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Design and Comprehensive Analysis of A

Noise-Tolerant ZNN Model with Limited-Time

Convergence for Time-Dependent Nonlinear

Minimization
Lin Xiao, Jianhua Dai, Rongbo Lu, Shuai Li, Jichun Li and Shoujin Wang

Abstract—Zeroing neural network (ZNN) is a powerful tool to
address mathematical and optimization problems broadly arisen
in science and engineering areas. The convergence and robustness
are always co-pursued in ZNN. However, there exists no related
work on ZNN for time-dependent nonlinear minimization that
achieves simultaneously limited-time convergence and inherently
noise suppression. In this paper, for the purpose of satisfying such
two requirements, a limited-time robust neural network (LTRNN)
is devised and presented to solve time-dependent nonlinear
minimization under various external disturbances. Different from
previous ZNN model for this problem either with limited-time
convergence or with noise suppression, the proposed LTRNN
model simultaneously possesses such two characteristics. Besides,
rigorous theoretical analyses are given to prove the superior
performance of the LTRNN model when adopted to solve time-
dependent nonlinear minimization under external disturbances.
Comparative results also substantiate the effectiveness and ad-
vantages of LTRNN via solving a time-dependent nonlinear
minimization problem.

Index Terms—Zhang neural networks, zeroing neural net-
works, nonlinear minimization, time-varying, limited-time con-
vergence, robustness.

I. INTRODUCTION

NONLINEAR minimization is one of the most impor-

tant branches of optimization for many scientific and

engineering applications [1]–[9]. For example, optimal path

tracking of robot manipulators was usually formulated as

nonlinear minimization problems solving [1], [4], [7], [9].

Other practical applications (e.g., multiagent systems, image

processing and restoration) can also be handled by modelling

and solving nonlinear minimization problems [3], [8]. A

amount of research attention was focused on finding exact
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solutions of nonlinear minimization problem, and various

numerical algorithms were developed and analyzed in existing

literature [10]–[15]. The classical algorithm for nonlinear

minimization is Newton iterative method [12]–[14] which con-

verges quadratically under mild conditions. Different improved

algorithms based on Newton iterative method were developed

to modify the computing efficiency and comprehensive per-

formance [13]–[16].

As we know, numerical algorithms are of serial computing

patterns. In dealing with large-scale nonlinear minimization

problems, high computational complexity is unavoidable be-

cause of their intrinsic shortcomings [17]. Besides, solving

time-dependent (or say, time-varying) nonlinear minimization

problem is a challenging task because such a problem is

varying with time [18]–[21]. We need to compute the exact

solution of time-dependent nonlinear minimization at each

time, all of which consist of exact time-varying solutions.

Since time-dependent nonlinear minimization requires high

computation efficiency, most iterative algorithms, which are

effective on time-invariant nonlinear minimization, don’t work

well enough on time-dependent nonlinear minimization [16].

Recently, recurrent neural networks (RNNs) have gained

more and more attentions because they have good perfor-

mance for various practical applications, such as robotics,

optimization computation, winner-take-all competition [22]–

[25]. Differing with the numerical algorithms, RNNs are of

parallel computing patterns. Therefore, computation efficiency

can be greatly enhanced by using RNNs [22]–[25]. RNNs also

played an important role in solving nonlinear minimization

[16], [26]–[30]. Gradient neural network (GNN) is a typical

RNN, which was developed to effectively solve static non-

linear minimization. However, GNN will generate a relatively

large lag error when dealing with the time-independent sit-

uation. Under such circumstances, a novel continuous-time

RNN (called zeroing neural network, ZNN) was devised and

analyzed for various time-dependent problems solving; e.g.,

Sylvester equation [31], matrix inversion [32], [33] quadratic

programming [34], and Lyapunov equation [35]. The main ad-

vantage of ZNN is able to provide the capability to address the

time-independent problems with the exponential convergence

[36]–[38]. In [16], [39], [40], ZNN was firstly explored to

solve time-dependent and static nonlinear minimizations. The

corresponding discrete-time ZNN (DTZNN) model was de-

veloped to solve time-dependent nonlinear minimization [39].
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However, in this work, the independent variable of nonlinear

minimization is only one-dimensional. In [40], Jin and Zhang

further investigated vector-valued nonlinear minimization that

is an extension of scalar-valued nonlinear minimization. In

addition, the solution of such a vector-valued nonlinear min-

imization was applied to manipulator motion generation via

using ZNN. Various higher-order DTZNN models were further

presented and analyzed to solve the vector-valued nonlinear

minimization by using different Taylor-type difference formu-

las [16], [23]. Compared with previous DTZNN model, higher-

order discrete-time ZNN models attained better computational

performance [16], [23]. However, in these existing ZNN mod-

els for nonlinear minimization, only convergence property was

considered while robustness property has not been discussed

[16], [39]–[42].

Different from previous research ideas, in this work, we

aim to modify the comprehensive property of ZNN models by

devising a different formula from a viewpoint of continuous-

time systems. As we know, robustness and convergence are

two important features, which influence the performance of

solving practical time-dependent nonlinear minimizations. In

addition, the mentioned ZNN models for this problem require

infinite time for convergence under the ideal conditions. That

is to say, external disturbances or noises are not considered

in the existing ZNN models for time-dependent nonlinear

minimization. In this work, based on ZNN, a new limited-

time robust neural network (LTRNN) is devised and presented

to solve time-dependent nonlinear minimization in front of

external disturbances. Different from previous ZNN models

for this problem [16], [39], [40], LTRNN can simultaneously

achieve limited-time convergence and suppression of external

disturbances. Besides, rigorous theoretical analyses are given

to prove the superior performance of the LTRNN model when

adopted to solve time-dependent nonlinear minimization under

external disturbances. Comparative results also substantiate the

effectiveness and advantages of LTRNN via solving a time-

dependent nonlinear minimization problem. The following is

a summary of the major contributions of this paper.

1) The first contribution is the design and analysis of a

limited-time robust neural network (LTRNN) model for

time-dependent nonlinear minimization. The proposed

LTRNN model can simultaneously achieve limited-time

convergence and inherently noise suppression.

2) The second contribution is the performance analysis of

the proposed LTRNN model. The excellent performance

of the proposed model is theoretically guaranteed by

theoretical calculation on the upper bound of limited-

time convergence and discussion of the noise suppression

property of LTRNN.

3) The third contribution is the demonstration of the com-

putational power of the proposed LRTNN model through

applications for specific time-dependent nonlinear mini-

mization. Performance improvements are obviously ob-

served over existing ZNN models.

II. PROBLEM DESCRIPTION AND ZNN MODEL

This part of the paper provides problem description of time-

dependent nonlinear minimization, which is obviously differ-

ent from static nonlinear minimization. Next, two different

ZNN models from previous work are presented for solving

time-dependent nonlinear minimization for comparison pur-

pose.

A. Problem Description

we are concerned with the following time-dependent non-

linear minimization problem solving [16], [39], [40]:

min
x(t)∈Rn

g (x(t), t) , ∀t ∈ [0,∞) (1)

where t represents time and g(·, ·) : Rn × R → R represents

a smooth nonlinear objective function. The goal of the current

work is to compute unknown x(t) ∈ Rn at each time instant

t under external disturbances so that the value of nonlinear

objective function at each time instant achieves the minimum

within finite time, which constitutes the dynamic minimum

motion trajectory of g (x(t), t) for all t. In order to assure that

equation (1) has only one optimal solution, we consider the

situation that g(·, ·) is a convex function at each time instant

in this work.

From previous studies on nonlinear minimization [16], [39],

[40], we conclude that the optimal solution of equation (1)

can be obtained via zeroing the partial derivative of nonlinear

objective function g (x(t), t) with respective to x(t) at time

instant. In this case, we introduce a new function z (x(t), t)
such that it satisfies the following condition:

z (x(t), t) =
∂g (x(t), t)

∂x(t)
= 0 ∈ Rn, (2)

where
∂g(x(t),t)

∂x(t) = [∂g(x(t),t)
∂x1

, ∂g(x(t),t)
∂x2

, · · · , ∂g(x(t),t)
∂xn

]T = 0.

Thus, the optimal solution of Eq. (1) is equivalent to the

solution of the above system of nonlinear equations. In other

words, via the above transform, we only need to solve Eq. (2)

to equivalently find the optimal solution of time-dependent

nonlinear minimization (1).

B. Zeroing Neural Network

For completeness of this work, ZNN was developed for

such time-dependent nonlinear minimization [31], [32], [39],

[40], [43]. How it has been designed is simply illustrated via

equivalently solving the above nonlinear equation system (2).

In the first place, based on the transformation of time-

dependent nonlinear minimization (2), we are capable of

defining a monitor error function as below:

e(t) =

[

∂g (x(t), t)

∂x1
,
∂g (x(t), t)

∂x2
, · · · , ∂g (x(t), t)

∂xn

]T

, (3)

where e(t) is a vector-valued error function, and the time-

dependent behavior of each element itself can be monitored.

If e(t) = 0 is checked, the corresponding solution is what we

want.

Next, the following first-order nonlinear dynamic system is

designed to make sure e(t) converge to zero:

ė(t) +̟Φ(e(t)) = 0, (4)
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where ̟ > 0 is a design parameter exploited to adjust the

above dynamic system to converge to the equilibrium point,

and Φ(·) stands for a nonlinear activation function array with

each element denoted by φ(·).
Substituting (3) into (4), we are further capable of deriving

the following expression:






























∂2g(x(t),t)
∂x1∂t

+̟φ
(

∂g(x(t),t)
∂x1

)

= 0,

∂2g(x(t),t)
∂x2∂t

+̟φ
(

∂g(x(t),t)
∂x2

)

= 0,

...
∂2g(x(t),t)

∂xn∂t
+̟φ

(

∂g(x(t),t)
∂xn

)

= 0.

(5)

In addition, ∀i = 1, 2, · · · , n, we have

∂2g

∂xi∂t
=

∂2g

∂xi∂x1
ẋ1(t) +

∂2g

∂xi∂x2
ẋ2(t)+

· · ·+ ∂2g

∂xi∂xn
ẋn(t) +

∂2g

∂xi∂t
,

where g is used to denote g (x(t), t) for presentation conve-

nience.

After combining the above derivation results and consider-

ing ∂g (x(t), t)/∂x(t) = z (x(t), t), we obtain the following

zeroing neural network (ZNN) for calculating time-dependent

nonlinear minimization (1) and the resultant nonlinear equa-

tion system (2):

Q(x(t), t)ẋ(t) = −̟Φ(z(x(t), t)) − ∂z(x(t), t)

∂t
, (6)

where coefficient matrix Q(x(t), t) and vector
∂z(x(t),t)

∂t are

defined as

Q(x(t), t) =













∂2g
∂x1∂x1

∂2g
∂x1∂x2

· · · ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x2∂x2

· · · ∂2g
∂x2∂xn

...
...

. . .
...

∂2g
∂xn∂x1

∂2g
∂xn∂x2

· · · ∂2g
∂xn∂xn













,

∂z(x(t), t)

∂t
=

[

∂2g
∂x1∂t

∂2g
∂x2∂t

· · · ∂2g
∂xn∂t

]T

.

Besides, it has been proved that such a ZNN model (6) is

capable of converging to the optimal solution of nonlinear

minimization as well as nonlinear equation system (2).

C. Robust Zeroing Neural Network

Note that the above ZNN model (6) for time-dependent non-

linear minimization does not consider the impact of external

disturbances, and may lose efficacy when external noises are

injected. For modifying the robustness of ZNN model (6), in

2015, an inherent noise-tolerance design formula for ZNN was

presented in [41], [42], which is repeated as below for easy

reading:

ė(t) + γ1e(t) + γ2

∫ t

0

e(τ)dτ = 0, (7)

where γ1 > 0 and γ2 > 0 stand for two different scaling

factors. It has been proved that design formula (7) possesses

the inherent noise-tolerance ability, even in front of dynamic

noises. However, in design formula (7), nonlinear activation

function Φ(·) is deleted, which makes (7) only achieve the

exponential convergence (i.e., infinite-time convergence) [44]–

[46], although the inherent noise tolerance is considered for

the design of ZNN.

Based on the inherent noise-tolerance design formula (7),

we are capable of gaining the robust zeroing neural network

(RZNN) for time-dependent nonlinear minimization (1) via

substituting (3) into it:

Qẋ = −γ1z − γ2

∫ t

0

zdτ − ∂z

∂t
, (8)

where independent variable t is omitted for presentation con-

venience; and coefficient matrix Q and vector ∂z
∂t are defined

as the same ones of ZNN model (6). In addition, it has been

proved that RZNN model (8) is capable of solving time-

dependent nonlinear minimization (1) under various additive

noises [41], [42]. However, due to elimination of nonlinear

activation function Φ(·), such a RZNN model (8) is not able

to reach limited-time convergence [44]–[46].

III. LIMITED-TIME ROBUST NEURAL NETWORK

Considering the limitations of the above two ZNN models,

in this part, the LTRNN model is devised and studied to

solve time-dependent nonlinear minimization (1) as well as

the equivalent nonlinear equation system (2). Before that, a

new second-order nonlinear dynamic system is developed and

analyzed in details, which is used to establish the LTRNN

model. Compared to ZNN model (6) and RZNN model (8)

for time-dependent nonlinear minimization (1), the proposed

LTRNN model simultaneously possesses the limited-time con-

vergence and inherent noise tolerance.

A. Second-Order Nonlinear Formula

The aforementioned first-order nonlinear formula (4) purely

considers the convergence property, which may confine its

real-time applications when external disturbances exist; while

the nonlinear formula (7) only considers the inherent noise-

tolerance property, which may confine its online computing

applications. That is to say, such two nonlinear formulas

have either limited-time convergence or noise suppression

property [41], [42], [44]–[46]. In order to overcome this

limitation, a new second-order nonlinear system is devised

to realize limited-time convergence and noise tolerance. The

specific expression is formulated as the following second-order

nonlinear system:

ė(t) + γ1Φ(e(t)) + γ2Φ

(

e(t) + γ1

∫ t

0

Φ(e(τ))dτ

)

= 0,

(9)

where γ1 > 0, γ2 > 0, and Φ(·) are defined the same as

before. In addition, the following theoretical results are given

to demonstrate the advantages of the proposed second-order

nonlinear system (9).

Theorem 1: The second-order nonlinear system (9) is glob-

ally stable as long as Φ(·) is a monotonic increasing odd

function.
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Proof: Note that (9) is a vector-valued function. We first

consider the jth subsystem of (9), which is described as (∀j ∈
1, 2, · · · , n):

ėj(t) + γ1φ(ej(t)) + γ2φ

(

ej(t) + γ1

∫ t

0

φ(ej(τ))dτ

)

= 0,

(10)

where φ(·) is the element of Φ(·). Then, we are capable

of defining an auxiliary variable uj(t), and its expression is

described as

uj(t) = ej(t) + γ1

∫ t

0

φ(ej(τ))dτ. (11)

Taking a derivative of (11) with respect to time t, we have

u̇j(t) = ėj(t) + γ1φ(ej(t)). (12)

Combining (10), (11) and (12) yields to the following fact:

u̇j(t) + γ2φ(uj(t)) = 0, (13)

which is exactly the jth subsystem of (4). Based on the

previous conclusion [31], [32], [39], [40], [43], we know

that such a subsystem (13) is capable of converging to its

equilibrium point, even within finite time provided that φ(·)
is selected appropriately.

Next, let us consider the following Lyapunov function

candidate sj(t) for the jth subsystem (10):

sj(t) =
1

2
ζe2j (t) +

1

2
u2
j(t), (14)

where ζ > 0 and s0 = sj(0) = ζe2j(0)/2+u2
j(0)/2 with ej(0)

and uj(0) known. Its time derivative is derived as

dsj(t)

dt
=ζej(t)ėj(t) + uj(t)u̇j(t)

=ζej(t)[u̇j(t)− γ1φ(ej(t))]− γ2uj(t)φ(uj(t))

=− ζγ2ej(t)φ(uj(t)) − ζγ1ej(t)φ(ej(t))

− γ2uj(t)φ(uj(t)).

(15)

Since φ(·) is a monotonic increasing odd function, we can

apply the mean-value theorem to further simplify the above

expression. Thus, we have

φ(uj(t))− φ(0) = (uj(t)− 0)
∂φ(uj(ϑ))

∂uj
|uj(ϑ)∈R . (16)

In addition, in a similar way, we can also conclude φ(0) = 0
and ∂φ(uj(t))/∂uj > 0. Thus, from (16), the following result

can be further derived as

|φ(uj(t))| ≤ a0|uj(t)|,

where a0 = max{∂φ(uj(t))/∂uj} |uj(t)∈R> 0. Furthermore,

we have

|ej(t)φ(uj(t))| ≤ |ej(t)| · |φ(uj(t))|
≤ a0|ej(t)| · |uj(t)|.

(17)

Let us substitute (17) back into (15), and the following fact is

gained:

dsj(t)

dt
=− ζγ2ej(t)φ(uj(t))− ζγ1ej(t)φ(ej(t))

− γ2uj(t)φ(uj(t))

≤ζγ2|ej(t)φ(uj(t))| − ζγ1ej(t)φ(ej(t))

− γ2uj(t)φ(uj(t))

≤ζγ2a0|ej(t)| · |uj(t)| − ζγ1a1e
2
j(t)− γ2a2u

2
j(t)

=− ζ

(√
γ1a1|ej | −

γ2a0
2
√
γ1a1

|uj(t)|
)2

− ζ

(

γ2a2
ζ

− γ2
2a

2
0

4γ1a1

)

u2
j(t),

(18)

where coefficients a1 = min{∂φ(ej(t))/∂ej} |ej(t)∈R and

a2 = min{∂φ(uj(t))/∂uj} |uj(t)∈R that are gained by

applying the mean-value theorem two times. As seen from

(18), we can easily draw a conclusion ṡj(t) ≤ 0 provided that

γ2a2
ζ

− γ2
2a

2
0

4γ1a1
≥ 0 and ζ > 0, i.e, 0 < ζ ≤ 4γ1a1a2

γ2a20
. (19)

Based on Lyapunov stability theory, we know that the jth

subsystem (10) is globally stable. Since the second-order

nonlinear system (9) is consist of n subsystems of (10), we

conclude that the second-order nonlinear system (9) is globally

stable as long as Φ(·) is a monotonic increasing odd function.

This completes the proof. ✷

Theorem 2: The second-order nonlinear system (9) is capa-

ble of converging to the equilibrium point within finite time,

and its convergence upper bound tf is

tf <
γ1 + γ2

γ1γ2(1 − p)
max

{

|e−(0)|1−p, |e+(0)|1−p
}

,

provided that φ(e) =
(

|e|p + |e|1/p
)

sgn(e) with 0 < p < 1,

where sgn(·) denotes the sign function, and the initial errors

e+(0) = max{e(t)} and e−(0) = min{e(t)}.

Proof: For the jth subsystem of (9), via introducing

uj(t) = ej(t) + γ1
∫ t

0
φ(ej(τ))dτ , we are capable of gaining

u̇j(t) = −γ2φ(uj(t)). Especially, when t = 0, we can obtain

uj(0) = ej(0). Besides, the Lyapunov function candidate

sj = u2
j(t) is selected to compute finite convergence time

of nonlinear dynamic system u̇j(t) = −γ2φ(uj(t)) [44]–[46].

Its time derivative is computed as below:

ṡj = 2uj(t)u̇j(t)

= −2γ2uj(t)φ(uj(t))

= −2γ2

(

|uj(t)|p+1 + |uj(t)|
1
p
+1

)

≤ −2γ2|uj(t)|p+1

= −2γ2s
p+1

2

j ,

where φ(uj) =
(

|uj |p + |uj|1/p
)

sgn(uj). Then, solving the

inequality ṡj 6 −2γ2s
p+1

2

j with sj(0) = |uj(0)|2 = |ej(0)|2,

one can obtain:

s
1−p

2

j (t)

{

≤ |uj(0)|1−p − γ2t(1− p), if t ≤ |uj(0)|
1−p

γ2(1−p) ,

= 0, if t >
|uj(0)|

1−p

γ2(1−p) ,
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which shows that sj converges to zero when t >
|uj(0)|1−p/γ2(1− p). Owing to sj = u2

j(t) and uj(0) =
ej(0), it can also be concluded that uj(t) converges to zero

after t > |ej(0)|1−p/γ2(1− p).

Since all elements in u(t) have the same dynamics

u̇j(t) = −γ2φ(uj(t)), u(t) converges to zero when t >
max

{

|e−(0)|1−p, |e+(0)|1−p
}

/γ2(1 − p), where e+(0) =
max{e(t)} and e−(0) = min{e(t)}. Therefore, the upper

bound t1 for u(t) is calculated as

t1 <
1

γ2(1− p)
max

{

|e−(0)|1−p, |e+(0)|1−p
}

.

The convergence upper bound for u(t) is thus completed.

From the above discussion, when t > t1, u(t) converges to

the equilibrium point, and thus u̇(t) = 0. Based on (12), when

t > t1, we have

ėj(t) + γ1φ(ej(t)) = 0, (20)

which is exactly the same form of u̇j(t) + γ2φ(uj(t)) = 0.

Considering the different parameters of these two dynamic

systems, we are able to compute the convergence upper bound

t2 as below:

t2 <
1

γ1(1− p)
max

{

|e−(0)|1−p, |e+(0)|1−p
}

,

where e+(0) and e−(0) are defined as before.

All in all, by generalizing the above two conclusions, one

can conclude that the second-order nonlinear system (9) is

capable of converging to the equilibrium point in a limited

time, and its convergence upper bound tf is

tf < t1 + t2 =
γ1 + γ2

γ1γ2(1− p)
max

{

|e−(0)|1−p, |e+(0)|1−p
}

.

This completes the proof. �

In order to study the robustness property of the second-order

nonlinear system (9) when external disturbances are injected

into this system, we consider an unknown additive constant

noise υ. Thus, the noise-disturbed second-order nonlinear

dynamic system can be described as

ė(t) = −γ1Φ(e(t))− γ2Φ

(

e(t) + γ1

∫ t

0

Φ(e(τ))dτ

)

+ υ,

(21)

where υ represents an unknown additive constant noise. Next,

let us prove the inherent noise tolerant property of the above

the noise-disturbed nonlinear dynamic system (21).

Theorem 3: The noise-disturbed second-order nonlinear

dynamic system (21) is capable of globally converging to zero

under additive constant noise υ.

Proof: Let us consider the jth subsystem of (21), which is

described as:

ėj(t) = −γ1φ(ej(t))− γ2φ
(

ej(t) + γ1

∫ t

0

φ(ej(τ))dτ
)

+ υ.

(22)

As the same as Theorem 1, we also introduce a new variable

uj(t), which is defined as the same with (11). Its time

derivative is thus gained as u̇j(t) = ėj(t) + γ1φ(ej(t)). Then,

substituting the expressions of uj(t) and u̇j(t) into (22), we

have the fact:

u̇j(t) = −γ2φ(uj(t)) + υ. (23)

According to the above results, we are capable of defining the

following Lyapunov function for the jth subsystem (22):

sj(t) = (γ2φ(uj(t))− υ)
2
/2.

Its time derivative ṡj(t) is gained as below:

dsj(t)

dt
=(γ2φ(uj(t))− υ) γ2

∂φ(uj(t))

∂uj
u̇j(t)

=− γ2
∂φ(uj(t))

∂uj
(γ2φ(uj(t))− υ)2 .

(24)

Since φ(·) is a monotonic increasing odd activation func-

tion, we have ∂φ(uj(t))/∂uj > 0. Therefore, we can ob-

tain ṡj(t) ≤ 0, and limt→∞ sj(t) = 0. At this time,

limt→∞ γ2φ(uj(t))−υ = 0 and limt→∞ uj(t) = φ−1
2 (υ/γ2).

Thus, we have limt→∞ u̇j(t) = −γ2φ(uj(t)) + υ = 0.

On the other hand, due to u̇j(t) = ėj(t) + γ1φ(ej(t))
and limt→∞ u̇j(t) = 0, and basis on Lasalle’s invariant

set principle [47]–[49], it can be concluded that u̇j(t) =
ėj(t) + γ1φ(ej(t)) reduces to

ėj(t) + γ1φ(ej(t)) = 0, (25)

which is the aforementioned nonlinear system. In addition, it

has been proved that this nonlinear dynamic system is capable

of converging to its equilibrium point exponentially.

According to the above analyses, we conclude that, un-

der unknown additive constant noise υ, the noise-disturbed

second-order nonlinear dynamic system (21) is capable of

globally converging to zero. This completes the proof. ✷

B. LTRNN Model

Based on the above proposed second-order nonlinear dy-

namic formula (9), a limited-time robust neural network (L-

TRNN) has been established and analyzed for time-dependent

nonlinear minimization (1) and its equivalent nonlinear equa-

tion system (2). The detailed design process and theoretical

analysis are presented as follows.

At first, we are capable of defining the following monitor

error function similarly:

e(t) =

[

∂g (x(t), t)

∂x1
,
∂g (x(t), t)

∂x2
, · · · , ∂g (x(t), t)

∂xn

]T

. (26)

Then, according to error function (26), the proposed second-

order nonlinear dynamic formula is adopted to establish the

LTRNN model. For maintaining the coherence of reading, such

a second-order nonlinear dynamic formula is presented again

as below:

ė(t) + γ1Φ(e(t)) + γ2Φ

(

e(t) + γ1

∫ t

0

Φ(e(τ))dτ

)

= 0.

Substituting (26) into the above second-order nonlinear

dynamic formula and considering e(t) = ∂g (x(t), t)/∂x(t) =
z (x(t), t), we are capable of gaining the LTRNN model for
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Fig. 1. Computing nonlinear minimization problem by ZNN model (6) using
the sign-bi-power activation function with ̟ = 5 in front of constant noise
υ = 0.5. (a) Neural output x(t). (b) Residual error ‖z(x(t), t)‖2 .
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Fig. 2. Computing nonlinear minimization problem by RZNN model (8)
with γ1 = γ2 = 5 in front of constant noise υ = 0.5. (a) Neural output x(t).
(b) Residual error ‖z(x(t), t)‖2 .

solving time-dependent nonlinear minimization (1) and its

equivalent nonlinear equation system (2) as below:

Qẋ = −γ1Φ(z)− γ2Φ

(

z + γ1

∫ t

0

Φ(z)dτ

)

− ∂z

∂t
, (27)

where independent variable t is omitted for presentation con-

venience; and coefficient matrix Q and vector ∂z
∂t are defined

as the same ones of RZNN model (8).

If external disturbances are injected in LTRNN model (27),

the noise-tolerant LTRNN model is directly given below

via considering the noise-disturbed second-order nonlinear

dynamic system (21):

Qẋ = −γ1Φ(z)− γ2Φ

(

z + γ1

∫ t

0

Φ(z)dτ

)

− ∂z

∂t
+ υ.

(28)

After proposing the above LTRNN models, we proceed

to prove the superior finite-convergence and noise-tolerant

properties via the following theorems.

Theorem 4: The neural output x(t) of LTRNN model (27)

is capable of converging to the optimal solution x∗(t) of time-

dependent nonlinear minimization (1).

Proof: As observed in the design process of LTRNN model

(27), we can conclude that LTRNN model (27) is an equivalent

extended form of the second-order nonlinear formula (9) via

defining e(t) = ∂g(x(t),t)
∂x(t) = z (x(t), t). Then, according to

Theorem 1, it follows that LTRNN model (27) is globally

stable. Therefore, neural output x(t) of the LTRNN model

(27) globally converges to the optimal solution x∗(t) of time-

dependent nonlinear minimization (1). This completes proof.

✷
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Fig. 3. Computing nonlinear minimization problem by LTRNN model
(27) using the sign-bi-power activation function with γ1 = γ2 = 5 in
front of constant noise υ = 0.5. (a) Neural output x(t). (b) Residual error
‖z(x(t), t)‖2 .

Theorem 5: The neural output x(t) of LTRNN model (27)

is capable of converging to the optimal solution x∗(t) of time-

dependent nonlinear minimization (1) within finite time, with

the convergence upper bound tf being

tf <
γ1 + γ2

γ1γ2(1 − p)
max

{

|e−(0)|1−p, |e+(0)|1−p
}

,

as long as φ(e) =
(

|e|p + |e|1/p
)

sgn(e) with 0 < p <
1, where sgn(·) denotes the sign function, and e+(0) =
max{e(t)} and e−(0) = min{e(t)}.

Proof: We can complete the proof in a similar way accord-

ing to previous theorems. ✷

Theorem 6: The neural output x(t) of the noise tolerant

LTRNN model (28) is capable of converging to the optimal

solution x∗(t) of time-dependent nonlinear minimization (1)

even in the presence of unknown additive constant noises.

Proof: We can complete the proof in a similar way accord-

ing to previous theorems. ✷

IV. NUMERICAL VERIFICATIONS

To demonstrate the superior property of LTRNN model (27)

for time-dependent nonlinear minimization (2), ZNN model

(6) and RZNN model (8) are also applied to solve a time-

dependent nonlinear minimization problem under various dif-

ferent noises. Note that ZNN (6) and LTRNN (27) are activated

by the sign-bi-power function φ(e) =
(

|e|p + |e|1/p
)

sgn(e)
with p = 0.8. Now, we consider the following solvable

nonlinear minimization example:

min
x(t)∈R4

g (x(t), t) , ∀t ∈ [0,∞) (29)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]
T and the expression

of g (x(t), t) is defined as

g =(x1 + t)2 + (x2 + t)2 + (x3 − exp(−t))2

+ (x4 − exp(−t))2 + (x1 + sin(t))x3

− (x1 + ln(0.1t+ 1))(x2 + sin(t)) + 0.1(t− 1)x3x4

with independent variable t deleted for presentation conve-

nience. Furthermore, z(x(t), t) can be obtained as

z =



















2(x1 + t) + x3 − (x2 + sin(t)) = 0,

2(x2 + t)− (x1 + ln(0.1t+ 1)) = 0,

2(x3 − exp(−t)) + (x1 + sin(t)) + 0.1(t− 1)x4 = 0,

2(x4 − exp(−t)) + 0.1(t− 1)x3 = 0.
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Fig. 4. Computing nonlinear minimization problem by ZNN model (6) using
the sign-bi-power activation function with ̟ = 10 under constant noise
υ = 2 sin(t). (a) Neural output x(t). (b) Residual error ‖z(x(t), t)‖2 .
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Fig. 5. Computing nonlinear minimization problem by RZNN model (8)
with γ1 = γ2 = 10 under dynamic noise υ = 2 sin(t). (a) Neural output
x(t). (b) Residual error ‖z(x(t), t)‖2 .

In this example, we consider different situations according to

the types of external disturbances. In general, constant and

dynamic noises are two kinds of major representatives of exter-

nal disturbances. Therefore, in the following simulations, we

mainly consider the constant and dynamic noises as external

disturbances.

1) Constant Noise: First, the constant noise υ = 0.5 is

taken into account. From a starting point located in x(0) ∈
[−4, 4]4, such three neural-network models are explored to

address the above nonlinear minimization problem under the

same conditions. Computer simulative results are compara-

tively displayed in Figs. 1-3. Figure 1 displays the computing

results generated by ZNN (6) under design parameter ̟ = 5.

Because ZNN model (6) is activated by the sign-bi-power

function, the residual error decreases quickly at first. However,

‖z(x(t), t)‖2 does not converge to 0 finally. That is to say,

ZNN model (6) cannot suppress external noises so that it gen-

erates a relatively large error. Figure 2 shows the computing

results generated by RZNN model (8) with design parameters

γ1 = γ2 = 5. As seen from this figure, the residual error

‖z(x(t), t)‖2 can converge to 0 but it need about 5 s. The

convergence time is relatively longer. At last, under the same

conditions, Figure 3 shows the computing results generated by

LTRNN model (27) with design parameters γ1 = γ2 = 5. It

follows from this figure that ‖z(x(t), t)‖2 can decrease to 0

quickly within limited time 0.8 s. The convergence speed of

residual error ‖z(x(t), t)‖2 solved by LTRNN model (27) is

about 6 times faster than that by RZNN model (8). The results

show that LTRNN model (27) is a best model for solving time-

dependent nonlinear minimization (2) under constant noise,

compared to ZNN model (6) and RZNN model (8).
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Fig. 6. Computing nonlinear minimization problem by LTRNN model (27)
using the sign-bi-power activation function with γ1 = γ2 = 10 in front
of dynamic noise υ = 2 sin(t). (a) Neural output x(t). (b) Residual error
‖z(x(t), t)‖2 .
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Fig. 7. Residual error ‖z(x(t), t)‖2 generated by LTRNN model (8), ZNN
model (6) and RZNN model (8) with ̟ = γ1 = γ2 = 10 in front of different
types of noises. (a) Bounded additive noise υ = 15. (b) Linearly increasing
noise υ = 3t.

2) Dynamic Noise: In this part, a more general situation

is considered: dynamic noise, which exists more frequently in

practical engineering fields. Without losing generality, such a

dynamic noise is set as υ = 2 sin(t). Then, we apply ZNN (6),

RZNN (8) and LTRNN (27) to compute the above example

under dynamic noise υ = 2 sin(t). With design parameters

̟ = γ1 = γ2 = 10, and from a starting point located in

x(0) ∈ [−4, 4]4, simulative results are comparatively generated

in Figs. 4-6, from which we are able to draw a conclusion that

the residual error generated by ZNN (6) is always changing

with the direction of the dynamic noise υ = 2 sin(t); the

residual error generated by RZNN (8) can decrease to 0 but its

convergence speed is slow; and the residual error generated by

LTRNN model (27) is capable of decreasing to zero with finite

time 0.5 s and the convergence time is the shortest. Although

the additive noise is dynamic, LTRNN model (27) is still

capable of suppressing the external disturbance. In addition,

the convergence speed still achieves finite time. These facts

further demonstrate the advantage of LTRNN model (27) for

solving time-dependent nonlinear minimization problems.

We conduct further simulations by using such three models

with other conditions unchanged under different types of

noises. The bounded additive noise is considered firstly, which

is set as υ = 15. With the other conditions unchanged, the

convergence behavior of residual error ‖z(x(t), t)‖2 produced

by LTRNN (27), ZNN (6) and RZNN (8) is shown in Fig. 7(a).

When disturbed by the bounded noise, LTRNN model (27) can

still achieve noise suppression and limited-time convergence,

while ZNN model (6) and RZNN model (8) cannot converge

to 0 within limited time. Besides, we further investigate the
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linearly increasing noise, which is set as υ = 3t. With

other conditions unchanged, the corresponding convergence

behavior of residual error ‖z(x(t), t)‖2 is shown in Fig. 7(b),

which demonstrates that LTRNN model (27) is still effective,

while the other models completely lose efficacy.

In brief, we reach a decision that LTRNN model (27) is the

best model for solving time-dependent nonlinear minimization

problem even under various external disturbances.

V. CONCLUSION

Based on the second-order nonlinear design formula, the

LTRNN model has been established according to the method

of ZNN for time-dependent nonlinear minimization. Rigorous

theoretical analyses have been given to simultaneously achieve

limited-time convergence and inherently noise suppression by

LTRNN. In order to highlight the outstanding advantage of

LTRNN, ZNN and its improved model have been applied to

time-dependant nonlinear minimization solving. Comparative

numerical results have further validated the efficacy and advan-

tage of LTRNN for nonlinear minimization. This work is for

the first time to solve time-dependent nonlinear minimization

in noisy environments by devising LTRNN with limited-time

convergence and noise tolerance simultaneously, making a

progress in theory. The future work is to apply the LTRNN

model to some practical applications.
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