
Abstract

Interfacing robotic devices with humans presents significant control challenges, as the control

algorithms governing these machines must accommodate for the inherent variability among

individuals. This requirement necessitates the system’s ability to adapt to changes in the envi-

ronment, particularly in the context of human-in-the-loop applications, wherein the system must

identify specific features of the human interacting with the machine. In the field of rehabilita-

tion, one promising approach for exercise-based rehabilitation involves the integration of hybrid

rehabilitation machines, combining robotic devices such as motorized bikes and exoskeletons

with functional electrical stimulation (FES) applied on lower-limb muscles. This integrated ap-

proach offers the potential for repetitive training, reduced therapist workload, improved range

of motion, and therapeutic benefits. However, conducting prolonged rehabilitation sessions to

maximize functional recovery using these hybrid machines imposes several difficulties. Firstly,

the design and analysis of adaptive controllers are motivated, but challenges exist in coping with

the inherent switching effects associated with hybrid machines. Notably, the transitions between

gait phases and the dynamic switching of inputs between active lower-limb muscles and electric

motors and their incorporation in the control design remain an open problem for the research

community. Secondly, the system must effectively compensate for the influence of human input,

which can be viewed as an external disturbance in the closed-loop system during rehabilitation.

Robust methods for understanding and adapting to the variations in human input are critical

for ensuring stability and accurate control of the human-robot closed-loop system. Lastly, FES-

induced muscle fatigue diminishes the human torque contribution to the rehabilitation task, lead-

ing to input saturation and potential instabilities as the duration of the exercise extends. Overcom-

ing this challenge requires the development of control algorithms that can adapt to variations in

human performance by dynamically adjusting the control parameters accordingly. Consequently,

the development of rehabilitative devices that effectively interface with humans requires the de-

sign and implementation of control algorithms capable of adapting to users with varying muscle



and kinematic characteristics. In this regard, adaptive-based control methods provide tools for

addressing the uncertainties in human-robot dynamics within exercise-based rehabilitation using

FES, while ensuring stability and robustness in the human-robot closed-loop system.

This dissertation develops adaptive controllers to enhance the effectiveness of exercise-based

rehabilitation using FES. The objectives include the design and evaluation of adaptive control

algorithms that effectively handle the switching effects inherent in hybrid machines, adapt to

compensate for human input, and account for input saturation due to muscle fatigue. The control

designs leverage kinematic and torque feedback and ensure the stability of the human-robot

closed-loop system. These controllers have the potential to significantly enhance the practicality

and effectiveness of assistive technologies in both clinical and community settings.

In Chapter 1, the motivation to design switching adaptive closed-loop controllers for motorized

FES-cycling and powered exoskeletons is described. A survey of closed-loop kinematic control

methods related to the tracking objectives in the subsequent chapters of the dissertation is also

introduced.

In Chapter 2, the dynamic models for cycling and bipedal walking are described: (i) a stationary

FES-cycling model with nonlinear dynamics and switched control inputs are introduced based

on published literature. The muscle stimulation pattern is defined based on the kinematic effec-

tiveness of the rider, which depends on the crank angle. (ii) A phase-dependent bipedal walking

system model with switched dynamics is introduced to control a 4-degrees-of-freedom (DoF)

lower-limb exoskeleton assuming single stance support. Moreover, the experimental setup of the

cycle-rider and lower-limb exoskeleton system are described.

Chapter 3 presents a switched concurrent learning adaptive controller for cadence tracking using

the cycle-rider model. The control design is decoupled for the muscles and electric motor. An

FES controller is developed with minimal parameters, capable of generating bounded muscle

responses with an adjustable saturation limit. The electric motor controller employs an adaptive-



based method that estimates uncertain parameters in the cycle-rider system and leverages the

muscle input as a feedforward term to improve the tracking of crank trajectories. The adaptive

motor controller and saturated muscle controller are implemented in able-bodied individuals

and people with movement disorders. Three cycling trials were conducted to demonstrate the

feasibility of tracking different crank trajectories with the same set of control parameters across

all participants. The developed adaptive controller requires minimal tuning and handles rider

uncertainty while ensuring predictable and satisfactory performance. This result has the potential

to facilitate the widespread implementation of adaptive closed-loop controllers for FES-cycling

systems in real clinical and home-based scenarios.

Chapter 4 presents an integral torque tracking controller with anti-windup compensation, which

achieves the dual objectives of kinematic and torque tracking (i.e., power tracking) for FES cy-

cling. Designing an integral torque tracking controller to avoid feedback of high-order deriva-

tives poses a significant challenge, as the integration action in the muscle loop can induce error

buildup; demanding high FES input on the muscle. This can cause discomfort and accelerate

muscle fatigue, thereby limiting the practical utility of the power tracking controller. To address

this issue, this chapter builds upon the adaptive control for cadence tracking developed in Chap-

ter 3 and integrates a novel torque tracking controller that allows for input saturation in the FES

controller. By doing so, the controller achieves cadence and torque tracking while preventing er-

ror buildup. The analysis rigorously considers the saturation effect, and preliminary experimental

results in able-bodied individuals demonstrate its feasibility.

In Chapter 5, a switched concurrent learning adaptive controller is developed to achieve kine-

matic tracking throughout the step cycle for treadmill-based walking with a 4-DoF lower-limb

hybrid exoskeleton. The developed controller leverages a phase-dependent human-exoskeleton

model presented in Chapter 2. A multiple-Lyapunov stability analysis with a dwell time condi-

tion is developed to ensure exponential kinematic tracking and parameter estimation. The con-

troller is tested in two able-bodied individuals for a six-minute walking trial and the performance



of the controller is compared with a gradient descent classical adaptive controller.

Chapter 6 highlights the contributions of the developed control methods and provides recommen-

dations for future research directions.



SWITCHING ADAPTIVE CONCURRENT LEARNING CONTROL

FOR POWERED REHABILITATION MACHINES WITH FES

by

Jonathan Alejandro Casas Bocanegra

B.S., Colombian School of Engineering Julio Garavito, 2016

M.S., Colombian School of Engineering Julio Garavito, 2019

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in

Mechanical and Aerospace Engineering

Syracuse University

June 2023



Copyright © Jonathan Alejandro Casas Bocanegra June 2023

All Rights Reserved



Contents

Abstract i

Title v

Copyright vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Rehabilitation with Hybrid Machines . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 FES-Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Exoskeletons for Walking Assistance . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Adaptive Control for Rehabilitation Machines . . . . . . . . . . . . . . . . 5

1.2 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dynamics Models and Experimental Setup 9

2.1 Cycle-Rider System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 4-DoF Lower Limb Exoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Motorized FES-Cycling testbed . . . . . . . . . . . . . . . . . . . . . . . 17

vii



2.3.2 Lower-limb Cable-Driven Exoskeleton . . . . . . . . . . . . . . . . . . . 19

3 Switched Adaptive Integral Concurrent Learning for Cadence Tracking 22

3.1 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Unknown Constant Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Tracking error performance and convergence . . . . . . . . . . . . . . . . 40

3.5.2 Desired cadence trajectories & parameter estimation performance . . . . . 42

3.5.3 Control Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.4 Participants with Neurological Conditions . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Integral Torque Tracking with Anti-Windup Compensation and Adaptive Cadence Track-
ing for Powered FES-Cycling 49

4.1 Active Torque Tracking Development . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Switched Concurrent Learning Adaptive Control for Treadmill Walking using a Lower-
limb Hybrid Exoskeleton 60

5.1 Control Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Unknown Constant Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



5.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Gain tuning and hyper-parameter selection . . . . . . . . . . . . . . . . . 82

5.5.2 Tracking and Input Performance . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.3 Parameter estimation convergence . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusions 89

6.1 Contributions and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Input-Output Relationship . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.2 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References 96

7 Vita 104

ix



List of Tables

3.1 Demographics of subjects with neurological conditions . . . . . . . . . . . . . . . 33

3.2 Tracking results for able-bodied participants: RMS position error e for the full
experiment (10 minutes), average cadence percentage error ¯̇e(%), RMS velocity
error ¯̇e (RPM) for the full experiment, and RMS steady-state cadence error ¯̇ess
(RPM) for the last 400 seconds of each trial . . . . . . . . . . . . . . . . . . . . . 36

3.3 Tracking results for participants with NCs: RMS position error e for the full
experiment (5 minutes), average cadence percentage error ¯̇e(%), RMS velocity
error ¯̇e (RPM) for the full experiment, and RMS steady-state cadence error ¯̇ess
(RPM) for the last 90 seconds of each trial . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Gain tuning and hyperparameter selection for all the experiments . . . . . . . . . . 74

5.2 Percentage of time spent on each walking phase during 114 strides (228 steps),
for an average walking velocity of 0.48 steps/s . . . . . . . . . . . . . . . . . . . . 74
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1

Chapter 1

Introduction

Powered dynamical systems that physically interact with humans need to accurately estimate

human attributes and adapt their responses to ensure stability and safety. Controllers for reha-

bilitation robots interacting with people with neurological conditions (NCs) should ensure safe

human-robot interaction and seamlessly customize the assistance for participants with different

functional capacities. Thus, advancing the control algorithms of rehabilitation robotic devices can

lead to adoption in clinical settings, thereby having the potential to make a significant impact on

patients’ recovery.

The present dissertation aims to develop and implement data-driven adaptive controllers that

customize rehabilitation across multiple participants and estimate the unknown human-robot

dynamics to enhance the performance of the closed-loop control system.

This chapter provides an introduction to the use of robotic machines as a rehabilitation interface

and outlines the challenges involved with this strategy in two specific rehabilitation scenarios:

lower-limb cycling and assisted treadmill-based walking with functional electrical stimulation.

Furthermore, the chapter presents the potential advantages and current limitations of adaptive

control techniques for rehabilitation machines. Lastly, an overview of the dissertation structure is
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provided.

1.1 Rehabilitation with Hybrid Machines

Neurological disorders such as spinal cord injury (SCI) result in partial or total loss of motor and

sensory functions, significantly impacting an individual’s independence and quality of life [1],

[2]. Restoring and improving motor function is a priority for individuals with SCI, as it is crucial

in enhancing their overall well-being and daily activities [1], [3]. A rehabilitative strategy that

is typically prescribed is cycling induced by functional electrical stimulation (FES), wherein a

voltage potential is applied to lower-limb muscles to induce controlled contractions and facilitate

pedaling a cycle, either with or without motorized assistance [4]. FES-cycling has been shown

to offer cardiovascular and physiological benefits, thereby improving the quality of life for in-

dividuals with NCs, including those with SCI [5]–[7]. Another potential approach for restoring

function after SCI is the development of active orthotic devices, such as robotic exoskeletons,

aimed at assisting gait rehabilitation [3], [8], [9]. These exoskeletons enable individuals with SCI

to engage in overground walking or treadmill-based walking with body weight support, which

helps partially offload the user’s weight and is particularly beneficial for individuals with limited

ambulation capabilities [10]. However, each device poses unique challenges when it comes to

developing control algorithms. Addressing these challenges and developing effective control

methodologies are essential for ensuring safe and efficient rehabilitative interventions for individ-

uals with SCI.

1.1.1 FES-Cycling

Motorized FES-cycling applies electrical stimuli to activate the rider’s muscles and engages an

electrical motor to provide assistance [11]. An outstanding challenge for the implementation of
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FES-powered devices is the need to achieve long-duration rehabilitation sessions to maximize

physiological and cardiovascular benefits. Furthermore, the control of FES systems poses ad-

ditional technical challenges as the dynamics of the muscles (i.e., the control effectiveness that

maps the electrical stimulation to torque) is unknown and difficult to measure in practice since it

requires complex system identification procedures [12].

Given the inherent characteristics of cycling, FES involves switching across multiple muscle

groups to ensure metabolic efficiency and facilitate forward pedaling [13]. Furthermore, an elec-

trical motor is incorporated to provide intermittent assistance when necessary, potentially assist-

ing in delaying muscle fatigue. As a result, the cycle-rider system as a whole can be classified as

a switched system, necessitating a stability analysis specifically tailored to switched systems [14].

In the context of speed or cadence tracking, closed-loop feedback controllers employing robust

approaches have been designed [15]–[18]. Alternatively, admittance-based controllers have been

developed to achieve both cadence and power tracking objectives using robust control strategies

[19]. However, it should be noted that robust controllers often incorporate conservative bounds

during the design process, which can lead to higher stimulation levels and accelerate the onset

of fatigue [17]. Moreover, robust controllers are unable to provide estimates of the uncertainty

present in the nonlinear system, limiting their ability to adapt to different subjects and guarantee

satisfactory tracking performance.

1.1.2 Exoskeletons for Walking Assistance

While the wearability and design aspects of exoskeletons are crucial, the effectiveness of their

gait patterns heavily relies on the control algorithms employed. Tracking controllers, such as

proportional-derivative (PD) and impedance-based techniques, are commonly utilized in lower-

limb exoskeletons to achieve desired movements [9], [20]. More recently, gait controllers incor-

porating muscle-reflex models have been implemented to generate torque patterns that mimic
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human-like behavior [21]. Alternatively, optimization methods have been proposed to gener-

ate optimal gait trajectories and facilitate continuous walking across different gait patterns in

exoskeleton-assisted walking [8], [22]. These optimization techniques employ virtual constraints

based on hybrid zero dynamics, which are enforced through feedback linearization controllers

[23], [24]. However, implementing control algorithms that rely on accurate models of human

dynamics is impractical for human-in-the-loop applications. Obtaining personalized dynamic

models can involve burdensome and time-consuming system identification procedures, especially

when engaging individuals with movement disorders in rehabilitation. In addition, the data col-

lected in the system identification may not capture the dynamic characteristics of the real-time

experiments. Moreover, as individuals undergo long-term rehabilitation, the dynamic model may

need to be updated periodically to compute the optimized controllers. Hence, there is a need for

the design of novel control methods that can cope with uncertainties in the human-robot dynam-

ics and adapt during assisted walking by exploiting online data.

Hybrid exoskeletons, which combine electric motors and FES, pose unique control challenges

in terms of control. A shared control approach combining FES with a motor-driven exoskeleton

has been developed to control the knee joint [25]. Additionally, cooperative control methods have

been developed to enable kinematic tracking of both the knee and hip joints [26], [27]. These

methods often utilize an iterative stimulation profile, where pulse duration and amplitude are

adjusted based on previous steps. Alternatively, optimal muscle synergy-based controllers have

been designed to ensure stable trajectory tracking and facilitate leg swing movements during

overground walking [28]. However, the development of a systematic control design and rigorous

stability analysis for data-driven gait controllers remains an open problem due to challenges that

involve the nonlinear and uncertain nature of walking dynamics.
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1.1.3 Adaptive Control for Rehabilitation Machines

Adaptive-based control methods are inherently well-suited for addressing the challenges posed

by uncertainty in both cycle-rider dynamics and human-exoskeleton dynamics. These methods

involve generating estimates of uncertain parameters within the dynamical system and utilizing

these estimates to achieve the desired tracking objective. However, classical adaptive control

techniques fail to guarantee convergence of the adaptive estimates to their true values unless a

persistence of excitation (PE) condition is satisfied [29], [30]. To overcome this limitation, recent

research in adaptive-based concurrent learning control has replaced the PE condition with a finite

excitation condition, ensuring exponential convergence of both the adaptive estimates and track-

ing errors [31]–[33]. The significant advantage of this technique lies in its capacity to exploit

input-output data stored in a history stack, which accumulates until a sufficient amount of rich

data is collected to achieve a full-rank condition. This verifiable condition guarantees parameter

convergence and eliminates the requirement for persistently exciting trajectories, thereby making

it a more practical and appropriate approach for ensuring safe human-robot interaction.

Convergence of the adaptive estimates of the unknown parameters depends on the PE condi-

tion [34], which is hard to satisfy in many real-time applications [35]. Further, satisfying the

PE condition is unfeasible in human-robot applications that aim to ensure smooth operation and

prioritize human safety. Therefore, concurrent learning offers an alternative to replace the PE

condition for a less-restrictive finite excitation condition that relies on the quality of the data

collected during the early stages of the experiment. Concurrent learning control strategies have

recently been designed and applied to human-robot systems such as motorized FES-cycling [36],

[37] and bicep curls [38], [39]. However, the development of a concurrent learning strategy for

controlling a hybrid multi-joint exoskeleton encounters specific challenges arising from the non-

linear, uncertain nature of gait and muscle dynamics, which involve a large number of coupled

uncertain parameters and transient effects due to gait phase transitions (e.g., between swing and

stance phase).
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Conventional Lyapunov-based theory cannot be applied to analyze the stability of adaptive con-

trollers for switching FES-cycling and walking with hybrid exoskeletons. Instead, switched

systems theory [14] is exploited in this work to analyze the cycle-rider and human-exoskeleton

model with phase-dependent switched dynamics that account for the input switching and gait

phase transitions. Hence, this dissertation develops contributions at the emerging intersection of

adaptive control methods and switching systems for rehabilitative powered devices. The outline

of this work is presented in the next section.

1.2 Outline of the Dissertation

In Chapter 2, the dynamic models of the cycle-rider stationary cycling system and the robotic

phase-dependent lower-limb exoskeleton with FES inputs are introduced. The cycling model

includes the switching effects of activating multiple muscle groups based on a state-dependent

stimulation pattern that exploits the kinematic effectiveness of the rider. The bipedal walking

model for exoskeleton control is developed considering the gait phase transitions during walk-

ing modeled with switching dynamics. The experimental testbeds developed to demonstrate

the feasibility of the control design for cycling and treadmill-based walking with a lower-limb

exoskeleton are introduced.

In Chapter 3, a closed-loop switched integral concurrent learning adaptive controller inspired

by the work in [32] is designed to track a desired cadence trajectory using the model of a mo-

torized FES-cycling system introduced in Section 2.1. The muscle groups and electric motor

are activated based on state-dependent switching signals that exploit the kinematic effectiveness

of the rider [17]. Therefore, the adaptive update law exploits the feedback of the currently ac-

tive subsystem to selectively store input-output data in a history stack using the singular value

decomposition algorithm described in [32], [40]. The algorithm stores data that maximizes the

minimum singular value of the history stack, which is related to the rate of convergence of the
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adaptive estimates of the unknown parameters. A Lyapunov-based stability analysis is developed

for the overall cycle-rider switched system and is segregated into two phases. In the first phase,

the individual history stacks of the subsystems do not satisfy the excitation condition (i.e., the

minimum eigenvalue is not positive), and thus, a negative semidefinite result is obtained in the

Lyapunov stability analysis. Asymptotic tracking and bounded parameter estimation are guar-

anteed by invoking an invariance-like extension for adaptive switched systems using non-strict

common Lyapunov functions [41]. In the second phase, all the subsystems satisfy the finite ex-

citation condition, and thus the Lyapunov derivative becomes negative definite, guaranteeing

exponential tracking and parameters convergence since the Lyapunov function is common for all

the subsystems [14]. Testing was performed with eight able-bodied individuals and three individ-

uals with neurological conditions. The results demonstrate the feasibility of the control design

and show satisfactory performance for a wide range of participants demanding minimal tuning

despite the inherent variability in participants.

In Chapter 4, an integral torque tracking controller is designed with anti-windup compensation

to activate lower-limb muscles using FES for power tracking (i.e., achieve the dual objective

of torque and cadence tracking). The design of an integral error is required to prevent the need

for feedback of high-order derivatives of the torque signal. The muscle controller addresses the

challenge of fast error build-up due to the integration action that otherwise can lead to apply-

ing high FES inputs to the muscles, causing discomfort and fatigue. This chapter leverages the

adaptive control design presented in Chapter 3 for the electric motor cadence tracking objective.

The modified integral muscle torque tracking error signal mitigates error buildup when the mus-

cles inherently saturate in experiments. This control design accounts for input saturation in the

model, which is rigorously analyzed to provide stability guarantees. One major advantage of this

approach is that it enables the controller to cope with input saturation, thereby reducing muscle

discomfort and potentially delaying the onset of muscle fatigue. The feasibility of the design is

evaluated through preliminary experiments with one able-bodied individual. These experiments

demonstrate that the controller achieves reliable and satisfactory performance, highlighting its
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potential for enhancing the practicality and effectiveness of FES cycling systems in clinical and

community settings.

In Chapter 5, the design and experimental implementation of a switched adaptive concurrent

learning controller are developed for treadmill walking using a 4-degrees-of-freedom (DoF) hy-

brid exoskeleton controlling the hip and knee joints bilaterally. The combined human-exoskeleton

dynamics are modeled as a phase-dependent switched system to account for the gait phase transi-

tions between the right and left leg, as presented in Section 2.2. The leg dynamics switch be-

tween two models that capture the following: (1) the right leg is in the stance phase and the

left leg is in the swing phase, and (2) the left leg is in the stance phase and the right leg is in

the swing phase. The concurrent learning adaptive controller, inspired by [32], is developed to

estimate uncertain parameters of the lower limb dynamics and track desired joint kinematic tra-

jectories. The designed switched controller applies FES to the quadriceps and hamstring muscle

groups and activates electric motors to provide assistance to the knee and hip joints in both legs.

A multiple Lyapunov function analysis is developed to ensure the stability of the closed-loop

error system with switching effects due to the gait phase transitions. A dwell time analysis is

provided to guarantee tracking errors decay across sequential gait phase transitions. Treadmill

walking experiments are implemented at a constant speed in two able-bodied individuals to illus-

trate the feasibility of the developed control methods. The performance of the concurrent learning

controller and a classical gradient-based adaptive controller are compared during six-minute

treadmill walking trials. The results indicate that the switching concurrent learning controller

achieves a lower mean root-mean-squared (RMS) kinematic tracking error for both the knee and

hip joints compared to the gradient-based adaptive controller.

In Chapter 6, a summary of the dissertation is provided along with a discussion on potential

extensions and future research directions based on the results developed in previous chapters.
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Chapter 2

Dynamics Models and Experimental Setup

In this chapter, the nonlinear dynamic models with switching effects are presented for the cycle-

rider system leveraging [17], [42], and the 4-DoF lower-limb cable-driven exoskeleton with

FES. Note that for simplicity, a similar notation will be leveraged for both systems. Therefore,

clarification on the notation will be provided to rigorously define the state, input, and regressor

dimensions for cycling or walking.

2.1 Cycle-Rider System

The cycle-rider system is modeled as a single DOF using a closed kinematic chain as illustrated

in Figure 2.1, where the crank angle is denoted by q, the hip and knee joint angles with respect

to the horizontal (dashed lines) are denoted by qhip and qknee, respectively, and the trunk angle

is denoted by qt. The measurable relative hip and knee angles are denoted by ϕHip and ϕKnee,

respectively, and the crank length, shank length, and thigh length are denoted by lc, ll, and lt,

respectively [17], [43]. The cycle-rider system is modeled with the following Euler-Lagrange
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Figure 2.1: Schematic of the cycle-rider system [17], [43].

dynamics 1 [17], [36]

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) +G(q(t)) + Cdq̇(t) = τm(t, σ) + τe(t), (2.1)

where q : R≥t0 → Q and q̇ : R≥t0 → R denote the measurable crank angle and crank velocity,

respectively, and q̈ : R≥t0 → R denotes the unmeasurable crank acceleration. The set of crank

angles is denoted by Q ⊆ R, and t0 ∈ R≥0 denotes the initial time. The inertial, centripetal-

Coriolis, gravitational effects, and viscous damping coefficient are denoted by M : Q → R>0,

C : Q × R → R, G : Q → R, and Cd ∈ R>0, respectively. The torque applied at the crank

by an electrical motor is denoted as τe and the torque evoked by muscle activation through FES

is denoted as τm. The set of muscles considered in the model are the right and left quadriceps

muscle groups. The quadriceps muscle groups are only activated in the crank regions where

they can evoke significant active torque to achieve forward pedaling, i.e., within kinematically

efficient regions denoted as QR,QL ⊂ Q [42]. The logic state variable denoted by σ : Q → S,

1For notational brevity, the explicit dependence of time, t, is hereafter suppressed unless required for clarity of
exposition.
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where S ≜ {RQ,KDZ,LQ} is the set of possible switching subsystems, is defined as

σ(q) ≜


RQ q ∈ Qr

KDZ q /∈ (Qr ∪Ql)

LQ q ∈ Ql

, (2.2)

where RQ,LQ denote when the right and left quadriceps are activated, respectively, and the

KDZ denotes the kinematic dead zone, where muscles are not activated as they do not evoke

significant active torque. Using (2.2), the torque produced by the muscle τm : R≥t0 × S → R>0

in (2.1) can be defined as

τm(t, σ) ≜


BRQum(t) σ = RQ

0 σ = KDZ

BLQum(t) σ = LQ

, (2.3)

where BRQ, BLQ ∈ R>0 are the unknown muscle control effectiveness for the right and left

quadriceps, respectively, and um is a subsequently designed muscle control input.

Assumption 1. The individual muscle effectiveness within the kinematically efficient regions

is considered to be an unknown constant. This is a reasonable assumption for trials with stimu-

lation regions with small time duration [12], [39]. Thus, exact model knowledge of the control

effectiveness BRQ and BLQ is not needed for the design of the muscle torque input τm.

The torque applied by the electrical motor at the crank τe : R≥t0 × S → R can be defined as

τe(t, σ) ≜ Beue(t, σ), (2.4)

where Be ∈ R>0 denotes the known motor constant control effectiveness and ue is a subsequently

designed motor control input. The following properties of (2.1) are exploited in the subsequent
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control design and stability analysis.

Property 1. m ≤M ≤ m, where m,m ∈ R>0 are known constants [44, Ch.3].

Property 2. By skew symmetry 1
2
Ṁ − C = 0 [44, Ch.3].

Property 3. The functions M , C, and G are linearly parameterizable and bounded given bounded

arguments [44, Ch.3].

Property 4. B,B ∈ R>0 are known lower and upper bounds of the muscle effectiveness Bm

defined as B ≤ min{BRQ, BLQ} and B ≥ max{BRQ, BLQ}, respectively.

2.2 4-DoF Lower Limb Exoskeleton

This dynamic model considers a 4-DoF kinematic chain that models the combined human-

exoskeleton dynamics in the sagittal plane with point-foot contact. Transitions across gait phases

are determined by the switching signal σ(t) : R≥t0 → S, with S = {1, 2} and t0 ∈ R≥0 denotes

the initial time. A schematic of the gait cycle is shown in Figure 2.2. When σ = 1, the right leg

is in the stance phase while the left leg is in the swing phase. Similarly, when σ = 2, the left leg

is in the stance phase and the right leg is in the swing phase. One leg is in the stance phase while

the other leg is in the swing phase. The gait cycle n starts at time tσ=1
n with the right leg stance

phase (σ = 1) when the right heel strike occurs, then transitions to the right leg swing phase

(σ = 2) at time tσ=2
n when the left heel strike occurs. Finally, the gait cycle n ends at time tσ=1

n+1

with the right heel strike to initiate the next step n+ 1. The trunk and the upper body are assumed

to be fixed in an upright position. During experiments in Chapter 5, a safety harness provides

trunk and upper-body support.

To unify the walking dynamics throughout the gait cycle, the walking system can be modeled as a
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Figure 2.2: Schematic of the lower-limb kinematic chain described by right and left knee,
(qRK , qLK), and hip (qRH , qLH) joint angles, respectively, in both legs with one-point foot con-
tact. The model of the walking dynamics switches based on the signal σ, where σ = 1 denotes
the right leg stance phase, and σ = 2 denotes the right leg swing phase (i.e., left leg stance phase).
The times tσ=1

n , tσ=2
n denote the beginning of each phase, right leg stance, and swing, during step

n, respectively.

phase-dependent switched system with the following Euler-Lagrange dynamics

Mσ(q(t))q̈(t) + Cσ(q(t), q̇(t))q̇(t) +Gσ(q(t)) + Pσ q̇(t) = Bρ(q, t)uσ(t), (2.5)

where q = [qRH , qRK , qLH , qLK ]
T : R≥t0 → Q4 denotes the measurable angular positions of

the hip (H) and knee (K) for the right (R) and left leg (L), respectively, where Q ⊂ R denote the

set of generalized coordinates. The measurable joint velocities are denoted as q̇ : R≥t0 → R4

and the unmeasurable joint accelerations are denoted as q̈ : R≥t0 → R4. The uncertain inertial,

centripetal-Coriolis, and gravity effects are denoted by Mσ : Q4 → R4×4
>0 , Cσ : Q4 × R4 → R4×4,

and Gσ : Q4 → R4, respectively. Additionally, the unknown viscous damping coefficients
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are denoted by Pσ ∈ R4×4
≥0 . The control input is denoted as uσ : R≥t0 → R4, and the control

effectiveness matrix is denoted by Bρ : Q4 × R≥t0 → R4×4
>0 .

The powered exoskeleton integrates a cable-driven actuation system for each joint to perform

bidirectional motion using a pair of Bowden cables that allow joint flexion and extension. Hence,

four cables are required to actuate the hip and knee joints in each leg. Additionally, FES is ap-

plied to the quadriceps and hamstrings muscle groups to contribute to knee extension and flexion,

respectively. The electric motors that actuate hip and knee joints bilaterally are denoted as e ∈

E ≜ {1, 2, . . . , 8} and the muscles are denoted as m ∈ M ≜ {RQuad,RHam,LQuad, LHam}.

The known lumped switched control effectiveness matrix in (2.5) can be defined as

Bρ(q, t) ≜
∑
m∈M

Bm(q)kmρm(t) +
∑
e∈E

Bekeρe(t), (2.6)

where ρ(t) : R≥t0 → P , P ⊂ N is a switching signal that defines the combination of active mus-

cles and motors. The selectable constant control gains for each muscle and motor are denoted as

km ∈ R>0, ∀m ∈ M and ke ∈ R>0,∀e ∈ E , respectively. Let j ∈ J , J = {RH,RK,LH,LK}

be the joint set. The muscle control effectiveness matrix Bm : Q4 → R4×4 and the motor control

effectiveness matrix Be ∈ R4×4 in (2.6) are defined, respectively, as
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Bm ≜


diag ([0, Bm,j, 0, 0]) if j = RK

diag ([0, 0, 0, Bm,j]) if j = LK

, ∀m ∈ M, (2.7)

Be ≜



diag ([Be,j, 0, 0, 0]) if j = RH

diag ([0, Be,j, 0, 0]) if j = RK

diag ([0, 0, Be,j, 0]) if j = LH

diag ([0, 0, 0, Be,j]) if j = LK

, ∀e ∈ E . (2.8)

The control effectiveness of each muscle group in (2.7) is a known joint position-and velocity-

dependent function denoted as Bm,j : Q× R× J → R>0,∀m ∈ M that describes the mapping

from electrical stimulation intensity on the muscle m to output torque about the knee joint j [45],

[46]. Similarly, the control effectiveness of each electric motor in (2.8) is a known positive torque

constant denoted as Be,j ∈ R>0,∀e ∈ E that maps the current applied to the motor e to output

torque on the joint j.

To provide bidirectional movement about each joint, the actuators including muscles and motors

are classified as extensors or flexors. The set Ex = {{RQuad, LQuad}, {1, 3, 6, 8}} contains

the muscles and motors that contribute to joint extension, and the set Fl = {{RHam,LHam},

{2, 4, 5, 7}} contains the muscles and motors that contribute to joint flexion as developed in [47].

The sign of the entries of the control command uσ dictates the direction of motion such that when

uσ > 0 indicates joint flexion, and when uσ < 0 indicates joint extension. To allocate the control

command to the corresponding set of actuators (i.e., flexor or extensor muscles and motors), the

piecewise-continuous activation signals ρm : R≥t0 → {0, 1}, ∀m ∈ M and ρe : R≥t0 →
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{0, 1}, ∀e ∈ E , in (2.6), are defined as

ρm(t) ≜


1 if m ∈ A

0 if m /∈ A
, ρe(t) ≜


1 if e ∈ A

0 if e /∈ A
, (2.9)

where A ⊂ M∪ E is the set of active actuators defined as

A ≜ {a ∈ M∪ E|∃t ≥ t0, a ∈ Fl ∧ uσ(t) > 0, or a ∈ Ex ∧ uσ(t) < 0}, (2.10)

where, ∧ denotes the logical operator “and”.

Remark 1. Based on the definition of the motor and muscle effectiveness in (2.8) and (2.7), re-

spectively, and the activation signals in (2.9), the switched lumped effectiveness Bρ ∈ R4×4 is a

positive definite diagonal matrix (i.e., non-singular and B−1
ρ can be computed).

The switched system in (2.5) with control effectiveness matrix defined in (2.6) has the following

properties, that are exploited in the subsequent control design and stability analysis.

Property 5. m∥ξ∥2 ≤ ξTMσ(q)ξ ≤ m∥ξ∥2, ∀ξ ∈ R4, ∀σ ∈ S, where m, m ∈ R>0 are known

constants [44, Ch. 3].

Property 6. ξT
(

1
2
Ṁσ − Cσ

)
ξ = 0, ∀ξ ∈ R4, ∀σ ∈ S [44, Ch. 3].

Property 7. B∥ξ∥2 ≤ ξTBρ(q)ξ ≤ B∥ξ∥2, ∀ξ ∈ R4, where B,B ∈ R>0 are known constants.

Property 8. The functions Mσ, Cσ, Gσ and Pσ, ∀σ ∈ S are linearly parameterizable and bounded

given bounded arguments [44, Ch. 3].
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Figure 2.3: Motorized FES-cycling testbed. The cycling system integrates an electric motor
mounted on the frame to drive the chain and a portable stimulator that applies a voltage potential
using surface electrodes applied on the quadriceps muscle groups.

2.3 Experimental Setup

2.3.1 Motorized FES-Cycling testbed

Treadmill walking experiments are performed using a recumbent cycle (Sun Seeker ECO-TAD

SX) mounted on an indoor trainer and adapted with orthotic boots. A brushed 24 VDC electric

motor is mounted to drive the chain. An optical encoder (H1, US Digital) installed at the cycle

crank measures the crank position. The controller is implemented on a desktop computer (Win-

dows 10 OS) running a real-time target (QUARC 2.6, Quanser) via MATLAB/Simulink 2018a

(MathWorks Inc) with a sample rate of 100 Hz. The Quanser QPIDe DAQ board is used to read

the encoder signal and to control the analog motor driver (Advanced Motion Controls)2 operat-

ing in current-controlled mode. A current-controlled stimulator (RehaStim, Hasomed GmbH)

2The servo drive was provided in part by the sponsorship of Advanced Motion Controls.
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Figure 2.4: Cable-driven lower-limb exoskeleton platform. The system incorporates a hybrid
exoskeleton for treadmill walking using a safety harness to provide fall protection. The hybrid
exoskeleton combines motors attached to Bowden cables and FES applied to muscles. Encoders
are installed on each hip and knee joint and force sensors underneath the sole of the foot to assist
with gait phase detection. Real-time data is accessed through the DAC board.

operating in Science Mode delivers biphasic, symmetric, rectangular pulses to the participant’s

quadriceps muscle groups. Self-adhesive PALS® electrodes (3 by 5 inches)3 are placed on each

muscle group in both legs as in previous cycling studies [43]. The stimulation current ampli-

tude and stimulation frequency are fixed at 80 mA and 60 Hz, respectively, for all experiments.

The crank regions where the muscle groups are stimulated are defined as in [42]. For safety pur-

poses, participants have access to an emergency stop button, and software stop conditions are

implemented to limit the amount of motor current that complies with hardware limits, and FES to

prevent uncomfortable stimulation intensities.
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2.3.2 Lower-limb Cable-Driven Exoskeleton

The experimental testbed is a custom 4-DoF lower-limb exoskeleton for treadmill walking ex-

periments. The exoskeleton is shown in Figure 2.4. The exoskeleton includes mechanical locks

that limit the range of motion of each joint to avoid hyper-extension and angles outside of the

natural range of motion. Participants wear a safety harness connected to a portable track for fall

protection. The weight of the exoskeleton is 17 kg. The platform implements a cable-driven

actuation system to preserve backdrivability for each joint, allowing for hybrid actuation (i.e.,

FES and motor actuation). The actuation system consists of a custom-designed motor actuation

unit equipped with 8 brushless DC motors (EC60 Flat 200-400 W, Maxon) to actuate Bowden

cables and transmit pulling forces to each joint. The FES stimulator described above was used

to evoke muscle contractions in the hamstrings and quadriceps. Two self-adhesive electrodes (3”

by 5”) (PALS, Axelgaard) are placed on each muscle group in both legs. The same stimulation

parameters were defined as described in Section 2.3.1. The exoskeleton is equipped with optical

encoders (H1-5000-IE-D, US Digital) to measure the hip and knee joint angles. Force sensors

(FlexiForce A401, Tekscan) are placed underneath the sole of each foot to detect gait phases.

Specifically, the foot sensors are located under the heel and toe (as shown in Figure 2.5) to de-

termine heel strike and toe-off events and integrate them to determine the logic of the switching

signal σ (as described in Figure 2.2) using a gait-phase detection algorithm. The algorithm esti-

mates which leg is in stance or swing by comparing the force signals with a predefined threshold

configured to detect when each leg is supporting most of the body weight. This approach results

in three possible cases: single stance for the right or left leg, or double-stance support. As the

current control design assumes double-stance support is negligible compared to the single-stance

support phases, the gait detection algorithm ignores double-stance support and waits until the

weight is fully transferred from the current stance leg to the other leg to trigger the switching

signal. That is, the controller treats the landing leg with the swing model and the stance leg with

3Surface electrodes for the study were provided compliments of Axelgaard Manufacturing Co., Ltd.
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Figure 2.5: Gait phase detection. (a) Force sensors are installed underneath the sole of the foot to
detect heel strike and toe-off events. (b) A schematic that illustrates the detection of foot contact
based on the heel and toe reaction forces. (c) The logic is generated for each foot to determine
the walking states: values 1 and 2 represent right and left stance, respectively, while value 3
represents double stance. The plot illustrates how the switching signal (orange) is generated out
of the walking state (green) defined by the force-based phase detection algorithm. It is shown
how the double stance support (value 3 in the walking state signal) is not considered for the
switching signal σ.

the stance model until lift-off is detected and the body weight is fully supported by the other leg.

Thus, the algorithm generates a switching signal that indicates when the subject undergoes right

or left stance only. Figure 2.5 illustrates how the algorithm handles the switching events, where

the gait phase detected by the forces is depicted in green, and the actual switching signal σ is

depicted in orange. It can be observed that σ waits until the full-weight transfer occurs to switch

its state.

To maintain satisfactory tension of the cable-driven system, a low-level synchronization con-
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troller is used for the electric motors [47], [48]. Prior to each walking experiment, the participants

are standing upright and the zero references for all joint angles are calibrated. At this standing po-

sition, the cables are tensioned and serve as a reference for the motors to maintain their position

and prevent slackness when not activated.

The kinematic control algorithms developed in this dissertation are implemented on a PC (Win-

dows 10 OS) running real-time software (QUARC, Quanser) and interfacing with two digital

acquisition boards: QPID-e, and Q8-USB (Quanser) at a rate of 100Hz. Emergency buttons are

installed to stop the experiments at any time. Software safeguards are in place to halt the experi-

ment if peak motor currents and large muscle stimulation intensities (e.g., reach FES saturation

thresholds) are computed. Prior to the gait experiments for each participant, a walking pretrial is

performed with the exoskeleton in passive mode (i.e., allowing free motion), during which joint

trajectories were recorded to generate smooth curve fits for the desired walking trajectories qd, q̇d,

and the foot force thresholds were calibrated to detect the gait phases.
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Chapter 3

Switched Adaptive Integral Concurrent

Learning for Cadence Tracking

In this chapter and based on the previous work in [36], [49], an adaptive concurrent learning con-

troller is designed for cadence tracking using the cycle-rider model presented in Section 2.1 with

switched muscle and motor inputs computed based on the crank angle. A Lyapunov analysis is

developed in two phases: 1) the initial phase proves that the switched system remains bounded

and achieves asymptotic cadence tacking until a finite time excitation condition is satisfied. 2)

The second phase ensures exponential cadence tracking and parameter estimation convergence

once the finite excitation condition is satisfied. Experimental results in eight able-bodied indi-

viduals and three participants with NCs are discussed for three cycling trials to compare the

performance of the adaptive cadence controller under different conditions.
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Figure 3.1: Block diagram of the cycle-rider dynamics and the closed-loop feedback control
system. The gray shaded area highlights the uncertainty in the cycle-rider dynamics and muscle
effectiveness that the adaptive controller seeks to estimate. The electrical motor controller ue
leverages tracking errors e, r and input-output data from the history stack to improve the parame-
ter estimation and achieve cadence tracking. The muscle input also leverages e, r and is delivered
to the system through the unknown muscle effectiveness that switches according to σ(q).

3.1 Control Development

The block diagram of the cycle-rider closed-loop system is illustrated in Figure 3.1. The control

objective is to track desired kinematic trajectories of the crank qd, q̇d by combining control in-

puts from the electric motor ue in (2.4) and muscle um in (2.3). The muscle input is designed as

a saturated state feedback controller to ensure bounded muscle torque output, which is suitable

for long-duration cycling. The motor control input is designed to estimate the uncertain constant

parameters of the cycle-rider system (i.e., the functions in (2.1) are known but the system’s pa-

rameters are unknown) leveraging input-output data from the history stack and achieve cadence

tracking. Through the design of the adaptive update law, the muscle input um is embedded into

the regressor to strategically account for the switching of muscles during the crank cycle; hence,

the unknown constant muscle control effectiveness is lumped into the vector of unknown param-

eters. Thus, the muscle input um, which physically acts as an exogenous saturated input into the

system, is exploited as a feedforward term in the cadence electric motor controller.
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To quantify the tracking objective, a measurable angular crank position tracking error e : R≥t0 →

R and auxiliary filtered error r : R≥t0 → R, are defined as

e(t) ≜ qd(t)− q(t), (3.1)

r(t) ≜ ė(t) + αe(t), (3.2)

where α ∈ R>0 is a selectable constant control gain and qd : R≥0 → R denotes the desired

crank position and is designed with bounded first and second-time derivatives (i.e., |q̇d| ≤ ξ1 and

|q̈d| ≤ ξ2, where ξ1, ξ2 ∈ R>0). After taking the time derivative of (3.2), premultiplying by M ,

substituting (2.1) and (3.2), and performing algebraic manipulation yields1

Mṙ =M(q̈d + αė) + C(q̇d + αe) +G+ Cdq̇ − τm − τe − Cr. (3.3)

For the subsequent control design analysis, the torque produced by the muscles τm is linearly

parameterized as the product of the uncertain constant control effectiveness and the subsequently

designed saturated muscle control input. The muscle torque input in (2.3) can be expressed as

τm ≜ ym(t, σ)θm, (3.4)

where the switching muscle regressor ym : R≥t0 × S → R1×2 and the unknown muscle constant

parameter vector θm ∈ R2 are defined as

ym(t, σ) ≜


[um, 0] σ = RQ

[0, 0] σ = KDZ

[0, um] σ = LQ.

, θm ≜

 BRQ

BLQ

 . (3.5)

1Functional dependencies are omitted henceforth in this chapter unless required for clarification
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Leveraging Property 3, the following expression can be obtained

yθ ≜M(q̈d + αė) + C(q̇d + αe) +G+ Cdq̇, (3.6)

where y : Q × R × R≥t0 → R1×l is a computable regressor vector and θ ∈ Rl is the vector of

constant unknown parameters of the cycle-rider system described in the next subsection, where

l ∈ N. Substituting (3.4), (3.6) and (2.4) into (3.3), yields

Mṙ = YσΘ−Beue − Cr, (3.7)

where the lumped switching regressor Yσ : Q× R× R≥t0 × S → R1×(l+2) and lumped constant

parameter vector Θ ∈ Rl+2 are defined as2

Yσ ≜ [y,−ym],Θ ≜

 θ

θm

 . (3.8)

The parameter estimation error denoted as Θ̃ : R≥t0 → Rl+2 is defined as

Θ̃(t) ≜ Θ− Θ̂(t), (3.9)

where Θ̂ : R≥t0 → Rl+2 denotes the parameter estimates. The muscle torque input τm in (3.4)

is segregated into the lumped regressor and lumped constant uncertain parameter vector in (3.8),

which facilitates the generation of estimates of both the uncertain parameters of the cycle-rider

dynamics and the muscle control effectiveness through the adaptive update law. Thus, the design

of the muscle input um is decoupled from the design of the electric motor input ue; yet, the mus-

cle input directly influences the motor input through the adaptive term. The muscle and electric

2The lumped regressor Yσ contains the switching muscle regressor ym. Therefore, Yσ switches according to the
logic state variable σ.
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motor control inputs um : R≥t0 → R>0 and ue : R≥t0 × S → R are designed, respectively, as

um(t) ≜ satβm(kmr + wm), (3.10)

ue(t, σ) ≜
1

Be

(ker + e+ YσΘ̂), (3.11)

where km, ke ∈ R>0 are selectable positive gains, wm ∈ R≥0 is an offset muscle stimulation input,

which is the minimum input to evoke active muscle torque, and the saturation function is defined

as

satβm(·) ≜


(·) |(·)| ≤ βm

βmsgn(·) |(·)| > βm

, (3.12)

where βm ∈ R>0 is a selectable muscle saturation limit. Inspired by [36], the integral concurrent

learning (ICL) adaptive update law is designed as

˙̂
Θ ≜ ΓY T

σ r + kclΓ

p̄∑
i=1

YT
σ (tp)

(
Vσ(tp)− Yσ(tp)Θ̂(t)

)
, (3.13)

where kcl ∈ R>0 is a selectable positive constant, p̄ ∈ N denotes the size of the input-output

history stack designed to improve parameter estimation convergence [40], and Γ ∈ R(l+2)×(l+2)

is a selectable positive definite diagonal matrix, and the time at which the i-th input-output data-

point stored in the stack is denoted as tp ∈ [t0, t]. The terms Vσ : R≥t0 → R and Yσ : R≥t0 →

R1×(l+2) denote the input and output data, respectively, and are defined as

Vσ(tp) ≜ Be

tp∫
tp−δt

ue(γ, σ)dγ, (3.14)

Yσ(tp) ≜ Ya
(
q(t), q̇(t), q(t− δt), q̇(t− δt)

)
+

tp∫
tp−δt

Yb
(
q(γ), q̇(γ)

)
dγ −

tp∫
tp−δt

Yc(γ, σ)dγ, (3.15)

where δt is the integration time window. Since the switching signal σ is piecewise continuous,

then the control input ue within Vσ in (3.14) and Yc in (3.15) are integrable. The functions Ya :
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Q2 × R2 → R1×(l+2), Yb : Q× R → R1×(l+2), and Yc : R≥t0 × S → R1×(l+2) are defined as

YaΘ ≜ M
(
q(t))q̇(t)−M(q(t− δt)

)
q̇(t− δt),

YbΘ ≜ −Ṁ(q)q̇ + C(q, q̇)q̇ +G(q) + Cdq̇,

YcΘ ≜ τm(t, σ).

(3.16)

The dimension of the regressors Ya, Yb, Yc is defined such that they match the dimension of the

parameter vector Θ. Using (3.14) and (3.15), integrating both sides of (2.1) over the time window

δt, and using integration by parts for the Mq̈ term yields

YaΘ+

t∫
t−δt

YbΘdγ −
t∫

t−δt

YcΘ dγ =

t∫
t−δt

Beuedγ, (3.17)

Yσ(t)Θ = Vσ(t). (3.18)

Using (3.18), the update law in (3.13) can be rewritten in its analytical form as

˙̂
Θ = ΓY T

σ r + kclΓ

[
p̄∑

i=1

YT
σ (tp)Yσ(tp)

]
Θ̃(t). (3.19)

Remark 2. The objective of the ICL adaptive update law is to record input-output data to im-

prove the rate of parameter convergence. Hence, the data points at each time tp are selected

based on the algorithm described in [40] to maximize the minimum eigenvalue of the matrix[∑p̄
i=1 YT

σ Yσ

]
since the minimum eigenvalue is associated with the rate of convergence of the

parameter estimation error [32].

Taking the time derivative of the parameter error estimation signal in (3.9) and substituting (3.19)

yields

˙̃Θ = −ΓY T
σ r − kclΓΣYΘ̃(t), (3.20)

where ΣY ≜
[∑p̄

i=1 YT
σ (tp)Yσ(tp)

]
contains the data history stack. The closed-loop error system

is obtained after substituting the controller in (3.11) into the open-loop error system in (3.7) and
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using (3.9) as

Mṙ = YσΘ̃− ker − e− Cr. (3.21)

Combining (3.2), (3.21) and (3.20), the closed-loop tracking and estimation error systems can be

compactly written as


ė

Mṙ

˙̃Θ

 =


r − αe

YσΘ̃− ker − e− Cr

−ΓY T
σ r − kclΓΣYΘ̃

 ,∀σ ∈ S. (3.22)
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3.2 Unknown Constant Parameters

The constant unknown parameter vector in (3.8) of the cycle-rider dynamics in (2.1) obtained

from the Euler-Lagrange derivation developed in [13] is defined as

Θ1 = Ic + l2ccmc,

Θ2 = l2c
l2t
(mtl

2
ct + It +mllt

2) ,

Θ3 = l3c
lll

2
t
(mtl

2
ct + It +mllt

2) ,

Θ4 = l3c
l3t
(mtl

2
ct + It +mllt

2) ,

Θ5 = l2c
l2l
(mll

2
cl + Il) ,

Θ6 = l3c
l2l lt

(mll
2
cl + Il) ,

Θ7 = l3c
l3l
(mll

2
cl + Il) ,

Θ8 = l2c
lllt

(mlltlcl) ,

Θ9 = l3c
lll

2
t
(mlltlcl) ,

Θ10 = l3c
l2l lt

(mlltlcl) ,

Θ11 = lccmcg,

Θ12 = lcg(ml +mt
lct
lt
+ml

lcl
ll
),

Θ13 = Cd,

Θ14 = BRQ,

Θ15 = BLQ,

(3.23)

where g denotes the gravity constant, m∗, I∗ denote the mass and moment of inertia, l∗, lc∗ denote

the link lengths and distances to the center of mass, respectively, where ∗ indicates the indexes

t, l, c for thigh, shank and crank, respectively. The viscous damping coefficient is denoted by Cd,

and BRQ, BLQ denote the muscle effectiveness of the right and left quadriceps, respectively.
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3.3 Stability Analysis

The stability analysis of the adaptive cadence tracking controller can be developed through the

following two theorems that depend on the FE condition. Theorem 1 proves that the closed-loop

error system remains bounded during an initial phase (i.e., the FE condition has not been satisfied,

which is quantifiable using the data stored in the history stack). Theorem 2 proves exponential

convergence of the kinematic tracking and parameter estimation errors of the switched system

(i.e., the FE condition has been satisfied and verified). The FE condition is specified in the follow-

ing assumption.

Assumption 2. Let λmin{·} denote the minimum eigenvalue of a given matrix and λ ∈ R>0 the

excitation condition. The system is said to be sufficiently excited after a finite time T ∈ R>t0 such

that ∃λ : ∀t > T, λmin{ΣY} ≥ λ.

Theorem 1. The controller in (3.11) and the adaptive update law in (3.13) achieve bounded

trajectory tracking and parameter estimation over the interval t ∈ [t0, T ) in the sense that

∥z(t)∥ ≤

√
β2
β1

∥z(t0)∥. (3.24)

Proof. Let V : R × R × Rl+2 × R≥t0 → R be a positive definite, continuously differentiable,

Lyapunov function candidate defined as

V (e, r, Θ̃, t) =
1

2
e2 +

1

2
Mr2 +

1

2
Θ̃TΓ−1Θ̃, (3.25)

where the following inequalities are satisfied

β1∥z∥2 ≤ V (z, t) ≤ β2∥z∥2, (3.26)

where β1 ≜ min{1
2
, m

2
, 1
2
λmin{Γ−1}}, β2 ≜ max{1

2
, m

2
, 1
2
λmax{Γ−1}} and z : R≥t0 → Rl+4 is the



31

lumped state vector defined as

z ≜ [e, r, Θ̃T ]T . (3.27)

Let z(t) be the Filippov solution to the differential inclusion ż ∈ K[h](z, t), where K[·] is the Fil-

ippov regularization as in [50], and h ≜ [ė,Mṙ, ˙̃ΘT ]T . Moreover, let K ′
σ[h](z, t) be the collection

of regularized systems generated by the switching signal σ, defined as

K ′
σ[h](z, t) =


r − αe

{YσΘ̃} − ker − e− Cr

{−ΓY T
σ r} − kclΓK [ΣY ] Θ̃

 . (3.28)

Note that K[h](z, t) ⊆ K ′
σ[h](z, t) as proved in [41]. Since the Lyapunov function candidate

in (3.25) is continuously differentiable, the Clarke generalized gradient of (3.25) reduces to ∇V .

Leveraging Property 2, and considering the FE is not yet satisfied, i.e., for t ∈ [t0, T ) =⇒ 0 ≤

λmin{ΣY} < λ, a bound on the generalized derivative along the set of solutions in (3.28) can be

defined as [41]
˙̃V ≤ max

x∈K′
σ [h]

[e, r, Θ̃T , 1
2
r2Ṁ ] · [x, 1]T ,

≤ −W1(z),

(3.29)

where W1(z) = α∥e∥2 + ke∥r∥2 is a positive semi-definite function. Thus, invoking [41, Th. 2],

W1(z) → 0 as t → ∞. Since V ≥ 0 and ˙̃V ≤ 0, V ∈ L∞ implies z ∈ L∞ and V (z(t)) ≤

V (z(t0)). Using (3.26), the bound in (3.24) holds for t ∈ [t0, T ). Since z ∈ L∞ then ė ∈ L∞

from (3.2), and Θ̂ ∈ L∞ from (3.9). Moreover, q, q̇ ∈ L∞ from (3.1) and (3.2) which implies,

along with the fact that um ∈ L∞ from (3.10), that Yσ ∈ L∞ in (3.8) and ue ∈ L∞ in (3.11),

which implies that Yσ,Vσ ∈ L∞ in (3.18) and τe ∈ L∞ in (2.4), and along with the fact that

τm ∈ L∞ yields q̈ ∈ L∞ in (2.1). ■

Theorem 2. Given the closed-loop error system in (3.22), the controller in (3.11) and the adaptive

update law in (3.13) achieve exponential kinematic tracking and parameter estimation error
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convergence in the sense that

∥z(t)∥ ≤ β2
β1

∥z(t0)∥exp
(
− ψ

2β2
(t− T )

)
, (3.30)

where ψ ≜ min{α, ke, λ}.

Proof. Let V : R× R× Rl+2 × R≥t0 → R be the Lyapunov function candidate defined in (3.25).

A bound on the generalized derivative along the solutions in (3.28) can be defined as

˙̃V ≤ max
x∈K′

σ [h]
[e, r, Θ̃T , 1

2
r2Ṁ ] · [x, 1]T ,

≤ −W2(z),

(3.31)

where W2(z) = α∥e∥2 + ke∥r∥2 + λ∥Θ̃∥2 is a positive definite function leveraging Assumption 2,

where the FE is satisfied, i.e., for t ∈ [T,∞) =⇒ λmin{ΣY} ≥ λ. Using the bounds in (3.26),

the system achieves exponential tracking and estimation error convergence for t ≥ T in the sense

of

∥z(t)∥ ≤

√
β2
β1

∥z(T )∥exp
(
− ψ

2β2
(t− T )

)
, (3.32)

Furthermore, substituting the result in (3.24) with t = T into (3.32) yields (3.30). Since V ≥ 0

and ˙̃V ≤ 0, V ∈ L∞ implies z ∈ L∞, then ė, θ̂ ∈ L∞ in (3.2) and (3.9), respectively. Moreover,

q, q̇ ∈ L∞ in (3.1) and (3.2) which implies Yσ ∈ L∞ in (3.8) since um ∈ L∞ in (3.10). Further,

ue ∈ L∞ in (3.11), which implies that Yσ,Vσ ∈ L∞ in (3.18) and τe ∈ L∞ in (2.4) yields q̈ ∈ L∞

in (2.1) since τm ∈ L∞. ■

3.4 Experiments

The electric motor and muscle controllers designed in (3.11) and (3.10), respectively, and the

adaptive update law in (3.13) were implemented during real-time cycling trials. The muscle input
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Table 3.1: Demographics of subjects with neurological conditions

Subject Age Sex Injury Months Since Injury

P1 67 F Right Side Hemiparetic Stroke 76
P2 60 M L1 SCI 365
P3 51 M T11-T12 SCI 232

was computed as stimulation pulse width to activate the left and right quadriceps muscle groups

and the motor input was computed as current. Eight able-bodied individuals (6 males and 2 fe-

males) with ages ranging between 22 and 30 years, and three individuals (2 males and 1 female)

with neurological conditions participated in the FES-cycling experiments at Syracuse University.

Demographics of the participants with NCs are presented in Table 3.1. Prior to participation, writ-

ten informed consent was obtained from all participants as approved by the Institutional Review

Board (IRB) at Syracuse University. Participants were instructed to avoid voluntarily contributing

to pedaling and were not informed of the desired and actual trajectories.

3.4.1 Experimental Protocol

Three 10-minute (600 sec) cycling experiments (EXP) were conducted with all able-bodied

participants, while 5-minute (300 sec) trials were conducted in participants with NCs. Due to

the limited availability of the participants, all cycling trials were conducted during the same

session with ten-minute rest breaks in between trials using the experimental testbed described

in Section 2.3.1. EXP1: this cycling trial implements the desired trajectory 1 in (3.33) in which

the cadence gradually increases until it reaches a steady-state value of 55 revolutions per minute

(RPM). The concurrent learning algorithm initializes the update law in (3.13) with an empty

history stack. EXP2: this cycling trial implements the desired trajectory 2 in (3.34), which is a

staircase-like trajectory during the transient phase and remains constant at 55 RPM until the end

of the experiment. The update law in (3.13) is also initialized with the history stack empty as in

EXP1. EXP3: this cycling trial implements the desired trajectory 1 and it exploits the history



34

stack collected in EXP2; hence, the cadence controller ue is initialized exploiting the adaptive

estimates collected in EXP2 (i.e., with previously learned parametric estimates of the cycle-rider

system and muscle control effectiveness) and keeps computing the update law in (3.13) with the

instantaneous tracking error r and the recorded history stack without collecting new input-output

data. The desired trajectories are implemented by computing the desired crank accelerations

in (3.33) and (3.34) and then performing numerical integration to obtain the desired cadence and

crank angular position3. The desired acceleration to compute the steady-state constant cadence in

trajectory 1 is defined as

q̈d1 ≜ 1.75sech2(0.6(t− 5)), (3.33)

and the desired acceleration to compute the staircase cadence in trajectory 2 is defined as

q̈d2 ≜ 2.5sech2(t− 5) + 0.25sech2(t− 31)

+0.25sech2(t− 57) + 0.25sech2(t− 83)

+0.25sech2(t− 109)− 0.25sech2(t− 135)

−0.25sech2(t− 161),

(3.34)

which reaches an initial constant speed of 5 rad/s (47.7 RPM) and subsequently increases to 5.5

(52.5), 6 (57.3), 6.5 (62.1), and 7 (66.8) rad/s (RPM), decreases the speed to 6.5 (62.1), and then

finally settles to a steady-state constant speed of 6 rad/s (57.3 RPM). Each speed level prior to the

steady-state cadence was maintained for 20 seconds. The ICL algorithm comprises two phases.

In the initial phase, input-output data is collected to populate the history stack ΣY and satisfy the

FE condition (see Assumption 2 in Section 3.3), which for the real-time cycling experiments was

set to λ = 0.001. Once the history stack satisfies the FE condition, the adaptive controller stops

recording new data and only leverages the already-stored data to achieve parameter convergence.

The control gains and parameters in (3.2), (3.10), (3.11), and (3.13) were defined as follows for

all cycling experiments across participants: ke = 0.7, km = 0.1, βm = [70, 90]µs, wm = [0.2, 0.4]

3This approach to implement the desired cadence trajectories is practical and convenient to generate smooth
staircase-like trajectories, i.e., thus, allowing changes in the steady state target cadence.
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(normalized pulsewidth with respect to βm), α = 0.1, kcl = 0.1, Γ = 0.0001 ∗ eye(15), δt = 0.03s,

p̄ = 30, Θ̂(t0) = zeros(15, 1) for EXP1 and EXP2 and Θ̂(t0) = Θ̂(tEXP2 = 600) for EXP3.

3.4.2 Results

The tracking performance for the able-bodied participants (S1-S8) is summarized in Table 3.2,

and Table 3.3 presents the tracking performance obtained for the subjects with NCs (P1-P3).

Note in Table 3.3 that P3 did not perform EXP2. This was due to the participant’s discomfort

to cycle at high speeds. Thus, P3 performed EXP1 and EXP3 at a lower speed (35 RPM) than

the other participants. Both tables show the root-mean-square (RMS) position error, average per-

centage cadence error computed as ¯̇e(%) = |q̇d−q̇|
q̇d

· 100%, RMS cadence error ė, and RMS of

the steady-state cadence error ėss, which is computed for the last 400 seconds of each trial in the

able-bodied participants, and for the last 90 seconds in the participants with NCs, across the three

cycling experiments. Figure 3.2 illustrates cadence tracking performance and the position and

filtered tracking errors e, r in (3.1), (3.2), respectively, for a subset (S1-S5) of the able-bodied

participants undergoing EXP1. The tracking performance for the same subset of participants

undergoing EXP2 and EXP3 is illustrated in Figure 3.3 and Figure 3.4, respectively. The pa-

rameter estimates obtained during EXP1 (left column) and EXP2 (right column) are illustrated

in Figure 3.5 for S1-S5. Figure 3.6 depicts the minimum eigenvalue of the history stack (i.e.,

λmin{ΣY}) in (3.13) during EXP1 and EXP2 for participants S1-S5. The control inputs generated

across all trials for subject S4 are illustrated in Figure 3.7, where the normalized motor and mus-

cle inputs are depicted on the left column and the applied FES inputs on the quadriceps muscle

groups are depicted on the right column. Figure 3.8 depicts the control inputs for S4 in EXP1

across ten crank cycles as a representative example. The control contribution of each term in the

electric motor controller ue in (3.11) is illustrated in Figure 3.9 for participants S1-S5 in EXP2,

where the contribution of the adaptive term YσΘ̂ is depicted in blue and the contribution of the

state feedback term ker + e is depicted in orange. The tracking performance for the participants
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Table 3.2: Tracking results for able-bodied participants: RMS position error e for the full experi-
ment (10 minutes), average cadence percentage error ¯̇e(%), RMS velocity error ¯̇e (RPM) for the
full experiment, and RMS steady-state cadence error ¯̇ess (RPM) for the last 400 seconds of each
trial

Participant
EXP1 EXP2 EXP3

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

S1 1.51 2.94± 2.77 2.94 1.41 1.10 2.95± 2.05 2.88 2.02 0.44 3.60± 2.50 2.97 2.45
S2 1.08 2.09± 1.69 2.52 1.38 1.19 2.15± 2.00 3.21 1.41 0.47 1.68± 1.35 2.33 1.16
S3 0.88 2.09± 1.65 2.26 1.40 1.19 2.47± 2.03 2.70 1.69 0.58 2.42± 1.94 2.62 1.61
S4 0.98 2.08± 1.84 2.45 1.36 1.05 3.08± 1.98 2.81 2.10 0.38 3.10± 1.98 2.86 2.21
S5 0.80 3.26± 2.18 2.76 2.35 0.77 3.21± 2.17 2.43 2.23 0.28 4.32± 2.33 2.88 2.87
S6 0.77 2.60± 2.02 3.08 1.75 1.34 2.32± 2.67 2.94 1.42 1.73 2.39± 3.74 3.86 1.45
S7 0.46 2.74± 2.38 2.29 1.71 0.47 2.23± 2.36 2.10 1.29 0.56 2.81± 1.87 2.07 2.01
S8 0.47 1.68± 1.53 1.65 1.09 0.54 2.41± 2.45 2.20 1.53 0.37 2.31± 1.64 1.90 1.69

Mean 0.87 2.43 2.49 1.56 0.96 2.60 2.66 1.71 0.60 2.82 2.69 1.93
STD 0.32 2.00∗ 0.42 0.36 0.30 2.21∗ 0.36 0.34 0.44 2.16∗ 0.58 0.53

∗ Reports the mean over the standard deviations.

Table 3.3: Tracking results for participants with NCs: RMS position error e for the full experi-
ment (5 minutes), average cadence percentage error ¯̇e(%), RMS velocity error ¯̇e (RPM) for the
full experiment, and RMS steady-state cadence error ¯̇ess (RPM) for the last 90 seconds of each
trial

Participant
EXP1 EXP2 EXP3

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

e (rad)
RMS

¯̇e
(%)

ė (RPM)
RMS

ėss (RPM)
RMS

P1 0.98 2.45± 2.03 2.41 1.27 0.94 2.13± 1.68 2.43 1.39 0.92 3.39± 2.32 2.46 1.84
P2 0.83 2.96± 2.09 2.53 1.67 1.07 2.35± 1.96 2.77 1.57 0.55 2.76± 2.22 2.46 1.66
P3 1.36 11.58± 7.03 4.52 4.91 – – – – 0.40 14.68± 7.89 5.50 5.57

Mean 1.06 5.66 3.15 2.62 1.01 2.24 2.60 1.48 0.62 6.94 3.47 3.02
STD 0.22 3.71∗ 0.97 1.63 0.07 1.82∗ 0.17 0.09 0.22 4.14∗ 1.43 1.80

∗ Reports the mean over the standard deviations.

with NCs undergoing EXP1 is illustrated in Figure 3.10.

3.5 Discussion

The experimental results demonstrate the feasibility of the controllers developed in (3.10) and (3.11)

to track desired cadence trajectories during ten-minute trials with able-bodied individuals, where

the average RMS cadence tracking error for able-bodied participants was 2.49 ± 0.42 RPM

(2.43± 2.00 % error) for EXP1, 2.66± 0.36 RPM (2.60± 2.21 % error) for EXP2, and 2.69± 0.58

RPM (2.82±2.16 % error) for EXP3. Additionally, the average steady-state RMS cadence tracking
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Figure 3.2: Kinematic tracking for cycling trial EXP1 (using trajectory 1 in (3.33)). Cadence
tracking (actual versus desired angular speed) in RPM, position error e(t) (rad), and filtered error
r(t) (computed using e (rad) and ė (rad/sec)) are depicted. Each row corresponds to the cycling
performance of one participant for subjects S1-S5.

error for healthy participants was 1.56 ± 0.36 RPM for EXP1, 1.71 ± 0.34 RPM for EXP2, and

1.93± 0.53 RPM for EXP3. Moreover, the average RMS position error for healthy participants was

0.87 ± 0.32, 0.96 ± 0.30, and 0.60 ± 0.44 rad for the three different trials, respectively. Results

in participants with NCs were obtained with an average cadence tracking error of 3.15 ± 0.97
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Figure 3.3: Kinematic tracking for EXP2 (using trajectory 2 in (3.34)). Cadence tracking (RPM),
position error e(t) (rad) and filtered error r(t) (computed using e (rad) and ė (rad/sec)) are de-
picted. Each row corresponds to the performance of one participant.

RPM (5.66 ± 3.71 % error), 2.60 ± 0.17 RPM (2.24 ± 1.82 % error), and 3.47 ± 1.43 RPM

(6.94± 4.14 % error) for the three trials, respectively. Additionally, the average steady-state RMS

cadence tracking error of 2.62± 1.63, 1.48± 0.09, and 3.02± 1.80 RPM were obtained. Finally,

an average RMS position error of 1.06 ± 0.22, 1.01 ± 0.07, and 0.62 ± 0.22 rad, were obtained
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Figure 3.4: Kinematic tracking for EXP3 (using trajectory 1 in (3.33)). Cadence tracking (RPM),
position error e(t) (rad) and filtered error r(t) (computed with e (rad) and ė (rad/sec)) are shown.
Each row corresponds to the cycling performance of one participant.

for the three trials. The main objective of the experimental protocol was to analyze the behavior

of the concurrent learning controller and parameter estimation under different learning conditions.

The results successfully demonstrate the ability of the system to perform under different types of

trajectories and the availability of previously-learned data.
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Figure 3.5: Parameter estimates for each participant during the 10-minute experiments. The left
column displays the estimates in EXP1 and the right column shows the estimates in EXP2. The
vertical line depicts the instance at which the predetermined FE condition based on λ in EXP2
is satisfied. Cycling trials corresponding to EXP1 did not satisfy the predefined FE condition;
nevertheless, the minimum eigenvalue for all trials in EXP1 is positive as depicted in Figure 3.6.
Section 3.2 describes the vector of parameters estimated during the cycling experiments.

3.5.1 Tracking error performance and convergence

As depicted in Figure 3.2-3.4, the filtered tracking error r remains bounded and settles around

zero (±0.5) for all experiments. Likewise, the position error e converges to zero (i.e., reaches the

error window of ±0.5 rad) for all trials with able-bodied individuals; it can be observed that e

converges faster in EXP3 (12.15± 6.86 seconds), compared to EXP1 (91.50± 51.26 seconds) and
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Figure 3.6: Minimum eigenvalue of the history stack, i.e., λmin{ΣY}. The eigenvalues for EXP1
and EXP2 are shown in blue and red, respectively. The vertical line indicates the time at which
the FE excitation condition is satisfied in EXP2.

EXP2 (91.70 ± 35.79 seconds). This phenomenon can be attributed to the fact that the cadence

controller in EXP3 used previously-recorded data from EXP2 in the history stack such that the

adaptive estimates in EXP3 are initialized with the learned estimates obtained at the end of EXP2.

Hence, the cycling trial EXP3 differs from the cycling trials EXP1 and EXP2 in which the adap-

tive update law and cadence controller are initialized with an empty history stack (i.e., adaptive

estimates are initialized to zero). The tracking performance and convergence were satisfactory

across the three experiments for all participants (able-bodied and participants with NCs) indepen-

dently of the initial conditions of the adaptive estimates (e.g., starting the cycling trial with an
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Figure 3.7: Control inputs across all experiments of subject S4. The plots on the left show the
normalized control inputs, i.e., muscle and motor, computed for each experiment. The plots
on the right show the applied FES input (pulse width) for the right and left quadriceps muscle
groups. The FES input was applied 25 seconds after the beginning of the experiments to avoid
delivering high stimulation intensities in the transient phase.

empty stack or with previously learned estimates from another cycling trial).

3.5.2 Desired cadence trajectories & parameter estimation performance

Two sets of desired trajectories were implemented in EXP1 and EXP2 to examine differences in

parameter estimation performance. Figure 3.6 depicts the evolution of the minimum eigenvalue

of the history stack between the cycling trials EXP1 and EXP2. The minimum eigenvalue in the
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Figure 3.8: Control inputs of subject S4 across 10 crank cycles following 4 minutes of pedaling
during the EXP1. Normalized muscle and motor control inputs are depicted in the top plot. FES
delivered to the right and left quadriceps are depicted in the bottom plot.

trials EXP2 increases at a faster rate compared to the trials EXP1. This quantifiable condition is

associated with faster convergence of the parameter estimates Θ̂(t) and smoother cadence track-

ing performance since the FE condition is satisfied faster (and thus the history stack is not up-

dated anymore). For comparative purposes, the FE condition λ was predetermined ahead of time

before conducting the three cycling experiments for all participants. As illustrated in Figure 3.6,

the predetermined FE condition is satisfied in the trials corresponding to EXP2 on average for

all able-bodied participants at 110.69± 74.18 seconds, while this FE condition was not satisfied

in trials corresponding to EXP1. Although the trials in EXP1 are said to not satisfy the predeter-

mined FE condition, the history stack collected sufficiently rich data to yield a positive definite

ΣY throughout the duration of the cycling trial (see in Figure 3.6 that the minimum eigenvalue

for all experiments is greater than zero no later than 33 seconds after the beginning of the trial

for all participants). The results obtained from the cycling trials highlight the potential differ-

ences in performance due to the implementation of the sets of cadence trajectories. Different

from classical adaptive control designs that require persistently exciting trajectories during the

whole experiment to guarantee convergence of the estimates [30], in these cycling experiments,
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Figure 3.9: The control contributions in the controller in (3.11) are illustrated for cycling trials
corresponding to EXP2. The red signal shows the robust state feedback term (ker + e) while the
blue signal shows the adaptive term contribution YσΘ̂.

it is shown that introducing staircase trajectories during a finite time in the transient can aid in

satisfying the quantifiable FE condition and achieving convergence of the estimates.

3.5.3 Control Contribution

The cadence motor controller ue designed in (3.11) has three terms on the right-hand side, which

can be segregated into robust state-feedback terms (ker + e) and the adaptive feedforward term

(YσΘ̂). Figure 3.9 illustrates the time-varying contributions of the robust terms (red) and adap-

tive term (blue) during the cycling trials EXP2 for participants S1-S5 as representative examples.
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Figure 3.10: Kinematic tracking performance for participants with NCs undergoing EXP1. Ca-
dence tracking (RPM), position error e(t) (rad) and filtered error r(t) are presented. Each row
corresponds to one subject (P1-P3).

During the transient phase of the trials, the feedback terms have a higher contribution compared

to the adaptive term. However, after an average across all able-bodied participants (S1-S8) of

49.68 ± 10.89 seconds from the start of the cycling trial, the contribution of the adaptive term

increases surpassing the contribution of the robust feedback terms. As depicted in Figure 3.9, this

observation on the difference between the feedforward and robust control contributions is consis-

tent among all able-bodied participants (S1-S8) in the cycling trials EXP2. The same behavior

was observed in EXP1 and EXP3, where the adaptive term overtakes the robust term contribu-

tion after 50.64 ± 24.55, and 7.13 ± 1.42 seconds, respectively. Note that in EXP3, the adaptive

term takes over significantly faster than the other two trials since the controller leverages data

learned in the previous trial (i.e., in EXP2). The cycling experiments demonstrate the advantage

of integrating the adaptive term in the cadence controller, which exploits the instantaneous and

collected input-output data to generate the adaptive estimates and improve tracking performance.
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In this way, the cadence controller relies less on high-gain feedback (and avoids the need for high-

frequency control, e.g., sliding-mode control) and is less susceptible to changes in the selection

of control feedback gains. For example, the same control gains and parameters were used for the

three cycling experiments across all participants, able-bodied subjects (S1-S8) and participants

with NCs (P1-P3) (i.e., for a total of 32 cycling trials). Thus, restrictive gain conditions are not

developed in this work to compensate for the uncertainty in the cycle-rider dynamics. Hence,

manual gain and parameter tuning was not needed for each participant, which is an important

contribution given the inherent participant variability.

3.5.4 Participants with Neurological Conditions

The results presented in Table 3.3 with the three participants with NCs successfully demonstrate

the control design’s ability to achieve stable cadence tracking across a diverse range of indi-

viduals. Participants P1 and P2 achieved satisfactory results across all three trials, where the

same trend observed in able-bodied participants was evident: stable tracking for all experiments,

improved RMS cadence tracking error at steady-state compared to the RMS error for the full

experiment, and faster position error convergence in EXP3 when compared to EXP1 and EXP2.

For Participant P3, the protocol was modified to account for an inability to handle fast pedaling

speeds. Thus, trial EXP2 was removed, and EXP1 and EXP3 were conducted at a lower speed

(35 RPM) for P3. The results with P3 demonstrate that the controller can manage lower speeds.

Smooth cadence tracking at low speeds can be challenging as depicted in the bottom plot of

Figure 3.10, where the cadence tracking has more variability. Nonetheless, the system remains

stable, the errors converge, and participant P3 successfully completed the trial.
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3.6 Conclusion

A switching ICL controller was developed to track a desired cadence for a motorized FES-

cycling system. The adaptive cadence controller was designed to improve tracking and generate

estimates of the uncertain parameters in the cycle-rider dynamics and uncertain constant mus-

cle control effectiveness in real time. Due to muscle switching needed to engage muscles in the

left and right legs during FES-cycling, the adaptive controller exploits a switching update law

where the muscle torque control input is exploited as a feedforward control term into the electric

motor controller. Rather than canceling the muscle input as an exogenous input, the adaptive

control approach embeds the muscle input into the regressor and facilitates estimating the mus-

cle’s uncertain effectiveness. A Lyapunov stability analysis for switching systems was developed

leveraging a common Lyapunov function to demonstrate exponential kinematic tracking and

parameter estimation convergence after a FE condition is satisfied. Particularly, a recent result

for non-autonomous switched systems was exploited since a negative semi-definite Lyapunov

derivative was obtained during the initial learning phase (i.e., when the FE condition is not yet

satisfied) [41].

To demonstrate the feasibility of the control design, three ten-minute cycling experiments were

implemented in eight able-bodied individuals resulting in 24 total cycling trials. Moreover, three

participants with NCs tested the system during three five-minute trials. The cycling experiments

were conducted to examine the control performance under different cadence trajectories and

learning conditions. The first cycling experiment (EXP1) illustrates the system’s performance

by implementing a constant target cadence and initializing the history stack empty and the adap-

tive estimates to zero (i.e., no previous learning or knowledge of the system is exploited). The

second experiment (EXP2) illustrates the system’s performance implementing a staircase-like

cadence trajectory (i.e., changing the target cadence during the transient until reaching a steady-

state constant cadence). EXP2 facilitated the satisfaction of the predetermined FE condition. The

third experiment (EXP3) tracked a constant cadence trajectory exploiting the learned parameters
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computed at the end of the cycling trial EXP2. Satisfactory cadence tracking performance was

obtained by initializing the adaptive update law with the learned parameters from EXP2; thus,

illustrating the ability of the controller to learn useful estimates for tracking during a separate

cycling trial. Results from all participants showed that the adaptive controller satisfied the pre-

determined FE condition in EXP2 compared to EXP1, where the predefined FE condition is not

satisfied; yet, the minimum eigenvalue remained positive during the trials as depicted in the Fig-

ure 3.6. By leveraging previously learned data in the cycling experiments from EXP2 into EXP3,

across all participants, it was observed that the position error e(t) presented a significantly faster

convergence in the cycling trial EXP3 compared to EXP1 and EXP2.
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Chapter 4

Integral Torque Tracking with

Anti-Windup Compensation and Adaptive

Cadence Tracking for Powered

FES-Cycling

In this chapter and in the work in [51], a torque and cadence tracking control design (power track-

ing control) is developed for a motorized FES-cycling system. The quadriceps muscle groups

track a desired active torque, while the electric motor regulates the speed to a constant cadence.

The main contribution presented in this chapter is the development of a muscle torque tracking

controller that incorporates an anti-windup term in an integral-like error signal to compensate

for muscle saturation and prevent commanding high FES inputs due to error build-up. Since the

muscle active torque acts as an exogenous input in the cadence tracking loop, an adaptive-based

cadence controller is developed for the electric motor. Rather than canceling the muscle input

in the cadence control loop, a switched concurrent learning controller is developed to embed the

torque produced by muscles into the regressor (which is feasible since the muscle torque con-
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troller is implementable) and estimate uncertain constant parameters of the nonlinear cycle-rider

dynamics to achieve kinematic tracking. A Lyapunov-based stability analysis is developed for the

torque and cadence control loops. Globally uniformly ultimately bounded (GUUB) tracking is

obtained for the torque tracking objective. The stability analysis of the cadence tracking loop is

divided into two phases. During the initial phase, the adaptive cadence controller records input-

output data, and bounded tracking and parameter estimates are obtained leveraging a theorem for

switching systems [41]. In the final phase, a final excitation (FE) condition is satisfied to ensure

exponential cadence tracking and parameter estimation convergence. The tracking controllers

were implemented during cycling experiments in one able-bodied individual to demonstrate the

feasibility of the developed control strategy.

4.1 Active Torque Tracking Development

Two control objectives are developed to design an FES muscle controller um to track a desired

active torque and an electric motor controller ue to track a desired cadence. The strategy is to

segregate the control of muscles and the electric motor by (i) prioritizing the design of an in-

tegral muscle torque control input with an anti-windup term and (ii) integrating the adaptive

cadence controller developed in Chapter 3 for the motor to regulate the cycle’s speed and embed

the muscle-evoked torque into the regressor, which eliminates the need for the motor controller to

reject the muscle torque input. The FES control design developed in this chapter is fundamentally

different from the one presented in Chapter 3 since the objective here is to achieve torque track-

ing with the muscle input. Unlike the control designed in (3.10) that tracks cadence, the current

FES controller will track a desired torque, while the adaptive cadence motor controller (3.11)

embeds the muscle input generated in the torque loop defined below.
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The torque τm : S × R≥t0 → R>0 produced by the muscles can be defined as

τm(t, σ) ≜ Bm(σ)satβm(um(t)), (4.1)

where um(t) is a subsequently-designed control input and the saturation function is defined

as (3.12).

To quantify the torque tracking objective, the torque tracking error eaw : R≥t0 → R with anti-

windup compensation is defined as

eaw(t) ≜

t∫
t0

[
(τd − τ̂m)− kaw(um − satβm(um))

]
dγ, (4.2)

where τd : R≥t0 → R is the desired active torque trajectory bounded as |τd| ≤ τ d, where

τ d ∈ R>0 is a known constant, τ̂m : R≥t0 → R>0 is the estimation of the active torque produced

by the muscles, and kaw ∈ R>0 is a selectable constant. The error signal in (4.2) reduces only

to the difference between the desired and actual torque when the control input is not saturated

(i.e., um = satβm(um)). When the controller reaches saturation, the saturation limit is exploited

to generate a mismatch with the computed control input that helps to mitigate the wind-up effect

in eaw. The active torque estimation is obtained as in [52], [53], where a baseline passive torque

τpassive ∈ R is recorded from a pre-trial and subtracted from the actual torque measurement τ as

τ̂m ≜ τ − τpassive. (4.3)

The active torque is defined as

τm = τ̂m + ϵ(t), (4.4)

where ϵ : R≥t0 → R denotes the estimation error and satisfies ϵ ≤ ϵ̄, where ϵ̄ ∈ R≥0 is a known

constant. Taking the time derivative of (4.2), assuming zero initial conditions (see Remark 3), and
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substituting (4.1) and (4.4) yields the torque open-loop error system

ėaw = τd −Bmsatβm(um) + ϵ− kaw(um − satβm(um)). (4.5)

Given the open-loop dynamics in (4.5), the muscle control input um : R≥t0 → R is designed as

um(t) ≜ kmeaw + kssgn(eaw), (4.6)

where km, ks ∈ R>0 are selectable control gains.

Remark 3. To implement the controller in (4.6), the error eaw has to be evaluated first. Thus,

the online integration is computed with the initial condition defined as um(t0) = 0 for the first

iteration.

Two cases are developed and subsequently analyzed corresponding to when muscles are not

saturated (Case 1) and when muscles have reached the saturation limit (Case 2).

Case 1 when |um| ≤ βm =⇒ satβm(um) = um, the muscle is not saturated, the open-loop

error system in (4.5) is simplified to

ėaw = τd −Bmum + ϵ. (4.7)

Substituting the control input (4.6) into the previous expression yields the closed-loop error

system defined as

ėaw = τd −Bmkmeaw −Bmkssgn(eaw) + ϵ. (4.8)
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Case 2 when |um| > βm =⇒ satβm(um) = βmsgn(um), the muscle is saturated. Leverag-

ing (3.12), the open-loop error system in (4.5) can be rewritten as

ėaw = τd − kawum − (Bm − kaw)βmsgn(eaw) + ϵ. (4.9)

After substituting the control input (4.6) into the previous expression, and leveraging the fact that

sgn(um) = sgn(eaw), the closed-loop error system is obtained as

ėaw = τd − kawkmeaw −
(
kawks + (Bm − kaw)βm

)
sgn(eaw) + ϵ. (4.10)

4.2 Stability Analysis

The stability of the robust muscle torque tracking controller can be examined through Theorem

1, which shows the closed-loop torque error system is GUUB. The stability of the closed-loop

cadence error system is developed in Chapter 3 (Section 3.3).

Theorem 3. The torque controller in (4.6) ensures GUUB tracking in the sense that

|eaw(t)| ≤

√
ζ2
ζ1
e2aw(t0)e

−φ1(t−t0) +
φ2

ζ1φ1

(1− e−φ1(t−t0)), (4.11)

provided the following sufficient gain conditions are satisfied

ks ≥
τ d
kaw

, kaw ≤ B (4.12)

Proof. Let the Lyapunov function candidate Vτ : R× R≥t0 → R≥0 be defined as

Vτ (eaw, t) =
1

2
e2aw(t), (4.13)
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that satisfies the following inequalities

ζ1e
2
aw ≤ Vτ ≤ ζ2e

2
aw, (4.14)

where ζ1, ζ2 ∈ R>0 are constants. The control input in (4.6) includes the signum function. Hence,

the system is treated as the differential inclusion ėaw
a.e.
∈ K[f ](eaw) as in [54] where K[·] is

defined as in [55] and f denotes the closed-loop error dynamics. Thus, the time derivative of

(4.13) exists almost everywhere (a.e.), i.e., for almost all t and can be expressed for each case as

follows1

Case 1 Substituting the closed-loop dynamics in (4.8), the time derivative of (4.13) can be

expressed as

V̇τ ⊆ eaw(τd −K[Bm]kmeaw −K[Bm]ksSGN(eaw) + ϵ), (4.15)

where K[Bm] ⊂ [B,B]. Thus, (4.15) can be upper bounded leveraging Property 4 as

V̇τ
a.e.

≤ −Bkme2aw + |eaw|(τ d −Bks) + |eaw|ϵ̄. (4.16)

Thus, the following gain condition is defined

ks ≥
τ d
B
. (4.17)

Case 2 Substituting the closed-loop dynamics in (4.10), the time derivative of (4.13) can be

expressed as

V̇τ ⊆ eaw(τd − kawkmeaw + ϵ−
(
kawks + (K[Bm]− kaw)βm

)
SGN(eaw)). (4.18)

1K[sgn(eaw)] = SGN(eaw) such that SGN(eaw) = {1} if eaw > 0; [−1, 1] if eaw = 0; and {−1} if eaw < 0,
as defined in [50].
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Using similar arguments as in (4.16), the previous expression can be upper bounded as follows

V̇τ
a.e.

≤ −kawkme2aw + |eaw|ϵ̄+ |eaw|(τ d + (kaw −B)βm − kawks). (4.19)

Provided the gain conditions in (4.12) are satisfied, the inequalities in (4.16) and (4.19) can be

upper bounded as

V̇τ
a.e.

≤ −kawkpe2aw + |eaw|ϵ̄− kawkde
2
aw, (4.20)

where km ≜ kp + kd.

Remark 4. The sufficient gain conditions in (4.12) are selected to facilitate and unify the analysis

of both the non-saturated and saturated cases. Note that when kaw = B in (4.12) yields ks ≥ τ̄d
B

,

which is the gain condition in (4.17) defined for case 1.

Substituting the upper bound from (4.14) into (4.20), and leveraging a nonlinear damping tool as

in [56, ch.2] to simplify the last to terms in (4.20), the inequality in (4.20) can be further upper

bounded as

V̇τ
a.e.

≤ −φ1Vτ + φ2, (4.21)

where φ1 ≜ kawkp
ζ2

and φ2 ≜ ϵ̄2

kawkd
. Then, solving the differential inequality in (4.21) and sub-

stituting the bounds in (4.14) yields the result in (4.11). Since Vτ ∈ L∞, then eaw ∈ L∞ which

implies that um ∈ L∞ in (4.6). ■

4.3 Experimental Results

The muscle and motor controllers designed in (4.6) and the adaptive controller (3.11) developed

in Chapter 3, were implemented during two 5-minute cycling trials in one able-bodied individual.

Written informed consent was obtained prior to the experiments per the IRB approval at Syracuse

University. The motorized FES-cycling testbed is described in Chapter 3 (Section 3.4). The first
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Figure 4.1: Torque tracking for both five-minute cycling experiments: trial one (2 Nm) on the left
column and trial two (3 Nm) on the right column. The top plots show the integral torque error
eaw(t). The plots in the middle show the muscle control input (pulse width). The bottom plots
show a zoom-in version of the muscle input during the saturated regions with saturation limit
βm = 80 µs.

trial was implemented with a desired muscle torque amplitude of 2 Nm whereas the second trial

was implemented to track a torque amplitude of 3 Nm. The cycling trials illustrate representative

examples in which the rate at which muscle saturate vary depending on the torque demand (e.g.,

trial 2 saturates faster than trial 1 since the desired torque is higher). The control gains were kept

constant for both trials and are selected as km = 0.01, ks = 0.7, kaw = 0.4, ke = 1.5, α =

0.15,Γ = 0.0001 ∗ eye(15), N = 30, δt = 0.03s, kcl = 1.2. For the first 15 seconds, only

the cadence tracking loop is active to achieve a steady speed. After this initial phase, a warm-up

phase is activated for the muscle input with a low constant stimulation. Then, the torque tracking

loop is activated 90 seconds after the start of the trials. The torque tracking results of the two

cycling trials with different desired torques are illustrated in Figure 4.1. The first trial is shown
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Figure 4.2: Torque error (top plot) and FES input (bottom plot) for trial one (2 Nm) when the
system is not saturated (note that um = satβm(um)).

on the left and the second trial is shown on the right. It can be observed that both torque error

signals (top plots) remain bounded even when saturation occurs. The plots in the middle show

the input um and the saturated input satβm(um). The bottom plots show a zoom-in region where

the input reaches the saturation limit. It is illustrated that during the first trial muscles saturate

later in the experiment since the desired torque is lower than in the second trial where the system

saturates earlier (at 104 seconds). Regardless, the anti-windup compensation maintains the torque

tracking error bounded in both cycling trials. The torque error and muscle input of the first trial

are shown in Figure 4.2 during a 10-second window to illustrate the performance without muscle

saturation. Kinematic tracking results corresponding to the second cycling trial are illustrated

in Figure 4.3 for the 5-minute experiment. In Figure 4.3, it can be observed that the cadence

error ė (left plot) experiences a transient that is reduced about 30 seconds into the experiment

(as also illustrated in the right plot). Then, after 100 seconds, following the activation of the

muscle torque controller, the cadence tracking error increases but ultimately decreases around

200 seconds since the adaptive cadence controller accounts for the exogenous muscle input. The

adaptive estimates of the uncertain parameters in the cycle-rider system are depicted in Fig 4.4.

Note that the adaptive estimates converge to constant values after 150 seconds.
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Figure 4.3: Kinematic tracking of the second trial. Cadence tracking is shown on the left side and
the position error e(t) and filtered error r(t) are shown on the right.

4.4 Conclusion

In this chapter, a power tracking control design for muscles and an electric motor was developed

and implemented in cycling experiments to demonstrate its feasibility. An active torque tracking

controller with anti-windup compensation was designed to cope with muscle input saturation.

The muscle and motor control designs are motivated to exploit input-output data from the ac-

tive torque produced by the muscles to improve cadence tracking by using the muscle inputs as

feedforward terms into the motor cadence controller as developed in Chapter 3. The adaptive

cadence controller achieves exponential tracking and parameter estimation of the cycle-rider un-

certain parameters after a finite excitation condition is satisfied (i.e., after collecting sufficiently

rich input-output data). The muscle controller with the anti-windup term achieves GUUB torque

tracking. Two cycling trials with one able-bodied participant were performed. Results demon-

strated the efficacy of the anti-windup compensation to avoid error build-up when the input is

saturated.
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Figure 4.4: Adaptive estimates Θ̂(t) of the uncertain constant parameters computed during the
second cycling trial.



60

Chapter 5

Switched Concurrent Learning Adaptive

Control for Treadmill Walking using a

Lower-limb Hybrid Exoskeleton

In this chapter and based on [57], [58], a concurrent learning adaptive kinematic controller is

designed, analyzed, and implemented on the 4-DoF lower limb exoskeleton introduced in Chap-

ter 2 to provide hip and knee joint assistance during the stance and swing phases of walking.

The phase-based walking model is used to implement the concurrent learning controller to es-

timate the leg uncertain parameters by switching between the right and left leg stance models.

The stability analysis is rigorously developed using multiple Lyapunov functions to account for

the switching of the gait models yielding a dwell time condition to ensure convergence across

gait phase transitions. Experimental results in two able-bodied individuals are presented to il-

lustrate the performance of the adaptive kinematic controller for a constant treadmill walking

speed. An experimental comparison between the concurrent learning controller and a classical

gradient-based adaptive controller is also provided.
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5.1 Control Development

This section develops the control design for the human-exoskeleton system to track desired kine-

matic joint angle trajectories throughout the gait cycle. The control design is developed using

a switched adaptive-based concurrent learning approach that estimates unknown constant pa-

rameters in the dynamics in (2.5) using instantaneous and stored input-output data. To quantify

the tracking performance, the measurable joint angular position error e : R≥t0 → R4 and the

auxiliary filtered tracking error r : R≥t0 → R4 are defined as

e(t) = qd(t)− q(t), (5.1)

r(t) = ė(t) + αe(t), (5.2)

where α ∈ R>0 is a selectable constant control gain, and qd : R≥t0 → R4 are continuously

differentiable desired kinematic trajectories with bounded derivatives such that ||q̇d|| ≤ v, ||q̈d|| ≤

a, where v, a ∈ R>0 are known upper bounds. Taking the time derivative of (5.2), pre-multiplying

by Mσ, substituting the dynamics in (2.5), using (5.1), (5.2) and Property 8, and performing

algebraic manipulation yields the open-loop error dynamics as1

Mσṙ = YσΘ−Bρuσ − Cσr, (5.3)

where Yσ : Q4 × R4 × R≥t0 → R4×19, ∀σ ∈ S is a switched regressor matrix of known functions

and Θ ∈ R19 is a vector of unknown constant parameters, described in Section 5.2, defined as

YσΘ ≜Mσ(q̈d + αė) + Cσ(q̇d + αe) +Gσ + Pσ q̇. (5.4)

1Functional dependencies are omitted henceforth unless required for clarification.
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Given the open-loop error system in (5.3), the control input is designed as

uσ(t) = B−1
ρ

(
kσr + e+ YσΘ̂

)
,∀σ ∈ S, (5.5)

where kσ ∈ R4×4
>0 is a selectable diagonal constant gain matrix and the parameter estimates are

denoted as Θ̂ : R≥t0 → R19. The parameter estimation error Θ̃ : R≥t0 → R19 is defined as

Θ̃(t) = Θ− Θ̂(t). (5.6)

To estimate the unknown parameters, a switched ICL adaptive update law is designed as [32],

[36]
˙̂
Θσ ≜ ΓY T

σ r + kclΓ

p̄∑
p=1

YT
σ (tp)

(
Vσ(tp)− Yσ(tp)Θ̂(t)

)
, (5.7)

∀σ ∈ S. The update rule comprises two terms. The first term is the classical adaptive gradient

descent that drives parameter estimation in the direction of reducing tracking error. The second

term is an integral concurrent learning which uses the historical data stored in the stack to com-

pute the input-output estimation error and drive the parameters toward reducing the estimation

error. The second term guarantees convergence of the parameter estimates. The selectable posi-

tive Γ ∈ R19×19 is a definite diagonal matrix, kcl ∈ R>0 is a selectable gain, and a history stack

of size p̄ ∈ N records input-output data for parameter estimation and convergence [31], [40]. The

time at which the p-th data point is recorded in the stack is denoted by tp ∈ R>0, and the auxiliary

input Vσ : R≥t0 → R4 and output Yσ : R≥t0 → R4×19 functions are defined, respectively, as

Vσ(tp) =

∫ tp

tp−δt

Bρuσ(γ)dγ, (5.8)

Yσ(tp) = Φσ +

∫ tp

tp−δt

Ψσ(γ)dγ, (5.9)
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where δt ∈ R>0 denotes the integration time window in which input-output data is collected, and

the auxiliary regressors Φσ, Ψσ : Q4 × R4 × R≥t0 → R4×19 are designed as

ΦσΘ =Mσ(q(tp))q̇(tp)−Mσ(q(tp − δt))q̇(tp − δt), (5.10)

ΨσΘ = −Ṁσ q̇ + Cσ q̇ +Gσ + Pσ q̇. (5.11)

Remark 5. The vector Θ̂ are estimates of the constant uncertain parameters Θ that are described in

Section 5.2. The uncertain parameters in the dynamic model represent a combination of inertial

terms, torques due to gravity, and friction coefficients, which are not influenced by switching

effects. Alternatively, the adaptive update law in (5.7) is switching according to each walking

phase (σ = 1 or σ = 2) and depends on the switching regressor Yσ and the input-output data Yσ

and Vσ.

Integrating both sides of (2.5), applying integration by parts for the term Mσ q̈ and combining

Equations (5.10) and (5.11), yields2

ΦσΘ+

∫
δt

Ψσ(γ)Θdγ =

∫
δt

Bρuσ(γ)dγ, (5.12)

YσΘ = Vσ. (5.13)

Based on the input-output relationship in (5.13) and using (5.6), the concurrent learning update

law in (5.7) can be re-written in analytical form as

˙̂
Θσ = ΓY T

σ r + kclΓ

(
p̄∑

p=1

YT
σ (tp)Yσ(tp)

)
Θ̃(t). (5.14)

As specified in Remark 2 in Chapter 3, a singular-value maximization algorithm is implemented

for the history stack to improve the parameter estimation convergence.

2For simplicity, the notation of the limits of integration is expressed as δt to denote integration over the interval
[t− δt, t]
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After substituting (5.5) into (5.3) the closed-loop error system is obtained as

Mσṙ = −kσr + YσΘ̃− e− Cσr. (5.15)

Combining (5.2), (5.15), the time derivative of (5.6) and using (5.14) yields the following closed-

loop dynamics 
ė

Mσṙ

˙̃Θ

 =


r − αe

−kσr + YσΘ̃− e− Cσr

−ΓY T
σ r − kclΓ

(∑p̄
p=1 YT

σ (tp)Yσ(tp)
)
Θ̃

 . (5.16)

5.2 Unknown Constant Parameters

The Euler-Lagrange dynamic model in (2.5) satisfies the linear-in-the-parameters (LIP) prop-

erty [59]. This property allows the dynamic equation to be represented as a product of a regressor

matrix Y ∈ R4×19 and a vector of constant parameters Θ ∈ R19. In this work, the legs are as-

sumed to be symmetric (i.e., masses and lengths are considered the same for both legs). The
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vector of constant parameters can be expressed as

θ1 = It + 2MsL
2
s + 2MtL

2
s +MsL

2
t + 2MtL

2
t +Msl

2
s +Mtl

2
t − 2MsLsls − 2MtLtlt,

θ2 = Is + 2L2
sMs + 2L2

sMt +Msl
2
s − 2LsMsls,

θ3 = It +MsL
2
t +Msl

2
s +Mtl

2
t ,

θ4 = Is +Msl
2
s ,

θ5 = 2MsL
2
s + 2MtL

2
s +Msl

2
s − 2MsLsls,

θ6 = MsLsLt + 2MtLsLt −MtLslt,

θ7 = MtLslt +MsLsLt,

θ8 = MsL
2
t +MtLtlt,

θ9 = MsLsls,

θ10 = MsLtls,

θ11 = Msl
2
s ,

θ12 = g(2MsLs + 2MtLs −Msls),

θ13 = g(MsLt + 2MtLt −Mtlt),

θ14 = g(Mtlt +MsLt),

θ15 = gMsls,

θ16 = pRH ,

θ17 = pRK ,

θ18 = pLH ,

θ19 = pLK ,

(5.17)

where Ms,Mt, Is, It denote the mass and moment of inertia of the shank and thigh, respec-

tively; ls, lt denote the location of the center of mass (CoM) of the shank and thigh, respec-

tively, as illustrated in Figure 5.1. The viscous damping coefficients for each joint are denoted as

pRH , pRK , pLH , pLK . The parameters are divided in three main groups. The first group contains

the inertial parameters (θ1 − θ11) with units kgm2, the second group contains the torque parameters

(θ12− θ15) with units Nm, and the third group contains the unit-less friction coefficients (θ16− θ19).
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Figure 5.1: Schematic of the lower limbs depicting a subset of the uncertain constant parameters
in (5.17) assuming symmetry between legs.

5.3 Stability Analysis

The stability analysis is segregated into two theorems. Theorem 4 shows that exponential track-

ing is achieved for each individual gait phase, i.e, right leg stance (σ = 1) and right leg swing

(σ = 2) phases. As depicted in Figure 2.2, the right leg stance phase for the step n ∈ N starts

at time tσ=1
n ∈ R≥t0 with the right heel strike, and ends at time tσ=2

n ∈ R≥t0 before the left heel

strike at which the right leg swing phase starts. The next right heel strike initiates step n+1 at time

tσ=1
n+1. Theorem 5 develops a multiple Lyapunov analysis to demonstrate stability of the overall

system, i.e., the combination of both phases, right leg stance and swing phases of walking, ac-

counting for transitions across multiple steps. Using a dwell time analysis, Theorem 5 ensures

stability under a slow switching condition.

Leveraging Assumption 2, from Chapter 3, the history stack
∑p̄

p=1 YT
p Yp can be ensured to be

full rank by collecting sufficiently exciting data. The exciting data is recorded during a single
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treadmill walking pretrial at the same constant speed as in the experiments until the excitation

condition in Assumption 2 is satisfied since this condition is measurable. Assumption 2 is also

verified online during the actual experiments by continually collecting data (i.e., using the sin-

gular value maximization algorithm in [40]) to ensure the minimum eigenvalue of
∑p̄

p=1 YT
p Yp

is always increasing until a user selectable threshold is reached [32] (e.g., the threshold in the

experiments is selected larger than the threshold selected during the pretrial).

The following definition is exploited in the subsequent analysis.

Definition 1. The time intervals of the right leg stance and right leg swing phase during the step

n can be defined, respectively, as

T σ=1
n ≜ [tσ=1

n , tσ=2
n ), (5.18)

T σ=2
n ≜ [tσ=2

n , tσ=1
n+1), (5.19)

such that the time interval of the step n, including both gait phases, can be defined as

Tn ≜ T σ=1
n ∪ T σ=2

n = [tσ=1
n , tσ=1

n+1). (5.20)

Thus, the lengths of each time interval are defined as

Lσ=1
n ≜ tσ=2

n − tσ=1
n , (5.21)

Lσ=2
n ≜ tσ=1

n+1 − tσ=2
n . (5.22)

Theorem 4. Given the closed-loop error dynamics in (5.16), the control input in (5.5) and adaptive

law in (5.7) achieve exponential kinematic tracking for each individual walking phase (i.e., σ = 1

and σ = 2), provided the system satisfies the finite excitation condition in Assumption 2 from
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Chapter 3, such that

Vσ(t
σ
n +∆t) ≤ Vσ(t

σ
n)exp

(
−Λσ

β2
∆t

)
, ∀σ ∈ S, (5.23)

where Λσ ≜ min(α, ∥kσ∥, kclλ), and ∆t ∈ R>0 denotes an arbitrary time such that tσn + ∆t ∈

T σ
n ,∀σ ∈ S,∀n ∈ N.

Proof. Let Vσ : R27 × R≥t0 → R,∀σ ∈ S be a family of nonnegative, continuously differentiable

Lyapunov-like function candidates for each walking phase, defined as

Vσ(e, r, Θ̃) =
1

2
eT e+

1

2
rTMσr +

1

2
Θ̃TΓ−1Θ̃. (5.24)

The functions in (5.24) satisfy the following inequalities

β1 ∥ z ∥2≤ Vσ ≤ β2 ∥ z ∥2, ∀σ ∈ S, (5.25)

where z : R≥t0 → R27 is the lumped state defined as3

z ≜ [eT , rT , Θ̃T ]T , (5.26)

and the constants β1, β2 ∈ R>0 are defined as

β1 ≜ min
{
1

2
,
m

2
,
1

2
λmin{Γ−1}

}
,

β2 ≜ max
{
1

2
,
m

2
,
1

2
λmax{Γ−1}

}
,

where m and m are bounds from Property 5, and λmin{·}, λmax{·} denote the minimum and max-

imum eigenvalues of (·), respectively. After substituting for (5.16), the time derivative of (5.24)

3The size of z is obtained as the combination of the vectors e, r ∈ R4 and the parameter estimate error vector
Θ̃ ∈ R19.
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can be expressed as

V̇σ = eT (r − αe) + rT (−kσr + YσΘ̃− e) + rT (
1

2
Ṁσ − Cσ)r − Θ̃TΓ−1 ˙̂Θσ. (5.27)

By using Property 6, substituting (5.14), and canceling terms, (5.27) can be rewritten as

V̇σ = −αeT e− rTkσr − kclΘ̃
T

(
p̄∑

p=1

YT
σ (tp)Yσ(tp)

)
Θ̃(t). (5.28)

Based on Assumption 2, the history stack is positive definite and (5.28) can be upper bounded as

V̇σ ≤ −α∥e∥2 − ∥kσ∥∥r∥2 − kclλ∥Θ̃∥2,

V̇σ ≤ −Λσ∥z∥2, ∀σ ∈ S. (5.29)

Using the inequalities in (5.25) and (5.29), the exponential result in (5.23) can be obtained. Fur-

ther, exponential tracking is guaranteed and the following upper bound can be obtained for (5.26)

as

∥z(tσn +∆t)∥ ≤

√
β2
β1

∥z(tσn)∥exp
(
− Λσ

2β2
∆t

)
.

■

Theorem 4 shows exponential kinematic tracking for each individual gait phase. However, ensur-

ing the stability of the individual walking phases does not guarantee the stability of the overall

system with switching dynamics [14]. The subsequent analysis demonstrates exponential kine-

matic tracking under slow switching across multiple gait phase transitions.

Theorem 5. Let Vσ, ∀σ ∈ S be the family of Lyapunov functions defined in (5.24) that ensure

exponential kinematic tracking as in (5.23) for each walking phase during their corresponding

time intervals T σ
n . Suppose that for the time interval Tn ∪ Tn+1 defined in (5.20), the following
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inequality holds

Vσ(t
σ
n+1)− Vσ(t

σ
n) ≤ −Wσ(z(t

σ
n)), ∀σ ∈ S, (5.30)

where Wσ : R18 → R is a positive definite function. Furthermore, the transition from step n to

step n+ 1 contains the following sequence of switching event times

{tσ=1
n , tσ=2

n , tσ=1
n+1, t

σ=2
n+1}. (5.31)

Hence, the overall switched system ensures global exponential kinematic tracking, provided the

dwell time τd ∈ R≥0 satisfies the following condition on the interval Tn ∪ Tn+1

τd >
β2

Λσ=1 + Λσ=2

ln
(
β2
β1

)2

. (5.32)

Proof. Each gait phase lasts at least τd such that the following condition holds

Lσ
n ≥ τd, ∀σ ∈ S,∀n ∈ N. (5.33)

Using the bounds in (5.25), the following inequalities can be obtained

Vσ=1(t) ≤
β2
β1
Vσ=2(t), (5.34)

Vσ=2(t) ≤
β2
β1
Vσ=1(t). (5.35)

Using (5.33) with Lσ=2
n and (5.22), tσ=1

n+1 ≥ tσ=2
n + τd is obtained to express (5.23) as

Vσ=2(t
σ=1
n+1) ≤ Vσ=2(t

σ=2
n )exp

(
−Λσ=2

β2
τd

)
. (5.36)

Evaluating (5.34) at time tσ=1
n+1 and substituting for (5.36) yields

Vσ=1(t
σ=1
n+1) ≤

β2
β1
Vσ=2(t

σ=2
n )exp

(
−Λσ=2

β2
τd

)
. (5.37)



71

Using (5.33) with Lσ=1
n and (5.21), tσ=2

n ≥ tσ=1
n + τd is obtained to express (5.23) as

Vσ=1(t
σ=2
n ) ≤ Vσ=1(t

σ=1
n )exp

(
−Λσ=1

β2
τd

)
. (5.38)

Combining (5.38) and (5.35) evaluated at time tσ=2
n , and substituting into (5.37) yields the follow-

ing upper bound for Vσ=1 during the right leg stance phase as

Vσ=1(t
σ=1
n+1) ≤

(
β2
β1

)2

Vσ=1(t
σ=1
n )exp

(
−Λσ=1 + Λσ=2

β2
τd

)
. (5.39)

Similarly, for the right leg swing phase, combining (5.33), (5.23) using Lσ=1
n+1 and (5.22) as

tσ=2
n+1 ≥ tσ=1

n+1 + τd, and substituting the resulting expression into (5.35) evaluated at time tσ=2
n+1

yields

Vσ=2(t
σ=2
n+1) ≤

β2
β1
Vσ=1(t

σ=1
n+1)exp

(
−Λσ=1

β2
τd

)
. (5.40)

Combining (5.40) with (5.37), an upper bound for Vσ=2 during right leg swing phase is obtained

as

Vσ=2(t
σ=2
n+1) ≤

(
β2
β1

)2

Vσ=2(t
σ=2
n )exp

(
−Λσ=1 + Λσ=2

β2
τd

)
. (5.41)

The inequalities in (5.39) and (5.41) show that Vσ=1, Vσ=2 (i.e., the Lyapunov functions for the

right leg stance and swing phases, respectively) can be upper bounded by the same expression.

The subsequent analysis is developed to obtain the dwell time condition in (5.32). The analysis is

developed for the right leg stance phase and the condition can be obtained similarly for the swing

phase. Let the positive definite function in (5.30) be defined as Wσ=1 ≜ φ∥z(tσ=1
n )∥2, where

φ ∈ R>0. Substituting (5.39) and the lower bound in (5.25) into (5.30), and after some algebraic

manipulation the following expression is obtained

β2
2

β1
exp

(
−Λσ=1 + Λσ=2

β2
τd

)
− β1 ≤ −φ. (5.42)
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The expression in (5.42) can be further upper bounded as

exp
(
−Λσ=1 + Λσ=2

β2
τd

)
<

(
β1
β2

)2

. (5.43)

Solving the previous inequality for τd yields (5.32). Provided the condition in (5.32) and exploit-

ing [14, Th. 3.1], then ∥e∥, ∥r∥, ∥Θ̃∥ → 0 as t → ∞. Since Vσ > 0 and V̇σ ≤ 0, Vσ ∈ L∞

,∀σ ∈ S, then e, r, Θ̃ ∈ L∞, which implies that ė ∈ L∞ from (5.2), and Θ̂ ∈ L∞ from (5.6),

since Θ is a column vector of constant parameters. Since e, r, ė ∈ L∞ then, q, q̇ ∈ L∞, which

implies that Yσ,Φσ,Ψσ ∈ L∞ in (5.4), (5.10), and (5.11), and therefore uσ ∈ L∞ in (5.5). Con-

sequently, V ,Y ∈ L∞ from (5.8) and (5.9), respectively, which implies that ˙̂
Θ ∈ L∞ in (5.7).

Hence, q̈ ∈ L∞ from (2.5). ■
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5.4 Experiments

This section presents the procedures developed to evaluate the performance of the adaptive con-

trol design. The experimental protocol and results of the walking trials are described.

5.4.1 Experimental Protocol

Two trials of treadmill walking experiments were conducted. The first trial (Exp1) is a baseline

test in which the controller in (5.5) is implemented with a classical gradient-based adaptive up-

date law setting ˙̂
Θσ ≜ ΓY T

σ r, where the concurrent learning term in (5.7) was removed. Exp1

is implemented to draw comparisons with the concurrent learning controller designed in this

chapter. The second trial (Exp2) implemented the controller in (5.5) with the update law in (5.7)

including the concurrent learning term. All experimental trials were performed for eight minutes

on two different days for each subject, with the order of implementation of the trials randomized.

5.4.2 Participants

Two able-bodied subjects (S1 and S2: one male and one female, aged 22-31 years) participated in

the walking protocol at Syracuse University. Both participants provided written informed consent

as approved by the IRB at Syracuse University. The participants were instructed to avoid volun-

tarily contributing to the treadmill walking task. An orthotic boot was used to mechanically lock

the ankle joint and reduce its influence on propulsion. The individuals did not receive verbal or

visual feedback on their walking performance during the experiments. Prior to the experimental

trials, both participants became acclimated to the device and were exposed to a sufficient amount

of time to familiarize themselves with the electrical stimulation and feel comfortable wearing the

device.
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Table 5.1: Gain tuning and hyperparameter selection for all the experiments

Subject Experiment
Adaptive Hyper-parameters Feedback Gains Input Gains

kcl Γ p̄ δt (s) α kσ=1 kσ=2 km ke

S1
Exp1 0 0.02 ∗ diag(19) 0 0 3.5 [rk:0.7,lk: 2.3,rh: 0.8, lh:1] [rk:2.3, lk:0.7, rh:1.2, lh:0.7] Quad :3.2, Ham: 8 [rk:1.5,lk:1.5,rh:1,lh:1]
Exp2 4 0.13 ∗ diag(19) 50 0.03 2.3 [rk:0.7,lk: 2.3,rh: 0.8, lh:1] [rk:2.3, lk:0.7, rh:1.2, lh:0.7] Quad :3.2, Ham: 8 [rk:1.5,lk:1.5,rh:1,lh:1]

S2
Exp1 0 0.0002 ∗ diag(19) 0 0 3.5 [rk:0.7, lk:2, rh:0.8, lh:1] [rk:2, lk:0.7, rh:1.2, lh:0.7] Quad :4.8, Ham: 12 [rk:1.5,lk:1.5,rh:1,lh:1]
Exp2 4 0.13 ∗ diag(19) 50 0.03 2.3 [rk:0.7, lk:2, rh:0.8, lh:1] [rk:2, lk:0.7, rh:1.2, lh:0.7] Quad :4.8, Ham: 12 [rk:1.5,lk:1.5,rh:1,lh:1]

rk : right knee, rh : right hip, lk : left knee, lh : left hip.

Table 5.2: Percentage of time spent on each walking phase during 114 strides (228 steps), for an
average walking velocity of 0.48 steps/s

Subject Experiment %RS (σ = 1) %LS (σ = 2) %DS

S1
Exp 1 43.7% 42.8% 13.5%
Exp 2 40.7% 46.8% 12.5%

S2
Exp 1 45.0% 50.5% 4.5%
Exp 2 45.9% 46.9% 7.2%

Average 43.8% 46.7% 9.4%

5.4.3 Results

The results of Exp1 and Exp2 are presented in this section for both subjects (S1-S2). Table 5.1

reports the gain tuning and hyper-parameter selection for each experiment in three categories:

hyper-parameter selection of the adaptive controller (concurrent learning gain kcl, adaptive gain

matrix Γ, size of the history stack p̄, and integration window δt), feedback gains (α, kσ), and

tuning gains for individual actuators (km for muscles and ke for motors) as described in (2.6) in

Section 2.2. Table 5.2 reports the average time spent on each walking phase, including single

right or left stance and double support, for all subjects in both experiments. The trials lasted eight

minutes, during which a total of 114 strides (228 steps) were completed at an average walking

speed of 0.48 steps/s.

Kinematic Tracking

The joint kinematic tracking performance in Exp1 and Exp2 for both participants is reported in

Table 5.3, where the root-mean-square error (RMS) was calculated for e in (5.1) and r in (5.2)
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Figure 5.2: Average RMS tracking errors. The top plots show the average RMS position error e
across all joints during each gait cycle. The bottom plots show the average RMS filtered error r.
The performance plots in the left and right columns correspond to subject S1 and subject S2,
respectively.

for each step cycle, and then averaged across all joints and all cycles to obtain an overall RMS

error for each experiment. A Wilcoxon signed ranked test was applied to evaluate the pairwise

difference of the RMS tracking error across each gait cycle between the two experiments (i.e.,

Exp1-Exp2). The results indicate a significant difference (p-value< 0.05) across the step cycles

between experiments for both subjects. Figure 5.2 illustrates the RMS errors averaged across all

joints, where Exp1 is depicted in blue and Exp2 in orange. The average tracking performance

for subject S1 in Exp2 is illustrated in Figure 5.3 as a function of the gait cycle percentage. Fig-

ure 5.3a shows the average trajectory tracking for all joints (top plots illustrate the hip joints,
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(a) Kinematic trajectories as function of the gait cycle percentage. The top plots illustrate
the trajectories of the left and right hip joints. The bottom plots illustrate the trajectories of
the left and right knee joints. The desired trajectories (qd) are depicted in blue and the actual
average (±1 std) joint angles are depicted in orange.

(b) Kinematic tracking error as a function of the gait cycle percentage. The top plots illustrate
the error of the left and right hip joints. The bottom plots illustrate the error of the left and
right knee joints. The average (±1 std) position error e (rad) is depicted in orange whereas
the average (±1 std) error signals r, computed with ė in rad/s and e in rad, are depicted in
blue.

Figure 5.3: Kinematic tracking performance for subject S1 undergoing eight minutes of treadmill
walking at a speed of 0.48 steps/s during Exp2. The vertical dashed lines indicate the average
switching instances, where the orange background indicates σ = 1 and the blue indicates σ = 2.
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Table 5.3: Average RMS tracking error ērms and r̄rms. For each joint, the RMS value is calcu-
lated by averaging the error across all gait cycles, and then the RMS values of all joints are aver-
aged to obtain an overall measure of tracking error. The difference is calculated and compared
using a Wilcoxon signed ranked test for pairwise differences on each gait cycle. ∗ denotes p-value
< 0.05.

Subject Experiment erms (rad) rrms (rad/s)

S1
Exp 1 0.06 0.35
Exp 2 0.05 0.31
Diff. 0.01∗ 0.04∗

S2
Exp 1 0.14 0.79
Exp 2 0.10 0.44
Diff 0.04∗ 0.35∗

whereas the bottom plots illustrate the knee joints), where the desired trajectory is depicted in

blue and the actual average trajectory across all gait cycles is depicted in orange (with ±1 std

depicted in the shaded orange along the trajectory). Similarly, the tracking error is illustrated

in Figure 5.3b, where the error e in orange and r in blue are averaged across all gait cycles. In

Figure 5.3, the background colors indicate the gait phase, where σ = 1 is depicted in orange

and σ = 2 in blue (as illustrated in Figure 2.2). Moreover, the dashed lines indicate the average

switching instances transferring from one phase to the other. The gait cycle is expressed as a per-

centage of a full stride, with the right heel strike used as the reference point (i.e., at the right heel

strike, the gait percentage is 0%).

Parameter Estimation

The parameter estimates are divided into three categories: inertial parameters (kgm2) shown in

blue, torque parameters (Nm) shown in orange, and viscous-damping coefficients shown in green

in Figure 5.4 (see Section 5.2). Figure 5.4 illustrates the evolution of the parameter estimation

for all experiments, with individual plots showing each category and the bottom plots showing

all parameters combined. The plots in the left column depict the performance during Exp2, while

the plots in the right column show the performance during Exp1 for both subjects. The parameter
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(a) Exp2 S1 (b) Exp1 S1

(c) Exp2 S2 (d) Exp1 S2

Figure 5.4: Parameter estimates for subject S1 corresponding to (a) Exp2 and (b) Exp1, and
subject S2 corresponding to (c) Exp2 and (d) Exp1. The estimation of the uncertain parameters
(described in Section 5.2) is illustrated for eight-minute treadmill walking experiments. The
parameters are divided into three groups: Inertial parameters (blue) in kgm2, gravitational torque
parameters (orange) in Nm, and viscous-damping coefficients (green). The bottom plots for all
experiments depict all the parameter estimates combined.
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Figure 5.5: Evolution of the minimum eigenvalue of the history stack, i.e., λmin{
∑p̄

p=1 YT
p Yp}

for (a) subject S1 and (b) subject S2 during Exp2. The dashed line in red shows the user-defined
finite excitation condition λ.

estimates were initialized at zero, i.e., Θ̂(t0) = zeros([19, 1]), for all the experiments. Figure 5.5

shows the evolution of the minimum eigenvalue of the history stack under Exp2 for both subjects,

with the dashed line indicating the finite excitation condition threshold λ selected for these ex-

periments. Figure 5.6 illustrates the average contribution of each term in the adaptive update law

in (5.7) under Exp2 for both participants, with the classical gradient-descent term shown in green

and the integral concurrent learning term shown in purple.

Control Effort

Figure 5.7 shows the average control input commanded across all gait cycles for subject S1 under

Exp2. The computed command uσ is illustrated for all joints in Figure 5.7a. The control input

in (5.5) can be divided into two terms: the feedback term (kσ + e) and the adaptive term (YσΘ̂).

The contribution of each of these terms on the control signal is illustrated in Figure 5.7b, where



80

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a) Exp2 S1

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Exp2 S2

Figure 5.6: Magnitude of the average (±1 std) contribution of each term in the adaptive update
law in (5.7) as a function of the gait cycle percentage during Exp 2 for both participants. The
classical gradient-descent term is defined as Classical = ∥ΓY T

σ r∥ (green), whereas the integral
concurrent learning term is defined as CL = ∥kclΓ

∑p̄
p=1 YT

σ (tp)(Vσ(tp)− Yσ(tp)Θ̂(t))∥ (purple).
The vertical dashed lines indicate the average switching instances, where the orange background
indicates σ = 1 and the blue indicates σ = 2.

the average feedback term is depicted in blue and the average adaptive term is depicted in orange.

Figure 5.8 shows the FES input delivered to the quadriceps (orange) and hamstrings (blue) in

subject S1 on both legs during Exp2 for a period of 15 seconds. The average RMS control in-

put generated for all experiments is shown in Figure 5.9 presented for subjects S1 (top) and S2

(bottom) across all gait cycles. The RMS value of the feedback and adaptive input contributions

is shown in Figure 5.10, where the average RMS feedback (blue) and adaptive (orange) input

contributions across all joints is presented for subject S1 (top plots) and subject S2 (bottom plots)

during all gait cycles.
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(a) Average (±1 std) control inputs for subject S1. The top plots illustrate the control input
delivered to the left and right hip joints and the bottom plots illustrate the input delivered
to the left and right knee joints. The vertical dashed lines indicate the average switching
instances, where the orange background indicates σ = 1 and the blue indicates σ = 2.

(b) The average (±1 std) control contributions in the controller in (5.5) are illustrated. The
top plots illustrate the control contribution delivered to the left and right hip joints and the
bottom plots illustrate the control contribution delivered to the left and right knee joints. The
blue plot shows the state feedback term (ker + e) while the orange signal shows the adaptive
term contribution YσΘ̂ for each joint.

Figure 5.7: Average control inputs for subject S1 (a) applied to the hip and knee joints and (b)
segregated by the contribution of the feedback and adaptive terms.



82

100 105 110 115

35

40

45

50

55

60

100 105 110 115

35

40

45

50

55

60

Figure 5.8: FES pulse width input (µs) delivered to left (top) and right (bottom) quadriceps (or-
ange) and hamstrings (blue) for subject S1 during experiment Exp2. The input signal is shown
for an interval of 15 seconds.

5.5 Discussion

This section provides a discussion of the results presented in the previous section, focusing on

three key aspects: gain tuning and hyper-parameter selection, tracking and input performance,

and parameter estimation convergence.

5.5.1 Gain tuning and hyper-parameter selection

Gain tuning had a direct impact on gait performance during experiments. The tuning strategy

involved initially selecting the feedback and input gains (listed in Table 5.1) to achieve a sat-

isfactory, fast response of the electric motors and prevent discomfort in the participants due to

applying FES. Next, the adaptive gain matrix Γ was tuned to ensure a bounded response for the
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Figure 5.9: RMS control input uσ averaged across all joints for all gait cycles. The top plot illus-
trates the average input delivered to subject S1 for both experiments, whereas the bottom plot
shows the input delivered to subject S2.

adaptive estimation during the transient phase of the experiments, and kcl was tuned for Exp2

to ensure the concurrent learning term had a significant contribution in the input, as shown in

Figure 5.6. Notably, tuning Γ proved to be considerably more challenging in Exp1 for both partic-

ipants, as the system was highly sensitive to this parameter resulting in large transients. Table 5.1

shows the selection of Γ for the participants, where the adaptive gain values differ significantly

between experiments and participants with much lower values for Exp1 compared to Exp2 (i.e.,

due to the sensitivity of Γ directly influencing the closed-loop performance). Testing different

gain values in Γ resulted in rapid unbounded behavior on the estimates in Exp1, which imposed

the need for tuning using an iterative (trial and error) approach. Drastically different in Exp2, the

same Γ worked for both subjects (despite different body types), and the adaptive system was less

sensitive to variations in this gain, leading to satisfactory and predictable performance from the

beginning of the experiment. The gain tuning process in both experiments highlights one of the
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Figure 5.10: RMS feedback and adaptive control input contributions averaged across all joints
for all gait cycles. The top plots illustrate the average inputs delivered to subject S1 for both
experiments, whereas the bottom plots show the inputs delivered to subject S2.

advantages of concurrent learning over classical adaptive learning, as concurrent learning allows

for flexible tuning, which is a key aspect in the development of human-in-the-loop applications.

The size of the history stack p̄ and the integration window δt were selected exactly the same for

both participants to demonstrate the feasibility and allow for fair comparisons between experi-

ments. The minimum requirement for p̄ is the size of the parameter vector Θ (i.e., dimension 19

in this case) to allow for a full rank matrix. The integration window must be selected to balance

computational cost and the level of smoothness that is desired for the integral input and output.
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5.5.2 Tracking and Input Performance

Table 5.3 presents the tracking performance results. Exp2 leverages the concurrent learning

controller and significantly outperforms Exp1 using the classical adaptive controller for both

participants (p-value < 0.05). As depicted in Figure 5.2, the RMS error e and r are smaller for

Exp2 compared to Exp1 for the majority of the time. To ensure a fair comparison of the tracking

results, the inputs delivered to the system were also analyzed. Figure 5.9 shows that, for subject

S1, the input levels reached similar values towards the end of the experiments for both methods.

For subject S2, it can be observed from Figure 5.9 that Exp2 delivered less input than Exp1 and

achieved a better tracking performance.

The feedback and adaptive control term contributions change during the walking experiments.

In Figure 5.10 (right column) corresponding to Exp1, the feedback term takes over during the

initial phase of the trials while the adaptive term slowly increases. This slow growth of the adap-

tive term is due to the critical tuning of the Γ matrix required to ensure the boundedness of the

adaptive term in Exp1 (and satisfactory closed-loop tracking performance) for both participants.

Conversely, in Exp2, the adaptive term has a significant contribution throughout the experiment

for both subjects as depicted in Figure 5.10 (left column). This demonstrates the benefit of using

the concurrent learning controller as it allows to increase the influence of the adaptive term from

the beginning of the experiments and reduces dependence on the control feedback term. The

reduced reliance on the feedback term is particularly relevant for the control of hybrid exoskele-

tons where high-gain feedback may yield undesired, aggressive behaviors or discomfort due to

applying large FES inputs.

5.5.3 Parameter estimation convergence

Figure 5.4 presents the trajectories of the parameter estimates corresponding to Exp1 (right col-

umn) and Exp2 (left column) for both participants. The trajectories of the estimates obtained
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in Exp2 reach a steady state value for both participants compared to several estimates obtained

in Exp1 that do not settle to a steady state value or remain static (i.e., due to the lack of persis-

tence of excitation). Parameter convergence is not guaranteed during the implementation of the

classical adaptive controller in Exp1 due to the switching effects. Moreover, the gradient-based

controller traditionally achieves asymptotic tracking without switching [60]. Thus, the classical

adaptive controller cannot be used to guarantee the stability of the closed-loop error system due

to the switching effects. Hence, its experimental implementation is performed as a benchmark

and is limited due to the sensitivity to gain tuning and experiences poor transient performance,

which can result in unstable walking behavior due to switching. Similar undesirable behavior is

observed in some of the trajectories of the parameter estimates because they exhibit unbounded

growth (and do not converge to a steady state value) as depicted in Figure 5.4 (right column).

The lack of steady-state convergence of the adaptive estimates obtained in the implementation

of the gradient-based controller is expected due to the inability to guarantee convergence (i.e.,

since persistence of excitation is not injected in experiments due to the ensuing detrimental gait

performance) and the switching of the update law in (5.7). In contrast, the concurrent learning

controller implemented in Exp2 ensures parameter convergence through the developed stability

analysis. This is achieved by ensuring that the history stack is full-rank, as demonstrated in Fig-

ure 5.5, where the minimum eigenvalue is maximized to accelerate convergence. Unlike Exp1,

the switching does not affect the steady-state convergence of the parameters in Exp2, rendering it

a better design alternative for switching systems.

The uncertain parameters in the dynamic model in (2.5) vary across participants. Despite the

stability analysis guarantees exponential tracking and parametric convergence, the parameter es-

timates do not converge to the actual values that have been reported in literature-based anthropo-

metric data [61]. However, fundamentally, the parameters described in Section 5.2 are unknown

and user-dependent. The lack of convergence of the parametric estimates to the reported, actual

parameters can be partially attributed to the inherent challenges of real-time experiments, where

the system is exposed to noisy measurements and perturbations that affect the input-output re-
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lationship in (5.13), thereby affecting the direction of the gradient. Moreover, the design of the

adaptive controller exploits modeling assumptions that may differ from the real dynamics, affect-

ing the input-output relationship and thus, potentially driving the parameter estimates away from

their true values.

The experimental results demonstrate the feasibility of the control design in (5.5) and concurrent

learning update law in (5.7) to actuate a hybrid lower-limb exoskeleton for treadmill walking.

One of the contributions of this work was to demonstrate that the controller achieves satisfactory

and customized walking performance by combining muscle and motor inputs. The muscle re-

sponse is nonlinear and uncertain, and thus, can yield jerky walking motion if muscles are not

controlled systematically. An additional challenge for the control of hybrid exoskeletons is that

muscles fatigue [12], which degrades tracking performance compared to powered exoskeletons

without FES. The concurrent learning design outperforms classical adaptive controllers in differ-

ent aspects, such as mitigating the need for fine-tuning the control gains for different participants,

reducing the reliance on high-gain feedback terms that make the system susceptible to large con-

trol inputs, and ensuring convergence of the parameter estimates that are robust to the switching

effects. However, the current gait control design experiences the following limitations that moti-

vate future extensions: (i) The model does not consider the double-stance support phase. This is

a mild assumption for the current implementation as demonstrated by the satisfactory real-time

walking experiments. As shown in Table 5.2, the double support phase lasts on average less than

10% of the total step cycle duration, which is minimal compared to the single-stance support

phases. Extension of the presented model to account for the double support is motivated for the

future design of adaptive gait controllers. (ii) Additional analysis is motivated to examine and

guarantee the convergence of the parametric estimates to the reported parameters in literature

based on anthropometric data [61]. The real-time experiments experience disturbances and noise

that are complex factors to be included in the model, control design, and analysis in the context

of adaptive control [29]. Future extensions are motivated to improve the quality of data used to

establish the input-output relationship and also account for disturbances and unmodeled effects as
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discussed in [62], [63].

5.6 Conclusion

A switching concurrent learning adaptive controller was designed for joint kinematic tracking us-

ing a cable-driven hybrid exoskeleton during treadmill walking at a constant speed. A switching

Euler-Lagrange model was developed to account for the gait phase transitions. Hybrid actuation

was implemented combining FES to induce muscle contractions in the quadriceps and hamstrings

muscle groups and electrical motors actuating Bowden cables. The switching adaptive controller

was also designed to estimate the constant uncertain parameters and use the adaptive estimates

as feedforward input terms in the tracking controller in (5.5); such adaptation is determined by a

concurrent learning technique inspired by [32], [36], which exploits input-output data to achieve

an exponential tracking result and convergence of the adaptive estimates. Thus, this work lever-

ages concurrent learning for kinematic tracking in the human-exoskeleton system using switched

systems tools. A dwell time condition [14] was developed to demonstrate exponential tracking of

the overall switching system using a multiple Lyapunov function approach.
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Chapter 6

Conclusions

6.1 Contributions and conclusions

This dissertation focuses on developing adaptive controllers that leverage kinematic and torque

feedback for powered lower-limb cycles and exoskeletons modeled as nonlinear, time-varying,

and uncertain switched systems. Closed-loop adaptive controllers are developed to achieve the

desired tracking performance while coping with the inherent uncertainties in the human-robot

dynamics by estimating their unknown parameters. Specifically, this dissertation focuses on the

design and analysis of switching concurrent learning controllers using Lyapunov-based methods.

The design, analysis, and implementation of controllers that activate muscles and motors for

assisted cycling and walking have implications for advancing gait rehabilitation. Ultimately, the

benefits of hybrid exoskeletons and motorized cycles have to be examined in clinical studies with

people with neurological conditions.

In Chapter 3, a switching integral concurrent learning controller was developed to track a desired

cadence for a motorized FES-cycling system. The adaptive cadence controller was designed to

improve tracking and generate estimates of the uncertain parameters in the cycle-rider dynam-
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ics and uncertain constant muscle control effectiveness in real time. Due to muscle switching

needed to engage muscles in the left and right legs during FES-cycling, the adaptive controller

exploits a switching update law where the muscle torque control input is exploited as a feedfor-

ward control term into the electric motor controller. Rather than canceling the muscle input as

an exogenous input, the adaptive control approach embeds the muscle input into the regressor

and facilitates estimating the muscle’s uncertain effectiveness. A Lyapunov stability analysis for

switching systems was developed leveraging a common Lyapunov function to demonstrate expo-

nential kinematic tracking and parameter estimation convergence after a FE condition is satisfied.

Particularly, a recent result for nonautonomous switched systems was exploited since a negative

semi-definite Lyapunov derivative was obtained during the initial learning phase (i.e., when the

FE condition is not yet satisfied) [41].

To demonstrate the feasibility of the control design, three ten-minute cycling experiments were

implemented in eight able-bodied individuals resulting in 24 total cycling trials. Moreover, three

participants with NCs tested the system during three five-minute trials. The cycling experiments

were conducted to examine the control performance under different cadence trajectories and

learning conditions. The first cycling experiment (EXP1) illustrates the system’s performance

by implementing a constant target cadence and initializing the history stack empty and the adap-

tive estimates to zero (i.e., no previous learning or knowledge of the system is exploited). The

second experiment (EXP2) illustrates the system’s performance implementing a staircase-like

cadence trajectory (i.e., changing the target cadence during the transient until reaching a steady-

state constant cadence). EXP2 facilitated the satisfaction of the predetermined FE condition. The

third experiment (EXP3) tracked a constant cadence trajectory exploiting the learned parameters

computed at the end of the cycling trial EXP2. Satisfactory cadence tracking performance was

obtained by initializing the adaptive update law with the learned parameters from EXP2; thus,

illustrating the ability of the controller to learn useful estimates for tracking during a separate

cycling trial. Results from all participants showed that the adaptive controller satisfied the pre-

determined FE condition in EXP2 compared to EXP1, where the predefined FE condition is not
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satisfied; yet, the minimum eigenvalue remained positive during all trials. By leveraging pre-

viously learned data in the cycling experiments from EXP2 into EXP3, across all participants,

it was observed that the position error e(t) presented a significantly faster convergence in the

cycling trial EXP3 compared to EXP1 and EXP2.

One of the main contributions of this work was the ability to simultaneously estimate uncertain

parameters of the cycle-rider system and the uncertain muscle control effectiveness, which was

considered to be a unknown constant. Future efforts will expand the developed work to include

models of the control effectiveness that are state-dependent and time-varying [12]. Complex mod-

els of the musculoskeletal dynamics can be used in subsequent work to potentially enhance the

design of the adaptive update law and control design. Moreover, leveraging the control structure

developed in this paper, multi-objective control such as power tracking for FES-cycling will be

examined.

In Chapter 4, a power-tracking control design for muscles and an electric motor was developed

and implemented in cycling experiments to demonstrate its feasibility. For the first time, an active

torque tracking controller with anti-windup compensation was designed to cope with muscle in-

put saturation. The switched concurrent learning cadence controller, developed in Chapter 3, was

implemented to maintain the cycle at a constant speed. The muscle and motor control designs

are motivated to exploit input-output data from the active torque produced by the muscles to im-

prove cadence tracking by using the muscle inputs as feedforward terms into the motor cadence

controller. The adaptive cadence controller achieves exponential tracking and parameter esti-

mation of the cycle-rider uncertain parameters after a finite excitation condition is satisfied (i.e.,

after collecting sufficiently rich input-output data). The muscle controller with the anti-windup

term achieves GUUB torque tracking. Two cycling trials with one able-bodied participant were

performed. Results demonstrated the efficacy of the anti-windup compensation to avoid error

build-up when the input is saturated. Future work will be oriented to develop adaptive methods

to cope with a nonlinear, state-dependent, and potentially time-varying control effectiveness term.
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Testing in additional participants will be conducted in future efforts considering the case where

the participants exert volitional effort to characterize the performance of the torque controller.

In Chapter 5 and for the first time, a switching concurrent learning adaptive controller was de-

signed for joint kinematic tracking using a cable-driven hybrid exoskeleton during treadmill

walking at a constant speed. A switching Euler-Lagrange model was developed to account for

the gait phase transitions. Hybrid actuation was implemented combining FES to induce muscle

contractions in the quadriceps and hamstrings muscle groups and electrical motors actuating

Bowden cables. The switching adaptive controller was also designed to estimate a set of constant

uncertain parameters and use the adaptive estimates as feedforward input terms in the tracking

controller in (5.5); such adaptation is determined by a concurrent learning technique inspired

by [32], [36], which exploits input-output data to achieve an exponential tracking result and con-

vergence of the adaptive estimates. Thus, this chapter leverages concurrent learning for kinematic

tracking in the human-exoskeleton system using switched systems tools. A dwell time condi-

tion [14] was developed to demonstrate exponential tracking of the overall switching system

using a multiple Lyapunov function approach.

The experimental results obtained with the concurrent learning controller demonstrated improved

kinematic tracking performance for knee and hip joints bilaterally compared to the classical

gradient-based adaptive controller. The designed concurrent learning controller holds the poten-

tial to be tested in a larger sample size of participants including people with movement disorders

after a stroke or SCI. Future work includes enhancing the robustness of the developed controller

to muscle fatigue and external disturbances (e.g., muscle spasms) that can affect the conver-

gence of the adaptive estimates in experiments involving individuals with movement disorders.

In addition, the adaptive controller will be implemented in walking trials with different speeds

to examine the convergence of the estimates of the parameters and assess the performance for

tracking diverse gait patterns.
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6.2 Research directions

The experiments conducted in this dissertation were developed to demonstrate the feasibility of

the developed control methods. However, future work will involve validating these methods in

mechanistic and longitudinal clinical studies. This is likely to present additional control chal-

lenges due to reduced muscle mass and strength, faster rates of muscle fatigue, and spasticity.

Personalizing the control gains to balance the need for suitable tracking performance with the

sensory challenges that may limit FES control authority in people with neurological conditions

is a potential direction. Novel adaptive control techniques are also motivated to identify critical

parameters of the dynamic system and improve how control is shared to enhance user assistance

as muscle fatigues.

6.2.1 Input-Output Relationship

As presented in the experimental results in all chapters of this dissertation, one limitation of the

current work is that the estimated parameters of the concurrent learning method do not appear to

converge to the actual values based on anthropometric data [61]. The potential mismatch between

the estimated and actual parameters can arise due to the definition of the input-output (I-O) rela-

tionship described in (3.18) and (5.13), which is measurable and assumed to fully describe the

dynamic behavior of the system. However, in real-time experiments, external disturbances and

measurement noise are likely affecting this I-O relationship. For example, at each sampled time

tp, an unknown and unmeasurable disturbance (or perturbation) ϵp influences the I-O relation as

follows

Y(tp)Θ = V(tp) + ϵp. (6.1)
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As a result, when computing the concurrent learning term of the update law in (3.19) or (5.14),

substituting the perturbed input-output relationship yields

p̄∑
p=1

(
YT

σ (tp)Y(tp)Θ̃− YT
σ (tp)ϵp

)
, (6.2)

where the perturbation is changing the direction of the gradient, precluding the system from con-

verging in the direction that reduces the estimation error Θ̃ (i.e., achieve convergence to the actual

parameters). Addressing this limitation is an active area of research in the adaptive control com-

munity [29], especially during real-time experiments with human subjects. Future research is

motivated from a theoretical perspective, where the control design and stability analysis allow for

unmodeled effects and perturbations due to the human-robot interaction or inaccuracies of the

measurements. Preliminary work has been developed in this direction to account for noisy mea-

surements with linear systems [62]. However, the analysis for nonlinear systems with switching

effects remains an open question that motivates future research beyond the work developed in this

thesis.

6.2.2 Convergence Rate

An important finding in the experimental results presented in Chapter 3 and Chapter 5 was the

slow convergence rate observed in the estimation of parameters, indicated by the significantly

small minimum eigenvalue. The experimental protocol outlined in Chapter 3 demonstrated that

this convergence rate can be influenced by the specific trajectories employed in each task. More-

over, it is fundamentally affected by the formulation of the update law. In this dissertation, an

adaptive ICL update law was employed, which exploits a gradient-based algorithm and a history

stack of input-output data collected. However, there have been preliminary efforts to enhance

gradient-based algorithms by incorporating high-order tuners and acceleration methods. These

advancements have shown promise in increasing the convergence rate of adaptive concurrent
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learning techniques [64], [65] and enhancing transient performance [66]. Consequently, future

research directions are motivated to explore similar techniques and apply them, particularly in the

context of integral concurrent learning approaches.
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