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Design and Analysis of Two FTRNN Models
with Application to Time-Varying Sylvester
Equation
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Abstract—In this work, to accelerate the convergence speed
of Zhang neural network (ZNN), two finite-time recurrent
neural networks (FTRNNs) are presented via devising two
novel design formulas. For verifying the advantages of the
proposed FTRNN models, a solution application to
time-varying Sylvester equation (TVSE) is given. Compared
with the conventional ZNN model, the presented new FTRNN
models in this work are theoretically proved to have better
convergence performance, and they are more effective for
online solving TVSE within finite time. At last, superiority and
effectiveness of the new FTRNN models for solving TVSE are
verified by numerical simulations.

Index Terms—Recurrent neural network (RNN), Finite
time, ZNN, Time-varying Sylvester equation.

I. INTRODUCTION

Sylvester equations are frequently encountered in
science and engineering fields, and they are widely used in
image processing [l], automatic control theory [2],
eigenvalue assignment [3] and state estimation [4]. Solving
Sylvester equations has been deeply studied in the past few
decades. However, most of the reported works mainly
focused on the solution of static Sylvester equations [5-9],
and these methods are difficult to solve the TVSEs
effectively.

Because of its superiority and effectiveness, solving
time-varying Sylvester matrix equations using ZNN models
is deeply investigated in recent years. Instead of using
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Frobenius norm in the gradient-based RNN, the ZNN uses
the lagging error as performance indicator. The linear
activation error function of the ZNN exponentially converges
to zero, and ZNN models are suitable for solving TVSEs
[10-11].

Several novel nonlinear activation functions are
reported to further decrease the convergence time of the ZNN
models [12-15]. However, the ZNN models with all the
activation functions mentioned above could not converge in
finite time. For enhancing the convergence property of ZNN,
the sign-bi-power activation function is provided, and the
resultant ZNN models have the finite time convergence
ability [16-17].

Rather than improving activation functions to make the
ZNN converge in finite time, this paper focuses on
improving the ZNN model to accelerate its convergence
speed. Based on the conventional ZNN model, two
finite-time recurrent neural networks (FTRNNs) are
designed and investigated for online solving TVSE.
Compared with the conventional exponential convergence
ZNN model, the outputs of the new FTRNN models could
converge to the theoretical solution of the TVSE faster.

II. PROBLEM DESCRIPTION AND ZNN MODEL

The following TVSE is considered:

A)X(@)-X()B(t)=C(t)eR ™" €))
where the matrices A(t), B(t) and C(t) €R ™" are
time-varying  coefficient, and X@®HER ™™ is the
time-varying matrix to be solved. The main work of this
article is to quickly find the solution X(z) €ER ™™ in finite
time by using the new FTRNN models.

The ZNN is an effective tool to find the solution of the
time-varying equations, and the steps to build a ZNN model
for solving TVSE are as follows [18-19]:

First, we define an error matrix:

E)=A0)X@)-X@®)B@#t)-C(t)eR ™ 2)

Unlike the gradient-based RNNSs, there are no special
requirements for the the error matrix E(t).

Then, selecting the following formula for the error
matrix E(t) exponentially converges to zero:
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dE(t) 3
~—=—PE() (3)
where B > 0 is a coefficient for adjusting the convergence
speed.
Substituting equation (2) into (3), the ZNN model is

realized as:
AN XX (1) B() =-HADX@0) - XOBO-CO) ()
+ X(6) B(e)y+ C(t) — A(f) X (2)

III. Two FTRNN MODELS

As we know the convergence performance of a RNN
can be improved significantly by selecting proper activation
function, and several novel activation functions are presented
in recent year [20-21]. Unlike the thought of developing
activation functions, this paper focuses on improving the
ZNN model to accelerate its convergence performance.

A. The first FTRNN

Based on the existing original ZNN model, design
steps of the first FTRNN model can be expressed as follows.

We also define an error matrix:

E@)=A0)X@t)-X@®)B#)-C(t)eR™ (5)

Then, an improved design method for the error matrix
E(t) is presented as:

EO__ple(s)ye) ©

where the design parameters in (6) are o.>1, § >0 and k > 0.

On basis of the proposed design formula for the error
matrix E(t) in (6), the following theorem will demonstrate the
advantages of the improved formula in (6) over the original
formula in (3).

Theorem 1. The improved formula for the error matrix
E(t) in (6) converges to zero within finite time #:

a-1

_a(£(0)”

T k(e -1)
where E(0) is the initial state of the error matrix E(t).
Proof. The improved formula in (6) can be rewritten

(7

as:

di = - ﬂl—k(E (6)) « dE (1) ®)

Solving the simple differential equation in (8),

a o o
t=———|(Elt)) -(E(0 9
e ) ) |

According to the known conditions, E(t) decreases to 0
at time #; i.e., E(¢) = 0. Hence, when ¢ = #; equation (9) can
be rewritten as:

a-1

a(E(0))
T pa-1) "

From the above analysis, we can conclude that
compared with the original design formula in (3), the new
improved design formula in (6) converges to zero within
finite time, and the proof is completed. m

Based on the proposed design formula for error matrix
E(t) in (6), the first FTRNN model for solving TVSE can be
represented as:

A(t) X(0)- X(6) BO) = A) X ()~ X () B6)~C(0)

+X(@)B@)+C(t)—A(t) X(¢)
11

The main theoretical results of the FTRNN in (11) can
be summarized in theorem 2.

Theorem 2. Given smoothly time-varying coefficient
matrices A(t)ER ™™, B(t) €ER ™™, the state output X(t) of
the new FTRNN model in (11) is globally convergence to the
theoretical solutions of the TVSE in (1) in finite time #:

a-1 a-1

ale*(0) T a £ (0) -
ﬂ(k(a _)1) ’ ,B(k(a _)1) 2

where £7(0) and €7(0) present the largest and smallest initial
values in error matrix E(0), respectively.

Proof. Let us define £'(0) = max{E(0)}, £(0) =
min{E(0)}, g;j(t) is the ijth element in E(t). Then we can have
€(0) < &j(t) < €'(0). If both £(0) and £"(0) decrease to zero,
and g;(t) will converge to zero.

Let #* and #  present the time of &£"(0) and &(0)
converge to zero, and ¢, presents the time of &;(t) decrease to
zero. From the above analysis, it is clear £ < max {Z:+(), s},
and the upper bound of # can be obtained by calculating #.*,
t with €7(0) and £7(0).

According to theorem 1, the time for £(0) convergence
to zero is:

t. < max

a-1

a!g+(0)!a
= 13
o Bk(a —1) (4

The time for £(0) convergence to zero is:

a-1

. _ale0)
SO Bl(a—1)
The time for &;(t) convergence to zero satisfies # <

max {f+0), t:-0)}, and we can conclude that convergence time
of new FTRNN model in (11) is bounded by

a-1 a-1

ale ) al@) |
Pl(a=1) " pk(a—-1)
From the above analysis, the first FTRNN model in

(11) has a finite time convergence property, and the proof is
completed.m

(14)

t. < max
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B. The second FTRNN

The second FTRNN model is depicted as follows.
An error matrix is also defined as:
E@)=ANX(@t)-X@)B()-C(t)eR™ (16)

Then, another improved different design formula for

error matrix E(t) is presented as:
dE (¢ |
Ol (5 )+ k()

where the design parameters o> 1, B >0 and k > 0.

The theoretical analysis of the improved formula in (17)
is demonstrated as below.

Theorem 3. The improved formula for the error matrix
E(t) in (17) converges to zero in finite time #:

(17

tf = (la )111 772[ 1 1
=)yl +1,(E(0)) =
where 11 = kBi, n2 = kB2, E(0) is the initial state of the error
matrix E(t).
Proof. The new formula in (17) can be rewritten as:
_L dE (¢ _r
(EOy s EL = (e -t 09
where 11 = kB1, n2= kP2, and / is a n x n identity matrix.
Let Z(1)=(E@)+ . 2) _ (1 _ 1)(,5@)); d(EW®) | anq
dt o dt
equation (19) can be simplified as:
dz(0) , (@ =1, 5y, =t ;
dt a a

Solving the first-order differential equation in (20), the
expression of Z(t) is:

2()= (Z_f+z(o))exp(_(“7‘ljnzt}z_?1

Because ¢ presents the time of E(t) convergence to
zero, and E(#) = 0, and Z(#r)= 0.Then equation (15) can be
simplified as:

(18)

(20)

(2]

[77_2+ Z(O)] exp(— (a—_ljfhffj “poo @
m 2 ‘ m
The convergence time #is:
L
. a Nt +n(E(0) < (23)

! :772(0‘_1) n,1

From above analysis, we can conclude that the new
improved design formula in (17) converges to O in finite time.
The proof is completed. m

Similarly, based on the new improved formula for E(t)
in (17), the second FTRNN for solving TVSE can be
presented as:

() X(0)- X(0) BO) = (A X(0)~ X(O)B@) - C()e
- A6, (A0)X(0) - X(0)B(O) - C())

+ X() Bey+C()— AQ) X(7)

The main theoretical solution of the second FTRNN in
(24) can be presented in theorem 4.

Theorem 4. Given smoothly time-varying coefficient
matrices A(t)ER ™™, B(t) €ER ™", the state matrix X(t) of
the second FTRNN in (24) is globally convergence to the
theoretical solutions of the TVSE (1) within finite time #:

+ l’l
thmaX{ a ln 772—|—771({;' (0)) i

m (a - 1) m (25)
a In m,+mn (5_(0))_; )
m (a - 1) m

€(0) and £7(0) are the largest and smallest initial values in
the error matrix E(0).

Proof. Let us define €"(0) = max{E(0)}, &(0) =
min{E(0)}, &;(t) is the ijth element in E(t), and £(0) < &j(t) <
€"(0). If both &(0) and €*(0) decrease to zero, and &;(t) will
converge to zero.

Let #" and # present the time of €°(0) and &(0)
converge to zero, and £, presents the time of &;j(t) decrease to
zero. From the above analysis, it is clear £ < max {t:+«), t=-0)},
and the upper bound of # can be obtained by calculating #.",
t¢ with €7(0) and £7(0).

According to theorem 3, the time for £°(0) convergence
to zero is:

1

+ '
Loy = A N / a (g (0)) (26)
m (a - 1) Up!
The time for £(0) convergence to zero is:
L e o) 27)
m, (0( - 1) m,

The time for &;(t) convergence to zero satisfies # <
max {f+0), -0}, we can conclude that convergence time of
new FTRNN model in (24) is bounded by

1

a In 772+771(‘9+(0))| ¢

t, <max{ >
1772 (0( _1) U (28)
1
« lmnle O
Up (a_l) T

From the above analysis, the second FTRNN model in
(24) has a finite time convergence property, and the proof is
completed.m

IV. NUMERICAL SIMULATION RESULTS

For purpose of further verifying the finite time
convergence of the two FTRNN models in (11) and (24) for
solving TVSE, the computer numerical simulation results

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2911130, IEEE Access

with Matlab software are presented in this part. Moreover,
simulation results of the conventional ZNN in (4) for
solving TVSE are also provided to compare with the new
models.

The time-varying coefficient matrices of the TVSE in
(1) are provided as follows:

sin3¢t cos3t 2 0 sindt cos4t
- —cos3t sin3t - 0 3 - —cos4t sindt
1.5
1 X ]
0.5/- ]
oy ]
0.5 ]
! 6 8 10

time (s)

Fig.1-Fig.3 are the simulation results of solving
TVSE in (1) with different models. Solid blue curves are
neural state solutions (generated by the models in (4), (11)
and (24)), and red dotted curves are theoretical solutions.
From Fig.1-Fig.3, the neural state solutions X(t) of all the
three models converge to the theoretical solutions of the
TVSE.

X12(t)

X22(t)

time (s)

Fig.1 Neural state solution X(t) generated by the conventional ZNN model in (4) for TVSE with p =1 (solid blue curves are neural state solutions; Red dotted curves are
theoretical solutions )

time (s)

X21(1)

time (s)

X12(t)

2 : : : :
0 2 4 6 8 10

time (s)

X22(t)

time (s)

Fig.2 Neural state solution X(t) generated by the conventional ZNN model in (11) for TVSE with p = 1 (solid blue curves are neural state solutions; Red dotted curves
are theoretical solutions )
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X11(t)

X21(t)

time (s)

time (s)
Fig.3 Neural state solution X(t) generated by the finite time RNN (24) for TVSE with =1 (solid blue curves are neural state solutions; Red dotted curves are
2

theoretical solutions )

Conventional ZNN model in (3)
=+ =+ New finite time RNN model in (11)
= == New finite time RNN model in (24)

0.5r n
0 . L il A |
0 5 6 7 8
time (s)

10
Fig.4 Convergence behaviors of ||A(t)X(t) - X(t)B(t) — C(t) ||r generated by the conventional ZNN model in (3), finite time RNN model in (11) and finite time RNN model
in (24) for TVSE with p=1
35 i

= Conventional ZNN mode! in (3) ]
= * = New finite time RNN modelin (11)
New finite time RNN model in (24)

..... [
0.5 0.7
time (s)

in (24) for TVSE with p = 10°

1
-8
x10
Fig.5 Convergence behaviors of ||A(t)X(t) - X(t)B(t) — C(t)||r generated by the conventional ZNN model in (3), finite time RNN model in (11) and finite time RNN model
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The residual error [|A(t)X(t) - X(t)B(t) — C(t)||r in Fig.4
and Fig.5 are used to further investigate the convergence
characteristics of all the three models. It can be observed from
two figures that the conventional ZNN model in (4)
exponentially converges to the theoretical solutions of the
TVSE, while the new models in (11) and (24) converge to the
theoretical solutions within finite time. The new FTRNN
models in (11) and (24) have better convergence property than
conventional ZNN model in (4).

Moreover, the convergence performances of all the three
models also have important relationship with the parameter (3.
Fig.4 presents the convergence characteristics of the residual
errors of the models in (4), (11) and (24) with =1, and Fig.5
presents the convergence characteristics of the residual errors
of the models in (4), (11) and (24) with B=10°. It is clear that
the convergence time of all the three models could be further
reduced by choosing a large value of f.

Remark 1. In general, the parameters in the novel
design formulas have close relationship with the convergence
speed of the two FTRNN models. Therefore, the values of
these parameters cannot be set arbitrarily. Specifically, the
values of these parameters can be set according to specific
practical requirements to ensure a timely convergence.
Specific guidance for choosing these parameters can be seen
in Theorems 1-4 and related works [22-28].

V. CONCLUSIONS

In this paper, illustrated via solving TVSE, two new
FTRNN models are presented and investigated by devising two
new formulas, which both possess finite time performance. The
theoretical analysis and numerical simulation results are
conducted to wverify the effectiveness for solving TVSE.
Compared with the conventional ZNN model, two new FTRNN
models has remarkable improvements in convergence
performance, and the future directions may conclude its circuit
implementations and some practical applications to engineering
fields.
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