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Abstract 

Autonomous control of mobile robots has attracted considerable attention of researchers in 

the areas of robotics and autonomous systems during the past decades. One of the goals in the field 

of mobile robotics is development of platforms that robustly operate in given, partially unknown, 

or unpredictable environments and offer desired services to humans. Autonomous mobile robots 

need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of 

enormous reported work on autonomous navigation control systems for mobile robots, achieving 

the goal above is still an open problem. Robustness and reliability of the controlled system can 

always be improved. 

The fundamental issues affecting the stability of the control systems include the undesired 

nonlinear effects introduced by actuator saturation, time delay in the controlled system, and 

uncertainty in the model. This research work develops robustly stabilizing control systems by 

investigating and addressing such nonlinear effects through analytical, simulations, and 

experiments. The control systems are designed to meet specified transient and steady-state 

specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot 

AR.Drone 2.0) mobile robots. 

Firstly, an effective autonomous navigation control system is developed for X80SV using 

logic control by combining ‘go-to-goal’, ‘avoid-obstacle’, and ‘follow-wall’ controllers. A 

MATLAB robot simulator is developed to implement this control algorithm and experiments are 

conducted in a typical office environment. The next stage of the research develops an autonomous 

position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-

feedback control is used to achieve stabilization. The quadrotor’s nonlinear dynamics and 

kinematics are implemented using MATLAB S-function to generate the state output. 
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Secondly, the white-box and black-box approaches are used to obtain a linearized second-

order altitude models for the quadrotor, AR.Drone 2.0. Proportional (P), pole placement or 

proportional plus velocity (PV), linear quadratic regulator (LQR), and model reference adaptive 

control (MRAC) controllers are designed and validated through simulations using 

MATLAB/Simulink. Control input saturation and time delay in the controlled systems are also 

studied. MATLAB graphical user interface (GUI) and Simulink programs are developed to 

implement the controllers on the drone.  

Thirdly, the time delay in the drone’s control system is estimated using analytical and 

experimental methods. In the experimental approach, the transient properties of the experimental 

altitude responses are compared to those of simulated responses. The analytical approach makes 

use of the Lambert W function to obtain analytical solutions of scalar first-order delay differential 

equations (DDEs). A time-delayed P-feedback control system (retarded type) is used in estimating 

the time delay. Then an improved system performance is obtained by incorporating the estimated 

time delay in the design of the PV control system (neutral type) and PV-MRAC control system. 

 Furthermore, the stability of a parametric perturbed linear time-invariant (LTI) retarded-

type system is studied. This is done by analytically calculating the stability radius of the system. 

Simulation of the control system is conducted to confirm the stability. This robust control design 

and uncertainty analysis are conducted for first-order and second-order quadrotor models.  

Lastly, the robustly designed PV and PV-MRAC control systems are used to autonomously 

track multiple waypoints. Also, the robustness of the PV-MRAC controller is tested against a 

baseline PV controller using the payload capability of the drone. It is shown that the PV-MRAC 

offers several benefits over the fixed-gain approach of the PV controller. The adaptive control is 

found to offer enhanced robustness to the payload fluctuations.
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1 CHAPTER 1 

Introduction 

This chapter discusses the motivation and problem statement for this research. This is 

followed by describing the two systems used for the research, and also reporting the major work 

done in this research area. It then continues with presenting the significance, objectives, and 

contributions of the research work. The chapter ends with presenting the approaches applied to 

address the problems and the research scope. 

1.1 Motivation and Problem Statement 

1.1.1 Motivation. A mobile robot is an automatic machine that is capable of movement in 

a desired way and there exist various types. Autonomous control of mobile robots has been a focus 

of active research in the past decades, and almost every major university has one or more labs for 

mobile robot research [15]. Autonomous mobile robots need to be equipped with effective, robust 

and/or adaptive, navigation control systems. 

An autonomous mobile robot intended to perform its functions must be able to generate 

trajectories that are safe, smooth, and comfortable. Cutting-edge research is continuing to increase 

the viability of aerial robots (quadcopters) by making advances in multi-craft communication, 

environment exploration, and maneuverability [16]. If all of these developing qualities are 

combined together, quadcopters can become capable of advanced autonomous missions currently 

not possible with any other vehicle [16]. 

Mobile robotics is one of the fastest growing fields of engineering. According to 

International Federation of Robotics (IFR), in 2013, about 4 million service robots for personal 

and domestic use were sold, 28% more than in 2012; the value of sales increased to US$1.7 billion 

[17]. Cutting-edge sensor technologies such as high-definition light detection and ranging 
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(LIDAR) and stereo vision, in addition to the evolution of robotics architectures and development 

tools, are allowing these complex devices to become increasingly common [18]. By the end of 

2015, the US Department of Defense (DOD) has mandated that one third of all military vehicles 

must be autonomous [18]. With the US Department of Transportation’s Federal Aviation 

Administration (FAA) release of proposed framework regulations for unmanned aircraft systems, 

commercial drones, the future of autonomous aerial mobile is coming fast. The CEO of 3D 

Robotics, Chris Anderson, speaking at an event on the future vision of the world, said [19]: 

 Drones will collect detailed data for industrial applications and fly above an 

individual’s head like a pet bird. Now that we’ve made these things work, it’s time 

to work with them. The applications are huge, it’s going to be a huge effort to 

integrate aerial robotics into the world of agricultural scenery and technology. 3D 

Robotics wants to be ready when it does. 

1.1.2 Problem statement. Mobile robot control can be seen as a mixture of engineering 

and cognitive science, and as such it presents unusual concerns to the control systems engineer 

[20]. One of the goals in the field of mobile robotics is development of platforms that robustly 

operate in given, partially unknown, or unpredictable environments and offer desired services to 

humans. In order to achieve this goal, autonomous mobile robots need to be equipped with 

appropriate control systems. Such control systems are supposed to have navigation control 

algorithms that will make mobile robots successfully accomplish different motions and behaviors. 

In spite of enormous reported work on autonomous navigation systems for mobile robots 

using different algorithms such as proportional-integral-derivative (PID), pole placement, model 

predictive control (MPC), linear quadratic Gaussian (LQG), adaptive control (AC), artificial 
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intelligent (AI), machine learning, and fuzzy logic, achieving the goal above is still an open 

problem. Robustness and reliability of the controlled system can always be improved.  

Firstly, actuator saturation is one issue that needs to be considered when designing control 

systems. Secondly, the time delay in the controlled system have to be investigated and possibly 

estimated, and then taken into account in the design. Moreover, the system to be controlled has 

uncertainty, internally and externally, and needs to be considered in designing the control systems. 

These undesired nonlinearities, among others, affects the stability and performance of the control 

systems.  

Without an effective, adaptive and/or robust control algorithms to deal with such nonlinear 

effects, stabilization of autonomous navigation control systems for mobile robots remain a 

problem. This research work develops robustly stabilized control systems by investigating and 

addressing such nonlinear effects through analytical, simulations, and experiments. 

1.2 Significance of Work 

The main highlight of this research work is the development of an effective adaptive 

control system to address the parametric uncertainty in processes or systems such as an aircraft. 

The robustly designed control system has been successfully implemented to deal with payload 

fluctuations of quadcopter. The results obtained shows the benefits adaptive control offers over 

fixed-gain approach. The adaptive control is found to offer enhanced robustness to the payload 

fluctuations (change in mass), which may vary with time, and/or are initially uncertain. For 

example, adaptive control is applied to the NASA’s Helios, a Very Flexible Aircraft (VFA), see 

Figure 1.1 [21]. These aircrafts are characterized by wings with a large aspect ratio and strong 

rigid flexible coupling. During flight, the local angle of attack along the wing is expected to change 

significantly as the wing structure flexes. Furthermore, any uncertainty in the rigid body dynamics 
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will be exacerbated by uncertainty in the flexible dynamics [21]. Adaptive control is used to deal 

with the parametric uncertainty. Another huge area of application is in the service industry, where 

commercial drones are being used in the delivery of packages of varying masses, see Figure 1.2. 

Amazon is exploring the use of drones for package delivery [22]. 

 

Figure 1.1. Adaptive control are used for Very Flexible Aircraft (VFA): NASA’s Helios [21]. 

 

Figure 1.2. Drones are being used to deliver packages of varying mass [22]. 
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The field of adaptive control is not new. It was conceived during the early 1950s and 

underwent substantial development during the late 1950s and in the 1960s. In spite of this, the 

underlying theory and synthesis techniques are not as well known to the average controls engineer 

as they should be. The reason for this is that the field has been largely associated only with the 

aerospace industry [23]. For example, as an aircraft flies its mass will slowly decrease as a result 

of fuel consumption; adaptive control law is used to adapts itself to such changing conditions. 

Moreover, devices in an aircraft age and wear (e.g., actuator degradation), thus, fault-tolerant flight 

controllers are needed. Furthermore, there is an uncertain environment around aircrafts such as 

vortex. An adaptive controller is used to reduce the oscillation caused by the vortex [24]. These 

problems are amplified in the case of actuator failures, where the aircraft has lost some of its 

control effectiveness [25]. 

Recently, a number of industries, including the chemical, pulp and paper, and power 

industries, have recognized the strength of this field and are now utilizing or trying to utilize it. 

For example, control of reactor power is important due to safety reasons. In reactor dynamics there 

are some parameters that vary as a function of the power level, fuel burnup and control rod worth 

[26]. Therefore, a controller that can adapt to these unknown parameter changes is needed.  Also, 

adaptive control is used for biomass plants, see Figure 1.3 [27]. The changes in humidity and 

calorific value of fuel, typical of this kind of plant, greatly affects the dynamic response to the 

power generated, the amount of air used, and the amount of fuel consumed. Additionally, the 

context of operations changes frequently during the day, principally due to steam blowing for 

various automatic cleaning processes, filter cleaning and shutdown or reductions in the minimum 

speed of one of the feed lines for maintenance or excessive biomass humidity. Likewise, the heat 

transfer loses efficiency with time due to progressive fouling of the boiler [27]. The adaptive 
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control system is used to attain the production objective of such plants by increasing the stability 

and reliability of its operation and minimizing the specific consumption of the biomass. 

 

Figure 1.3. Adaptive control system is used for biomass plants: plant at Sangüesa [27]. 

 

Figure 1.4. Adaptive control increases the precision of industrial robots [28]. 

Furthermore, adaptive robot control activates a closed metrology-driven feedback loop that 

firmly increases the precision of industrial robots [28]. Regardless of whether robots are deployed 
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for machining, inspection, applying beads or manipulating objects, roboting tasks are consequently 

executed with 0.1mm absolute positioning accuracy, irrespective of degrading phenomena like 

play, mechanical flexibility, backlash or thermal effects, see Figure 1.4 [28]. 

Moreover, the research also demonstrates the design of a robust control for the quadrotor 

to deal with parameter uncertainty in a linear time-invariant (LTI) time-delay system of the 

retarded-type, by calculating the real stability radius. This control method is appropriate for 

processes and systems where the uncertain parameters or disturbances are known or can be 

determined. The robust control guarantees that if the changes are within given bounds the control 

law need not to be changed or adapted. Under such circumstance, the robust control approach is 

preferred since it will be cheaper and less risky to operate compared to the adaptive control. The 

adaptive closed-loop stability cannot be guaranteed on the same level of confidence as with linear 

robust controllers under some circumstances. Adaptive controllers often seem to have 

unsatisfactory transient behavior during adaptation to a plant change (e.g., during a start-up when 

the adaptive controller is initially wrongly tuned), and they demand highly skilled and educated 

personnel for tuning and maintenance. 

1.3 Systems for Research Work 

The systems used in this research are ground and aerial mobile robots. The ground robot, 

X80SV, shown in Figure 1.5a was manufactured by Dr Robot Inc., and the aerial robot, AR.Drone 

2.0, shown in Figure 1.5b was manufactured by Parrot. The two robots come with application 

program interface (API) reference manuals to aid developers and researchers. 

1.3.1 Ground robot: X80SV. The X80SV is a differential drive wheeled mobile robot 

(DDWMR), with a market value of about $3,000. It is a ready-to-use mobile robot platform 

designed for researchers developing advanced robot applications such as remote monitoring, 
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telepresence, and autonomous navigation. The robot comes with a control program written in C#, 

with its graphical user interface (GUI) shown in Figure 1.6. The accompanied control program 

manually drives the robot to perform translational and rotational motions. 

                                
 

Figure 1.5. Mobile robots used in this research work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Dr Robot X80SV C# program basic interface. 

(a) Ground robot: Dr Robot X80SV (b) Aerial robot: Parrot AR.Drone 2.0 
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1.3.2 Aerial robot: AR.Drone 2.0. AR.Drone 2.0 is a quadcopter (referred to as quadrotor) 

type of unmanned aerial vehicle (UAV) built by the French company Parrot. It has a market value 

of about $300 and is commercially designed for playing games. It is accompanied by a program 

written in C, and it is designed to be controlled by mobile or tablet operating systems such as iOS 

or Android. Figure 1.7 shows an iPhone device being used to control the drone. Individuals and 

institutions realized because it is cheap and its low cost of maintainability, it will be an economical 

and reliable device for research. 

 

Figure 1.7. iPhone device being used to control Parrot AR.Drone 2.0 [29]. 

1.4 Major Reported Work 

1.4.1 Ground robot: X80SV. The different parts of this section of the research work have 

been published in peer-reviewed journals and conference papers, and some are discussed here. 

Firstly, DDWMR autonomous navigation has been presented [30], where fuzzy logic has been 

used to build behavior-based fuzzy controller for the navigation algorithm. It is based on 
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behavioral architecture which can deal with uncertainties in unknown environments and has the 

ability to accommodate different behaviors. The algorithm drives a robot to reach a target while 

avoiding obstacles in the environment. The proposed control algorithm was simulated and 

experimented using Voyager II robot in a laboratory environment (see Figure 1.8), with a start 

point of (0𝑚, 0𝑚) and goal point of (3𝑚, 5𝑚). The robot reaches the goal in almost 20 seconds. 

 

Figure 1.8. Voyager II DDWMR avoids obstacles and reaches the goal [30]. 

Another approach presented uses model predictive equilibrium point control (MPEPC) 

[31], where the control algorithms were developed based on the discretized model of the system, 

on a carefully designed compact parameterization of a rich set of closed-loop trajectories, and the 

use of expected values in cost definitions. The framework combined the ideas of time-optimality 

and equilibrium point control to generate quick and responsive solutions. The proposed algorithm 

was tested in an indoor environment, a tight L-shaped corridor, using pedestrians as dynamic 

obstacles. 

1.4.2 Aerial robot: AR.Drone 2.0. The different parts of this section of the research work 

have also been published in peer-reviewed journals and conference papers, and some are discussed 
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here. Firstly, modeling and altitude control of a quadrotor UAV has been presented [32], where 

the quadrotor model was derived using the Euler-Lagrange equations, and experiment performed 

to identify the model parameters. The altitude controller was designed using the dynamic surface 

control (DSC) method, with total thrust as the control input to the plant. The proposed control law 

was derived based on the nonlinear altitude dynamics and simulations conducted. 

Secondly, stabilized PID controllers have also been designed for controlling quadrotor’s 

attitude and altitude under disturbance and noisy conditions [33]. A linearized altitude model was 

obtained by combining the first-order transfer function of motor dynamics and the nonlinear 

altitude equation of motion. The altitude model derivation approach used was not convincing. The 

closed-loop system behaviors were analyzed while the quadrotor is hovering in the presence of an 

unknown disturbance by using Extended Kalman Filter (EKF) to address it. 

Thirdly, quadrotor control has also recently been presented [34], where feedback 

linearization and model reference adaptive control (MRAC) are integrated to design attitude 

control system for a fixed wing UAV. In order to demonstrate the performance of attitude control 

system, adaptive and PID control laws are used for the coupling nonlinear simulation model. 

Fourthly, direct and indirect MIT rule MRAC has been applied to a lightweight low-cost 

quadrotor UAV platform [25]. A baseline trajectory controller was augmented by the adaptive 

controller. The research based the adaptive controller on Lyapunov stability. The adaptive 

controller was found to offer increased robustness to parametric uncertainties over the fixed-gain 

approach. Particularly, it was found to be effective in mitigating the effects of a loss-of-thrust 

anomaly, which may occur due to component failure or physical damage, e.g., actuator failure. 

The controllers were simulated and flight testing carried out in an indoor test facility using 

baseline, direct MRAC, and indirect (combined/composite) MRAC, see Figure 1.9 for altitude 
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responses. Loss-of-thrust uncertainty occurs at approximately 26𝑠, denoted by asterisk and the 

arrow [25]. Flight tests were conducted in the RAVEN testbed at MIT. The adaptive controller 

was implemented in C++, and the commands were sent to the quadrotor using a USB wireless 

remote-control module. 

 

Figure 1.9. Altitude tracking of the baseline, MRAC, and CMRAC controllers [25]. 

Furthermore, the effects of time delays on quadrotor-type helicopter dynamics has been 

studied [35]. The research in the article used numerical and simulation to show that for large delays 

(> 0.20s), quadrotor system’s response might not be stabilized or converged due to increased 

torque and position drift increases, and this poses a significant challenge. 

Moreover, the problem of designing a robust state feedback control that provides global 

stability for an uncertain nonlinear system has been the subject of considerable research over the 

last decade. Robust control of nonlinear systems with parametric uncertainty has been studied [36], 

where probabilistic robustness analysis and synthesis for nonlinear systems with uncertain 

parameters are presented. Monte Carlo simulation was used to estimate the likelihood of system 

instability and violation of performance requirements subject to variations of the probabilistic 

system parameters. 
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Lastly, the stability of LTI time-delay systems of the retarded and neutral types subjected 

to real perturbations have been investigated [37]. The paper presents a readily computable 

formulae for the real stability radius with respect to an arbitrary stability region in the complex 

plane for both linear continuous and discrete time-delay systems. 

1.5 Objectives of Research Work   

The main goal of this research is to contribute to the field of robotics and control theory by 

developing adaptive and robust controllers for stabilized and reliable autonomous navigation of 

mobile robots. Specific objectives include: 

 Derive dynamic models for X80SV (ground) and AR.Drone 2.0 (aerial) motions 

 Develop control systems to improve stability to satisfy a desired criteria 

 Study and calculate nonlinear effects of saturation, time delay, and system uncertainty  

 Experiment to demonstrate the robustness of the control systems 

 Validate control design through analytical, numerical simulation, and experiment using 

MATLAB/Simulink 

1.6 Major Contributions  

The major contributions of this research work include: 

 Developed an effective autonomous navigation control algorithm for a DDWMR 

 Identified and built quadrotor’s altitude models for control 

 Implemented quadrotor nonlinear kinematics and dynamics using MATLAB S-function 

 Studied and estimated the time delay in a quadrotor control system 

 Studied the stability of a parametric perturbed retarded-type delay system by calculating the 

stability radius 
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 Developed adaptive and robust altitude autonomous controllers for a quadrotor considering 

saturation, time delay, and parametric uncertainty 

 Developed an interactive MATLAB GUI and Simulink Programs for the control of X80SV and 

AR.Drone 2.0 

1.7 Problem Solution and Scope   

1.7.1 Ground robot: X80SV. The solution involved designing and implementing PID 

feedback controllers for individual robot behavior, and then developing control navigation system 

based on the individual behaviors. The approach used for the navigation system made use of a 

low-level strategy to build a model based on the continuous kinematics of the DDWMR, and then 

using logic control, hybrid automata approach, a behavior-based navigation architecture is 

developed. The controllers are designed based on the nonlinear kinematics of the DDWMR. 

MATLAB GUI is developed as an interface for the implementation. 

1.7.2 Aerial robot: AR.Drone 2.0. Firstly, the solution involved designing and 

implementing autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) control for 

quadrotor. The above is achieved based on the nonlinear dynamics and kinematics of the 

quadrotor. MATLAB-based simulator using PD-feedback control is developed to achieve 

stabilization. 

Secondly, after the above has been achieved, altitude models are obtained using the 

following two approaches: (1) the model derived using white-box approach based on the dynamics 

and kinematics of the quadrotor and (2) the model built using black-box approach based on data 

collected from experiments using the drone. Controllers such as full-state feedback (pole 

placement or proportional plus velocity (PV), and linear quadratic regulator (LQR)), and MRAC 

are designed and validated through simulations and experiments using MATLAB/Simulink. Then, 
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in order to obtain the adaptive and robust controllers, the nonlinear effects of control input 

saturation, time delay in the controlled system, and system parametric uncertainty are studied and 

addressed. MATLAB GUI and Simulink programs are developed for the implementation. 
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2 CHAPTER 2  

Background and Literature Review 

This chapter provides a brief background of mobile robots, their classifications and types 

of behaviors and navigations. This is followed by a description of the various modeling and control 

theories used for the research. It then continues with reviewing the types of system responses and 

its transient properties. The chapter ends with a discussion on nonlinear effects of saturation, time 

delay, and system uncertainty inherent in aerial robots. 

2.1 Mobile Robots and their Classifications 

Mobile robots have the capability to move around in their environment, they are not 

supposed to be fixed to one physical location [15]. By contrast, industrial robots are usually more-

or-less stationary, consisting of a jointed arm (multi-linked manipulator) and gripper assembly (or 

end effector) attached to a fixed surface [15]. Mobile robots come in many shapes and sizes, but 

they all contain three main components. First, there is some combination of sensors that are used 

for understanding the environment. Then, there is the onboard computer for planning and decision 

making. Finally, a form of locomotion allowing the robot to act in its environment [18]. 

The centerpiece of every robotic control system is an onboard controller. It makes decisions 

based on the available sensor data and sends instructions to its motors to control the robot’s 

movement. Robotic control systems require the following subsystems [18]: (1) an interface to 

input/output (I/O) - robotic control systems have to communicate with a wide variety of sensors 

and actuators. Key sensors such as LIDAR and GPS commonly use a USB or serial interface, 

while motors might require a digital port or CAN interface, (2) low-level control - PID loops or 

state-space equations are implemented to perform processing based on sensor feedback. For 

example, a PID loop is used to process the encoder feedback and navigate the robot in a straight 
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line. This type of control requires deterministic response and tight integration with I/O, (3) 

autonomous navigation system - a mobile robot has subsystems for perception and planning. Once 

a robot perceives, or understands its sensor data, the data is passed to a higher-level planning 

module. The planning module can be broken down even further; low-level planning, such as 

stopping when an obstacle is present, or high-level planning, such as making decisions regarding 

the mission of the robot, and (4) user interface - often used to display information regarding a 

robot’s health, such as power consumption levels, and a notification of hardware failures. This 

includes both remote and local APIs. 

Mobile robots are found in places such as industrial, military, and security settings. 

Domestic robots are consumer products, including entertainment robots and those that perform 

certain household tasks such as vacuuming or gardening [15]. Mobile robots may be classified by 

(see Figure 2.1 for examples) [15]: 

 The environment in which they travel, include:  

o Land or home robots usually referred to as unmanned ground vehicles (UGVs): They 

are most commonly wheeled or tracked, but also include legged robots with two or more 

legs (humanoid, or resembling animals or insects), 

o Aerial robots are usually referred to as unmanned aerial vehicles (UAVs), 

o Underwater robots are usually called autonomous underwater vehicles (AUVs), 

o Polar robots, designed to navigate icy, crevasse filled environments. 

 The device they use to move, mainly:  

o Legged robot: human-like legs (i.e. an android) or animal-like legs, 

o Wheeled robot, 

o Tracks. 
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Figure 2.1. Types of mobile robots. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Applications of mobile robots. 

(a) Car-like [5] (b) Snake [13] (c) Cheetah [14] 

(d) Personal transportation [3] (e) Quadrotor [4] (f) Humanoid [1] 

(a) NASA’s curiosity for Mars exploration [9]    (b) Harvey robot for harvest automation [6]   

(c) Commercial drone for irrigation [12]   (d) Commercial drone for tornado tracking [11] 
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Mobile robots are most commonly found performing tasks that are fun, dull, dirty, or 

dangerous. The military uses robotic systems for dangerous tasks, such as walking through 

minefields, deactivating bombs, or clearing out hostile buildings [18]. Farmers use mobile robots 

to perform dirty tasks, including harvesting, collecting crop data, weeding, and micro spraying 

[18]. Hospitals use mobile robots to deliver specimens to laboratories and for assistive care [18]. 

Mobile robots are even used to perform routine chores around the house, such as vacuuming and 

cleaning pools, gutters, and lawn mowing [18]. Despite challenges, there are several other wide 

applications of mobile robots that include security and surveillance, planetary exploration, search 

and rescue mission, and inspection, see Figure 2.2 for examples. 

2.1.1 Ground robot: X80SV. Wheeled mobile robots (WMRs) are increasingly present in 

industrial and service robotics, particularly when flexible motion capabilities are required on 

reasonably smooth grounds and surfaces. Several mobility configurations (wheel number and type, 

their location and actuation and single- or multi-body vehicle structure) can be found in different 

applications [38]. The most common for single-body robots are differential drive and synchro drive 

(both kinematically equivalent to a unicycle), tricycle or car-like drive and omnidirectional 

steering [38]. Figure 2.3 shows some WMR configurations. 

 

 

 

 

 

Figure 2.3. Types of wheeled mobile robots. 

2.1.2 Aerial robot: AR.Drone 2.0. During the last decade, with the advancement in 

relevant technology, the demand for flying mobile robots or UAVs has rapidly increased. UAVs 

(a) Six wheeled platform [10] (b) Two wheeled platform [7]  
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emergence also has to do with the simplicity of their construction and maintenance, their ability to 

hover, and their vertical take-off and landing (VTOL) capability. 

 

 

 

 

 

 

Figure 2.4. Types of unmanned aerial vehicles (UAVs). 

Rotorcraft UAVs have a variety of configurations that include a conventional helicopter 

with a main and tail rotor, a coax with counter-rotating coaxial rotors, and quadrotors [39], see 

Figure 2.4 for examples. Quadrotor types of UAVs have four rotors that are controlled 

independently. The movement of the quadrotor results from changes in the speed of each rotor.  

2.2 Types of Mobile Robot Behaviors and Navigations 

Control systems are supposed to have navigation control algorithms that will make mobile 

robots successfully accomplish different motions and behaviors, which include translational (x, y, 

and z), rotational (roll, pitch, and yaw), go-to-goal, avoid-obstacles (stationary or moving), follow 

a path (e.g. line, circle), follow-wall, track-target, using combined skills (e.g. navigation system), 

image and audio recognition, etc.  

For any mobile device, the ability to navigate in its environment is important. Avoiding 

dangerous situations such as collisions and unsafe conditions (temperature, radiation, exposure to 

weather, etc.) comes first, but if the robot has a purpose that relates to specific places in the robot 

environment, it must find those places [40]. Navigation can be defined as the combination of the 

(a) 2-four rotors [2] (b) 3-four rotors [8] 
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three fundamental competences: (1) Self-localization, (2) Path planning, and (3) Map-building and 

map interpretation [40]. There are many types of mobile robot navigations, which include manual 

remote or tele-operated, guarded tele-operated, line-following car, autonomously randomized 

robot, autonomously guided robot, and sliding autonomy [41]. 

2.3 Modeling and Control Theories  

Fundamental to the successful, autonomous operation of mobile robots are robust motion 

control algorithms. Control algorithms determine the appropriate action to take (actuators) based 

on the current state (sensors). Developing the control algorithms poses a significant challenge that 

includes noisy sensors, nonlinearity, dynamic environment, non-holonomic drive, etc. This section 

provides a brief background and description for various control design theories and modeling 

techniques used in this research work. 

In control engineering, a state-space representation is a mathematical model of a physical 

system as a set of input, output and state variables related by first-order differential equations [42]. 

If the dynamical system is LTI, the differential and algebraic equations may be written in matrix 

form, and the state-space representation (also known as the “time-domain approach”) provides a 

convenient and compact way to model and analyze systems with multiple inputs and outputs. 

Consider the basic form of the state-space representation of a continuous LTI system given as [42]  

                                                                   𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡)

                                                                   𝐲(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡)
                                                            (2.1) 

where 𝐀,𝐁, 𝐂, and 𝐃 are the state-space parameters: system (state) matrix, input matrix, output 

matrix, and feedforward (feedthrough) matrix respectively. 𝐱(𝑡) is the state vector, 𝐮(𝑡) is the 

control (input) vector, and 𝐲(𝑡) is the output vector. The size of 𝐀 is 𝑛 x 𝑛, 𝐱(𝑡) is 𝑛 x 1, 𝐁 is 

𝑛 x 𝑚, 𝐮(𝑡) is 𝑚 x 1, 𝐲(𝑡) is 𝑞 x 1, 𝐂 is 𝑞 x 𝑛, and 𝐃 is 𝑞 x 𝑚. 
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2.3.1 Controllability and observability. A system is said to be controllable at time 𝑡𝑜 if 

it is possible to transfer the system from any initial state 𝐱(𝑡𝑜) to any other state in a finite interval 

of time by means of an unconstrained control vector [43]. A system is said to be observable at time 

𝑡𝑜 if it is possible to determine the state 𝐱(𝑡𝑜) of the system from the observation of the output 

over a finite time interval [43]. 

The concepts of controllability and observability were introduced by Kalman [42]. They 

play an important role in the design of control systems in state space. In fact, the conditions of 

controllability and observability may govern the existence of a complete solution to the control 

design problem. Although most physical systems are controllable and observable, corresponding 

mathematical models may not possess the properties of controllability and observability [43]. It is 

then necessary to know the conditions under which the system is controllable and observable. This 

section primarily deals with controllability and observability. 

2.3.1.1 Controllability. The LTI system in equation (2.1) is said to be completely state 

controllable if and only if the rank of the controllability matrix, 𝐶𝑂𝑁𝑇, given in equation (2.2), is 

𝑛, which is the dimension of the system matrix, 𝐀 [43]. 

                                                          𝐶𝑂𝑁𝑇 = [𝐁 ⋮  𝐀𝐁 ⋮ ⋯ ⋮ 𝐀𝑛−1𝐁]                                                (2.2) 

If the system is controllable then it implies it is stabilizable. For a partially controllable system, if 

the uncontrollable modes are stable and unstable modes are controllable, then the system is still 

said to be stabilizable [43].  

2.3.1.2 Observability. The LTI system in equation (2.1) is said to be completely observable 

if and only if the rank of the observability matrix, 𝑂𝐵𝑆𝐸𝑅, given in equation (2.3), is 𝑛, which is 

the dimension of the system matrix,  𝐀 [43]. 

                                                        𝑂𝐵𝑆𝐸𝑅 = [𝐂 ⋮  𝐂𝐀 ⋮ ⋯ ⋮ 𝐂𝐀𝑛−1]′                                               (2.3) 
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If the system is observable then it implies it is detectable. For a partially observable system, 

if the unobservable modes are stable and observable modes are unstable, then the system is still 

said to be detectable [43]. 

2.3.2 Proportional-integral-derivative (PID). The traditional PID-feedback controller is 

given by [42] 

                                   𝐮(𝑡) = PID(𝐞) = 𝐾𝑃𝐞(𝑡) + 𝐾𝐼 ∫ 𝐞(𝜏)𝑑𝜏 + 𝐾𝐷

𝑑𝐞(𝑡)

𝑑𝑡

𝑡

0

                                (2.4) 

where 𝐞 is the error between the desired value and the output value, 𝐾𝑃 is the proportional gain, 

𝐾𝐼 is the integral gain, 𝐾𝐷 is the derivative gain, and 𝑡 is time. The tuning parameters 𝐾𝑃, 𝐾𝐼, and 

𝐾𝐷 are determined by using classical control strategy such as root locus based on a design 

specification, or they can just be tuned to obtain a suitable plant response.  

The controller attempts to minimize the error by adjusting the system through use of a 

manipulated variable. The P controller depends on the present error, I on the accumulation of past 

errors, and D is a prediction of future errors, based on current rate of change [44]. The weighted 

sum of these three actions is used to adjust the system via a control element such as the position 

of a control valve, the position of a mobile robot, or the power supplied to a heating element. 

In general, increasing 𝐾𝑃 independently will increase the maximum overshoot, decrease 

the rise time and the steady-state error, degrade the stability, with a small change in the settling 

time. Increasing 𝐾𝐼 independently will increase the maximum overshoot, decrease the rise time, 

eliminate the steady-state error, degrade the stability, and increase the settling time. Increasing 𝐾𝐷 

independently will decrease the maximum overshoot, cause minor change in the rise time, no effect 

in theory on the steady-state error, will improve stability if 𝐾𝐷 is small, and decrease the settling 

time [44]. 
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2.3.3 Full-state feedback (FSF). This is a method employed in feedback control system 

theory to place the closed-loop poles of a plant in pre-determined locations in the 𝑠-complex plane, 

and it is assumed that all of the state variables are measurable and are available for feedback, that 

the system is completely state controllable, and the plant has to be linear [43]. The system is 

stabilized or regularized by selecting the control signal, 𝐮(𝑡), as [43] 

                                                                   𝐮(𝑡) = −𝐊𝐱(𝑡) + 𝐫(𝑡)                                                          (2.5) 

where 𝐫(𝑡) is the reference input and 𝐊 = [𝑘1  𝑘2 … 𝑘𝑛] is a matrix of control gains. Substituting 

(2.5) into (2.1), and rearranging, the modified, closed-loop, system is given as 

                                                               𝐱̇(𝑡) = (𝐀 − 𝐁𝐊)𝐱(𝑡) + 𝐁𝐫(𝑡)

                                                 𝒚(𝑡) = 𝐂𝐱(𝑡) + 𝐃𝐮(𝑡)
                                               (2.6) 

This system is stable if 𝐊 can be determined such that the roots of characteristic equation, 

|𝑠𝐈 − 𝐀 + 𝐁𝐊| = 0, lies in the left hand side of the 𝑠-complex plane. There are two main methods 

of the full-state feedback for determining the control gains, pole placement and LQR.  The 

schematic of the FSF control system design to be used is shown Figure 2.5. 

 

 

 

 

Figure 2.5. Schematic of the full-state feedback control system [43]. 

2.3.3.1 Pole placement. This method is based on the fact that if the system is completely 

state controllable, then poles of the closed-loop system may be placed arbitrarily at any desired 

locations in the 𝑠-complex plane. For example, for a second-order plant (𝑛 = 2), if the desired 
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closed-loop poles, 𝐼 = 𝛽1 ± 𝛽2𝑗, are placed in the left-half of the 𝑠-complex plane, then the closed-

loop control system will be asymptotically stable for all 𝐱(𝑡) ≠ 𝟎 [43]. The characteristic 

polynomial of the closed-loop system, from equation (2.6), |𝑠𝐈 − 𝐀 + 𝐁𝐊|, is equated to the 

desired characteristic polynomial as 

                                     |𝑠𝐈 − 𝐀 + 𝐁𝐊| = (𝑠 − (𝛽1 + 𝛽2𝑗))(𝑠 − (𝛽1 − 𝛽2𝑗))                                  (2.7) 

Thus, by equating the coefficients of like powers of 𝑠 on both sides, 𝐊 = [𝑘1  𝑘2] can be 

determined. The pole placement controller is also termed PV when it is being applied on the 

system’s transfer function. PV control is different from PD control, in the sense that it does not 

yield numerator dynamics. 

2.3.3.2 Linear quadratic regulator (LQR). The theory of optimal control is concerned with 

operating a dynamic system at minimum cost. The case where the system dynamics are described 

by a set of linear differential equations and the cost is described by a quadratic function is called 

the LQ problem. The LQR is an important part of the solution to the linear quadratic Gaussian 

(LQG) problem. LQR has an advantage over the pole placement method, in that it provides a 

systematic way of computing the state feedback gain matrix, and also the designed closed-loop 

systems is always stable [43].  

 In effect, the LQR algorithm takes care of the tedious work done by the control systems 

engineer in optimizing the controller. However, the engineer still needs to specify the weighting 

factors and compare the results with the specified design goals. Often this means that controller 

synthesis will still be an iterative process where the engineer judges the produced optimal 

controllers through simulation and then adjusts the weighting factors to get a controller more in 

line with the specified design goals. Difficulty in finding the right weighting factors limits the 

application of the LQR based controller synthesis. Given the system in (2.6), LQR determines the 
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optimal controller gain matrix, 𝐊, of the optimal control input  𝐮(𝑡) = −𝐊𝐱(𝑡) so as to minimize 

the performance index, a quadratic cost function, given as [43] 

                                      𝐽 = ∫[𝐱′(𝑡)𝐐𝐱(𝑡) + 𝐮′(𝑡)𝐑𝐮(𝑡) + 2𝐱′(𝑡)𝐍𝐮(𝑡)]

∞

0

𝑑𝑡                                (2.8) 

where the Hermitian matrices, 𝐍 ≥ 𝟎,𝐐 ≥ 𝟎, and 𝐑 > 𝟎 to be selected, are weighting parameters, 

which define the trade-off between error (how fast the output 𝐲(𝑡) tracks the reference command 

𝐫(𝑡)) and the expenditure of the control effort or energy. 𝐊 is determined by [43] 

                                                                          𝐊 = 𝐑−1𝐁T𝐏                                                                   (2.9) 

where the positive-definite matrix, 𝐏, in (2.9) must satisfy the reduced-matrix Riccati equation 

given as [43] 

                                                      𝐀T𝐏 + 𝐏𝐀 − 𝐏𝐁𝐑−1𝐁T𝐏 + 𝐐 = 𝟎                                               (2.10) 

where N = 0. Thus, by solving equation (2.10) for 𝐏, 𝐊 can be determined, and therefore 𝐮(𝑡) can 

be obtained.  

2.3.4 Adaptive control (AC). The unknown and unmeasurable variations of a process or 

system parameters can degrade the performance of the control systems. Similarly to the 

disturbances acting upon the controlled variables, one can consider that the variations of the 

process parameters are caused by disturbances acting upon the parameters (called parameter 

disturbances), which also affect the performance of the control systems [45]. AC is the control 

method used by a controller which must adapt to a controlled system with parameters which vary, 

or are initially uncertain [46]. 

AC is different from robust control (RC) in that it does not need a priori information about 

the bounds on these uncertain or time-varying parameters. RC guarantees that if the changes are 

within given bounds the control law need not be changed, while AC is concerned with control law 
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changing with time. [46]. The foundation of AC is parameter estimation. Common methods of 

estimation include recursive least squares and gradient descent. Both of these methods provide 

update laws which are used to modify estimates in real time (i.e., as the system operates). 

Lyapunov stability is used to derive these update laws and show convergence criterion (typically 

persistent excitation). Projection (mathematics) and normalization are commonly used to improve 

the robustness of estimation algorithms. AC is also called adjustable control [46]. 

An AC system measures a certain performance index of the control system using the inputs, 

the states, the outputs, and the known disturbances. From the comparison of the measured 

performance index and a set of given ones, the adaptation mechanism modifies the parameters of 

the adjustable controller and/or generates an auxiliary control. This is done in order to maintain 

the performance index of the control system close to the set of given ones (i.e., within the set of 

acceptable ones) [45].  

 

 

 

 

 

 

 

Figure 2.6. Typical MRAC setup [47]. 

An AC system, which contains in addition to a feedback control with adjustable parameters 

a supplementary loop acting upon the adjustable parameters of the controller, will monitor the 

performance of the system in the presence of parameter disturbances [45]. In general, AC can be 
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classified as feedforward adaptive control or feedback adaptive control and direct method or 

indirect method [46]. Direct methods are ones wherein the estimated parameters are those directly 

used in the adaptive controller. In contrast, indirect methods are those in which the estimated 

parameters are used to calculate required controller parameters [46]. There are several broad 

categories of feedback adaptive control, and in this research work the model reference adaptive 

control (MRAC) will be applied. There are different types of MRAC depending on the adjustable 

mechanism, and one of the modern ones is the MIT rule. Typical setup of MRAC is shown in 

Figure 2.6. 

 

 

 

 

 

 

 
 

Figure 2.7. MIT rule MRAC closed-loop system [47]. 

2.3.4.1 MIT rule MRAC. Consider the MIT rule MRAC setup shown in Figure 2.7. The 

tracking error, 𝐞, is given by [47] 

                                                 𝐞 = 𝐲𝑝𝑙𝑎𝑛𝑡 − 𝐲𝑚𝑜𝑑𝑒𝑙 =  𝐺𝑝𝐔 − 𝐺𝑚𝐑                                               (2.11) 

Next is to define a cost function, 𝐽, in terms of 𝐞, and one and simplest way is to expressed its as 

[47] 

                                                                     𝐽(𝛉) =
1

2
𝐞2(𝛉)                                                                   (2.12) 
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where 𝛉 is the updating parameter. The rule employs a feed-forward gain adaption to update 𝛉, as 

shown below [47] 

                                                             
𝑑𝛉

𝑑𝑡
= −𝛾

𝜕𝐽

𝜕𝛉
= −𝛾𝐞

𝜕𝐞

𝜕𝛉
                                                           (2.13) 

where 𝛾 is a tuning parameter and 𝜕𝐞 𝜕𝛉⁄  is sensitivity derivative. It is important to note that the 

MIT rule by itself does not guarantee error convergence or stability. An MRAC designed using 

the MIT rule is very sensitive to the amplitudes of the signals. As a general rule, the value of 𝛾 is 

kept small. Tuning of 𝛾 is crucial to the adaptation rate and stability of the controller [47]. 

2.3.5 Robust control (RC). This is a branch of control theory which approach to controller 

design explicitly deals with uncertainty [48]. RC methods are designed to function properly 

provided that uncertain parameters or disturbances are found within some (typically compact) set. 

Robust methods aim to achieve robust performance and/or stability in the presence of bounded 

modeling errors. In contrast with an AC policy, RC policy is static; rather than adapting to 

measurements of variations, the RC controller is designed to work assuming that the uncertainties 

are known [48]. 

The theory of RC began in the late 1970s and early 1980s and soon developed a number of 

techniques for dealing with bounded system uncertainty [48]. Probably the most important 

example of a RC technique is H-infinity loop-shaping; this method minimizes the sensitivity of a 

system over its frequency spectrum, and this guarantees that the system will not greatly deviate 

from expected trajectories when disturbances enter the system. An emerging area of RC from 

application point of view is sliding mode control (SMC) which is a variation of variable structure 

control (VSC) [48]. Robustness property of SMC towards matched uncertainty as well as the 

simplicity in design attracted a variety of application. Another example is loop transfer recovery 

(LQG/LTR), which was developed to overcome the robustness problems of LQG control. Other 
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robust techniques includes quantitative feedback theory (QFT), gain scheduling, back stepping, 

feedback linearization, etc. [48]. 

2.3.6 Root locus design and SISO design tool. A common technique for meeting control 

design criteria is root locus design. This approach involves iterating on a design by manipulating 

the compensator gain, poles, and zeros in the root locus diagram [49]. The technique consists of 

plotting the closed-loop pole trajectories of a feedback system in the complex plane as system 

parameter, 𝑘, varies over a continuous range of values varies. The plot can be used to identify the 

gain value associated with a desired set of closed-loop poles [49].  

 

 

 

 

 

Figure 2.8. Root locus used to design the tracking loop system parameter, 𝑘. 

Typically, the root locus method is used to tune the loop gain of a single-input-single-

output (SISO) control system by specifying a designed set of closed-loop pole locations. Consider, 

for example, the tracking loop shown in Figure 2.8, where 𝐺𝑝(𝑠) is the plant, 𝐻(𝑠) is the sensor 

dynamics, and 𝑘 is a scalar gain to be adjusted. The closed-loop poles are the roots of [49] 

                                                                  1 + 𝑘𝐺𝑝(𝑠)𝐻(𝑠) = 0                                                           (2.14) 

The root locus technique, available in MATLAB, consists of plotting the closed-loop pole 

trajectories in the complex plane as 𝑘 varies. The plot can be used to identify the gain value 

associated with a desired set of closed-loop poles [49].  
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MATLAB has a SISO design tool that allows the design of a SISO compensator using root 

locus, Bode diagram, Nichols, and Nyquist techniques (e.g., see Figure 2.9) [50]. The tool is an 

interactive GUI for automatic designing of a compensator. The compensating tuning can be done 

directly using the SISO design task node (see Figure 2.9) or using the control and estimation tools 

manager and the graphical tuning window (see Figure 2.10). The MATLAB command to access 

this tool is sisotool(.) [50]. 

 

Figure 2.9. An example of root locus plot using SISO design tool for 3rd order system [50]. 

2.3.7 System modeling and identification. System identification is the art and science of 

building mathematical models of dynamic systems from observed input-output, measured, data 

[51]. It can be seen as the interface between the real world of applications and the mathematical 

world of control theory and model abstractions. A dynamical mathematical model in this context 



34 

 

 

is a mathematical description of the dynamic behavior of a system or process in either the time or 

frequency domain. Examples include: physical processes such as the movement of a falling body 

under the influence of gravity, or economic processes such as stock markets that react to external 

influences [51]. 

 
 

Figure 2.10. SISO design control and estimation tools manager [50]. 

One could build a so-called white-box model based on first principles, e.g. a model for a 

physical process from the Newton equations, but in many cases such models will be overly 

complex and possibly even impossible to obtain in reasonable time due to the complex nature of 

many systems and processes [51]. A much more common approach is therefore to start from 

measurements of the behavior of the system and the external influences (inputs to the system) and 
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try to determine a mathematical relation between them without going into the details of what is 

actually happening inside the system. Two types of models are common in the field of system 

identification [51]: 

 Grey-box model: although the peculiarities of what is going on inside the system are not entirely 

known, a certain model based on both insight into the system and experimental data is 

constructed. This model does however still have a number of unknown free parameters which 

can be estimated using system identification. Grey-box modeling is also known as semi-

physical modeling.  

 Black-box model: No prior model is available. Most system identification algorithms are of this 

type. 

 

Figure 2.11. Interface of MATLAB system identification toolbox App [52]. 

MATLAB/Simulink provides system identification toolbox App for constructing 

mathematical models of dynamic systems from measured input-output data, see Figure 2.11. It lets 
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one create and use models of dynamic systems not easily modeled from first principles or 

specifications. One can use time-domain and frequency-domain input-output data to identify 

continuous-time and discrete-time transfer functions, process models, and state-space models. The 

toolbox also provides algorithms for embedded online parameter estimation [52]. 

The toolbox provides identification techniques such as maximum likelihood, prediction-

error minimization (PEM), and subspace system identification [52]. To represent nonlinear system 

dynamics, one can estimate Hammerstein-Weiner models and nonlinear ARX (AutoRegressive 

eXogenous) models with wavelet network, tree-partition, and sigmoid network nonlinearities. The 

toolbox performs grey-box system identification for estimating parameters of a user-defined 

model. One can use the identified model for system response prediction and plant modeling in 

Simulink. The toolbox also supports time-series data modeling and time-series forecasting. 

MATLAB command ident or systemIdentification is used to access the system identification 

toolbox App [52]. 

2.4 Transient Response  

A transient response or natural response is the response of a system to a change from 

equilibrium [53]. Example, the step response is transient response to a step input. System response 

can be classified as one of three types of damping that describes the output in relation to the steady-

state response [53]: (1) An underdamped response is one that oscillates within a decaying 

envelope. The more underdamped the system, the more oscillations and longer it takes to reach 

steady-state. Here, the damping ratio, , is always less than 1.0. (2) A critically damped 

response,  = 1.0, is the response that reaches the steady-state value the fastest without being 

underdamped. It is related to critical points in the sense that it straddles the boundary of 

underdamped and overdamped responses. There should be no oscillation about the steady-state 
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value in the ideal case. (3) An overdamped response,  > 1.0, is the response that does not oscillate 

about the steady-state value, but takes longer to reach than the critically damped case.  

 

Figure 2.12. Example of underdamped system response showing the transient properties. 

2.4.1 Transient response properties. A system response has the following properties (see 

Figure 2.12) [53]: (1) Rise time, 𝑡𝑟 refers to the time required for a signal to change from a specified 

low value to a specified high value. Typically, these values are 10% to 90% of the step height, (2) 

Maximum overshoot, 𝑀𝑜 refers to an output signal exceeding its final, steady-state value. It is often 

associated with ringing, (3) Delay time, 𝑡𝑑 is the time required for the response to reach half the 

final value the very first time, (4) Peak time, 𝑡𝑝 is the time required for the response to reach the 

first peak of the overshoot, (5) Settling time, 𝑡𝑠 is the time elapsed from the application of an ideal 

instantaneous step input to the time at which the output has entered and remained within a specified 

error band (typically, 2% error band), and (6) Steady-state error, 𝐸𝑠𝑠 is the difference between the 

desired final output and the actual one when the system reaches a steady state, when its behavior 
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may be expected to continue if the system is undisturbed. The transient properties for oscillatory 

response such as 𝑀𝑜, 𝑡𝑝, and 𝑡𝑠, are related to  and 𝜔𝑛 as [54] 

                                                                     𝑀𝑜 = 100𝑒
(

−𝜋

√(1−2)
)
 

                                                                       𝑡𝑝 =
𝜋

𝜔𝑛√(1 − 2)
                                                          (2.15) 

                                                                       𝑡𝑠 =
4

𝜔𝑛
 

where 𝜔𝑛 is the natural frequency of the system. 

2.5 Saturation, Time Delay, and System Uncertainty: Aerial Robot (Quadrotor) 

Problems of robust stability of linear dynamical systems have attracted a good deal of 

attention in control theory during the last thirty years [55]. Initially, the model to be developed for 

the control system design will not take into account any disturbances or uncertainties. To test the 

robustness of the model in more complex situations, aerodynamic effects, uncertainties in the 

system parameters, measurement noises, and time delay in the control system will have to be 

considered; these introduce nonlinear effects on the system dynamics. The effects to be considered 

are saturation on the rotor angular speeds, uncertainties in the system parameters (e.g., disturbances 

rejection: quadrotor payload), and total time delay in the control system. 

2.5.1 Saturation. The angular speed, control command, of each rotor to be sent to the 

quadrotor is limited, therefore the change in the total thrust or torque to be generated to produce 

motions is constrained. Thus, the issue of control input saturation will be studied and addressed. 

2.5.2 Time delay. Estimating and analyzing time delays in dynamic systems is an 

important issue in many areas. Estimating delays has been an area of great research interest and 

has plenty of applications in fields as diverse as radar, sonar, seismology, geophysics, ultrasonic, 

controls, and communications for detecting, identifying, and localizing radiating sources [56]. 
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Estimating delays is especial challenging problem [57]. Although considerable efforts have been 

made on parameter estimation, there are still many open problems in time-delay identification due 

to difficulty in formulation [58-60]. 

One of the challenges in designing effective control systems for autonomous control of 

mobile robots is existence of signal transmission delay, which has nonlinear effects on the flight 

performance. A controller designed using a non-delay system model may result in disappointingly 

slow and oscillating response due to the delays. In general, the effects of delays in closed-loop 

feedback systems resemble the effects of lowering the sampling frequency. The controller is forced 

to make use of “old” information (information about the output at some time in the past, rather 

than in the present) in determining the output it supplies to the plant.  

When estimating time delay, the objective can be either of the following two [61]: (1) 

Estimate the best approximation time delay, i.e. the time-delay estimate that gives the “best” model 

approximation of the true system. What is “best” depends on the intended use of the model and 

can be measured in many different ways. For example, in automatic control, the time-delay 

estimate can be a means to achieve a good model in the frequency band relevant to the control, i.e. 

around the cross-over frequency. In the apparent time delay (the delay resulting from identifying 

a first order model with time delay from the data) is used for control performance monitoring of 

PID control loops. (2) Estimate the true time delay. This is the case in “pure time-delay” 

estimation, diagnosis, radar range estimation, direction of arrival estimation with array antennas, 

measuring blood velocity, averaging of measured signals, etc. 

2.5.2.1 Time delay estimation problem. A general linear time delay estimation (TDE) 

problem in automatic control and signal processing systems can be formulated as  [61] 

                                                          𝑥1(𝑡) =  𝐺𝑝1
𝑢(𝑡) + 𝑛1(𝑡)                                                       (2.16𝑎)  
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                                   𝑥2(𝑡) = 𝐺𝑝2
𝑢(𝑡) + 𝑛2(𝑡) =  𝐺𝑟2𝑢(𝑡 − 𝑇𝑑) + 𝑛2(𝑡)                               (2.16𝑏)  

where 𝐺𝑝1
and 𝐺𝑟2 are transfer functions of linear dynamic system, SISO LTI, without time delay, 

𝐺𝑝2
 is the transfer function with time delay, 𝑥1(𝑡) and 𝑥2(𝑡) are measured signals, 𝑢(𝑡) is the 

control input signal, 𝑛1(𝑡) and 𝑛2(𝑡) are measurement noise, and 𝑇𝑑 is the delay time in seconds. 

The signals can be either wideband or narrowband. The signals can be either real valued or 

complex valued. Complex (or analytic) signal representation is often used for narrowband signals 

but can also be used for wideband signals [61]. The impulse responses 𝑔1(𝑡) and 𝑔2(𝑡) of 𝐺𝑝1
and 

𝐺𝑟2 respectively, can also be complex valued. Complex signals and impulse responses are 

commonly used for bandpass systems, e.g. in radar and communications [61]. Some special cases 

of the general problem in (2.16) are [61]: 

(1) With the noise 𝑛1(𝑡)  =  0 and 𝐺𝑝1
 =  1, we have the active TDE problem as  (we rename 𝑥2 

to 𝑥 and 𝑛2 to 𝑛) 

                                                  𝑥(𝑡) = 𝐺𝑟𝑢(𝑡 − 𝑇𝑑) +  𝑛(𝑡)                                                 (2.17)  

This occurs in system identification, which is useful for automatic control and range estimation in 

radar, etc. 

(2) With the noise 𝑛1(𝑡)  ≠  0 and 𝑢(𝑡) unknown we have the passive TDE problem. This case 

happens when a signal 𝑢(𝑡) has traveled two different paths and are measured with two sensors, 

e.g. in localization of radio sources by Time Delay of Arrival (TDOA) or beamforming of audio 

signals from an array of microphones in a car. 

2.5.2.2 Time delay systems. The transfer function for a system containing time delay is 

given by 𝑒−𝑇𝑑𝑠 (continuous-time) or 𝑧−𝑇𝑑 (discrete-time), which is termed a pure time delay. If 

the plant model has dynamics, then the transfer function for the linear system is given in the form 

𝐺𝑝(𝑠)  =  𝐺𝑟(𝑠)𝑒
−𝑠𝑇𝑑 (continuous-time) or 𝐺𝑝(𝑧)  =  𝐺𝑟(𝑧)𝑧

−𝑇𝑑 (discrete-time) where 𝐺𝑟(𝑠) and 
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𝐺𝑟(𝑧) are transfer functions without time delay. The following are some properties for linear time-

delay systems [61]: 

 A pure time-delay 𝐺𝑝(𝑠) = 𝑒−𝑠𝑇𝑑  is a linear and all-pass system.  

 A continuous-time time-delay system is of infinite dimension since an infinite number of values 

are needed to describe the state of the system at each point of time.  

 A continuous-time time-delay system in state space form can be described by a system of 

differential-difference equations, i.e. combined differential and difference equations.  

 The transfer function 𝐺𝑝(𝑠) = 𝑒−𝑠𝑇𝑑  of a continuous-time time-delay system is not a rational 

function of 𝑠. 𝐺𝑝(𝑠) has an infinite number of poles, which is consistent with the system’s 

infinite dimensionality.  

 If the sampling period is constant and the delays are integral multiples of the sampling period, 

then a discrete-time time-delay system in state space form can be described by a system of pure 

difference equations. Such systems will be of finite dimension.  

 On the other hand, if the sampling period is not constant, then a discrete-time time-delay system 

cannot be described by pure difference equations. Differential-difference equations are needed. 

 The transfer function 𝐺𝑝(𝑧) of a discrete-time time-delay system is a rational function of 𝑧. 

𝐺𝑝(𝑧) has a finite number of poles, which is consistent with the system’s finite dimensionality. 

 

  

 

 

Figure 2.13. Control system showing the application of sensor time delay. 
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Figure 2.14. Control system showing the application of actuator time delay. 

A hybrid, or mixed system, consists of a continuous-time part and a discrete-time part. An 

important example is a sampled continuous-time system [61]. A system with a cascade controller 

and unity feedback, but using an output sensor that is 𝑇𝑑 seconds late in reporting the output (a 

sensor delay) would have a transfer function calculated from Figure 2.13. If the delay occurred in 

transmitting the output of the controller to the plant (an actuator delay), see Figure 2.14 for the 

illustration. For an active TDE problem, the impulse response 𝑔𝑟(𝑡) of 𝐺𝑟 is illustrated in Figure 

2.15. 

 

Figure 2.15. The creation of impulse response of a system with time delay [61]. 

This research focus on an active TDE problem, of the retarded and neutral types. The 

stability of linear delay systems of retarded or neutral type is a field of intense research. A major 

difficulty lies in the fact that the delays are usually unknown [62]. The following are special types 

of time-delay systems in state-space form [37]: 
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(a) a pure delay system 

                                                                 𝐱̇(𝑡) = 𝐀𝐱(𝑡 − 𝑇𝑑)                                                                (2.18) 

(b) a delay system of the retarded type 

                                                                 𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐱(𝑡 − 𝑇𝑑)                                                (2.19) 

(c) a neutral system 

                                                                 𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐂𝐱̇(𝑡 − 𝑇𝑑)                                                (2.20) 

(d) a multiple delay system 

                                                                 𝐱̇(𝑡) = ∑𝐀𝑖𝐱(𝑡 − 𝑇𝑑𝑖
)

𝑁

𝑖=1

                                                      (2.21) 

2.5.2.3 Time delay estimation methods. It is considered an advantage if a method can 

estimate time delays that also consist of fractions of the sampling interval [61]. However, some 

methods can only estimate time delays that are multiple of the sampling interval. Sometimes such 

methods can be used to initialize other more “free” methods. TDE has been studied in literature 

for a long time, especially for pure time-delay systems, but also for systems with dynamics [61]. 

However, there is still no clear agreement on which method is “best” for systems with dynamics. 

Most methods that have been suggested for active TDE (both in control and signal processing) can 

be put into one of the following classes [61]: 

2.5.2.3.1 Time-delay approximation methods. The input and output signals are represented 

in a certain basis and the time delay is estimated from an approximation of the relation (a model) 

between the signals in this basis. There are two independent steps in these methods: (a) Estimate 

the approximation model. (b) Estimate the time delay from the model. The time delay is not an 

explicit parameter in the model. Depending on the basis, there are several subclasses, which 
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include time domain approximation methods, frequency domain approximation methods, and 

Laguerre domain approximation methods. 

2.5.2.3.2 Explicit time-delay parameter methods. The time delay is an explicit parameter 

in the model. Approaches include one-step explicit methods, two-step explicit methods, and 

sampling methods. For the one-step explicit methods, termed idproc methods in the process 

industry, two variants are possible: (a) Model and estimate the time delay as a continuous 

parameter in a continuous-time model. Here the time delay is not restricted to be a multiple of the 

sampling interval, but can be a subsample time delay. (b) Model and estimate the time delay as a 

discrete parameter in a discrete-time model. The process models could be: (i) a first-order system 

with time delay, (ii) a second-order system with real poles and time delay, (iii) a second-order 

system with complex poles and time delay, (iv) a third-order system with real poles and time delay, 

or (v) a third-order system with two complex poles, one real pole and time delay. 

2.5.2.3.3 Area and moment methods. These methods utilize relations between the time 

delay and certain areas above or below the step response and certain moments of the impulse 

response. There are two independent steps: a) Estimate or measure the step or impulse response. 

b) Estimate the time delay from these responses. 

2.5.2.3.4 Higher-order statistics (HOS) methods. Their main advantage is that noise with 

a symmetric probability density function (PDF), e.g. Gaussian, theoretically can be removed 

completely by HOS. If the desired signal has a symmetric PDF, it will disappear as well. 

Methods for the passive TDE problem should also be possible to use for active TDE 

problems. For example, if 𝑛1(𝑡) = 0 we have active TDE problem. Active TDE is thus a special 

case of passive TDE. The opposite, of using active TDE methods for passive TDE problems, could 

also be possible. 
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2.5.2.4 Lambert W function. In mathematics, the Lambert W function, also called the 

omega function or product logarithm, is a set of functions, namely the branches of the inverse 

relation of the function shown in equation (2.22), where W is any complex number [63]. 

                                                                    f(W) = 𝑊(𝑥)𝑒𝑊(𝑥) = 𝑥                                                   (2.22) 

Based on the Lambert W function, a new approach has been developed for systematic analysis of 

control systems with time delays [64]. The function allows handling of the exponential term in the 

characteristic equation of Delay Differential Equations, DDEs, thanks to its unique definition in 

(2.22). The branches of the Lambert W function and the specific range of each branch are helpful 

in this new approach [64]. As seen in Figure 2.16, when the argument of the function, 𝑥, is greater 

than -1/𝑒 the values of 𝑊𝑜(𝑥) is real, however, if 𝑥 < −1/𝑒, the values of 𝑊𝑜(𝑥) is complex. 

 

Figure 2.16. Two main branches of the Lambert W function [63]. 

2.5.3 System uncertainty. The extent to which a plant model is unknown will be called 

uncertainty. This is another important issue which designers might need to face. It is known that 

some uncertainty is always present, both in the environment of the system and in the system itself 

[65]. We do not know in advance exactly what disturbance and noise signals the system will be 
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subjected to. In the system itself, we know that no mathematical expressions can exactly model a 

physical system. The uncertainty may be caused by parameter changes, neglected dynamics 

(especially, high-frequency unmodeled dynamics), or other unspecified effects, which might 

adversely affect the performance of a control system [65]. Stability and performance robustness 

are two important issues that should be considered in control design. Generally, the form of the 

plant uncertainty can be parametric, nonparametric, or both [65]. 

In designing a controller for quadrotor helicopters, there are several important 

considerations, and uncertainty is one of them. Uncertainty in quadrotor systems occurs due to 

unmodeled factors such as friction and backlash in the mechanical parts of the DC motors, error 

in the machinery, which can lead to actuator degradation and failure, causing the rotor’s thrust to 

not fully counteract each other (loss-of-thrust anomaly). System parameters such as mass, thrust 

constant, torque constant, and even gravitational strength (e.g., of external disturbances) can vary 

due to some of the factors mentioned, and also depend on where the device is being used. The time 

delay due to processing or communication in the control system is also an inherent and potential 

uncertainty [25]. These problems are amplified in the case of actuator failures, where the quadrotor 

has lost some of its control effectiveness [25]. 

During the design process, the engineer may want to consider the extent to which changes 

in system parameters affect the behavior of a system [65]. One of the main advantages of feedback 

is that it can be used to make the response of a system relatively independent of certain types of 

changes or inaccuracies in the plant model [65]. Ideally, parameter changes due to heat, humidity, 

age, or other causes mentioned above should not appreciable affect a system’s performance [65]. 

The degree to which changes in system parameters affect system transfer functions, and hence 

performance, is called sensitivity. The greater the sensitivity, the worse is the effect of a parameter 
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change. Adaptive control (e.g., MRAC) is an attractive candidate for this type of aircraft because 

of its ability to generate high performance tracking in the presence of parametric uncertainties [25, 

65]. 

Systems with uncertainty is a wide class comprising systems of various nature 

(continuous/discrete, linear/nonlinear, etc.) characterized by the presence of unknown parameters. 

In these systems, the target is typically to carry out analysis and synthesis tasks for a family of 

admissible values of the uncertainty. The various possible behaviors of the system are determined 

by designing robust control strategies. A system with uncertainty in parameter, 𝑚𝑢, will have best 

estimate of its true value, 𝑚𝑢
′ , as [66] 

                                                                     𝑚𝑢
′ = 𝑚̅𝑢 ± ∆𝑚𝑢

 (𝑃%)                                                    (2.23) 

where its mean (nominal) value is 𝑚̅𝑢, ∆𝑚𝑢
 is the uncertainty, and 𝑃 is the probability level. If the 

measured variable is based on a finite sampling, then the Student’s 𝑡 distribution can be used to 

estimate ∆𝑚𝑢
 as ±𝑡𝑣,𝑃𝑠𝑚̅𝑢

, which expresses a confidence interval about 𝑚̅𝑢, with coverage factor 

𝑡 at the assigned probability, 𝑃%, within which one should expect 𝑚𝑢
′  to fall, and 𝑣 = 𝑁 − 1 is 

the degrees of freedom in the sample variance, 𝑠𝑚𝑢
2 [66]. The standard deviation of the means, 

𝑠𝑚̅𝑢
= 𝑠𝑚𝑢

/√𝑁, where 𝑁 is total number of measurements [66]. 

 A way to ensure stability robustness with respect to these uncertainties, is to employ 

stability criteria valid for any nonnegative value of the time delay [62]. In the study of these 

problems, the notion of stability radius has been proven to be an effective tool. The stability radius 

of an object (system, function, matrix, parameter, etc.) at a given nominal point is the radius of the 

largest ball, centered at the nominal point, all of whose elements satisfy pre-determined stability 

conditions [67].  
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In its simplest form, the stability radius of a given asymptotically stable, nominal, system 

without time delay, 𝐱̇(𝑡) = 𝐀𝐱(𝑡), is the maximal 𝑟 > 0 for which all systems, perturbed, of the 

form  

                                                          𝐱̇(𝑡) = (𝐀 + 𝐄∆ 𝐅)𝐱(𝑡),         ‖∆‖ < 𝑟,                                     (2.24) 

are asymptotically stable [55]. Here, ∆ is the unknown disturbance or perturbation matrix, 𝐄 and 

F are known scaling matrices defining the structure of the perturbations, where 𝐀 ∈

ℂ𝑛x𝑛, 𝜎(𝐀)  ℂ, 𝐄 ∈ ℂ𝑛x𝑚, 𝐅 ∈ ℂ𝑝x𝑛, ∆ ∈ ℂ𝑚x𝑝, ℂ is the complex plane, and  𝜎 is singular 

values [55, 68]. The matrices 𝐄 and F may reflect, for instance, the possibility that not all of the 

elements of 𝐀 are subject to perturbations. In this case, the system matrix, 𝐀, is subjected to 

structured perturbations, denoted as [55] 

                                                                        𝐀 → 𝐀 + 𝐄∆ 𝐅                                                                 (2.25) 

Depending upon whether complex or real disturbances, ∆, are considered, 𝑟 is called 

complex or real stability radius, respectively [55]. It is important to note that these two stability 

radii are in general distinct. The analysis and computation of 𝑟 is much simpler for a class of 

positive systems, a class of systems that has the important property that its state variables are never 

negative, given a positive initial state [69]. It has been shown that if 𝐀 is a Metzler matrix (i.e., all 

off-diagonal entries of 𝐀 are nonnegative) and 𝐄 and 𝐅 are nonnegative matrices, then the two 

stability radii coincide [55]. It is worth noticing that the notion of stability radius can be extended 

to various perturbation types, and among perturbation types, the two most well known in control 

theory are [55] 

                                                      𝐀 → 𝐀 + ∑𝐄𝑖∆𝑖𝐅𝑖

𝑁

𝑖=1

      (multi perturbation)                           (2.26) 
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                                                      𝐀 → 𝐀 + ∑𝜹𝑖𝐁𝑖

𝑁

𝑖=1

         (affine perturbation)                           (2.27) 

This research work make use of the work done by [37], which present readily computable 

formulae with respect to an arbitrary stability region in the complex plane. The formulae computes 

the real stability radii for perturbed LTI time-delay control systems. The real stability radius, 𝑟, 

is determined for a perturbed time-delayed P control system, retarded type, given as [37] 

                                         𝐱̇ = (𝐀 + 𝐄∆A 𝐅A)𝐱 + (𝐁 + 𝐄∆B 𝐅B)𝐱(𝑡 − 𝑇𝑑)                                      (2.28) 

where ∆A is the perturbed value in A, ∆B is the perturbed value in B, 𝐅A, 𝐅B, and, E are perturbed 

parameters, then 𝑟 is given as [37] 

                                       𝑟(𝐀;𝐁; 𝐄, 𝐅A, 𝐅B; ℂ𝑏) = { sup
𝑠∈𝜕ℂ𝑔

inf
𝛾𝜖(0,1]

𝜎2[𝐏(𝛾)]}

−1

                               (2.29) 

where the matrix 𝐏(𝛾) ∈ 
4𝑝x2𝑚

 is given as 

                                               𝐏(𝛾) = [
(𝐖(𝑠)) −𝛾(𝐖(𝑠))

𝛾−1(𝐖(𝑠)) (𝐖(𝑠))
]                                              (2.30) 

where ℂ = ℂ𝑔 ∪̇ ℂ𝑏, such that ℂ𝑔 is the open left complex plane, 𝜕ℂ𝑔 denote the boundary of ℂ𝑔, 

𝑠 = 𝑗𝜔 is the Laplace operator, 𝜔 is the system natural frequency, 𝐖 ∈ ℂ𝑝x𝑚 is a complex matrix, 

whose singular values, ordered non-increasing, are denoted by 𝜎𝑖(𝐖), 𝑖 = 1, … ,𝑚𝑖𝑛 {𝑝,𝑚} [70]. 

The unperturbed system from (2.28) is stable if its eigenvalues are contained in ℂ𝑔 [37].  

The function, 𝐏(𝛾), to be minimized is a unimodal function on the search range, 𝛾𝜖(0, 1], 

i.e., any local minimum is a global minimum [70]. The upper bound or the critical frequency for 

𝜔, denoted 𝜔∗, on the global maximizer in (2.29), is computable at a small cost compared to that 

of performing the global maximization [37]. The corresponding values for 𝑠 and 𝛾 are denoted as 

𝑠∗ and 𝛾∗, respectively. At 𝜔∗, the minimum of the second singular value, 𝜎2, of 𝐏(𝛾) occurs at 
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𝛾 = 𝛾∗. The destabilizing, worst, perturbation matrices with minimum norm, ‖∆‖ =

‖[∆A,  ∆B]‖ = 𝑟, i.e., the smallest real ∆ is given by [37, 70]. 

                                               ∆ = 𝑟[𝐯1  𝐯2][𝐮1  𝐮2]
𝑇𝐻                                                    (2.31) 

where [𝐯1  𝐯2] and [𝐮1  𝐮2] are the left and right singular vectors, respectively, of 𝐏(𝛾) in (2.30). 

Many standard search algorithms, such as golden section search, can be used with 

guaranteed convergence to a global minimum [70]. For this research work, MATLAB function, 

fminbnd, is used for the function minimization. It determines the minimum of single-variable 

function on a fixed interval. For example, 𝑞 =  𝑓𝑚𝑖𝑛𝑏𝑛𝑑(𝑓𝑢𝑛, 𝑞1, 𝑞2) returns a value 𝑞 that is a 

local minimizer of the function that is described in fun in the interval 𝑞1 <  𝑞 <  𝑞2, where fun is 

a function handle. 

2.5.3.1 Payload. Payload is the carrying capacity of an aircraft or launch vehicle, usually 

measured in terms of weight [71]. Depending on the nature of the flight or mission, the payload of 

a vehicle may include cargo, passengers, flight crew, munitions, scientific instruments or 

experiments, or other equipment. Extra fuel, when optionally carried, is also considered part of the 

payload. In a commercial context (i.e., an airline or air freight carrier), payload may refer only to 

revenue-generating cargo or paying passengers [71]. 

For a rocket, the payload can be a satellite, space probe, or spacecraft carrying humans, 

animals, or cargo. For a ballistic missile, the payload is one or more warheads and related systems; 

the total weight of these systems is referred to as the throw-weight [71]. The fraction of payload 

to the total liftoff weight of the air or spacecraft is known as the payload fraction. When the weight 

of the payload and fuel are considered together, it is known as the useful load fraction. In 

spacecraft, mass fraction is normally used, which is the ratio of payload to everything else, 

including the rocket structure [71].     
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Figure 2.17. Trade-off between payload and range of an aircraft [71]. 

There is a natural trade-off between the payload and the range of an aircraft. A payload 

range diagram (also known as the elbow chart) illustrates the trade-off, see Figure 2.17 [71]. The 

top horizontal line represents the maximum payload. It is limited structurally by maximum zero-

fuel weight (MZFW) of the aircraft. Maximum payload is the difference between MZFW and 

operational empty weight (OEW). Moving left-to-right along the line shows the constant maximum 

payload as the range increases. More fuel needs to be added for more range [71]. 

The vertical line represents the range at which the combined weight of the aircraft, 

maximum payload and needed fuel reaches the maximum take-off weight (MTOW) of the aircraft. 

If the range is increased beyond that point, payload has to be sacrificed for fuel [71]. The MTOW 

is limited by a combination of the maximum net power of the engines and the lift/drag ratio of the 

wings. The diagonal line after the range-at-maximum-payload point shows how reducing the 
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payload allows increasing the fuel (and range) when taking off with the MTOW. The second kink 

in the curve represents the point at which the maximum fuel capacity is reached. Flying further 

than that point means that the payload has to be reduced further, for an even lesser increase in 

range. The absolute range is thus the range at which an aircraft can fly with maximum possible 

fuel without carrying any payload [71]. 

Safe, cooperative transportation of possibly large or bulky payloads by quadrotor is 

extremely important in various missions, such as military operations, search and rescue, Mars 

surface explorations, and personal assistants. There is growing interest in the research community 

towards the development of aerial robotic systems capable of acquiring external payloads or 

otherwise physically interacting with objects in the environment [72].  

The application of rotorcraft to autonomous load carrying and transport is a new frontier 

for UAVs, and there are a number of substantial challenges and open research questions related to 

this application. This task requires that hovering vehicles remain stable and balanced in flight as 

payload mass is added to the vehicle. If payload is not loaded centered or the vehicle properly 

trimmed for offset loads, the robot will experience bias forces that must be rejected [72]. 
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3 CHAPTER 3  

Methodologies, Algorithms, and Modeling 

This chapter discusses the kinematics and dynamics of the ground and aerial robots. It also 

presents the control algorithms and modeling that were used for the research work.  

3.1 Ground Robot: X80SV   

This section introduces the kinematic model of a DDWMR. Also, the kinematic model of 

a unicycle is also introduced. The section continues with the control algorithms built for the 

different WMR behaviors such as ‘move to a point’, ‘move to a pose’, ‘follow a line’, ‘follow a 

circle’, and ‘avoid obstacles’. The section ends with control navigation system that combines ‘go-

to-goal’, ‘follow-wall’, and ‘avoid obstacles’. 

 3.1.1 Kinematic modeling of DDWMR. The DDWMR setup used for the presented study 

is shown in Figure 3.1 (top view). The mobile robot is made up of a rigid body and non-deforming 

wheels, and it is assumed that the vehicle moves on a plane without slipping, i.e., there is a pure 

rolling contact between the wheels and the ground. 

 

 

 

 

 

Figure 3.1. Coordinates for differential drive wheeled mobile robot (DDWMR) [73]. 

The configuration of the vehicle is represented by the generalized coordinates 𝑞 =

(𝑥, 𝑦, 𝜑), where (𝑥, 𝑦) is the position and 𝜑 is the orientation (heading or yaw) of the center of the 

axis of the wheels, 𝐶, with respect to a global inertial frame, {𝑂, 𝑋, 𝑌}. Let {𝑂𝑉, 𝑋𝑉, 𝑌𝑉} be the vehicle 
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frame. The vehicle’s velocity is by definition 𝑣 in the vehicle’s 𝑥-direction, 𝐿 is distance between 

the wheels, 𝑅 is radius of the wheels, 𝜔𝑟 is the right wheel angular velocity, 𝜔𝑙 is the left wheel 

angular velocity, and 𝜔 is the heading rate. The kinematic model of the DDWMR based on the 

stated coordinate is given as [73] 

                                                                        𝑥̇ =
𝑅

2
(𝜔𝑟 + 𝜔𝑙) 𝑐𝑜𝑠 𝜑

                                                                       𝑦̇ =
𝑅

2
(𝜔𝑟 + 𝜔𝑙) 𝑠𝑖𝑛 𝜑

                                                             𝜑̇ =
𝑅

𝐿
(𝜔𝑟 − 𝜔𝑙) 

                                                     (3.1) 

For the purpose of implementation the kinematic model of a unicycle is used, which corresponds 

to a single upright wheel rolling on the plane, with the equation of motion given as [73] 

                                                                 𝑥̇ = 𝑣 𝑐𝑜𝑠 𝜑
                                                                𝑦̇ = 𝑣 𝑠𝑖𝑛 𝜑

                                                       𝜑̇ = 𝜔 

                                                                         (3.2)   

The inputs in (3.1) and (3.2) are 𝜔𝑟 , 𝜔𝑙 , 𝑣, and  𝜔. These inputs are related as 

                                                                     
𝜔𝑟 =

2𝑣 + 𝜔𝐿

2𝑅

𝜔𝑙 =
2𝑣 − 𝜔𝐿

2𝑅

                                                                      (3.3) 

3.1.2 Control algorithms. Control of the unicycle model inputs, 𝐮, is about calculating 

the appropriate input values by applying the traditional PID-feedback controller shown in (2.4), 

given as        

                                                      𝐮 = (𝑣 𝜔)𝑇 = 𝑃𝐼𝐷(𝒆)                                                         (3.4) 

If the vehicle is driven at a constant linear velocity, 𝑣 = 𝑣𝑜 , then only 𝜔 will vary with time. 

3.1.2.1 Developing individual controllers. This section presents control algorithms that 

make mobile robots ‘move to a point’, ‘move to a pose’, ‘follow a line’, ‘follow a circle’, and 

‘avoid obstacles’. 
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3.1.2.1.1 Moving to point. Consider a robot moving toward a goal point, (𝑥𝑔, 𝑦𝑔), from a 

current position, (𝑥, 𝑦), in the 𝑥𝑦-plane, as depicted in Figure 3.2. 

 

 

 

 

 

 

Figure 3.2. Coordinates for moving to a point. 

The desired heading (robot’s relative angle), 𝜑𝑔, is determined as [73] 

                                                          𝜑𝑔 = 𝜑𝑔𝑜𝑎𝑙 =  𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦𝑔 − 𝑦

𝑥𝑔 − 𝑥
)                                                   (3.5) 

and the error, 𝑒, is defined as  

                                                                    𝑒 = 𝜑𝑔 − 𝜑                                                                       (3.6) 

To ensure 𝑒 ∈ [−𝜋, 𝜋], a corrected error, 𝑒′, is used instead of 𝑒, computed as [73] 

                                       𝑒′ = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑠𝑖𝑛(𝑒), 𝑐𝑜𝑠(𝑒)) ∈ [−𝜋, 𝜋]                                             (3.7) 

Thus, 𝜔 can be controlled using   

                                                                           𝜔 =  𝐾ℎ𝑒
′                                                                         (3.8) 

where 𝐾ℎ a proportional controller gain. If the robot’s linear velocity is to be controlled, a 

proportional controller gain, 𝐾𝑣, is applied to the distance from the goal, computed as [39] 

                                                    𝑣 =  𝐾𝑣√(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2                                                   (3.9) 
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3.1.2.1.2 Moving to pose. The above controller could drive the robot to a goal position, but 

the final orientation depends on the starting position. In order to control the final orientation (3.2) 

is rewritten in matrix form as 

                                                           (
𝑥̇
𝑦̇
𝜑̇
) = (

𝑐𝑜𝑠𝜑 0
𝑠𝑖𝑛𝜑 0

0 1
) (

𝑣
𝜔

)                                                    (3.10) 

(3.10) is then transformed into the polar coordinate form using the notation shown in Figure 3.3.  

 

 

 

 

 

 

Figure 3.3. Coordinates for moving to a pose [39]. 

Applying a change of variables, we obtain [39] 

           

                                          𝜌 = √∆𝑥
2 + ∆𝑦

2

                                                         𝛼 = arctan (
∆𝑦

∆𝑥

) − 𝜑     

                                    𝛽 = −𝜑 − 𝛼

                                                   (3.11) 

which results in [39] 

                                        (

𝜌̇
𝛼̇
𝛽̇
) =

(

 
 

−𝑐𝑜𝑠𝛼 0
𝑠𝑖𝑛𝛼

𝜌
−1

−
𝑠𝑖𝑛𝛼

𝜌
0

)

 
 

(
𝑣
𝜔

) ,   𝑖𝑓 𝛼 ∈ (−
𝜋

2
,
𝜋

2
]                                   (3.12)  

and this assumes the goal, 𝐺, is in front of the vehicle. The linear control law [39] 
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                                                   𝑣 = 𝐾𝜌𝜌

                                                               𝜔 = 𝐾𝛼𝛼 + 𝐾𝛽𝛽
                                                                 (3.13)   

drives the robot to unique equilibrium at (𝜌, 𝛼, 𝛽) = (0,0,0). The intuition behind this controller 

is that the terms 𝐾𝜌𝜌 and 𝐾𝛼𝛼 drive the robot along a line toward 𝐺 while the term 𝐾𝛽𝛽 rotates the 

line so that 𝛽 → 0 [39]. The closed-loop system  

                                                 (

𝜌̇
𝛼̇
𝛽̇
) =  (

−𝐾𝜌𝑐𝑜𝑠𝛼

𝐾𝜌𝑠𝑖𝑛𝛼 − 𝐾𝛼𝛼 − 𝐾𝛽𝛽

−𝐾𝜌𝑠𝑖𝑛𝛼
)                                               (3.14) 

is stable so long as 𝐾𝜌 > 0,   𝐾𝛽 < 0,   𝐾𝛼 − 𝐾𝜌 > 0 [39]. For the case where the goal is behind the 

robot, that is 𝛼 (−
𝜋

2
,
𝜋

2
], the robot is reverse by negating 𝑣 and 𝜔 in the control law. The velocity 

𝑣 always has a constant sign which depends on the initial value of 𝛼. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Coordinates for avoiding obstacle [73]. 

3.1.2.1.3 Obstacle avoidance. In a real environment robots must avoid obstacles in order 

to go to a goal. Depending on the positions of the goal and the obstacle(s) relative to the robot, the 
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robot needs move to the goal using 𝜑𝑔 from a ‘pure go-to-goal’ behavior or blending the ‘avoid 

obstacle’ and the ‘go-to-goal’ behaviors. In pure obstacle avoidance the robot drives away from 

the obstacle and move in the opposite direction. The possible heading that can be used in the 

control law discussed in Section 3.1.2.1.1 are shown in Figure 3.4, where 𝜑𝑜𝑏𝑠𝑡 is the obstacle 

heading. 

 

 

 

 

 

 

Figure 3.5. Coordinates for following a line. 

 

 

 

 

 

 

 

Figure 3.6. Coordinates for following a circle. 

3.1.2.1.4 Following a line. Another useful task for a mobile robot is to follow a line on a 

plane defined by 𝑎2𝑥 + 𝑎1𝑦 + 𝑎𝑜 = 0, as shown in Figure 3.5. This requires two controllers to 
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adjust the heading. One controller steers the robot to minimize the robot’s normal distance from 

the line given by [39] 

                                                               𝑑𝑑  =
(𝑎2, 𝑎1, 𝑎𝑜). (𝑥, 𝑦, 1)

√𝑎2
2 + 𝑎1

2
                                                   (3.15) 

The proportional controller [39] 

                                                               𝛼𝑑 = −𝐾𝑑𝑑𝑑 , 𝐾𝑑 > 0                                                     (3.16) 

turns the robot toward the line. The second controller adjusts the heading angle to be parallel to 

the line [39] 

                                                                    𝜑𝑔 = arctan (−
𝑎2

𝑎1
)                                                           (3.17) 

using the proportional controller [39] 

                                                          𝛼ℎ = 𝐾ℎ(𝜑𝑔 − 𝜑), 𝐾ℎ > 0                                                    (3.18) 

The combined control law [39] 

                                                            𝜔 = −𝐾𝑑𝑑𝑑 + 𝐾ℎ(𝜑𝑔 − 𝜑)                                                       (3.19) 

turns the wheel so as to drive the robot toward the line and moves along it. 

3.1.2.1.5 Following a circle. Instead of a straight line the robot can follow a defined path 

on the 𝑥𝑦-plane, and in this section the robot follows a circle, as shown in Figure 3.6. This problem 

is very similar to the control problem presented in Section 3.1.2.1.1, except that this time the point 

is moving. The robot maintains a distance 𝑑𝑙 behind the pursuit point and an error, 𝑒, can be 

formulated as [39] 

                                                      𝑒 = √(𝑥𝑔 − 𝑥)2 + (𝑦𝑔 − 𝑦)2 − 𝑑𝑙                                        (3.20) 

that will be regulated to zero by controlling the robot’s velocity using a PI controller 

                                                𝑣𝑑 = 𝑃𝐼(𝑒) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

                                      (3.21) 
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The integral term is required to provide a finite velocity demand 𝑣𝑑 when the following error is 

zero. The second controller steers the robot toward the target which is at the relative angle given 

by (3. 5) and a controller given by (3.18). 

3.1.2.2 Developing navigation control algorithm. This section introduces how the 

navigation architecture that consist of go-to-goal, follow-wall, and avoid obstacle behaviors was 

developed. In order to develop the navigation system, a low-level planning was used by starting 

with a simple model whose input can be calculated by using a PID controller or transform into 

actual robot input, depicted in Figure 3.7. For this simple planning a desired motion vector, 𝐱, is 

picked and set equal to the input, 𝐮𝑚, see (3.22), where 𝐮𝑚 = (𝑢1 𝑢2)
𝑇 [73]. 

                                       𝐱̇ = 𝐮𝑚 = [
0 0
0 0

] 𝐱 + [
1 0
0 1

] 𝐮𝑚,     𝐱 ∈ ℜ2                                       (3.22)  

 

 

 

 

Figure 3.7. Planning model input to actual robot input [73]. 

This selected system is unstable, but controllable as compared to the unicycle system which is non-

linear and not controllable even after it has been linearized. This layered architecture makes the 

DDWMR act like the point mass model shown in (3.22). 

3.1.2.2.1 Go-to-goal (GTG) mode. Consider the point mass moving toward a goal point, 

𝐱𝑔, with current position as 𝐱 in the 𝑥𝑦-plane, see Figure 3.8. The error, 𝐞 = 𝒙𝑔 − 𝐱, is controlled 

by the input 𝐮𝑚 = 𝐊𝐞, where 𝐊 is gain matrix. Since 𝐞̇ = −𝐊𝐞 the system is asymptotically stable 

if 𝐊 > 𝟎. An appropriate 𝐊 is selected to obey the function shown in Figure 3.9a such that 𝐞̇ =
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(𝑢1, 𝑢2) 
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(𝑣, 𝜔) → (𝜔𝑟 , 𝜔𝑙) 
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−𝐊(‖𝐞‖)𝐞, where 𝑎 and 𝑏 are constants to be selected; in this way the robot will not go faster 

further away from the goal. 

 

 

 

 

Figure 3.8. Coordinates for go-to-goal. 

 

 

 

 

 

Figure 3.9. Suitable graph for 𝐊 [73] (a) go-to-goal mode (b) obstacle avoidance mode.  

3.1.2.2.2 Obstacle avoidance (AO) mode. Let the obstacle position be 𝐱𝑜, then 𝐞 = 𝐱𝑜 − 𝐱 

is controlled by the input 𝐮𝑚 = −𝐊𝐞, and since 𝐞̇ = 𝐊𝐞 the system is desirably unstable if 𝐊 > 𝟎, 

see Figure 3.10. An appropriate 𝐊 is selected to obey the function shown in Figure 3.9b such that 

𝐞̇ = 𝐊(‖𝐞‖)𝐞, where 𝑐 and 𝜀 are constants to be selected. 

 

 

 

 

Figure 3.10. Coordinates for obstacle avoidance. 
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3.1.2.2.3 Blending AO and GTG mode. In a ‘pure GTG’ mode, 𝐮𝐺𝑇𝐺 , or ‘pure AO’ 

mode, 𝐮𝐴𝑂, or what is termed as hard switches, performance can be guaranteed but the ride can be 

bumpy, and the robot can encounter the zeno phenomenon. A control algorithm for blending the 

𝐮𝐺𝑇𝐺  and 𝐮𝐴𝑂 modes is given by [73].  

                          𝐮𝐺𝑇𝐺,𝐴𝑂 = 𝛼(∆)𝐮𝐺𝑇𝐺 + (1 − 𝛼(∆))𝐮𝐴𝑂 ,   𝛼(∆) ∈ [0 1]                               (3.23) 

where ∆ is a constant distance to the obstacle/boundary and 𝛼 is the blending function to be 

selected, giving appropriately as an exponential function by [73] 

                                                             𝛼(∆) = 1 − 𝑒−𝛽∆                                                                (3.24) 

where 𝛽 is a constant to be selected. This algorithm ensures a smooth ride but does not guarantee 

performance. 

3.1.2.2.4 Follow-wall (FW) mode. As pointed out in Section 3.1.2.2.2, in a pure obstacle 

avoidance mode the robot drives away from the obstacle and move in the opposite direction, but 

this is overly cautious in a real environment where the task is to go to a goal. The robot should be 

able to avoid obstacles by going around its boundary, and this situation leads to what is termed as 

the follow-wall or an induced or sliding mode, 𝐮𝐹𝑊, between the 𝐮𝐺𝑇𝐺  and 𝐮𝐴𝑂 modes; this is 

needed for the robot to negotiate complex environments. 

The FW mode maintains ∆ to the obstacle/boundary as if it is following it, and the robot 

can clearly move in two different directions, clockwise (c) and counter-clockwise (cc), along the 

boundary, see Figure 3.11. This is achieved by rotating 𝐮𝐴𝑂 by π 2⁄  or −π 2⁄  to obtain 𝐮𝐹𝑊
𝑐𝑐  or 

𝐮𝐹𝑊
𝑐  respectively, and then scaled by 𝛿 to obtain a suitable induced mode, (3.25 − 3.27), where 

𝑅(𝜑) is a rotation matrix [73]. 

                                                   𝑅(𝜑) = [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑    𝑐𝑜𝑠𝜑

]                                                           (3.25) 
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                                         𝐮𝐹𝑊
𝑐𝑐 =  𝛿𝑅(𝜋 2⁄ )𝐮𝐴𝑂 = 𝛿 [

0 −1
1    0

] 𝐮𝐴𝑂                                           (3.26) 

                                                𝐮𝐹𝑊
𝑐 =  𝛿𝑅(−𝜋 2⁄ )𝐮𝐴𝑂 = 𝛿 [

   0 1
−1 0

] 𝐮𝐴𝑂                                        (3.27) 

 

 

 

 

 

 

Figure 3.11. Setup for follow-wall mode [73]. 

The direction the robot selects to follow the boundary is determined by the direction of 

𝐮𝐺𝑇𝐺 , and it is determined using the dot product of 𝐮𝐺𝑇𝐺  and 𝐮𝐹𝑊, as shown in (3.28) and (3.29) 

[73]. 

                                          〈𝐮𝐺𝑇𝐺 , 𝐮𝐹𝑊
𝑐𝑐 〉 = (𝐮𝐺𝑇𝐺)𝑇𝐮𝐹𝑊

𝑐𝑐 > 0 ⇒ 𝐮𝐹𝑊
𝑐𝑐                                          (3.28) 

                                          〈𝐮𝐺𝑇𝐺 , 𝐮𝐹𝑊
𝑐 〉 = (𝐮𝐺𝑇𝐺)𝑇𝐮𝐹𝑊

𝑐 > 0 ⇒ 𝐮𝐹𝑊
𝑐                                          (3.29) 

Another issue to be addressed is when the robot releases 𝐮𝐹𝑊, that is when to stop sliding. 

The robot stops sliding when “enough progress” has been made and there is a “clear shot” to the 

goal, as shown in (3.30 − 3.32), where 𝜏𝑠 is the time of last switch [73]. 

                                             𝑒𝑛𝑜𝑢𝑔ℎ 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠:  ‖𝐱 − 𝐱𝑔‖ < 𝑑𝜏𝑠
                                             (3.30) 

                                                         𝑤ℎ𝑒𝑟𝑒    𝑑𝜏𝑠
= ‖𝐱(𝜏𝑠) − 𝐱𝑔‖                                               (3.31) 

                                              𝑐𝑙𝑒𝑎𝑟 𝑠ℎ𝑜𝑡: 〈𝐮𝐴𝑂 , 𝐮𝐺𝑇𝐺〉 = (𝐮𝐴𝑂)𝑇𝐮𝐺𝑇𝐺 > 0                                     (3.32) 

3.1.2.2.5 Implementation of navigation algorithm. The behaviors or modes discussed 

above are put together to form the navigation architecture shown in Figure 3.12. The robot starts 

at the state, 𝐱𝑜 , and arrives at the goal, 𝐱𝑔, switching between the three different operation modes, 

 ∆ = ‖𝐱 − 𝐱𝑜‖ 
 𝐱𝑜  𝐮𝐹𝑊

𝑐  

 𝐮𝐹𝑊
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 ∆ 
 𝐱 
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𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 

𝑟𝑜𝑏𝑜𝑡 
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using logic control. This system of navigation is termed the hybrid automata where the navigation 

system has been described using both the continuous dynamics and the discrete switch logic. An 

illustration of this navigation system is shown in Figure 3.13. The robot avoids the rectangular 

block as it moves to the goal. It goes around the boundary clockwise since 〈𝐮𝐺𝑇𝐺 , 𝐮𝐹𝑊
𝑐 〉 > 0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Setup for navigation architecture [73]. 

 

 

 

 

Figure 3.13. Illustration of the navigation system [73]. 
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3.1.2.2.6 Tracking and transformation of the ‘simple’ model input. The simple planning 

model input, 𝐮𝑚 = (𝑢1 𝑢2)
𝑇 can be tracked using a PID controller or clever transformation can be 

used to transform it into the unicycle model input,  𝐮 = (𝑣 𝜔)𝑇 as shown in Figure 3.14. These 

two approaches are discussed below.  

In the first approach, the tracking is done by using a PID controller. Let the current position 

of the point mass be 𝐱 = (𝑥 𝑦)𝑇, see Figure 3.8, then 

                                                                   𝜑𝑔 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢2

𝑢1
)                                                              (3.33) 

                                                                     𝜔 = 𝑃𝐼𝐷(𝜑𝑔 − 𝜑)                                                             (3.34) 

From (3.2) 

                                                 √𝑥̇2 + 𝑦̇2  = √𝑣2𝑐𝑜𝑠2𝜑 + 𝑣2𝑠𝑖𝑛2𝜑 = 𝑣         

                                                 ⇒            𝑣 =  √𝑢1
2 + 𝑢2

2  = ‖𝐮𝑚‖                                                       (3.35) 

In second method, a clever transformation approach is used where a new point (𝑥𝑛, 𝑦𝑛), of 

interest is selected on the robot at a distance 𝑘 from the center of mass, (𝑥, 𝑦), as shown in Figure 

3.14, where 𝐱𝑛 = (𝑥𝑛 𝑦𝑛)
𝑇and 𝐱̇𝑛 = 𝐮𝑚. If the orientation is ignored then [73] 

                                                                     𝑥𝑛 = 𝑥 + 𝑘𝑐𝑜𝑠𝜑
                                                                     𝑦𝑛 = 𝑦 + 𝑘𝑠𝑖𝑛𝜑

                                                                  (3.36) 

Thus 

                                                                    𝑥̇𝑛 = 𝑥̇ − 𝑘𝜑̇𝑠𝑖𝑛𝜑
                                                                     𝑦̇𝑛 = 𝑦̇ + 𝑘𝜑̇𝑐𝑜𝑠𝜑

                                                               (3.37) 

Substituting (3.2) into (3.37), and using 𝑥̇𝑛 = 𝑢1 and  𝑦̇𝑛 = 𝑢2, we have 

                                                          𝑥̇𝑛 = 𝑣𝑐𝑜𝑠𝜑 − 𝑘𝜔𝑠𝑖𝑛𝜑 = 𝑢1

                                                          𝑦̇𝑛 = 𝑣𝑠𝑖𝑛𝜑 + 𝑘𝜔𝑐𝑜𝑠𝜑 = 𝑢2

                               

                                          ⇒           [
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] [
𝑣

𝑘𝜔
] =  [

𝑢1

𝑢2
] 
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                                          ⇒              𝑅(𝜑) [
1 0
0 𝑘

] [
𝑣
𝜔

] =  [
𝑢1

𝑢2
] 

                                          ⇒            [
𝑣
𝜔

] =  [
1 0
0 𝑘−1] 𝑅(−𝜑) [

𝑢1

𝑢2
]                                                     (3.38) 

 

 

 

 

 

 

 

 

 

Figure 3.14. Coordinates for DDWMR model for transformation [73]. 

3.1.3 Challenges. As demonstrated above the non-linear equations of motion can be used 

to control the WMR, however, some challenges were encountered. The main challenge was in 

sending signals to the X80SV DC motors and receiving measured data using a developed 

MATLAB GUI, in real time. Therefore, direction of the research continued to developing 

autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) control for quadrotor, and then 

experiment the controllers on the aerial robot, AR.Drone 2.0. The control systems are designed 

considering the nonlinear effects of control input saturation, time delay, and system uncertainty. 

3.2 Aerial Robot: AR.Drone 2.0 

3.2.1 Control of quadrotor motions: white-box approach (nonlinear model). This 

section begins with description of the quadrotor’s nonlinear dynamics and kinematics. It is 

followed by the PD-feedback control laws for the regulation of position and attitude motions. 
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3.2.1.1 Quadrotor’s dynamics and kinematics. The notation for the quadrotor model is 

shown in Figure 3.15 below. Different coordinate frames are used in identifying quadrotor’s 

location and attitude, and translation and rotation matrices can then be applied to transform one 

coordinate reference frame into another [74]. Quadrotors has three main coordinate systems 

attached to it; the body-fixed frame, {𝐵}, the vehicle frame, {𝑉}, and the global inertial frame, {𝐼}. 

There are two other coordinate systems, not shown, that are of interest, the vehicle-1 frame, {𝑉1}, 

and vehicle-2 frame, {𝑉2} [74]. Frame {𝑉1} is obtained by rotating frame {𝑉} about the 𝑍𝑉-axis 

by a positive yaw angle, 𝜑𝑉, assuming no rolling or pitching, so that 𝑋𝑉 and 𝑌𝑉 are aligned with 

𝑋𝐵 and 𝑌𝐵 respectively. Frame {𝑉2} is also obtained by rotating frame {𝑉1} in a right-handed 

rotation about the 𝑌𝑉1-axis by the pitch angle, 𝜃𝑉1 , assuming no rolling, so that 𝑋𝑉1 and 𝑌𝑉1 are 

aligned with 𝑋𝐵 and 𝑌𝐵 respectively [74]. 

Unlike most helicopters, quadrotors use two sets of identical fixed pitched propellers; two 

clockwise and two counter-clockwise (see Figure 3.15). The configuration of the quadrotor is 

represented by its six degrees of freedom in terms of position, (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼)
𝑇, and the attitude defined 

using the Euler angles, (∅𝑉2 , 𝜃𝑉1 , 𝜑𝑉)𝑇. This gives a 12-state system characterizing the quadrotor’s 

equations of motion, as 𝐱 =  (𝑥𝐼 ,  𝑦𝐼 ,  𝑧𝐼 ,  ∅𝑉2 ,  𝜃𝑉1 ,  𝜑𝑉, 𝑥̇𝐵, 𝑦̇𝐵 , 𝑧̇𝐵, ∅̇𝐵, 𝜃̇𝐵 , 𝜑̇𝐵)
𝑇
 [39, 74].  

 The structure of quadrotor in this research is assumed to be rigid and symmetrical, the 

center of gravity and the body fixed frame origin are coincided, the propellers are rigid and the 

thrust and drag forces are proportional to the square of propeller’s speed [39, 74]. It is also assumed 

that the earth is flat and non-rotating, which is a valid assumption for quadrotors [39, 74]. The 

quadrotor has four rotors, labelled 1 to 4, mounted at the end of each cross arm. The rotors are 

driven by electric motors powered by electronic speed controllers. The vehicle’s total mass is 𝑚𝑞 

and  𝑑𝑞 is distance from the motor to the center of mass. 
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Figure 3.15. Coordinates for the quadrotor. 

The forces and the moments on the quadrotor are primarily due to gravity and the four 

propellers, and since there are no aerodynamic lifting surfaces, it will be assumed that the 

aerodynamic forces and moments are negligible. The total upward thrust, 𝑇, on the vehicle is given 

by 

                                                                        𝑇 =  ∑𝑇𝑖

𝑖=4

𝑖=1

                                                                       (3.39) 

where the relationship between the rotor speed 𝜔𝑖 and the upward thrust 𝑇𝑖, is defined as [39]:  

                                                𝑇𝑖 = 𝑎𝜔𝑖
2,     𝑖 = 1, 2,3,4                                                          (3.40) 
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where 𝑎 > 0 is the thrust constant that depends on the air density, the cube of the blade radius, the 

number of blades, and the chord length of the blade [39]. 

The translational dynamics of the vehicle in the world coordinates is given by Newton’s 

second law [74] 

                                                                            𝑚
𝑑𝐯𝐵

𝑑𝑡𝐼
= 𝐅𝐵                                                                  (3.41) 

where 𝐯𝐵 = (𝑥̇𝐵, 𝑦̇𝐵, 𝑧̇𝐵)𝑇 is the quadrotor’s linear velocity, 𝐅𝐵 = (𝑓𝑥𝐵
, 𝑓𝑦𝐵

, 𝑓𝑧𝐵
)
𝑇
 is the total force 

applied to the quadrotor, and 𝑑 𝑑𝑡𝐼⁄  is the time derivative in frame {𝐼}. From equation of Coriolis 

[74], (3.41) becomes 

                                                      𝑚
𝑑𝐯𝐵

𝑑𝑡𝐼
= 𝑚 (

𝑑𝐯𝐵

𝑑𝑡𝐵
+ 𝛚𝐵 𝐼⁄ x 𝐯B) = 𝐅𝐵                                           (3.42) 

where 𝛚𝐵/𝐼 = 𝛚𝐵 = (∅̇𝐵, 𝜃̇𝐵, 𝜑̇𝐵)
𝑇
 is the angular velocity of the vehicle in frame {𝐵}. Now, 𝐅𝐵 is 

made up of the gravity force, 𝐅𝑔𝐵
, and the total thrust from the motors, 𝐅𝑇𝐵

, given as 

                                                    𝐅𝐵 = 𝐅𝑔𝐵
+ 𝐅𝑇𝐵

= 𝐑𝑉
𝐵 (

0
0

𝑚𝑔
) + (

   0
   0
−𝑇

)                                      (3.43) 

where 𝑔 is the gravitational acceleration and 𝐑𝑉
𝐵  is the rotation matrix from frame {𝑉} to frame 

{𝐵} given by (3.57). Substituting (3.43) into (3.42), and rearranging, to obtain 

                                                     𝐯̇𝐵 = −𝛚𝐵 x 𝐯𝐵 + 𝐑𝑉
𝐵 (

0
0
𝑔
) − (

0
0

𝑇 𝑚⁄
)                                      (3.44) 

The rotational dynamics of the airframe in frame {𝐼} is given by Euler’s equation of motion 

[74] 

                                                                            
𝑑𝐡𝐵

𝑑𝑡𝐼
=  𝐵                                                                    (3.45) 
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where 𝐡𝐵 = 𝐉𝛚𝐵 is the quadrotor’s angular momentum and 𝐵 = (𝜏𝑥𝐵
, 𝜏𝑦𝐵

, 𝜏𝑧𝐵
)𝑇 is the applied 

torque to the airframe. Similarly, using the equation of Coriolis, and rearranging, (3.45) becomes 

                                                            𝐵 = 𝐉. (𝛚̇𝐵 + 𝛚𝐵  x  𝛚𝐵)                                                         (3.46) 

where  𝐉 is the constant rotational inertia matrix of the vehicle given by [39, 74] 

                                                           𝐉 = (

    𝐽𝑥𝑥 −𝐽𝑦𝑥 −𝐽𝑧𝑥

−𝐽𝑥𝑦    𝐽𝑦𝑦 −𝐽𝑧𝑦

−𝐽𝑥𝑧 −𝐽𝑦𝑧   𝐽𝑧𝑧

)                                                      (3.47) 

and if the airframe’s mass distribution is assumed to be symmetrical with respect to frame {𝐵}, 

then 𝐽𝑥𝑦 = 𝐽𝑥𝑧 = 𝐽𝑦𝑧 = 0, and 𝐽𝑥𝑥 = 𝐽𝑦𝑦. The moments of inertia are calculated as 

                                                            𝐽𝑥𝑥 = 𝐽𝑦𝑦 =
2𝑚𝑒𝑟

2

5
+ 2𝑑2𝑚𝑐

                                                𝐽𝑧𝑧 =
2𝑚𝑒𝑟

2

5
+ 4𝑑2𝑚𝑐

                                                 (3.48) 

where 𝑚𝑐 is mass of the quadrotor’s center (assuming a spherical dense center, with radius 𝑟) and 

𝑚𝑒 is the mass at the end of each cross arm, where the propellers are located. 

The pairwise differences in rotor thrust cause the vehicle to rotate. The torque about frame 

{𝐵} 𝑥-axis, the rolling (positive) torque, is given by  

                                                            𝜏𝑥𝐵
= 𝜏∅𝐵

= 𝑑𝑞(𝑇4 − 𝑇2)                                                         (3.49) 

Substituting (3.40) into (3.49), to obtain 

                                                               𝜏∅𝐵
= 𝑎𝑑𝑞(𝜔4

2 − 𝜔2
2)                                                             (3.50) 

and similarly for the 𝑦-axis, the pitching (positive) torque is  

                                                          𝜏𝑦𝐵
= 𝜏𝜃𝐵

= 𝑎𝑑𝑞(𝜔1
2 − 𝜔3

2)                                                      (3.51) 

Due to Newton’s third law, the drag of the propellers produces a yawing torque on the body of the 

quadrotor. The aerodynamic torque is given by [39, 74] 

                                               𝜏𝑖 = ±𝑏𝜔𝑖
2,     𝑖 = 1, 2,3,4                                                        (3.52) 
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where 𝑏 is the torque constant, which depends on the same factors as 𝑎. This torque exerts a 

reaction torque on the airframe which acts to rotate the airframe about the propeller shaft in the 

opposite direction to its rotation. Therefore, the total yawing (positive) torque is given by [33] 

                                         𝜏𝑧𝐵
= 𝜏𝜑𝐵

= ∑𝜏𝑖

𝑖=4

𝑖=1

= 𝑏(𝜔2
2 + 𝜔4

2− 𝜔1
2− 𝜔3

2)                                        (3.53) 

where the different signs are due to the different rotation directions of the rotors, thus a yaw torque 

can be created simply by appropriate coordinated control of all four rotor speeds. 

The forces and torques on the quadrotor’s airframe, obtained by combining (3.39), (3.50), 

(3.51), and (3.53), can be written in matrix form as [39] 

                                        (
𝑇
𝐵

) = 𝐂

(

 
 

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2
)

 
 

       

(

 
 

𝜔1
2

𝜔2
2

𝜔3
2

𝜔4
2
)

 
 

= 𝐂−1 (

𝑇
𝜏𝑥𝐵

𝜏𝑦𝐵

𝜏𝑧𝐵

)                                        (3.54) 

which gives the rotor speeds required to apply a specified thrust 𝑇 and torque 𝐵 to the airframe, 

where 

                                 𝐂 = (

𝑎 𝑎 𝑎 𝑎
0 −𝑎𝑑𝑞 0 𝑎𝑑𝑞

𝑎𝑑𝑞 0 −𝑎𝑑𝑞 0

−𝑏 𝑏 −𝑏 𝑏

)                                                   (3.55) 

The matrix 𝐂 is of full rank if 𝑎, 𝑏, 𝑑𝑞  > 0, thus making the vehicle controllable. 

The linear velocities in the different frames are related by [74] 

                                                          (
𝑥̇
𝑦̇
𝑧̇
)

𝐼

= (
𝑥̇
𝑦̇
𝑧̇
)

𝑉

= 𝐑𝐵
𝑉 (

𝑥̇
𝑦̇
𝑧̇
)

𝐵

                                                     (3.56) 

where 𝐑𝐵
𝑉  is the transformation matrix from frame {𝐵} to frame {𝑉} given by [32, 74] 
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     𝐑𝐵
𝑉 = [𝐵 𝐑𝑉]𝑇 = [ 𝐑𝑉2

𝐵 (∅) 𝐑𝑉1
𝑉2

(𝜃) 𝐑𝑉
𝑉1

(𝜑)]
𝑇

    

= (
𝑐𝜃𝑐𝜑 𝑠∅𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑 𝑐∅𝑠𝜃𝑐𝜑 + 𝑠∅𝑠𝜑
𝑐𝜃𝑠𝜑 𝑠∅𝑠𝜃𝑠𝜑 + 𝑐∅𝑐𝜑 𝑐∅𝑠𝜃𝑠𝜑 − 𝑠∅𝑐𝜑
−𝑠𝜃 𝑠∅𝑐𝜃 𝑐∅𝑐𝜃

)                                             (3.57)  

and the angular velocities are related as [32, 74] 

                                  (

 ∅̇

 𝜃̇

 𝜑̇

)

𝑉

= (
1 𝑠∅𝑡𝑎𝑛𝜃 𝑐∅𝑡𝑎𝑛𝜃
0 𝑐∅ −𝑠∅
0 −𝑠∅𝑠𝑒𝑐𝜃 𝑐∅𝑠𝑒𝑐𝜃

)(

  ∅̇

 𝜃̇

 𝜑̇

)

𝐵

                                               (3.58) 

where 𝑠 ≜ 𝑠𝑖𝑛, 𝑐 ≜ 𝑐𝑜𝑠, ∅ ≜ ∅𝑉2 , 𝜃 ≜ 𝜃𝑉1  𝑎𝑛𝑑 𝜑 ≜ 𝜑𝑉. 

3.2.1.2 Control algorithms. Control of the quadrotor input, (𝜔1, 𝜔2, 𝜔3, 𝜔4)
𝑇, is about 

applying the appropriate thrust, 𝑇, and/or torque, 𝐵, to the airframe, which will be determined 

using the traditional PID-feedback controller. In general, the dynamics of rotational systems has a 

second order transfer function of the form [39] 

                                                               
𝛩(𝑠)

𝜏(𝑠)
=

1

𝐽𝑟𝑠2 + 𝐵𝑎𝑠
                                                                 (3.59) 

where 𝐵𝑎 is the aerodynamic damping, 𝐽𝑟 is the rotational inertia, 𝛩(𝑠) is the output signal (e.g. 

pitch), and 𝜏(𝑠) is the input signal (e.g. pitching torque). 𝐵𝑎 is generally quite small, thus the 

integral controller is not needed in the regulation of the quadrotor, and therefore PD controller is 

applied in this section of the research.  

3.2.1.2.1 Attitude controllers. This section presents control algorithms that make quadrotor 

pitch, roll, and yaw. The PD controller is used to determine the required torques based on the error 

between desired angles (𝜃𝐵
∗ , ∅𝐵

∗ , and 𝜑𝐵
∗ ) and actual angles (𝜃𝐵, ∅𝐵, and 𝜑𝐵). For real-time 

application, the actual vehicle angles would be estimated by an inertia navigation system. The 

required rotor speeds are then calculated from the respective torques using (3.54). Typically, the 

rate of the desired angles (𝜃̇𝐵
∗ , ∅̇𝐵

∗ , and 𝜑̇𝐵
∗ ) are small, and can be ignored. 



73 

 

 

The pitch motion is controlled by increasing the speed, which in turn increases the thrust, 

of either rotor 1 or 3, while keeping the speed of rotor 2 or 4 the same or zero, as illustrated in 

Figure 3.16. The required pitching torque on the airframe is given by 

                                           𝜏𝑦𝐵
= 𝜏𝜃𝐵

= 𝐾𝑃𝜃
(𝜃𝐵

∗ − 𝜃𝐵) + 𝐾𝐷𝜃
(𝜃̇𝐵

∗ − 𝜃̇𝐵)    

                                      𝜏𝜃𝐵
= 𝐾𝑃𝜃

[(𝜃𝐵
∗ − 𝜃𝐵) − 𝐾𝐷𝜃

𝐾𝑃𝜃
⁄ (𝜃̇𝐵)]                                          (3.60) 

The roll motion is controlled by increasing the speed, which in turn increases the thrust of 

either rotor 2 or 4, while keeping the speed of rotor 1 or 3 the same or zero, as illustrated in Figure 

3.17. The required rolling torque on the airframe is given by 

                                           𝜏𝑥𝐵
= 𝜏∅𝐵

= 𝐾𝑃∅
(∅𝐵

∗ − ∅𝐵) + 𝐾𝐷∅
(∅̇𝐵

∗ − ∅̇𝐵)     

                                      𝜏∅𝐵
= 𝐾𝑃∅

[(∅𝐵
∗ − ∅𝐵) − 𝐾𝐷∅

𝐾𝑃∅
⁄ (∅̇𝐵)]                                         (3.61) 

The yaw motion is controlled by simultaneously applying the same speed, which in turn 

changes the thrusts of rotors 2 and 4 while keeping speeds of rotors 1 and 3 the same or zero, or 

vice versa, as illustrated in Figure 3.18. The required yawing torque on the airframe is given by 

                                         𝜏𝑧𝐵
= 𝜏𝜑𝐵

= 𝐾𝑃𝜑
(𝜑𝐵

∗ − 𝜑𝐵) + 𝐾𝐷𝜑
(𝜑̇𝐵

∗ − 𝜑̇𝐵)    

                                   𝜏𝜑𝐵
= 𝐾𝑃𝜑

[(𝜑𝐵
∗ − 𝜑𝐵) − 𝐾𝐷𝜑

𝐾𝑃𝜑
⁄ (𝜑̇𝐵)]                                         (3.62) 

3.2.1.2.2 Position controllers. This section presents control algorithms that make quadrotor 

undergoes 𝑥, 𝑦, and 𝑧 motions. Again, PD controller is used to determine the required control 

inputs based on the error between desired positions (𝑥𝐼
∗, 𝑦𝐼

∗, and 𝑧𝐼
∗) and actual positions (𝑥𝐼, 𝑦𝐼, 

and 𝑧𝐼). For real-time application, the actual vehicle positions and velocities would be estimated 

by an inertia navigation systems or GPS receivers. The required rotor speeds are then calculated 

from the respective torques using (3.54). Once again, rate of the desired positions (𝑥̇𝐼
∗, 𝑦̇𝐼

∗, and 𝑧̇𝐼
∗) 

are small, and can be ignored. 
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Figure 3.16. Coordinates for pitch motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Coordinates for roll motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Coordinates for yaw motion. 
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Figure 3.19. Coordinates for altitude motion. 

The altitude motion is controlled by simultaneously applying the same speed, which in turn 

changes the thrusts, of all the four rotors, as illustrated in Figure 3.19. For upward motion, 𝑇 must 

be bigger than the weight, 𝑚𝑞𝑔, of the quadrotor, taken into account the drag on the vehicle. The 

total thrust on the airframe is given by 

                                               𝑇 = 𝐾𝑃𝑧
(𝑧𝐼

∗ − 𝑧𝐼) + 𝐾𝐷𝑧
(𝑧̇𝐼

∗ − 𝑧̇𝐼) + 𝑇𝑜       

                                          𝑇 = 𝐾𝑃𝑧
[(𝑧𝐼

∗ − 𝑧𝐼) − 𝐾𝐷𝑧
𝐾𝑝𝑧

⁄ (𝑧̇𝐼)] + 𝑇𝑜                                     (3.63) 

where the additive term is given as 

                                                                      𝑇𝑜 = 𝑚𝑞𝑔 = 4𝑎𝜔𝑜
2                                                           (3.64) 

and 𝜔𝑜 is the average rotor speed necessary to generate a thrust, 𝑇𝑜, equal to the weight of the 

vehicle; a feed-forward control approach – used to counter the effect of gravity, which otherwise 

is a constant disturbance to the altitude motion. The alternative approach would be to have very 

high gains for the PD controller. This second approach, not used in this research, often leads to 

actuator saturation and instability [39]. 

To move the vehicle in the 𝑥-direction (along 𝑋𝑉) its nose pitch down, which generates a 

force [39] 
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                                                           𝒇 = 𝑅𝑦𝑉
(𝜃𝑉) (

0
0
𝑇
) = (

𝑇𝑠𝑖𝑛𝜃𝑉

0
𝑇𝑐𝑜𝑠𝜃𝑉

)                                              (3.65) 

which gives the force component that accelerates the vehicle in the 𝑋𝑉-direction as 

                                                                     𝑓𝑥𝑉
= 𝑇𝑠𝑖𝑛𝜃𝑉 ≈ 𝑇𝜃𝑉                                                          (3.66) 

where 𝜃𝑉 is small. The velocity in this direction can be controlled using the P controller [39] 

                                                                 𝑓𝑥𝑣
∗ = 𝑚𝑞𝐾𝑓𝑥(𝑣𝑥𝑉

∗ − 𝑣𝑥𝑉
)                                                      (3.67) 

Combining (3.66) and (3.67), the desired pitch angle required to achieve the desired forward 

velocity is obtained as 

                                                               𝜃𝑉
∗ =

𝑚𝑞𝐾𝑓𝑥

𝑇
(𝑣𝑥𝑉

∗ − 𝑣𝑥𝑉
)                                                        (3.68) 

For a vehicle in vertical equilibrium the total thrust is equal to the weight of the airframe, thus 

𝑚𝑞 𝑇⁄ = 𝑚𝑞 𝑇𝑜⁄  in (3.68) can be approximately substituted by 𝑔−1. Now, the desired velocity in 

frame {𝑉} relative to frame {𝐼} is then determined as [39] 

                                                   𝑣𝑥𝑉
∗ = 𝑹𝐼(𝜑)𝑉 𝑣𝑥𝐼

∗ = [ 𝑹𝑉
𝐼 ]𝑇(𝜑)𝑣𝑥𝐼

∗                                                 (3.69)  

where the desired velocity in frame {𝐼} is given by the P controller 

                                                                𝑣𝑥𝐼
∗ = 𝐾𝑃𝑥𝐼

(𝑥𝐼
∗ − 𝑥𝐼)                                                                (3.70) 

Thus, to reach a desired 𝑥-position, the appropriate velocity is calculated and from that the 

appropriate pitch angle which will generate the force to move the vehicle is obtained. This 

indirection is consequence of the vehicle being under-actuated – the vehicle has just four rotor 

speeds to adjust but its configuration space is 6-dimensional. Substituting (3.70) into (3.69), and 

then the result into (3.68), a compact form control algorithm for computing the desired pitch angle 

can be obtained as 

                                           𝜃𝑉
∗ = 𝐾𝑃𝑥

([ 𝑹𝑉
𝐼 ]𝑇(𝜑)(𝑥𝐼

∗ − 𝑥𝐼) − 𝐾𝐷𝑥
𝑥̇𝑉)                                            (3.71) 
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Similar analysis can be carried out to obtain the control algorithm to move the vehicle in 

the 𝑦-direction (along 𝑌𝑉). To reach the desired 𝑦-position, the appropriate velocity, 𝑣𝑦𝑉
∗ , is 

calculated, and from that the appropriate roll angle, ∅𝑉
∗ , which will generate the force to move the 

vehicle is obtained. The compact form control algorithm for computing the desired roll angle is 

also given as 

                                          ∅𝑉
∗ = 𝐾𝑃𝑦

([ 𝑹𝑉
𝐼 ]𝑇(𝜑)(𝑦𝐼

∗ − 𝑦𝐼) − 𝐾𝐷𝑦
𝑦̇𝑉)                                           (3.72) 

To move the vehicle forward or sideway its airframe must first pitch down or roll down 

respectively so that the thrust vector has a horizontal component to accelerate it; the total thrust 

must be increased so that the vertical thrust component still balances gravity. As it approaches its 

goal, the airframe must be rotated in the opposite direction, pitching up or rolling up, so that the 

backward component of the thrust decelerates the forward or the sideway motion. Finally, the 

airframe rotates to the horizontal with the thrust vector vertical. The cost of the under-actuation is 

once again manoeuvre. The pitch and the roll angles cannot be arbitrarily set, they are means to 

achieve the translation control. (3.71) and (3.72) can be combined as 

                                (
 𝜃𝑉

∗

 ∅𝑉
∗ ) = (

𝐾𝑃𝑥

𝐾𝑃𝑦

) ∗ ([ 𝑹𝑉
𝐼 ]𝑇(𝜑)(𝒑𝐼

∗ − 𝒑𝐼) − 𝐾𝐷𝑥𝑦
(
𝑥̇𝑉

𝑦̇𝑉
))                              (3.73) 

where 𝒑𝐼 = (𝑥𝐼 , 𝑦𝐼)
𝑇, 𝐾𝐷𝑥

= 𝐾𝐷𝑦
= 𝐾𝐷𝑥𝑦

, and  

                                           [ 𝑹𝑉
𝐼 ]𝑇(𝜑) = [ 𝑹𝑉

𝐼 ]−1(𝜑) = (
𝑐𝜑 −𝑠𝜑
𝑠𝜑    𝑐𝜑)                                          (3.74) 

3.2.2 Challenges. As demonstrated above, the nonlinear equations of motion can be used 

to control the position of the quadrotor. However, they are not appropriate for the control design 

for obvious reason that they are too complicated to gain significant insight into the motions. 

Moreover, the approach above used MATLAB S-function to implement the dynamics and 

kinematics of the quadrotors, and this approach resulted in some difficulties in terms of C/C++ code 
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generation for real-time application. Therefore, the research focus on obtaining a linearized model 

for the quadrotor’s position, and for this research the altitude motion was considered. 

3.2.3 Control of quadrotor altitude motion: white-box approach (linearized model). 

This section begins with obtaining altitude linearized model from the quadrotor’s dynamics and 

kinematics. It is followed by determining state-space representation and the transfer function for 

the plant model. Then checks for the stability, controllability and observability are carried out, as 

well as determination of the equilibrium points of the system. The last part deals with specifying 

design criteria for the altitude response, and presenting the various controllers that have been 

designed. 

3.2.3.1 Quadrotor altitude linearized model. Now, taking upward as the positive direction 

for the 𝑧-axis (altitude), equation (3.44) can be written as [74] 

                                     (
𝑥̇𝐵

𝑦̇𝐵

𝑧̇𝐵

) = (

𝜑̇𝐵𝑦̇𝐵 − 𝜃̇𝐵𝑧̇𝐵

∅̇𝐵𝑧̇𝐵 − 𝜑̇𝐵𝑥̇𝐵

𝜃̇𝐵𝑥̇𝐵 − ∅̇𝐵𝑦̇𝐵

) + (

0
0

𝑇 𝑚𝑞⁄
) − 𝐑𝑉

𝐵 (
0
0
𝑔
)                                 (3.75) 

Substituting (3.57) into (3.75), to obtain 

                                    (

𝑥̈𝐵

ÿ𝐵

𝑧̈𝐵

) = (

𝜑̇𝐵𝑦̇𝐵 − 𝜃̇𝐵𝑧̇𝐵

∅̇𝐵𝑧̇𝐵 − 𝜑̇𝐵𝑥̇𝐵

𝜃̇𝐵𝑥̇𝐵 − ∅̇𝐵𝑦̇𝐵

) + (

0
0

𝑇 𝑚𝑞⁄
) − (

−𝑔𝑠𝜃
𝑔𝑐𝜃𝑠∅
𝑔𝑐𝜃𝑐∅

)                                 (3.76) 

and substituting (3.57) into (3.56), to obtain 

                           (

𝑥̇𝐼

𝑦̇𝐼

𝑧̇𝐼

) = (
𝑐𝜃𝑐𝜑 𝑠∅𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑 𝑐∅𝑠𝜃𝑐𝜑 + 𝑠∅𝑠𝜑
𝑐𝜃𝑠𝜑 𝑠∅𝑠𝜃𝑠𝜑 + 𝑐∅𝑐𝜑 𝑐∅𝑠𝜃𝑠𝜑 − 𝑠∅𝑐𝜑
−𝑠𝜃 𝑠∅𝑐𝜃 𝑐∅𝑐𝜃

)(

𝑥̇𝐵

𝑦̇𝐵

𝑧̇𝐵

)                         (3.77) 

Differentiating (3.77) and neglecting 𝐑̇𝐵
𝑉 , and also neglecting the Coriolis terms in (3.76), to 

obtain 

                           (

𝑥̈𝐼

ÿ𝐼

𝑧̈𝐼

) = (
𝑐𝜃𝑐𝜑 𝑠∅𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑 𝑐∅𝑠𝜃𝑐𝜑 + 𝑠∅𝑠𝜑
𝑐𝜃𝑠𝜑 𝑠∅𝑠𝜃𝑠𝜑 + 𝑐∅𝑐𝜑 𝑐∅𝑠𝜃𝑠𝜑 − 𝑠∅𝑐𝜑
−𝑠𝜃 𝑠∅𝑐𝜃 𝑐∅𝑐𝜃

)(

𝑥̈𝐵

ÿ𝐵

𝑧̈𝐵

)                         (3.78) 
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                                                     (

𝑥̈𝐵

ÿ𝐵

𝑧̈𝐵

) = (

0
0

𝑇 𝑚𝑞⁄
) − (

−𝑔𝑠𝜃
𝑔𝑐𝜃𝑠∅
𝑔𝑐𝜃𝑐∅

)                                                     (3.79) 

Substituting (3.79) into (3.78), to obtain 

           (

𝑥̈𝐼

ÿ𝐼

𝑧̈𝐼

) = (
𝑐𝜃𝑐𝜑 𝑠∅𝑠𝜃𝑐𝜑 − 𝑐𝜃𝑠𝜑 𝑐∅𝑠𝜃𝑐𝜑 + 𝑠∅𝑠𝜑
𝑐𝜃𝑠𝜑 𝑠∅𝑠𝜃𝑠𝜑 + 𝑐∅𝑐𝜑 𝑐∅𝑠𝜃𝑠𝜑 − 𝑠∅𝑐𝜑
−𝑠𝜃 𝑠∅𝑐𝜃 𝑐∅𝑐𝜃

) [(

0
0

𝑇 𝑚𝑞⁄
) − (

−𝑔𝑠𝜃
𝑔𝑐𝜃𝑠∅
𝑔𝑐𝜃𝑐∅

)]      (3.80) 

and for altitude motion no pitching and rolling, and assuming the quadrotor can yaw, (3.80) 

becomes 

                                         (

𝑥̈𝐼

ÿ𝐼

𝑧̈𝐼

) = (
𝑐𝜑 −𝑠𝜑 0
𝑠𝜑 𝑐𝜑 0
0 0 1

) [(

0
0

𝑇/𝑚𝑞

) − (
0
0
𝑔
)]                         

                                                         (

𝑥̈𝐼

ÿ𝐼

𝑧̈𝐼

) = (

0
0

𝑇 𝑚𝑞 −⁄ 𝑔
)                                                             (3.81) 

and taking the equation of motion only in the z-direction, to obtain 

                                                               𝑧̈(𝑡) =  
𝑇(𝑡)

𝑚𝑞
− 𝑔                                                                     (3.82)  

Thus, to control the altitude, 𝑧(𝑡), of the quadrotor only the total thrust, 𝑇(𝑡), need to be varied, 

since 𝑚𝑞 and 𝑔 are constants. The altitude is controlled by simultaneously applying the same 

speed, which in turn changes the thrusts of all the four rotors, as illustrated in Figure 3.19 above.  

  Now, if the quadrotor is in vertical equilibrium, that is when the quadrotor is at a reference 

point, 𝑧𝑜, on the ground or hover position, the propellers generate a total thrust, 𝑇𝑜, equal to the 

weight of the vehicle as shown in (3.64), and if the average rotor speed necessary to generate a 

total thrust is 𝜔(𝑡), then from (3.40) 

                                                                     𝑇(𝑡) = 4a𝜔2(t)                                                                 (3.83) 

Substituting (3.83) into (3.82), we obtain 
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                                                               𝑧̈(𝑡) =  
4a𝜔2(t)

𝑚𝑞
−  𝑔                                                              (3.84) 

which is a nonlinear dynamic system because of the term 𝑔. 

 

 

 

 

 

 

 

 

Figure 3.20. Coordinates for altitude motion: white-box approach (linearized model). 

  To linearize the system about any equilibrium point where the quadrotor will hover, which 

will be a desired height, 𝑧𝑜, consider a change in the average rotor speed, ∆𝜔(𝑡), that will produce 

a change in the total thrust, ∆𝑇(𝑡), needed to cause the quadrotor to rise or drop by ∆𝑧(𝑡), see 

Figure 3.20, then (3.84) becomes 

                                                    𝑧𝑜̈ + ∆𝑧̈(𝑡) =
4a(𝜔𝑜 + ∆𝜔(𝑡))

2

𝑚𝑞
−  𝑔                                            (3.85) 

Expanding and neglecting the term (∆𝜔(𝑡))2,  (3.85) becomes 

                                                   ∆𝑧̈(𝑡) ≅  (
4aω𝑜

2 + 8a𝜔𝑜∆𝜔(𝑡)

𝑚𝑞
) −  𝑔                                            (3.86) 

Combining (3.64) and (3.83), and substituting into (3.86), and then simplifying, to obtain 

T
1
 


4
 

1
 

4 1 

T
3
 T

2
 


3
 


2
 

3 2 

 ∆𝑧 

∆𝜔4 ∆𝜔1 

∆𝜔3 ∆𝜔2 

T
4
 ∆𝑇4 ∆𝑇1 

∆𝑇3 ∆𝑇2 

𝑧 
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                                                               ∆𝑧̈(𝑡) ≅  
8a𝜔𝑜∆𝜔(𝑡)

𝑚𝑞
                              

                                                          ∆𝑧̈(𝑡) ≅  ∆𝜔(𝑡)√
16𝑔𝑎

𝑚𝑞
                                                          (3.87) 

which gives the relationship between change in the average rotor and the vertical acceleration of 

the quadrotor. It is assumed that ∆𝜔(𝑡) is not too large because the model would eventually be 

influenced by strong nonlinearities and saturations. 

3.2.3.2 State-space and transfer function models. The altitude linear model shown in 

(3.87) is a SISO continuous LTI control system with a control signal input, 𝑢(𝑡)  =  ∆𝜔(𝑡), and 

the measured output signal for feedback is 𝑦(𝑡)  =  ∆𝑧(𝑡). Let the states of the system be 𝑥1(𝑡) 

and 𝑥2(𝑡) equals ∆𝑧(𝑡) and ∆𝑧̇(𝑡), respectively, then 

                                   𝑥̇1(𝑡) = ∆𝑧̇(𝑡) = 𝑥2(𝑡)

                                                        𝑥̇2(𝑡) = ∆𝑧̈(𝑡) = 𝑢(𝑡)√16𝑔𝑎 𝑚𝑞⁄  
                                             (3.88) 

which can be written in matrix form as 

                                                    𝐱̇(𝑡) = [
0 1
0 0

] 𝐱(𝑡) + [

0

√16𝑔𝑎 𝑚𝑞⁄  
] 𝑢(𝑡)

         𝑦(𝑡) = [1 0]𝐱(𝑡)

                                   (3.89) 

where 𝐀 = [
0 1
0 0

] , 𝐁 = [
0

4√𝑔𝑎 𝑚𝑞⁄ ] , 𝐂 = [1 0], 𝐃 = [0], and 𝐱(𝑡) = [𝑥1(𝑡)  𝑥2(𝑡)]
𝑇. The 

transfer function of the system was obtained using the MATLAB command 𝑠𝑠2𝑡𝑓(𝐀, 𝐁, 𝐂, 𝐃), as  

                                                           𝐺𝑝(𝑠) =  
𝑌(𝑠)

𝑈(𝑠)
=

4

𝑠2 √
𝑔𝑎

𝑚𝑞
                                                         (3.90) 

3.2.3.3 Stability, equilibrium points, controllability, and observability. The section checks 

for the stability, equilibrium points, controllability, and observability of the plant model. 
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3.2.3.3.1 Stability. The poles of the system in (3.90) are s = 0 (repeated), thus the system 

is unstable, which is also confirmed by the plant’s step response shown in Figure 3.21 below. 

 

Figure 3.21. Open-loop plant step response: white-box approach (linearized model). 

3.2.3.3.2 Equilibrium points. A state 𝐱𝑒 is an equilibrium when 𝐱(𝑡) = 𝐱𝑒, and it remains 

equal for all future times, and this is obtained when 𝐱̇(𝑡) = 𝟎, from the autonomous system, 

 𝐀𝐱𝑒(𝑡) = 0 in (3.89). The LTI system has infinity of equilibrium points, given as 

                                                                       𝐱𝑒 = (
∆𝑧𝑟𝑒𝑓

0
)                                                                   (3.91) 

where ∆𝑧𝑟𝑒𝑓 is infinite quadrotor desired heights, and these equilibria can only be achieved when 

the linear vertical velocity at these points are zero.  

3.2.3.3.3 Controllability and observability. The controllability matrix, 𝐶𝑂𝑁𝑇, of the 

system was determined using the MATLAB command 𝑐𝑡𝑟𝑏(𝐀,𝐁), given as  

                                                      𝐶𝑂𝑁𝑇 =

[
 
 
 0 4√𝑔𝑎 𝑚𝑞⁄

4√𝑔𝑎 𝑚𝑞⁄ 0
]
 
 
 

                                            (3.92) 

and observability matrix, 𝑂𝐵𝑆𝐸𝑅, of the system was determined using the MATLAB 

command 𝑜𝑏𝑠𝑣(𝐀, 𝐂), given as  
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                                                                  𝑂𝐵𝑆𝐸𝑅 = [
1 0
0 1

]                                                                (3.93) 

The ranks of both 𝐶𝑂𝑁𝑇 and 𝑂𝐵𝑆𝐸𝑅 is 2, which is the dimension of the state matrix, 𝐀, therefore 

the system is completely state controllable and completely observable, and thus the system is 

stabilizable and detectable.  

3.2.3.4 Performance specifications. The performance specifications for this system will 

be based on time-domain specifications of the transient response as well as a steady-state 

requirement, by applying a desired altitude of 1.0𝑚 step-input for under 7 seconds of simulation 

time. The AR.Drone 2.0 flight management system sampling time, 𝑇𝑠, is 0.065𝑠, which is the fixed 

time-step at which the control law is executed and the navigation data received. The design criteria 

are as follows: 𝑡𝑠 < 3.0𝑠 (2% error band), 𝑡𝑝 < 𝜋𝑠, 𝑀𝑜 < 3.0%, and |𝐸𝑠𝑠| < 1%. 

3.2.3.5 Design of controllers. This section presents the design and control system setup 

for the various controllers used for the simulations and experiments with and without nonlinear 

effects of saturation, time delay, and system uncertainty. 

3.2.3.5.1 Pole placement controller without nonlinear effects. Initially, MATLAB 

𝑠𝑖𝑠𝑜𝑡𝑜𝑜𝑙 command was used to determine the region in the left-half 𝑠-plane where the desired 

closed-loop poles (DCLP), 𝐈,  are to be selected to satisfy the transient response specifications, see 

Figure 3.22. The 𝐈 values were selected within this region, and then MATLAB 

𝑎𝑐𝑘𝑒𝑟(𝐀, 𝐁, 𝐈) command was used to determine 𝐊 values, for a given 𝐈, and for the given system 

parameters 𝐀 and 𝐁. The MATLAB acker function is a pole placement feedback gain matrix 

calculator that uses the Ackermann's formula, and it is only applicable to SISO systems. Finally, 

the calculated 𝐊 values are used to examine a unit-step response of the closed-loop system, to 

check if all the performance specifications are satisfied. 
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Figure 3.22. s-complex plane showing desired close-loop poles (DCLP) region. 

3.2.3.5.2 LQR controller without nonlinear effects. The weight on the control effort was 

selected as 𝑅 = 1, since the control input, 𝑢(𝑡), was initially unconstrained, and different ways 

were used to select the weight on the error, given as 

                                                                    𝐐 = 𝜇𝐂𝑇𝐂 = [
𝜇 0
0 0

],                                                        (3.94)   

                                                                                    𝐐 = [
𝜇 0
0 1

],                                                        (3.95) 

                                                                                    𝐐 = [
2𝜇 0
 0 𝜇

],                                                      (3.96) 

                                                                𝑎𝑛𝑑            𝐐 = [
𝑛𝑣𝜇 0
 0 𝜇

],                                                    (3.97) 

where 𝜇 ≥ 1 is a weighting constant and 𝑛𝑣 a constant to be varied. Different values of 𝜇 and 𝑛𝑣 

were selected, and then MATLAB 𝑙𝑞𝑟(𝐀, 𝐁, 𝐐, 𝐑) command was used to determine the optimal 𝐊. 

The MATLAB lqr function is an optimal feedback gain matrix calculator that solves the algebraic 

DCLP Region 

𝑻𝒔 < 𝟑. 𝟎 

𝑴𝒑 < 𝟑. 𝟎 

𝑴𝒑 < 𝟑. 𝟎 

DCLP Region 

𝑻𝒑 < 𝝅 

𝑻𝒑 < 𝝅 

𝑻𝒔 < 𝟑.𝟎 
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Riccati equation by minimizing a cost function that depends on weights 𝐐,𝐑, and 𝐍, given system 

parameters 𝐀 and 𝐁. Finally, the calculated 𝐊 is used to examine a unit-step response of the closed-

loop system, to check if all the performance specifications are satisfied. 

3.2.3.5.3 MIT rule MRAC controller without nonlinear effects. The reference model is to 

be selected based on the transient specifications, given in the form as 

                                                    𝐺𝑚(𝑠) =
𝑎𝑜𝑚

𝑠2 + 𝑎1𝑚𝑠 + 𝑎𝑜𝑚
                                                      (3.98) 

The control input is given as 

                                                                   𝑈 = 𝜃1𝑅 − 𝜃2𝑦𝑝𝑙𝑎𝑛𝑡                                                            (3.99) 

Substituting 𝑦𝑝𝑙𝑎𝑛𝑡 = 𝐺𝑝𝑈 into (3.99), and simplifying, we obtain 

                                                                       𝑈 =
𝜃1𝑅

1 + 𝜃2𝐺𝑝
                                                                (3.100) 

and substituting (3.100) into (2.11), to obtain 

                                                              𝑒(𝜃) =
𝐺𝑝𝜃1𝑅

1 + 𝜃2𝐺𝑝
− 𝐺𝑚𝑅                                                      (3.101) 

Differentiating (3.101) with respect 𝜃1 and 𝜃2, to obtain 

                                                                  
𝜕𝑒

𝜕𝜃1
= (

𝐺𝑝

1 + 𝜃2𝐺𝑝
)𝑅                                                      (3.102𝑎) 

                              
𝜕𝑒

𝜕𝜃2
= −(

𝐺𝑝

1 + 𝜃2𝐺𝑝
)(

𝐺𝑝𝜃1𝑅

1 + 𝜃2𝐺𝑝
) = −(

𝐺𝑝

1 + 𝜃2𝐺𝑝
)𝑦𝑝𝑙𝑎𝑛𝑡                      (3.102𝑏) 

Substituting 𝐺𝑝 from (3.90) into (3.102), to obtain 

                                                    
𝜕𝑒

𝜕𝜃1
= (

4√𝑔𝑎/𝑚𝑞

s2 + 4𝜃2√𝑔𝑎/𝑚𝑞

)𝑅                                                    (3.103𝑎) 

                                                    
𝜕𝑒

𝜕𝜃2
= −(

4√𝑔𝑎/𝑚𝑞

s2 + 4𝜃2√𝑔𝑎/𝑚𝑞

)𝑦𝑝𝑙𝑎𝑛𝑡                                       (3.103𝑏) 
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If the reference model is close to the plant, then their characteristic equations can be equally 

approximated as 

                                 s2 + 4𝜃2√𝑔𝑎/𝑚𝑞 ≈ 𝑠2 + 𝑎1𝑚𝑠 + 𝑎𝑜𝑚                                           (3.104) 

then MIT update rule, from (2.13), (3.103), and (3.104), can be written as 

                                                   
𝑑𝜃1

𝑑𝑡
= −𝛾 (

𝑎1𝑚𝑠 + 𝑎𝑜𝑚

𝑠2 + 𝑎1𝑚𝑠 + 𝑎𝑜𝑚
𝑅) 𝑒                                            (3.105𝑎)  

                                                  
𝑑𝜃2

𝑑𝑡
= 𝛾 (

𝑎1𝑚𝑠 + 𝑎𝑜𝑚

𝑠2 + 𝑎1𝑚𝑠 + 𝑎𝑜𝑚
𝑦𝑝𝑙𝑎𝑛𝑡) 𝑒                                         (3.105𝑏) 

3.2.3.5.4 Controllers with saturation effects. The angular velocity of each of the four rotors 

of the drone is up to ±250𝑟𝑎𝑑𝑠−1, which produce a rotor thrust up to about ±3𝑁 with a possible 

total thrust of about ±12𝑁. Also, for experiments and from the AR.Drone 2.0 software 

development kit (SDK) documentation, the control input is the vertical speed, ∆𝑧̇(𝑡), has to be 

constrained to [−1  1] 𝑚𝑠−1, to prevent damage. 

The dynamics in the 𝑧-direction, as shown in (3.87), is dependent on the average change 

in rotor speeds, ∆𝜔(𝑡), of all the rotors. By inspection of the control input and the vertical speed 

plots from the pole placement controller, without constraints, ∆𝜔(𝑡) = ±50𝑟𝑎𝑑𝑠−1 seems 

appropriate to achieve ∆𝑧̇(𝑡) = ±1𝑚𝑠−1. The control input constraints were achieved by inserting 

a saturation block into the Simulink model. To further check whether this is appropriate constraints 

for ∆𝜔(𝑡), different constraints were applied to the pole placement close-loop system, with values 

taken at ±10 𝑟𝑎𝑑𝑠−1, ±20 𝑟𝑎𝑑𝑠−1, ±30 𝑟𝑎𝑑𝑠−1, and ±50 𝑟𝑎𝑑𝑠−1. The effects on the altitude 

and vertical speed plots were also inspected, and a suitable saturation values of ∆𝜔(𝑡) =

±50 𝑟𝑎𝑑𝑠−1 were applied in designing the rest of the control systems. 

3.2.3.5.5 Controllers with time delay effects. The overall time delay, 𝑇𝑑, in the control 

system due to communication between the drone and host computer was implemented as an 
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actuator time delay (see Figure 2.14) using Simulink transport delay block, with only parameters 

settings being the time delay value and the initial buffer size. The initial buffer size defines the 

initial memory allocation for the number of input points to store, and if the number of input points 

exceeds this value, the block allocates additional memory. The default buffer size of 1024 will be 

used for this research work. The investigation of the time delay effects was carried out for the pole 

placement and MIT rule MRAC controllers by varying 𝑇𝑑, and checking the behavior of the 

altitude response. The time delay in the drone’s control system is attributed to the: 

 processing capability of the host computer, 

 electronic devices processing the motion signals, 

 measurement reading devices, e.g., the distance between the ultrasonic sensor, for reading the 

altitude, and the surface can affect the delay, 

 processing capability of the control program, e.g., the experiments on the UAV were conducted 

using MATLAB/Simulink, and the navigation data (yaw, pitch, altitude, battery level, etc.) 

decoding process contributes to the delay. Also, the different types of solvers introduces delay. 

3.2.4 Time-delay estimation: first-order model. Here, we dealing with a continuous-time 

and an automatic control feedback system so we have an active TDE problem, thus the time delay 

to be estimated is an explicit parameter in the model. Also, the time delay is not restricted to be a 

multiple of the sampling interval, but can be a subsample time delay. Therefore, the continuous-

time one-step explicit, idproc, method will be used in estimating the time delay. 

The setup used to control the drone’s altitude motion using MATLAB/Simulink program 

is shown in Figure 3.23. The error between the desired reference input, 𝑧𝑑𝑒𝑠(𝑡), and the system 

altitude response, 𝑧(𝑡), is denoted as 𝑒(𝑡). The altitude motion dynamics is implemented using 

(3.84), used to determine 𝜔(𝑡) from 𝑧̇(𝑡), which is obtained from 𝑧̇𝑟𝑒𝑓(𝑡), a reference vertical 
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speed to the drone. The rotors rotate with the same 𝜔(𝑡), which generate 𝑇(𝑡) to produce 𝑧(𝑡). 

These computations takes place on board the drone control engine program written in C.  

 

Figure 3.23. AR.Drone 2.0 altitude control system. 

The drone’s DC motors dynamics are assumed to be very fast such that the altitude control 

system can be represented as a first-order system using an integrator (see Figure 3.23). Under such 

assumption, the control input, 𝑧̇𝑎𝑝𝑝(𝑡), to the first-order system is approximately equal to 𝑧̇𝑟𝑒𝑓(𝑡). 

Thus, a first-order model is used for the analytical determination of the time delay and for obtaining 

the simulation altitude responses. 

P-feedback controller is used to generate vertical speed signal to control the system’s 

altitude in the determination of the time delay. The transfer function of the time-delayed closed-

loop system (see Figure 5.19) for the P controller is given by  

                                                              
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝑒−𝑠𝑇𝑑

𝑠 + 𝐾𝑃𝑒−𝑠𝑇𝑑
                                                       (3.106) 

This time-delay system is a retarded type. As expected, the characteristic equation is 

transcendental, and therefore the closed-loop poles are infinite; the exponential term in the 

characteristic equation will introduce oscillations into the system. 

1

𝑠
 

− 
+ 

𝑧(𝑡) 𝑧̇𝑎𝑝𝑝(𝑡) 

𝑧𝑑𝑒𝑠(𝑡) 

[−1  1] 

AR.Drone 2.0 with the Approximated First-order System 

𝑧̇𝑟𝑒𝑓(𝑡) 

𝐀𝐑.𝐃𝐫𝐨𝐧𝐞 𝟐. 𝟎 𝟏𝐬𝐭 𝐎𝐫𝐝𝐞𝐫 𝐒𝐲𝐬𝐭𝐞𝐦 

Controller 

MATLAB/Simulink Program 

𝑒(𝑡) 
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 3.2.4.1 Analytical method. Consider the first-order scalar homogenous DDE shown in 

(3.107), see (2.19) for retarded-type delay system. Unlike Ordinary Differential Equations (ODEs), 

two initial conditions need to be specified for DDEs: a preshape function, 𝑔(𝑡), for −𝑇𝑑 ≤ 𝑡 < 0, 

and initial point, 𝑧𝑜, at time, 𝑡 =  0.  

                                                      𝑧̇(𝑡) − 𝑏𝑜𝑧(𝑡) − 𝑏1𝑧(𝑡 – 𝑇𝑑) = 0                                    (3.107) 

The characteristic equation of (3.107) is given by 

                                                                     𝑠 − 𝑏𝑜 − 𝑏1𝑒
−𝑠𝑇𝑑 = 0                                                (3.108) 

The exponential term, 𝑒−𝑠𝑇𝑑 , induced by the time delay term 𝑧(𝑡 – 𝑇𝑑), makes the 

characteristic equation transcendental (i.e., infinite dimensional and nonlinear). Thus, it is not 

feasible to find roots of (3.108), which has an infinite number of roots. Using the Lambert W 

function defined in equation (2.22), the characteristic equation in (3.108) is solved as [58] 

                                                             𝑠 =
1

𝑇𝑑
𝑊(𝑇𝑑𝑏1𝑒

−𝑏𝑜𝑇𝑑) + 𝑏𝑜                                                (3.109) 

As seen in (3.109), the characteristic root, 𝑠, is obtained analytically in terms of parameters, 

𝑏𝑜, 𝑏1, and 𝑇𝑑; the solution has an analytical form expressed in terms of the parameters of the DDE 

in (3.107). One can explicitly determine how the time delay is involved in the solution and, 

furthermore, how each parameter affects each characteristic root. That enables one to formulate an 

estimation of time delays in an analytic way. Also, each eigenvalue can be distinguished [58]. The 

Lambert W function is embedded in various software packages, such as MATLAB. 

For first-order scalar DDEs, it has been proven that the rightmost characteristic roots are 

always obtained by using the principal branch, 𝑘 =  0, and/or 𝑘 =  −1 (see Figure 2.16) [75]. For 

the DDE in (3.107), one has to consider two possible cases for rightmost characteristic roots: 

characteristic equations of DDEs as in (3.108) can have one real dominant root or two complex 
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conjugate dominant roots (e.g., see Figure 3.24). Thus, when estimating time delays using 

characteristic roots, it is required to decide whether it is the former or the latter [58]. 

 

Figure 3.24. Spectrum: the rightmost root is obtained by using the principal branches. 

For ODEs, an estimation technique using the logarithmic decrement provides an effective 

way to estimate  [54]. The technique makes use of the form 

                                                                 𝑠 = −𝜔𝑛 ± 𝑗𝜔𝑛√1 − 2                                                 (3.110) 

for the determination of 𝑠 of second-order ODEs. The variables,  and 𝜔𝑛, are obtained from the 

response of the system, and different approaches can be applied depending on the nature of the 

response, oscillatory and non-oscillatory [58]. Here, the transient properties, 𝑀𝑜 and 𝑡𝑝, for 

oscillatory response is used to determine  and 𝜔𝑛, see equation (2.15). Then, the drone control 

system with the unknown 𝑇𝑑, is estimated by the following steps: 

Step 1: Calculate  and 𝜔𝑛 based on the system altitude response 

Step 2: Calculate the ‘dominant’ roots using 𝑠 = −𝜔𝑛 ± 𝑗𝜔𝑛√(1 − 2) 

Step 3: Equate 𝑠 to 
1

𝑇𝑑
𝑊(𝑇𝑑𝑎1𝑒

−𝑎𝑜𝑇𝑑) + 𝑎𝑜, and solve the nonlinear equation for the 

unknown 𝑇𝑑 
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Comparing the characteristic equation of the closed-loop system in (3.106) to the first-order system 

in (3.108), we obtain 𝑏𝑜 = 0 and 𝑏1 = −𝐾𝑃. The equation in Step 3 was solved using MATLAB 

nonlinear solver, fsolve. 

3.2.4.2 Experimental method. In this approach the transient properties, 𝑀𝑜 and 𝑡𝑝, of 

experiment responses are compared to those of simulation responses for the estimation of 𝑇𝑑. 

3.2.5 Design of controllers: first-order model. The effect of 𝑇𝑑 on the drone’s altitude 

response was studied and taken into account using analytical, simulation, and experimental 

approaches in designing the PV and PV-MRAC controllers. The transfer function of the time-delay 

closed-loop system for the PV controller is given as (see Figure 5.20) 

                                                        
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝑒−𝑠𝑇𝑑

𝑠 + (𝐾𝑃 + 𝐾𝑣𝑠)𝑒−𝑠𝑇𝑑
                                            (3.111) 

The time-delay system in (3.111) is a neutral type. Comparing the characteristic equation of the 

closed-loop system in (3.111) to the first-order system in (3.108), we obtain 𝑏𝑜 = 0 and 𝑏1 =

−(𝐾𝑃 + 𝐾𝑣𝑠).  

3.2.6 Quadrotor altitude model: black-box approach. MATLAB system identification 

toolbox App (see Figure 2.11) was used to build models for the drone’s altitude motion. Measured 

data recorded from the drone, using a developed MATLAB/Simulink program (see Figure 5.17), 

was imported into the App for the modeling process. The input data was the reference vertical 

speed, 𝑧̇𝑟𝑒𝑓(𝑡), constrained to [−1  1]𝑚𝑠−1, and the output data was the vertical height, 𝑧(𝑡). A 

P-feedback controller was used to control the drone’s altitude motion, with an appropriate 𝐾𝑝 value 

of 1.31.  

3.2.6.1 Second-order model. A second-order LTI SISO ARX transfer function model was 

obtained, which has two poles and one zero, see (3.112). The corresponding state-space model 
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matrices are: 𝐀 = [
−5.8092 −0.0135
  1.0000    0.0000

] , 𝐁 = [
1
0
] , 𝐂 = [1.0913 4.5356], and 𝐃 = [0]. The 

model has a fit to estimation (best fit) of 91.04%, final prediction error (FPE) of 0.000200948, and 

mean squared error (MSE) of 0.0001864. Figure 3.25 shows information about the model 

identification process. 

                                                 
𝑍(𝑠)

𝑍̇𝑟𝑒𝑓(𝑠)
=

1.091𝑠 + 4.536

𝑠2 + 5.809𝑠 + 0.01345
                                                (3.112) 

 

Figure 3.25. MATLAB model identification process information. 
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The poles of the system in (3.112) are 𝑠 =  −5.8069 and −0.0023, which indicates that 

the system is stable, however, a unity step response of the plant shown in Figure 3.26, shows that 

the system did not stabilize to the desired value. The controllability matrix, 𝐶𝑂𝑁𝑇, of the system 

was determined as  

                                                         𝐶𝑂𝑁𝑇 = [
1.0000 −5.8092

0    1.0000
]                                                (3.113) 

and observability matrix, 𝑂𝐵𝑆𝐸𝑅, of the system was determined as  

                                                      𝑂𝐵𝑆𝐸𝑅 = [
   1.0913    4.5356
−1.8042 −0.0147

]                                             (3.114) 

The ranks of both 𝐶𝑂𝑁𝑇 and 𝑂𝐵𝑆𝐸𝑅 is 2, which is the dimension of the state matrix, 𝐀, therefore 

the system is completely state controllable and completely observable, and thus the system is 

stabilizable and detectable. 

 

Figure 3.26. Open-loop plant step response: black-box approach (LTI 2nd order model). 

3.2.6.2 Second-order model: reduced-form. A first-order transfer function is sufficient to 

reproduce the dynamics of a DC motor [76]. If the drone’s DC motors dynamics are not assumed 

to be very fast, see Section 3.2.4, then its transfer function can be written as [76]  

                                                            𝐺𝑚𝑡(𝑠) =
𝑎(s)

V𝑚𝑡(𝑠)
=

𝐾𝑔

𝜏𝑠 + 1
                                                   (3.115) 
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where 𝜏 is the time constant, 𝐾𝑔 is the sum of the steady-state gains of the drone’s DC motors, 

𝑎(s) is the Laplace transform of the average angular speed of the load shafts, 𝜔𝑎(𝑡), and V𝑚𝑡(𝑠) 

is the Laplace transform of the average input voltages, v𝑚𝑡(𝑡) of the motor. Thus, a second-order 

transfer function for the plant model, see Section 3.2.4, can be written as  

                                                    
𝑍(𝑠)

𝑍̇𝑟𝑒𝑓(𝑠)
= (

𝐾𝑔

𝜏𝑠 + 1
) (

1

𝑠
) =  

𝐾𝑔

𝜏𝑠2 + 𝑠
                                           (3.116) 

Currently, the AR.Drone 2.0 does not have sensors attached to measure the angular speeds 

of the rotors and the input voltages. The research work could have consider the option of attaching 

sensors to measure the necessary data in the estimation of 𝐾𝑔 and 𝜏. For example, a reflective 

encoder sensors could be placed under the propeller gears to measure the angular position of the 

load gears. If these sensors data are available, then experimental methods such as the frequency 

response and bump test could have been used to determine 𝐾𝑔 and 𝜏. 

In the estimation of 𝐾𝑔 and 𝜏, the approach used in Section 3.2.6.1 was applied, but here 

10 samples of recorded data, (𝑧̇𝑟𝑒𝑓(𝑡), 𝑧(𝑡)), were used, and transfer function models, of the form 

in (3.116), obtained for each data sample. The mean (nominal) values were calculated as 𝐾𝑔𝑛
=

0.9451 rads−1V−1 and 𝜏𝑛 = 0.1304 𝑠, and the sample standard deviation values as 𝑠𝐾𝑔
=

0.6895 rads−1V−1 and 𝑠𝜏 = 0.0955 𝑠, respectively. Using the Student’s 𝑡 distribution and 

considering only random errors in the measurements, 𝑣 = 9, 𝑃 = 95%, and 𝑡9,95 = 2.262, the 

estimate of the true mean values, based on equation (2.23), for 𝐾𝑔 and 𝜏, are given respectively as 

                                                     𝐾𝑔
′ = 0.9451 ± 0.4932   rads−1V−1   (95%)                          (3.117) 

                                                      𝜏′ = 0.1304 ± 0.0683   s                      (95%)                          (3.118) 

Thus, the random uncertainties in the mean values of 𝐾𝑔 and 𝜏 at 95% confidence due to 

variation in the measured data set are ∆𝐾𝑔
= ±0.4932 and ∆𝜏 = ±0.0683, respectively. Therefore, 
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the estimated second order LTI SISO ARX nominal transfer function model for the plant, subject 

to the random uncertainties in (3.117) and (3.118), is given in equation (3.119). The corresponding 

state-space model matrices are: 𝐀 = [
−7.6687 0.0000
   1.0000 0.0000

] , 𝐁 = [
1
0
] , 𝐂 = [0.0000 7.2477], 

and 𝐃 = [0]. The model has an average fit to estimation (best fit) of 86.12%, FPE of 0.002867, 

and MSE of 0.008252.  

                                                
𝑍(𝑠)

𝑍̇𝑟𝑒𝑓(𝑠)
=

7.2477

𝑠2 + 7.6687𝑠
=

0.9451

0.1304𝑠2 + 𝑠
                                    (3.119) 

 

Figure 3.27. Open-loop plant step response: black-box approach (2nd order reduced-model). 

The poles of the system in (3.119) are 𝑠 =  0.000 and −7.6687, which indicates that the 

system is unstable, which is also confirm by the plant’s step response shown in Figure 3.27. The 

controllability matrix, 𝐶𝑂𝑁𝑇, of the system was determined as  

                                                    𝐶𝑂𝑁𝑇 = [
1.0000 −7.6687

0    1.0000
]                                                     (3.120) 

and observability matrix, 𝑂𝐵𝑆𝐸𝑅, of the system was determined as  

                                                 𝑂𝐵𝑆𝐸𝑅 = [
0.0000 7.2477
7.2477 0.0000

]                                                         (3.121) 
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The ranks of both 𝐶𝑂𝑁𝑇 and 𝑂𝐵𝑆𝐸𝑅 is 2, which is the dimension of the state matrix, 𝐀, therefore 

the system is completely state controllable and completely observable, and thus the system is 

stabilizable and detectable. 

  3.2.7 Effects of system uncertainty. As stated in Section 2.5.3, a time-delayed P control 

system, retarded type, is used to investigate the system uncertainty and to measure the stability 

radii using first-order and second-order plant models developed. 

3.2.7.1 First-order model. The transfer function of the time-delayed first-order plant 

model, see Sections 3.2.4 and 3.2.6.2, and equation (3.116), is given as  

                                                                     
𝑍(𝑠)

𝑍̇𝑟𝑒𝑓(𝑠)
=

𝐾𝑔𝑒−𝑠𝑇𝑑

𝑠
                                                        (3.122) 

where 𝐾𝑔 is the uncertain system parameter. Then, the closed-loop transfer function of the P 

control system is given as  

                                                                
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝐾𝑔𝑒−𝑠𝑇𝑑

𝑠 + 𝐾𝑃𝐾𝑔𝑒−𝑠𝑇𝑑
                                                (3.123) 

Note, in Section 3.2.4, in the estimation of 𝑇𝑑, a suitable nominal value of 𝐾𝑔𝑛
= 1.0 𝑟𝑎𝑑𝑠−1𝑉−1 

was used, but in this section 𝐾𝑔𝑛
= 0.9451 𝑟𝑎𝑑𝑠−1𝑉−1, obtained in Section 3.2.6.2, is used. If 𝐾𝑔 

is subjected to a certain perturbations, ±∆𝐾𝑔
, then (3.123) can be written as  

                                                         
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃(𝐾𝑔𝑛
± ∆𝐾𝑔

)𝑒−𝑠𝑇𝑑

𝑠 + 𝐾𝑃(𝐾𝑔𝑛
± ∆𝐾𝑔

)𝑒−𝑠𝑇𝑑
                                     (3.124) 

From the characteristic equation, we have  

                                                            𝑧̇ = −𝐾𝑃 (𝐾𝑔𝑛
± ∆𝐾𝑔

) 𝑧(𝑡 − 𝑇𝑑)                                          (3.125) 

Comparing equations (3.125) and (2.28), we obtain 𝐀 + 𝐄∆A 𝐅A  = 0, 𝐀 = 0, 𝐄∆A 𝐅A  = 0, 𝐁 +

𝐄∆B 𝐅B  = −𝐾𝑃 (𝐾𝑔𝑛
± ∆𝐾𝑔

) , 𝐁 = −𝐾𝑃𝐾𝑔𝑛
, and 𝐄∆B 𝐅B  = ±𝐾𝑃∆𝐾𝑔

. In the computation of the 
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real stability radius, 𝑟, the perturbation scaling parameters, 𝐄, 𝐅A, and 𝐅B can be taken to be the 

appropriate identity matrix. Thus, for an unstructured case where 𝑚 = 𝑝 = 𝑛 = 1, 𝐄 = 𝐅A =

 𝐅B = 1 is used, which gives ∆B = ±𝐾𝑃∆𝐾𝑔
. From the statistical-experimental results in Section 

3.2.6.2, ∆B = ±(1.31)(0.4932) = ±0.6461. 

3.2.7.2 Second-order model: reduced-form. Using the transfer function of the plant in 

equation (3.116), the time-delayed plant model transfer function can be written as  

                                                                
𝑍(𝑠)

𝑍̇𝑟𝑒𝑓(𝑠)
=  

𝐾𝑔𝑒−𝑠𝑇𝑑

𝜏𝑠2 + 𝑠
                                                            (3.126) 

and the corresponding closed-loop transfer function of the P control system as  

                                                     
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝐾𝑔𝑒−𝑠𝑇𝑑

𝜏𝑠2 + 𝑠 + 𝐾𝑃𝐾𝑔𝑒−𝑠𝑇𝑑
                                               (3.127) 

where 𝐾𝑔 and 𝜏 have nominal values of 𝐾𝑔𝑛
= 0.9451 𝑟𝑎𝑑𝑠−1𝑉−1 and 𝜏𝑛 = 0.1304 𝑠, 

respectively, obtained in Section 3.2.6.2. If 𝐾𝑔 and 𝜏 are subjected to a certain perturbations, ±∆𝐾𝑔
 

and ±∆𝜏, respectively, then (3.127) can be written as  

                                   
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃(𝐾𝑔𝑛
± ∆𝐾𝑔

)𝑒−𝑠𝑇𝑑

(𝜏𝑛 ± ∆𝜏)𝑠2 + 𝑠 + 𝐾𝑃(𝐾𝑔𝑛
± ∆𝐾𝑔

)𝑒−𝑠𝑇𝑑
                               (3.128) 

From the characteristic equation, we have  

                                     (𝜏𝑛 ± ∆𝜏)𝑧̈ + 𝑧̇ + 𝐾𝑃 (𝐾𝑔𝑛
± ∆𝐾𝑔

) 𝑧(𝑡 − 𝑇𝑑) = 0                                   (3.129) 

Writing (3.129) in state-space representation, we have 

  𝐱̇(𝑡) = [
0 1
0 {−1 (𝜏𝑛 ± ∆𝜏)⁄ }] 𝐱(𝑡) + [

0 0

{−𝐾𝑃 (𝐾𝑔𝑛
± ∆𝐾𝑔

) (𝜏𝑛 ± ∆𝜏)⁄ } 0] 𝐱(𝑡 − 𝑇𝑑)    (3.130) 

where 𝐱(𝑡) = [ 𝑧  𝑧̇]𝑇. Comparing equations (3.130) and (2.28), we obtain 𝐀 + 𝐄∆A 𝐅A  =

[
0 1
0 {−1 (𝜏𝑛 ± ∆𝜏)⁄ }], 𝐁 + 𝐄∆B 𝐅B = [

0 0

{−𝐾𝑃 (𝐾𝑔𝑛
± ∆𝐾𝑔

) (𝜏𝑛 ± ∆𝜏)⁄ } 0], 𝐀 = [
0 1
0 −1 𝜏𝑛⁄ ], 
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and 𝐁 = [
0 0

−𝐾𝑃𝐾𝑔𝑛
𝜏𝑛⁄ 0]. In the computation of 𝑟, the perturbation scaling parameters, 𝐄 =

 𝐅A = 𝐅B = I2 = [
1 0
0 1

] is used, and therefore, the values of ∆A and ∆B are computed as 

                            ∆A= 𝐄∆A 𝐅A  = [
0 0
0 {1 𝜏𝑛⁄ − 1 (𝜏𝑛 ± ∆𝜏)⁄ }]                                     (3.131)  

           ∆B= 𝐄∆B 𝐅B = [
0 0

{𝐾𝑃𝐾𝑔𝑛
𝜏𝑛⁄ − 𝐾𝑃 (𝐾𝑔𝑛

± ∆𝐾𝑔
) (𝜏𝑛 ± ∆𝜏)⁄ } 0]                  (3.132) 

Thus, from the statistical-experimental results in Section 3.2.6.2, see equations (3.117) and (3.118), 

and using equations (3.131) and (3.132), sample of possible values of ∆A and ∆B can be computed 

as shown in Table 3.1. 

Table 3.1  

Possible Values of ∆ from Experiments: Second-order Reduced-model 

 Case 1 Case 2 Case 3 

 ∆𝐾𝑔
= 0.0100 &   

∆𝜏 = 0.0000  

∆𝐾𝑔
= 0.0100 &   

∆𝜏 = −0.0010 

∆𝐾𝑔
= −0.2000 &   

∆𝜏 = −0.0100 

∆A = 𝐄∆A𝐅A [
0 0
0 0

] [
0 0
0 −0.059

] [
0 0
0 −0.637

] 

∆B = 𝐄∆B𝐅B [
0 0

−0.101 0
] [

0 0
−0.175 0

] [
0 0

1.388 0
] 

∆ = [∆A, ∆B] [
0 0 0 0
0 0 −0.101 0

] [
0 0 0 0
0 −0.059 −0.175 0

] [
0 0 0 0
0 −0.637 1.388 0

] 

 

3.2.7.3 Effects of disturbance rejection: quadrotor payload. The effects of the dynamic 

load disturbances introduced by increasing the payload on the drone’s altitude response were 

experimented using the designed PV and PV-MRAC flight control systems. Also, the stability 

bounds within which the changing mass-inertia parameters of the system due to acquired object 
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not destabilize the drone were determined. Additionally, it was demonstrated experimentally the 

stability behavior of the drone undergoing instantaneous step payload changes. 
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4 CHAPTER 4 

Simulation and Experimental Setups: Ground Robot 

This chapter presents and discusses all the simulation and experimental setups used for the 

research work on the ground robot. The developed Simulink model shown in Figure 4.1 was used 

to implement the kinematic model of the unicycle in equation (3.2). 

 

Figure 4.1. Simulink model for the unicycle. 

4.1 Control Algorithms for Individual Behaviors  

Figures 4.2 to 4.5 below shows the Simulink models used to simulate the individual 

DDWMR behaviors control algorithms obtained in Section 3.1.2.1. 

 

Figure 4.2. Simulink model that drives the robot to a point. 
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Figure 4.3. Simulink model that drives the robot to a pose. 

 

Figure 4.4. Simulink model that drives the robot to follow a line. 

 

Figure 4.5. Simulink model that drives the robot to follow a circle. 
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4.2 Control Algorithm for Navigation System  

4.2.1 Simulations. A developed MATLAB robot simulator was used to simulate the 

navigation control algorithm presented in Section 3.1.2.2.5. The control algorithm combines the 

GTG, AO, and FW controllers into a full navigation system for the robot. The MATLAB algorithm 

that controls the robot simulator implements finite state machine (FSM) to solve the full navigation 

problem. The FSM uses a set of if/elseif/else statements that first check which state (or behavior) 

the robot is in, and then based on whether an event (condition) is satisfied, the FSM switches to 

another state, or stays in the same state, until the robot reaches its goal. Figure 4.6 below shows a 

sequence of movement of the MATLAB robot simulator implementing the navigation system. The 

robot navigates around a cluttered, complex environment without colliding with any obstacles and 

reaching its goal location successfully.  

4.2.2 Experiments. The control algorithm built for the navigation architecture presented 

in Section 3.1.2.2.5 has been experimented on Dr Robot X80SV, programmed using MATLAB 

GUI, in an office environment. The X80SV can be made to move to a goal while avoiding obstacles 

along the way. The X80SV is a fully wireless networked that uses two quadrature encoders on 

each wheel for measuring its position, and seven IR and three ultrasonic range sensors for collision 

detection.  

It has 2.6x high resolution Pan-Tilt-Zoom CCD camera with two-way audio capability, two 

12V motors with over 22kg.cm torque each, and two pyroelectric human motion sensors. It has a 

dimension of 38cm (length) x 35cm (width) x 28cm (height), maximum payload of 10kg (optional 

40kg) with robot weight of 3kg. Its 12V 3700mAh battery pack has three hours nominal operation 

time for each recharging, and can drive up to a maximum speed of 1.0ms−1. The distance between 

the wheels is 26cm and the radius of the wheels is 8.5cm. 
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Figure 4.6. Sequence of the MATLAB robot simulator implementing the navigation system. 
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The PID-feedback system depicted in Figure 4.7 shows how the DC motor system of the 

robot is controlled. Figure 4.8 shows the setup used for the experiments. After a connection is 

established between the host PC and the robot through the wireless router, the X80SV control 

program receives and sends the motion/sensors signals using ActiveX control. Also, the program 

directly exchange multimedia data with the Pan-Tilt-Zoom camera through an ActiveX control. 

 

 

 

 

 

Figure 4.7. Closed-loop feedback system for controlling the DC motors of the X80SV. 

 

 

 

 

 

 

Figure 4.8. Setup used for the X80SV experiments. 

A screenshot of the MATLAB interface developed for the X80SV control is shown in 

Figure 4.9. The interface was developed by mimicking a similar interface developed in C# by the 

manufacture of the robot, Dr Robot Inc (see Figure 1.6). The motivation for using MATLAB 

instead of building upon the provided C# interface was to take advantage of the ease of simulation, 

+ 

Potentiometer 

PID Controller DC Motor 
− 

e r u 

y
m

 

y 

Robot 

Wireless Router Host PC 

Motion 

Control 

Gateway 

Pan-Tilt-

Zoom 

Camera 

X80SV 

Control 

Program 

Motion/ 

Sensor 

System 
  

A
ct

iv
eX

 

C
o
n
tr

o
ls

 



105 

 

 

quick and ease of developing GUI, and making use of the in-built control strategies libraries in 

MATLAB for this research and future studies.  

The MATLAB interface has three sections: information about the robot settings and 

sensors, multimedia, and the vision and control. The robot settings information includes the IP 

addresses of the robot and the camera, the robot wheel radius, distance between the robot wheels, 

and the encoder count per revolution. The sensors information, updated in real-time, includes the 

infrared (IR), ultrasonic (US), motor, human, temperature, battery, and the position of the robot. 

 

Figure 4.9. MATLAB X80SV control program interface. 

The multimedia section include real-time video stream from the robot, which can be 

controlled using a pan and tilt tools. Also, the section has tools for capturing images and recording 

the video stream. In addition, the section also has a tool to capture live audio from the robot. The 

vision and control section has tools for performing ‘Basic Motion Control’, ‘Individual Motion 

Control (PID and MPC)’, ‘Navigation System (PID and MPC), and ‘Object Recognition and 



106 

 

 

Tracking’. The MPC (model predictive control) and the ‘Object Recognition and Tracking’ tools 

are for future research work. 

 

Figure 4.10. Modified C# X80SV program: main sensor information and sensor map. 

 

 

 

 

 

 

 

 

 

Figure 4.11. Modified C# X80SV program: path control. 

𝑻𝒂𝒓𝒈𝒆𝒕 𝒑𝒐𝒔𝒆 

 𝑺𝒕𝒂𝒓𝒕𝒊𝒏𝒈 𝒑𝒐𝒔𝒆 

𝑹𝒐𝒃𝒐𝒕 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝒑𝒐𝒔𝒆 

𝑌 

𝑋 𝒙𝒈: (𝟐, 𝟎, 𝟎)  

𝒙𝒐: (𝟎, 𝟎, 𝟎)  
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The ‘Basic Motion Control’ makes the robot perform operations such as move forward, 

backward, or rotate, etc. The ‘Individual Motion Control (PID)’ makes the robot ‘move to a point’, 

‘move to a pose’, ‘follow a path’, and ‘avoid obstacles. The ‘Navigation System (PID)’ makes the 

robot to move to a goal in the presence of obstacles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Experimental setup showing sequence of the Dr Robot X80SV movement. 

Due to the difficulty in sending signals to the DC motors and receiving measured data using 

the MATLAB GUI program, in real time, the C# program (see Figure 1.6) was modified for the 
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implementation of the control algorithms. The modified C# GUI program has two interfaces: 

‘Main Sensor info and Sensor Map’ and ‘Path Control’. The ‘Main Sensor info and Sensor Map’ 

interface, see Figure 4.10, contain similar tools just like the MATLAB GUI program.  

The ‘Path Control’, see Figure 4.11, is the interface used to implement the control 

algorithms. It contains the option of choosing to implement the individual behavior or the 

navigation system control algorithms. Also, it has tools for making settings such as: target pose, 

stop time, forward speed, stopping tolerances (for 𝑥, 𝑦, and 𝜑), etc. Additionally, the interface has 

a 2D grid to help visualize, in real time, the robot’s movement. Moreover, there is a real-time plot 

of the robot’s trajectory and heading. Figure 4.12 shows an experimental setup showing a sequence 

of movement of the X80SV implementing the navigation control algorithm.  
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5 CHAPTER 5 

Simulation and Experimental Setups: Aerial Robot 

This chapter presents and discusses all the simulation and experimental setups used for the 

research work on the aerial robot. 

5.1 Control of Quadrotor Motions: White-box Approach (Nonlinear Model)   

The simulations were carried out using MATLAB/Simulink models to design and validate 

the control algorithms discussed in Section 3.2.1.2. Simulink block, quadrotor dynamics, shown 

in Figure 5.1, was used to implement the dynamics and kinematics of the quadrotor discussed in 

Section 3.2.1.1. The block employs a MATLAB S-function to generate a continuous state output, 

𝐱.  

S-functions (system-functions) provide a powerful mechanism for extending the 

capabilities of the Simulink environment. S-functions follow a general form and can accommodate 

continuous, discrete, and hybrid systems. An algorithm in an S-function is implemented by 

following a set of simple rules, and through an S-function block it is added to a Simulink model. 

The block consists of a set of inputs, a set of states, and a set of outputs, where the outputs are 

functions of the simulation time, the inputs, and the states. 

 

Figure 5.1. Simulink model for the quadrotor dynamics and control mixer blocks. 
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The quadrotor dynamic block is connected to the control mixer block (see Figure 5.1), 

whose inputs are the three torques and the total thrust acting on the airframe. The control mixer 

block is used to compute the four rotor speeds, which serves as inputs to the quadrotor dynamics 

block. These blocks were developed based on the models introduced in [39]. 

5.1.1 Simulink models for the control algorithms. This section discusses various 

Simulink models developed for the different control algorithms presented in Section 3.2.1.2. 

5.1.1.1 Altitude controller. The Simulink model shown in Figure 5.2 implements the 

altitude control algorithm. For a given desired height, 𝑧∗, the altitude control loop, based on (3.63), 

is used to generate the required thrust, 𝑇, while the torque, 𝐵, to the airframe is set to zero. 

 

Figure 5.2. Simulink model for altitude control. 

5.1.1.2 Yaw controller. The Simulink model shown in Figure 5.3 implements the yaw 

control algorithm. The vehicle must first move to a desired height before yawing, hence the altitude 

controller is combined with the yaw controller, with an if-else control block to implement the 

conditional statement. Thus, for a desired yaw, 𝑦𝑎𝑤∗, the altitude control loop drives the quadrotor 
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to a desired height, 𝑧∗, and based on (3.62),  the yaw control loop is used to generate the required 

yaw torque, 𝜏𝜑𝐵
, while keeping the other two torques on the airframe at zero. 

 

Figure 5.3. Simulink model for yaw control. 

5.1.1.3 Pitch controller. The Simulink model shown in Figure 5.4 implements the pitch 

control algorithm. The vehicle must first move to a desired height before pitching, hence the 

altitude controller is combined with the pitch controller, with an if-else control block to implement 

the conditional statement. Thus, for a desired pitch, 𝑝𝑖𝑡𝑐ℎ∗, the altitude control loop drives the 

quadrotor to a desired height, 𝑧∗, and based on (3.60), the pitch control loop is used to generate 

the required pitch torque, 𝜏𝜃𝐵
, while keeping the other two torques on the airframe at zero. 

5.1.1.4 Roll controller. The Simulink model shown in Figure 5.5 implements the roll 

control algorithm. The vehicle must first moved to a desired height before rolling, hence the 

altitude controller is combined with the roll controller, with an if-else control block to implement 

the conditional statement. Thus, for a desired roll, 𝑟𝑜𝑙𝑙∗, the altitude control loop drives the 

quadrotor to a desired height, 𝑧∗, and based on (3.61), the roll control loop is used to generate the 

required roll torque, 𝜏∅𝐵
, while keeping the other two torques on the airframe at zero. 
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Figure 5.4. Simulink model for pitch control. 

 

Figure 5.5. Simulink model for roll control. 

5.1.1.5 Position controller. The Simulink model shown in Figure 5.6 below implements 

the position controller. The controller combines the 𝑥 and 𝑦 directions control algorithms based 

on (3.73), with the altitude controller, to drive the quadrotor to the desired position, 

(𝑥∗, 𝑦∗, and 𝑧∗). The yaw angle, 𝜑, is also needed, hence the inclusion of the yaw controller. 
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Figure 5.6. Simulink model for position control. 

5.1.2 MATLAB GUI for the simulations. A screenshot of a robust and interactive 

MATLAB GUI interface developed to implement the various control algorithms simulations 

discussed above is shown in Figure 5.7.  

The GUI interface has five sections: initialization and information about the quadrotor 

settings, selection of controller type and its parameter settings, displaying of the quadrotor current 

attitude and position values, displaying of some performance index values of a simulation run, and 

plotting of the quadrotor’s response and trajectory. The interface works by first initializing the 

quadrotor’s parameters, and then selecting the type of controller and its parameter settings required 

for the simulation. The selected controller can then simulated using its parameter settings selected. 

The quadrotor attitude and position real-time state values and responses can be displayed, and the 
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3D trajectory of the quadrotor can also be visualized. An animated quadrotor, which was 

graphically designed, receives data from the simulation, and execute the response in real time. 

After the simulation some performance index values are displayed. 

 

Figure 5.7. MATLAB GUI used to implement the various control algorithm simulations. 

The quadrotor real-time response and trajectory plots, shown in the GUI, were achieved by 

using S-function block in the Simulink models. The quadrotor real-time attitude and position state 

values, displayed in the GUI, were also achieved by using MATLAB Output block run-time object 
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and an event-listener mechanism add_exec_event_listener command, and then synchronizing the 

run-time object with the Simulink execution. The state output, 𝐱, is the input to the two blocks.  

5.2 Control of Quadrotor Altitude Motion: White-box Approach (Linearized Model)  

This section presents the Simulink models and experimental setups for the autonomous 

altitude control of quadrotor and the drone using the altitude linearized model. 

5.2.1 Simulations. The Simulink model in Figure 5.8 was used to model the state-space 

representation of the plant, and to simulate a unit-step response to confirm the stability of the plant. 

 

Figure 5.8. Simulink model for open-loop plant. 

5.2.1.1 Full-state feedback without nonlinear effects. Figure 5.9 shows the Simulink 

model used to simulate a unit-step response of the closed-loop system for the full-state feedback 

control system without the nonlinear effects. 

5.2.1.2 Pole placement with saturation effects. Figure 5.10 shows the Simulink model 

used to simulate a unit-step response for the pole placement control system, using saturation blocks 

for the control input and the vertical speed of ∆𝜔 = ±50𝑟𝑎𝑑𝑠−1 and ∆𝑧̇ = ±1𝑚𝑠−1, respectively. 

A block is included in the model that computes the continuous root mean square, RMS, of the 
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control effort to the plant. This RMS value is related to the amount of energy expended by the 

actuators, and serves as performance index for the various controllers. 

 

 Figure 5.9. Simulink model setup for the full-state feedback closed-loop system. 

 

Figure 5.10. Full-state feedback closed-loop system model with saturation blocks. 

5.2.1.3 Pole placement with saturation and time delay effects. Figure 5.11 shows the 

Simulink model used to simulate a unit-step response for the pole placement control system, with 

transport delay block used to implement the overall time delay, 𝑇𝑑, in the system. 
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5.2.1.4 PD-MRAC with and without nonlinear effects. Figure 5.12 shows the Simulink 

model used to simulate a unit-step response for the MRAC control system without PD controller 

and the transport delay block.  

 

Figure 5.11. Full-state feedback closed-loop system model with transport delay block. 

 

Figure 5.12. MRAC control system Simulink model without PD controller. 
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The MIT rule MRAC by itself does not guarantee convergence or stability [47], so a PD 

controller is included in the setup shown in Figure 5.12. Figure 5.13 shows the Simulink model 

used to simulate a unit-step response for the MRAC control system with the PD controller, which 

also include the transport delay block. The model also includes a suitable high pass filter (HPF), 

with damping ratio, 
𝑓

= 1.0  and natural frequency, 𝜔𝑓 = 100𝑟𝑎𝑑𝑠−1. 

 

Figure 5.13. PD-MRAC control system Simulink model with transport delay block. 

5.2.2 Experiments. This section presents experimental setup for implementation of the 

designed controllers on the AR.Drone 2.0. Figure 5.14 shows a general control setup for 

implementation of controllers. This setup was used for the controllers designed based on the first-

order plant model (see Section 3.2.5) and the second-order plant model obtained from the black-

box approach (see Section 3.2.6). The setup in Figure 5.15 was attempted for the implementation 

of the designed controllers based on the plant model obtained in (3.89) or (3.90). The first setup, 

Figure 5.14, cannot be used for the latter designed controllers, since the control input of the drone 

is the vertical linear speed, and that of the quadrotor model is the average angular speed.  
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The experiments were performed in an office environment with the drone’s indoor hull 

attached. The drone was connected to its host PC using Wi-Fi, and data streaming, sending and 

receiving, was made possible using UDP (user datagram protocols), see Figure 5.16. UDP is a 

communications protocol, an alternative to TCP that offers a limited amount of service when 

messages are exchanged between computers in a network that uses IP. 

 

  

 

 

 

 

 

Figure 5.14. Generic control system for implementation. 

 

 

 

 

 

 

Figure 5.15. Intended control system for the implementation. 

The drone has ultrasound sensor for ground altitude measurement (at the bottom). It has 

1GHz 32 bit ARM Cortex A8 processor, 1GB DDR2 RAM at 200MHz, and USB 2.0 high speed 
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for extensions. The drone navigation data (from the sensors, cameras, battery, status, etc.) are 

received, and the control signals are sent, using AT commands. AT commands are combination of 

short text strings sent to the drone to control its actions.  

The drone has 720p 30FPS HD front camera, 60 FPS vertical QVGA camera for ground 

speed measurement, 3 axis gyroscope, 3 axis accelerometer, 3 axis magnetometer for measuring 

the attitude angles. The drone has a 1000 mAh battery (3 cells) that can take up to about one and 

half hours to be fully charged, and can last for about fifteen minutes when the drone is in full 

operation. It has a dimension of 51.5cm (length) x 51.5cm (width) x 12cm (height), with a mass 

of 0.453kg for indoor operation, and has 2-pair of four rotors.  

   

 

 

 

 

 

 

 

Figure 5.16. Experimental setup for the white-box approach model: full-state feedback. 

Figure 5.16 shows an implementation setup using the full-state feedback control system, 

and Figures 5.17 and 5.18 show MATLAB Simulink and a robust GUI programs developed for 

the experiments. The GUI program was used to run the Simulink program, which contains the 

various developed altitude controllers. The GUI program works by first initializing the type of 

control mode, either to run the altitude designed controllers autonomously or manually control the 

AR.Drone 2.0 
Navigation Data: Battery, State, etc. – UPD 

Video Stream (Thru. other program: C, C++, etc.) – UDP  

Vertical Speed,      

[-1, 1] 
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drone’s different motions. This initialization step is conducted after the Wi-Fi connection has been 

established. Then, connection for data streaming from the drone is also established. 

 

Figure 5.17. Experiment setup: Simulink program for controlling the AR.Drone 2.0. 

The manual control mode allows the control of the various drone’s motions, by selecting 

the type of motion and making the necessary settings. For example, one can select the yaw motion, 

and then set the direction of rotation and the angle of rotation. The manual control mode runs a 

MATLAB function containing codes for the various drone motions.  

To autonomously control the drone’s altitude motion using the designed controllers, one 

has to select the type of controller, then set the reference height. Multiple desired heights or 

waypoints can also be selected. The default parameter values of the controller selected can be used 

for the control or they can be changed. Then, the selected controller can be built for C/C++ code 
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generation, followed by establishing connection between the Simulink program and the drone, and 

finally real-time control signals sent to the drone for the altitude control. The interface also has an 

option for designing a new controller. 

 

Figure 5.18. MATLAB GUI setup for the implementation. 

The GUI interface has a section for displaying the drone’s information such as its 

dimensions, type of connection, overall mass, and the control system sampling time. Also, it has 

sections that display, in real time, sensors information such as the position (𝑥, 𝑦, and 𝑧), attitude 

(𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, and 𝑦𝑎𝑤), and the battery level. The Simulink control programs stopping times can 

also be set from the GUI. Real-time drone motion responses can be visualized. Performance index 

such as maximum overshoot, settling time, and control energy can also be displayed. Additionally, 

the interface has a section for video and image controls for future research work. The real-time 

response that displays in the GUI was achieved by using S-function block in the Simulink program. 

The real-time sensors information were also achieved by using MATLAB Output block run-time 
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object and an event-listener mechanism add_exec_event_listener command, and then 

synchronizing the run-time object with the Simulink execution. 

5.3 Time-delay Estimation  

The MATLAB/Simulink program setup developed for the simulations in estimating the 

time delay is shown in Figure 5.19. The vertical speed control input constraints, [−1  1]𝑚𝑠−1, are 

applied using the saturation block. For the simulations, the time delay in the system is implemented 

using a transport delay block. 

 

Figure 5.19. Simulink block diagram for P-feedback control system. 

 

Figure 5.20. Simulink block diagram for PV-feedback control system. 

5.4 Design of PV and PV-MRAC Controllers  

Figure 5.20 shows the Simulink setup developed for conducting the PV control 

simulations, with the controller gains used in Figure 5.17 for the experiments. Suitable PV 

controller gains, 𝐾𝑝 and 𝐾𝑣, are obtained to improve on the transient response performance. HPF 
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with damping ratio, 
𝑓

= 1.0 was used for the V controller. A suitable natural frequency, 𝜔𝑓, value 

was designed for the filter.  

 

Figure 5.21. Simulink block diagram for PV-MRAC control system. 

Figure 5.21 (see Figure 5.13 for a similar setup) shows the Simulink model used to simulate 

a unit-step response for the PV-MRAC control system with saturation and time delay effects. This 

setup uses the second-order plant model obtained from the black-box approach. The block model 

also include a suitable HPF, with damping ratio, 
𝑓

= 1.0  and natural frequency, 𝜔𝑓 = 38𝑟𝑎𝑑𝑠−1. 

5.5 Effects of System Uncertainty  

5.5.1 Real stability radius computation. MATLAB programs were developed for the 

calculation of the real stability radius, and as stated in Section 2.4.3, MATLAB 𝑓𝑚𝑖𝑛𝑏𝑛𝑑 was 

used for the function minimization. The MATLAB/Simulink program setups developed for 

conducting the simulations of the P-feedback control systems are shown in Figures 5.22 and 5.23. 

𝐾𝑝 = 1.31, 𝑇𝑑 = 0.37𝑠, 𝜏𝑛 = 0.1304𝑠, and 𝐾𝑔𝑛
= 0.9451𝑟𝑎𝑑𝑠−1𝑉−1 were used in the 

algorithms and simulations. 
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Figure 5.22. Simulink block diagram for P control system: uncertain first-order model. 

 

 

 

 

 

Figure 5.23. Simulink block diagram for P control system: uncertain second-order model. 

 

5.5.1.1 First-order model. The real stability radius, 𝑟, of 0.8755 was obtained when 𝜔∗ =

2.8535𝑟𝑎𝑑𝑠−1 and 𝛾∗ = 0.0001, thus the destabilizing perturbation matrix minimum norm, 

‖∆‖ = ‖∆B‖ = 0.8755. Therefore, ∆𝐾𝑔
= ±‖∆B‖/𝐾𝑃 = ±0.6683𝑟𝑎𝑑𝑠−1𝑉−1. Sample values of 

∆𝐾𝑔
= ±0.6683,±0.4932,±0.000, and 1.000 were used to obtain simulation altitude responses.  

5.5.1.2 Second-order model: reduced-form. Three situations were considered, depending 

whether the system is subjected to perturbations in 𝐀 or 𝐁 or both 𝐀 and 𝐁. 

5.5.1.2.1 Situation 1: ∆A ≠ 0 and ∆B = 0. Here, 𝐅B = 0, and 𝐅A = 𝐄 = 𝐈2. 𝑟 of 0.7769 

was obtained when 𝜔∗ = 17.3099𝑟𝑎𝑑𝑠−1 and 𝛾∗ = 0.9304, thus ‖∆‖ = ‖[∆B, ∆B]‖ = ‖∆A‖ =

0.7769.  

5.5.1.2.2 Situation 2: ∆A= 0 and ∆B ≠ 0. Here, 𝐅A = 0, and 𝐅B = 𝐄 = 𝐈2. 𝑟 of 0.7769 was 

obtained when 𝜔∗ = 17.3099𝑟𝑎𝑑𝑠−1 and 𝛾∗ = 0.9415, thus ‖∆‖ = ‖[∆B, ∆B]‖ = ‖∆B‖ =

0.7769 .  
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5.5.1.2.3 Situation 3: ∆A ≠ 0 and ∆B≠ 0. Here, 𝐅A = 𝐅B = 𝐄 = 𝐈2. 𝑟 of 0.5494 was 

obtained when 𝜔∗ = 17.3918𝑟𝑎𝑑𝑠−1 and 𝛾∗ = 0.9421, thus the destabilizing perturbation matrix 

minimum norm, ‖∆‖ = ‖[∆B, ∆B]‖ = 0.5494. 

Table 5.1  

Possible Destabilizing Perturbation Matrices Minimum Norm, ‖∆‖: Experiments 

 Case 1 Case 2 Case 3 

 ∆𝐾𝑔
= 0.0100 &   

∆𝜏 = 0.0000  

∆𝐾𝑔
= 0.0100 &   

∆𝜏 = −0.0010 

∆𝐾𝑔
= −0.2000 &   

∆𝜏 = −0.0100 

‖∆‖  = ‖[∆A, ∆B]‖ 0.1010 0.1847 1.5272 

 

As it can be observed, Situation 3 gives the smallest of ‖∆‖ = 0.5494. Now, from the 

sample of possible values of ∆A and ∆B shown in Table 3.1 (see Section 3.2.7.2), the possible 

values of ‖∆‖ computed are shown in Table 5.1. Sample pair values of (∆𝐾𝑔,∆𝜏) for Case 1, Case 2, 

Case 3, (0.0000, 0.0000), and (1.0000, 0.5000) were used to obtain simulation altitude 

responses. 

5.6 Autonomous Waypoints Tracking and Effects of Disturbance Rejection 

5.6.1 Autonomous waypoints tracking. The designed PV and PV-MRAC control systems 

were used to track multiple specified waypoints autonomously. For example, the drone was made 

to move to a desired height of 1𝑚, then 2𝑚, and then back to 1𝑚. The waiting time was 5𝑠 at each 

of these heights. The drone finally moved to height of 1.5𝑚 for a period of about 10 − 15𝑠 before 

landing.  

5.6.2 Effects of disturbance rejection: quadrotor payload. The robustness of the PV-

MRAC controller was tested against a baseline, PV controller, using the payload capability of the 
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drone and the introduction of disturbances to the system. To accomplish this, three cases were 

considered.  

5.6.2.1 Case 1. Masking tape was used to attach a mass at the top of the drone, see Figure 

5.24 for an example. The controllers were tested using different masses attached to the top of the 

drone. The setup was used to determine the stability bounds within which the changing mass-

inertia parameters of the system due to the acquired object will not destabilize the drone.  

 

 

 

 

 

 

 

 

 

 

Figure 5.24. Experimental setup: mass attached at the top. 

5.6.2.2 Case 2. Here, a 100𝑔 mass was attached to the end of an approximately 45𝑐𝑚 

length of rope, which was hooked to the drone, see Figure 5.25. Masking tape was used to hold 

firm the rope across the top and the bottom of the drone. The sensors, which include the one for 

altitude readings, at the bottom of the drone were not covered. In this second case, apart from the 

drone carrying an extra load, the swinging mass-rope created an oscillating (pendulum) 

disturbances to the system.  
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Figure 5.25. Experimental setup: 100𝑔 mass hanging by rope. 

5.6.2.3 Case 3. In this case, the designed controllers were used to demonstrate the stability 

behavior of the drone undergoing a range of instantaneous step payload changes. Here, the masses 

were attached to a sticking masking tape at the top of the drone, after it has stabilized to a desired 

height of 1𝑚, see Figure 5.26. 

 

 

 

 

 

 

 

 

Figure 5.26. Experimental setup: instantaneous step mass. 
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6 CHAPTER 6 

Results and Discussion: Ground Robot 

This chapter presents the results obtained via simulations and experiments along with 

discussions regarding the ground robot. 

6.1 Individual Behaviors Control Algorithms  

The time domain Simulink simulations were conducted over a 10-second duration for each 

model (refer to the simulation setups in Figures 4.2 to 4.5). The trajectories in Figure 6.1 were 

obtained by using proportional gains of 0.5 and 4.0 for  𝐾𝑣 and 𝐾ℎ respectively. The final goal 

point was (4.9920𝑚, 5.0036𝑚), compared to the desired goal of (5𝑚, 5𝑚) for the (5m,  9m, π) 

initial state. Trajectories in Figure 6.2 were obtained using 𝐾𝜌 = 3.0, 𝐾𝛼 = 8.0 and 𝐾𝛽 = −3.0; 

the final pose was (4.9451𝑚, 5.0004𝑚, 2.7693𝑟𝑎𝑑), compared to the desired pose of 

(5𝑚, 5𝑚, 𝜋) for the (5m,  9m, π) initial state.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Move to a point: simulation. 
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Figure 6.2. Move to a pose: simulation. 

The trajectories in Figure 6.3 were obtained with 𝐾𝑑 = 0.5 and 𝐾ℎ = 1.0. The robot was 

driven at a constant speed of 𝑣 = 1.0𝑚𝑠−1. The trajectory in Figure 6.4 was obtained using 𝐾ℎ =

5, PID controller gains of 𝐾𝑝 = 1.0, 𝐾𝐼 = 0.5, and 𝐾𝐷 = 0.0, and the goal was a point generated 

to move around the unit circle with a sampling frequency of 0.2𝐻𝑧. 

 

 

 

 

 

 

 

 

Figure 6.3. Follow a line: simulation. 
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Figure 6.4. Follow a circle: simulation. 

6.2 Navigation System Control Algorithm  

6.2.1 Simulations. The trajectory shown in Figure 6.5 (refer to the simulation setup in 

Figure 4.6) was obtained by using PID controller gains of 𝐾𝑝 = 5.0, 𝐾𝐼 = 0.01 and 𝐾𝐷 = 0.1, 𝛼 =

0.6, 𝜖 = 0.05, 𝑣 = 0.1𝑚𝑠−1,  initial state of (0𝑚, 0𝑚, 0𝑟𝑎𝑑), and desired goal of (1𝑚, 1𝑚, 𝜋/2). 

The final goal point associated with the simulation was (1.0077𝑚, 0.9677𝑚, 1.6051𝑟𝑎𝑑), and 

the average stabilization time was about 35s. 

6.2.2 Experiments. The trajectory shown in Figure 6.6 (refer to a similar experimental 

setup in Figure 4.12) was obtained by using PID controller gains of 𝐾𝑝 = 1000, 𝐾𝐼 =

1000, and 𝐾𝐷 = 5 for the position control and 𝐾𝑝 = 10, 𝐾𝐼 = 0, and 𝐾𝐷 = 1 for the velocity 

control, 𝜖 = 0.01, 𝑣 = 0.5𝑚𝑠−1, initial state of (0𝑚, 0𝑚, 0𝑟𝑎𝑑), and desired pose of 
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(2𝑚, 0𝑚, 0𝑟𝑎𝑑). The final pose associated with the experiment was 

(2.0197𝑚, 0.0266𝑚,−0.0096𝑟𝑎𝑑), and the average stabilization time was about 44𝑠. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Trajectory in xy-plane: simulation. 

 

 

 

 

 

 

 

 

 

Figure 6.6. Trajectory in xy-plane: experiment. 
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Although there were steady-state errors in the values obtained, the results were 

encouraging. Possible causes of the errors could include: Firstly, due to the friction between the 

robot wheels and the floor. Secondly, imperfection in the sensors. Thirdly, unmodeled factors (e.g., 

friction and backlash) in the mechanical parts of the DC motor. Moreover, despite the apparent 

simplicity of the kinematic model of a WMR, the existence of nonholonomic constraints (due to 

state or input limitations) turns the PID-feedback stabilizing control laws into a considerable 

challenge. According to Brockett’s conditions, a continuously differentiable, time-invariant 

stabilizing feedback control law cannot be obtained [77]. 

Note that during the experiments the robot sometimes got lost or wandered around before 

arriving at the desired pose. This is because the navigation system is not robust.  It was built using 

a low-level planning based on a simple model of a point mass and the application of a linear PID 

controller. 
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7 CHAPTER 7 

Results and Discussion: Aerial Robot 

This chapter presents the results obtained via analytical, simulations, and experiments 

along with discussions regarding the aerial robot. 

7.1 Control of Quadrotor Motions: White-box Approach (Nonlinear Model)   

All the time domain Simulink simulations were carried out under 10-second duration for 

each model (refer to the simulation setups in Figures 5.2 to 5.6). The responses, using the various 

control algorithms, are shown in Figures 7.1 to 7.3. 

 

 

 

 

 

 

 

Figure 7.1. (a) Altitude control: step response (b) yaw control: ramp response. 

 

 

 

 

 

Figure 7.2. (a) Pitch control: pulse response (b) position control: trajectory. 
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Figure 7.3. Position control: step response.  

The PD-gains in this research were obtained by tuning to obtain the satisfactory responses. 

The various PD-gains, some performance indicators, and the input signals used to obtain the 

various responses are depicted in the figures. Even though there were steady-state errors, the results 

were encouraging. One of the possible causes of the errors in the steady state is in the modeling of 

the quadrotor’s dynamics and the kinematics such as unmodeled aerodynamic effects and 

uncertainties (e.g., wind disturbance and saturation). In addition, according to Brockett’s 

conditions, feedback control laws, which are a continuously differentiable, time-invariant, cannot 

be used to obtain error-free stabilization [77]. 

7.1.1 Effects of PD-gains. Table 7.1 and Figure 7.4a show how the range of values of the 

P-gains, keeping the D-gain at a constant value, affects the altitude responses during 8-second 

simulations. Theoretically, the trend in the values conform. For example, as the 𝐾𝑝 increases at 
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Table 7.1  

Effect of the P-Gains on the Altitude Response: Desired Height,  𝑧∗ = 4𝑚 

𝐾𝑝 𝐾𝑑 𝐾𝑝⁄  Maximum 

Overshoot 

(%) 

Settling 

Time  

(s) 

Rise 

Time 

(s) 

Peak 

Value 

(m) 

Peak 

Time 

(s) 

Absolute 

Steady-State 

Error (m) 

−200.0 1.0 0.0000 3.3914 1.8278 3.9999 8.0000 0.000086 

−150.0 1.0 0.0724 2.9407 1.7048 4.0029 4.5500 0.000007 

−100.0 1.0 2.9775 4.0636 1.5818 4.1191 3.3500 0.000751 

−80.0 1.0 6.0702 4.6391 1.5520 4.2428 3.3000 0.003100 

 

 

 

 

 

 

 

 

Figure 7.4. Effects of PD-gains (a) varying P-gains (b) varying D-gains: step response. 
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overshoot decreases and there are minor changes in the rise time [44]. The non-smooth nature of 

the responses are as a result of the nonlinearity in the system dynamics and kinematics. 

Table 7.2  

Effect of the D-Gains on the Altitude Response: Desired Height,  𝑧∗ = 4𝑚 

𝐾𝑝 𝐾𝑑 𝐾𝑝⁄  Maximum 

Overshoot 

(%) 

Settling 

Time  

(s) 

Rise 

Time 

(s) 

Peak 

Value 

(m) 

Peak 

Time 

(s) 

Absolute 

Steady-State 

Error (m) 

−100.0 0.9 5.8473 4.2467 1.4405 4.2339 3.0500 0.000016 

−100.0 0.8 9.6776 4.2262 1.3252 4.3871 2.8500 0.003200 

−100.0 0.6 20.3730 5.8530 1.1580 4.8149 2.6500 0.021600 

−100.0 0.5 27.3765 7.2984 1.0993 5.0951 2.6000 0.036100 

 

7.1.2 Challenges and contribution. The main challenges were getting the real-time 

parameters from the Simulink models and plotting of state responses to display in the GUI. As 

mentioned in Section 5.1.2, these were achieved using the MATLAB block run-time object and S-

function block, respectively. The latter approach comes with challenges in implementation for real-

time application, in C/C++ code generation. 

This section of research has contributed the following: firstly, research and put together the 

theories of the dynamics and kinematics, and PD-feedback controllers for position and attitude of 

quadrotor UAVs. Secondly, it used MATLAB/Simulink models, developed by using similar 

models presented in [39], to design and validate the control algorithms. Furthermore, the research 

has demonstrated how MATLAB GUI can be used to run the Simulink models, exchanging real-

time data between the GUI and the Simulink models. 
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7.2 Control of Quadrotor Altitude Motion: White-box Approach (Linearized Model)  

This section presents the simulation and experimental results for the autonomous altitude 

control of the quadrotor. The results presented here are for the controllers designed based on the 

linearized model obtained from the quadrotor’s nonlinear dynamics and kinematics. 

7.2.1 Full-state feedback without nonlinear effects: simulations. Tables 7.3 and 7.4 

shows the transient response properties, the controller gains, and the control RMS values of the 

pole placement controller by varying the real and imaginary parts of the desired closed-loop poles, 

respectively. Figures 7.5a and 7.5b, respectively, show the corresponding plots of the altitude 

responses.  

Table 7.3  

Pole Placement Altitude Responses without the Nonlinear Effects: Varying 𝛽1 

𝐼 𝐾 𝑀𝑜 (%) 𝑡𝑠 (𝑠) 𝑡𝑝 (𝑠) 𝐸𝑠𝑠  (𝑚) Control Energy 

(RMS Value) 

−1.5 ± 1.2𝑖 [30.14    24.51] 1.97 1.88 2.60 −3.04 x 10−4 5.54 

−1.8 ± 1.2𝑖 [38.23    29.41] 0.90 1.86 2.60 −5.72 x 10−5 6.41 

−2.2 ± 1.2𝑖 [51.30    35.94] 0.31 1.78 2.60 −5.72 x 10−6 7.78 

−2.6 ± 1.2𝑖 [66.99    42.48] 0.11 1.67 2.60 −4.86 x 10−7 9.35 

−3.0 ± 1.2𝑖 [85.28    49.01] 0.04 1.55 2.60 −2.50 x 10−8 11.08 

 

The results in the tables show that as the real part increases (i.e., moving the poles to the 

left in the complex plane) the gains values increase, 𝑀𝑜 and 𝑡𝑠 decreases at a constant 𝑡𝑝, and the 

RMS value increases. Also, as the imaginary part increases (i.e., moving the poles to the upwards) 

the gains values increase, 𝑀𝑜 increases, 𝑡𝑠 and 𝑡𝑝 decreases, and the RMS value increases. 
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Table 7.4  

Pole Placement Altitude Responses without the Nonlinear Effects: Varying 𝛽2 

𝐼 𝐾 𝑀𝑜 (%) 𝑡𝑠 (𝑠) 𝑡𝑝 (𝑠) 𝐸𝑠𝑠 (𝑚) Control Energy 

(RMS Value) 

−2.6 ± 0.1𝑖 [55.30    42.48] 0.00 2.24 4.94 −3.49 x 10−5 7.72 

−2.6 ± 0.8𝑖 [60.45    42.48] 0.00 1.96 3.90   8.04 x 10−6 8.43 

−2.6 ± 1.2𝑖 [66.99    42.48] 0.11 1.67 2.60 −4.86 x 10−7 9.35 

−2.6 ± 1.6𝑖 [76.14    42.48] 0.61 1.38 1.95 −4.16 x 10−6 10.62 

−2.6 ± 2.0𝑖 [87.90    42.48] 1.68 1.13 1.56    3.88 x 10−6 12.26 

 

 

 

 

 

 

 

 

Figure 7.5. Pole placement altitude responses without the nonlinear effects. 

Figures 7.6a and 7.6b shows the pole placement control input and vertical speed plots by 

varying the real part of the desired poles. The results show that as the real part increases, the RMS 

value increases. Also, looking at both plots, average angular speed, control input, of ∆𝜔𝑎 =

±50𝑟𝑎𝑑𝑠−1 satisfies the drone’s saturation vertical speed of ∆𝑧𝑟𝑒𝑓 = ±1𝑚𝑠−1.  
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Figure 7.6. Pole placement without the nonlinear effects: (a) control input (b) vertical speed. 

Table 7.5  

LQR Controller Altitude Responses without the Nonlinear Effects: Varying Q 

𝜇 𝐾 𝑀𝑜 (%) 𝑡𝑠 (𝑠) 𝑡𝑝 (𝑠) 𝐸𝑠𝑠 (𝑚) Control Energy 

(RMS Value) 

50 [18.71    18.86] 2.46 3.70 3.19 0.004 3.92 

100 [26.46    23.07] 1.87 2.02 2.80    1.55 x 10−4 5.01 

200 [37.42    28.48] 1.21 1.81 2.54 −1.41 x 10−4 6.37 

300 [45.83    32.38] 0.82 1.72 2.41 −6.59 x 10−5 7.32 

450 [56.12   36.97] 0.46 1.65 2.41 −1.95 x 10−5 8.39 

 

Tables 7.5 and 7.6 show the transient response properties, the controller gains, and the 

RMS values of the LQR controller by varying 𝑄 and 𝑅, respectively. Figures 7.7a and 7.7b show 

the corresponding plots of the responses, respectively. The results show that as the weighting 

parameter, 𝜇, of 𝑄 increases, the gains values increase, 𝑀𝑜, 𝑡𝑠, and 𝑡𝑝 decreases, and the RMS 
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value increases. Also, as the weighting parameter, 𝜇, of 𝑅 increases, the gains values decrease, 𝑀𝑜, 

𝑡𝑠, and 𝑡𝑝 increases, and the RMS value decreases. 

Table 7.6  

LQR Controller Altitude Responses without the Nonlinear Effects: Varying R 

𝜇 𝐾 𝑀𝑜 (%) 𝑡𝑠 (𝑠) 𝑡𝑝 (𝑠) 𝐸𝑠𝑠 (𝑚) Control Energy 

(RMS Value) 

0.1 [118.32    62.71] 0.00 1.56 4.94 −2.97 x 10−7 13.59 

0.5 [52.92    35.56] 0.56 1.67 2.41 −2.90 x 10−5 8.07 

1.0 [37.42    28.48] 1.21 1.81 2.54 −1.41 x 10−4 6.37 

1.5 [30.55    25.15] 1.61 1.93 2.67 −1.23 x 10−4 5.54 

2.0 [26.46   23.07] 1.87 2.02 2.80     1.55 x 10−4 5.01 

2.5 [23.66   21.60] 2.07 3.10 2.93     7.00 x 10−4 4.63 

 

 

 

 

 

 

 

 

 

 

Figure 7.7. LQR responses without the nonlinear effects: (a) varying 𝑄 (b) varying 𝑅. 
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7.2.2 Pole placement with nonlinear effects: simulations. Figures 7.8a and 7.8b show 

the altitude and vertical speed responses by varying control input saturation. As the saturation 

values increase, the RMS value increases. Figure 7.9 also shows the altitude responses by varying 

𝑇𝑑. The results show that as 𝑇𝑑 increases, the RMS value increases. Also, at 𝑇𝑑 ≅ 2.5𝑇𝑠 = 0.1625𝑠 

the response starts to oscillate. 

 

 

 

 

 

 

 

 

Figure 7.8. Pole placement (a) altitude (b) vertical speed: varying control input saturation. 

 

Figure 7.9. Pole placement altitude responses: varying time delay. 
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7.2.3 PD-MRAC with and without nonlinear effects: simulations. Figure 7.10 shows 

the altitude responses without time delay effects and PD controller by varying 𝛾. It can be seen 

that the system did not stabilize. As mentioned in Section 2.3.3.3.1, the MIT rule MARC does not 

guarantee stability of the system, and therefore it was combined with PD controller.  

 

Figure 7.10. MRAC altitude response without time delay effects and PD controller. 
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Table 7.7  

PD-MRAC Altitude Responses: Varying 𝛾 

𝛾 𝑀𝑜 (%) 𝑡𝑠 (𝑠) 𝑡𝑝 (𝑠) 𝐸𝑠𝑠  (𝑚) Control Energy 

(RMS Value) 

100 4.66 3.47 2.54 −0.0022 7.24 

1250∗ 1.99 1.70 2.28    8.73 x 10−4 10.87 

3000 1.10 1.76 2.34 −6.66 x 10−4 11.67 

4210∗ 1.17 1.78 2.28    9.85 x 10−4 11.86 

15000 3.31 3.89 2.60 0.0040 15.41 

 

 

 

 

 

 

 

 

 

Figure 7.11. PD-MRAC (a) altitude (b) error: varying 𝛾. 
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controller as against using only the PD controller. The PD controller on its own did not stabilize 

the system, just like the MRAC on its own. 

 

 

 

 

 

 

 

Figure 7.12. PD-MRAC (a) control input (b) vertical speed: varying 𝛾. 

 

 

 

 

 

Figure 7.13. PD versus PD-MRAC (a) altitude (b) vertical speed. 
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Figure 7.14. PD-MRAC altitude response with saturation: varying 𝑇𝑑. 
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the stability issue with the MRAC implementation was figured out, the time delay in the drone’s 

control system was estimated and its effects analyzed by designing PV and PV-MRAC controllers. 

 

Figure 7.15. Pole placement and PD-MRAC responses: control signal through model. 

 

Figure 7.16. P and PV responses: direct control signal to drone. 
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7.3 Estimation of Time Delay: First-order Model  

Initially, the drone’s altitude responses were obtained for different values of 𝐾𝑝, as shown 

in Figure 7.17. Note that if there is no delay (𝑇𝑑 = 0), there should be no overshoot. The 

characteristic root is −𝐾𝑝, refer to (3.106), which is a real number. However, as seen in Figure 

7.17, the delay introduces imaginary parts in the roots and, thus, oscillation in the responses. 

Therefore, the delay has to be estimated and considered in designing control systems.  

 

Figure 7.17. Experimented P controller altitude responses: varying K𝑝. 

The responses in Figure 7.17 shows that 𝐾𝑝 = 1.0 seems to be ideal for the controller since 

the response has no overshoot; however, the response is very slow with a settling time of about 

10𝑠. As it can also be observed, increasing 𝐾𝑝 makes the response faster, the rise time becomes 
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shorter, but introduces higher 𝑀𝑜. This is partly due to the time delay in the system, which 

introduces nonlinearity on the dynamics. It was also observed that the saturation applied to the 

control input has a nonlinear effect on the system’s response, especially as 𝐾𝑝 increases. 

Table 7.8  

Simulated Effect of Control Input Saturation on the Altitude Response 

 Without Saturation With Saturation 

 Mo (%) tp (s) Mo (%) tp (s) 

Kp = 1.00 & Td = 5Ts 0.00 6.96 0.00 6.96 

Kp = 3.00 & Td = 4Ts 27.78 0.91 9.42 1.56 

Kp = 1.31 & Td = 5Ts 0.44 2.29 0.42 2.33 

 

 

 

Figure 7.18. Simulated effect of control input saturation on the altitude response. 
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Investigation through simulations revealed that at a constant 𝑇𝑑, as the 𝐾𝑝 value increases 

the control input saturation has a significant effect on the system response, see Figure 7.18 and 

Table 7.8. It can be observed that, at a constant 𝑇𝑑 and 𝐾𝑝 values, introducing the saturation 

decreases 𝑀𝑜 and increases 𝑡𝑝. As 𝐾𝑝 increases the increase in 𝑀𝑜 becomes large and the 

oscillations of the system increase. Also, it can be seen that for 𝐾𝑝 = 1.0 at 𝑇𝑑 = 5𝑇𝑠, there is no 

overshoot, as compared to 𝐾𝑝 = 3.0 at a lower 𝑇𝑑 = 4𝑇𝑠, with and without the saturation effects. 

Moreover, it can be observed from the experimented altitude responses that at 𝐾𝑝 = 1.0, there is 

no or little overshoot, and the oscillations are very small (see Figure 7.17); thus, the system’s time 

delay did have little effect on the transient response. Using simulation, an appropriate 𝐾𝑝 = 1.31 

was selected with 𝑇𝑑  =  5𝑇𝑠, that gives a response with a sufficient overshoot for estimation, and 

with minimum saturation effect (see Figure 7.18 and Table 7.8). 

7.3.1 Experimental method. Table 7.9 shows a summary of the simulation altitude 

responses transient properties, by varying 𝑇𝑑 at 𝐾𝑝 = 1.31, where 𝐾 is a real constant tuning 

parameter. Samples of the drone altitude responses with 𝐾𝑝 = 1.31 are shown in Figure 7.19, with 

Table 7.10 displaying their corresponding  𝑀𝑜 and 𝑡𝑝 values. The value, 𝑡𝑝 = 3.055𝑠, with the 

highest 𝑀𝑜 = 2.300% gives the largest 𝑇𝑑. Comparing the 𝑀𝑜 = 2.300% to the results in Table 

7.9, 𝑇𝑑 is estimated as 5.6646𝑇𝑠, which gives 0.368𝑠. 

7.3.2 Analytical method: use of characteristic roots. The drone altitude response 

oscillates (Figures 7.17 and 7.19). Thus, the system has two complex conjugate dominant roots, 

and therefore, 𝑀𝑜 and 𝑡𝑝 was used to determine   and 𝜔𝑛. 𝑀𝑜 = 2.300% and 𝑡𝑝 = 3.055𝑠 (see 

Section 7.3.1), thus,  and 𝜔𝑛 are computed as 0.7684 and 1.6069𝑟𝑎𝑑𝑠−1, respectively using 

(2.15). Using (3.110), the dominant characteristic roots, approximated, are calculated as 𝑠 =
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−1.2347 ± 1.0284𝑗. Then, from (3.109), 𝑇𝑑 is determined as 0.374𝑠 using fsolve in MATLAB 

with initial guess value of 0.2s. See Figure 7.20 for the iteration of the fsolve. 

Table 7.9  

Simulated Altitude Responses: Kp = 1.31 

K Td = KTs (s) Mo (%) tp (s) 

4.0000 0.260 0.000 6.955 

5.0000 0.325 0.419 2.340 

5.6000 0.364 2.067 2.080 

5.6640 0.368 2.298 2.080 

5.6645 0.368 2.301 2.080 

  5.6646*   0.368*   2.300*   2.080* 

5.6660 0.369 2.305 2.080 

5.7000 0.371 2.429 2.080 

 

Table 7.10  

Experimented Altitude Responses: Kp = 1.31 

 Flight 

1 2 3 4 5 

Mo (%) 2.300* 2.290 2.300 2.270 2.140 

tp (s) 3.055* 3.084 3.575 3.194 3.096 
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Figure 7.19. Experimented P controller altitude responses: 𝐾𝑝 = 1.31. 

 

Figure 7.20. Iteration of MATLAB fsolve to estimate the time delay. 
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7.4 Designed Controllers: First-order Model 

The drone control system estimated time delay, using both the experimental and the 

analytical methods, obtained was approximately 0.37s (see Sections 7.3.1 and 7.3.2). 

7.4.1 PV controller. A MATLAB-based software package [78] was used to study the 

stability of the neutral-type time-delay system, by solving the characteristic equation from the 

transfer function in (3.111). The closed-loop system characteristic roots within a specified region 

are then plotted for various 𝐾𝑣 values.  

Figure. 7.21 shows the spectrum distribution of the characteristic roots, and Table 7.11 

shows a summary of the rightmost (i.e., dominant) roots for each system. The value 𝐾𝑣 = 0.3 

yields the most suitable and stable rightmost roots among them. The corresponding simulation 

altitude responses for the system were also obtained for the various 𝐾𝑣 values, see Figure. 7.22. It 

can be seen that as 𝐾𝑣 increases, at 𝐾𝑝 = 2.0 and 𝑇𝑑 = 0.37s, 𝑀𝑜 decreases and the rise time 

becomes longer. At higher values of 𝐾𝑣, the response oscillates and the system becomes unstable. 

This is also observed in Figure 7.21, that as 𝐾𝑣 increases the roots move to the right, increasing 

the instability in the system. 

Table 7.11  

Rightmost Characteristic Roots of the PV Control System: First-order Model 

Kv Rightmost Complex Roots 

0.0 -1.42 ± 3.07j 

0.1 -1.98 ± 3.25j 

  0.3*   -3.25 ± 24.75j 

0.5 -1.84 ± 6.98j 

0.7 -0.89 ± 7.47j 
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Figure 7.21. PV control system characteristic roots spectrum distribution: first-order model. 

 

Figure 7.22. Simulated PV controller altitude response without HPF: first-order model. 
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Table 7.12  

Simulated Effect of the HPF on the Response, Varying 𝜔𝑓: First-order Model 

 ωf  (rads-1) 

 5 20 38* 50 70 

Mo (%) 3.19 0.64 0.32 0.38 15.09 

tp (s) 3.32 2.93 1.69 1.76 2.54 

ts (s) 4.24 2.43 1.52 1.52 NaN 

 

 

Figure 7.23. Simulated effect of the HPF on the response, varying 𝜔𝑓: first-order model. 

Now, based on these analysis, a controller with 𝐾𝑝 = 2.0 and 𝐾𝑣 = 0.3 was selected as the 

most suitable, with closed-loop system response transient properties of 𝑀𝑜 = 0.44%, 𝑡𝑠 = 1.52s, 

and 𝑡𝑝 = 1.76s. Using these controller gains, an HPF was included in the simulation control 

system, and its effects on the altitude transient response, at different 𝜔𝑓, was studied, see Figure 

7.23 and Table 7.12. It is observed that at smaller 𝜔𝑓 values the response oscillates, and at higher 
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values the response distorts. The oscillations and the distortions effects were reduced by using the 

high-order solver, ode8 (Dormand-Prince). 

An HPF with 𝜔𝑓 = 38 rads−1 and 
𝑓

= 1.0 was then selected, with poles of −38 

repeated. Now, looking at the poles distribution of the system in Figure 7.21, it can be observed 

that the poles of this filter are located to the left than the poles of the PV-feedback closed-loop 

system, without the filter effect. Thus, this filter will respond faster, therefore, it will have 

smaller effect on the drone’s altitude transient response. Bode plot (see Figure 7.24) was used to 

determine the filter’s cutoff frequency as 5.68 rads−1 (0.90 Hz).  

 

Figure 7.24. Bode plots of the PV-feedback close-loop system: first-order model. 

Figure 7.25 and Table 7.13 shows the simulation altitude responses and their corresponding 

transient properties, with the HPF, and 𝐾𝑝 = 2.0 for different 𝐾𝑣 values. The results with 𝐾𝑝 =

2.0 and 𝐾𝑣 = 0.3 show an improved transient response performance, which suggests that the 

estimation of delay and analysis presented help. Figure 7.26 and Table 7.14 also shows the 
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experimented altitude responses and their corresponding transient properties, with the HPF, and 

𝐾𝑝 = 2.0 for different 𝐾𝑣 values. It can be seen that as the 𝐾𝑣 value increases 𝑀𝑜 decreases, and 

in general the responses become slower. The PV controller performed better for 𝐾𝑣 =

0.3, 0.5, and 0.7 at 𝐾𝑝 = 2.0. 

Table 7.13  

Simulated PV Controller Transient Properties with the HPF: First-order Model 

 Kv 

 0.0 0.1  0.3* 0.5 0.7 

Mo (%) 15.10 10.10 0.32 0.15 0.70 

tp (s) 1.82 1.76 1.69 3.64 4.36 

ts (s) 3.28 2.87 1.52 2.33 3.04 

 

 

Figure 7.25. Simulated PV controller altitude responses with the HPF: first-order model 
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Table 7.14  

Experimented PV Controller Transient Properties with the HPF 

 Kv 

 0.0 0.1  0.3* 0.5 0.7 

Mo (%) 8.40 5.30 2.92 0.80 0.40 

tp (s) 2.21 2.15 2.18 4.76 4.07 

ts (s) 4.00 2.67 2.86 1.99 2.48 

 

 
Figure 7.26. Experimented PV controller altitude responses with the HPF: first-order model 

7.4.1.1 Effects of solvers on the response. The simulations and experiments were 

conducted using MATLAB/Simulink fixed-step solver, ode8 (Dormand-Prince). The solver 

computes the model's states during simulation and code generation. Investigation revealed that the 
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choice of a solver has an effect on the drone altitude response, refer to Figure 7.27, and also see 

[79, 80] for more details. The HPF performance is constrained by the type of solver used; the filter 

performs better at higher 𝜔𝑓 with the high-order solvers. 

 

Figure 7.27. Experimented effect of Simulink solvers on the PV controller altitude response. 

 

7.4.2 PV-MRAC controller. Figure 7.28 shows the simulation and experiment altitude 

responses of the MIT rule PV-MRAC controller considering the effects of control input saturation, 

and with and without the time delay in the control system. ode14x (extrapolation) solver was used. 

It can be seen that the response does not oscillates without the application of the time delay. As 

earlier investigation revealed (see Figure 7.14), the MRAC control system is very sensitive to time 

delay effects. Therefore, it can be seen that when the controller was applied in the drone’s control 

system the response oscillates and never stabilized, which was the case for the simulation as well. 

This also confirms the fact that drone’s control system contains time delay. 
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Figure 7.28. PV-MRAC controller altitude responses: first-order model 

The stability issue could be addressed by: (1) Use of the right tuning parameters such as 𝛾, 

𝐾𝑝, 𝐾𝑣, , and 𝜔𝑛; this was done, but the response never stabilized. (2) Use a higher-order solver, 

and possibly a variable-step time; MATLAB has higher-order solvers for variable-step time such 

as ode45 (Dormand-Prince), however, Real-time windows target (RTW) application requires 

fixed-step time, with the highest solver being ode14x (extrapolation). (3) Use a higher 

specification PC; this was also considered (4) Develop a better altitude model; this was done using 

the black-box approach, MATLAB system identification toolbox, see Section 7.5 for the results. 

7.5 Designed Controllers: Black-box Approach (Second-order Model) 

Figures 7.29 to 7.31 shows the altitude responses from experiment and simulation with and 

without the time delay effects for the P, PV, and PV-MRAC controllers, respectively. The ode8 

(Dormand-Prince) solver was used for the P and PV control systems. Initial results show that the 

ode8 solver could not handle the PV-MRAC simulation control system even without time delay 
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effects. Also, the ode14x (extrapolation) did handle the PV-MRAC simulation and experiment 

control systems to an extent.  For the simulation, the solver performs well when 𝑇𝑑 ∈

[0   0.04993]𝑠 with some transient response oscillations, and for the experiment the response 

oscillated about the desired height and never stabilized (see Figure 7.31). 

 

Figure 7.29. P controller altitude responses: black-box approach model. 

 

Figure 7.30. PV controller altitude responses: black-box approach model. 
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Figure 7.31. PV-MRAC controller altitude responses: black-box approach model. 

The simulation control system finds it difficult to stabilize for 𝑇𝑑 ≥ 0.04993𝑠. Therefore, 

when the controller was applied in the drone’s control system the response oscillates and never 

stabilized, which confirms the fact that the time delay in the control system is definitely bigger 

than 0.04993𝑠. The stability issue could now be addressed by the following options: (1) improving 

on the tuning parameters of 𝛾, 𝐾𝑝, 𝐾𝑣, , and 𝜔𝑛 and/or (2) using a higher specification PC.  

Stabilization was finally achieved by obtaining the right tuning parameters. Figures 7.32 

and 7.33 show simulated and experimented responses, respectively, by using different 𝛾 values. It 

can be seen that increasing 𝛾 makes the response faster but it introduces oscillations, while 

decreasing 𝛾 makes the response slower leading to an unstable system. The results confirms earlier 

conclusion (see Table 7.7) that there is a range of values of 𝛾 to achieve stabilization, assuming 

the other tuning parameters remains constant. The results in Figure 7.34 and Table 7.15 compares 

simulated and experimented with and without the time-delay effects. 
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Figure 7.32. Simulated PV-MRAC responses, varying 𝛾: black-box approach model. 

 

Figure 7.33. Experimented PV-MRAC responses, varying 𝛾: black-box approach model. 
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Figure 7.34. PV-MRAC controller responses: black-box approach model. 

Table 7.15  

PV-MRAC Controller Altitude Responses: Black-box Approach Model 

 Experiment Simulation (Td = 0) Simulation (Td = 0.37s) 

Mo (%) 0.3000 0.6950 0.5161 

tp (s) 3.4650 6.9555 2.6650 

ts (s) 2.0475 3.5963 2.3244 

ESS (m) 0.0003 0.0069 0.0026 

RMS 0.7306 0.3080 0.3956 

 

Moreover, Figure 7.35 shows experimental responses of the PV-MRAC controller as 

against using only the PV controller. The PV controller on its own never stabilized the system; the 

response oscillates. Thus, it can be concluded that increasing 𝛾 makes the PV controller becomes 
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more dominant in the control of the system, while decreasing 𝛾 makes the MRAC the dominant 

controller. 

 

Figure 7.35. Experimented PV-MRAC controller versus only PV controller responses. 

7.6 Effects of System Uncertainty  

7.6.1 Real stability radius computation.  

7.6.1.1 First-order model. Analytically, as stated in Section 5.5.1.1, 𝑟 = 0.8755, ‖∆‖ =

‖∆B‖ = 0.8755, and ∆𝐾𝑔
= ±0.6683𝑟𝑎𝑑𝑠−1𝑉−1 were obtained. Also, from the statistical-

experimental results, see Section 3.2.7.1, ∆B = ±0.6461 was obtained, thus ∆𝐾𝑔
=

±0.4932𝑟𝑎𝑑𝑠−1𝑉−1 and ‖∆B‖  = 0.6461. Therefore, comparing the results, ‖∆B‖ = 0.6461 <

0.8755 or |∆𝐾𝑔
| = 0.4932 < 0.6683, it can be concluded that the stability of the closed-loop 

system in (3.123) or (3.124) is guaranteed if it is subjected to the random uncertainty in equation 

(3.117). Figure 7.36 shows altitude responses from simulation by varying ∆𝑘𝑔
. It can be seen that 
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as ∆𝑘𝑔
≅> 0.6683 , the response becomes faster, with increased oscillations and the system 

become unstable. On the other hand, as ∆𝑘𝑔
≅< −0.6683 , the response becomes slower, with no 

oscillations and the system becomes unstable.  

 

Figure 7.36. P control system altitude responses: uncertain first-order model. 

7.6.1.2 Second-order model: reduced-form. Analytically, the smallest destabilizing 

perturbation matrix minimum norm, ‖∆‖ = ‖[∆A, ∆B]‖ = 0.5494, see Section 5.5.1.2. Table 7.16 

shows the comparison of this value to the sample of possible values from experiment, see Tables 

3.3 and 5.1. Figure 7.37 shows samples of altitude responses using different values of ∆𝑘𝑔
and ∆𝜏. 

It can be seen that stability of the control system for Cases 1 and 2 has been confirmed. It can also 

be observed that though the stability of Case 3 was not guaranteed, the control system is actually 

‘suitably’ stable. Furthermore, Figure 7.37 shows a response for an unstable control system using 

∆𝑘𝑔
= 1.0000𝑟𝑎𝑑𝑠−1𝑉−1 and ∆𝜏= 0.5000𝑠. 
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Table 7.16  

Comparison of Analytical and Experimental Values of ‖∆‖ 

 Case 1 Case 2 Case 3 

 ∆𝐾𝑔
= 0.0100 &   

∆𝜏 = 0.0000  

∆𝐾𝑔
= 0.0100 &   

∆𝜏 = −0.0010 

∆𝐾𝑔
= −0.2000 &   

∆𝜏 = −0.0100 

       Analytical, ‖∆‖ 0.5494 0.5494 0.5494 

       Experimental, ‖∆‖ 0.1010 0.1847 1.5272 

       Comparison 0.1010 < 0.5494 0.1847 < 0.5494 1.5272 > 0.5494 

       Conclusion Stability is guaranteed Stability is guaranteed Stability is not 

guaranteed 

 

 

Figure 7.37. P control system altitude responses: uncertain second-order model. 
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7.7 Autonomous Waypoints Tracking and Effects of Disturbance Rejection 

7.7.1 Autonomous waypoints tracking. The altitude responses for the autonomously 

multiple waypoints tracking example using the PV and PV-MRAC control systems are shown 

Figures 7.38 to 7.40, refer to Section 5.6.1. Both controllers successfully achieved the task. 

 

Figure 7.38. Experimented PV controller altitude response: waypoints tracking. 

 

Figure 7.39. Experimented PV-MRAC controller altitude response: waypoints tracking. 
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Figure 7.40. Experimented PV and PV-MRAC controllers responses: waypoints tracking. 

7.7.2 Effects of disturbance rejection: quadrotor payload.  Figures 7.41 to 7.48 show 

the responses for the three cases considered in introducing disturbances to the drone, see Section 

5.6.2. In general, the results confirm that the PV-MRAC offers several benefits over the fixed-gain 

approach, PV controller. The PV-MRAC was found to offer enhanced robustness to the change in 

mass uncertainty and the oscillating disturbances.  

7.7.2.1 Case 1. Figure 7.41 shows the PV-MRAC altitude responses by varying the mass 

attached at the top of the drone. It can be seen that with 130𝑔 attached, the drone’s oscillations 

about the desired height became obvious. It was observed that beyond this value the oscillations 

were larger, which destabilizes the drone (e.g., see the 135𝑔 attached mass response). The drone’s 

stability bounds reached at 130𝑔.  
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Figure 7.41. Experimented PV-MRAC responses: varying attached mass at the top. 

 

Figure 7.42. Experimented PV responses: varying attached mass at the top. 
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Figure 7.42 shows the PV altitude responses by varying the mass attached at the top of the 

drone. It can be seen that with 130𝑔 attached, the drone was destabilized. It was observed that 

beyond 125𝑔 of attached mass the oscillations were larger, which destabilizes the drone. The 

drone’s stability bounds reached at 120𝑔.  

Figure 7.43 shows the altitude responses for the PV and PV-MRAC controllers for the case 

of attaching 130𝑔 mass at the top of the drone. The difference in performance of the controllers 

was obvious, the adaptive controller allowed safe operation and landing, while the PV controller 

failed to prevent instability and sometimes resulted in a crash landing. 

 

Figure 7.43. Experimented PV and PV-MRAC responses: 130𝑔 attached mass at the top. 

7.7.2.2 Case 2. The case of attaching 100𝑔 hanging mass, which introduced oscillating 

disturbances, both controllers achieved the task of rising to the desired height, however, the PV-

MRAC controller still performed better, see Figure 7.44. The PV-MRAC controller response has 

smaller oscillations about the desired height value compared to the PV controller response. 
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Figure 7.44. Experimented PV and PV-MRAC responses: 100𝑔 hanging mass. 

7.7.2.3 Case 3. Figures 7.45 and 7.46 show the responses for the PV and PV-MRAC 

controllers, respectively, for the case when instantaneous masses of 100𝑔 and 135𝑔 were attached 

at the top of the drone. For the 100𝑔 mass, both controllers performed well. After the introduction 

of the mass, the drone dropped from its desired height of 1𝑚 to about 0.55𝑚, and then moved 

back to the desired height with a little bit of oscillations in the responses. However, when the 135𝑔 

mass was introduced, the PV controller failed to prevent instability and resulted in a crash landing, 

but the adaptive controller maintained the stability and allowed safe operation and landing. Figures 

7.47 and 7.48 show the responses for the PV and PV-MRAC controllers, respectively, for the case 

when varying instantaneous masses were attached at the top of the drone. The drone’s stability 

bounds reached at 125𝑔 and 135𝑔 using the PV and PV-MRAC controllers, respectively. 
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Figure 7.45. Experimented PV and PV-MRAC responses: 100𝑔 instantaneous mass. 

 

Figure 7.46. Experimented PV and PV-MRAC responses: 135𝑔 instantaneous mass. 
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Figure 7.47. Experimented PV responses: varying instantaneous mass at the top. 

 

Figure 7.48. Experimented PV-MRAC responses: varying instantaneous mass at the top. 
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8 CHAPTER 8 

Conclusions 

This research work started with developing an effective autonomous navigation system for 

the DDWMR, Dr Robot X80SV, and this was achieved using logic control. The developed 

navigation system was validated via simulating using a MATLAB robot simulator and 

implementation on the X80SV platform using a C# program. The algorithm successfully makes 

the robot move to a pose while avoiding obstacles along the way. For example, for a desired pose 

of (2𝑚, 0𝑚, 0𝑜), the final pose experimentally obtained was (2.0197𝑚, 0.0266𝑚,−0.5500𝑜). 

The average stabilization time was about 44𝑠 and the robot linear constant speed was 0.5𝑚𝑠−1. 

Even though the final steady-state values obtained from the experiments have small errors, the 

results were encouraging in terms of speed and accuracy. According to Brockett’s conditions [77], 

PID feedback laws cannot be used to obtain error-free stabilization.  

It was demonstrated that the nonlinear equations of motion can be used to control the 

WMR; however, some challenges were encountered. The main challenge was in sending signals 

to the DC motors and receiving measured data using the developed MATLAB GUI program in 

real time. The research continued to develop autonomous position (x, y, and z) and attitude (roll, 

pitch, and yaw) control for quadrotor, and then implementing the controllers on the Parrot 

AR.Drone 2.0. At the next stage of the research, PD-feedback controllers for position and attitude 

control of quadrotor UAVs were developed. MATLAB/Simulink models were used to design and 

validate the control algorithms, and the simulation results were presented. A robust and interactive 

MATLAB GUI interface developed to implement the different control algorithm simulation 

models was also presented. Considering the final steady-state values and transient performance 

obtained from the simulations the results were also quite encouraging.  
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In implementing these PD-feedback controllers developed on the drone, several challenges 

and difficulties were encountered. The main difficulty arose in using the MATLAB S-function to 

implement the nonlinear dynamics and kinematics of quadrotors. The problem was in C/C++ code 

generation for real-time application. In order to address these problems, the white-box approach 

was used to obtain a linearized altitude model from the dynamics and kinematics of the quadrotor. 

Then P, pole placement or PV, LQR, and MRAC controllers were designed and validated using 

MATLAB/Simulink. Nonlinear effects of control input saturation and time delay in the control 

systems were studied. The P and PV controllers successfully improved the system performance in 

the terms of time-domain specification.  

The difficulties with the MRAC implementation was addressed by designing a new 

controller based on the second-order LTI ARX altitude model (black-box approach) using 

MATLAB system identification toolbox. Finally, after some initial challenges of finding the right 

tuning parameters and problems of solvers, a PV-MRAC controller was designed and implemented 

on the drone. The MATLAB GUI and Simulink programs developed for the control of the drone’s 

altitude motion have also been presented. 

 The research also demonstrated the use of analytical and experimental methods to estimate 

the time delay in a quadrotor UAV, AR.Drone 2.0 control system. A first-order model was used 

for the analytical determination of the time delay and for obtaining the simulation altitude 

responses. The time delay was estimated as 0.374s and 0.368s using analytical and experimental 

methods, respectively. Therefore, in the drone’s control system the time delay was approximately 

0.37s. P-feedback control system (retarded type) was used in the estimation of the time delay. An 

appropriate P controller, 𝐾𝑝 = 1.31, was used to minimize the effect of the applied control signal 
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saturation on the system’s response, especially as 𝐾𝑝 increases. MATLAB/Simulink was used for 

the simulations, experiments, and analytical solutions of the DDEs. 

Then, an improved system performance was obtained by incorporating the estimated time 

delay in the design of the PV control system (neutral type). The results show that the PV controller 

performed better than the P controller, especially with gains of 𝐾𝑣 = 0.3, 0.5, and 0.7 at 𝐾𝑝 = 2.0. 

Also, improved tuning parameters were obtained for the PV-MRAC control system after the time 

delay has been taken into account. An example of the appropriate tuned parameters for the PV-

MRAC control system are 𝛾 = 0.01, 𝐾𝑣 = 1.0, and 𝐾𝑝 = 40 for the controller, and 𝜔𝑛 =

3.64𝑟𝑎𝑑𝑠−1 and  = 0.93 for the reference model. The suitable high pass filter which was 

designed for the V controller has a damping ratio of 1.0, natural frequency of 38𝑟𝑎𝑑𝑠−1, and with 

a cutoff frequency of 0.90𝐻𝑧. 

Furthermore, the stability of a parametric perturbed LTI time-delayed P control system 

(retarded type) was studied. This was done by analytically calculating the stability radius of the 

system. The destabilizing, worst, perturbation matrix minimum norms were compared from the 

analytical and experimental results to predict the robust stability of the system subjected to 

parametric disturbances. Then, simulation of the control system was conducted to confirm the 

stability. This robust control design and uncertainty analysis were conducted for first-order and 

second-order systems. 

Moreover, the designed PV and PV-MRAC control systems were used to autonomously 

track multiple specified waypoints, and both controllers successfully achieved the task. Also, the 

robustness of the PV-MRAC controller was tested against a baseline, PV controller, using the 

payload capability of the drone and the introduction of oscillating disturbances to the system. It 

was shown that the PV-MRAC offers several benefits over the fixed-gain approach of the PV 
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controller. The PV-MRAC was found to offer enhanced robustness to the parametric (uncertainty 

in mass) and the oscillating disturbances. The difference in performance of the controllers was 

obvious. The adaptive controller allowed safe operation and landing while the PV controller failed 

to prevent instability and sometimes resulted in a crash landing. The drone’s stability bounds 

reached at 120𝑔 and 130𝑔 for added attached mass-inertia using the PV and PV-MRAC 

controllers, respectively. In the case of the instantaneous introduction of the mass-inertia, the 

drone’s stability bounds reached at 125𝑔 and 135𝑔 using the PV and PV-MRAC controllers, 

respectively. 

 In future, the issue of sending signals to the X80SV DC motors and receiving measured 

data using the MATLAB program in real time needs to be addressed. Also, the estimated time 

delay can be incorporated in designing effective and robust controllers for the drone’s attitude and 

position (x and y) motions. Furthermore, the MRAC can be combined with gain scheduling in 

controlling the drone’s motions. Moreover, the presented time-delay estimating methods can be 

extended to general systems of DDEs (higher than first order), and be applied to delay problems 

in network systems and fault detection of actuators. Additionally, a robust control strategy that 

optimizes parameters such as length of path or journey time can be studied further, and real-time 

vision-based object detection and recognition can be incorporated. 
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