192 research outputs found

    Clustering algorithms for sensor networks and mobile ad hoc networks to improve energy efficiency

    Get PDF
    Includes bibliographical references (leaves 161-172).Many clustering algorithms have been proposed to improve energy efficiency of ad hoc networks as this is one primary challenge in ad hoc networks. The design of these clustering algorithms in sensor networks is different from that in mobile ad hoc networks in accordance with their specific characteristics and application purposes. A typical sensor network, which consists of stationary sensor nodes, usually has a data sink because of the limitation on processing capability of sensor nodes. The data traffic of the entire network is directional towards the sink. This directional traffic burdens the nodes/clusters differently according to their distance to the sink. Most clustering algorithms assign a similar number of nodes to each cluster to balance the burden of the clusters without considering the directional data traffic. They thus fail to maximize network lifetime. This dissertation proposes two clustering algorithms. These consider the directional data traffic in order to improve energy efficiency of homogeneous sensor networks with identical sensor nodes and uniform node distribution. One algorithm is for sensor networks with low to medium node density. The other is for sensor networks with high node density. Both algorithms organize the clusters in such a way that the cluster load is proportional to the cluster energy stored, thereby equalizing cluster lifetimes and preventing premature node/cluster death. Furthermore, in a homogeneous sensor network with low to medium node density, the clusterhead is maintained in the central area of the cluster through re-clustering without ripple effect to save more energy. The simulation results show that the proposed algorithms improve both the lifetime of the networks and performance of data being delivered to the sink. A typical mobile ad hoc network, which usually consists of moveable nodes, does not have a data sink. Existing energy-efficient clustering algorithms maintain clusters by periodically broadcasting control messages. In a typical mobile ad hoc network, a greater speed of node usually needs more frequent broadcasting. To efficiently maintain the clusters, the frequency of this periodic broadcasting needs to meet the requirement of the potentially maximum speed of node. When the node speed is low, the unnecessary broadcasting may waste significant energy. Furthermore, some clustering algorithms limit the maximum cluster size to moderate the difference in cluster sizes. Unfortunately, the cluster sizes in these algorithms still experience significant difference. The larger clusters will have higher burdens. Some clustering algorithms restrict the cluster sizes between the maximum and minimum limits. The energy required to maintain these clusters within the maximum and minimum sizes is quite extensive, especially when the nodes are moving quickly. Thus, energy efficiency is not optimized

    Spectrum and transmission range aware clustering for cognitive radio ad hoc networks

    Get PDF
    Cognitive radio network (CRN) is a promising technology to overcome the problem of spectrum shortage by enabling the unlicensed users to access the underutilization spectrum bands in an opportunistic manner. On the other hand, the hardness of establishing a fixed infrastructure in specific situations such as disaster recovery, and battlefield communication imposes the network to have an ad hoc structure. Thus, the emerging of Cognitive Radio Ad Hoc Network (CRAHN) has accordingly become imperative. However, the practical implementation of CRAHN faced many challenges such as control channel establishment and the scalability problems. Clustering that divides the network into virtual groups is a reliable solution to handle these issues. However, previous clustering methods for CRAHNs seem to be impractical due to issues regarding the high number of constructed clusters and unfair load distribution among the clusters. Additionally, the homogeneous channel model was considered in the previous work despite channel heterogeneity is the CRN features. This thesis addressed these issues by proposing two clustering schemes, where the heterogeneous channel is considered in the clustering process. First, a distributed clustering algorithm called Spectrum and Transmission Range Aware Clustering (STRAC) which exploits the heterogeneous channel concept is proposed. Here, a novel cluster head selection function is formulated. An analytical model is derived to validate the STRAC outcomes. Second, in order to improve the bandwidth utilization, a Load Balanced Spectrum and Transmission Range Aware Clustering (LB-STRAC) is proposed. This algorithm jointly considers the channel heterogeneity and load balancing concepts. Simulation results show that on average, STRAC reduces the number of constructed clusters up to 51% compared to conventional clustering technique, Spectrum Opportunity based Clustering (SOC). In addition, STRAC significantly reduces the one-member cluster ratio and re-affiliation ratio in comparison to non-heterogeneity channel consideration schemes. LB-STRAC further improved the clustering performance by outperforming STRAC in terms of uniformity and equality of the traffic load distribution among all clusters with fair spectrum allocation. Moreover, LB-STRAC has been shown to be very effective in improving the bandwidth utilization. For equal traffic load scenario, LB-STRAC on average improves the bandwidth utilization by 24.3% compared to STRAC. Additionally, for varied traffic load scenario, LB-STRAC improves the bandwidth utilization by 31.9% and 25.4% on average compared with STRAC for non-uniform slot allocation and for uniform slot allocation respectively. Thus, LB-STRAC is highly recommended for multi-source scenarios such as continuous monitoring applications or situation awareness applications

    ENERGY-EFFICIENT ROUTING ALGORITHMS FOR WIRELESS SENSOR NETWORKS

    Get PDF
    A wireless sensor network (WSN) is made of tiny sensor nodes usually deployed in high density within a targeted area to monitor a phenomenon of interest such as temperature, vibration or humidity. The WSNs can be employed in various applications (e.g., Structural monitoring, agriculture, environment monitoring, machine health monitoring, military, and health). For each application area there are different technical issues and remedies. Various challenges need to be considered while setting up a WSN, including limited computing, memory and energy resources, wireless channel errors and network scalability. One way of addressing these problems is by implementing a routing protocol that efficiently uses these limited resources and hence reduces errors, improves scalability and increases the network lifetime. The topology of any network is important and wireless sensor networks (WSNs) are no exception. In order to effectively model an energy-efficient routing algorithm, the topology of the WSN must be factored in. However, little work has been done on routing for WSNs with regular patterned topologies, except for the shortest path first (SPF) routing algorithms. The issue with the SPF algorithm is that it requires global location information of the nodes from the sensor network, which proves to be a drain on the network resources. In this thesis a novel algorithm namely, BRALB (Biased Random Algorithm for Load Balancing) is proposed to overcome the issues faced in routing data within WSNs with regular topologies such as square-base topology and triangle-based topology. It is based on random walk and probability. The proposed algorithm uses probability theory to build a repository of information containing the estimate of energy resources in each node, in order to route packets based on the energy resources in each node and thus does not require any global information from the network. It is shown in this thesis by statistical analysis and simulations that BRALB uses the same energy as the shortest path first routing as long as the data packets are comparable in size to the inquiry packets used between neighbours. It is also shown to balance the load (i.e. the packets to be sent) efficiently among the nodes in the network. In most of the WSN applications the messages sent to the base station are very small in size. Therefore BRALB is viable and can be used in sensor networks employed in such applications. However, one of the constraints of BRALB is that it is not very scalable; this is a genuine concern as most WSNs deployment is large scale.In order to remedy this problem, C-BRALB (Clustered Biased Random Algorithm for Load Balancing) has been proposed as an extension of BRALB with clustering mechanism. The same clustering technique used in Improved Directed Diffusion (IDD) has been adopted for C-BRALB. The routing mechanism in C-BRALB is based on energy biased random walk. This algorithm also does not require any global information apart from the initial flooding initiated by the sink to create the clusters. It uses probability theory to acquire all the information it needs to route packets based on energy resources in each cluster head node. It is shown in this thesis by using both simulations and statistical analysis that C-BRALB is an efficient routing algorithm in applications where the message to be sent is comparable to the inquiry message among the neighbours. It is also shown to balance the load (i.e. the packets to be sent) among the neighbouring cluster head nodes

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Adaptive and Scalable Controller Placement in Software-Defined Networking

    Get PDF
    Software-defined networking (SDN) revolutionizes network control by externalizing and centralizing the control plane. A critical aspect of SDN is Controller Placement (CP), which involves identifying the ideal number and location of controllers in a network to fulfill diverse objectives such as latency constraints (node-to-controller and controller-controller delay), fault tolerance, and controller load. Existing optimization techniques like Multi-Objective Particle Swarm Optimisation (MOPSO), Adapted Non-Dominating Sorting Genetic Algorithm-III (ANSGA-III), and Non-Dominating Sorting Genetic Algorithm-II (NSGA-II) struggle with scalability (except ANSGA-III), computational complexity, and inability to predict the required number of controllers. This thesis proposes two novel approaches to address these challenges. First, an enhanced version of NSGA-III with a repair operator-based approach (referred to as ANSGA-III) is introduced, enabling efficient CP in SD-WAN by optimizing multiple conflicting objectives simultaneously. Second, a Stochastic Computational Graph Model with Ensemble Learning (SCGMEL) is developed, overcoming scalability and computational inefficiency associated with existing methods. SCGMEL employs stochastic gradient descent with momentum, a learning rate decay, a computational graph model, a weighted sum approach, and the XGBoost algorithm for optimization and machine learning. The XGBoost predicts the number of controllers needed and a supervised classification algorithm called Learning Vector Quantization (LVQ) is used to predict the optimal locations of controllers. Additionally, this research introduces the Improved Switch Migration Decision Algorithm (ISMDA) as part of the holistic contribution. ISMDA is implemented on each controller to ensure even load distribution throughout the controllers. It functions as a plug-and-play module, periodically checking if the load surpasses a certain limit. ISMDA improves controller throughput by approximately 7.4% over CAMD and roughly 1.1% over DALB. ISMDA also outperforms DALB and CAMD with a decrease of 5.7% and 1%, respectively, in terms of controller response time. Additionally, ISMDA outperforms DALB and CAMD with a decrease of 1.7% and 5.6%, respectively, in terms of the average frequency of migrations. The established framework results in fewer switch migrations during controller load imbalance. Finally, ISMDA proves more efficient than DALB and CAMD, with an estimated 1% and 6.4% lower average packet loss, respectively. This efficiency is a result of the proposed migration efficiency strategy, allowing ISMDA to handle higher loads and reject fewer packets. Real-world experiments were conducted using the Internet Zoo topology dataset to evaluate the proposed solutions. Six objective functions, including worst-case switch-to-controller delay, load balancing, reliability, average controller-to-controller latency, maximum controller-to-controller delay, and average switch-to-controller delay, were utilized for performance evaluation. Results demonstrated that ANSGA-III outperforms existing algorithms in terms of hypervolume indicator, execution time, convergence, diversity, and scalability. SCGMEL exhibited exceptional computational efficiency, surpassing ANSGA-III, NSGA-II, and MOPSO by 99.983%, 99.985%, and 99.446% respectively. The XGBoost regression model performed significantly better in predicting the number of controllers with a mean absolute error of 1.855751 compared to 3.829268, 3.729883, and 1.883536 for KNN, linear regression, and random forest, respectively. The proposed LVQ-based classification method achieved a test accuracy of 84% and accurately predicted six of the seven controller locations. To culminate, this study presents a refined and intelligent framework designed to optimize Controller Placement (CP) within the context of SD-WAN. The proposed solutions effectively tackle the shortcomings associated with existing algorithms, addressing challenges of scalability, intelligence (including the prediction of optimal controller numbers), and computational efficiency in the pursuit of simultaneous optimization of multiple conflicting objectives. The outcomes underscore the supremacy of the suggested methodologies and underscore their potential transformative influence on SDN deployments. Notably, the findings validate the efficacy of the proposed strategies, ANSGA-III and SCGMEL, in enhancing the optimization of controller placement within SD-WAN setups. The integration of the XGBoost regression model and LVQ-based classification technique yields precise predictions for both optimal controller quantities and their respective positions. Additionally, the ISMDA algorithm emerges as a pivotal enhancement, enhancing controller throughput, mitigating packet losses, and reducing switch migration frequency—collectively contributing to elevated standards in SDN deployments

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Design and evaluation of a self-configuring wireless mesh network architecture

    Get PDF
    Wireless network connectivity plays an increasingly important role in supporting our everyday private and professional lives. For over three decades, self-organizing wireless multi-hop ad-hoc networks have been investigated as a decentralized replacement for the traditional forms of wireless networks that rely on a wired infrastructure. However, despite the tremendous efforts of the international wireless research community and widespread availability of devices that are able to support these networks, wireless ad-hoc networks are hardly ever used. In this work, the reasons behind this discrepancy are investigated. It is found that several basic theoretical assumptions on ad-hoc networks prove to be wrong when solutions are deployed in reality, and that several basic functionalities are still missing. It is argued that a hierarchical wireless mesh network architecture, in which specialized, multi-interfaced mesh nodes form a reliable multi-hop wireless backbone for the less capable end-user clients is an essential step in bringing the ad-hoc networking concept one step closer to reality. Therefore, in a second part of this work, algorithms increasing the reliability and supporting the deployment and management of these wireless mesh networks are developed, implemented and evaluated, while keeping the observed limitations and practical considerations in mind. Furthermore, the feasibility of the algorithms is verified by experiment. The performance analysis of these protocols and the ability to deploy the developed algorithms on current generation off-the-shelf hardware indicates the successfulness of the followed research approach, which combines theoretical considerations with practical implementations and observations. However, it was found that there are also many pitfalls to using real-life implementation as a research technique. Therefore, in the last part of this work, a methodology for wireless network research using real-life implementation is developed, allowing researchers to generate more reliable protocols and performance analysis results with less effort
    corecore