739 research outputs found

    Design and Analysis of Two FTRNN Models with Application to Time-Varying Sylvester Equation

    Get PDF

    Discrete-time zeroing neural network for solving time-varying Sylvester-transpose matrix inequation via exp-aided conversion

    Get PDF
    Time-varying linear matrix equations and inequations have been widely studied in recent years. Time-varying Sylvester-transpose matrix inequation, which is an important variant, has not been fully investigated. Solving the time-varying problem in a constructive manner remains a challenge. This study considers an exp-aided conversion from time-varying linear matrix inequations to equations to solve the intractable problem. On the basis of zeroing neural network (ZNN) method, a continuous-time zeroing neural network (CTZNN) model is derived with the help of Kronecker product and vectorization technique. The convergence property of the model is analyzed. Two discrete-time ZNN models are obtained with the theoretical analyses of truncation error by using two Zhang et al.’s discretization (ZeaD) formulas with different precision to discretize the CTZNN model. The comparative numerical experiments are conducted for two discrete-time ZNN models, and the corresponding numerical results substantiate the convergence and effectiveness of two ZNN discrete-time models

    Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation

    Get PDF
    Complex time-dependent Lyapunov equation (CTDLE), as an important means of stability analysis of control systems, has been extensively employed in mathematics and engineering application fields. Recursive neural networks (RNNs) have been reported as an effective method for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free conditions. However, noises are inevitable in the actual implementation process. In order to suppress the interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN (CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically, the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises, the residual error of the CNRZNN model can converge to 2∥A∥F/ζ3 quickly and stably, while the residual error of the NTZNN model is divergent

    Consistent Dynamic Mode Decomposition

    Full text link
    We propose a new method for computing Dynamic Mode Decomposition (DMD) evolution matrices, which we use to analyze dynamical systems. Unlike the majority of existing methods, our approach is based on a variational formulation consisting of data alignment penalty terms and constitutive orthogonality constraints. Our method does not make any assumptions on the structure of the data or their size, and thus it is applicable to a wide range of problems including non-linear scenarios or extremely small observation sets. In addition, our technique is robust to noise that is independent of the dynamics and it does not require input data to be sequential. Our key idea is to introduce a regularization term for the forward and backward dynamics. The obtained minimization problem is solved efficiently using the Alternating Method of Multipliers (ADMM) which requires two Sylvester equation solves per iteration. Our numerical scheme converges empirically and is similar to a provably convergent ADMM scheme. We compare our approach to various state-of-the-art methods on several benchmark dynamical systems

    Design and Comprehensive Analysis of a Noise-Tolerant ZNN Model With Limited-Time Convergence for Time-Dependent Nonlinear Minimization

    Get PDF
    Zeroing neural network (ZNN) is a powerful tool to address the mathematical and optimization problems broadly arisen in the science and engineering areas. The convergence and robustness are always co-pursued in ZNN. However, there exists no related work on the ZNN for time-dependent nonlinear minimization that achieves simultaneously limited-time convergence and inherently noise suppression. In this article, for the purpose of satisfying such two requirements, a limited-time robust neural network (LTRNN) is devised and presented to solve time-dependent nonlinear minimization under various external disturbances. Different from the previous ZNN model for this problem either with limited-time convergence or with noise suppression, the proposed LTRNN model simultaneously possesses such two characteristics. Besides, rigorous theoretical analyses are given to prove the superior performance of the LTRNN model when adopted to solve time-dependent nonlinear minimization under external disturbances. Comparative results also substantiate the effectiveness and advantages of LTRNN via solving a time-dependent nonlinear minimization problem
    • …
    corecore