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Abstract: Complex time-dependent Lyapunov equation (CTDLE), as an important means of sta-
bility analysis of control systems, has been extensively employed in mathematics and engineering
application fields. Recursive neural networks (RNNs) have been reported as an effective method
for solving CTDLE. In the previous work, zeroing neural networks (ZNNs) have been established
to find the accurate solution of time-dependent Lyapunov equation (TDLE) in the noise-free condi-
tions. However, noises are inevitable in the actual implementation process. In order to suppress the
interference of various noises in practical applications, in this paper, a complex noise-resistant ZNN
(CNRZNN) model is proposed and employed for the CTDLE solution. Additionally, the convergence
and robustness of the CNRZNN model are analyzed and proved theoretically. For verification and
comparison, three experiments and the existing noise-tolerant ZNN (NTZNN) model are introduced
to investigate the effectiveness, convergence and robustness of the CNRZNN model. Compared with
the NTZNN model, the CNRZNN model has more generality and stronger robustness. Specifically,
the NTZNN model is a special form of the CNRZNN model, and the residual error of CNRZNN can
converge rapidly and stably to order 10−5 when solving CTDLE under complex linear noises, which
is much lower than order 10−1 of the NTZNN model. Analogously, under complex quadratic noises,
the residual error of the CNRZNN model can converge to 2‖A‖F/ζ3 quickly and stably, while the
residual error of the NTZNN model is divergent.

Keywords: complex time-dependent Lyapunov equation; zeroing neural network (ZNN); complex
linear noise; complex quadratic noise; noise-suppression

MSC: 92B20; 68Q32; 68T05

1. Introduction

The Lyapunov equation is widely practiced in the stability analysis of dynamic sys-
tems [1,2] in mathematics and engineering control fields. Therefore, the solution of the
Lyapunov equation is indispensable in practical applications [3–5]. In the past decade,
many numerical methods, such as direct method and iterative method, have been proposed
for the rapid calculation of the Lyapunov equation [6–8]. The Bartels–Stewart method based
on Shur decomposition is a famous direct method [6], which can effectively solve low-scale
Lyapunov equations. For the iterative method, in [7], the piecewise alternating direction
implicit iterative method is used to solve Lyapunov equations. In addition, Stykel et al.
cleverly calculates the problem by using the low-rank iterative method [8], and the fea-
sibility of this method is further verified. Although the above numerical methods can
effectively solve low-scale Lyapunov equations, they are inefficient for large-scale and
real-time Lyapunov equation problems.
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To overcome this shortcoming of numerical methods, recursive neural networks
(RNNs) were further designed and studied. At present, RNNs were universally applied in
practical engineering and application problems [9–21]. Additionally, RNNs have the charac-
teristics of parallel distributed processing; hence, they have been extensively employed for
solving the time-dependent Lyapunov equation (TDLE) [22–26]. In [22], Zhang et al. com-
pared two types of RNN (i.e., gradient neural network, GNN and zeroing neural network,
ZNN) for solving TDLE, and they concluded that ZNN has a better solving performance
than GNN. ZNN is a branch of RNN, which originated from the Hopfield neural network
(HNN). The ZNN model can realize the real-time tracking of the state matrix by solving
the time derivative of the coefficient matrix [27]. Therefore, when solving time-dependent
problems, the ZNN model can find theoretical solutions quickly and accurately. In the
task of solving Lyapunov equations, the ZNN model is further developed and analyzed.
Ding et al. presented an improved complex ZNN model for computing complex time-
dependent Sylvester equations (CTDSE) [28]. In [26], Xiao et al. presented an arctan-type
VP-ZNN model for solving time-dependent Sylvester equations (TDSE), which can realize
convergence in finite time and adjust the design parameters of its final convergence to
a constant.

It is noteworthy that the aforementioned ZNN models solve the time-dependent
Lyapunov and Sylvester equations in a noise-free environment. However, in the actual
implementation process, there will be inevitably interference from external noises, which
usually contain constant noises, linear noises and quadratic noises. Although one can
preprocess these noises, such as employing a prefilter, this will undoubtedly reduce the
efficiency of the real-time solution. Therefore, some ZNN models with noise tolerance
were further studied and widely used in the solution of TDLE [29–36]. Jin et al. studied a
classical integral-enhanced ZNN (IEZNN) model in [29]. On the basis of IEZNN, Yang et al.
further designed a noise-tolerant ZNN (NTZNN) model to calculate the time-dependent
Lyapunov equation under various noises [30]. Furthermore, in [31], Xiao et al. designed
a class of robust nonlinear ZNN (RNZNNs) models by adding two nonlinear activation
functions (AFs) and applied them to the solution of TDLE under various noises.

This paper considers the solution of complex time-dependent Lyapunov equation (CT-
DLE) under complex noises. It is noteworthy that the aforementioned TDLE and real-valued
noises are special forms of CTDLE and complex noises, respectively. Hence, the CTDLE
solution under complex noises is more general. For solving CTDLE under various complex
noises, a novel complex noise-resistant ZNN (CNRZNN) model is proposed in this paper.
Compared with the existing NTZNN model, the CNRZNN model has better robustness,
especially for complex linear noises and complex quadratic noises. Specifically, the NTZNN
model cannot completely suppress the complex linear noise, and for the complex quadratic
noise disturbance, the residual error of the NTZNN model is divergent. However, complex
linear noise and complex quadratic noise are very common in practical engineering and
application [37]. At the same time, other nonlinear noises can be approximated as linear
noises or polynomial noises (quadratic noise is a kind of polynomial noise) by the Taylor
formula expansion method. Different from our previous single integration-enhanced ZNN
model solving the real-valued TDLE [36], we propose a more robust and general CNRZNN
model for computing CTDLE in the current work. The CNRZNN model contains a double
integral term, and real-time tracking of the state solution is realized by the time derivative
of the state matrix. Therefore, it can achieve a complete suppression of complex linear
noises and carries an excellent suppression performance on quadratic noises. As far as we
know, there is no complex noise-resistant ZNN model with double integrals to solve the
CTDLE. The differences between this paper and previous works are compared in Table 1.



Mathematics 2022, 10, 2817 3 of 17

Table 1. Comparison between the present study and the previous works.

Problem Type Integral Term Linear Noise
Rejection

Quadratic Noise
Rejection

This Paper Time-Dependent Lyapunov Complex-Valued Double Integral Strong Strong

[30] time-dependent Lyapunov real-valued single integral weak weak
[32] time-dependent Lyapunov real-valued single integral weak weak
[36] time-dependent Lyapunov real-valued single integral weak weak
[31] time-dependent Lyapunov real-valued absence weak weak
[22] time-dependent Lyapunov real-valued absence none none
[28] time-dependent Sylvester complex-valued absence none none
[25] time-dependent Sylvester real-valued absence none none

The rest of the paper will be presented in four sections. Section 2 presents the CTDLE,
CNRZNN design formula and model design process. For comparison, this section also
introduces the NTZNN model. In Section 3, the CNRZNN model is analyzed and deduced,
and the convergence and robustness of the CNRZNN model are proved. Section 4 provides
two completely different CTDLE instances for validation and comparison. In this section,
the effectiveness, convergence and robustness of the CNRZNN model under various
complex noises will be further verified. Meanwhile, the performance under complex linear
noise and complex quadratic noise are analyzed separately and compared with NTZNN.
In addition, the performance of the CNRZNN model under real noises are verified and
compared with that of NTZNN. Section 5 is the summary of the work of this paper. Finally,
the main contributions of this paper are introduced as follows:

• This paper proposes and investigates a complex double-integral noise-resistant ZNN
model, which is first used to solve the CTDLE. It is noteworthy that the CNRZNN
model is more general. When a coefficient ϕ3 of the CNRZNN model is set to 0,
the existing NTZNN model is a special form of the CNRZNN model.

• The CNRZNN model is analyzed and deduced, and the convergence and robustness
of the CNRZNN model are proved theoretically. It shows that the CNRZNN model
has an inherent tolerance to complex constant noise, complex linear noise and complex
quadratic noises.

• Three different experiments verify the effectiveness, convergence and robustness of the
CNRZNN model. Meanwhile, the NTZNN model is introduced to make a robustness
comparison with the CNRZNN model under the condition of complex linear noise,
complex quadratic noise and various real noises.

• Compared with the NTZNN model, the CNRZNN model has more outstanding
robustness for solving CTDLE under complex linear noises and complex quadratic
noises. To be precise, in the case of complex linear noise, the residual error of the
CNRZNN model converges stably to order 10−5, which is much lower than that of
the NTZNN model at order 10−1. Similarly, for complex quadratic noise, the residual
of the CNRZNN model can achieve stable convergence, while the residual of the
NTZNN model is divergent.

2. Problem Formulation and Models Design

In this section, the problem expression of CTDLE is offered first. Then, the CNRZNN
design formula is proposed and the existing NTZNN model is presented.

2.1. Problem Formulation

The complex time-dependent Lyapunov equation can be formulated as

M(t)TH(t) + H(t)M(t) = −K(t) ∈ Cn×n, (1)
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where M(t) ∈ Cn×n and K(t) ∈ Cn×n are the non-singular smooth time-dependent com-
plex coefficient matrix, M(t)T ∈ Cn×n denotes the transposed of M(t) and H(t) ∈ Cn×n is
the state complex matrix needed solving in real time. It is noteworthy that for n × n-
dimensional complex non-singular time-dependent matrices M(t) and K(t), the con-
dition of their rank is rank

(
M(t)

)
= rank

(
K(t)

)
= n. For comparison and verification,

H∗(t) ∈ Cn×n represents the theoretical solution of CTDLE (1). This paper aims at comput-
ing the state complex matrix H(t) to ensure that the CTDLE (1) holds true at arbitrary time,
i.e., t ∈ [0,+∞). It is well known that a complex matrix contains both an imaginary part
and real part. In this case, using the theoretical solution H∗(t) as an example, its complex
structure can be written as H∗(t) = H∗re(t) + iH∗im(t), where H∗im(t) ∈ Rn×n represents the
imaginary part of H∗(t) and H∗re(t) ∈ Rn×n represents the real part of H∗(t). Note that the
imaginary unit i =

√
−1.

For solving the CTDLE (1), the time-varying complex coefficient matrices M(t) and
K(t) need to be considered as known and bounded. Meanwhile, the time derivatives Ṁ(t)
and K̇(t) of the complex coefficient matrix are also known and bounded. Furthermore,
before solving complex time-dependent Lyapunov equation, the existence and uniqueness
of solution of the CTDLE needs to be considered and the relevant lemma is given as follows.

Lemma 1. Let λx, x ∈ {1, · · · , n} be the eigenvalues of M(t) ∈ Cn×n [38].

(1) Complex time-dependent Lyapunov Equation (1) has a unique solution H(t) ∈ Cn×n if and
only if λx 6= −λy , for all x, y ∈ {1, · · · , n}.

(2) If M(t) is strictly stable (that is λx < 0, for all x ∈ {1, · · · , n}), then complex time-dependent
Lyapunov Equation (1) has a unique solution.

2.2. CNRZNN Design Formula

For computing the CTDLE, based on the design formula of Zhang et al. in [39], we
firstly define a complex error function expressed as

L(t) = MT(t)H(t) + H(t)M(t) + K(t) ∈ Cn×n, (2)

if the error function L(t) = 0, then H(t) is equal to the theoretical solution H∗(t) for
CTDLE (1).

To achieve an accurate and effective solution of CTDLE (1), we let all subelements lxy
(∀x, y ∈ {1, · · · , n}) of L(t) iterate rapidly to 0. Therefore, according to the original ZNN
design formula

L̇(t) = −ζL(t), (3)

where ζ is the design parameter and ζ ∈ R+, a new error function D1(t) is expressed as
D1(t) = L̇(t) + ζL(t). Furthermore, based on (3), one can obtain

Ḋ1(t) = −ζD1(t) =⇒ D1(t) = −ζ
∫ t

0
D1(υ)dυ,

which is further rewritten as

L̇(t) + ζL(t) =− ζ
∫ t

0
L̇(υ) + ζL(υ)dυ

=− ζL(t)− ζ2
∫ t

0
L(υ)dυ. (4)

According to Equation (4), an error function D2(t) = L̇(t) + 2ζL(t) + ζ2
∫ t

0 L(υ)dυ is
defined, and combined with ZNN design Formula (3), we have
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L̇(t) + 2ζL(t) + ζ2
∫ t

0
L(υ)dυ = −ζ

∫ t

0
D2(υ)dυ

= −ζL(t)− 2ζ2
∫ t

0
L(υ)dυ− ζ3

∫ t

0

( ∫ υ

0
L(τ)dτ

)
dυ.

Finally, a novel complex ZNN design formula is proposed as

L̇(t) = −3ζL(t)− 3ζ2
∫ t

0
L(υ)dυ− ζ3

∫ t

0

∫ υ

0
L(τ)dτdυ. (5)

2.3. CNRZNN Model

In this subsection, the error function L(t) = MT(t)H(t) + H(t)M(t) + K(t) is sub-
stituted into design Formula (5), and a complex noise-resistant ZNN model is further
obtained as

Ḣ(t)M(t) + MT(t)Ḣ(t) =−
(
K̇(t) + H(t)Ṁ(t) + ṀT(t)H(t)

)
− ϕ1

(
MT(t)H(t) + H(t)M(t) + K(t)

)
− ϕ2

∫ t

0

(
MT(υ)H(υ) + H(υ)M(υ) + K(υ)

)
dυ

− ϕ3

∫ t

0

∫ υ

0

(
MT(τ)H(τ) + H(τ)M(τ) + K(τ)

)
dτdυ, (6)

where ϕ1 = 3ζ, ϕ2 = 3ζ2 and ϕ3 = ζ3. In the actual calculation, we need to convert the
CNRZNN model from matrix form into vector form. Firstly, we convert CTDLE (1) into a
vector form:

φ(t)$(t) = −κ(t),

thereinto, 
φ(t) =

(
MT(t)⊗ I + I ⊗MT(t)

)
∈ Cn2×n2

$(t) = vec
(

H(t)
)
∈ Cn2×1

κ(t) = vec
(
K(t)

)
∈ Cn2×1,

where I ∈ Cn×n denotes the unit matrix, vec(·) and symbol ⊗ represent the vectorization
and Kronecker product operation, respectively. Hence, the vector form CNRZNN model is
expressed as

φ(t)$̇(t) =− ϕ1
(
φ(t)$(t) + κ(t)

)
− φ̇(t)$(t) + κ(t)

− ϕ2

∫ t

0

(
φ(t)$(υ) + κ(υ)

)
dυ

− ϕ3

∫ t

0

∫ υ

0

(
φ(t)$(υ) + κ(υ)

)
dτdυ. (7)

The CNRZNN model considering various types of noises can be rewritten as

φ(t)$̇(t) =− ϕ1
(
φ(t)$(t) + κ(t)

)
− φ̇(t)$(t) + κ(t)

− ϕ3

∫ t

0

∫ υ

0

(
φ(t)$(υ) + κ(υ)

)
dτdυ

− ϕ2

∫ t

0

(
φ(t)$(υ) + κ(υ)

)
dυ + w(t), (8)

where w(t) = vec
(
W(t)

)
∈ Cn2×1 denotes the arbitrary complex vector-form noise. In this

paper, complex constant noise, complex linear noise and complex quadratic noise are
considered in solving CTDLE (1). It is noteworthy that any type noise satisfies Pauta (3σ)



Mathematics 2022, 10, 2817 6 of 17

criterion [40,41], then, the coefficient value of noise in subsequent numerical experiments
will obey this criterion, i.e., [−3σ, 3σ].

For the readers’ convenience, the NTZNN model is presented as [30]

Ḣ(t)M(t) + MT(t)Ḣ(t) =−
(
K̇(t) + H(t)Ṁ(t) + ṀT(t)H(t)

)
− α
(

MT(t)H(t) + H(t)M(t) + K(t)
)

− β
∫ t

0

(
MT(υ)H(υ) + H(υ)M(υ) + K(υ)

)
dυ

where α = 2ζ and β = ζ2. Furthermore, the vector-form NTZNN model is described as

φ(t)$̇(t) =− α
(
φ(t)$(t) + κ(t)

)
− φ̇(t)$(t) + κ(t)

− β
∫ t

0

(
φ(t)$(υ) + κ(υ)

)
dυ. (9)

In this section, we have completed the description of the CTDLE and the design of the
CNRZNN model. For convenient calculation and clear comparison, the NTZNN model
is introduced to compare with the CNRZNN model, and their vectorization forms have
been given.

3. Theoretical Analysis and Results

Firstly, we discuss the convergence performance and robustness of the proposed CN-
RZNN model (7). In addition, the Frobenius norm of L(t) is used to intuitively show the resid-
ual error of the CTDLE-solving process, that is, ‖L(t)‖F = ‖MT(t)H(t) + H(t)M(t) + K(t)‖F.

3.1. Convergence of CNRZNN Model

In this work, a theorem is proposed to illustrate the efficiency and excellent converge
performance of CNRZNN model (7) for computing CTDLE (1) in noise-free conditions.

Theorem 1. Given smoothly complex time-dependent matrices M(t) ∈ Cn×n and K(t) ∈ Cn×n

of CTDLE (1), which satisfy the solution-uniqueness condition. The state matrix H(t) ∈ Cn×n of
CNRZNN model (7) converges rapidly and efficiently from random initial matrix H(0) ∈ Cn×n to
the theoretical solution M∗(t) ∈ Cn×n.

Proof of Theorem 1. By taking the time derivative of the design formula Equation (5)
twice, we have that

...
L(t) = −3ζ L̈(t)− 3ζ2 L̇(t)− ζ3L(t), (10)

let l̇xy(t), l̈xy(t),
...
l xy(t) and lxy(t) be the xyth subelement of L̇(t), L̈(t),

...
L(t) and L(t),

respectively, ∀x, y ∈ {1, · · · , n}. Then, Equation (10) can be rewritten as a subelement
as follows: ...

l xy(t) + 3ζ l̈xy(t) + 3ζ2 l̇xy(t) + ζ3lxy(t) = 0. (11)

For the linear differential equations, the Laplace transform general equation [42] is
expressed as

L
(
l(n)xy (t)

)
=snL

(
lxy(t)

)
−
(
sn−1lxy(0)− sn−2 l̇xy(0)

− · · · − sl(n−2)
xy (0)− l(n−1)

xy (0)
)

=snL
(
lxy(t)

)
−

n−1

∑
m=0

sn−1−ml(m)
xy (0),
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where L(·) stands for Laplace transform operation. It is worth mentioning that lxy(t) is
continuous over any finite interval t ≥ 0 and

∣∣lxy(t)
∣∣ ≤ zeχt with constant z > 0 and

χ ≥ 0. Furthermore, taking the Laplace transform of Equation (11), we obtain

s3L
(
lxy(t)

)
− s2lxy(0)− sl̇xy(0)− l̈xy(0)

=− 3ζ
(
s2L(lxy(t))− slxy(0)− l̇xy(0)

)
− 2ζ2(sL(lxy(t))− lxy(0)

)
− ζ3L

(
lxy(t)

)
,

which is equivalent to

L
(
lxy(t)

)
=
( s2lxy(0) + sl̇xy(0) + l̈xy(0) + 3ζslxy(0) + 3ζ l̇xy(0) + 3ζ2lxy(0)

s3 + 3ζs2 + 3ζ2s + ζ3

)
=
( l̈xy(0) + (s + 3ζ)l̇xy(0) + (s2 + 3ζs + 3ζ2)lxy(0)

(s + ζ)3

)
. (12)

The pole position of the transfer function determines the stability of the closed-loop
system. According to Equation (12), the three poles of the system are s1 = s2 = s3 = −ζ < 0
(ζ > 0), which are located in the left half plane of the S plane. Therefore, the system is
stable and the final value theorem of Laplace transform can be obtained on the basis of
stable system

lim
t→∞

lxy(t) = lim
s→0

sL
(
lxy(t)

)
= lim

s→0
s
( l̈xy(0) + (s + 3ζ)l̇xy(0) + (s2 + 3ζs + 3ζ2)lxy(0)

(s + ζ)3

)
= 0.

Finally, we can conclude that the convergence of the Frobenius norm of the L(t) is
limt→∞ ‖L(t)‖F = 0. The proof of Theorem 1 is complete.

3.2. Robustness of CNRZNN Model

This subsection investigates the robustness of noise-perturbed CNRZNN model (8),
considering complex constant noise W1(t) = A ∈ Cn×n, complex linear noise
W2(t) = At + B ∈ Cn×n and complex quadratic noise W3(t) = At2 + Bt + C ∈ Cn×n,
where A, B and C are complex noise coefficient matrices.

Theorem 2. For solving CTDLE (1) under the condition of complex constant noise W1(t) and
complex linear noise W2(t), the residual errors ‖L(t)‖F of noise-perturbed CNRZNN model (8)
converge to 0.

Proof of Theorem 2. The proof of this theorem consists of the following two parts:
(1) complex constant noise: From the proving process of Theorem 1, entry wisely,

we have

l̇xy(t) = −3ζlxy(t)− 3ζ2
∫ t

0
lxy(υ)dυ− ζ3

∫ t

0

∫ υ

0
lxy(τ)dτdυ + wxy(t), (13)

where lxy(t) and wxy(t) = axy denote the xyth element of L(t) and W(t), respectively.
Employing the Laplace transformation on noise-perturbed CNRZNN model (13), to obtain

sL
(
lxy(t)

)
− lxy(0) = −3ζL

(
lxy(t)

)
− 3ζ2

s
L
(
lxy(t)

)
− ζ3

s2 L
(
lxy(t)

)
+

axy

s
,

where axy/s is the Laplace transform of axy. Furthermore,

L
(
lxy(t)

)
=

s2lxy(0) + saxy

s3 + 3s2ζ + 3sζ2 + ζ3 =
s2lxy(0) + saxy

(s + ζ)3 ,
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which is similar to Equation (12) and a stable system, then

lim
t→∞

lxy(t) = lim
s→0

s
s2lxy(0) + saxy

(s + ζ)3 = 0.

(2) complex linear noise: Similar to the proof to complex constant noise, we have

sL
(
lxy(t)

)
− lxy(0) =− 3ζL

(
lxy(t)

)
− 3ζ2

s
L
(
lxy(t)

)
− ζ3

s2 L
(
lxy(t)

)
+

axy

s2 +
bxy

s
,

where axy/s2 = L(axyt) and bxy/s = L(bxy). Thus,

lim
t→∞

lxy(t) = lim
s→0

s
s2lxy(0) + axy + sbxy

(s + ζ)3 = 0.

The above two proofs draw the same result, i.e., lxy(t) → 0 as t → ∞. Finally, we
know that the norm of the matrix form error function L(t) is 0, i.e., limt→∞ ‖L(t)‖F = 0.
The proof of Theorem 2 is now complete.

Remark 1. In practical applications, noises are usually of real type. However, the complex numbers
are a necessary part of the numerical world, and complex numbers have better plasticity and
flexibility than real numbers. Therefore, the complex noises considered in this paper are mainly a
mathematical extension based on real noises, making the problem mathematically more general.

Remark 2. At present, the noise suppression performance of the CNRZNN model is the focus
of this work. The proposed CNRZNN model does not have finite-time convergence as the linear
activation function is adopted. Therefore, the upper limit of the constriction time cannot be deduced.
However, by employing nonlinear activation functions, we can design the finite-time convergent
CNRZNN model in the future.

Theorem 3. For solving CTDLE under the condition of complex quadratic noise W3(t), the upper
bound of steady-state ‖L(t)‖F of noise-perturbed CNRZNN model (8) is 2‖A‖F/ζ3, and when the
design parameter ζ → +∞, we then obtain 2‖A‖F/ζ3 → 0.

Proof of Theorem 3. By the proof of Theorem 2, similarly, the Laplace transform is used to
rewrite the CNRZNN model (8) disturbed by complex quadratic noise as

L
(
lxy(t)

)
=

lxy(0) +
2axy

s3 +
bxy
s2 +

cxy
s

s + 3ζ + 3ζ2

s + ζ3

s2

=
s2lxy(0) +

2axy
s + bxy + scxy

(s + ζ)3 ,

where 2axy/s3 + bxy/s2 + cxy/s is the Laplace transform of axyt2 + bxyt + cxy. All poles
s1,2,3 < 0 of the system are located in the left half plane of S plane; hence, it is a stable
system. We then have

lim
t→∞

lxy(t) = lim
s→0

s3lxy(0) + 2axy + sbxy + s2cxy

(s + ζ)3 =
2axy

ζ3

and limt→∞ ‖L(t)‖F = 2‖A‖F/ζ3. The proof of Theorem 3 is thus complete.
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4. Illustrative Examples and Results

In this section, the validity, convergence and robustness of CNRZNN model (7) are
verified by three experiments, i.e., two complex experiments and one real experiment.
Furthermore, for comparison and connection, NTZNN model (9) is presented for solving
CTDLE (1) under the same conditions.

4.1. Example 1

In this work, the complex matrices M(t) and K(t) of CTDLE (1) are considered as

M(t) =
[−i− 0.5i cos(2t) 0.5i sin(2t)

0.5i sin(2t) −i + 0.5i cos(2t)

]
∈ C2×2,

K(t) =
[

sin(2t) i cos(2t)
−i cos(2t) sin(2t)

]
∈ C2×2. (14)

The objective of this example is to solve the complex state matrix H(t) of CTDLE (14)
and to achieve the fitting of the theoretical solution H∗(t).

Before verifying the robustness of CNRZNN model (7), the validity and convergence
of CNRZNN model (7) need to be examined. In the absence of noise, the proposed
CNRZNN model (7) is used to solve CTDLE (14) and the relevant results are depicted
in Figures 1 and 2. More specifically, with design parameter ζ = 10, Figure 1 shows the
results of real-time state matrix H(t) of CNRZNN model (7), while Figure 2 shows the
convergence of the Frobenius norm of error matrix L(t) = MT(t)H(t) + H(t)M(t) + K(t),
which is called residual error ‖L(t)‖F in this paper. From Figure 1, the state matrix H(t)
of CNRZNN model (7) starts from five initial states [−(2 + 2i), 2 + 2i]2×2 to fit H∗(t)
represented by the red dotted line of CTDLE (14).
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(a) Real part of H(t)
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t (s)t (s)
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88
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(b) Imaginary part of H(t)

Figure 1. CNRZNN model (7) solves CTDLE (14) starting from five initial complex matrices
[−(2 + 2i), 2 + 2i]2×2, where the solid blue line represents the state trajectory of H(t) and the red
dotted line stand for H∗(t). (a) Real part of the state matrix H(t). (b) Imaginary part of the state
matrix H(t).
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(d) ζ = 50

Figure 2. Residual error trajectory of CNRZNN model (7) for solving CTDLE (14) and (15) under
the noise-free condition. (a) Solving CTDLE (14). (b) Solving CTDLE (14). (c) Solving CTDLE (15).
(d) Solving CTDLE (15).

It is noteworthy that for the simplicity and clarity of presentation, Figure 1a represents
the real part of the state matrix H(t) and Figure 1b represents the imaginary part of the
state matrix H(t). Meanwhile, in Figure 2a, the five residual error curves of CNRZNN
model (7) converge to zero within 1.4 s. When the design parameter is increased to ζ = 50,
the five ‖L(t)‖F curves converge to zero within 0.35 s, which is depicted in Figure 2b. Based
on the above experimental results, the validity and convergence of CNRZNN model (7)
and the influence of design parameter ζ are preliminarily verified.

Remark 3. To investigate the suppression ability of the CNRZNN model to bounded random
noises, we consider bounded random noises [−0.5, 0.5]2×2 in this example and the corresponding
experimental results are shown in Figure 3. As seen from Figure 3a,b, the CNRZNN model can
efficiently and accurately converge to the theoretical solution of the complex Lyapunov equation.
Meanwhile, in Figure 3c, the residual error ‖L(t)‖F of the CNRZNN model converges stably
to order 10−2 after 2 s. It can be concluded that the CNRZNN model has excellent suppression
performance for bounded random noises.
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(a) Real part of H(t)
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(b) Imaginary part of H(t)
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−210

(c) Trajectory of residual error

Figure 3. CNRZNN model for solving CTDLE (14) under bounded random noises [−0.5, 0.5]2×2,
where the solid blue line represents the state trajectory and the red dotted line stands for theoreti-
cal solution.

4.2. Example 2

On the basis of Example 1, we consider another CTDLE (1) to further analyze the
convergence and robustness of CNRZNN model (7). Then, the complex matrices M(t) and
K(t) of the new CTDLE are defined as

M(t) =
[

sin(2t) + 2i 2 + 4i cos(2t)
2 + i cos(2t) 2 + 2i sin(2t)

]
∈ C2×2,
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K(t) =
[

sin(2t) i sin(2t)
i sin(2t) sin(2t)

]
∈ C2×2. (15)

In this work, we first verify the convergence of CNRZNN model (7) and consider the
CNRZNN with ζ = 10 and ζ = 50 for computing CTDLE (15) in the noise-free condition,
and the corresponding results are illustrated in Figures 2c,d and 4. From Figure 2c,d,
the residual error of the CNRZNN model with different design parameters can rapidly and
stably converge to zero. From Figure 4a, the real part of H(t) of CNRZNN model (7) is
fitted rapidly from random initial state [−(5 + 5i), 5 + 5i]2×2 to H∗re(t). Similarly, Figure 4b
shows that the imaginary part of H(t) of CNRZNN model (7) also fully and effectively
fitted to H∗im(t). Then, the validity and convergence of CNRZNN model (7) are verified in
noise-free conditions.
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(a) Real part of H(t)
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(b) Imaginary part of H(t)

Figure 4. CNRZNN model (7) with ζ = 10 solves CTDLE (15) starting from five initial complex
matrices [−(5 + 5i), 5 + 5i]2×2, where the solid blue line represents the state trajectory of H(t) and
the red dotted line stands for H∗(t). (a) Real part of the state matrix H(t). (b) Imaginary part of the
state matrix H(t).

However, various noises cannot be ignored in the real implementation of CTDLE (1).
This paper considers the interference of complex constant noises [axy]n×n, complex linear
noises [axyt + bxy]n×n and complex quadratic noises [axyt2 + bxyt + cxy]n×n. The CNRZNN
model (7) for solving CTDLE (15) in the above three noise conditions and the results
are presented in Figure 5. For comprehensively verifying the robustness of CNRZNN
model (7) under the above three kinds of noises, in this example, small and large co-
efficients are considered for each kind of noise. Specifically, complex constant noises
are considered W1(t) = [1 + i]2×2 and W2(t) = [100 + 100i]2×2, complex linear noises are
W3(t) = [(1 + i)t]2×2 and W4(t) = [(100 + 100i)t]2×2 and complex quadratic noises
W5(t) = [(0.5 + 0.5i)t2]2×2 and W6(t) = [(5 + 5i)t2]2×2. Firstly, the robustness of CNRZNN
model (7) under complex constant noises W1(t) and W2(t) are considered, and the related
results are illustrated in Figure 5a. From Figure 5a, for the CTDLE (15) solution with any
size of complex constant noise, the ‖L(t)‖F of CNRZNN model (7) can converge stably
to the order 10−5–10−6 within 2.5 s. Analogously, in Figure 5b, the robustness analysis
results of CNRZNN model (7) under complex linear noises W3(t) and W4(t) with different
coefficients are displayed. This results shows that the ‖L(t)‖F of CNRZNN model (7) can
effectively and stably converge to the order 10−4–10−6 within 2.5 s. In Figure 5c, the CN-
RZNN model solves CTDLE (15) under the complex quadratic noises W5(t) and W6(t),
and the residual errors ‖L(t)‖F of the CNRZNN model converge stably to below order
10−4 and 10−3, respectively.
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(a) Complex constant noises
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(b) Complex linear noises
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(c) Complex quadratic noises

Figure 5. Residual trajectory of CNRZNN model (7) with ζ = 10 for solving CTDLE (15) under
different noises. (a) Complex constant noises with different coefficients. (b) Complex linear noises
with different coefficients. (c) Complex quadratic noises with different coefficients.

For comparison and correlation, NTZNN model (9) is introduced to compare with
CNRZNN model (7) under the same complex linear noises and complex quadratic noises.
Under linear noises W7(t) = [(50 + 50i)t]2×2, the NTZNN and CNRZNN models solve the
same CTDLE (15) and the results are shown in Figure 6. To present the results succinctly
and clearly, the real part and imaginary part of the state matrix H(t) are represented in
Figure 6a,b, respectively. As can be seen from Figure 6a, the real part of H(t) of CNRZNN
model (7) can accurately converge to H∗(t), while NTZNN model (9) cannot achieve effec-
tively convergence. Correspondingly, the fitting effect of the imaginary part of the state
matrix H(t) of the two models in Figure 6b is the same as that in Figure 6a. The residual er-
rors of NTZNN and CNRZNN models with ζ = 10, 50 are shown in Figure 7a,b. From these
two figures, one can find that the ‖L(t)‖F of CNRZNN model (7) and NTZNN model (9)
are of order 10−3 and 10−1, respectively. In summary, one can conclude that CNRZNN
model (7) has a stronger ability to suppress complex linear noise than NTZNN model (9).
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Figure 6. CNRZNN model and NTZNN model for solving CTDLE (15) under complex linear noises
[(50 + 50i)t]2×2. (a) Real part of the state matrix H(t). (b) Imaginary part of the state matrix H(t).

Additionally, the CNRZNN model is further compared with the NTZNN model under
the complex quadratic noise. In this work, the CNRZNN model and NTZNN model are
employed to solve CTDLE (15) under complex quadratic noises W8(t) = [(5 + 5i)t2]2×2,
and the ‖L(t)‖F is used to estimate the robustness of the model. In Figure 7c, the ‖L(t)‖F
of CNRZNN model (7) with design parameter ζ = 10 is of order 10−1. However, under the
same conditions, the ‖L(t)‖F of NTZNN model (9) is divergent. Then, we adjust the design
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parameter ζ to 50, and the results are shown in Figure 7d. One can seen that the ‖L(t)‖F
of CNRZNN model (7) is of order 10−3, while the ‖L(t)‖F of NTZNN model (9) is also
divergent. According to Theorem 3, design parameter ζ increases by five times and the
‖L(t)‖F decreases by 53 = 125 times. Obviously, the experimental results are consistent
with the theoretical results. For readers’ convenience, the steady-state residual error values
of the CNRZNN and NTZNN models under different design parameters and noises are
present in Table 2.
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Figure 7. CNRZNN model (7) and NTZNN model (9) for solving CTDLE (15) under complex linear
noises [(50 + 50i)t]2×2 and complex quadratic noises [(5 + 5i)t2]2×2. (a) ζ = 10 and the complex
linear noises. (b) ζ = 50 and the complex linear noises. (c) ζ = 10 and the complex quadratic noises.
(d) ζ = 50 and the complex quadratic noises.

Table 2. Comparison of steady-state residual error values between NTZNN model and CNRZNN
model under different design parameters and noises

Noise
NTZNN Model [30] CNRZNN Model (7)

ζ = 10 ζ = 50 ζ = 10 ζ = 50

W1(t) = [1 + i]2×2 10−4 10−5 10−5 10−5

W2(t) = [100 + 100i]2×2 10−2 10−4 10−5 10−5

W3(t) = [(1 + i)t]2×2 10−1 10−3 10−5 10−5

W4(t) = [(100 + 100i)t]2×2 1.4 10−1 10−3 10−5

W5(t) = [(0.5 + 0.5i)t2]2×2 divergent divergent 10−2 10−4

W6(t) = [(5 + 5i)t2]2×2 divergent divergent 10−1 10−3

4.3. Experimental Comparison of Real Lyapunov Equation under Real Noises

In this section, CNRZNN model (7) is considered to solve the real Lyapunov equation
under real noises and is compared with NTZNN model (9). The real Lyapunov equation
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and real noises in [30] are selected for analysis and comparison. Firstly, we consider the
real Lyapunov equation as

M(t)TH(t) + H(t)M(t) = −K(t) ∈ R2×2, (16)

in which,

M(t) =
[−1− 0.5 cos(2t) 0.5 sin(2t)

0.5 sin(2t) −1 + 0.5 cos(2t)

]
∈ R2×2,

K(t) =
[

sin(2t) cos(2t)
− cos(2t) sin(2t)

]
∈ R2×2.

Secondly, real noises in [30] are considered: constant noises [8]2×2 and linear noises
[8t]2×2. In addition, we further consider the real quadratic noises [t2]2×2. Finally, we use
the CNRZNN model to solve the real Lyapunov Equation (16) under the above three kinds
of real noises and make a comparison with NTZNN model (9).

Case 1 (Real constant noises): In this case, we use the CNRZNN model with design
parameter ζ = 8 to solve real Lyapunov Equation (16) under real constant noises [8]2×2,
and the corresponding experimental results are depicted in Figure 8a,b. In Figure 8a,
the state trajectory of the CNRZNN model is rapidly fitted to the theoretical solution. In
Figure 8b, the residual error ‖L(t)‖F of CNRZNN can converge rapidly and stably to order
10−5 when solving real Lyapunov Equation (16) under real constant noises [8]2×2, which is
lower than order 10−3 of NTZNN model (9). Therefore, the CNRZNN model has better
performance of real constant noises suppression.
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Figure 8. CNRZNN model with ζ = 8 solves Lyapunov Equation (16) starting from initial complex
matrices [−2, 2]2×2 under real constant noises [8]2×2, real linear noises [8t]2×2 and real quadratic
noises [t2]2×2.
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Case 2 (Real linear noises): Similar to Case 1 above, real linear noises [8t]2×2 are
considered in this case. The comparison of the residual error ‖L(t)‖F between CNRZNN
and NTZNN models is illustrated in Figure 8c. From Figure 8c, we can obtain results similar
to Figure 8b, where the residual error ‖L(t)‖F of the CNRZNN model converges to order
10−4, while that of the NTZNN model (9) is only close to order 10−1. Then, the CNRZNN
model also has better performance under real linear noises.

Case 3 (Real quadratic noises): In this case, we consider real quadratic noises [t2]2×2.
Similarly, the experimental results are shown in Figure 8d, and we can obtain the same
results as the complex experiment in Example 2. That is, the residual error ‖L(t)‖F of
CNRZNN model (7) can steadily converge to order 10−2, while the residual error ‖L(t)‖F
of NTZNN model (9) is divergent.

To sum up, we can conclude that CNRZNN model (7) is also better than the NTZNN
model (9) in solving the real Lyapunov equation under real noises.

5. Conclusions

For solving the CTDLE in the presence of various noises, this paper has been proposed
a new design formula, and the CNRZNN model has been derived on the basis of this
formula. The convergence and robustness of the CNRZNN model have been proved by
theoretical derivation. Concretely, in the existence of complex constant noises and complex
linear noises, the residual error of the CNRZNN model can effectively and accurately
converge to zero. Similarly, under complex quadratic noises, the ‖L(t)‖F of the CNRZNN
model has bounded, and the upper bound has been determined by design parameter ζ. At
last, three time-dependent Lyapunov examples and the NTZNN model were introduced
for verification and comparison, respectively. Theoretical analysis and experimental results
show that the CNRZNN model has better anti-noise ability than the NTZNN model,
especially for complex linear noises and complex quadratic noises. It is worth pointing
out that designing a finite-time convergent CNRZNN model by using nonlinear activation
functions may be a future research direction of this work.
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Abbreviations
The following abbreviations are used in this manuscript:

HNN Hopfield neural network
RNN recurrent neural network
ZNN zeroing neural networks
IEZNN integral-enhanced ZNN
NTZNN noise-tolerant ZNN
RNZNN robust nonlinear ZNN
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VPZNN varying-parameter ZNN
CNRZNN complex noise-resistant ZNN
TDLE time-dependent Lyapunov equation
TDSE time-dependent Sylvester equation
CTDLE complex time-dependent Lyapunov equation
CTDSE complex time-dependent Sylvester equation
AF activation function
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