70,984 research outputs found

    Adaptive Control Allocation for Over-Actuated Systems with Actuator Saturation

    Get PDF
    This paper proposes an adaptive control allocation approach for over-actuated systems with actuator saturation. The methodology can tolerate actuator loss of effectiveness without utilizing the control input matrix estimation, eliminating the need for persistence of excitation. Closed loop reference model adaptive controller is used for identifying adaptive parameters, which provides improved performance without introducing undesired oscillations. The modular design of the proposed control allocation method improves the flexibility to develop the outer loop controller and the control allocation strategy separately. The ADMIRE model is used as an over-actuated system, to demonstrate the effectiveness of the proposed method using simulation results. © 201

    Switching Adaptive Concurrent Learning Control for Powered Rehabilitation Machines with FES

    Get PDF
    Interfacing robotic devices with humans presents significant control challenges, as the control algorithms governing these machines must accommodate for the inherent variability among individuals. This requirement necessitates the system’s ability to adapt to changes in the environment, particularly in the context of human-in-the-loop applications, wherein the system must identify specific features of the human interacting with the machine. In the field of rehabilitation, one promising approach for exercise-based rehabilitation involves the integration of hybrid rehabilitation machines, combining robotic devices such as motorized bikes and exoskeletons with functional electrical stimulation (FES) applied on lower-limb muscles. This integrated approach offers the potential for repetitive training, reduced therapist workload, improved range of motion, and therapeutic benefits. However, conducting prolonged rehabilitation sessions to maximize functional recovery using these hybrid machines imposes several difficulties. Firstly, the design and analysis of adaptive controllers are motivated, but challenges exist in coping with the inherent switching effects associated with hybrid machines. Notably, the transitions between gait phases and the dynamic switching of inputs between active lower-limb muscles and electric motors and their incorporation in the control design remain an open problem for the research community. Secondly, the system must effectively compensate for the influence of human input, which can be viewed as an external disturbance in the closed-loop system during rehabilitation. Robust methods for understanding and adapting to the variations in human input are critical for ensuring stability and accurate control of the human-robot closed-loop system. Lastly, FES-induced muscle fatigue diminishes the human torque contribution to the rehabilitation task, leading to input saturation and potential instabilities as the duration of the exercise extends. Overcoming this challenge requires the development of control algorithms that can adapt to variations in human performance by dynamically adjusting the control parameters accordingly. Consequently, the development of rehabilitative devices that effectively interface with humans requires the design and implementation of control algorithms capable of adapting to users with varying muscle and kinematic characteristics. In this regard, adaptive-based control methods provide tools for addressing the uncertainties in human-robot dynamics within exercise-based rehabilitation using FES, while ensuring stability and robustness in the human-robot closed-loop system. This dissertation develops adaptive controllers to enhance the effectiveness of exercise-based rehabilitation using FES. The objectives include the design and evaluation of adaptive control algorithms that effectively handle the switching effects inherent in hybrid machines, adapt to compensate for human input, and account for input saturation due to muscle fatigue. The control designs leverage kinematic and torque feedback and ensure the stability of the human-robot closed-loop system. These controllers have the potential to significantly enhance the practicality and effectiveness of assistive technologies in both clinical and community settings. In Chapter 1, the motivation to design switching adaptive closed-loop controllers for motorized FES-cycling and powered exoskeletons is described. A survey of closed-loop kinematic control methods related to the tracking objectives in the subsequent chapters of the dissertation is also introduced. In Chapter 2, the dynamic models for cycling and bipedal walking are described: (i) a stationary FES-cycling model with nonlinear dynamics and switched control inputs are introduced based on published literature. The muscle stimulation pattern is defined based on the kinematic effectiveness of the rider, which depends on the crank angle. (ii) A phase-dependent bipedal walking system model with switched dynamics is introduced to control a 4-degrees-of-freedom (DoF) lower-limb exoskeleton assuming single stance support. Moreover, the experimental setup of the cycle-rider and lower-limb exoskeleton system are described. Chapter 3 presents a switched concurrent learning adaptive controller for cadence tracking using the cycle-rider model. The control design is decoupled for the muscles and electric motor. An FES controller is developed with minimal parameters, capable of generating bounded muscle responses with an adjustable saturation limit. The electric motor controller employs an adaptive-based method that estimates uncertain parameters in the cycle-rider system and leverages the muscle input as a feedforward term to improve the tracking of crank trajectories. The adaptive motor controller and saturated muscle controller are implemented in able-bodied individuals and people with movement disorders. Three cycling trials were conducted to demonstrate the feasibility of tracking different crank trajectories with the same set of control parameters across all participants. The developed adaptive controller requires minimal tuning and handles rider uncertainty while ensuring predictable and satisfactory performance. This result has the potential to facilitate the widespread implementation of adaptive closed-loop controllers for FES-cycling systems in real clinical and home-based scenarios. Chapter 4 presents an integral torque tracking controller with anti-windup compensation, which achieves the dual objectives of kinematic and torque tracking (i.e., power tracking) for FES cycling. Designing an integral torque tracking controller to avoid feedback of high-order derivatives poses a significant challenge, as the integration action in the muscle loop can induce error buildup; demanding high FES input on the muscle. This can cause discomfort and accelerate muscle fatigue, thereby limiting the practical utility of the power tracking controller. To address this issue, this chapter builds upon the adaptive control for cadence tracking developed in Chapter 3 and integrates a novel torque tracking controller that allows for input saturation in the FES controller. By doing so, the controller achieves cadence and torque tracking while preventing error buildup. The analysis rigorously considers the saturation effect, and preliminary experimental results in able-bodied individuals demonstrate its feasibility. In Chapter 5, a switched concurrent learning adaptive controller is developed to achieve kinematic tracking throughout the step cycle for treadmill-based walking with a 4-DoF lower-limb hybrid exoskeleton. The developed controller leverages a phase-dependent human-exoskeleton model presented in Chapter 2. A multiple-Lyapunov stability analysis with a dwell time condition is developed to ensure exponential kinematic tracking and parameter estimation. The controller is tested in two able-bodied individuals for a six-minute walking trial and the performance of the controller is compared with a gradient descent classical adaptive controller. Chapter 6 highlights the contributions of the developed control methods and provides recommendations for future research directions

    Fuzzy anti-windup scheme for practical control of point-to-point (Ptp) positioning systems

    Get PDF
    The Positioning Systems Generally Need A Controller To Achieve High Accuracy, Fast Response And Robustness. In Addition, Ease Of Controller Design And Simplicity Of Controller Structure Are Very Important For Practical Application. For Satisfying These Requirements, Nominal Characteristic Trajectory Following (NCTF) Controller Has Been Proposed As A Practical PTP Positioning Control. However, The Effect Of Actuator Saturation Cannot Be Completely Compensated Due To Integrator Windup Because Of Plant Parameter Variations. This Paper Presents A Method To Improve The NCTF Controller For Overcoming The Problem Of Integrator Windup By Adopting A Fuzzy Anti-Windup Scheme. The Improved NCTF Controller Is Evaluated Through Simulation Using Dynamic Model Of A Rotary Positioning System. The Results Show That The Improved NCTF Controller Is Adequate To Compensate The Effect Of Integrator Windup

    Constrained dynamic control of traffic junctions

    Get PDF
    Excessive traffic in our urban environments has detrimental effects on our health, economy and standard of living. To mitigate this problem, an adaptive traffic lights signalling scheme is developed and tested in this paper. This scheme is based on a state space representation of traffic dynamics, controlled via a dynamic programme. To minimise implementation costs, only one loop detector is assumed at each link. The comparative advantages of the proposed system over optimal fixed time control are highlighted through an example. Results will demonstrate the flexibility of the system when applied to different junctions. Monte Carlo runs of the developed scheme highlight the consistency and repeatability of these results.peer-reviewe

    Adaptive backstepping control for optimal descent with embedded autonomy

    Get PDF
    Using Lyapunov stability theory, an adaptive backstepping controller is presented in this paper for optimal descent tracking. Unlike the traditional approach, the proposed control law can cope with input saturation and failure which enables the embedded autonomy of lander system. In addition, this control law can also restrain the unknown bounded terms (i.e., disturbance). To show the controller’s performance in the presence of input saturation, input failure and bounded external disturbance, simulation was carried out under a lunar landing scenario

    Parameters Identification for a Composite Piezoelectric Actuator Dynamics

    Get PDF
    This work presents an approach for identifying the model of a composite piezoelectric (PZT) bimorph actuator dynamics, with the objective of creating a robust model that can be used under various operating conditions. This actuator exhibits nonlinear behavior that can be described using backlash and hysteresis. A linear dynamic model with a damping matrix that incorporates the Bouc–Wen hysteresis model and the backlash operators is developed. This work proposes identifying the actuator’s model parameters using the hybrid master-slave genetic algorithm neural network (HGANN). In this algorithm, the neural network exploits the ability of the genetic algorithm to search globally to optimize its structure, weights, biases and transfer functions to perform time series analysis efficiently. A total of nine datasets (cases) representing three different voltage amplitudes excited at three different frequencies are used to train and validate the model. Four cases are considered for training the NN architecture, connection weights, bias weights and learning rules. The remaining five cases are used to validate the model, which produced results that closely match the experimental ones. The analysis shows that damping parameters are inversely proportional to the excitation frequency. This indicates that the suggested hysteresis model is too general for the PZT model in this work. It also suggests that backlash appears only when dynamic forces become dominant

    Adaptive Control For Autonomous Navigation Of Mobile Robots Considering Time Delay And Uncertainty

    Get PDF
    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining ‘go-to-goal’, ‘avoid-obstacle’, and ‘follow-wall’ controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor’s nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized second-order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive control (MRAC) controllers are designed and validated through simulations using MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to implement the controllers on the drone. Thirdly, the time delay in the drone’s control system is estimated using analytical and experimental methods. In the experimental approach, the transient properties of the experimental altitude responses are compared to those of simulated responses. The analytical approach makes use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating the time delay. Then an improved system performance is obtained by incorporating the estimated time delay in the design of the PV control system (neutral type) and PV-MRAC control system. Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded type system is studied. This is done by analytically calculating the stability radius of the system. Simulation of the control system is conducted to confirm the stability. This robust control design and uncertainty analysis are conducted for first-order and second-order quadrotor models. Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is found to offer enhanced robustness to the payload fluctuations
    corecore