PIC18F242). 

 

Figure 3.15: Precision potentiometer for steering control 

 

3.5 Bluetooth Communication 

In this project, the following Bluetooth modules were used, as shown in Figure 3.16: 

• HPS-120 Handywave Version 2 

• MSI 6970 Bluetooth dongle 
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Figure 3.16:  Bluetooth modules 

 

Table 3.1 shows some specifications of the MSI 6970 Bluetooth dongle [8, pp. 2-3]. 

Table 3.1:  MSI 6970 Bluetooth dongle specifications 

Baud rate Up to 723 Kbps 

Coverage Up to 30 m Line of sight 

Connection 
Point-to-point and point-to-

multipoint 

Hardware interface USB 

Standard Bluetooth specification version 1.1 

Frequency 2.4 to 2.48 GHz 

Modulation GFSK, BT=0.5 

Tx power 6 dBm 

Rx sensitivity -82 dBm 

Antenna interface SMA female 

Power supply +5 V from USB interface 

Operation temperature 0  to 75 °C 
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Table 3.2 shows the specifications of the HPS-120 [9, p. 4]. 

Table 3.2:  Specification of HPS-120 

Baud rate Up to 115 Kbps 

Coverage Up to 100 m Line of sight 

Connection Point-to-point 

Signal 
DCD, TxD, RxD, GND, CTS/DSR, 

DTR, RTS 

RS232 interface D-Sub 9 pin female 

Standard Bluetooth specification version 1.1 

Frequency 2.4 to 2.48 GHz 

Hopping 1.6/sec 1 MHz channel space 

Modulation GFSK, 1 Mbps, 0.5BT Gaussian 

Tx power 
Max 20dBm / typical 16 dBm 

(class 1) 

Rx sensitivity -84 dBm 

Antenna interface SMA female 

Antenna gain Max 2 dBi 

Power supply +5 V ~ 12 Vdc 

Current consumption Max 110 mA 

Operation temperature -20 to 75 °C 

Size 
35 mm (W) x 65 mm (D) x 16 mm 

(H) 

 

 

To establish a connection between two Bluetooth devices, the one device must request a 

connection and the other must accept.  Security is very important and the AGV should 

receive its commands from one point or person only.   

 

After the system was setup and tested, it reached a distance of 30 m through walls. The 

reason for the increased distance would be the fact that the HPS-120 is equipped with an 

antenna. The HPS-120 was fixed to the AGV base and the dongle was placed in the USB port 

of the PC.   

 



 58 

To establish communication between the Bluetooth device on the AGV and the controller 

board of the AGV, RS-232 was used. The microcontroller has an USART interface that can 

be used via a MAX232 IC to obtain RS-232 communication between the microcontroller and 

the Bluetooth module (HPS-120) or directly to the PC’s serial port. This RS-232 

communication takes place every 149.5 ms. ASCII codes are sent between the 

microcontroller and LabView, as shown in Figure 3.17. After every string, a stop bit, in this 

case “0D”, must be sent. 

 

Figure 3.17: ASCII codes sent between PC and microcontroller 
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When sending data to the PC, the string is 16 bytes long and contains the information on the 

speed, acceleration, travelled distance and the angle of the AGV’s front wheels. Every value 

is separated by a comma. 

 

[000,000,0000,00/0d] = [speed, acceleration, distance, angle / stop bit] 

The data is written from the PIC by using “printf” and the data is received in LabView by 

using the VISA commands.  

 

When data is sent to the microcontroller from the PC, the string is 9 bytes long and contains 

the information for controlling the motors. 

 

 [000,0000/0d] = [PWM value steering, PWM value motor / stop bit] 

 

3.6 Microcontrollers 

Initially, a PIC16F876 was used for the project because it was known to the researcher and 

had all the necessary features. In the beginning stages of the project only the control of the 

motor was done and the Bluetooth communication was used which means that any PIC with 

USART would be able to work. The PWM for the control of the motors was done by using 

the timers. The commands to the AGV were specific keys on the keyboard of a computer.  In 

the end the 18F242 suited the needs of the project best, as it has 4 Timers, USART, external 

interrupts, analogue inputs, 2 PWM onboard and it is rewritable. Since the PIC18F242 only 

has 2 PWM onboard, it was decided to use more than one  microcontroller for controlling the 

motors. The first PIC was called the master and the other two PICs were the slaves. The 
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different PICs must be able to communicate with each other, therefore I
2
C communication 

was used.  

 

The master PIC is used to do all the communicating. It is used to handle all communication 

between the PC and the AGV via Bluetooth. It also communicates with the two slave PICs to 

gather the data from the sensors and to give the commands as they come from the PC. All 

calculations are done on the master PIC. The reason for this is to be able to send the finished 

data package to the computer.  

 

The slave 1 microcontroller controls the servomotor of the AGV. Indirectly that means that it 

is used to control the steering of the AGV. The input from the potentiometer is connected to 

this PIC. The slave 2 microcontroller controls the motor of the AGV, namely the speed and 

distance travelled as well as direction in which it has travelled. The hall-effect sensors are 

connected to this PIC. 

 

To get the I
2
C bus working, two pull-up resistors must be used, as shown in Figure 3.18. One 

master can accommodate up to 256 slaves.  
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Figure 3.18: I
2
C network 

When using I
2
C communication, two lines on the PIC microcontroller are used, SCL 

(Synchronous serial clock input) and SDA (I
2
C data input/output).  I

2
C will be discussed in 

more detail later in this chapter. 

 

All the PIC microcontrollers use a crystal oscillator, the master PIC is using a 20 MHz 

oscillator and the other two are using 3.278 MHz crystals. Lower crystals must be used in 

order for the PWM to operate as required, and since the master PIC has to do a lot of 

calculations and accept as well as transmit all data, a faster crystal was used.  

 

3.7 Software 

The programming of the PIC was done by using a CCS C Compiler. The user interface for 

monitoring and manual control was done in National Instrument’s LabView 7.1. 
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Figure 3.19: Master and slave setup 

 

The I
2
C-bus (Inter Integrated Circuit - bus) is a synchronous, serial, two wire connection 

between one master and several slaves. A total of 127 I
2
C devices can be connected to one 

master. The one wire (SCL) transmits the clock pulse and the other (SDA) transmits the data. 

The PIC makes provision for two speed modes, standard mode (100 kHz) and fast-mode 

(400 kHz) [10]. In this project, fast-mode was used. All devices are connected in parallel to 

the bus and, therefore, each device needs an address. The PIC18F242 has a 7 bit address 

system that was used for this application. The master PIC initialises all actions. It does not 

matter if it is receiving data from slaves or if it is sending information to slaves. To start the 

initialisation the master makes the SDA line low and all the devices connected to the master 

will see this as the start bit. Now the master sends the 7 bit address to clearly indicate which 

device should “listen”. After the address is sent, the master will send another bit to indicate 

whether it wants to write to (0) or read from (1) the slave. The slave must answer the master 

by sending an acknowledge signal (make the SDA low). After the acknowledge signal, the 

master knows that it can start its operation. After every 8 bits the slave will send an 
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acknowledge signal to indicate that the master can read the next 8 bits. After the required 

operation is completed, the master will switch the SDA line from low to high. After a few 

problems with the C Compiler the I
2
C was sorted out by programming the subroutines 

manually (not using the routines provided by the C Compiler). The master obtains data from 

the slaves every 149.5 ms.   

 

All the software discussed in this chapter can be seen in Appendix D. 

 

3.8 Interface with Joystick 

The joystick is connected to the game port of the sound card in the PC.  The joystick has two 

output signals, one for the x-axis and one for the y-axis. Theses values range between 0 and 

65000. The graphical user interface was done using LabView 7.1. In LabView, a Sub-Virtual 

Instrument (Sub-Vi) was used to assign different values to different commands [11].  

 

The output signal of the x-axis has a very wide range and is very accurate. To keep the 

servomotor in the middle while not using the joystick, or get it turning while moving the stick 

to the right or left, a specific range needs to be specified as follows. 

 

 0-position  => 25000 <  x < 30000 

 Left turn => x < 25000 

 Right turn => x > 30000 
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The output signal of the y-axis also has a very wide range and it, too; is very accurate. To 

keep the main motor holding still while not moving the joystick, or get it turning while 

moving the stick to the front or back, a specific range needs to be specified as follows. 

 

 0-position   => 21000 < y < 25000 

 Move forward  => y < 21000 

 Move backward => y > 25000 

 

3.9 Calculations 

All calculations are done on the master PIC. The formula for calculating speed is the distance 

travelled divided by the time it took to travel the distance.  

time

distance
speed =     [3.1] 

Since the AGV moves approximately 20 cm on one rotation of the wheel it is possible to 

determine the distance by counting the pulses from the hall-effect sensor. Ten pulses are 

equal to a single rotation. The time was set to be 149.5 ms. This is a predetermined value 

based solely on the fact that a large amount of data needs to be transmitted and if the time set 

is lengthened somewhat, it makes the margin for error less. It was also successfully tested 

with the time set to 104 ms. 

 

After every second speed reading, the acceleration can be calculated. This is done by getting 

the difference between these two speed readings and then dividing it by the time. 

interval time

speed1-speed2
onaccelerati =    [3.2] 
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3.10 How Did the Project Develop? 

The initial control of the AGV is shown in Figure 3.20. The remote control part of the car 

was replaced by Bluetooth. Commands could be given from the keyboard of the PC to the 

car, such as direction (left, right, forward, backward) and speed (by using arrows on 

keyboard). The system was then further developed to work from the keypad on the keyboard.  

 

Figure 3.20: Block diagram of initial operation 
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The PWM was done by using the timers of the PIC. With this system, the AGV could be 

controlled manually with the keyboard or it could be programmed to follow a predetermined 

route. 

 

Since a better user interface was necessary, it was decided to start using LabView and the 

block diagram was changed, as shown in Figure 3.21.  

 

Figure 3.21: New improved circuit 
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To make the programming simpler, the microcontroller was changed to PIC18F242 due to 

the fact that it has onboard PWMs. Since there are two motors to control (DC motor and 

servomotor) and there are a lot of calculations to be done, the system was expanded to three 

microcontrollers. The problem, however, was to get the different microcontrollers to interact 

with each other as well as with LabView via Bluetooth. The first solution was RS-232, but 

since the Bluetooth module was already using that interface another solution had to be found. 

In the end, I
2
C was used to fulfil the communication needs between the different 

microcontrollers. The final system can be seen in Figure 3.22. 
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Figure 3.22: Final working system 

 

The schematic diagrams for this part of the project can be found in Appendix A and the 

connection layout of this particular part of the project can be found in Appendix B. A step by 

step guide for getting the AGV to operate can be found in Appendix C. 
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Chapter 4 

Automatic Guided Vehicle Navigation 

4.1 Introduction 

Since the ideal solution for navigation, Global Positioning System (GPS), does not work in 

indoor environments, the next best solution had to be used. The available technologies that 

were considered have been explained in detail in Chapter 2. Some of these are: 

• Wire guidance 

• Painted line guidance 

• Laser guidance  

• Inertial guidance 

• Path tracking 

• Dead reckoning 

• Beaconing  

• Landmark detection 

• Proximity detection 

• Tactile detection 

 

Laser guidance is the most popular way of navigation, but it is an expensive solution. 

Therefore, it was decided to use beaconing for the navigation of the AGV. A beacon is a 

small device placed in the room where the AGV is suppose to navigate through. Usually it is 
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placed on the ceilings or on the walls of the room so that it is not in the way [1]. When 

determining position, there are three major techniques that can be used [2]: 

• Triangulation 

Triangulation can be used in two ways: 

a. Lateration, using the distance measurements to determine the position as shown in 

Figure 4.1.[2] 

 

Figure 4.1: Determining position using lateration 

 

b. Angulation, using the angle measurements to determine the position as shown in 

Figure 4.2.[2]. 

 

Radius 1 

Radius 2 

Radius 3 
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Figure 4.2: Determining position using angulation 

 

• Proximity 

When using proximity to determine the position the AGV must measure the distance 

to a known location in the room and, according to that, it should be able to determine 

its position [2]. 

• Scene analysis 

In this method, features or specific characteristics in an area are used to determine 

position relative to the features. A camera is needed to use this method [2]. 

 

For this application, the navigation system must be able to work indoors, in rooms with a 

height of not more than three metres. The lab that was used for testing has an area of 60 m
2
. 

The receiver was mounted on to the AGV and the transmitters to the ceiling. Therefore, the 

receiver would receive signals from the different transmitters and use these signals to 

determine the position of the AGV.  
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4.2 The Sensors 

The transmitters were fixed at specific positions to the ceiling of the room in question. Each 

transmitter covered a circular area on the floor. The receiver had to be able to detect three 

transmitters in order for it to display accurate coordinates. The position of the AGV is where 

the three circles intersect, as illustrated in Figure 4.3 [3]. Ultrasonic and infrared sensors were 

used for the communication between the transmitters and receiver. Choosing the correct 

sensors is an essential part of the study. The reason for using the ultrasonic sensors was based 

on the work done by Priyantha et. al.[1] and the researchers in reference 3 [3]. The reason for 

using IR instead of RF was based on the work done in reference 3 by Jeunes [3] and 

Hallaway et. al. [4].  Initially, some problems were experienced with the range of 

transmission of the two types of sensors, since the infrared transmitter were very directional. 

This meant that at certain positions, the receiver picked up the ultrasound signal but not the 

infrared. The problem was solved by changing the IR transmitter and receiver to SFH485P 

and TSOP4838.  

 

Figure 4.3: The position of the AGV is where the circles intersect[3] 
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The two signals are transmitted at the same time and, since the speed of light is faster than 

the speed of sound, the difference between the time that the infrared (red signal) is received 

and the time that the ultrasound (blue signal) is received is measured, as shown in Figure 4.4. 

This time is used to calculate the AGV’s distance from the beacon [3]. The Cricket location 

system [1] uses the same principle, but instead of IR it uses RF signals. 

 

 

Figure 4.4: The difference between the received signals 

 

Environmental effects do have an influence on the operation of the system, especially when it 

comes to the ultrasound. If there is any interference on the receiving side of the system, it 

will lead to incorrect results. These effects can change the velocity of sound as well as the 

absorption of sound in air. These effects will now be discussed in more detail. 

 

The speed of sound is dependent on the type of medium in which it travels as well as ambient 

temperature, as shown in table 4.1 and 4.2. The speed of sound can be calculated with the 

following formula [4]: 

v = 331 m/s + (0.6 m/s/C)*T         [4.1] 
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The humidity found in air has an insignificant effect on the speed of sound. Air pressure, 

however, does not have any significant effect on the speed of sound, since the air pressure 

and the air density are proportional to each other at the same temperature [5]. 

 

The approximate speed of sound in different materials and the influence of temperature on 

the speed of sound can be seen in Table 4.1 and Table 4.2. 

 

Table 4.1: Approximate speed of sound in different materials [6]. 

Medium Speed of sound (m/s) 

Air, dry (20°C) 343 

Water 1500 

Concrete 3100 

Steel 5800 

Lead 2160 

Glass 5500 

 

Table 4.2: Influence of different temperatures on the speed of sound [6] 

Temperature of air in °C Speed of sound in m/s 

-5 325.5 

0 331.5 

5 334.5 

10 337.5 

15 340.5 

20 343.4 

25 346.3 

30 349.2 
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4.3 Transmitters 

The starting point of this part of the project was a circuit that was found in work done by 

Jeunes [3], as shown in Figure 4.5. The 555 timer circuit produces a triangular wave at a 

frequency of 40 kHz. One of the drawbacks of this particular circuit is that it cannot transmit 

a 40 kHz signal continuously, the frequency decreases to about 35 kHz due to the heat 

generated within the circuit. The other problem with this circuit is that the receiver cannot 

distinguish between the different transmitters. 

 

Figure 4.5: Transmitter circuit using a 555 timer[3] 

 

Some improvements had to be made to the circuit. Different burst lengths and fixed timing 

was needed. The different burst lengths are for the receiver to distinguish between the 

different transmitters. A PIC microcontroller was used to realize this function. Dip switches 

were added to the circuit so that the different transmitters could use the same circuit and PIC 

programme. Each transmitter was given a unique identity by making use of dip switches. 
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Two 555 timers were still used, one to generate the 40 kHz for the ultrasonic sensor and one 

for the infrared transmitters, since they were running at 38 kHz (only available model, the 

ideal situation would be having 40 kHz IR transmitters). The other problem that occurred in 

the initial circuit was, that the IR transmitters used could either send a cone of light with a 

small angle and high amplitude or a big angle with small amplitude. The small angle would 

have worked if there were only one transmitter and one receiver. A different IR transmitter 

was used which was supplied with much more current than the initial IR transmitter LED. 

The final circuit used can be seen in Figure 4.6. 
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Figure 4.6: Final transmitter circuit 

 

The software for this circuit is written in such a way that the three transmitters are 

asynchronous to each other and, therefore, there is no interference from the different 

transmitters on each other. Each transmitter has a different address which is set by the dip 

switches; the transmitter, named 00 has a special signal. Should the receiver loose the 
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connection to the transmitter at any time, it will wait for the signal from 00 and then start the 

calculations of its position again. The three transmitters are connected together by one wire 

and this connection is used to indicate to the transmitter when it should start its transmission.  

4.4 Receiver 

The first version of the receiver, a circuit from Jeunes [3], was used as a starting point, as 

illustrated in Figure 4.7. The problems that were experienced with this circuit was that the 

accuracy differed with different distances and angles. The filter had to be changed to a 

40 kHz band pass filter. The signal-to-noise ratio also had to be improved and this proved to 

be somewhat of a challenge due to the rising time of the ultrasonic sensors. 
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Figure 4.7: First version of receiver circuit[3] 

To improve the accuracy of the system, the receiver circuit was changed, as shown in 

Figure 4.8. Different operational amplifiers were used with a higher bandwidth and input 

impedance. The gain of the first stage was about 500 and the second 5.  
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Figure 4.8: Improved receiver circuit 

 

To lower the noise, a fourth order band pass filter was used and an additional gain of 10 was 

added. This caused the rising edge of the ultrasonic signal to be very steep, which improved 

the accuracy. To make this slope linear, a diode (D5), capacitor (C17) and a resistor (R11) 

were placed in the circuit. The capacitor is charged through the diode and discharges slowly 
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through the resistor to produce an almost linear slope which rises at every positive edge of 

the 40 kHz signal.  

 

The infrared input circuit is much easier. The receiving unit is connected via a capacitor 

(C26) and a resistor (R13) to the base of the BC107 transistor (Q2). If the infrared signal is 

received, it will produce 5 V on the input pin of the PIC microcontroller (PIC18F242).  

 

To avoid the possibility of an invalid signal coming from other sound or light sources, some 

error avoidance had to be done in the software. Firstly, the infrared signal must appear first 

and then the lower threshold ultrasonic signal must follow and, lastly the ultrasonic signal 

with the higher threshold. If the signals are not in the correct order they will be ignored. 

Secondly, a timer was implemented in the software to have an indication whether the 

expected signal was on time or not. The accurate time for the ultrasonic signal can not be 

predicted, but since the range of the system is known it is possible to have a time frame to 

work according to. If it appears outside this time frame, the signal will be ignored. The last 

method for detecting errors is to compare the last calculated position with the new position. 

By using some odometry, it will be possible to determine if the coordinates are correct.  

 

4.5 Synchronisation 

It is very important for the receiver to know which transmitter is transmitting at a specific 

time. This synchronisation is done when the AGV is started and when an error occurs. It is 

done by implementing a special code in the infrared signal of beacon 00. When the 
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programme is started, the receiver will look for this unique code before it starts operating. If 

the code is found, the calculations start and the receiver can determine its coordinates. 

 

4.6 Determining the Position 

When calculating the coordinates of the receiver, the distance to each beacon is needed and 

this is done in the following way. The method used is triangulation and this principle is 

shown in Figure 4.9 [7].  

 

Figure 4.9: Triangulation principle 

 

 

 

If the values for D0, D1 and D2 are known it is possible to calculate the distances that are 

represented by X and Y. 
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21 XDY −=       [4.3] 

 

For every infrared signal received, an ultrasonic signal is to follow. The receiver measures 

the time it takes between the reception of these two signals in the order mentioned. The 

closer the receiver gets to the beacon, the steeper the slope of the ultrasonic signal becomes – 

this is due to the fact that, as the distance increases the slope becomes flatter. The time lost 

can be calculated by using a linear equation, as illustrated in Figure 4.10 [3]. 

Figure 4.10: Ultrasonic pulse from different distances 

The calculations used to calculate the coordinates, as shown in Figure 4.11., are [3]:  
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Figure 4 11: Circle diagram for showing the position of the AGV. 

 

4.7 Results 

For final testing, the beacons (transmitters) were mounted on the ceiling pointing straight 

towards the ground. The height was fixed at 2,7 m since that is the height of the ceiling in the 

room that was used for testing. The system that was installed is shown in Figure 4.12, the 

receiver has been placed in the middle. 
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Figure 4.12: Transmitters and receiver of beaconing system 

 

A grid was drawn on the floor of the room for testing purposes, as well as to determine the 

accuracy of the system. The layout of the grid can be seen in Figure 4.13.   
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Figure 4.13: Grid layout used for testing purposes 

 

The circles in Figure 4.13 show the area covered by each transmitter. The numbers one up to 

nine indicates the positions that the tests were conducted in and the results can be seen in 

Table 4.3. When the angle between transmitter and receiver goes beyond 50°, it becomes 

difficult to see the difference between the noise and the signal. The radius of the circle 

covered by one transmitter is 3 m. With a radius of 3 m, the angle between transmitter and 

receiver is approximately 47°, as shown in Figure 4.14.  
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Figure 4.14: Triangle from transmitter to receiver 

 

The final results can be seen in Table 4.3 and all values are in centimeters, the highest being 

290 cm. 

Table 4.3: Final test results 

Position 
Physical 

coordinates 

Beaconing 
system 

coordinates 
Error in cm 

 x y x y x y 

1 42 29 40 25 2 4 

2 102 89 101 86 1 3 

3 162 149 164 148 2 1 

4 222 209 217 217 5 8 

5 252 239 202 290 50 51 

6 192 239 195 237 3 2 

7 132 239 134 240 2 1 

8 72 239 72 241 0 2 

9 9 239 10 240 1 1 

 

3 m 

4.07 m 

2.7 m 

47° 

90° 43° 

Transmitter 

Receiver 3 m 

47° 

43° 
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The distance to each beacon is calculated using the method explained earlier in the chapter 

and the coordinates are calculated from there. From these results, it is clear that when the 

receiver is on the edge, or just beyond the edge, of the circle of beacon 1, the results obtained 

are still in range and can be used. At position 5, the receiver falls outside the operating range. 

In other words, only two of the three beacons are detected accurately and this explains the 

large margin of error. Beacon 1 is still detected but the angle becomes too big. At position 5 

the angle between transmitter and receiver is approximately 53° and, as expressed earlier, 

when the angle becomes bigger than 50° it becomes difficult to distinguish between the 

signal and noise. 

 

If an error occurs, the receiver calculates its coordinates every 450 ms. If the receiver is kept 

on the same spot, and position calculations are done, then the differences between these 

positions will be between 3 and 4 cm. To lower this effect, the receiver software can be 

modified to calculate an average position every second, or longer, depending on the 

application.  

 

When reviewing this it is evident that the beaconing system works sufficiently if three 

beacons are detected. There are a few elements that still produce a number of problems, such 

as the influence that temperature has on the speed of sound and the environmental noises. 

The system can, however, be improved by mounting the transmitters at a 45° angle, as 

suggested by Priyantha et. al. [1]. Other improvements to the system will be discussed in 

Chapter 6. 
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Chapter 5 

Object Avoidance 

5.1 Introduction 

For the AGV to be a viable option for operation in industry, it is essential that it is able to 

avoid obstacles in the environment. In short, the AGV needs “eyes” to see what is happing 

around it. There are many solutions to this problem. However, the method that was used in 

this study is infrared (IR) sensors, due to the fact that it was the most cost effective method 

for object detection and it was easy to implement. 

 

Figure 5.1: Proposed flowchart for object avoidance 

AGV Moving 

Object 

detected

? 

AGV Stop and determine 

distance to object 

Move around object and use 

Beaconing system to get on 
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5.2 Infrared Sensors 

Infrared (IR) sensors (Sharp GP2D12) are used for determining the distance from an object. 

The sensor is shown in Figure 5.2 [1] and Figure 5.3. This sensor can be connected to a 

microprocessor using the Analogue-to-Digital Converter (ADC).  

 

Figure 5.2: GP2D12 Infrared sensor 

 

 

Figure 5.3: GP2D12 Infrared sensor connection 

 

The sensor must be supplied with power and ground, and the third pin is the output voltage 

(VOUT ) which is proportional to the distance measured [1]. A capacitor must be placed on the 

sensor itself between ground and the supply to limit the noise. There must be no capacitor 

between ground and VOUT or the supply voltage and VOUT, as this would cause the sensor to 

give out the wrong values. 
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The fact that the GP2D12 infrared sensor is low in cost, compact and lightweight makes it 

one of the most commonly used range finders in robotic applications. The GP2D12 infrared 

sensor operation is based on the triangulation principle. This principle provides greater 

reliability and accuracy than the IR sensors, which make use of Time-of-Flight techniques 

[2]. It uses an IR LED for transmitting a burst of pulses. If there is no object in front of the 

sensor then the light will never return to the receiver, because there is nothing for it to reflect 

against. Hence, after 40 ms, it will show that there is no object for 80 cm in front of the 

sensor. If there is an object in front of the sensor, it will reflect back from the object to the 

receiver, in this case a Position Sensing Device (PSD), and this will form the shape of a 

triangle. This is illustrated in Figure 5.4 [3]. It can measure distances between 10 and 80 cm, 

and the update frequency is 25 Hz or every 40 ms [4].  

 

Figure 5.4: Operation of GP2D12 Infrared sensor for different distances 

 

Using this triangulation principle, as shown in Figure 5.5, it is clear that there will be 

different angles for different distances [5]. These sensors are also less affected by the ambient 
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lighting conditions, and the colour of different objects does not have that big an influence on 

the output [2]. 

 

Figure 5.5: Different angles for different distances 

 

5.3 Output Characteristics of Sensor 

When the sensor is supplied with 5 V, the measured output voltage for the different sensors 

for a distance of 10 cm, was between 2,2 V and 2,5 V. When the object was approximately 

80 cm away, the readings on the different sensors varied between 0,41 V and 0,44 V. Two 

sets of the test data, obtained in the lab using one GP2D12 infrared sensor, are shown in the 

graph in Figure 5.6.  
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Figure 5.6: Test data plotted on a graph 

 

This graph can be compared to the output characteristics given on the datasheet of the 

GP2D12 Infrared sensor, as shown in Figure 5.7 [1]. 

 

Figure 5.7: Sharp GP2D12Infrared sensor output characteristics[4] 

 

0 

0.5

1 

1.5

2 

2.5

3 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 

Distance (cm)

O
u

tp
u

t 
V

o
lt

a
g

e

Test 1

Test 2



 96 

It is clear that the output voltage of the sensor between 10 and 80 cm is logarithmic [4].  

Since it would be much easier to use the data if it were a linear function, a formula that can 

be used to turn the data into a linear function was developed [4]. The formula for this is:  

0.4distance

1
VOUT

+
=     [5.1] 

Now instead of plotting distance vs. VOUT, one can plot Equation 5.1 vs. VOUT. This will give 

an output characteristic similar to a straight line.  

 

Since a voltage is measured and the distance is the desired outcome, this formula, together 

with the straight line formula (Equation 5.2), can be combined to calculate the distance. 

y = mx + b     [5.2] 

0.4
bVm

1
Distance

OUT

−
+×

=    [5.3] 

The m and b values can be determined when the sensor is calibrated. To calibrate the sensor, 

voltage readings must be taken every 10 cm, starting at 10 cm and ending at 80 cm [1]. By 

plotting these voltage readings versus Equation 5.1, one can obtain the trend line and, from 

this line, it is possible to determine the b and m values, as shown in Figure 5.8.  
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Figure 5.8: Trend line analysis 

 

5.4 Interfacing the Infrared Sensor to the Microcontroller 

Eight GP2D12 Infrared sensors are connected to a microcontroller (PIC16F877A) using the 

analogue inputs. For best resolution 10 bits are used for the incoming data. This will result in 

a resolution of better than 1 cm across the data range used. Using 10 bits will also make it 

possible to get readings in millimeters. At a range of 600 mm, the precision of this sensor is 

almost 20 mm and it becomes more accurate for closer distances (2 mm for 200 mm). One 

lookup table was used for all the sensors, but since all sensors are not exactly the same this 

decreased the precision a little.  

 

For this study the range for the sensors was limited to between 10 and 60 cm, and on the 

lookup table used it would be values of between 103 and 468. Anything smaller than 103 is 

less than 10 cm and thus not used, whereas anything more than 468 is greater than 60 cm and 
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would also display that the object is far away or not yet in the way. The input data is 

averaged to be able to improve the precision.  

 

The sensor takes approximately 40 ms for one reading and therefore the program was written 

to take continuous readings at 40 ms intervals [5]. That means that it is almost 25 readings 

per second [2].  

 

5.5 Placement of the Infrared Sensors 

Based on the test data obtained, a lookup table was implemented in the microcontroller to be 

able to change the analogue voltage into a distance value. The range of the sensors used for 

this application was limited in software to between 10 cm and 60 cm. The reason for this can  

be solely based on the fact that, after 60 cm, the difference in output voltage of the sensor is 

almost nothing. From the graphs in Figure 5.6 and 5.7, it is evident as to why the operating 

range is specified from 10 cm onward and not before 10 cm. The sensors output will seem 

like it is further away than it really is which can cause the AGV to collide with the object. To 

avoid this scenario, the sensors were placed at specific positions on the AGV, as shown in 

Figure 5.9. 
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Figure 5.9: Positioning of Infrared sensors on AGV. 

 

5.6 Problems Experienced 

A number of problems were experienced when more than one sensor was connected to the 

same microcontroller. It seemed as though the different sensors were interfering with one 

another. Adding capacitors directly to the power input, as mentioned earlier, improved the 

performance of the sensors. After investigation, it was found that this problem could actually 

be overcome by changing the sensor to a GP2D02 infrared sensor, which also needs a clock 

pulse and, for this reason, it will use less power than the GP2D12 infrared sensor. The output 

of the GP2D02 infrared sensor is an 8 bit digital value.  

 

GP2D12  
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Another problematic element was light. When the sensors were exposed to direct sunlight or 

a very bright light source, the measured distances was not exact. This problem was solved by 

placing the sensors in such a way that they will not come into direct contact with these light 

sources.  

 

The ambient temperature also had a small influence on the accuracy of the sensor, as shown 

in Table 5.1 [4]. 

Table 5.1: Influence of temperature on the sensor 

 Analogue output voltage at different temperatures 

Distance 0°C 20°C 40°C 60°C 

10 cm 2.3 V 2.33 V 2.35 V 2.41 V 

20 cm 1.29 V 1.31 V 1.34 V 1.38 V 

30 cm 0.9 V 0.91 V 0.95V 0.99 V 

40 cm 0.7 V 0.72 V 0.74 V 0.77 V 

50 cm 0.59V 0.6 V 0.62 V 0.66 V 

60 cm 0.5 V 0.52 V 0.56 V 0.58 V 

70 cm 0.42 V 0.48 V 0.5 V 0.51 V 

80 cm 0.28 V 0.38 V 0.4 V 0.42 V 

 

Essentially, the object avoidance method was satisfactory, although this part of the study 

leaves room for a lot of improvement. These suggested improvements will be discussed in 

more detail in Chapter 6.  
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Chapter 6 

 

The remote control car was successfully transformed into an automatic guided vehicle. The 

principles of what was done in this study can now be used in the further development of 

automatic guided vehicles or mobile robots.  

 

6.1 Summary 

• Chapter 1 

In Chapter 1, an introduction to the study was given and the steps to be followed were  

laid out. 

• Chapter 2  

The current technologies and trends concerning AGVs were discussed.  

• Chapter 3  

The AGV base was equipped with hall-effect sensors and precision potentiometers in 

order to control and monitor the AGV speed, direction and distance travelled. A 

joystick was also added and a LabView interface was used to do the monitoring and 

controlling. The communication method used between the PC and the AGV was 

Bluetooth. 

• Chapter 4 

A beaconing system was developed for the navigation of the AGV. This system used 

both infrared and ultrasonic sensors. The AGV needs to “see” at least 3 of the 
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transmitters that were mounted on the ceiling in order for it to be able to determine its 

position.  

• Chapter 5 

The most cost-effective method was using infrared sensors to do object avoidance. The 

sensor used was from Sharp GP2D12. It is an analogue sensor working within the range 

of 10 to 80 cm. In this application, the sensors were placed at specific positions on the 

AGV to make provision for the first 10 cm and the maximum distance was limited to 

60 cm.  

 

A complete architectural layout of the project can be seen in figure 6.1. 

 

6.2 Results of Project  

The AGV can be controlled manually using a LabView interface, a joystick or it can be pre-

programmed to follow a specific route using beaconing and object avoidance. Since both a 

manual and automatic interface are used, the need for some method of communication was 

evident and Bluetooth was the one best suited to this study. The AGV can be up to 30 m 

away from the PC and still receive the correct instructions. The AGV is also transmitting a 

certain amount of information to the PC so that it is possible to know the state of the AGV 

and whether it is necessary to change from automatic to manual mode. 

 

The problem of navigation was solved by using a beaconing system. This system used both 

ultrasonic and infrared sensors. The transmitter units were mounted perpendicular to the 

ceiling and, by doing this, a 3 m radius was covered. This radius can be increased by 
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mounting the transmitters at an angle. Three transmitters were used and, for absolute 

accuracy, it was necessary to “see” all three transmitters in order to determine a position. 

Since the distance travelled is also measured it would be possible to use odometry. If this 

odometry were combined with the beaconing system, it would be much more accurate since 

it would solve the problem of wheel-slippage and other environmental effects. The drawback 

of the beaconing system is that it is confined to indoor use only and that the transmitter needs 

to be mounted before it can work. 

 

The question of object avoidance was addressed using infrared sensors although many other 

possibilities are available. This seemed to be the most cost effective solution. GP2D12 Sharp 

IR sensors were placed onto the AGV and, by using a microcontroller interface, the 

information regarding objects in range was obtained. 

 

When all of the different parts of the project were integrated some problems were 

experienced with noise or interference between the different parts. The motor had quite an 

influence on the ultrasonic sensor that was mounted on the receiver of the beaconing system. 

This problem was partially solved by moving the receiver further away from the motor. 

 

Essentially, all the parts of this AGV are fully operational, but there is always room for 

improvement. 
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Figure 6.1: System Architecture 
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6.3 Recommendations for Future Research 

Most projects have a certain amount of room for improvement and, this project is no 

exception. The main aim of this project was to develop an automatic guided vehicle. In 

industry an AGV is much more versatile than a RC car and, therefore, it leaves a lot of room 

for improvement and expansion of the system. 

 

6.3.1 AGV Base and Steering 

The AGV base can be changed to a bigger AGV, and built from material used in industry, 

such as metal. The AGV can be modified to be able to carry more weight and larger objects. 

With the current project, the space for objects on top of the AGV are limited due to the size 

of the AGV.  

 

The steering control in this project was limited by the potentiometer used and, the increments 

were 7° apart. This could be improved by using another potentiometer or even another type 

of sensor. 

 

6.3.2 Beaconing System 

To upgrade the beaconing system, a temperature sensor can be added to update the speed of 

sound in the calculations, since the temperature has an influence on the speed of sound. More 

transmitters can be built to increase the operating area of the system. The angles at which the 

beacons are mounted can be adjusted to increase the area even more. The receiver can be 

made to turn so that it is able to track the transmitters. To do this, one can include a stepper 
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motor so that the receiver is able to rotate in order to pick up the different signals. Other 

methods can be explored. 

 

6.3.3 Object Avoidance 

This topic leaves room for a lot of improvement. Firstly, if one decides to continue using the 

Sharp sensors then the system can be improved by replacing the GP2D12 sensors with 

GP2D02 sensors. The GP2D02 sensors cause less interference on each other since the output 

of this sensor is an eight bit digital value. The main difference between analogue and digital 

is that a digital signal is a discrete signal. It has two possible values, on (1) or off (0). This 

makes it less susceptible to noise. Digital signals are easier to transmit and the chances of 

error are much less [1]. Secondly, if it is not possible to change to the GP2D02, the GP2D12 

can be attached to a servomotor in order for it to take more than one reading of the area [2]. 

By using this method, the number of sensors needed, can also be reduced. The system can 

also be more accurate since more than one sensor can be used to determine the distance to an 

object [2]. 

 

A gyroscope or compass sensor can be added to the system so that it is possible to move 

around the obstacle and be on exactly the same track again. 

 

It is also possible to improve the object avoidance by implementing more than one type of 

sensor. For instance, if the IR sensors are combined with ultrasonic sensors it could improve 

the ability of the AGV to avoid objects. 
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6.3.4 Integrated Vision Capability 

 

The ultimate solution for eyes for the AGV will be a camera. By making use of image 

processing methods it would be possible for the AGV to recognise the different obstacles in 

the work place. The camera must be able to turn from left to right and right to left to be able 

to explore the whole room.  

 

6.3.5 Communication 

Bluetooth’s limitation is its range and, therefore, this topic also has some room for 

improvement. If the AGV is used in a confined area and will travel in a radius of 

approximately 30 m, Bluetooth will work perfectly. The moment the AGV needs to travel 

greater distances it would be necessary to look at other means of communication. 

 

6.3.6 Recording Information 

All the information from the AGV is fed to LabView via the Bluetooth communication. This 

information can be logged, and used to provide detailed information about the route that the 

AGV has travelled. The system can even be elaborated to provide a complete graphical 

interface of the AGV and the condition of it, as well as the information recorded about the 

environment travelled in. 
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6.3.7 Other Improvements 

The AGV can be equipped with load cells to determine the weight of the load that is placed 

onto it.  

 

A docking station can be built for automatically charging the batteries of the AGV, thereby 

eliminating the need for any human interface. To be able to do this, battery charging contacts, 

see Figure 6.2 [3], must be installed on the AGV and in the docking station. When the AGV 

detects that the battery power is getting low, it should move towards to closest docking 

station where it must remain until the batteries are fully charged. Only then should the AGV 

return to its place of work. 

 

Figure 6.2: Battery charging contacts 

6.4 Original Contributions of this Study 

The accomplishments of this project can be summarised as: 

• The remote control of the RC car had to be replaced by a communication system 

between the PC and the AGV base. Bluetooth was used. 
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• The receiver of the RC car had to be removed and the car, now an AGV, needed to be 

controlled using the PC keyboard. The AGV motors needed some control and for this 

a h-bridge circuit and PIC microcontroller are used. 

• Sensors were mounted on the wheel and servomotor to determine the speed, direction 

and distance travelled by the AGV. A LabView interface was developed to make the 

user interface easier. 

• A master slave setup, with PIC18F242, was developed using I
2
C communication. 

• A special module on LabView was developed to make it possible to control the AGV 

with a joystick. 

• A beaconing system, for navigation purposes, was developed.  

• Object detection was done by using Sharp GP2D12 infrared sensors. 

 

6.5 References 
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Appendix B: Table of connections 

PIN – connector J4 

 

1. I²C external data  

2. I²C external clock 

3. Pulse servo motor 

4. GND servo motor 

5. VCC servo motor 

6. Signal potentiometer 

7. GND potentiometer 

8. VCC potentiometer 

9. Input hall-sensor1 

10. GND hall-sensor1 

11. VCC hall-sensor 1 

12. Input hall-sensor 2 

13. GND hall-sensor 2 

14. VCC hall-sensor 2 

 

PIN – connector J6 

 

1. VCC battery 

2. GND 

3. PWM signal main motor (right turn) 

4. PWM signal main motor (left turn) 
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Appendix C: Getting the AGV up and running 

This is a step-by-step instruction manual, to get the car running. 

 

1. The batteries must be connected to the PCB and the Bluetooth device. After a while 

the LED next to the master PIC should start flashing. 

2. By use of the Bluetooth 

device the car needs to be 

connected to the computer 

by use of the MSI 

Bluetooth tool. By selecting 

the 1577 device and left 

click on “Connect Cable 

test”, the connection should 

be established. The green 

LED on the Bluetooth device indicates a successful connection. 

 

3. Now LABVIEW can be run. Load the RCcar.vi file. A picture of the front panel can 

be found in the appendix E.  

4. Start of the program by use of the “run” button. 

5. The 16 bit input string from the car should now be indicated in the read string, digital 

display.  

6. To make sure that the car starts out of the reset state the switch on the board should be 

activated to RESET the car. While the reset-button is on all LED’s on the board glow. 

After releasing the button the LED next to the master should start blinking again. All 

values of the read string should be zero.  

7.  Now the car is ready to move.  

8. The car can either be controlled by use of the pointer slides or by use of the joystick 

connected to the game port. To control the car with the joystick, the “Joystick” button 

on the front panel must be activated.   
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Note: The car can be controlled much easier with the joystick. It might be necessary 

that the Joystick needs to be calibrated to keep the car stable while the Joystick is in 

its zero position. Use the slide buttons at the under-surface of the stick to do so. 

9. To switch off the car, disconnect it from the batteries and stop the LabView program. 

The communication will break down. 

10. In case of any malfunction the car should be put into the RESET state.  
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Appendix D: C Program code 

D.1. Program code for Master 

/*Program developed by: Martin Leonard and Ellenor Boje*/ 

#include <18F242.h> 

#device adc=8 

#use delay(clock=20000000) 

#fuses NOWDT,WDT128,hs, NOPROTECT, NOOSCSEN, BROWNOUT, BORV20, NOPUT, STVREN, 

NODEBUG, LVP, NOWRT, NOWRTD, NOWRTB, NOWRTC, NOCPD, NOCPB, NOEBTR, NOEBTRB 

#use rs232(baud=19200,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) 

#use i2c(Master,fast,sda=PIN_C4,scl=PIN_C3,FORCE_HW) 

#include <stdlib.h> 

 

void write_slave1(byte slave_address); 

void write_slave2(byte slave_address); 

void read_slave1(byte slave_address); 

void read_slave2(byte slave_address); 

void receive_RDA(); 

void calculation_speed(); 

void calculation_acceleration(); 

void calculation_distance(); 

void initialize(); 

 

#define slave1_address 0x02 

#define slave2_address 0x04 

#define BUFFER_SIZE 16 

BYTE buffer[BUFFER_SIZE]; 

BYTE next_in = 0; 

char  inputstring[BUFFER_SIZE]; 

char  inputchar; 

 

signed int8 angle_in; 

int8  hallwheel; 

int16 hallwheelcount; 

float speed_out; 

float buffer_speed[2]; 
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float acceleration_out; 

float distance_out; 

int8  RTCCi; 

 

/*Timer interrupt - I2C and RS-232 transmission - calculation*/ 

#int_RTCC         

RTCC_isr() 

{ 

   if(RTCCi == 22) 

/*Timer0 overflow every 6.5ms - value 22 sets transmission interval 

  present setup = 149,5 ms*/ 

   { 

      output_high(PIN_B4); 

      read_slave1(slave1_address); 

      read_slave2(slave2_address); 

      calculation_speed(); 

      calculation_acceleration(); 

      calculation_distance(); 

         printf("%2.1f,%2.1f,%3.1f,%d\n",speed_out,acceleration_out, 

 distance_out,angle_in); 

      output_low(PIN_B4); 

      RTCCi = 0; 

   } 

   else 

   { 

      RTCCi++; 

   } 

} 

 

/*This interrupt handles the incoming datastring from the computer via RS-232*/ 

#int_RDA 

RDA_isr() 

{ 

   inputchar = getc(); 

   if(inputchar == 0x0d) 

      { 

         receive_RDA(); 

      } 



 117 

   else 

      { 

         buffer[next_in] = inputchar; 

         if (next_in < BUFFER_SIZE) 

            next_in = (next_in + 1); 

      } 

} 

 

/*RESET PIC*/ 

#int_ext2             

EXT2_isr() 

{ 

   while(Input(PIN_B2) == 1) 

   { 

      output_high(PIN_B4); 

   } 

      initialize(); 

      printf("%2.1f,%2.1f,%3.1f,%d\n",speed_out,acceleration_out,distance_out,angle_in); 

      reset_cpu(); 

} 

 

/*I2C writes from MASTER to SLAVE1*/ 

void write_slave1(byte slave_address)      

{ 

   i2c_start(); 

   delay_ms(1); 

   i2c_write(slave_address); 

   delay_ms(1); 

   i2c_write(inputstring[4]); 

   delay_ms(1); 

   i2c_write(inputstring[5]); 

   delay_ms(1); 

   i2c_write(inputstring[6]); 

   delay_ms(1); 

   i2c_write(inputstring[7]); 

   delay_ms(1); 

   i2c_stop(); 

} 
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/*I2C writes from MASTER to SLAVE2*/ 

void write_slave2(byte slave_address)      

{ 

   i2c_start(); 

   delay_ms(1); 

   i2c_write(slave_address); 

   delay_ms(1); 

   i2c_write(inputstring[1]); 

   delay_ms(1); 

   i2c_write(inputstring[2]); 

   delay_ms(1); 

   i2c_write(inputstring[3]); 

   delay_ms(1); 

   i2c_stop(); 

} 

 

/*I2C writes from SLAVE1 to MASTER*/ 

void read_slave1(byte slave_address)       

{ 

   i2c_start(); 

   delay_ms(1); 

   i2c_write(slave_address + 1); 

   hallwheel = i2c_read(0); 

   i2c_stop(); 

} 

/*I2C writes from SLAVE2 to MASTER*/ 

void read_slave2(byte slave_address)       

{ 

   i2c_start(); 

   delay_ms(1); 

   i2c_write(slave_address + 1); 

   angle_in = i2c_read(0); 

   i2c_stop(); 

} 

/*arranges incoming data char and passes information on to the SLAVEs*/ 

void receive_RDA()                         

{ 
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   disable_interrupts(INT_RDA); 

   strncpy (inputstring, buffer, 16); 

   next_in = 0; 

   enable_interrupts(INT_RDA); 

   write_slave1(slave1_address); 

   write_slave2(slave2_address); 

} 

 

/*calculation of the speed value*/ 

void calculation_speed()                   

{ 

   hallwheel; 

   hallwheelcount = hallwheelcount + hallwheel; 

   speed_out = (hallwheel * 0.0207) / 0.1495; 

   buffer_speed[1] = buffer_speed[0]; 

   buffer_speed[0] = speed_out; 

} 

 

/*calculation of the acceleration value*/ 

void calculation_acceleration()            

{ 

   acceleration_out = (buffer_speed[0] - buffer_speed[1])/0.1495; 

} 

 

/*calculation of the traveled distance*/ 

void calculation_distance()                

{ 

   distance_out = hallwheelcount * 0.0207; 

} 

 

/*POWER-UP*/ 

void initialize()                         

{ 

   int x = 0; 

   int y = 0; 

 

   set_tris_b(0b00000111); 

   setup_adc_ports(NO_ANALOGS); 
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   setup_adc(ADC_OFF); 

   setup_timer_0(RTCC_INTERNAL|RTCC_DIV_128|RTCC_8_bit); 

   setup_timer_1(T1_DISABLED); 

   setup_timer_2(T2_DISABLED,0,1); 

   setup_timer_3(T3_DISABLED|T3_DIV_BY_1); 

 

   enable_interrupts(INT_RTCC); 

   enable_interrupts(INT_RDA); 

   enable_interrupts(INT_EXT2); 

   enable_interrupts(GLOBAL); 

 

   for(x = 0; x<BUFFER_SIZE; x++) 

   { 

      inputstring[x] = 0; 

   } 

   for(y = 0; y<=1; y++) 

   { 

      buffer_speed[y] = 0; 

   } 

   RTCCi = 0; 

   inputchar; 

   angle_in = 0; 

   speed_out = 0; 

   acceleration_out = 0; 

   distance_out = 0; 

   hallwheelcount = 0; 

   hallwheel = 0; 

} 

 

void main() 

{ 

   output_high(PIN_B4); 

   delay_ms(2000); 

   output_low(PIN_B4); 

 

   initialize(); 

 

   while(1) 
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   { 

   } 

} 

 

D.2. Program code for Slave1 

 

/*Program developed by: Martin Leonard and Ellenor Boje*/ 

#include <18F242.h> 

#device adc=8 

#use delay(clock=3276800) 

#fuses NOWDT,WDT128,XT, NOPROTECT, NOOSCSEN, BROWNOUT, BORV20, PUT, STVREN, 

NODEBUG, LVP, NOWRT, NOWRTD, NOWRTB, NOWRTC, NOCPD, NOCPB, NOEBTR, NOEBTRB 

#use rs232(baud=19200,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) 

#include <stdlib.h> 

 

unsigned char read_i2c(void); 

void write_i2c(unsigned char transmit_byte); 

void i2c_interrupt_handler(void); 

void initialize(void); 

void i2c_error(void); 

void write_i2c(unsigned char transmit_byte); 

void hand(); 

void steering_control(); 

void calculation_angle(); 

/*Byte definition for I2C registers*/ 

#define PIC_SSPSTAT_BIT_SMP     0x80                

#define PIC_SSPSTAT_BIT_CKE     0x40 

#define PIC_SSPSTAT_BIT_DA      0x20 

#define PIC_SSPSTAT_BIT_P       0x10 

#define PIC_SSPSTAT_BIT_S       0x08 

#define PIC_SSPSTAT_BIT_RW      0x04 

#define PIC_SSPSTAT_BIT_UA      0x02 

#define PIC_SSPSTAT_BIT_BF      0x01 

#define PIC_SSPCON1_BIT_WCOL    0x80 

#define PIC_SSPCON1_BIT_SSPOV   0x40 

#define PIC_SSPCON1_BIT_SSPEN   0x20 
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#define PIC_SSPCON1_BIT_CKP     0x10 

#define PIC_SSPCON1_BIT_SSPM3   0x08 

#define PIC_SSPCON1_BIT_SSPM2   0x04 

#define PIC_SSPCON1_BIT_SSPM1   0x02 

#define PIC_SSPCON1_BIT_SSPM0   0x01 

 

#define PIC_SSPCON2_BIT_GCEN    0x80 

#define PIC_SSPCON2_BIT_ACKSTAT 0x40 

#define PIC_SSPCON2_BIT_ACKDT   0x20 

#define PIC_SSPCON2_BIT_ACKEN   0x10 

#define PIC_SSPCON2_BIT_RCEN    0x08 

#define PIC_SSPCON2_BIT_PEN     0x04 

#define PIC_SSPCON2_BIT_RSEN    0x02 

#define PIC_SSPCON2_BIT_SEN     0x01 

 

#byte PIC_SSPBUF=0xFC9 

#byte PIC_SSPADD=0xFC8 

#byte PIC_SSPSTAT=0xFC7 

#byte PIC_SSPCON1=0xFC6 

#byte PIC_SSPCON2=0xFC5 

 

#define RX_BUF_LEN  4 

#define NODE_ADDR   0x04 

unsigned char slave_buffer[RX_BUF_LEN]; 

unsigned char steering_string[RX_BUF_LEN]; 

int buffer_index; 

int8  hallwheel = 0; 

int8  hallwheelbuffer = 0; 

int8  hallgear = 0; 

int8  hallgearbuffer = 0; 

signed int8  angle_out = 0; 

int8  angle_car = 0; 

int8   anglein = 0; 

int16  anglein1 = 0; 

int16  anglein2 = 0; 

int16  anglein3 = 0; 

int1 calc_angle = 0; 

int i = 0; 
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/*interrupt occurs every time I2C-bus is busy*/ 

#INT_SSP                                            

void ssp_interupt () 

{ 

   hand(); 

} 

 

/*timer for angle sensor calculation*/ 

#int_RTCC                                           

RTCC_isr() 

{ 

   if(i == 19) 

   { 

      calc_angle = 1; 

   } 

   else 

   { 

      i++; 

   } 

} 

 

/*RESET*/ 

#INT_EXT2                                           

EXT2_irs() 

{ 

   while(Input(PIN_B2) == 1) 

   { 

      output_high(PIN_B4); 

      set_pwm1_duty(82); 

   } 

   delay_ms(200); 

   output_low(PIN_B4); 

} 

 

/*this subprogram handles the I2C-bus*/ 

void hand()                                         

{ 
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/* [0010 1101] unnecessary bits will be masked out*/ 

    unsigned char i2c_mask = 0x2D;                  

    byte temp_sspstat; 

    unsigned char this_byte; 

    unsigned char tx_byte; 

    int x; 

 

/*jointed register information*/ 

   temp_sspstat = PIC_SSPSTAT & i2c_mask;           

 

   switch(temp_sspstat) 

   { 

 

/*write operation, last byte was an address, buffer is full*/ 

      case 0x09:                                    

/*clear receive buffer*/ 

         for (x=0; x<RX_BUF_LEN; x++)               

         { 

            slave_buffer[x]=0x00; 

         } 

/*clear the buffer index*/ 

         buffer_index=0;                            

/*dummy read*/ 

         this_byte = read_i2c();                    

         break; 

 

/*write operation, last byte was data, buffer is full*/ 

      case 0x29:                                    

/*get the byte from the SSP*/ 

         this_byte = read_i2c();                    

/*put it into the buffer*/ 

         slave_buffer[buffer_index] = this_byte;    

/*after 3 bytes enable steering control*/ 

         if (buffer_index == 2)                     

         {   

            steering_control(); 

         } 
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         buffer_index++;                         

 

/*If index has exceeded the buffer length, buffer needs to be cleared*/ 

         if (buffer_index >= RX_BUF_LEN)            

         { 

            buffer_index = 0; 

         } 

         break; 

 

/*read operation, last byte was an address, buffer is empty*/ 

      case 0x0c:                                                            

/*write the byte to PIC_SSPBUF*/ 

         write_i2c(angle_out);                      

         break; 

 

/*read operation, last byte was data, buffer is empty 

  not used because only one byte needs to be send!!!*/ 

      case 0x2c:                                              

         break;                                     

   } 

} 

 

/*puts value for PWM from input buffer together*/ 

void steering_control()                              

{ 

   strncpy (steering_string, slave_buffer, 4); 

 

   anglein3 = ((steering_string[0] - 0x30)*100); 

   anglein2 = ((steering_string[1] - 0x30)*10); 

   anglein1 = (steering_string[2] - 0x30); 

   anglein =  anglein3 + anglein2 + anglein1; 

 

   set_pwm1_duty(anglein); 

} 

 

/*calculation of the output angle 

  numbers in if statements indicate the digital value of the angle-sensor 

  this values are greated by the analog to digital input of the 18F242 



 126 

  because of the inexactly sensor output angles can only be measured within a 7 degree range 

  by use of an other sensor this subroutine needs to be changed!!!*/ 

 

void calculation_angle()                            

{                                                   

   angle_car = read_adc();                          

                                                    

   if(angle_car >= 52 && angle_car <= 54)           

   { 

      angle_out = -7; 

   } 

   if(angle_car >= 55 && angle_car <= 57) 

   { 

      angle_out = -14; 

   } 

   if(angle_car >= 58) 

   { 

      angle_out = -21; 

   } 

   if(angle_car <= 42) 

   { 

      angle_out = 21; 

   } 

   if(angle_car >= 43 && angle_car <= 45) 

   { 

      angle_out = 14; 

   } 

   if(angle_car >= 46 && angle_car <= 48) 

   { 

      angle_out = 7; 

   } 

   if(angle_car >= 49 && angle_car <= 51) 

   { 

      angle_out = 0; 

   } 

} 

 

/*POWER-UP*/ 
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void initialize(void)                               

{ 

/*Setup for the input ports*/ 

   set_tris_a(0b00000001);                          

   set_tris_b(0b00000111); 

   set_tris_c(0b00011000); 

 

   PIC_SSPCON1 = 0x36;                        

   PIC_SSPADD = NODE_ADDR;                          

/*Clear the SSPSTAT register*/ 

   PIC_SSPSTAT = 0x00;                              

 

   setup_adc_ports(AN0_VREF_VREF);            

   setup_adc(ADC_CLOCK_INTERNAL); 

   setup_ccp1(CCP_PWM); 

   setup_port_a( ALL_ANALOG ); 

   setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32|RTCC_8_bit); 

   setup_timer_2(T2_DIV_BY_16,255,1); 

   set_adc_channel( 0 ); 

   set_pwm1_duty(82); 

 

   enable_interrupts(INT_SSP); 

   enable_interrupts(INT_RTCC); 

   enable_interrupts(INT_EXT2); 

} 

 

/*this function returns the byte in SSPBUF*/ 

unsigned char read_i2c(void)                           

{ 

   return PIC_SSPBUF; 

} 

 

void write_i2c(unsigned char transmit_byte) 

{ 

   unsigned char write_collision = 1; 

 

/*Is BF bit set in PIC_SSPSTAT?*/  

   while (PIC_SSPSTAT & PIC_SSPSTAT_BIT_BF)            
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   { 

/*if yes? keep waiting*/                                                       

   } 

 

/*if not? do write*/ 

   while (write_collision)                              

   { 

/*clear the WCOL flag*/ 

      PIC_SSPCON1 &= ~PIC_SSPCON1_BIT_WCOL;                          

      PIC_SSPBUF = transmit_byte; 

/*write collision?*/ 

      if(PIC_SSPCON1 & PIC_SSPCON1_BIT_WCOL)           

      { 

         write_collision = 1; 

      } 

      else 

      { 

         write_collision = 0; 

      } 

   } 

/*release the clock*/ 

   PIC_SSPCON1 |= PIC_SSPCON1_BIT_CKP;                 

} 

 

void main() 

{ 

   output_high(PIN_B4); 

   delay_ms(200); 

   output_low(PIN_B4); 

 

   initialize(); 

   enable_interrupts(GLOBAL); 

 

    while (1) 

    { 

      if(calc_angle == 1) 

      { 

         calculation_angle(); 
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         calc_angle == 0; 

      } 

    } 

} 

 

D.3. Program code for Slave2 

 

/*Program developed by: Martin Leonard and Ellenor Boje*/ 

#include <18F242.h> 

#device adc=8 

#use delay(clock=3276800) 

#fuses NOWDT,WDT128,XT, NOPROTECT, NOOSCSEN, BROWNOUT, BORV20, PUT, STVREN, 

NODEBUG, LVP, NOWRT, NOWRTD, NOWRTB, NOWRTC, NOCPD, NOCPB, NOEBTR, NOEBTRB 

#use rs232(baud=19200,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) 

#include <stdlib.h> 

 

unsigned char read_i2c(void); 

void write_i2c(unsigned char transmit_byte); 

void i2c_interrupt_handler(void); 

void initialize(void); 

void i2c_error(void); 

void write_i2c(unsigned char transmit_byte); 

void hand(); 

void speed_control(); 

void calculation_speed(); 

void calculation_acceleration(); 

void calculation_distance(); 

 

/*Byte definition for I2C registers*/ 

#define PIC_SSPSTAT_BIT_SMP     0x80                   

#define PIC_SSPSTAT_BIT_CKE     0x40 

#define PIC_SSPSTAT_BIT_DA      0x20 

#define PIC_SSPSTAT_BIT_P       0x10 

#define PIC_SSPSTAT_BIT_S       0x08 

#define PIC_SSPSTAT_BIT_RW      0x04 

#define PIC_SSPSTAT_BIT_UA      0x02 
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#define PIC_SSPSTAT_BIT_BF      0x01 

 

#define PIC_SSPCON1_BIT_WCOL    0x80 

#define PIC_SSPCON1_BIT_SSPOV   0x40 

#define PIC_SSPCON1_BIT_SSPEN   0x20 

#define PIC_SSPCON1_BIT_CKP     0x10 

#define PIC_SSPCON1_BIT_SSPM3   0x08 

#define PIC_SSPCON1_BIT_SSPM2   0x04 

#define PIC_SSPCON1_BIT_SSPM1   0x02 

#define PIC_SSPCON1_BIT_SSPM0   0x01 

 

#define PIC_SSPCON2_BIT_GCEN    0x80 

#define PIC_SSPCON2_BIT_ACKSTAT 0x40 

#define PIC_SSPCON2_BIT_ACKDT   0x20 

#define PIC_SSPCON2_BIT_ACKEN   0x10 

#define PIC_SSPCON2_BIT_RCEN    0x08 

#define PIC_SSPCON2_BIT_PEN     0x04 

#define PIC_SSPCON2_BIT_RSEN    0x02 

#define PIC_SSPCON2_BIT_SEN     0x01 

 

/* Byte Reg defines*/ 

#byte PIC_SSPBUF=0xFC9 

#byte PIC_SSPADD=0xFC8 

#byte PIC_SSPSTAT=0xFC7 

#byte PIC_SSPCON1=0xFC6 

#byte PIC_SSPCON2=0xFC5 

 

#define RX_BUF_LEN  5 

#define NODE_ADDR   0x02 

 

unsigned char slave_buffer[RX_BUF_LEN]; 

unsigned char speed_string[RX_BUF_LEN]; 

float buffer_speed[2]; 

int buffer_index; 

 

int8  hallwheel = 0; 

int8  hallwheelbuffer = 0; 

int8  hallgear = 0; 
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int8  hallgearbuffer = 0; 

int16 hallwheelcount = 0; 

 

int8   speedin = 0; 

int16  speedin1 = 0; 

int16  speedin2 = 0; 

int16  speedin3 = 0; 

 

int8 i = 0; 

int8 ii = 0; 

 

/*interrupt occurs every time I2C-bus is busy*/ 

#INT_SSP                                          

void ssp_interupt () 

{ 

   hand(); 

} 

 

/*input hall-sensor 1*/ 

#int_ext                                         

EXT_isr() 

{ 

      if(Input(PIN_B0) == 1) 

      { 

         hallwheel++; 

      } 

} 

 

/*input hall-sensor2, not used right now!!!*/ 

/*#int_ext1                                      

EXT1_isr() 

{ 

      if(Input(PIN_B1) == 1) 

      { 

         hallgear++; 

      } 

}*/ 
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/*RESET*/ 

#INT_EXT2                                        

EXT2_irs() 

{ 

   while(Input(PIN_B2) == 1) 

   { 

      output_high(PIN_B4); 

      set_pwm1_duty(0); 

      set_pwm2_duty(0); 

      hallwheel = 0; 

   } 

   delay_ms(200); 

   output_low(PIN_B4); 

} 

 

/*this subprogram handles the I2C-bus*/ 

void hand() 

{ 

/* [0010 1101] unnecessary bits will be masked out*/ 

    unsigned char i2c_mask = 0x2D;   

    byte temp_sspstat; 

    unsigned char this_byte; 

    unsigned char tx_byte; 

    int x; 

 

/*jointed register information*/ 

    temp_sspstat = PIC_SSPSTAT & i2c_mask; 

 

    switch(temp_sspstat) 

    { 

 

/*write operation, last byte was an address, buffer is full*/  

      case 0x09: 

/*clear receive buffer*/ 

         for (x=0; x<RX_BUF_LEN; x++) 

         { 

            slave_buffer[x]=0x00; 

         } 
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/*clear the buffer index*/ 

         buffer_index=0; 

/*dummy read*/ 

         this_byte = read_i2c(); 

         break; 

 

/*write operation, last byte was data, buffer is full*/ 

      case 0x29: 

/*get the byte from the SSP*/ 

         this_byte = read_i2c(); 

/*put it into the buffer*/ 

         slave_buffer[buffer_index] = this_byte; 

/*after 3 bytes enable speed control*/ 

         if (buffer_index == 3) 

         { 

            speed_control(); 

         } 

 

         buffer_index++; 

 

/*If index has exceeded the buffer length, buffer needs to be cleared*/ 

         if (buffer_index >= RX_BUF_LEN) 

         { 

            buffer_index = 0; 

         } 

         break; 

 

/*read operation, last byte was an address, buffer is empty*/ 

      case 0x0c: 

/*write the byte to PIC_SSPBUF*/       

         write_i2c(hallwheel); 

         hallwheel = 0; 

         break; 

 

/*read operation, last byte was data, buffer is empty 

  not used because only one byte needs to be send!!!*/  

      case 0x2c: 

         break; 
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   } 

} 

 

/*subroutine for the control of the speed controler*/ 

void speed_control() 

{ 

   ii++; 

 

   strncpy (speed_string, slave_buffer, 8); 

 

   if(ii <= 5) 

   { 

   } 

   else 

   { 

      ii=10; 

      if(speed_string[0] == '0') 

      { 

         speedin3 = ((speed_string[1] - 0x30) * 100); 

         speedin2 = ((speed_string[2] - 0x30) * 10); 

         speedin1 = (speed_string[3] - 0x30); 

         speedin  = speedin3 + speedin2 + speedin1; 

         set_pwm1_duty(speedin); 

         set_pwm2_duty(0); 

      } 

 

      if(speed_string[0] == '1') 

      { 

         speedin3 = ((speed_string[1] - 0x30) * 100); 

         speedin2 = ((speed_string[2] - 0x30) * 10); 

         speedin1 = (speed_string[3] - 0x30); 

         speedin  = speedin3 + speedin2 + speedin1; 

         set_pwm1_duty(0); 

         set_pwm2_duty(speedin); 

      } 

   } 

} 
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void initialize(void) 

{ 

   int i = 0; 

   setup_timer_0(RTCC_INTERNAL|RTCC_DIV_32|RTCC_8_bit); 

   setup_timer_1(T1_DISABLED); 

   setup_timer_2(T2_DIV_BY_16,255,1); 

   setup_ccp1(CCP_PWM); 

   setup_ccp2(CCP_PWM); 

   set_pwm1_duty(0); 

   set_pwm2_duty(0); 

   set_tris_a(0b00000000); 

   set_tris_b(0b00000111); 

   set_tris_c(0b00011000); 

   PIC_SSPCON1 = 0x36; 

   PIC_SSPADD = NODE_ADDR; 

   PIC_SSPSTAT = 0x00; 

   enable_interrupts(INT_SSP); 

   enable_interrupts(INT_EXT); 

   enable_interrupts(INT_EXT1); 

   enable_interrupts(INT_EXT2); 

   enable_interrupts(INT_RTCC); 

   ext_int_edge(L_TO_H); 

   ext_int_edge(1, L_TO_H); 

   for (i=0; i<RX_BUF_LEN; i++) 

   { 

      speed_string[i]=0x00; 

   } 

 

   buffer_speed[1]=0; 

   buffer_speed[0]=0; 

   output_high(PIN_B4); 

   delay_ms(200); 

   output_low(PIN_B4); 

} 

 

/*this function returns the byte in SSPBUF*/ 

unsigned char read_i2c(void) 

{ 
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   return PIC_SSPBUF; 

} 

 

void write_i2c(unsigned char transmit_byte) 

{ 

   unsigned char write_collision = 1; 

 

/*If BF bit set in PIC_SSPSTAT?*/ 

   while (PIC_SSPSTAT & PIC_SSPSTAT_BIT_BF) 

   { 

/*If yes? keep waiting*/    

   } 

/*If not? do write*/ 

   while (write_collision) 

   { 

/*clear the WCOL flag*/ 

      PIC_SSPCON1 &= ~PIC_SSPCON1_BIT_WCOL; 

      PIC_SSPBUF = transmit_byte; 

/*write collision?*/ 

      if(PIC_SSPCON1 & PIC_SSPCON1_BIT_WCOL) 

      { 

         write_collision = 1; 

      } 

      else 

      { 

         write_collision = 0; 

      } 

   } 

/*release the clock*/ 

   PIC_SSPCON1 |= PIC_SSPCON1_BIT_CKP; 

} 

 

void main() 

{ 

   initialize(); 

   enable_interrupts(GLOBAL); 

 

   while (1) 
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   { 

   } 

} 

 

D.4. Transmitter software 

/* Authors:  Thomas Hofmann, Ellenor Boje 

   Date:    2006-03-06 

   Title:   C-File for each sender 

*/ 

 

#include <16F628A.h> 

#use delay(clock=4000000) 

#fuses NOWDT,INTRC, PUT, NOPROTECT 

 

#Define N_OF_SYNCS  3     // Number of Infra Sync Signals 

#Define SYNC_PERIOD 2000  // in us. Time for one infra high and low at sync ONLY 

#Define LOW_TIME    140   // in ms. Time low after every signal out. 

#Define HIGH_TIME   10    // in ms. Time Infra and Ultra is transmitting 

 

int8 i, sender = 0, count_3=0, count_2=0, count_1=0; 

 

void send() 

{ 

   output_high(PIN_B0);       // PIN6 = LED 

   output_high(PIN_B1);       // PIN7 = INFRA 

   output_high(PIN_B2);       // PIN8 = ULTRA 

   delay_ms(HIGH_TIME); 

   output_low(PIN_B0); 

   output_low(PIN_B1); 

   output_low(PIN_B2); 

   delay_ms(LOW_TIME); 

   set_tris_b(0b11000000); 

   disable_interrupts(INT_RB); 

   output_high(PIN_B5); 

   delay_us(100); 

   output_low(PIN_B5); 

   set_tris_b(0b11100000); 

   enable_interrupts(INT_RB); 

} 

 

void sync_send() 

{ 

   output_high(PIN_B0);             // PIN6 = LED 

   output_high(PIN_B2);             // PIN8 = ULTRA 

   for(i = 1; i<=N_OF_SYNCS; i++) 

      { 

         output_high(PIN_B1);       // PIN7 = INFRA 

         delay_us(SYNC_PERIOD/2); 

         output_low(PIN_B1);        // PIN7 = INFRA 

         delay_us(SYNC_PERIOD/2); 

      } 

   output_low(PIN_B2);              // PIN8 = ULTRA 

   output_low(PIN_B0);              // PIN6 = LED 
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   delay_ms(LOW_TIME); 

   set_tris_b(0b11000000); 

   disable_interrupts(INT_RB); 

   output_high(PIN_B5); 

   delay_us(100); 

   output_low(PIN_B5); 

   set_tris_b(0b11100000); 

   enable_interrupts(INT_RB); 

} 

 

void init() 

{ 

   output_low(PIN_B0); 

   output_low(PIN_B2); 

   output_low(PIN_B3); 

   output_low(PIN_B5); 

 

 

   set_tris_a(0b00000011); 

   set_tris_b(0b11100000); 

 

   enable_interrupts(INT_RB); 

   enable_interrupts(GLOBAL); 

 

   setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1); 

   setup_timer_1(T1_DISABLED); 

   setup_timer_2(T2_DISABLED,0,1); 

   setup_comparator(NC_NC_NC_NC); 

   setup_vref(FALSE); 

 

   If(input(PIN_A0) == 0 && input(PIN_A1) == 0 && input(PIN_B7) == 0 

      && input(PIN_B6) == 0) 

   { 

      sender = 1; 

   } 

 

   else If(input(PIN_A0) == 0 && input(PIN_A1) == 0 && input(PIN_B7) == 0 

           && input(PIN_B6) == 1) 

   { 

      sender = 2; 

   } 

 

   else If(input(PIN_A0) == 0 && input(PIN_A1) == 0 && input(PIN_B7) == 1 

           && input(PIN_B6) == 1) 

   { 

      sender = 3; 

   } 

 

   else 

      output_high(PIN_B3); 

} 

 

#int_RB 

RB_isr() 

{ 

   if(input(PIN_B5) == 1) 
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   { 

      if(sender == 1) 

      { 

         count_1++; 

         if(count_1 == 2) 

         { 

            sync_send(); 

            count_1 = 0; 

         } 

      } 

      if(sender == 2) 

      { 

         count_2++; 

         if(count_2 == 1) 

            send(); 

         if(count_2 == 2) 

            count_2 = 0; 

      } 

      if(sender == 3) 

      { 

         count_3++; 

         if(count_3 == 2) 

         { 

            send(); 

            count_3 = 0; 

         } 

 

      } 

   } 

 

} 

 

void main() 

{ 

   init(); 

 

   if(sender == 1) 

      sync_send(); 

 

   while(1) 

   {} 

 

} 
 

D.5. Receiver software 

/* Authors:  Thomas Hofmann, Ellenor Boje 

   Date:    2006-02-28 

   Title:   Receiver Software with LCD output (final version) 

*/ 

 

#include <18F242.h> 

 

#use delay(clock=20000000) 
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#fuses NOWDT,WDT128,HS,NOPROTECT,NOOSCSEN,NOBROWNOUT,BORV20,PUT, OSTVREN, 

       NODEBUG,NOLVP,NOWRT,NOWRTD,NOWRTB,NOWRTC,NOCPD,NOCPB,NOEBTR,NOEBTRB 

 

#define LED_I     PIN_A1 

#define LED_U1    PIN_B2 

#define LED_U2    PIN_B3 

#define LED_Init  PIN_B0 

#define LED_Err   PIN_A3 

 

#byte PORTB = 0xF81 

#byte PORTC = 0xF82 

 

#Define CLK_TIME     3.2      // * E-6 

#Define CLK_TIME1    0.8      // * E-6 

#Define SONIC_SPEED  347.5    // At about 26C, differs strong!!! 

#Define HEIGHT_1     275      // in cm 

#Define HEIGHT_2     275      // in cm 

#Define HEIGHT_3     268 

 

#Define Transm1_X    3        // in cm  Transm_1 & Transm_2 should be the ones 

#Define Transm1_Y    0        // in cm  which have the biggest difference 

#Define Transm2_X    0        // in cm  of their Y-Coordinates because of my 

#Define Transm2_Y    208      // in cm  positioning algorithm 

#Define Transm3_X    176      // in cm 

#Define Transm3_Y    100      // in cm 

 

#Define Offset       0        // in us 

#Define THRESH_US1   351      // in mV for 2 threshold compensation 

#Define THRESH_US2   733      // in mV for 2 threshold compensation 

 

#define TOLERANCE    250000   /*this is the SQARE of the max. distance (in cm) 

                              of the two-circle intersection solution point to 

                              the third circle*/ 

 

#Define DIST_P       150000   // in us. Time Period for one Distance Calc 

                              // (1 IR, 2 US Signals) 

#Define T_IR         5000     // in us. Time Interval IR Signal can differ from 

                              // where it is supposed to be 

#Define T_US         1000     // in us. Time Interval US Signal can differ from 

                              // where it is supposed to be 

#Define MAXSPEED_CAR 1        // in m/s 

#Define FAREST_DIST  1000     // in cm. Farest Dist from a beacon to the car 

 

#Define SYNC_TIME    6000     // in us. Time for infra sync (4 infra highs) 

#Define SYNC_PERIOD  2000     // in us. Time for one infra high and low at sync 

#Define N_OF_SYNCS   3        // Number of Infra Sync Signals 

 

#define set_tris_lcd(x) set_tris_c(x) 

#define lcd_type 2           // 0=5x7, 1=5x10, 2=2 lines 

#define lcd_line_two 0x40    // LCD RAM address for the second line 

 

 

#Bit INFRA = 0xF81.7 

#Bit ULTRA = 0xF81.6 

#Bit ULTRA2 = 0xF81.1 
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/*------------------------------------------------------------------------------ 

Variable definitions 

------------------------------------------------------------------------------*/ 

 

int1  pos_cal; 

int8  pos_period=0, test=0; 

int16 us_diff_time=0, d=0, d1, d2, d3; 

int32 time=0, time2; 

 

int16 d_straight = 1, d3_straight, d2_straight, d1_straight; 

 

int8  initial=0, sync_count=0; 

int32 ir_control_time, last_sync=0, present_sync = 0; 

int16 us_max, us_min, dist_old_new; 

 

struct position 

{ 

    int32 x; 

    int32 y; 

}p, p_old; 

 

struct position pos; 

float A, B, xr1, xr2, yr1, yr2, sq_d, delta, temp1, temp2, t1, t2, diff,u, v, w; 

 

/*------------------------------------------------------------------------------ 

LCD Functions 

------------------------------------------------------------------------------*/ 

 

BYTE const LCD_INIT_STRING[4] = {0x20 | (lcd_type << 2), 0xc, 1, 0xf82}; 

                             // These bytes need to be sent to the LCD 

                             // to start it up. 

                             // The following are used for setting 

                             // the I/O port direction register. 

struct lcd_pin_map 

{                 // This structure is overlayed 

           BOOLEAN rs;           // on to an I/O port to gain 

           BOOLEAN rw;               // access to the LCD pins. 

           BOOLEAN unused;               // The bits are allocated from 

           BOOLEAN enable;           // low order up.  rs will 

           int     data : 4;         // be pin B0. 

} lcd; 

 

struct lcd_pin_map const LCD_WRITE = {0,0,0,0,0}; // For write mode all pins are out 

struct lcd_pin_map const LCD_READ = {0,0,0,0,0x0f}; // For read mode 

 

#byte lcd = 0xF82                  // on to port C 

 

int16 hundreds,tens,ones,hundreds1,tens1,ones1,value,value1, 

      hundreds2,tens2,ones2,value2; 

 

int16 hundreds11,tens11,ones11, hundreds22,tens22,ones22, 

      hundreds0,tens0,ones0, value11, value22, value0; 

 

int16 hundreds_x,tens_x,ones_x, hundreds_y,tens_y,ones_y, coord_x, coord_y; 

 

BYTE lcd_read_byte() 
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{ 

      BYTE low,high; 

      set_tris_lcd(LCD_READ); 

      lcd.rw = 1; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_cycles(1); 

      high = lcd.data; 

      lcd.enable = 0; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(1); 

      low = lcd.data; 

      lcd.enable = 0; 

      set_tris_lcd(LCD_WRITE); 

      return( (high<<4) | low); 

} 

 

void lcd_send_nibble( BYTE n ) 

{ 

      lcd.data = n; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(2); 

      lcd.enable = 0; 

} 

 

void lcd_send_byte( BYTE address, BYTE n ) 

{ 

      lcd.rs = 0; 

      while ( bit_test(lcd_read_byte(),7) ) ; 

      lcd.rs = address; 

      delay_cycles(1); 

      lcd.rw = 0; 

      delay_cycles(1); 

      lcd.enable = 0; 

      lcd_send_nibble(n >> 4); 

      lcd_send_nibble(n & 0x0f); 

} 

 

void lcd_init() 

{ 

    BYTE i; 

    set_tris_lcd(LCD_WRITE); 

    lcd.rs = 0; 

    lcd.rw = 0; 

    lcd.enable = 0; 

    delay_ms(15); 

    for(i=1;i<=3;++i) { 

       lcd_send_nibble(3); 

       delay_ms(5); 

    } 

    lcd_send_nibble(2); 

    for(i=0;i<=3;++i) 

       lcd_send_byte(0,LCD_INIT_STRING[i]); 

} 



 143 

 

void lcd_gotoxy( BYTE x, BYTE y) 

{ 

   BYTE address; 

 

   if(y!=1) 

     address=lcd_line_two; 

   else 

     address=0; 

   address+=x-1; 

   lcd_send_byte(0,0x80|address); 

} 

 

void lcd_putc( char c) 

{ 

   switch (c) 

   { 

     case '\f'   : lcd_send_byte(0,1); 

                   delay_ms(2); 

                                           break; 

     case '\n'   : lcd_gotoxy(1,2);        break; 

     case '\b'   : lcd_send_byte(0,0x10);  break; 

     default     : lcd_send_byte(1,c);     break; 

   } 

} 

 

char lcd_getc( BYTE x, BYTE y) 

{ 

   char value; 

 

    lcd_gotoxy(x,y); 

    while ( bit_test(lcd_read_byte(),7) ); // wait until busy flag is low 

    lcd.rs=1; 

    value = lcd_read_byte(); 

    lcd.rs=0; 

    return(value); 

} 

 

void Convert_LCD() 

{ 

 if (value != 0) 

 { 

  hundreds = value/100; 

  tens = ((value-(hundreds*100))/10); 

  ones = (value-(hundreds*100)-(tens*10)); 

  if (ones>9) 

   ones = 9; 

  ones = ones + 0x30; 

  tens = tens + 0x30; 

  hundreds = hundreds + 0x30; 

 } 

 if (value1 != 0) 

 { 

  hundreds1 = value1/100; 

  tens1 = ((value1-(hundreds1*100))/10); 

  ones1 = (value1-(hundreds1*100)-(tens1*10)); 
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  if (ones1>9) 

   ones1 = 9; 

  ones1 = ones1 + 0x30; 

  tens1 = tens1 + 0x30; 

  hundreds1 = hundreds1 + 0x30; 

 } 

  if (value2 != 0) 

 { 

  hundreds2 = value2/100; 

  tens2 = ((value2-(hundreds2*100))/10); 

  ones2 = (value2-(hundreds2*100)-(tens2*10)); 

  if (ones2>9) 

   ones2 = 9; 

  ones2 = ones2 + 0x30; 

  tens2 = tens2 + 0x30; 

  hundreds2 = hundreds2 + 0x30; 

 } 

  if (value0 != 0) 

 { 

  hundreds0 = value0/100; 

  tens0 = ((value0-(hundreds0*100))/10); 

  ones0 = (value0-(hundreds0*100)-(tens0*10)); 

  if (ones0>9) 

   ones0 = 9; 

  ones0 = ones0 + 0x30; 

  tens0 = tens0 + 0x30; 

  hundreds0 = hundreds0 + 0x30; 

 } 

 if (value11 != 0) 

 { 

  hundreds11 = value11/100; 

  tens11 = ((value11-(hundreds11*100))/10); 

  ones11 = (value11-(hundreds11*100)-(tens11*10)); 

  if (ones11>9) 

   ones11 = 9; 

  ones11 = ones11 + 0x30; 

  tens11 = tens11 + 0x30; 

  hundreds11 = hundreds11 + 0x30; 

 } 

  if (value22 != 0) 

 { 

  hundreds22 = value22/100; 

  tens22 = ((value22-(hundreds22*100))/10); 

  ones22 = (value22-(hundreds22*100)-(tens22*10)); 

  if (ones22>9) 

   ones22 = 9; 

  ones22 = ones22 + 0x30; 

  tens22 = tens22 + 0x30; 

  hundreds22 = hundreds22 + 0x30; 

 } 

  if (coord_x != 0) 

 { 

  hundreds_x = coord_x/100; 

  tens_x = ((coord_x-(hundreds_x*100))/10); 

  ones_x = (coord_x-(hundreds_x*100)-(tens_x*10)); 

  if (ones_x>9) 
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   ones_x = 9; 

  ones_x = ones_x + 0x30; 

  tens_x = tens_x + 0x30; 

  hundreds_x = hundreds_x + 0x30; 

 } 

  if (coord_y != 0) 

 { 

  hundreds_y = coord_y/100; 

  tens_y = ((coord_y-(hundreds_y*100))/10); 

  ones_y = (coord_y-(hundreds_y*100)-(tens_y*10)); 

  if (ones_y>9) 

   ones_y = 9; 

  ones_y = ones_y + 0x30; 

  tens_y = tens_y + 0x30; 

  hundreds_y = hundreds_y + 0x30; 

 } 

} 

/*------------------------------------------------------------------------------ 

 Functions 

------------------------------------------------------------------------------*/ 

 

void init() 

{ 

   setup_adc_ports(NO_ANALOGS); 

   setup_adc(ADC_OFF); 

   setup_wdt(WDT_OFF); 

   setup_timer_0(RTCC_INTERNAL|RTCC_DIV_16);  //For a range of 18m DIV_4 used 62 

   setup_timer_1(T1_INTERNAL|T1_DIV_BY_4); 

   setup_timer_2(T2_DISABLED,0,1); 

   setup_timer_3(T3_DISABLED|T3_DIV_BY_8); 

 

   set_tris_a(0);                // Port A is Output 

   set_tris_b(0xE2);             // Pin 1, 6 and 7 from Port B are Input 

   set_tris_c(0); 

 

   ext_int_edge( 1, L_TO_H); 

 //enable_interrupts(INT_EXT1);  //2 Threshold compensation currently not in use 

   enable_interrupts(INT_RB); 

   enable_interrupts(GLOBAL); 

 

   output_low(LED_Err); 

   output_low(LED_U1); 

   output_low(LED_U2); 

   output_low(LED_I); 

   output_low(LED_Init); 

 

   us_max = (FAREST_DIST*10000)/SONIC_SPEED + T_US; 

   us_min = (HEIGHT_1*10000)/SONIC_SPEED - T_US; 

   dist_old_new = MAXSPEED_CAR * DIST_P * 3 / 1000;      //Max dist change 

                                                         //after one pos_calc 

} 

 

float sqr(float x) 

{ 

   return x*x; 

} 
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float sqrt(float x)                    //square-root-function 

{ 

 int idx; 

   float q,y; 

   q=0; 

   y=2; 

   for(idx=0;idx<14;idx++)    //enough precision and prevent 

                //program from getting lost in loop 

   { 

        q=x/y; 

        y=(y+q)/2; 

   } 

   return y; 

} 

 

 

struct position pos_calc( int16 d1,  int16 d2,  int16 d3) 

{ 

   diff=(Transm2_Y - Transm1_Y);             //Cutting points of 2 circles 

   B =(Transm2_X - Transm1_X) / (diff); 

   u=1+(sqr(B)); 

   A=(sqr(d1)-sqr(d2)+sqr(Transm2_X)-sqr(Transm1_X))/(diff*2)+ 

     (Transm2_Y+Transm1_Y)/2; 

   v=2*(Transm1_Y*B-Transm1_X-A*B); 

   w=(-sqr(d1)+sqr(Transm1_X)+sqr(Transm1_Y)+sqr(A)-2*Transm1_Y*A); 

   delta=(-4*u*w+sqr(v)); 

   if(delta<0)                               //Error if no cutting point 

   { 

      output_high(LED_Err); 

      delay_ms(5); 

      output_low(LED_Err); 

   } 

   else 

   { 

  sq_d=sqrt(delta); 

  xr1=(sq_d-v)/u/2; 

  xr2=-(v+sq_d)/u/2; 

  yr1=(A-B*xr1); 

  yr2=(A-B*xr2); 

  t1=abs(sqr(Transm3_X-xr1)+sqr(Transm3_Y-yr1)-sqr(d3));   //test 3. circle 

      t2=abs(sqr(Transm3_X-xr2)+sqr(Transm3_Y-yr2)-sqr(d3)); 

 

  if (t2<t1) 

  {            //exchange the solution, xr1/yr1 will point the true solution 

         temp2=xr1; 

   xr1=xr2; 

   xr2=temp2; 

   temp2=yr1; 

   yr1=yr2; 

   yr2=temp2; 

         temp2=t2; 

   t2=t1; 

   t1=temp2; 

 

  } 
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  if (t1>TOLERANCE)        //Checking if the cutting point of 3 circles 

                               //is in the tolerance 

      { 

         output_high(LED_Err); 

         delay_ms(5); 

         output_low(LED_Err); 

      } 

 

 } 

   pos.x = xr1; 

   pos.y = yr1; 

   return pos; 

} 

 

int16 dist_calc(int32 time, int16 us_diff_time) 

{ 

   int32 time_c; 

   int16 d_c; 

 

   d_straight = (time * SONIC_SPEED)/10000; 

   /*time_c= us_diff_time * (THRESH_US1 + time * (THRESH_US1 - THRESH_US2) 

     / us_diff_time) / (THRESH_US1 - THRESH_US2); 

   2 Threshold compensation currently not in use*/ 

 

   switch (pos_period) 

   { 

      case 0:  d_c=sqrt(sqr((time*SONIC_SPEED)/1000) - sqr (HEIGHT_1 * 10))/10; 

               break; 

      case 1:  d_c=sqrt(sqr((time*SONIC_SPEED)/1000) - sqr (HEIGHT_2 * 10))/10; 

               break; 

      case 2:  d_c=sqrt(sqr((time*SONIC_SPEED)/1000) - sqr (HEIGHT_3 * 10))/10; 

               break; 

     default:  output_high(LED_Err); break; 

   } 

   return d_c;    // dist in cm 

} 

 

void dist_pos() 

{ 

 

   us_diff_time = time2 - time; 

   d = dist_calc(time, us_diff_time); 

 

   switch (pos_period) 

   { 

      case 0:  d1=d; 

               d1_straight = d_straight; break; 

      case 1:  d2=d; 

               d2_straight = d_straight; break; 

      case 2:  d3=d; 

               d3_straight = d_straight; break; 

     default: output_high(LED_Err); break; 

   } 

   pos_period++; 
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   if(pos_period == 3) 

   { 

      p_old = p; 

      p = pos_calc(d1, d2, d3); 

      pos_period = 0; 

      /*if( abs(p_old.x-p.x) > (dist_old_new + dist_old_new/5) || 

      abs(p_old.y-p.y) > (dist_old_new + dist_old_new/5)) 

 

      // If (pos change in reality > Biggest possible pos change + 20%) => Error 

      { 

         p = p_old; 

         output_high(LED_Err); 

         delay_ms(8); 

         output_low(LED_Err); 

      }*/ 

 

   } 

   test = 0; 

 

   value = d1;                // for LCD output 

   value1 = d2; 

   value2 = d3; 

   value0 = d1_straight; 

   value11 = d2_straight; 

   value22 = d3_straight; 

   coord_x = p.x; 

   coord_y = p.y; 

} 

 

void i_ir() 

{ 

 

   set_timer0(0); 

   test = 1; 

 

                     // Check for 1 because of no low_to_high detection 

                     // The infra routine has to be faster then 7.3ms 

                     // because thats the time the sound needs for 2.5 metres 

}                    // which is the shortest distance 

 

 

void u_ir() 

{ 

   time =get_timer0() * CLK_TIME;   // time_in_sec = time * E-6 

 

   dist_pos(); 

   output_high(LED_U1); 

   delay_ms(10); 

   output_low(LED_U1); 

} 

 

void sync()    //Synchronisation to Sender 1 at start and in case of error 

{ 

   if(sync_count == 0) 

      { 
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         sync_count = 1; 

         set_timer0(0); 

      } 

      if(sync_count > 0) 

      { 

         present_sync = get_timer0() * CLK_TIME; 

         if(present_sync < SYNC_TIME) 

         { 

            if(present_sync - last_sync > SYNC_PERIOD-SYNC_PERIOD/5) 

            { 

               sync_count++; 

               last_sync = get_timer0() * CLK_TIME; 

               if(sync_count >= N_OF_SYNCS) 

               { 

                  test = 1; 

                  initial = 1; 

                  output_high(LED_Init); 

                  delay_ms(3); 

                  output_low(LED_Init); 

 

               } 

            } 

         } 

         else 

            sync_count = 0; 

      } 

} 

/*------------------------------------------------------------------------------ 

Interrupt SR 

------------------------------------------------------------------------------*/ 

 

#int_RB 

portb_int() 

{ 

   if(initial == 1) 

      ir_control_time = get_timer0() * CLK_TIME;  // time_in_sec = ir_time * E-6 

 

   if(INFRA == 1) 

   { 

 

      if(initial == 1 && test == 0 && 

        (ir_control_time + T_IR > DIST_P && ir_control_time - T_IR < DIST_P)) 

                                                // Conditions for proper IR 

         i_ir(); 

 

      if(initial == 0) 

      { 

         sync(); 

      } 

 

   } 

   if(initial == 1 && test == 1 && ULTRA == 1 && 

     (ir_control_time < us_max && ir_control_time > us_min)) 

      u_ir(); 
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 #asm                //That PIC just gets interrupt when rising or falling edge 

 movf 0xf81,0        // at port B 

 #endasm 

} 

 

// NOT IN USE YET (2 THRESHOLD COMPENSATION) 

 

#int_EXT1 

EXT1_isr() 

{ 

   ir_control_time = get_timer0() * CLK_TIME; 

   if(test == 2 && (ir_control_time < us_max && ir_control_time > us_min)) 

   { 

                                 output_high(LED_U2); 

                                 delay_us(8); 

                                 output_low(LED_U2); 

      time2 =(get_timer0() * CLK_TIME);   // time_in_sec = time * E-6 

      set_timer1(0); 

      test = 3; 

      dist_pos(); 

      output_high(LED_I); 

      delay_ms(10); 

      output_low(LED_I); 

   } 

 

} 

 

void main() 

{ 

   init(); 

 

   lcd_init(); 

 

   while(1) 

   { 

 

   if((get_timer0() * CLK_TIME) > (DIST_P+T_IR)) //Error Condition for new sync 

      initial = 0; 

 

   Convert_Lcd(); 

 

   lcd_gotoxy(1,1);        //LCD Output routines 

   lcd_putc(hundreds); 

   lcd_putc(tens); 

   lcd_putc(ones); 

 

   lcd_gotoxy(5,1); 

   lcd_putc(hundreds1); 

   lcd_putc(tens1); 

   lcd_putc(ones1); 

 

   lcd_gotoxy(9,1); 

   lcd_putc(hundreds2); 

   lcd_putc(tens2); 

   lcd_putc(ones2); 
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   lcd_gotoxy(1,2); 

   lcd_putc(hundreds0); 

   lcd_putc(tens0); 

   lcd_putc(ones0); 

 

   lcd_gotoxy(5,2); 

   lcd_putc(hundreds11); 

   lcd_putc(tens11); 

   lcd_putc(ones11); 

 

   lcd_gotoxy(9,2); 

   lcd_putc(hundreds22); 

   lcd_putc(tens22); 

   lcd_putc(ones22); 

 

   lcd_gotoxy(13,1); 

   lcd_putc(hundreds_x); 

   lcd_putc(tens_x); 

   lcd_putc(ones_x); 

 

   lcd_gotoxy(13,2); 

   lcd_putc(hundreds_y); 

   lcd_putc(tens_y); 

   lcd_putc(ones_y); 

   }; 

} 

 

D.6. IR Object detection front and back 

 
/************************************************************************/ 

/* Written by Ellenor Boje                                              */ 

/* Date:    2006-06-15                                                  */ 

/* Title:   C-File for each IR front, frontleft, frontright and back    */ 

/*                                                                      */ 

/************************************************************************/ 

 

#include <16F877A.H> 

#DEVICE ADC=10 

#device ICD=TRUE 

 

#FUSES  XT,NOWDT,NOPROTECT,PUT,NOLVP,BROWNOUT 

#ID     0x00 

 

#use Delay(Clock=4000000) 

/************************************************************************/ 

/*       Declarations                                        */ 

/************************************************************************/ 

#byte   PORTA  =  5 

#byte   PORTB  =  6 

#byte   PORTD  =  8 

byte  X_pos = 1; 

 

#define ALL_OUT 0 

#define ALL_IN  0xff 

#define set_tris_lcd(x) set_tris_b(x) 
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#define lcd_type 2           // 0=5x7, 1=5x10, 2=2 lines 

#define lcd_line_two 0x40    // LCD RAM address for the second line 

BYTE const LCD_INIT_STRING[4] = {0x20 | (lcd_type << 2), 0xc, 1, 6}; 

                             // These bytes need to be sent to the LCD 

                             // to start it up. 

                             // The following are used for setting 

                             // the I/O port direction register. 

struct lcd_pin_map 

{                 // This structure is overlayed 

           BOOLEAN rs;           // on to an I/O port to gain 

           BOOLEAN rw;               // access to the LCD pins. 

           BOOLEAN unused;               // The bits are allocated from 

           BOOLEAN enable;           // low order up.  rs will 

           int     data : 4;         // be pin B0. 

} lcd; 

 

struct lcd_pin_map const LCD_WRITE = {0,0,0,0,0}; // For write mode all pins are out 

struct lcd_pin_map const LCD_READ = {0,0,0,0,0x0f}; // For read mode 

 

#byte lcd = 6                  // on to port B (at address 6) 

byte ene, tiene, afstandF, afstandB; 

 

BYTE lcd_read_byte() 

{ 

      BYTE low,high; 

      set_tris_lcd(LCD_READ); 

      lcd.rw = 1; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_cycles(1); 

      high = lcd.data; 

      lcd.enable = 0; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(1); 

      low = lcd.data; 

      lcd.enable = 0; 

      set_tris_lcd(LCD_WRITE); 

      return( (high<<4) | low); 

} 

 

 

void lcd_send_nibble( BYTE n ) 

{ 

      lcd.data = n; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(2); 

      lcd.enable = 0; 

} 

 

 

void lcd_send_byte( BYTE address, BYTE n ) 

{ 

      lcd.rs = 0; 

      while ( bit_test(lcd_read_byte(),7) ) ; 
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      lcd.rs = address; 

      delay_cycles(1); 

      lcd.rw = 0; 

      delay_cycles(1); 

      lcd.enable = 0; 

      lcd_send_nibble(n >> 4); 

      lcd_send_nibble(n & 0x0f); 

} 

 

void lcd_init() 

{ 

    BYTE i; 

    set_tris_lcd(LCD_WRITE); 

    lcd.rs = 0; 

    lcd.rw = 0; 

    lcd.enable = 0; 

    delay_ms(15); 

    for(i=1;i<=3;++i) { 

       lcd_send_nibble(3); 

       delay_ms(5); 

    } 

    lcd_send_nibble(2); 

    for(i=0;i<=3;++i) 

       lcd_send_byte(0,LCD_INIT_STRING[i]); 

} 

 

void lcd_gotoxy( BYTE x, BYTE y) 

{ 

   BYTE address; 

 

   if(y!=1) 

     address=lcd_line_two; 

   else 

     address=0; 

   address+=x-1; 

   lcd_send_byte(0,0x80|address); 

} 

 

void lcd_putc( char c) 

{ 

   switch (c) 

   { 

     case '\f'   : lcd_send_byte(0,1); 

                   delay_ms(2); 

                                           break; 

     case '\n'   : lcd_gotoxy(1,2);        break; 

     case '\b'   : lcd_send_byte(0,0x10);  break; 

     default     : lcd_send_byte(1,c);     break; 

   } 

} 

 

char lcd_getc( BYTE x, BYTE y) 

{ 

   char value; 

 

    lcd_gotoxy(x,y); 
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    while ( bit_test(lcd_read_byte(),7) ); // wait until busy flag is low 

    lcd.rs=1; 

    value = lcd_read_byte(); 

    lcd.rs=0; 

    return(value); 

} 

 

void Convert_LCD(byte temp)         //convert analog input to data for display 

{ 

 

 if (temp == 0) 

 { 

  tiene = 'E'; 

  ene = 'r'; 

 } 

 else if (temp == 255) 

 { 

  tiene = 'E'; 

  ene = 'R'; 

 } 

 else 

 { 

  tiene = temp/10; 

  ene = (temp-(tiene*10)); 

  if (ene>9) 

   ene = 9; 

  ene = ene + 0x30; 

  tiene = tiene + 0x30; 

 } 

 

} 

 

byte Convert_Distance(long result)    //10 bit value are set equal to a distance 

{ 

if(result>467) return( 0 ); 

if(result< 468 && result> 431 ) return( 11 ); 

if(result< 432 && result> 402 ) return( 12 ); 

if(result< 403 && result> 376 ) return( 13 ); 

if(result< 377 && result> 354 ) return( 14 ); 

if(result< 355 && result> 337 ) return( 15 ); 

if(result< 338 && result> 318 ) return( 16 ); 

if(result< 319 && result> 303 ) return( 17 ); 

if(result< 304 && result> 287 ) return( 18 ); 

if(result< 288 && result> 276 ) return( 19 ); 

if(result< 277 && result> 261 ) return( 20 ); 

if(result< 262 && result> 253 ) return( 21 ); 

if(result< 254 && result> 241 ) return( 22 ); 

if(result< 242 && result> 234 ) return( 23 ); 

if(result< 235 && result> 227 ) return( 24 ); 

if(result< 228 && result> 219 ) return( 25 ); 

if(result< 220 && result> 215 ) return( 26 ); 

if(result< 216 && result> 205 ) return( 27 ); 

if(result< 206 && result> 198 ) return( 28 ); 

if(result< 199 && result> 185 ) return( 29 ); 

if(result< 186 && result> 188 ) return( 30 ); 

if(result< 189 && result> 184 ) return( 31 ); 
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if(result< 185 && result> 180 ) return( 32 ); 

if(result< 181 && result> 176 ) return( 33 ); 

if(result< 177 && result> 172 ) return( 34 ); 

if(result< 173 && result> 169 ) return( 35 ); 

if(result< 170 && result> 164 ) return( 36 ); 

if(result< 165 && result> 160 ) return( 37 ); 

if(result< 161 && result> 156 ) return( 38 ); 

if(result< 157 && result> 152 ) return( 39 ); 

if(result< 153 && result> 150 ) return( 40 ); 

if(result< 151 && result> 147 ) return( 41 ); 

if(result< 148 && result> 144 ) return( 42 ); 

if(result< 145 && result> 141 ) return( 43 ); 

if(result< 142 && result> 140 ) return( 44 ); 

if(result< 141 && result> 136 ) return( 45 ); 

if(result< 137 && result> 135 ) return( 46 ); 

if(result< 136 && result> 134 ) return( 47 ); 

if(result< 135 && result> 133 ) return( 48 ); 

if(result< 134 && result> 114 ) return( 49 ); 

if(result< 115 && result> 122 ) return( 50 ); 

if(result< 123 && result> 121 ) return( 51 ); 

if(result< 122 && result> 120 ) return( 52 ); 

if(result< 121 && result> 118 ) return( 53 ); 

if(result< 119 && result> 117 ) return( 54 ); 

if(result< 118 && result> 116 ) return( 55 ); 

if(result< 117 && result> 114 ) return( 56 ); 

if(result< 115 && result> 113 ) return( 57 ); 

if(result< 114 && result> 109 ) return( 58 ); 

if(result< 110 && result> 106 ) return( 59 ); 

if(result< 107 && result> 104 ) return( 60 ); 

if(result< 103) return(255); 

 

} 

 

void Stop_Go(long result)     //if closer than 20cm AGV stop 

{ 

   if(result>261) 

      output_high(PIN_B2); 

   else 

      output_low(PIN_B2); 

} 

 

void main() 

{ 

 long front,frontleft,frontright,back; 

 setup_adc_ports(ALL_ANALOG); 

 

// set_tris_d(0xF0); 

 lcd_init(); 

 while (1) 

 { 

 

  set_adc_channel(0); 

  delay_ms(40); 

  front = read_adc(); 

  Convert_LCD(Convert_Distance(front)); 
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  lcd_gotoxy(1,1); 

  lcd_putc('F'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(front); 

  delay_ms(500); 

 

  set_adc_channel(1); 

  delay_ms(40); 

  frontleft = read_adc(); 

  Convert_LCD(Convert_Distance(frontleft)); 

 

  lcd_gotoxy(1,2); 

  lcd_putc('F'); 

  lcd_putc('L'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(frontleft); 

  delay_ms(500); 

   

  set_adc_channel(2); 

  delay_ms(40); 

  frontright = read_adc(); 

  Convert_LCD(Convert_Distance(frontright)); 

 

  lcd_gotoxy(9,1); 

  lcd_putc('F'); 

  lcd_putc('R'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(frontright); 

  delay_ms(500); 

 

  set_adc_channel(3); 

  delay_ms(40); 

  back = read_adc(); 

  Convert_LCD(Convert_Distance(back)); 

 

  lcd_gotoxy(9,2); 

  lcd_putc('B'); 

  lcd_putc(':'); 
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  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(back); 

  delay_ms(500); 

 

 } 

} 

 

D.7. IR Object detection left and right 

 
/************************************************************************/ 

/* Written by Ellenor Boje                                              */ 

/* Date:    2006-07-26                                                  */ 

/* Title:   C-File for each IR left1, left2, right1 and right2          */ 

/*                                                                      */ 

/************************************************************************/ 

 

#include <16F877A.H> 

#DEVICE ADC=10 

#device ICD=TRUE 

 

#FUSES  XT,NOWDT,NOPROTECT,PUT,NOLVP,BROWNOUT 

#ID     0x00 

 

#use Delay(Clock=4000000) 

/************************************************************************/ 

/*       Declarations                                        */ 

/************************************************************************/ 

#byte   PORTA  =  5 

#byte   PORTB  =  6 

#byte   PORTD  =  8 

byte  X_pos = 1; 

 

#define ALL_OUT 0 

#define ALL_IN  0xff 

#define set_tris_lcd(x) set_tris_b(x) 

#define lcd_type 2           // 0=5x7, 1=5x10, 2=2 lines 

#define lcd_line_two 0x40    // LCD RAM address for the second line 

BYTE const LCD_INIT_STRING[4] = {0x20 | (lcd_type << 2), 0xc, 1, 6}; 

                             // These bytes need to be sent to the LCD 

                             // to start it up. 

                             // The following are used for setting 

                             // the I/O port direction register. 

struct lcd_pin_map 

{                 // This structure is overlayed 

           BOOLEAN rs;           // on to an I/O port to gain 

           BOOLEAN rw;               // access to the LCD pins. 

           BOOLEAN unused;               // The bits are allocated from 

           BOOLEAN enable;           // low order up.  rs will 

           int     data : 4;         // be pin B0. 

} lcd; 
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struct lcd_pin_map const LCD_WRITE = {0,0,0,0,0}; // For write mode all pins are out 

struct lcd_pin_map const LCD_READ = {0,0,0,0,0x0f}; // For read mode 

 

#byte lcd = 6                  // on to port B (at address 6) 

byte ene, tiene, afstandF, afstandB; 

 

BYTE lcd_read_byte() 

{ 

      BYTE low,high; 

      set_tris_lcd(LCD_READ); 

      lcd.rw = 1; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_cycles(1); 

      high = lcd.data; 

      lcd.enable = 0; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(1); 

      low = lcd.data; 

      lcd.enable = 0; 

      set_tris_lcd(LCD_WRITE); 

      return( (high<<4) | low); 

} 

 

 

void lcd_send_nibble( BYTE n ) 

{ 

      lcd.data = n; 

      delay_cycles(1); 

      lcd.enable = 1; 

      delay_us(2); 

      lcd.enable = 0; 

} 

 

 

void lcd_send_byte( BYTE address, BYTE n ) 

{ 

      lcd.rs = 0; 

      while ( bit_test(lcd_read_byte(),7) ) ; 

      lcd.rs = address; 

      delay_cycles(1); 

      lcd.rw = 0; 

      delay_cycles(1); 

      lcd.enable = 0; 

      lcd_send_nibble(n >> 4); 

      lcd_send_nibble(n & 0x0f); 

} 

 

void lcd_init() 

{ 

    BYTE i; 

    set_tris_lcd(LCD_WRITE); 

    lcd.rs = 0; 

    lcd.rw = 0; 

    lcd.enable = 0; 
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    delay_ms(15); 

    for(i=1;i<=3;++i) { 

       lcd_send_nibble(3); 

       delay_ms(5); 

    } 

    lcd_send_nibble(2); 

    for(i=0;i<=3;++i) 

       lcd_send_byte(0,LCD_INIT_STRING[i]); 

} 

 

void lcd_gotoxy( BYTE x, BYTE y) 

{ 

   BYTE address; 

 

   if(y!=1) 

     address=lcd_line_two; 

   else 

     address=0; 

   address+=x-1; 

   lcd_send_byte(0,0x80|address); 

} 

 

void lcd_putc( char c) 

{ 

   switch (c) 

   { 

     case '\f'   : lcd_send_byte(0,1); 

                   delay_ms(2); 

                                           break; 

     case '\n'   : lcd_gotoxy(1,2);        break; 

     case '\b'   : lcd_send_byte(0,0x10);  break; 

     default     : lcd_send_byte(1,c);     break; 

   } 

} 

 

char lcd_getc( BYTE x, BYTE y) 

{ 

   char value; 

 

    lcd_gotoxy(x,y); 

    while ( bit_test(lcd_read_byte(),7) ); // wait until busy flag is low 

    lcd.rs=1; 

    value = lcd_read_byte(); 

    lcd.rs=0; 

    return(value); 

} 

 

void Convert_LCD(byte temp)         //convert analog input to data for display 

{ 

 

 if (temp == 0) 

 { 

  tiene = 'E'; 

  ene = 'r'; 

 } 

 else if (temp == 255) 
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 { 

  tiene = 'E'; 

  ene = 'R'; 

 } 

 else 

 { 

  tiene = temp/10; 

  ene = (temp-(tiene*10)); 

  if (ene>9) 

   ene = 9; 

  ene = ene + 0x30; 

  tiene = tiene + 0x30; 

 } 

} 

 

byte Convert_Distance(long result)    //10 bit value are set equal to a distance 

{ 

if(result>467) return( 0 ); 

if(result< 468 && result> 431 ) return( 11 ); 

if(result< 432 && result> 402 ) return( 12 ); 

if(result< 403 && result> 376 ) return( 13 ); 

if(result< 377 && result> 354 ) return( 14 ); 

if(result< 355 && result> 337 ) return( 15 ); 

if(result< 338 && result> 318 ) return( 16 ); 

if(result< 319 && result> 303 ) return( 17 ); 

if(result< 304 && result> 287 ) return( 18 ); 

if(result< 288 && result> 276 ) return( 19 ); 

if(result< 277 && result> 261 ) return( 20 ); 

if(result< 262 && result> 253 ) return( 21 ); 

if(result< 254 && result> 241 ) return( 22 ); 

if(result< 242 && result> 234 ) return( 23 ); 

if(result< 235 && result> 227 ) return( 24 ); 

if(result< 228 && result> 219 ) return( 25 ); 

if(result< 220 && result> 215 ) return( 26 ); 

if(result< 216 && result> 205 ) return( 27 ); 

if(result< 206 && result> 198 ) return( 28 ); 

if(result< 199 && result> 185 ) return( 29 ); 

if(result< 186 && result> 188 ) return( 30 ); 

if(result< 189 && result> 184 ) return( 31 ); 

if(result< 185 && result> 180 ) return( 32 ); 

if(result< 181 && result> 176 ) return( 33 ); 

if(result< 177 && result> 172 ) return( 34 ); 

if(result< 173 && result> 169 ) return( 35 ); 

if(result< 170 && result> 164 ) return( 36 ); 

if(result< 165 && result> 160 ) return( 37 ); 

if(result< 161 && result> 156 ) return( 38 ); 

if(result< 157 && result> 152 ) return( 39 ); 

if(result< 153 && result> 150 ) return( 40 ); 

if(result< 151 && result> 147 ) return( 41 ); 

if(result< 148 && result> 144 ) return( 42 ); 

if(result< 145 && result> 141 ) return( 43 ); 

if(result< 142 && result> 140 ) return( 44 ); 

if(result< 141 && result> 136 ) return( 45 ); 

if(result< 137 && result> 135 ) return( 46 ); 

if(result< 136 && result> 134 ) return( 47 ); 

if(result< 135 && result> 133 ) return( 48 ); 



 161 

if(result< 134 && result> 114 ) return( 49 ); 

if(result< 115 && result> 122 ) return( 50 ); 

if(result< 123 && result> 121 ) return( 51 ); 

if(result< 122 && result> 120 ) return( 52 ); 

if(result< 121 && result> 118 ) return( 53 ); 

if(result< 119 && result> 117 ) return( 54 ); 

if(result< 118 && result> 116 ) return( 55 ); 

if(result< 117 && result> 114 ) return( 56 ); 

if(result< 115 && result> 113 ) return( 57 ); 

if(result< 114 && result> 109 ) return( 58 ); 

if(result< 110 && result> 106 ) return( 59 ); 

if(result< 107 && result> 104 ) return( 60 ); 

if(result< 103) return(255); 

} 

 

void Stop_Go(long result)     //if closer than 13cm from sensor AGV go 

{ 

   if(result>376) 

      output_high(PIN_B2); 

   else 

      output_low(PIN_B2); 

} 

 

void main() 

{ 

 long left1,left2,right1,right2; 

 setup_adc_ports(ALL_ANALOG); 

 

// set_tris_d(0xF0); 

 lcd_init(); 

 

 while (1) 

 { 

  set_adc_channel(0); 

  delay_ms(40); 

  left1 = read_adc(); 

  Convert_LCD(Convert_Distance(left2)); 

 

  lcd_gotoxy(1,1); 

  lcd_putc('L'); 

  lcd_putc('1'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(left1); 

  delay_ms(500); 

 

  set_adc_channel(1); 

  delay_ms(40); 

  left2 = read_adc(); 

  Convert_LCD(Convert_Distance(left2)); 
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  lcd_gotoxy(1,2); 

  lcd_putc('L'); 

  lcd_putc('2'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(left2); 

  delay_ms(500); 

   

  set_adc_channel(2); 

  delay_ms(40); 

  right1 = read_adc(); 

  Convert_LCD(Convert_Distance(right1)); 

 

  lcd_gotoxy(9,1); 

  lcd_putc('R'); 

  lcd_putc('1'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(right1); 

  delay_ms(500); 

 

  set_adc_channel(3); 

  delay_ms(40); 

  right2 = read_adc(); 

  Convert_LCD(Convert_Distance(right2)); 

 

  lcd_gotoxy(9,2); 

  lcd_putc('R'); 

  lcd_putc('2'); 

  lcd_putc(':'); 

  lcd_putc(' '); 

  lcd_putc(tiene); 

  lcd_putc(ene); 

  lcd_putc('c'); 

  lcd_putc('m'); 

 

  Stop_Go(right2); 

  delay_ms(500); 

 

 } 

} 
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Appendix E: LABVIEW 
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