
Jan Heißwolf

A Scalable and Adaptive
Network on Chip for
Many-Core Architectures

A Scalable and Adaptive
Network on Chip

for Many-Core Architectures

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS (Dr.-Ing.)

von der Fakultät für
Elektrotechnik und Informationstechnik

am Karlsruher Institut für Technologie (KIT)
genehmigte

DISSERTATION

von

Dipl.-Ing. Jan Heißwolf

geboren in Backnang

Tag der mündlichen Prüfung:
11.11.2014

Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker
Korreferent: Prof. Dr. sc.techn. Andreas Herkersdorf

Abstract

The continuous observance of Moore’s law has enabled to continuously imple-
ment increasingly powerful single-core processors than in the past. The increase
of clock frequency and complexity of the microarchitecture were previously the
main means enabling this performance enhancement. However, physical and
architectural limitations necessitated a rethinking in recent times. Instead of in-
creasing the performance of a single core, the number of cores is elevated today
in order to enhance the computing power of a system. This concept of multi-core
and many-core architectures enables to increase the performance almost linearly
with the number of cores. However, existing bus-based communication infras-
tructures emerged as a limiting factor for this method of performance increase.
Consequently, networks on chip have been proposed to create scalable many-core
processor systems with respect to communication.

Inspired by these developments, a network on chip based communication infras-
tructure is presented in this work. In order to simplify and accelerate the design
of future many-core systems, a modular simulator-based evaluation and design
methodology for networks on chip is introduced. As a basis for the proposed
modular communication system, a scalable state of the art network on chip is
developed in this work. This network is extended by novel mechanisms for
quality of service, self-optimization and fault tolerance.

In the context of quality of service, a novel approach for run-time adaptive band-
width reservation, for end-to-end connections is proposed. It enables adjustable,
hard guarantees for throughput and latency. An approach for region-based
allocation of communication resources, enables run-time establishment of vir-
tual networks in order to isolate the communication of individual applications.
Novel self-optimization strategies are intended to increase the performance of
the network and optimize its power consumption without necessitating complex
software management. An innovative approach for detection, localization and
treatment of permanent errors prepares the presented network on chip architec-
ture for future technologies; with such errors being expected to occur frequently.
With these aspects and concepts, this work provides a thorough and flexible
approach for scalable communication in future many-core processor systems.

i

Zusammenfassung
Die kontinuierliche Einhaltung des mooreschen Gesetzes hat in der Vergangenheit
die Realisierung immer leistungsfähigerer Einkernprozessoren ermöglicht. Die
Steigerung der Taktfrequenz und komplexer werdende Mikroarchitekturen waren
die maßgeblichen Mittel um diese Leistungssteigerung zu ermöglichen. Physika-
lische Limitierungen und Grenzen bei der Komplexität der Mikroarchitekturen
haben in jüngerer Zeit ein Umdenken nötig gemacht. Statt die Performanz eines
einzelnen Kerns zu steigern, wurde nun die Anzahl der Prozessorkerne erhöht,
um die Rechenleistung eines Systems zu erhöhen. Dieses Prinzip der Mehr- und
Multikernprozessoren bietet nahezu eine beliebige Leistungssteigerung. Als ein
limitierender Faktor bei diesem Prinzip der Performanzsteigerung stellten sich
bestehende, busbasierte Kommunikationsinfrastrukturen heraus. Networks on
Chip stellen den benötigten Paradigmenwechsel dar, der es ermöglichen soll,
skalierbare Mehrkernprozessorsysteme zu realisieren.

Inspiriert durch diese Entwicklungen wird in dieser Arbeit eine Network-on-Chip-
basierte Kommunikationsinfrastruktur vorgestellt. Um den komplexen Entwurf
zukünftiger Mehrkernsysteme zu vereinfachen und zu beschleunigen, wird ein
simulator- und baukastenbasierter Ansatz zur Evaluierung und Generierung von
Networks on Chip vorgestellt. Als Basis des modularen Baukastens wurde ein
skalierbares Network on Chip entwickelt, das dem Stand der Technik entspricht.
Dieses Netzwerk wird im Rahmen dieser Arbeit um neuartige Mechanismen für
Quality of Service, Selbstoptimierung und Fehlertoleranz erweitert.

Im Kontext von Quality of Service wird ein neuartiges Konzept zur laufzeitadap-
tiven Bandbreitenreservierung für Ende-zu-Ende-Verbindungen mit anpassbaren
harten Garantien für Durchsatz und Latenz realisiert. Ein Konzept zur regionsba-
sierten Allokation von Kommunikationsressourcen ermöglicht die Laufzeitreali-
sierung virtueller Netzwerke und damit die Isolation einzelner Anwendungen.
Neuartige Selbstoptimierungsstrategien sollen dazu dienen, die Performanz des
Netzwerkes zu steigern und dessen Energieverbrauch zu optimieren, ohne das
ein komplexes Softwaremanagement nötig ist. Ein innovatives Konzept für die
Erkennung, Lokalisierung und Behandlung von permanenten Fehlern bereitet die
vorgestellte Architektur auf zukünftige Technologien vor, bei denen vermehrt mit
solchen Fehlern zu rechnen ist. Mit der Summe all dieser Aspekte und Konzepte
bietet diese Arbeit einen ganzheitlichen und flexiblen Ansatz für die skalierbare
Kommunikation in zukünftigen Mehrkernprozessorsystemen.

iii

Vorwort

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mit-
arbeiter am Institut für Technik der Informationsverarbeitung (ITIV) innerhalb des
Karlsruher Instituts für Technologie (KIT). In dieser Zeit habe ich nicht nur einen
sehr vielseitigen Arbeitsalltag mit Lehre, Studentenbetreuung, Implementierungs-
arbeiten und Forschung erleben dürfen, sondern ich habe vor allem großartige
Menschen getroffen und mit ihnen zusammengearbeitet. Ohne nun eine lange
Liste von Namen zu nennen, möchte ich mich bei allen bedanken, die das ITIV zu
dem gemacht haben was es ist und dafür gesorgt haben, dass ich immer gerne
zur Arbeit gekommen bin.

Meinem Doktorvater, Herrn Prof. Jürgen Becker, danke ich für die Anstellung am
ITIV und sein Vertrauen, für seine Unterstützung, die freie Arbeitsweise und die
Betreuung dieser Arbeit. Herrn Prof. Andreas Herkersdorf danke ich für die gute
und erfolgreiche Zusammenarbeit im InvasIC Projekt, für das Korreferat dieser
Arbeit und die damit verbundene Zeit und Mühe. Auch bei Herrn Prof. Teich
möchte ich mich an dieser Stelle für die gute Zusammenarbeit im Teilprojekt B5
und für die Initiierung des InvasIC Projektes bedanken. Des Weiteren gilt mein
Dank Herrn Prof. Hohmann, Herrn Prof. Dostert und Herrn Prof. Jelonnek für
ihre Rolle als Prüfer und die damit verbundene Zeit.

Im Umfeld des InvasIC Projektes, in dem die vorliegende Arbeit entstanden ist,
hatte ich die Möglichkeit viele nette Kollegen kennenzulernen und mit ihnen
zusammenzuarbeiten. Die interdisziplinäre und interkulturelle Teamarbeit habe
ich sehr genossen und dabei viel gelernt. Besonders möchte ich mich bei Aurang
Zaib und Andreas Weichslgartner für die gute und erfolgreiche Zusammenar-
beit bedanken. Die vielen Telefongespräche, das gemeinsame Publizieren und
Hardware-Debugging hat immer bestens funktioniert. Darüber hinaus möchte ich
mich bei Ralf König und Timo Stripf für ihre Unterstützung im InvasIC Projekt
und die zahlreichen fachlichen Diskussionen bedanken.

Als ich vor etwas mehr als fünf Jahren am ITIV angefangen habe, wurde Michael
Rückauer zu meinem Büronachbarn. Michael stand mir als gelernter Informatiker
immer mit Rat und Tat zur Seite. Für seine Hilfe, die vielen spannenden und
bereichernden Gespräche und Diskussionen bin ich ihm sehr dankbar. Auch bei
Stephanie Friederich bedanke ich mich für die tolle Büronachbarschaft im letzten
Jahr und die sehr gute Zusammenarbeit im InvasIC Projekt.

v

Während meiner Zeit am ITIV habe ich zahlreiche studentische Arbeiten betreut.
Ohne diese Arbeiten wäre die vorliegende Dissertation sicher nicht in dieser Art
und in diesem Umfang möglich gewesen. Für die umfangreichen Implementie-
rungsarbeiten im Rahmen von Bachelor- und Masterarbeiten möchte ich mich
hier ganz herzlich bei allen betreuten Studenten bedanken. Besonders hervorhe-
ben möchte ich die Arbeit meiner wissenschaftlichen Hilfskräfte Martin Kupper,
Maximilian Singh und Simon Bischof. Die Zusammenarbeit mit ihnen war für
mich immer sehr abwechslungsreich und hat mir viel Freude bereitet, auch dafür
bedanke ich mich.

Bei meinen Eltern bedanke ich mich dafür, dass sie immer an mich geglaubt und
mich jederzeit bedingungslos unterstützt haben. Sie erkannten meine Leidenschaft
für Technik schon in jungen Jahren und förderten diese. Die Unterstützung meiner
Eltern ging so weit, dass sie es mir bereits in jungen Jahren ermöglicht haben ein
eigenes IT-Gewerbe zu führen. Für all diese Unterstützung bin ich ihnen sehr
dankbar. Auch bei meinem Bruder Steffen, sowie meinem gesamten Freundeskreis
möchte ich mich an dieser Stelle für ihre Unterstützung und die Ablenkung von
der Arbeit bedanken.

Mein größter Dank gilt Marina. Du hast immer Verständnis für die langen Ar-
beitszeiten und die wenige gemeinsame Freizeit gehabt. Du hast mich immer
unterstützt und mir den Rücken freigehalten, damit ich mich der vorliegenden
Arbeit widmen konnte. Für deine Unterstützung, dein Verständnis und deine
unendliche Liebe danke ich dir von ganzem Herzen.

Karlsruhe, im Dezember 2014

Jan Heißwolf

vi

Contents

1. Introduction 1
1.1. Prologue . 4

1.1.1. Amdahl’s Law from the Communication Perspective 5
1.2. Motivation . 7
1.3. Contribution . 8
1.4. Outline . 10

2. Fundamentals 13
2.1. System on a Chip . 13
2.2. Multi-Core and Many-Core Architectures 14

2.2.1. Shared Memory Architecture 15
2.2.2. Distributed Memory Architecture 16
2.2.3. Hybrid Distributed Shared Memory Architecture 17
2.2.4. Distributed Shared Memory Architecture 17
2.2.5. Existing Many-Core Architectures 18

2.3. Rudimentary On-Chip Communication 23
2.3.1. Direct Connections . 24
2.3.2. Bus Systems . 24

2.4. Networks on Chip . 28
2.4.1. Components . 29
2.4.2. Topology . 32
2.4.3. Switching Schemes . 36
2.4.4. Flow Control . 45
2.4.5. Routing . 48

2.5. Dependability . 54
2.5.1. Terminology . 55
2.5.2. Hierarchical Fault Modeling 55
2.5.3. Redundancy . 55
2.5.4. Fault Classes . 56

vii

Contents

2.5.5. Physical Failure Mechanisms 57

3. Context of Invasive Computing 59
3.1. Basic Principle of Invasive Computing 59

3.1.1. Invasive Programming Language 60
3.2. InvasIC Hardware Architecture . 64

3.2.1. Tiles . 65
3.2.2. Invasive Network on Chip 69

3.3. Software . 73
3.3.1. Compiler . 74
3.3.2. Operating System . 75

3.4. Hardware Prototyping . 77
3.4.1. Single-FPGA Prototyping . 77
3.4.2. CHIPit Prototyping System 77

3.5. Summary . 79

4. Flexible NoC Architecture and Design Flow Concept 81
4.1. Communication Requirements and Constraints 81

4.1.1. General Communication Requirements 82
4.1.2. On-Chip Communication Requirements 84
4.1.3. Communication Constraints of Scalable Architectures 86
4.1.4. Communication Requirements of Invasive Computing . . . 86
4.1.5. Summary . 88

4.2. State of the Art NoC Architectures 89
4.2.1. SoCBUS . 89
4.2.2. Hermes . 89
4.2.3. SoCIN . 90
4.2.4. Æthereal . 90
4.2.5. Nostrum NoC . 91
4.2.6. QNoC . 91
4.2.7. Xpipes . 92
4.2.8. Kilo-NoC . 92
4.2.9. Summary . 93

4.3. Fundamental Architecture Concept 95
4.3.1. Switching Scheme and Quality of Service 96
4.3.2. Scalability and Distributed Self-Optimization 97

viii

Contents

4.3.3. Region-based Distributed Management 98
4.3.4. Fault Tolerance and Dependability 99
4.3.5. Design-time Flexibility and Adaptability 99

4.4. Semiautomatic NoC Design Flow . 100
4.4.1. Evaluation and Implementation Flow 101
4.4.2. Application of the Evaluation and Implementation Flow . . 102

4.5. Summary . 103

5. Basic Architecture Realization 105
5.1. Scalable Basic Router Design . 105

5.1.1. Virtual Channels . 107
5.1.2. Network Layer Protocol . 110
5.1.3. Pipeline Model . 113
5.1.4. Modular Distributed Routing 115
5.1.5. Implementation and Functioning 119
5.1.6. Latency and Bandwidth Analysis 124

5.2. Simulation Framework . 128
5.2.1. State of the Art NoC Simulators 129
5.2.2. Simulator Concept . 130
5.2.3. Traffic Generation . 133
5.2.4. NoC Model . 139
5.2.5. Analysis and Evaluation Capabilities 141

5.3. HDL Model and Implementation . 142
5.3.1. HDL Test Environment . 143
5.3.2. Synthesis . 143

5.4. Case Study . 145
5.4.1. Performance . 146
5.4.2. Implementation Costs . 150
5.4.3. Comparison to State of the Art NoC Implementations 153

5.5. Extensions . 156
5.5.1. Control Network Layer . 156
5.5.2. Circuit Switching Extension 159
5.5.3. Monitoring Infrastructure . 164
5.5.4. In-Order Packet Processing Support 167
5.5.5. High Bandwidth Router . 168

5.6. Summary . 175

ix

Contents

6. Quality of Service 177
6.1. State of the Art . 178

6.1.1. Scheduling Mechanisms . 178
6.1.2. Resource Allocation . 180
6.1.3. Related Work and Existing QoS Architectures 181

6.2. Run-time Adaptive End-to-End Connections 183
6.2.1. QoS Communication Concept with Hard Guarantees 183
6.2.2. Hardware and Software Implementation 192
6.2.3. Evaluation . 196

6.3. Adaptive QoS Policy Management 204
6.3.1. Run-Time Mapping and Policy Configuration 206
6.3.2. Hardware Implementation 208
6.3.3. Evaluation . 208

6.4. Virtual Networks . 210
6.4.1. Concept of Run-time Adaptive Virtual Networks 212
6.4.2. Implementation . 215
6.4.3. Evaluation . 218

6.5. Summary . 224

7. Self-Optimization and Self-Organization 227
7.1. Distributed Rerouting . 227

7.1.1. Concept of Self-Adaptive Rerouting 228
7.1.2. Hardware Implementation 233
7.1.3. Evaluation . 236

7.2. Auto-GS and Connection Replacement 241
7.2.1. Concept and Implementation 242
7.2.2. Evaluation . 245

7.3. Adaptive Data Collection . 250
7.3.1. Concepts for Region-based Data Collection 252
7.3.2. Implementation . 258
7.3.3. Evaluation . 262

7.4. Autonomous Power Management 267
7.4.1. Run-time Power Management Concept 268
7.4.2. Implementation . 271
7.4.3. Evaluation . 273

7.5. Summary . 277

x

Contents

8. Fault Tolerance and Reliability 279
8.1. State of the Art . 279
8.2. Fault Detection and Localization . 281

8.2.1. Distributed Fault Localization Concept 281
8.2.2. Software Implementation . 284
8.2.3. Evaluation . 287

8.3. Error Treatment . 290
8.3.1. Second Layer Network Concept 290
8.3.2. Hardware Implementation 295
8.3.3. Evaluation . 300

8.4. Summary . 305

9. Conclusion & Future Work 307
9.1. Conclusion . 307
9.2. Future Work . 310

A. Appendix 313
A.1. FPGA-based Many-Core Architecture Prototype 313

A.1.1. Scalable FPGA Prototype . 315
A.2. Service Level Assignment Algorithm 316
A.3. Memory Map . 318
A.4. Control Registers of the NoC . 320
A.5. Parameters of the Simulation Framework 323
A.6. Parameters of the HDL Template . 327

Indexes 331
Figures . 331
Tables . 334

Abbreviations 337

Bibliography 343

Supervised Student Research 369

Own Publications 373

xi

1

1. Introduction
The steady improvement in the production of digital circuits allows continuously
higher integration densities. Thus, systems with increasing complexity can be
implemented on a single chip. Gordon Moore predicted this evolution already
in 1965 [179]. According to Moore’s law, the number of transistors in a dense
integrated circuit doubles every 18 to 24 months. Figure 1.1 shows Moore’s
prediction and different semiconductor devices as well as their transistor counts
and release dates. The diagram shows how well Moore’s law has been adhered
to, until today.

transistor count doubling
every two years
according to Moore's Law

Figure 1.1.: Transistor count evolution for different microprocessors between 1971-
2011 (black) and the predictions according to Moore’s law (red) [264].

According to the International Technology Roadmap for Semiconductors (ITRS) [120]
it is expected that Moore’s law can be observed for at least the next decade1.

1At the years 2020-2025 many physical dimensions are expected to be crossing the 10 nm threshold.
It is expected that as dimensions approach the 5-7 nm range it will be difficult to operate any

1

1

1. Introduction

The ever-increasing number of transistors has been utilized in the past to improve
the performance of integrated circuits by increasing their complexity. In addition,
the increasing switching speed resulting from new technology nodes enabled to
enhance the clock frequency of integrated circuits continuously. In the past, both
factors played an important role in improving the performance of microprocessors
and central processing units (CPUs).

In recent years, the technology improvement could hardly be used to further
increase the performance of single cores according to Pollack’s rule, which reads
“performance increases roughly proportional to the square root of the increase in com-
plexity” [32]. Figure 1.2 shows integer computation performance enhancement
of new microarchitectures against area increase from the previous generation
microarchitecture; assuming the same process technology.

1

10

1.00 10.00

Area (X)

In
te

ge
r P

er
f (

X
)

Slope = ~0.5

Performance ~ Sqrt(Area)

Figure 1.2.: Microarchitecture performance enhancement and area requirements
according to Pollack’s rule [32].

In addition to Pollack’s rule, various physical limitations prevent designers from
further increasing performance of an individual processor; nowadays. The wire
latencies increase relative to the gate delays for shrinking technologies [215, 111];
notably in large monolithic circuits, such signal propagation delays limit the clock
frequency.

An even more essential problem from the physical perspective is the power
dissipation Ptotal , which is composed of a static and a dynamic part:

Ptotal = Pdyn + Pstat (1.1)

The static component Pstat of the power dissipation consists mainly of leakage
power [42]. The leakage power in turn is proportional to the leakage current and

transistor structure that is utilizing the MOS physics as the basic principle of operation. ITRS
expects that new devices, such as the tunnel transistors, will allow a smooth transition from
traditional complementary metal oxide semiconductor (CMOS) to this new class of devices to reach
these new levels of miniaturization [120].

2

1
the supply voltage. The largest share of the total power of a CMOS circuit is the
dynamic power Pdyn, which can be estimated as follows according to [275, 42]:

Pdyn = Cload · V2
dd · f + Isc · Vdd (1.2)

Cload is the capacity that must be charged or discharged, Vdd is the supply voltage,
f the clock frequency and Isc the short circuit current through p-MOS and n-MOS
transistor during switching. The clock frequency f depends on the supply voltage.
A higher Vdd increases the switching speed. Thus, the supply voltage must be
increased to enhance the clock frequency above a certain threshold, which is
circuit dependent. The correlation between f and Vdd results in a drastic increase
of the dynamic power consumption when increasing the clock frequency of a
circuit. Although Vdd could be decreased in the past for new technologies, the
increased transistor density and the higher clock frequencies led to a dramatic
raise in power density [30]. Figure 1.3 shows the progress in power density
between 1990 and 2010. The peak in power density was reached in 2005 with the
release of Intel’s Pentium 4 processor’ whose power density is nearly comparable
with that of a nuclear reactor.

Figure 1.3.: Near-exponential increase of CPU power density [205].

According to Pollack’s rule and especially due to the power density limitations
resulting from a continuous increase of clock frequency and integration density,
the performance of single cores could hardly be further increased. This was
the main reason for integrating multiple cores on a single integrated circuit die
around the year 2005. Figure 1.3 shows that such chip multiprocessors (CMPs)
helped to limit the power density. CMPs, also known as multi-core or many-
core architectures, overcome the limitations of Pollack’s rule and can be used
to increase the theoretical performance of a system with the number of cores

3

1

1. Introduction

relative to the die area. Since the introduction of the first multi-core architectures,
such as Intel’s Core 2 Duo [91], IBM’s Cell architecture [201] and SUN’s Niagara
multi-core [142], the number of cores was continuously increased. Following that
trend, the first many-core architectures that consist of dozens of cores, have been
developed for research purpose. The most well-known representatives of existing
many-core architectures are the Tile64 processor [18] and Intel’s Larrabee [224] and
Single-chip Cloud Computer (SCC) [113] architectures. However, with the growing
number of cores, the bandwidth and complexity of the on-chip communication
infrastructure must be increased as well to cope with the growing requirements.

1.1. Prologue

Today, many-core architectures are widely accepted as processor architectures
of the future [33]. They solve the physical limitations that prevent designers
from further increasing the performance of single-cores, as previously described.
The improvement in performance gained by the use of multiple processor cores
depends very much on the degree of parallelism of the software. In particular,
parallel execution is limited by the fraction of the software that can be executed
in parallel and simultaneously on multiple cores. This effect is described by
Amdahl’s law [10]:

S(p, n) =
1

(1− p) + p
n

(1.3)

S(p, n) is the speedup experienced from parallel execution on n cores compared
to a sequential execution of a program. The amount p can be executed in parallel
and the amount (1− p) can only be executed sequential. Amdahl’s law shows
that many-core architectures require applications that offer a degree of parallelism
in order to utilize the cores of the architecture. This is a huge challenge from the
software perspective, involving programming languages, compilers, operating
systems and especially applications and algorithms [169]. All of these aspects are
subject to the current research, as described in detail in chapter 3.

The original law of Amdahl does not consider any architectural aspects and ne-
glects other aspects, such as synchronization overhead. Thus, different extensions
have been proposed in the past [6] for refinement. One of the most famous ex-
tensions of Amdahl’s law [109] assumes a hardware architecture where the cores
can either be used separately for parallel execution, or coupled to accelerate the
sequential part (1− p) of the program, as enabled by the KAHRISMA architec-
ture [141][KSHB11]. The communication requirements of parallel applications
and the architectural communication capabilities have not been addressed.

4

1

1.1. Prologue

1.1.1. Amdahl’s Law from the Communication Perspective

In the following paragraph, an attempt will be made to extend Amdahl’s law,
taking into account communication requirements of parallel applications as well
as the communication capabilities of a many-core architecture. This is done to
show how the underlying communication infrastructure impacts the execution
of a parallel application. In order to take the communication requirements of a
parallel program p into account, it is split up in two parts:

p = pl + pg ≤ 1 (1.4)

pl is the part of the parallel program that is independent from global communi-
cation. This means that the communication is only core local2. The part of the
program that requires global communication3 is pg.

Taking communication into account, the total amount of global communication of
a parallel program using n cores must be known. In general, the total amount of
communication c is the sum of the communication or bandwidth of all nodes:

c(n) =
n−1

∑
i=0

ccore(n) ≈ n · ccore (1.5)

Without loss of generality, it is assumed that all nodes of a parallel application
have the same amount of communication ccore, as provided by the approximation
in equation 1.5. A similar assumption was made by Amdahl for the computation
that is divided equally between the cores in equation 1.3.

From the communication perspective, an additional aspect must be taken into
account: the capabilities of the hardware architecture. Without loss of generality it
is assumed for the following that all cores use the same communication infrastruc-
ture with the capacity or bandwidth carch. The bandwidth carch is used to define
an impact factor of the communication infrastructure of a many-core architecture
with respect to the communication c(n) of a parallel application:

fc(n) = max(1,
c(n)
carch

) = max(1,
n · ccore

carch
) ≥ 1 (1.6)

The impact factor fc(n) estimates the influence on the part of a parallel program pg,
which requires global communication. It is equal to 1 as long as the bandwidth

2Local communication refers to communication that does not cross the boundaries of a single core of
the architecture. A core can for sure contain local memory or an exclusive cache hierarchy, which
can be accessed by local communication.

3Global communication crosses the boundaries of a core and can interfere with global communication
of other cores.

5

1

1. Introduction

of the architecture is sufficient for the application. pg is smaller than one, if the
application is affected by bandwidth limitations of the architecture.

Using equation 1.4, 1.5 and 1.6, Amdahl’s law can be extended as follows:

S(pl , pg, fc(n)) =
1

(1− (pl + pg)) +
pl
n +

pg
n · fc(n)

(1.7)

For the extended speedup function, it is assumed that the sequential part of the
program (1− (pl + pg)) is not affected by architectural bandwidth limitations due
to the relatively small communication requirements of the sequential execution.

21 23 25 27 29 211 213

0

10

20

30

40

50

Arch1Arch2

Number of Cores [n]

Sp
ee

du
p

[S
(p

l,
p g

,f
c(

n)
)]

App1-Arch1
App1-Arch2
App2-Arch1
App2-Arch2
Ref. Amdahl

Figure 1.4.: Amdahl’s law from the communication perspective for two differ-
ent applications (both with p = 0.98) on two different architectures:
App1: Much communication (pl = pg = 0.49), App1: Little com-
munication (pl = 0.89, pg = 0.09) - Arch1: High communication
bandwidth (carch = 100 ∗ ccore), Arch2: Low communication band-
width (carch = 10 ∗ ccore).

Figure 1.4 shows the speedup S for two different applications and two archi-
tectures, with parallelism n between 1 and 16384. The extension of Amdahl’s
law, given in equation 1.7, is applied to calculate S. App1 is an application with
relatively high communication requirements, whereas App2 has very moderate
communication requirements. Both application characteristics are applied on two
different communication architectures. Arch1 is able to process a high amount of
parallel communication and Arch2 has relatively low communication capabilities.
The original law of Amdahl is used as a reference (Ref. Amdahl) for the theoreti-
cal speedup of both applications4. The results provided in figure 1.4 show that

4Both applications have the same degree of parallelism p = 0.98 used in equation 1.3

6

1

1.2. Motivation

communication infrastructure can have a huge impact on the performance of a
parallel application. App1 with its high communication requirements can profit
significantly from the high communication bandwidth provided by Arch1.

1.2. Motivation

The previous investigations showed that communication requirements of ap-
plications and their satisfaction by the architecture can have a huge impact on
the speedup gained from parallel execution. Conventional bus-based intercon-
nections, such as the widely used AMBA bus [79] developed by ARM, do not
fulfill the requirements of many-core architectures. Their essential limitation, with
respect to such architectures, is the bandwidth. It must be shared between all
cores [101]. Another drawback is the physical realization that becomes more com-
plex with a growing number of cores. In general, it can be said that buses provide
a limited scalability with respect to large many-core architectures. However, such
architectures are feasible within one decade from the technology perspective [33].

Because of these disadvantages, networks on chip (NoCs) have been proposed by
L. Benini and G. De Micheli [19], W. J. Dally [61], A. Jantsch [122] and others [145]
as communication infrastructure for future many-core systems. In contrast to
on-chip bus systems, networks on chip enable parallel communication. The
aggregated bandwidth of a NoC scales with the network size. This enables scala-
bility with respect to large architectures. As discussed in section 1.1.1, sufficient
bandwidth of the communication infrastructure is necessary to gain the potential
speedup of a parallel application.

In addition to these advantages, in terms of performance, NoCs are also beneficial
from the technology perspective [101, 175]. For NoCs, directed point-to-point
connections are utilized, independent of the network size. This simplifies the
integration. Network wires can be pipelined because the network protocol is
globally asynchronous. This allows to limit the wire length and can enable to
achieve high clock frequencies.

Networks on chip can be seen as the key innovation on the architectural level
in order to implement future many-core architectures with hundreds of cores.
The research and development of networks on chip comprises many different
challenges [192, 170] which must be solved. One of the most important aspects
is the NoC architecture itself, which comprises the topology of the network, the
structure and the functionality of its components. Depending to the use case
of the NoC, the components must fulfill different functional and nonfunctional
requirements:

7

1

1. Introduction

Scalability: Depending on the size of the architecture, different strategies for
routing and resource allocation have to be selected.

Quality of Service: Delay and throughput guarantees may be required for safety
critical or real-time applications, but can also improve the performance of other
parallel programs.

Software management: Depending on the programming model5, different soft-
ware interfaces and transmission schemes must be supported. Additionally, a
management interface for the NoC features must be provided. Self-optimization
can be employed to reduce the burden of management.

Energy efficiency: Energy saving techniques play a key role in future systems
with billions of transistors. Therefore, the power budget for the communication
infrastructure must be limited and the energy efficiency improved.

Reliability/Dependability: Depending on the employed technology and the size
of an architecture, fault tolerance and reliability of the on-chip components is
an important aspect. For future technology nodes, addressed by NoC-based
architectures, reliability and fault tolerance are expected to play a key role [105]
to improve the yield during production and the availability of a system during
operation.

The variety of different requirements for on-chip communication of future archi-
tectures result in a huge challenge for the realization of an integral concept. This
challenge must be mastered to reach the goal of a many-core architecture with
hundreds of cores [33].

1.3. Contribution

In the past, extensive research has been done, addressing individual aspects
that are required for the realization of large NoC-based architectures [23, 210].
However, in most cases, only single aspects are addressed by existing concepts
and architectures. The complexity of many-core architectures and the diversity of
the research challenges, such as; energy efficiency, dependability and scalability
make it very challenging to address the problem in its entirety.

However, the development and evaluation of an integral, but flexible architecture
concept for scalable on-chip communication is a focus of this work. In order
to achieve this goal, approved existing concepts for scalable and flexible on-
chip communication shall be identified as a basis. The identified concepts shall
be applied to create a scalable communication infrastructure; suitable for large

5Well known parallel programming models are: message passing interface (MPI) [234], OpenMP [56]
or partitioned global address space (PGAS).

8

1

1.3. Contribution

multiprocessor systems on a chip (MPSoCs). This base architecture can be considered
as a state of the art on-chip communication infrastructure for future many-core
architectures.

Apart from scalability, the base architecture shall be developed with the focus
on design-time configurability and expandability; in order to embed it in a semi-
automated design flow. This design flow shall enable a fast, but accurate eval-
uation of different configuration options and comfortable extension of the base
architecture. A cycle-accurate simulation model and a hardware description lan-
guage (HDL) model of the architecture are necessary to enable rapid and accurate
evaluation of implementation alternatives with respect to a short time to market.
The simulation model enables fast and accurate performance measurements. An
HDL model shall be employed to evaluate technology dependent aspects6 of
a specific configuration meeting the performance requirements. The goal is to
establish a design flow that allows fast evaluation of implementation alternatives
and new features, as well as subsequent generation of a synthesizable design.
This methodology shall simplify and accelerate the design of future NoC-based
MPSoC architectures.

Moreover, this design flow is employed for further research towards the goal
of a holistic communication concept. As further requirements for such a com-
munication infrastructure, quality of service (QoS) support, self-optimization and
dependability are identified. These aspects shall be addressed using the estab-
lished design flow and base architecture. The base architecture shall be extended
gradually towards a holistic NoC design.

The rising number of components increases the demand for quality of service
support in order to isolate critical communication flows. Consequently, a scalable
communication infrastructure must provide QoS mechanisms. The design, im-
plementation and evaluation of scalable QoS mechanisms is an essential research
objective of this work. In this context, mechanisms for a run-time adaptive allo-
cation of communication resources, according to the application’s requirements,
shall be investigated. The provision of run-time adaptive guarantees for latency
and throughput of point-to-point connections are goals to be achieved. Run-time
management of connections and communication resources must be addressed,
enabling QoS support from the software perspective. In addition to connection-
oriented QoS support, communication resource allocation on the granularity
of applications and regions of the architecture must be supported to overcome
current limitations and to enable a region-based management. Virtualization of
the communication infrastructure shall be investigated to enable isolation of the
communication of entire applications.

6Technology dependent aspects are power consumption, area or achievable clock frequency of the
design. These aspects are closely related to the technology node.

9

1

1. Introduction

The size and complexity of large multiprocessor system on a chip architectures
leads to high power consumption and aggravates the management. In order to
reduce the burden of management for the software and operating system (OS) and
to limit the energy footprint of a NoC, self-optimization strategies for the com-
munication infrastructure are necessary. Self-optimization strategies for power
minimization, performance improvement and load balancing in the NoC shall be
investigated in this work to achieve the goal of a holistic communication approach.
In particular, transparent NoC-internal use of QoS communication is evaluated
to optimize the performance and energy footprint for communication. A strat-
egy for balancing the distribution of QoS end-to-end connection is proposed.
Fine-grained power gating of NoC components shall further reduce the power
consumption of the communication infrastructure.

Dependability of the communication infrastructure is another aspect that is ad-
dressed in order to achieve the goal of a holistic NoC design. Dependability and
fault tolerance will play an ever increasing role when using future technology
nodes for very-large-scale integration (VLSI). The focus will be on permanent errors,
resulting from process fluctuations, or aging effects. In existing work, very simple
networks have been assumed when fault tolerance schemes have been investi-
gated. In contrast, this work attempts to create a fault tolerance concept for a very
complex scalable network with QoS and self-optimization support. A scalable
scheme for detection and localization of defects and faults shall be developed and
evaluated by the use of accurate gate-level simulations. Based on the localization
scheme, faulty routers shall be disabled. Therefore, a transparent bypass scheme
for faulty routers and regions is desired. When no faults are present, the alterna-
tive use of the bypass scheme is considered in order to minimize the overhead for
fault tolerance.

The realization of all these aspects shall lead to an integral concept for communi-
cation in future many-core architectures.

1.4. Outline

The work is organized as follows. In chapter 2, the principles and fundamentals
for the present work are defined and explained. The integration of various
components on a single chip, which necessitate the development of advanced
on-chip communication concepts, is described in section 2.1. Multi-core and
many-core architectures can be considered as a subcategory of such systems on
a chip (SoCs), described in section 2.2. At the end of the section, an overview of
existing NoC-based multi-core and many-core architectures is provided. General
principles and concepts for on-chip communication are presented in section 2.3.
Bus systems and point-to-point connections are discussed as a predecessor of on-

10

1

1.4. Outline

chip networks. Finally, networks on chip are introduced in section 2.4. The basic
components, different topologies, switching schemes, flow control mechanisms
and routing schemes are introduced and discussed. In this context, state of
the art for each of these aspects is summarized. At the end of the chapter, the
fundamentals for fault tolerance and dependability are presented.

The context of this work is discussed in chapter 3. In particular, the concept
of invasive computing and the InvasIC hardware architecture are described in
section 3.1 and 3.2 respectively. The individual components of the heterogeneous
InvasIC architecture are presented and their communication requirements are
discussed. The software perspective and a scalable hardware management con-
cept for invasive computing is described in section 3.3. It is reflected by the NoC
management scheme presented in chapter 6. The concept for multi-FPGA proto-
typing, which has a close relation to the NoC implementation and its topology, is
summarized in section 3.4.

The general concept of this work is described in chapter 4. Therefore, general
communication requirements and constraints of future many-core architectures
are analyzed and identified in section 4.1. Additionally, the requirements of
the InvasIC architecture are discussed. The fulfillment of these requirements
by existing network on chip architectures is discussed in section 4.2. The limi-
tations of existing architectures are used as motivation for the general concept
presented next. This concept and the basic design decision for the communication
infrastructure, presented in this work, are described in section 4.3. In particular,
aspects of scalability, quality of service, distributed management and reliability
are addressed. A template-based design methodology for the proposed NoC
architecture is introduced in section 4.3.5. It is the basis for the semi-automated
design flow that is described in section 4.4.

The basic network on chip design is described in detail in chapter 5. The functional
principle and implementation of the NoC router is explained in section 5.1. A
simulation framework for the proposed NoC template is introduced in section 5.2
and is used for evaluation as well as design space exploration. The simulation
framework and the HDL implementation, introduced in section 5.3, constitute
the proposed semi-automated design flow. Its usability is demonstrated by a
case study, which is presented in section 5.4. At the end of chapter 5, various
extensions of the base architecture are introduced. These extensions are employed
for the concepts and mechanisms presented subsequently.

Chapters 6-8 represent the actual research and contribution of this work. They
rely on the general concept from chapter 4 and use the base architecture from
chapter 5, as well as the simulation framework and the HDL implementation for
evaluation.

Quality of service aspects are addressed in chapter 6. An overview of the state
of the art in this field of research is provided in section 6.1. A concept and

11

1

1. Introduction

implementation for end-to-end connections, with run-time adjustable bandwidth
and latency guarantees, is introduced in section 6.2. A run-time management
scheme for QoS resources is presented and evaluated in section 6.3. This scheme is
extended in section 6.4 to enable communication resource allocation for individual
regions and applications. The exclusive allocation of communication resources
enables so-called virtual networks.

Different strategies for self-optimization are addressed in chapter 7. A separate
discussion of related work is provided for each of the proposed strategies. First, a
concept named rerouting is introduced and evaluated in section 7.1. Rerouting
balances the distribution of QoS end-to-end connections automatically. Two
strategies for optimizing the overall communication by automatic setup of end-to-
end connections are presented in section 7.2. Adaptive data collection schemes for
software management and optimization are evaluated in section 7.3. At the end
of the chapter, a self-optimizing power management concept using fine-grained
power gating is described and evaluated.

A dependability concept for the proposed NoC is introduced in chapter 8. At the
beginning of the chapter, related work is discussed in section 8.1. Subsequently, a
fault detection and localization scheme for the complex NoC, developed in this
work, is introduced and evaluated in section 8.2. The localization scheme is used
to disable and bypass faulty routers. This is enabled by the architecture extension,
introduced and investigated in section 8.3. More specifically, a second network
layer is introduced to bypass faulty routers. However, it can also be employed for
power saving.

Subsequently, this work is concluded in chapter 9, with an outlook on future work
presented in section 9.2.

12

22. Fundamentals

The network on chip, presented in the following, addresses future multiproces-
sor systems on a chip and many-core architectures. This chapter provides the
fundamentals for many-core architectures and networks on chip.

First, the general principle of systems on a chip is introduced in section 2.1.
Subsequently, the fundamentals of MPSoCs and many-core architectures are
described in section 2.2. The basic principles for on-chip communication are
provided in section 2.3. The latest evolution of these on-chip communication
infrastructures are networks on chip. NoCs and their basic mechanisms are
introduced in section 2.4. At the end of the chapter, the basic principles for reliable
and fault tolerant systems are introduced as a basis for the concept presented in
chapter 8.

2.1. System on a Chip

Due to the continuous observance of Moore’s law (see chapter 1) the integration
density increases steadily. This trend enabled to implement not only single
components but complete systems on a single piece of silicon. Such systems,
which have been implemented on a printed circuit board (PCB) in the past, are
named system on a chip (SoC) if they are realized on a single die [82]. They combine
multiple digital components (e.g. processing cores, accelerators and peripherals)
with mixed-signal (e.g. digital/analog converter or analog/digital converter)
and analog components (e.g. sensors or filters). Systems on a chip enable to
build more complex and compact embedded systems by integrating most of the
required functionality on a single chip. The single chip integration also reduces
the power consumption of a system [133] compared to a PCB realization. This
enables the construction of high-performance, compact mobile devices that can
cope with the limited power budget of batteries [134, 40].

Figure 2.1 shows the evolutionary process of SoC development. With the in-
creasing number of components of a SoC, the amount of on-chip communication
grows. This leads to more complex communication infrastructures, as described
in detail in section 2.3 and 2.4. Moreover, the computation demands of SoCs
grow persistently. In order to meet these demands, the number of processor cores

13

2

2. Fundamentals

Time

Co
m
pl
ex
ity

PCB systems

Off Chip

Telecom.
networks

HPC systems

On Chip
ASIC
to SoC

+

+
NoCs/SoCs

MPSoC

Figure 2.1.: Evolution from PCB-based systems to fully integrated MPSoCs [253].

integrated on a chip was increased. Such SoCs with multiple processing cores
are named multiprocessor system on a chip (MPSoC) [268]. If the MPSoC mainly
consists of processing cores, it is often referred to as multi-core architectures or
chip multiprocessor.

2.2. Multi-Core and Many-Core Architectures

“A multi-core processor is an integrated circuit (IC) to which two or more processors have
been attached for enhanced performance, reduced power consumption, and more efficient
simultaneous processing of multiple tasks.” [216]. The processing units or processing
elements (PEs) can be carried out as reduced instruction set computer (RISC) [199]
or complex instruction set computer (CISC) [200]. More exotic processing schemes
are very long instruction word (VLIW) [77] or explicitly parallel instruction comput-
ing (EPIC) [221].

Typically, each processing unit (referred to as core) has an exclusive cache-hierar-
chy that is used to hide memory latencies for data and instruction access. Typically,
this hierarchy consists of two separate L1 caches for data and instructions and op-
tionally a larger but slower L2 cache that is shared between data and instructions.
A global communication infrastructure is used for communication between the
processing cores, main memory access and input/output (I/O) access; as described
in section 2.3 and 2.4.

If the architecture consists of a large number of cores it is mainly referred to as
many-core architecture1. According to [108] multi-core or many-core architectures

1In the following architectures with dozens of cores will be referred to as many-core architecture.

14

2

2.2. Multi-Core and Many-Core Architectures

can be built as shared memory architectures or distributed memory architectures
as explained below in more detail.

2.2.1. Shared Memory Architecture

Through their caches all cores can access the main memory of the systems and
other components; such as peripherals and I/O-buses. For the communication
between the single cores and the memory subsystem, shared buses are commonly
used. The bandwidth of this global communication infrastructure, as well as
the bandwidth to the main memory, are shared by all cores. This bandwidth
is an important factor for the performance of such an architecture, but limits
scalability. Figure 2.2 shows the basic structure of a symmetric shared memory
multiprocessor.

I/O System

One or
more Levels

of Cache

One or
more Levels

of Cache

One or
more Levels

of Cache

One or
more Levels

of Cache

Processor Processor Processor Processor

Main Memory

Figure 2.2.: Basic structure of a shared memory multiprocessor.

This type is currently by far the most popular organization for a multi-core ar-
chitecture [108]. One of the main reasons is that such shared memory systems
simplify programming by offering a consistent view of the memory. This consis-
tent view is achieved by the use of cache coherency protocols [13, 103]. The cache
coherency protocol ensures that values are updated in different caches, if they
are modified. This ensures that all caches consistently return the same value for
a given address. The communication overhead of the cache coherency protocol
increases with the number of cores. Thus, it is expected that cache coherency can
hardly be achieved in architectures containing dozens of cores. However, Intel
managed to implement cache coherency on its Xeon Phi Many Integrated Core
architecture with 32-72 cores [53] to keep programming as easy as possible.

15

2

2. Fundamentals

2.2.2. Distributed Memory Architecture

Distributed memory architectures overcome the bandwidth limitations of shared
memory multiprocessor systems. This is achieved by equipping each core with
a separate memory and optional dedicated I/O components. Figure 2.3 shows
the basic architecture of such a distributed memory multiprocessor. Due to the
separate memory for each core or node, the memory bandwidth must not be
shared. Since the memory bandwidth in such a system grows linearly with the
number of cores, distributed memory architectures provide a good scalability.
The larger number of processors also increases the need for a high-bandwidth
interconnect. Networks on chip can be used to fulfill these increased bandwidth
requirements, as detailed in section 2.4.

“Distributing the memory among the nodes has two major benefits. First, it is a cost-
effective way to scale the memory bandwidth if most of the accesses are to the local memory
in the node. Second, it reduces the latency for accesses to the local memory.” [108]

MPI is widely used in distributed memory architectures as communication con-
cept [235]. By means of send and receive commands, the instances of a parallel
program can communicate with each other. MPI is considered to be more efficient
if the receiving buffers are implemented in the target node. This requirement can
easily be fulfilled with non-uniform memory access (NUMA) architectures; intro-
duced in the next section.

I/O System

Cache
Hierarchy

Processor

Memory I/O System

Cache
Hierarchy

Processor

Memory I/O System

Cache
Hierarchy

Processor

Memory

I/O System

Cache
Hierarchy

Processor

Memory I/O System

Cache
Hierarchy

Processor

Memory I/O System

Cache
Hierarchy

Processor

Memory

Interconnection Network

Figure 2.3.: Basic architecture of a distributed memory multiprocessor with an
interconnection network that connects all the nodes.

2.2.2.1. Non-Uniform Memory Access

A NUMA architecture is a distributed memory architecture that enables direct
access to all memories of the system by each node, but with varying latencies

16

2

2.2. Multi-Core and Many-Core Architectures

and bandwidths. In order to enable this, the architecture must have a common
address space. Such architectures are referred to as distributed shared memory
architectures. In contrast to distributed non-shared memory architectures, NUMA
can enable single program, multiple data (SPMD) programming style for distributed
memory systems. The fact that NUMA allows direct access to each memory sim-
plifies the programming of these architectures. The PGAS parallel programming
model uses these advantages. PGAS is used in modern programming languages,
including Co-array Fortran [187] or X10 [44].

When a network on chip is used as a communication infrastructure it must
implement access to the memory of all the nodes in order to enable NUMA. The
hardware implementation within a NoC mainly affects the network interface (NI)
as described in section 2.4.1.1.

2.2.3. Hybrid Distributed Shared Memory Architecture

In the high-performance computing (HPC) domain, mixtures of distributed- and
shared memory systems have a long and successful history [17]. Today, multi-
core shared memory architectures with a common main memory are used for
individual nodes. These nodes are connected with a multidimensional-network,
creating a distributed memory architecture on a large scale. Thus, the advantages
of easy programmability and cache coherency can be applied within individual
nodes, while ensuring scalability of the entire system.

2.2.4. Distributed Shared Memory Architecture

Hybrid distributed shared memory (DSM) systems, discussed in the previous para-
graph, do not enable direct memory access between different nodes of the archi-
tecture. In contrast, there exist (non-hybrid) distributed shared memory systems
that combine the advantages of distributed memory and shared memory systems.
Such architectures provide a virtual address space shared among the nodes or
cores of the architecture. The memory is distributed over the architecture and
shared locally between neighboring cores. Depending on the global communi-
cation infrastructure, a distributed shared memory system can have a NUMA
characteristic. DSM enables ease of programming, reduced hardware complexity
and portability. (1) Well-established shared memory programming paradigms
can be used. (2) The physically distributed memory can be implemented with low
implementation cost. (3) Scalability is ensured due to the absence of hardware

17

2

2. Fundamentals

bottlenecks2 resulting from globally shared resources [206]. Because of these
advantages, it is a desirable concept for future many-core architectures.

2.2.5. Existing Many-Core Architectures

Selected many-core architectures are introduced in the following sections. The
selection is limited to architectures that are complete and have been integrated
on silicon. All of them use a network on chip as on-chip interconnect. The
terminology used for the characterization of the NoCs of these architectures is
described in detail in section 2.4.

The presence of NoC-based many-core architectures should serve as a motivation
for NoC research; addressed within this work.

2.2.5.1. Tilera

The first commercial NoC-based many-core architecture that was available on
silicon is the TILE64 architecture [18] from Tilera; first introduced in 2007. The
company Tilera can be seen as a spin-out of the Massachusetts Institute of Tech-
nology, as a result of their earlier multi-core research on the Raw architecture [242]
and compiler [2].

TILE64 The TILE64 MPSoC consists of 64 tiles3 arranged as an 8x8 mesh, as
shown in figure 2.4. Each tile contains a three-way issue, scalar VLIW processor
with three functional units per core. Additionally, each node contains a cache
hierarchy consisting of an L1 and an L2 cache, as well as a router (named switch).
A 2D direct memory access (DMA) engine is located in each tile. This engine sup-
ports block-copy functions between the main memory and the caches or between
two caches. Due to the mechanisms for direct data exchange between caches
and memories, the architecture can be regarded as distributed memory system.
However, the four double data rate (DDR) controllers located at two boundaries of
the 8x8 array provide the impression of a shared memory architecture. In addition
to the memory controllers (MCs) different I/O interfaces, such as PCI-e, XAUI and
RGMII supply over 40 Gb/s of I/O bandwidth

A special feature of the TILE64 architecture is its interconnection network. It
consists of five independent 2D mesh networks [263], each of them supporting a
distinct function: The static network (STN), the tile dynamic network (TDN), the user

2This statement is only valid when assuming that the access to the different memories is fairly
distributed. This must be ensured by the software memory management.

3The name “tiled architecture” is derived from the regular arrangement of the processor nodes or
cores, which have a tile-like structure.

18

2

2.2. Multi-Core and Many-Core Architectures

PCIe 1
MAC/
PHY

SerDes

GbE 0

GbE 1 Flexible
I/O

Flexible
I/O

UART,
HPI, I2C,
JTAG, SPI

DDR2 Controller 3 DDR2 Controller 2

DDR2 Controller 1 DDR2 Controller 0

XAUI 1
MAC/
PHY

XAUI 0
Mac/
PHY

SerDes

PCIe 0
MAC/
PHY

SerDes

SerDes

0

XAUUI 0I 0
MMac/
PHY

Reg File

P
2

P
1

P
0

L2 CACHE

PROCESSOR CACHE

SWITCH

2D DMA

L-1I

MDN TDN

UDN IDN

STN

L-1D
I-TLB D-TLB

Figure 2.4.: Block diagram and tile architecture of the TILE64 processor [250].

dynamic network (UDN), the memory dynamic network (MDN) and the input/output
dynamic network (IDN). The STN is a software-driven and software-routed network
for low-latency scalar communication between the tiles. The MDN and TDN are
dynamically routed networks that are part of the memory subsystem. The UDN
and IDN are software-driven, dynamically routed networks for message-oriented
communication. In [18] it is stated that “All networks have single-cycle hop latency
from tile to tile”, which leads to the assumption that they must be circuit switched.
The aspect that several networks are used for different communication types is
a unique characteristic of the TILE64 architecture. The total network supports a
bisection bandwidth (see section 2.4.2) of 240 GB/s.

TILE-Gx100 TILE-Gx is the successor of the TILE64 architecture shipped from
the year 2010. TILE-Gx100 [213] is an incarnation of this architecture with 100
tiles arranged in a 10x10 array. It uses a 64 bit processor and DDR3 memory
controllers. The bandwidth of the network on chip, which is now named iMesh,
was increased compared to TILE64. It has an aggregated bandwidth of 200 Tb/s.

19

2

2. Fundamentals

2.2.5.2. Single-chip Cloud Computer

The Single-chip Cloud Computer (SCC) is an experimental processor design that
originates from Intel’s multi-core research. As part of the Tera-scale Computing
Research Program of Intel, hardware and software approaches are being studied
that consist of a large number of computing units. The first generation of proces-
sors of this initiative was an 80-core design [257]. The second generation is the
Single-chip Cloud Computer [113].

The SCC is also a tiled architecture, consisting of 24 homogenous nodes or tiles.
A block diagram of the architecture is shown in figure 2.5. Each tile consists of
two IA-32 cores, where each core is connected to its own L1 and L2 cache. Cache
coherency is not implemented in the entire architecture. Furthermore, each tile
has a message passing buffer (MPB) that is used for direct communication between
the tiles. The L2 caches of both cores and the MPB are connected to a router, which
is part of the 2D mesh NoC of the SCC.

Figure 2.5.: Block diagram and tile architecture of the 48 core SCC [113].

The SCC is no classical distributed memory architecture, but also no pure shared
memory architecture. With its MPBs, which are shared between two cores, it
can be considered as a distributed shared memory system. However, taking into
account the four memory controllers at the borders of the architecture, it looks
like a shared memory organization. The memory that is connected through the
four DDR3 MCs is shared between all tiles of the architecture. Thus, the SCC
can also be considered as a hybrid distributed shared memory architecture with
noticeable differences to the HPC architectures introduced in section 2.2.3.

20

2

2.2. Multi-Core and Many-Core Architectures

The SCC dispose of a fine-grained power management. It consists of 8 volt-
age islands (VIs) and 28 frequency islands (FIs), where two VIs supply the NoC
and periphery with the remaining 6 voltage islands being divided among the
cores. Consequently, four tiles form a voltage island. Each tile has its own FI.
Software-based power management protocols use the voltage and frequency
islands through dynamic voltage and frequency scaling (DVFS).

The network on chip of the SCC is a packet switching network consisting of 6x4
routers arranged in a 2D mesh topology. The routers are connected by two uni-
directional 144 bit links4 operating at a clock frequency of 2 GHz. Two message
classes and eight virtual channels (VCs) ensure deadlock-free routing and maxi-
mize bandwidth utilization. Dimension-ordered XY routing is used to eliminate
network deadlocks. Individual links offer a bandwidth of 64 GB/s, enabling the
total network to support 256 GB/s of bisection bandwidth [113].

2.2.5.3. MPPA Architecture

The Kalray multi-purpose processor architecture (MPPA) architecture is another avail-
able single-chip, many-core processor. The current version of this architecture is
the MPPA-256 which integrates 256 user cores and 32 system cores in 28 nm CMOS
technology. These cores are distributed across 16 compute tiles. Figure 2.6(a) gives
an overview on the entire MPPA-256 architecture. Four I/O subsystems, one
on each side of the tile array, enable communication with the peripherals and
with the DDR3 memory. The detailed structure of a compute tile is provided in
figure 2.6(b). All cores of the tile have a VLIW architecture with 16 cores (C0-C15)
being dedicated to application code. The 17th core (Syst. Core) is reserved for the
system. It is distinguished by its privileged connections to the NoC interfaces
through event lines and interrupts [127]. Each core has a private 2-way associative
instruction and data cache. In addition to the cores, each compute tile includes a
DMA unit and a debug support unit (DSU). A shared memory is located in each tile
and can be accessed directly by all cores. Consequently, the MPPA architecture can
be classified as a distributed shared memory architecture, whereas the external
DDR memories represent the shared memory.

The D-NoC router and the C-NoC router, shown in figure 2.6(b), connect each tile
to the two on-chip networks of the MPPA architecture. Both networks have a 2D-
wrapped-around torus structure and use wormhole packet switching. The D-NoC
is dedicated to high bandwidth data transfers and supports quality of service.
It is used to transfer data between tiles or between a tile and the external DDR
memory. The C-NoC is dedicated to control purposes. It is used for flow control,

4The two uni-directional links of each SCC router port form a full-duplex connection between each
router pair.

21

2

2. Fundamentals

(a) Global architecture (b) Compute cluster tile

Figure 2.6.: (a) Block diagram of the MPPA-256 architecture [127] and (b) the
internal structure of a compute tile (C) [63].

power management and application software messages. According to [63] both
networks support unicast and multicast communication.

2.2.5.4. Morpheus

In contrast to the previous discussed architectures, MORPHEUS is a heteroge-
neous system [247]. It was fabricated during 2010 using an ST 90 nm technol-
ogy [259].

The platform combines three different array-based reconfigurable architectures,
referred to as heterogeneous reconfigurable engines (HREs), and an ARM processor
to form a SoC. The different HRE-types target different flavors of signal process-
ing: Pact XPP-III is a coarse-grained reconfigurable stream processor. It consist
of an array computational elements communicating through configurable data
channels. DREAM is a reconfigurable processor composed of a RISC core and a
mid-grain reconfigurable data path. The third HRE-type is named FlexEOS. It is
an embedded field programmable gate array (FPGA).

Figure 2.7 gives an overview on the MORPHEUS SoC. The advanced RISC ma-
chines (ARM) processor serves as a host processor for the entire platform. The
implemented control scheme is based on the MOLEN polymorphic processor

22

2

2.3. Rudimentary On-Chip Communication

paradigm; introduced in [258]. The host processor controls the work flow of the
HREs through register mapped interfaces.

The communication infrastructure of MORPHEUS consists of two systems: An
advanced microcontroller bus architecture (AMBA) AHB bus is used to access all HRE
exchange registers and system peripherals. It is also used to configure the second
communication system, the so-called Spidergon network on chip [50]. Spidergon
is a packet-based communication infrastructure, adopting wormhole switching.
This NoC is dimensioned for the bandwidth-intensive communication between
the HREs and has a link size of 64 bit. The Spidergon NoC also connects the
computational resources of the SoC with the external global shared memory.

Main Bus (Synchronization / Control)

On-Chip
Conf.

Memory

On-Chip
Conf.

Memory

On-Chip
Data

Memory

On-Chip
Data

Memory

Configuration Bus

External Configuration Bus

DNA
Network
Manager

DNA
Network
Manager

DREAM
Processing Engine

DEBXR

CEB

DREAM
Processing Engine

DEBXR

CEB

External
Memory

Controller

External
Memory

Controller

NoC

External
SRAM

External
SRAM

PCM
Config.
Manager

PCM
Config.
Manager

Main
DMA
Main
DMA

M

S

S M

S

Conf.
DMA
Conf.
DMA

M

M

Peripheral BusPeripheral Bus

AMBA
Bridge

AMBA
Bridge
AMBA
Bridge

Bootup
ROM

Bootup
ROM

UARTUART TIMERTIMER ICIC

eFPGA
Processing Engine

DEBXR

GP-I/O Loader

XPP-III
Processing Engine

DEBXR

CEB

XPP-III
Processing Engine

DEBXR

CEB

ARM926-EJS
ITCM DTCM

ARM926-EJS
ITCM DTCM

Figure 2.7.: Block diagram of the heterogeneous reconfigurable MORPHEUS ar-
chitecture [259].

2.3. Rudimentary On-Chip Communication

Systems on a chip [133] and especially MPSoCs [268] have been available for
more than one decade, as described earlier. The number of components that
are integrated on a piece of silicon is increasing steadily. This leads to a rise
in communication on the chip. Depending on the number of components and
their communication requirements, different communication schemes are pre-
ferred. Typically various communication schemes are combined to deploy a
many-core architecture, such as the architectures presented previously. In the
following sections, the most important strategies for on-chip communication will
be discussed.

23

2

2. Fundamentals

2.3.1. Direct Connections

The simplest and probably most common type of connection is a direct connection
or point-to-point connection. As the name suggests, this connection type is limited
to two participants. They are linked using a direct parallel or serial connection.
Point-to-point connections have the advantage of easy implementation with low
overhead. They can be pipelined easily depending on the frequency requirements
of the connection and the distance between the communication partners. The
bandwidth can be matched to the requirements of the communication partner
by adjusting the number of wires or the clock frequency. Due to their numerous
advantages, point-to-point connections are used whenever possible. They are also
used as sub-systems to implement more complex communication schemes, such
as bus systems or networks on chip; presented later.

2.3.2. Bus Systems

Compared to direct connections, bus systems enable a flexible communication
between an arbitrary number of communication partners. Therefore, individual
components are typically connected via a standard interface. The bus interface
defines the physical interface as well as the protocol for communication. The
advantage of standardization is that the individual components of a SoC can
be easily connected [154]; accelerating the design and implementation of such
systems.

Arbiter
UART

Timer

PIO

RTC
Decoder

APB slaveRAM

ARM

External
bus

interface

TIC
(master)

DMA
External

bus ASB APB

B
rid

ge

Figure 2.8.: AMBA bus-based system on a chip example with an ARM microcon-
troller [79].

Widely used representatives for on-chip bus systems are AMBA [79], developed
by ARM, and the CoreConnect [154] bus system used by IBM. Figure 2.8 shows a
typical configuration of an AMBA-based bus system. It consists of a fast advanced

24

2

2.3. Rudimentary On-Chip Communication

system bus (ASB)5 with high bandwidth and a slower advanced peripheral bus (APB);
with both buses being connected via a bridge. Frequently used components with
high bandwidth requirements, such as the processor (ARM), memory (RAM),
DMA unit or special accelerators (Decoder), are attached to the faster ASB. Com-
ponents with low bandwidth requirements, such as a timer, a PIO or universal
asynchronous receiver transmitter (UART) interfaces, are attached to the APB. The
use of different buses and their decoupling enables to save resources and thus
energy [211]; relevant in battery-powered systems.

2.3.2.1. Components

The following section describes the components of a bus system in more detail.
Given the relatively large diversity between different bus systems, the following
description is based on the AMBA bus system.

Arbiter The arbiter manages the access to the shared bus. It can either be
implemented in a distributed way by the bus participants or as a separate module
with a connection to all devices that are able to request bus access. The AMBA
bus system uses a centralized arbitration scheme to implement the bus without
tri-state logic6. A bus arbiter is responsible for solving conflicts or collisions7 on
the bus. For this purpose, the arbiter prioritizes the access to the bus. The arbiter
grants the bus access to the component that momentarily has the highest priority.
The granted participant is then allowed to put data on the bus. Once the access is
finished, a new arbitration decision takes place.

Bus Interface The bus interface connects the bus devices with the actual bus
system. It must carry out the physical interface of the bus and the bus protocol.
In many cases, the bus interface of a component only implements a subset of the
bus features. Special features, such as split transactions or burst transfers, might
be omitted.

The AMBA advanced high-performance bus (AHB) distinguishes between two fun-
damental types of bus interfaces: The master interface is used for components
that have the capability to request bus access. These components are usually
named bus-masters. Once the access is granted, the bus can be used by the master
to read or write data to another bus participant. The slave interface is used for
components that receive read requests and write requests from bus-masters and

5In recent systems, the AHB or AXI replaces the ASB.
6Tri-state logic allows an output port to have a high impedance state in addition to the 0 and 1 logic

levels.
7Collisions can also be prevented by an appropriate arbitration at design-time.

25

2

2. Fundamentals

process them accordingly. Such components are commonly named slaves. In case
of read requests, a slave interface is responsible for blocking the bus or issuing
a split transaction until the requested data can be returned to the requesting
bus-master. A component can either have only a master or a slave interface or
it is even equipped with both types of interfaces, such as the network adapter
presented in section 3.2.2.1.

Bridge A bridge is used to connect different types of bus systems or to connect
two bus systems of the same type. If different bus systems are connected by a
bridge, it is responsible for protocol as well as signal conversion. Figure 2.8 shows
a bridge that is used to connect the AMBA ASB and the slower APB, which has a
different protocol. Since only slave-devices are connected through the APB, it is
only equipped with a slave-interface at the AHB side. In contrast, bidirectional
bridges are used to connect two identical bus systems. Bidirectional bridges have
a master and a slave interface at both ends. As discussed in section 2.3.2.3, such
bridges can be used for bus splitting.

2.3.2.2. Shared Bus

A system where all participants use the same communication medium is named a
shared bus; which is the most common type of bus. A shared bus has a very low
delay once the bus access is granted. However, the following formula is used to
calculate the worst case access delay of a component taccess for an access to a bus
with n communication partners:

taccess = tcomp,max · n (2.1)

In equation 2.1 it is assumed that each component has a maximum bus access time
tcomp,max. Furthermore, it is assumed that all components have fair access to the
bus8. Using a shared bus, all communication partners n share the communication
bandwidth bbus. Taking the same assumption as for equation 2.1, the bandwidth
bcomp of a component can be calculated as follows:

bcomp =
bbus

n
(2.2)

Equation 2.1 and 2.2 show that the performance of the communication infrastruc-
ture depends on the number n of the components attached to the bus. With an
increasing number of participants, the efficiency of the bus decreases.

8A fair access to the bus can be enabled by realizing a round-robin or TDM arbitration within the
bus arbiter).

26

2

2.3. Rudimentary On-Chip Communication

2.3.2.3. Bus Splitting and Segmentation

Bus splitting or segmented buses can be used to cope with larger numbers of
components, but also for other reasons, such as deadlock avoidance. In a seg-
mented bus system different shared buses are connected by bridges to form larger,
more complex systems. The system in figure 2.8 uses two buses to decouple faster
components with high bandwidth requirements from peripherals.

The bridge is used to decouple the different address ranges of the single buses.
As such, it is possible to communicate in parallel within different bus segments
when the communicating participants are attached to the same segment. This
increases the effective bandwidth and the access latency of a segmented bus
system compared to a single bus, because the number of components n attached
to each bus is reduced compared to a non-segmented bus system9. However, an
increased latency can arise when communicating over several segments because
of the separate access latency for each segment; exhibited in equation 2.1. The
concept of segmentation is also applied in NoCs, introduced in section 2.4. Using a
NoC, the bandwidth grows linearly with the number of component, because each
new component is adding one or multiple new segments to the communication
system.

2.3.2.4. Crossbars and Bus Matrices

Bus matrices can be considered as an evolution of segmented buses. In a bus
matrix or crossbar, the communicating components are directly connected via
a multiplexer network. Several disjoint pairs can communicate in parallel with
each other. Arbitration is only needed if two components (masters) have to
communicate simultaneously with the same endpoint (slave). Therefore, each
endpoint of a bus matrix has a separate arbiter. If no arbitration is required, all
masters are able to communicate with the full bandwidth of the bus system. The
latencies for bus access can typically be kept very low, if a bus matrix is used.

Figure 2.9 shows two different types of bus matrices. In figure 2.9(a) a fully con-
nected crossbar is shown. All masters can communicate directly with all the slaves.
The implementation cost c of a fully connected crossbar with i inputs (masters)
and o outputs (slaves) can be approximated as follows:

c ∼ i · o (2.3)

Equation 2.3 shows that the implementation cost increase quadratic with the
number of masters and slaves. Therefore, the number of connected components

9This statement is only valid if the bus is segmented properly. A good segmentation reduces the
number of cycles where the bridge must be crossed.

27

2

2. Fundamentals

ARM1

ARM2

ITC

MEM1

ROM

MEM2

Timer

Network I/F

MEM3
DMA

Input
stage

arb

arb

arb

arb

arb

arb

arb

slavesarbiters
matrix

masters
Decode

Input
stage

Decode

Input
stage

Decode

(a) Full bus matrix

ARM1

ARM2

ITC

MEM2

ROM

MEM1

Timer

Network I/F

MEM3

DMA

Input
stage

Decode

Input
stage

Decode

Input
stage

Decode

arb

arb

arb
matrix

(b) Partial bus matrix

Figure 2.9.: Two different bus matrix types – (a) fully connected bus matrix con-
necting all components and (b) partially connected matrix connecting
only a subset of components [195].

should be limited in order to keep implementation costs moderate. Due to this
limitation, the scalability of bus matrices is limited.

One way to reduce the implementation cost is the realization of a partial bus
matrix. Figure 2.9(b) shows a partial bus matrix that reduces the number of con-
nections between masters and slaves by excluding some paths between masters
and slaves. This optimization is based on the assumption that each master only
communicates with a subset of slaves.

The concept of a crossbar or bus matrix is reused in NoCs. Each router of a
NoC can be considered to be a crossbar. The number of ports, and therefore the
complexity, is limited by the topology of the NoC.

2.4. Networks on Chip

As already indicated in the previous sections, networks on chip are inspired by the
evolution of bus systems. Further sources of inspiration are the internet [20] and
HPC systems. Both, the internet and an HPC system consist of a very large number
of end nodes, which are connected by routers and switches to form a scalable
network. NoCs originated from the trend that the number of components to be
connected to a SoC increased continuously. Especially for large multi-core and
many-core architectures, as introduced in section 2.2, bus-based communication
is not sufficient due to the limited scalability with respect to the large number of
components of such systems.

Many different aspects must be considered when realizing a network on chip.
The choice of the switching scheme, topology, routing method and many other
parameters have an influence on the following: power consumption, implementa-

28

2

2.4. Networks on Chip

tion complexity, performance, quality of service, management and scalability of
the network. The most important implementation options and aspects of NoCs
will be discussed in the following sections.

2.4.1. Components

A NoC generally consists of routers (referred to as switches), that are connected
by links to form a network according to the used topology. The individual nodes,
which are often referred to as tiles, are attached via network adapters.

2.4.1.1. Network Adapter

The network adapter (NA) or network interface (NI) is used to attach system com-
ponents to the NoC communication infrastructure. The NA can be seen as a
wrapper providing a view of the network, consistent with the I/O protocol of
the component or subsystem attached to it. Thus, the NA is a protocol converter
that maps the I/O protocol of the processing node or tile into the protocol used
within the NoC. Essentially, each NA has two ports or interfaces: one NoC interface,
which is used to attach the NoC, and one tile interface, which is used to attach the
components of the tile to the NoC. Figure 2.10 shows the basic structure of an NA
with its two interfaces.

N
I

Front-End

Back-End

NoC-Router / Switch

Tile / Core

Tile Interface

NoC Interface

Figure 2.10.: Simplified block diagram of a network adapter with an interface to
the tile and the NoC.

According to [175], a network adapter consists of a front-end and a back-end. The
front-end implements a standardized point-to-point or bus protocol allowing core
reuse across several platforms. A point-to-point interface is often used to attach a
single core. In other systems where more complex tiles are attached to the NoC,
bus systems are used tile-internally. The use of existing bus protocols, such as

29

2

2. Fundamentals

AMBA [79], CoreConnect [154] or VCI [55], enables backward compatibility. This
simplifies the reuse of the NoC and other SoC components [132]. Depending
on the supported features of the NoC, the NA might provide different software
interfaces:

• Memory communication: Memories of other tiles or a main memory might
be mapped into the address range of the NA. The NA enables transparent
load/store of data and instruction fetching, when accessing tile-external
memory.

• Message passing communication: Message passing support can be imple-
mented within the network adapter. Intel’s Single-chip Cloud Computer
supports message passing by dedicated message buffers that can be used
for direct communication between the tiles. Message generation and buffer
management is performed by the network interface at the transmit side and
at the receive side respectively.

• Network management: NoCs might provide special features, such as qual-
ity of service support by exclusive resource allocation, a monitoring infras-
tructure or programmable adaptivity. If these features can be managed by
the software, the NA must provide a management interface that is typically
constituted by memory mapped registers located within the NA.

Using the ISO/OSI reference model [256], the front-end can be considered as the
implementation of the session layer. The front-end uses the services offered by
the NoC. These services are part of the implementation of the transport, network,
data-link and physical layer within the back-end of the NA. Thus, the back-end
of the NA must perform the packetization and routing related functions. If source
routing is used (see section 2.4.5.1), routing tables within the NA might be used to
determine the route of a packet or connection. When distributed routing is used
(see section 2.4.5.2), the NA only has to encode information about the destination
node in the packet. The network and data-link layer inside the network adapter
ensures reliability of the communication flows. Error-detection and recovery
techniques [184] can be used to enable fault tolerance. Flow control mechanisms
are used to regulate upstream data transmission and to prevent buffer overflows
and back pressure. The physical layer of the NA might do frequency conversion
in case of multiple clock domains [189] or support special coding schemes for
power saving [194].

2.4.1.2. Router

A router (also named switch) is responsible for forwarding the data from an input
port to an output port. This procedure is repeated in different routers until the
data reach the destination node. The functioning of a router is similar to that of a

30

2

2.4. Networks on Chip

bus matrix described in section 2.3.2.4. One of the main components, known as
crossbar or multiplexer network, connects the inputs and outputs of the router.

Depending on the complexity of the NoC, a router implements up to four layers
of the ISO/OSI reference model [256]: The transport and network layer, that
enable transparent transfer of data between end nodes, the data-link layer, that
provides the services for router-to-router communication (e.g. flow control) and
the physical layer representing the realization of inter-router communication.

Figure 2.11 shows the structure of an elementary packet switching NoC router.
Packet switching necessitates buffering, as described in detail in section 2.4.3.2.
Consequently, buffers are typically located at each input port of the packet switch-
ing router to temporarily store incoming data until they can be forwarded. The
router shown in figure 2.11 implements a distributed routing scheme, where each
router takes an independent routing decision. Based on this routing decision the
output port can be allocated to forward the data. The data transmission is subse-
quently managed by the transmission control unit. The arbitration between multiple
inputs that want to forward data through the same output, is performed by the
reservation table. The crossbar comprises the multiplexer network that connects the
inputs to the output ports.

O
ut PortsIn

 P
or

ts

Port 1

Port N Port N

Port 1

Routing Reservation
Table

Transmission
Control

Buffer

Buffer

Routing Reservation
Table

Transmission
Control

Cr
os

sb
ar

Arbitration

Figure 2.11.: Block diagram of a packet switching router.

The implementation costs of a router depend on the number of input and output
ports. Similar to the bus crossbar discussed in section 2.3.2.4, the complexity
grows approximately quadratic with the number of router ports.

Additional details about the functional principles of a packet switching router are
provided in section 5.1.

31

2

2. Fundamentals

2.4.1.3. Links

The link is the physical connection between two routers or between a router and a
network adapter. It is part of the physical layer of the NoC. In case of a 2D silicon
implementation, the links are typically created by parallel wires. “Due to the
relatively small wire pitch in silicon technologies, and to the availability of several
layers for wiring, physical wires are a cheap commodity for networks.” [175]
Consequently, data and control signals are typically separated to have a cleaner
and better performing design. Because of the low overhead for wiring, the
links are usually implemented bidirectional with separate wires. However, for
particular topologies, global wires may be required; as described in detail in
section 2.4.2. For such links, repeaters in the form of buffers or registers are
needed to ensure scalability.

In case of a 3D integration, link design becomes more complex due to the restric-
tions of through-silicon vias (TSVs) [204]. The additional requirements resulting
from the characteristics of TSVs lead to more complex link designs which must
cope with faulty TSVs [165] or limitations with respect to their number [164]. In
addition, there are other approaches for on-chip networks that have a large impact
on the link design. An example are wireless10 [86] and optical/photonic11 [226]
networks on chip.

2.4.2. Topology

The topology of a network has a noticeable impact on implementation cost, per-
formance and floorplanning of a NoC-based architecture.

Implementation cost of each router is affected by the topology because it dictates
the number of router ports. This in turn affects the implementation cost of the
crossbar according to equation 2.3.

The performance of a network is affected by the topology because it dictates the
bandwidth. As a measure for the bandwidth of a network, the bisection bandwidth
or bisection width is widely accepted. The bisection bandwidth is defined as
the bandwidth between two parts of a network, which is segmented into two
(roughly) equal parts [108]. Clark D. Thomborson could show that the bisection
width of a network has a noticeable impact on the performance of distributed
applications, such as parallel sorting [249] or a discrete Fourier transform (DFT) [248].

10Wireless networks use miniaturized on-chip antennas for communication between routers or
nodes [86].

11Optical networks might use photonic switching elements controlled by electronic circuit switching
routers [226].

32

2

2.4. Networks on Chip

According to [248], the bisection width is defined relative to the number of cores
or nodes N connected by the network12.

Compared to off-chip networks, floorplanning is another important aspect that
must be taken into account when selecting a topology for an on-chip network. In
general, floorplanning of tiled architectures with regular topologies is easier [107]
and can improve the circuit performance due to the short links. However, irregular
topologies might be beneficial for application-specific designs. A floorplaning
methodology for irregular topologies was presented in [183].

In the following the most relevant network topologies will be introduced and
discussed. For each topology, the implementation costs, the performance and the
suitability of an application-specific integrated circuit (ASIC) implementation will be
evaluated. An overview of different network topologies is provided in figure 2.12.

(a) Bus (b) Mesh (c) Ring

(d) Torus (e) Star (f) Tree

Figure 2.12.: Six different common network topologies.

Bus The topology shown in figure 2.12(a) represents a shared bus. It has low
implementation cost; as explained in section 2.3.2.2. An efficient floorplan of a
bus-based system is limited to a small number of components due to the long
wires required in larger systems. The bisection width for N nodes is 1. Thus, it is
independent of the number of nodes, limiting the scalability of the bus.

12In the following paragraph it is assumed that each link has a bandwidth or capacity of 1.

33

2

2. Fundamentals

Mesh The two-dimensional mesh, shown in figure 2.12(b), is a very popular
NoC topology [175]. It has good floorplanning capabilities due to its regularity.
All links have the same length; which is limited. The number of ports per router
is independent of the total number of nodes; enabling scalability. The bisection
width of a 2D mesh for an architecture with N nodes is

√
N. The diameter13 of a

2D mesh is 2(
√

N − 1). The 2D mesh is used in many existing NoCs, such as the
QNoC [29] and Nostrum [177, 178].

Ring The ring is a topology that is widely used in off-chip networks. A ring
topology is shown in figure 2.12(c) and can be seen as a 1D torus (multi-dimen-
sional tori are explained later). The number of ports per node is 2, independent
of the number of nodes connected by the ring. The ring can be implemented
in a way that all links have the same (short) length, enabling efficient floorplan-
ning. The bisection width of a ring topology is 2; therefore providing limited
scalability with respect to the bisection bandwidth. The Proteo [230] architecture
uses a ring topology for on-chip communication. Intel’s commercial Xeon Phi
architecture [53] also uses a ring topology for its main interconnect.

Torus A torus can be seen as the extension of a ring to multiple dimensions. It
adds wrap-around links to the 2D mesh; as shown in figure 2.12(d). In order to
reduce the length of the wrap-around links, the torus can be folded. When folding,
the distance between two connected nodes can be limited to two, independent of
the number N of nodes. The regularity of a folded torus simplifies floorplaning.
Compared to the 2D mesh, a 2D torus has a double bisection width of 2

√
N but

only slightly higher implementation cost. Its diameter, which is relevant for the
latency, is

√
N. The NoC presented in [61] uses a torus topology.

Star Using a star topology, as shown in figure 2.12(e), all nodes are connected
to a common node. This common node is often referred to as a super-node. It
can be implemented as a crossbar (cf. section 2.3.2.4). The crossbar enables low
latency between all nodes but limits the scalability of the star topology due to
the implementation cost that grow quadratic with the number of nodes. The
floorplaning of the star topology can result in long links for larger numbers of
nodes. However, the bisection width is N/2 according to [248] and scales well
due to the use of a centralized crossbar in the super-node.

Tree A tree topology is typically used in local area networks (LANs). According
to [175], in a k-ary tree, each router has k children. The network adapters are

13The diameter is a good measure for the latency of the network.

34

2

2.4. Networks on Chip

attached only to the leaves of the tree. A schematic diagram of a 2-ary tree is
provided in figure 2.12(f). The floorplaning capabilities of tree topologies depend
on the number and type of nodes. A good placement might be found for small
heterogeneous architectures where the nodes have different sizes. When scaling
the size of an architecture, floorplanning of trees becomes difficult. The bisection
width of a tree is 1, due to concentration of all traffic at the root node. In order
to increase the bisection bandwidth the bandwidth towards the root node can
be increased as proposed in [156]. Such a fat tree or folded butterfly has a large
bisection width. The drawback is the high cost of implementation. A tree-based
on-chip interconnect is presented in [101].

2.4.2.1. 3D Topologies

The previous discussion only focused on topologies, suitable for 2D integration.
However, 3D integration is a promising technology for large future systems [139].
Therefore, 3D topologies for networks on chip will be briefly discussed now.
In [72] it was shown that tree topologies are suitable for 3D integration although
they have a limited scalability. A tree topology can profit from a decreased av-
erage distance between the nodes in case of 3D integration, resulting in better
performance and significant gain in power dissipation and area overhead. How-
ever, 3D integration targets large SoCs. That is why scalable regular topologies are
most suitable for 3D integration. For a 3D mesh-based topology significant gains
in terms of throughput, latency and power dissipation have been demonstrated
in [72]. However, this is achieved on the cost of additional area, which results
from the higher number of ports of a 3D mesh or torus router. Taking equation 2.3,
the implementation cost c of a 3D and a 2D mesh or torus router can be estimated
as follows14:

c3D ∼ 7 · 6 = 42 > c2D ∼ 5 · 4 = 20 (2.4)

Since the implementation costs of the other router components (e.g. buffer, rout-
ing units, etc.) grows only linearly with the number of ports, the total relative
implementation overhead of a 3D router should be lower than the relative over-
head of the crossbar. A NoC router for 3D architectures is presented in [135]. It
uses a partially-connected 3D crossbar structure to reduce the implementation
cost of the crossbar.

The throughput gain of a 3D torus or mesh compared to the 2D variant results
from the higher bisection width. It is (3

√
N)2 for a 3D mesh and 2(3

√
N)2 for a 3D

torus. The improvement in terms of latency compared to a 2D integration results

14For the overhead estimation it is assumed that each input is only connected to six of the outputs,
since the data do not enter and leave the router through the same port.

35

2

2. Fundamentals

from the decreased diameter, which is 3(3
√

N − 1) for the mesh and 3 3
√

N/2 for
the torus.

In [124] a 3D mesh and torus NoC have been compared in terms of latency and
throughput. The presented results approve the theoretical advantages of the torus
compared to the mesh; resulting from the higher bisection width and decreased
diameter. In addition the authors proposed a deadlock-free routing mechanism
for 3D tori.

Due to the fact that a 3D mesh or torus is just an extension in the dimension, their
scalability and floorplaning capabilities are comparable to the 2D variant.

2.4.3. Switching Schemes

The previous sections showed that the choice of the topology can have a notice-
able impact on scalability, performance and implementation cost. The switching
technique is another important aspect with respect to implementation cost, per-
formance, flexibility and QoS requirements of the network. It defines the data
flow through the routers and the granularity of data transfers. The minimum
granularity of a data transfer is typically the link size, measured in bits. However,
an exception is a network with spatial division multiplexing (SDM) techniques [157]
where the physical link is divided into sub-links. The unit of data transferred
in a single cycle on a link without SDM techniques is known as phit. One or
multiple phits are combined to one flow control digit (flit). These flits represent the
granularity that is used for switching or flow control. Several flits form a packet
and multiple packets can be used for a complete message.

There are two basic modes for data transfer within a network: circuit switching
and packet switching. In circuit switching networks, an end-to-end connection is
established between sender and receiver before the actual data transmission takes
place. In contrast, packet switching networks enable to inject packets without
previous connection set-up. Packets constituting a message make their way
independently of each other in a packet switching network. Each packet could
e.g. use a different route and experience a different delay.

The choice of the switching method has significant impact on resource require-
ments, power consumption, flexibility, performance and QoS support of the net-
work on chip. The impact of different switching methods on all these parameters
will be described now.

36

2

2.4. Networks on Chip

2.4.3.1. Circuit Switching

Circuit switching aims to send rather large messages in their entirety from one
module to another. Therefore, an end-to-end connection must be established
before data transmission. Such an end-to-end connection is a physical path con-
sisting of a series of links and routers. To establish a circuit switching connection
in a distributed way, a setup or head flit can be used. It is transmitted from the
sender to the receiver, reserving a series of links along the way. The multiplex-
ers and crossbars within the routers are configured during setup to connect the
allocated links. If the setup flit arrives at the receiving node without conflicts
(occupied links), an acknowledge flit is sent back to the transmitter15. Once a
connection is established successfully, the data transfer can be performed without
any needs for interruption. The connection behaves like a circuit between the two
communicating nodes. Figure 2.13(a)(left) shows the setup and data transmission
phase of a circuit switching connection over time. Three routers R1, R2 and R3
are used by the connection. The per-router delay is one cycle in the example
provided, due to pipeline registers within the routers16. Figure 2.13(a)(right)
shows the pipelined circuit switching data transmission. It can be seen that the
delay of the header or setup flit is larger than the latency for the actual data
transmission. The reason is the additional routing and switching delay required
for the transmission of the header and acknowledge flits. After transmission of a
message, a tail flit is used to release the circuit switching connection.

Circuit switching networks have a high initial latency for circuit setup, resulting
from routing and acknowledgment. This setup phase must be completed before
data transmission starts. However, after setup, data transmission is very efficient
due to the low latency and the high bandwidth. The low latency results from the
absence of buffers and arbitration. Due to the initial circuit setup, buffering and
arbitration is not required because it is ensured that all data can be forwarded
directly after reception. Avoiding buffers not only reduces the latency, it also
lowers the implementation cost and thereby the energy footprint of the router.
The drawback of circuit switching networks are their limited flexibility. The num-
ber of parallel communication flows is limited by the number of available links.
Frequently changing communication partners would lead to a huge overhead
and inefficiency due to connection setup. On the other hand, the amount of re-
sources per connection increases with the distance of the communication partners.
Considering the increase in setup time with the distance of the communication
partners in large architectures, the scalability of circuit switching is limited [175].

15If a link is occupied by another circuit switching connection, setup fails and the data transmission
fails for now.

16Registers in a circuit switching NoC enable scalability. The reason is the limited length of a paths in
the network independent of the number of nodes.

37

2

2. Fundamentals

Circuit switching is suitable for frequent communication or static transmission
scenarios; where the communication partners are fixed for a long period. Con-
sequently, the efficiency of circuit switching depends on the payload size to be
transmitted after setup. The initial time for connection setup becomes negligible
if the circuit is used for an extended period of time.

SoCBUS was one of the first representatives of a circuit switching network on
chip. With respect to the power efficiency, circuit switching NoCs have been
shown to be very efficient. A circuit switching CMOS integration of a 2D mesh
NoC with 64 nodes and an power efficiency of 363 Gb/s/W was presented in [11].
Packet switched request circuits are used to set up new connections. Wolkotte
et al. proposed a reconfigurable circuit switching router design and showed its
low power consumption and chip area compared to packet switching [269]. The
Æthereal NoC investigated by Goossens et al. [92, 93] combines circuit switching
with the virtual channel concept (see section 2.4.3.3) using a TDM scheme for VC
scheduling. In Æthereal, circuit switching is combined with a packet switching
network that offers best-effort communication.

c)
 V

irt
ua

l C
ut

Th

ro
ug

h
d)

 W
or

m
ho

le
b)

 S
to

re
 &

Fo

rw
ar

d
a)

 C
irc

ui
t

Sw
itc

hi
ng

Router 3 Router 2 Router 1

Legend: Flit of Pkg. A Flit of Pkg. B H: Head, T: Tail, A: Ack

Time Line

T H T

T TH

R3
R2
R1 H

H

H A

A

A
set-up time

s

R3
R2
R1 H

H

H

T

T

T

s

R3
R2
R1 H

H

T

H

T
T T

s

R3
R2
R1 H

H

T

H

T
T T

s

T H T

Figure 2.13.: Basic circuit (a) and packet switching techniques (b,c,d). Right: Time
line of the data transmission of the three routers (R1-R3). Left: Snap-
shot of the router buffers (R1-R3) at time s.

2.4.3.2. Packet Switching

In contrast to circuit switching, packet switching networks do not require a
reservation before data transmission takes place. Different packages of a large

38

2

2.4. Networks on Chip

message may take different routes through the network; perhaps with a large
variance in latency. The absence of a reservation phase enables direct injection of a
packet into the network. Thus, a packet switching network can be considered to be
more flexible in terms of changing communication partners. Omitting the setup
procedure, which could possibly fail, simplifies the usability and reduces the
management overhead of a NoC. Best-effort communication, enabled by packet
switching, allows to communicate to different partners in parallel without taking
resource constraints into account. Nevertheless, the available resources should not
be completely ignored when using packet switching. If different transmissions
want to use the same link at the same time, a so-called contention appears. It
requires an arbitration between the packets that are competing for the link usage.
The arbiter decides which packet is allowed to use the link directly. All other
competing packets must wait and have to be sorted until the link is available
again. Therefore, buffers must be built within the routers to store the packets
in case of contention. These buffers lead to increased implementation cost and
power consumption compared to a circuit switching network.

The comparison of the performance of circuit and packet switching networks
on chip is not obvious. Referring to the latency, a circuit switching network is
invincible if the connection is already established. However, if data must be
transmitted spontaneously, packet switching can beat circuit switching in terms
of delay. Using a packet switching NoC the packet can be sent directly, whereas a
circuit switching variant would have to wait for a successful connection setup.
Referring to the throughput, a packet switching NoC is generally more efficient.
The reason is the more flexible link usage of packet switching. Each link is only
utilized for the time a packet is transmitted. Subsequently, it can directly be
used by other packets waiting in the router buffers. This leads to a very flexible
and efficient link utilization resulting in a high general throughput. In contrast,
the throughput of a circuit switching network strongly depends on the load of
the established connection. Reserved links remain unused if the corresponding
connection is idle. To increase the link utilization of both packet and circuit
switching networks, virtual channels, introduced in section 2.4.3.3 can be used.

In general, packet switching networks do not support QoS in terms of latency
or throughput. However, virtual cut through (VCT) switching and wormhole
switching can be used to enable end-to-end connections and guaranteed service (GS)
communication in packet switching networks; as explained in chapter 6.

Store and Forward The store and forward (SAF) flow control or switching method
enables a simple packet switching implementation. A packet is only forwarded
from one router to the next, if there is enough space available in its buffers
to store the whole packet. Store and forward has the advantage that a packet
transmission between two routers never stalls after it was initiated, because it was

39

2

2. Fundamentals

ensured previously that all data are accepted by the receiver. The disadvantage
compared to more advanced switching schemes is the increased delay resulting
from the fact that a packet is received in its entirety before it is forwarded again.
Figure 2.13(b)(left) shows the data transmission of a SAF switching network for
three routers: R1, R2 and R3. In this scenario, the buffer of router R3 is occupied
by a packet (red). A second packet (green) will be transmitted on the same path
from R1 to R2. Figure 2.13(b)(right) illustrates that point in time s where the
packet is completely stored in the buffer of R1 and is now forwarded to the empty
buffer of R2. The buffer of R2 is empty and can store the entire packet (red).

A huge disadvantage of store and forward is the large buffer, which is necessary
to store the largest supported packets as a whole. Since the buffer size of NoCs is
critical with respect to implementation cost and power consumption [214], SAF is
not very common for NoCs. However, the Nostrum NoC [177] implicitly carries
out SAF by limiting the packet size to one flit.

Virtual Cut Through In order to reduce the latency compared to store and for-
ward, virtual cut through switching can be used. It forwards the first flit of a
packet as soon as space for the entire packet is available in the receiving router. In
contrast to SAF, the packet does not have to be received completely before the
available flits are forwarded. If there is not enough space available, the whole
packet is buffered. Figure 2.13(c)(left) shows the progression of a VCT data trans-
mission of two packets. In contrast to SAF, shown in figure 2.13(b), the red packet
can be forwarded earlier from R1 to R2, since it is not required to be received
completely by R1. A snapshot of the buffers is provided in figure 2.13(c)(right) for
time s. Since the required buffer size for VCT is identical to SAF, its realization
would result in large buffers and implementation cost. One of the few NoCs that
apply virtual cut through switching is implemented in the SCC architecture [113].

Wormhole The wormhole switching scheme is an evolution of VCT. It reduces
the buffer requirements to one flit. This is achieved by forwarding each flit of a
packet directly after reception. For flit transmission in wormhole switching, a
packet must not be completely received and the following router does not need
to have buffer space available for the entire packet. This enables to reduce the
delay compared to store and forward and virtual cut through and leads to an area
efficient implementation of a NoC router; due to the low buffer requirements. The
disadvantage of wormhole switching is the potential blocking of links by packets
that are left strung out over multiple routers. All the links between the header and
the tail of the packet are then blocked for other transmissions; potentially leading
to contention. Virtual channels, introduced in section 2.4.3.3, assist in reducing the
chance of contention by enabling processing and forwarding of multiple packets in
parallel. The risk of deadlocks in wormhole switching requires a careful selection

40

2

2.4. Networks on Chip

of the routing algorithm; as described in detail in section 2.4.5.5 and section 2.4.5
respectively.

Figure 2.13(d)(left) shows the time line of a data transmission in a wormhole
switched network. Compared to VCT, presented in figure 2.13(c)(left), the red
packet can be forwarded sooner from router R2 to R3 because the buffer of router
R3 (see figure 2.13(d)(right)) must not be empty; like with virtual cut through
switching.

According to [175], almost all packet switching NoCs use wormhole switching
due to its low buffer requirements and low delay. The Hermes [180] NoC uses
wormhole switching in combination with dimension-ordered routing to avoid
deadlocks (see section 2.4.5). Intel implemented an 80-Tile architecture in 65 nm
using a wormhole packet switching NoC [257]. In Æthereal [214] wormhole
packet switching is used for the best-effort (BE) router. QNoC [29] uses wormhole
switching in combination with different service classes; each with separate buffers
in the router. This enables interleaved data transmission of packets that belong to
different service classes. The MANGO network on chip [25, 26] and the router
design presented in [130] both combine wormhole packet switching with VCs
(see section 2.4.3.3) to avoid contentions. All the previous discussed networks
use wormhole switching in a regular mesh topology. In contrast, the SPIN micro-
network [1] applies wormhole packet switching to a fat tree topology.

2.4.3.3. Virtual Channels

The concept of virtual channels (VCs) was introduced by Dally [58] to decouple
buffer resources from transmission resources. This decoupling allows active mes-
sages to pass blocked messages using network bandwidth that would otherwise
be left idling. In general, a predefined number of parallel channels (VCs) is built
at each port of the router. These virtual channels share the physical link by using
a scheduling strategy that controls the link access. After transmission, the data are
split up into VCs at the receiving router. The problem of unused bandwidth exists
in both, packet and circuit switching networks. Therefore, the concept of virtual
channels is applied to both switching strategies. The improved link utilization
increases the performance (throughput and latency) of the NoC, but comes along
with additional implementation cost. According to section 2.3.2.4, the complexity
of the crossbar of an N-port router grows from N x (N− 1) to N x [V x (N− 1)] for
a router with V virtual channels. Depending on the switching method, separate
buffers for each VC are necessary, increasing the implementation cost.

In packet switching networks buffering is required, regardless. Consequently,
virtual channels can be implemented by splitting up a single buffer to multiple VC

41

2

2. Fundamentals

buffers with smaller size17. Figure 2.14 shows an output port and an input port of
two neighboring packet switching routers, where the buffers per VC are located
at the input port. The flits of different virtual channels share the physical link and
are transmitted sequentially according to the scheduling strategy. The scheduling
decision for the virtual channels is taken by the scheduling unit located at the
output port of the sending router. Each router can take an independent scheduling
decision based on priorities, deadlines or buffer fill levels. A very common
scheduling strategy is round-robin scheduling; described in section 2.4.3.4. In the
literature, the scheduling of the VCs is also referred to as link access arbitration
scheme. The information about the scheduled VC that is used for transmission
must be provided to the next router; as shown in figure 2.14. The receiving router
takes this information to forward the data to the correct VC buffer. A VC only
exists between a pair of neighboring routers. Consequently, different VCs can be
used by a packet at different hops.

A virtual channel packet switching router with round-robin scheduling of the
VCs is presented in [130]. The asynchronous MANGO NoC uses VC-based packet
switching and a round-robin-like scheduling, as described in [24].

Input Buffer
VC0

Input Buffer
VC1

Input Buffer
VC2

Input Buffer
VC3

Input PortOutput Port

Physical Link

C
ro

ss
ba

r

VC Scheduling

Flit
VC1

Flit
VC0

Flit
VC1

Flit
VC0

Flit
VC2 Flit

VC2

VC1VC1 VC0 VC2

Figure 2.14.: Virtual channel realization with scheduling unit and separate buffers
per VC.

If the virtual channel concept is applied to a circuit switching network a globally
synchronized scheduling of the VCs is required to maintain circuit switching
behavior18. Flits remain in the network adapter of the transmitting node tile the
VC associated with the used end-to-end connection is scheduled. Afterwards, the
flit traverses the network with the same speed compared to the circuit switching
implementation without VCs. Due to the fact that the physical link bandwidth
is shared between the VCs, each connection receives only a part of the physical
link bandwidth. The end-to-end connections, which are multiplexed by the VC-

17In case of wormhole switching, the buffer size might be reduced if VCs are added. SAF and VCT
still have the requirement of a buffer with a minimum size of an entire packet.

18In this context circuit switching behavior refers to the end-to-end connections without buffering
and without or with single-cycle delay per hop.

42

2

2.4. Networks on Chip

scheduler to the physical link, are often named virtual circuit in the literature. For
scheduling, time division multiplexing (TDM) is often used in a circuit switching
NoC. TDM must be synchronized between all routers and NAs to enable end-to-
end bandwidth and latency guarantees [87].

The concept of virtual channels is used in different circuit switching NoCs to
increase the number of parallel communication streams and improve their flex-
ibility. In the Nostrum NoC, a concept named looped containers uses globally
synchronized TDM scheduling [177]. Lu and Jantsch [166] also use a synchronous
TDM-based VC circuit switching NoC. In Æthereal [87, 92] contention-free routing
is used to enable GS communication using VCs and circuit switching.

2.4.3.4. Scheduling and Arbitration

In the previous section, virtual channels were introduced. These virtual channels
must be scheduled for data transmission. This scheduling is also commonly
referred to as arbitration. In a NoC router, arbitration may be required at different
positions. For example, an arbitration may be required between multiple packets
that have entered the router through different inputs but have to use the same
output. Depending on the router’s implementation, the routing unit may be
shared. Then, access to the unit must be managed by arbitration. However, there
are many different positions or situations where arbitration is required. In the
following, the most relevant scheduling strategies and arbitration schemes are
briefly introduced.

St
ac

k
/

N
o.

 o
f R

eq
ue

st
s

A
P3
W2

B
P2
W1

C
P1
W1

D
P0
W0

Unit
Priority
Weight

(a) Situation

TDM A B C A B CD D A

RR

Priority

WRR

A B C A B A

A B CA BA

A BCA B A
time

(b) Schedules

Figure 2.15.: Popular arbitration/scheduling schemes used in NoCs: (a) gives a
possible situation requiring arbitration between component A, B, C
and D; (b) shows the resulting schedules for TDM, RR, priority and
WRR scheduling.

43

2

2. Fundamentals

TDM A time division multiplexing (TDM) scheduling or time division multiple
access (TDMA) scheme uses fixed time slots that are statically assigned to each
unit that is attached to the arbiter or scheduler. An advantage of TDM is its
simple synchronization for the realization of distributed synchronous schedul-
ing (e.g. synchronous scheduling of VCs for circuit switching [177]). Due to the
fixed schedule order and scheduling cycle length, TDM only requires an initial
synchronization. All components are scheduled with the same rate; resulting in
a fair scheduling. A drawback of TDM is the scheduling of idle units. Due to
the predefined fixed scheduling order, a TDM arbiter selects also component that
do not request for arbitration. The selection of idle units results in an inefficient
utilization of the available bandwidth, when TDM is used for VCs scheduling.

The example in figure 2.15(a) shows a situation with four components, each with a
stack that must be processed by selecting the respective component. Figure 2.15(b)
gives the resulting scheduling for different arbitration schemes. This example
shows that compared to the other schedules, TDM requires more time to process
the stacks of all the four units because of the scheduling of idle components D
(right from the beginning) and C (in the second scheduling cycle).

Round-robin Another very common scheduling strategy is round-robin (RR),
also known as asynchronous time division (ATD). Compared to TDM, round-robin
does not consider idle components for scheduling. This results in an optimal
scheduling with respect to the time required to process the stacks of all units.
However, omitting idle components makes the implementation of the arbiter
more complex and more costly. Like TDM, RR is a fair scheduling strategy where
all components requesting for arbitration are selected for an equal time. The
efficiency in terms of utilization and its fairness make round-robin a widely used
scheduling strategy for NoCs and other integrated circuits. RR can be used to
optimize the bandwidth utilization of a NoC with VCs [130]. Looking at the
scheduling example provided in figure 2.15, it can be seen that RR results in an
optimal schedule with respect to the total time. The requesting components are
selected; alternating with the same frequency.

Priority TDM and RR can be referred to as fair arbitration schemes. However,
there are situations where prioritization is desirable. Priority scheduling defines
a priority for each component that is taken into account for arbitration. In the
simplest implementation, the component with the highest priority is selected
if it requests for scheduling. More advanced schemes have limitations for the
maximum schedule length of each priority level to avoid starvation of lower
priorities. Such a prioritization scheme is used in the QNoC [29] to enable QoS.
Figure 2.15(b) shows a priority schedule for the priorities and stacks provided
in figure 2.15(a). P3 is the highest priority and P0 the lowest. Because priority

44

2

2.4. Networks on Chip

scheduling is not a fair strategy, it enables to schedule the components with
different rates. The drawback of priority scheduling is the potential blocking of
components with low priorities by higher prioritized ones. Consequently, the
predictability of priority scheduling is limited.

Weighted round-robin The weighted round-robin (WRR) arbitration scheme is
an extension of RR scheduling. As in RR scheduling, it selects all components
within one scheduling cycle. The time span or number of schedules per cycle
for each component varies and depends on the weight that is assigned to the
respective component. However, the length of a scheduling cycle is not fixed, but
is limited by the sum of the assigned weights. To achieve predictability for WRR,
the scheduling cycle length must be limited. This can be ensured by providing
an upper boundary for the sum of all weights. WRR provides the capability
to adjust the requirements (e.g. bandwidth or latency) at run-time by assigning
weights dynamically. In figure 2.15(a), a weight is assigned to each unit. The given
weights define the number of schedules per cycle. The resulting WRR schedule is
provided in figure 2.15(b). From the example, it can be seen that WRR is fairer
than priority scheduling. Compared to priority scheduling, the component C is
not blocked that long, when WRR is used.

2.4.4. Flow Control

Flow control is necessary to ensure that no data are dropped unnoticed between
sender and receiver. Data can either be dropped due to errors that appeared
during transmission, such as the unavailability of buffer space in the receiving
router. As an alternative, the communication system can be designed in a way
that no data are dropped. In that case, flow control must ensure that buffer space
is available at the receiver.

In a network on chip, flow control is applied at multiple layers. At the link layer
it is applied between neighboring routers, known as router-to-router flow control.
End-to-end flow control protects the communication between the transmitting and
receiving node. Since the requirements for router-to-router and end-to-end flow
control differ essentially, they are discussed separately.

2.4.4.1. Router-to-Router Flow Control

If a packet switching router (see section 2.4.3.2) forwards a flit or packet to a
neighboring router, space must be available in the buffer of the following router.
In case of wormhole switching, flow control must be carried out at the granularity
of flits, whereas SAF and VCT only necessitate flow control at the granularity

45

2

2. Fundamentals

of packets19. In case of circuit switching (section 2.4.3.1), acceptance of flits is
ensured anyhow due to synchronous scheduling. Thus, explicit router-to-router
flow control is not required for circuit switching.

In the following, three different router-to-router flow control mechanisms are
described20:

STALL/GO: STALL/GO only requires two signals: The REQ signal is controlled
by the sending router and indicates that valid data is transmitted. If the receiv-
ing router is running out of buffer space, it sets the STALL signal. This signal
indicates that the sending router is not allowed to transmit data anymore. An
implementation of STALL/GO is very lightweight. However, it can be critical
with respect to timing due to the dependency between the REQ and the STALL
signal. The STALL signal for the next cycle depends on the REQ of the current
cycle, resulting in a combinational path through the receiving router and back to
the sending router. This critical path prevents pipelining of the link and can limit
the performance.

Credit-based: In the case of credit-based flow control [89], the sending router
has a specific number of credits that represent the buffer space available in the
neighboring router. Each time a flit is sent, one credit is consumed. If all credits
are consumed by the router, it is not allowed to continue transmission and must
wait until it receives new credits. New credits are forwarded from the receiving
router to the transmitting router if buffer space becomes available again. Credit-
based flow control can also be implemented with just two signals between the
routers21. The first signal is again a REQ and the second signal, coming from the
slave, is the CREDIT signal that indicates new credits. Credit-based flow control
can be built using a counter at the output port of each router that indicates the
number of available credits. This counter is decremented each time a flit is sent
and incremented again if the CREDIT signal is set. Credit-based flow control
enables pipelining and is widely used in NoCs.

ACK/NACK: The ACK/NACK protocol is based on explicit acknowledgment
of each transmission. The sender sets a REQ signal if data are transmitted. As
soon as the data have been received and processed correctly by the receiving
router an ACK is returned. If data haven’t been received correctly, a NACK is
returned instead. ACK/NACK can be carried out in a credit-based manner
19In the following flit level flow control is assumed because wormhole switching is most popular in

NoCs.
20In addition to the mechanisms discussed here, other router-to-router flow-control schemes, such as

T-Error [241], exist. An overview is provided in [175].
21If virtual channels are used more signals are required to provide separate credits for each VC buffer.

46

2

2.4. Networks on Chip

to enable multiple outstanding ACKs and NACKs. In the case that a flit is not
acknowledged (NACK), it must be transmitted again. Therefore, all flits that have
not been acknowledged must be stored for potential retransmission in the buffer
of the sending router. The retransmission scheme utilizing ACK/NACK comes
along with higher implementation costs compared to the other two flow control
mechanisms. However, it can be used to enable fault tolerance.

2.4.4.2. End-to-End Flow Control

End-to-end flow control is carried out between the sending and the receiving
node. On one hand, it is used to ensure that erroneous or discarded packets [149]
are retransmitted again. On the other hand, end-to-end flow control is required
to ensure that buffer space or memory is available at the receiving node and
packets are accepted. In packet switching networks, non-acceptance of packets
at the receiver could result in back pressure or packet dropping. Back pressure
could lead to congestion or even complete blocking of the entire communication
system. Circuit switching also necessitates end-to-end flow control, because
packet acceptance must be ensured at the receiving node due to the absence of
buffers in the routers. End-to-end flow control is typically implemented within the
network adapter by the use of flow control messages that are transferred between
the involved network adapters. Due to the additional messages, end-to-end flow
control comes along with a communication overhead that must be evaluated
carefully.

According to [175], four different basic end-to-end flow control mechanisms
exist22:

1. Pre-allocation or reservation: If the sender is aware of the buffer space
available at the receiving node or can pre-allocate buffer space before trans-
mission, acceptance can be ensured after reception. Credit-based flow con-
trol [89] can be used to ensure that buffer space is available at the receiver, as
described in detail in section 2.4.4.1. For end-to-end flow control messages
must be used. Pre-allocation only ensures packet acceptance. Fault tolerance
is not addressed.

2. Dropping and retransmission: Another strategy is dropping of packets that
cannot be stored. If a packet is dropped, retransmission must be initiated.
Such a retransmission scheme can be carried out by ACK/NACK flow
control (see section 2.4.4.1). It comes along with a high implementation
overhead but can ensure fault tolerance.

22End-to-end flow control is not discussed in detail, due to the fact that it is done between the network
adapters, which are not in the scope of this work.

47

2

2. Fundamentals

3. Rejection and return: Packets that cannot be accepted by the receiver are
rejected and returned to the sending node. This strategy can be used to
enable fault tolerance. Depending on the packet size and the rejection rate,
it can result in high communication overhead.

4. Deflection routing: The concept of deflection routing [75] is to send packets
around in the network that cannot be accepted by the receiver. The strategy
is only applicable to packet switching NoCs. Deflection routing cannot be
used to enable fault tolerance with respect to erroneous packets.

2.4.5. Routing

Routing is the process of finding a path from a source to a destination node. In
order to identify the respective source and destination node, each node within
the network must have a unique identifier. Within the NoC itself, physical ad-
dresses in the form of sequential numbers or XY(Z) coordinates23 are used for
addressing. These physical addresses might be translated into logical addresses
or memory address ranges by the network adapter. These addresses are then
visible to the software. The physical source and destination24 address of the two
communicating nodes are processed by the routing algorithm.

The routing algorithm strongly depends on the topology. In the following, a regu-
lar topology (mesh or torus) is assumed because most existing NoC architectures
use such a regular topology.

The choice of a routing algorithm impacts many different properties of a network
on chip:

• Power consumption: In general, the length of the path between source and
destination node has a noticeable impact on the energy required for data
transmission. Minimal routing (e.g. dimension-ordered routing [185]) can
improve the power consumption. Balancing of NoC traffic by the assistance
of the routing algorithm can improve the power consumption [116].

• Resource requirements: Depending on the complexity of the routing al-
gorithm, it might have a noticeable impact on the implementation cost
or silicon area respectively. A complex routing algorithm might not only
consume more area but also more power.

• Protocol overhead: The choice of the routing algorithm affects the proto-
col overhead of each packet. In case of source routing, described in sec-
tion 2.4.5.1, the protocol overhead might be higher compared to a distributed

23Especially for regular topologies, such as mesh or torus networks, coordinates provide an intuitive
way of addressing. The Z coordinate is only required for 3D topologies. In the following, 2D
topologies are assumed for simplicity.

24Not all routing algorithms take the destination address into account.

48

2

2.4. Networks on Chip

routing algorithm, detailed in section 2.4.5.2. This protocol overhead im-
pacts again the power consumption as well as the effective bandwidth of
the network.

• Performance: Throughput and latency are also affected by the routing algo-
rithm. The length of the path between source and destination node impacts
the latency of the data transmission. A routing algorithm supporting load
balancing can be used to improve the throughput between communicating
nodes [117].

• Robustness: The robustness of a routing algorithm describes its capabili-
ties to adapt to different load scenarios. XY routing [185] provides good
performance for balanced load situations. However, adaptive routing sche-
mes [15, 117] are more robust with respect to changing traffic patterns.

• Fault tolerance: If faults can occur in the NoC, the routing algorithm must
be resistant against these faults. The routing decisions must be adjusted
according to the current fault situation. Fault tolerant adaptive distributed
routing [222], routing table based fault tolerance [76] and reconfigurable
routing [281] have been proposed to achieve fault tolerance.

• Deadlock and livelock freedom: Deadlocks and livelocks could lead to
situations where packets get stuck in the NoC and do not arrive at the
destination node. In order to avoid such situations, deadlock-free and
livelock-free routing algorithms, such as dimension-ordered routing [185]
or adaptive odd-even turn [46], can be used. Otherwise, deadlock recovery
techniques can detect and recover from deadlocks [12, 172].

According to [3], routing schemes can be classified into different categories. Ta-
ble 2.1 summarizes different classifications and the alternative options for each
of them. The most relevant realization options are discussed in the following
subsections.

Classification Options
Number of destinations unicast, multicast, broadcast
Place of routing decision centralized, source node, distributed, multiphase
Type of decision lookup table, FSM
Implementation software, hardware
Adaptivity static, partially adaptive, fully adaptive
Minimality minimal, non-minimal

Table 2.1.: Classification of routing schemes.

49

2

2. Fundamentals

2.4.5.1. Source Routing

In the case of source routing, the sending nodes define the complete route of a
packet and adds this information to the packet header. The information regarding
the route is then carried throughout the network and processed by each router to
forward the packet accordingly. The routing decision is either taken by accessing
a pre-computed routing table that is located in the network adapter of each
node or by an algorithm (FSM) calculating the route on demand. The routing
information for each hop is then coded and inserted into the header of the packet
to be processed by the routers. Because the routing is performed in the source
node, the complexity of the NoC routers can be reduced. The drawback of source
routing is additional protocol overhead resulting from the routing decision that
must be carried around through the network. Moreover, the size or length of the
routing decision that is carried throughout, is not fixed. The protocol overhead
depends on the length of the path taken by the packet. This variability is hard
to handle efficiently. Due to these drawbacks, the scalability of source routing is
limited. However, Æthereal [92] as well as the MANGO NoC [25, 26] uses source
routing for its BE router. A fault tolerant source routing method is presented
in [137].

2.4.5.2. Distributed Routing

In contrast to source routing, distributed routing shifts the routing decision from
the node or network adapter to the NoC routers. In distributed routing, the
destination address is carried in the packet header. The source and destination
addresses are mostly given as XY coordinates of the respective node. The routing
decision is taken in a distributed way by the routers, which forward a packet.
Each router decides independently, where to forward the packet. More precisely,
it decides which output port to be used. The decision is either taken by a routing
algorithm, implemented as an finite state machine (FSM) or by accessing a look
up table that contains the output ports for given destination addresses. A very
common example of a distributed routing algorithm used for meshed NoCs
is XY routing [185]. It enables a lightweight FSM implementation when using
geographical XY coordinates for addressing. For instance, distributed XY routing
is used in Intel’s SCC [113]. They pre-compute the route in the previous hop
to allow fast output port identification on packet arrival. Compared to source
routing, distributed routing offers better scalability due to its low and constant
protocol overhead. However, due to the distributed decision making process in
the routers, they become more complex.

50

2

2.4. Networks on Chip

2.4.5.3. Static Routing

Static routing, also known as deterministic routing, uses fixed or static paths
between a pair of nodes. It does not provide any degree of freedom with respect to
the path that is used for data transmission25. Thus, static routing does not enable
to react on changing load conditions or faults by choosing the route accordingly.
This makes static routing inflexible with respect to changing operation conditions
of the architecture. Advantages of static routing algorithms are in-order arrival
and its lightweight implementation. In-order arrival can easily be guaranteed
since all packets take the same path26. The lightweight implementation results
from the simple decision process, which does not necessitate to choose between
alternative routes. Static routing can either be implemented as source or as
distributed routing scheme. The most common static routing algorithm is XY
routing [185] shown in figure 2.16(a). XY routing is a minimal routing strategy.
Minimal means that the path between source and destination has the shortest
distance referring to the Manhattan distance in a regular mesh or torus topology.

(y,x)
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(a) XY routing

(y,x)
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(b) Odd even turn routing

(y,x)
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(c) Fully adaptive routing

Figure 2.16.: Possible paths for bidirectional communication between router (1,1)
and (3,4) for three different minimal algorithms: (a) XY routing, (b)
odd even turn routing and (c) fully adaptive routing.

2.4.5.4. Adaptive Routing

Adaptive routing is the counterpart to static routing. It is also knows as dynamic
routing. An adaptive routing algorithm can provide different valid paths between

25Most static routing schemes allow only one path between source and destination. However, there
are also static routing schemes with multiple fixed paths from source to destination.

26If virtual channels are used precautions must been taken to ensure in-order arrival. The reason is
that packets can pass each other on different VCs.

51

2

2. Fundamentals

a pair of nodes. Within the list of possible routes, the most suitable path can be
selected for transmission. This additional degree of freedom compared to static
routing can be used to optimize communication. The route can be selected in
a way that load is balanced [117], power consumption optimized [15] or faulty
routers bypassed [222]. Adaptive routing can either be implemented as source
or as distributed routing scheme. The risk when using adaptive routing are
deadlocks; as described in detail in section 2.4.5.5. However, adaptive routing
algorithms that have been proven to be deadlock-free do exist. The most popular
example is the odd-even turn model [46]. It is derived from the turn model [90].
Valid paths for minimal odd-even turn routing are shown in figure 2.16(b). An-
other deadlock-free adaptive routing scheme that can also be used to achieve fault
tolerance is presented in [65]. Dally and Aoki [59] proposed an adaptive routing
algorithm that uses VCs to eliminate cyclic dependencies and achieve deadlock-
freedom. It can be used for fully-adaptive routing that allows each minimal path
between source and destination [34], as shown in figure 2.16(c). A drawback of
adaptive routing is the requirement for reordering to enable in-order delivery.
When adaptive routing is used, different packets of the same message or with
dependencies could take different routes and pass each other but must arrive
in-order at the destination node. Thus, reordering must be performed at the
destination network adapter [274] or in the network itself [146]. In contrast to
static routing, adaptive routing is more complex to implement and can thus result
in higher implementation cost and power consumption for routing. However, it
offers better performance and can also be used to reduce energy consumption for
data transmission. The trade-off between costs and benefits of rerouting has to be
evaluated carefully depending on the NoC requirements.

2.4.5.5. Deadlock

Deadlock-freedom is a basic requirement for a reliable network. Deadlocks can
block links permanently, resulting in back pressure and blocking of other links.
Such a situation could result in a global blocking of the communication infrastruc-
ture. A deadlock occurs if a buffer on the way of a packet is blocked and can no
longer be released. Figure 2.17 shows a typical example of a deadlock situation.
Four packets are involved in this scenario. Each of the packets wants to turn right
but cannot proceed to the next hop because the buffers are already occupied by
another packet. This cyclic dependency results in a permanent deadlock.

Especially wormhole switching is susceptible to deadlocks because the packets
are spread over multiple hops and buffers [78]. In order to avoid permanent
deadlocks, different solutions have been proposed in the past. One feasible
solution is the use of a routing algorithm that is deadlock-free by construction.
The basic principle when constructing a deadlock-free routing algorithm is to

52

2

2.4. Networks on Chip

avoid certain turns27. A general concept for deadlock prevention in routing
algorithms is the turn model [90]. The famous adaptive odd-even turn routing
algorithm [46] is a derivation of the turn model and is therefore deadlock-free.
Static dimension-ordered routing [185] also prevents turns and is deadlock-free
by construction. Virtual channels can also be used to construct deadlock-free
routing algorithms. In [60], VCs are grouped and the packets are assigned to
the groups with respect to the taken routing decisions. This breaks up cyclic
dependencies and ensures deadlock-freedom. However, if the routing algorithm
is not deadlock-free by construction, deadlocks have to be avoided or recovery
techniques must be applied at run-time. Virtual channels can be used to decrease
the probability of deadlocks by providing multiple parallel paths per link [58].
In [136], a deadlock recovery scheme is presented that eliminates blocked packets
and requests for a retransmission. In [172], packet injection rate is limited to avoid
deadlocks. If a deadlock is detected anyhow, a recovery technique absorbs the
deadlocked message at the current node and later re-injects it. Another strategy
for deadlock recovery is the use of a recovery path [12, 202]. This recovery path is
used to progressively forward one of the blocked packets to resolve the deadlock
situation.

Packet 1Packet 2

Packet 4Packet 3

Figure 2.17.: Deadlock scenario with four packets waiting for channels with cyclic
dependencies.

2.4.5.6. Livelock

The counterpart of a deadlock is a livelock [110]. A livelock is a situation where a
packet is forwarded through the network without reaching its destination node.
27A turn is a change of direction performed by a packet. If a packet enters a router from west and

leaves this router southwards, an east-south turn was taken.

53

2

2. Fundamentals

In case of minimal routing algorithms, which forward the packet continuously
towards the destination node, livelocks are not possible. Due to the fact that most
static and adaptive routing algorithms are minimal, livelocks play a minor role.
Thus, livelock-freedom must only be ensured in case of non-minimal routing.
An example for a non-minimal routing algorithm is GOAL [231]. It is a load
balancing adaptive routing algorithm for torus networks.

2.4.5.7. Multicast and Broadcast

Thus far, only point-to-point connections have been considered with respect to
routing. However, situations exist, where the same information or message has
to be delivered to various recipients. If the number of receivers is a subset of all
nodes, this transmission is named multicast or one-to-many communication. If all
members of the communication infrastructure are addressed, the transmission is
referred to as broadcast or one-to-all. A broadcast can be considered as a special
multicast and is thus not addressed separately here.

The simplest realization of a multicast data transmission is a separate transmission
by the source node to each receiver using point-to-point communication. The
drawback of this method is the high utilization of the network, resulting from the
fact that the same message takes the same link multiple times. A more efficient
multicast scheme for wormhole switched NoCs is presented in [168]. In this
scheme, the multicast packet is forwarded from the transmitting node to the
first destination node. The node replicates the message and forwards it to the
next destination node and so on. Distributed XY routing is used to forward the
packets between the nodes. Another multicast mechanism supporting wormhole-
switching is proposed in [219]. It uses special header flits to configure routing
tables used for the following broadcast. The payload that has to be broadcasted is
then injected after setup. It is replicated and forwarded by the routers according
to the entries in the routing table. A similar approach is named virtual circuit tree
multicast [123].

2.5. Dependability

For future manufacturing technologies, fault tolerance and reliability concepts
are expected to play an ever increasing role [105]. In this section, fundamental
reliability principles and definitions will be provided. They are used as a basis for
the reliability concept, which will be introduced in chapter 8.

In order to design a fault tolerant system, a cause-effect chain that extends over
multiple layers has to be considered. At the lowest layer, physical failure mecha-

54

2

2.5. Dependability

nisms cause transistors or wires to fail; as described in section 2.5.5. At the second
layer, a failure is modeled as a fault; as summarized in section 2.5.2. The set of all
modeled faults is denoted as fault model [210].

2.5.1. Terminology

A fault does not necessarily activate an error. An error denotes the deviation of
information compared to fault-free operation. For example, a stuck-at-1 fault
activates an error only if the correct logic value was 0. Otherwise, the fault does
not become manifested as an error. An error that propagates to an output of the
module causes a failure of the module. An error that does not propagate to the
module’s output is said to be masked or transparent.

2.5.2. Hierarchical Fault Modeling

The scheme of fault, error and failure can be repeated from layer to layer of the
system. The failures of lower-level modules, which are instantiated as compo-
nents and connections, are faults at a higher level. Consequently, at higher layers
the fault model becomes more abstract and more remote from the original phys-
ical failure mechanism. Abstraction of fault models is necessary to reduce the
complexity of dependencies and interactions [210]. The chain of faults, errors
and failures is repeated upward the system’s hierarchy until system failures are
observed at the top level.

2.5.3. Redundancy

Redundancy is the fundamental technique to achieve fault tolerance. Depending
on the class of fault, different redundancy techniques are used to cope with them:

• Spatial/modular redundancy: Several components perform the same task.
Majority voting is used to determine the correct result.

• Temporal redundancy: A failed computation or data transmission is re-
peated (re-executed) with the same component until the result is verified by
the consumer.

• Information redundancy: Additional information is added to the data
being processed. Information redundancy can be used to correct errors
directly on observation. This is named forward error correction (FEC).

Diverse redundancy techniques are used to cope with the different fault classes,
which are introduced next.

55

2

2. Fundamentals

2.5.4. Fault Classes

According to [47], faults are widely grouped into transient, intermittent and
permanent faults.

Transient faults appear randomly for one or several cycles. They typically result
from radiation; as detailed in section 2.5.5. Their distribution is truly random
because they result from neutron and alpha particle collisions. Due to this random
distribution, their rate is constant during the lifetime of a chip.

Intermittent faults occur periodically. Thus, they are easy to confuse with tran-
sient faults. Three criteria are proposed in [47] to differentiate between transient
and intermittent faults:

1. “An intermittent fault occurs repeatedly at the same location”

2. “Errors induced by intermittents tend to occur in bursts when the fault is activated”

3. “Replacement of the offending circuit removes the intermittent fault, in contrast to
transients, which repairs do not eliminate”

Intermittent faults can result from crosstalk or self-coupling and their occurrence
may depend on the operating conditions; such as temperature. Other intermittent
fault might be caused by manufacturing variations and imperfections. Aging pro-
cesses can first lead to intermittent delay or logic faults and later on to permanent
faults; as described in detail later.

Permanent faults are faults that are always present after the first occurrence.
Permanent faults can result from manufacturing process variations, aging effects
or design errors. They can be divided into two classes:

• Logic faults: Transistors or wires are permanently open or shortcut

• Delay faults: Transistors or wires are too slow, causing setup and hold time
violations that generate an incorrect logic value

If a permanent fault leads to a functional error only for specific patterns, it is still
denoted as a permanent fault that is masked under certain conditions. A good
example for a masked delay fault is crosstalk that may only lead to an error for
certain logic transitions on neighboring wires.

According to [210], different redundancy techniques can be used to cope with
transient, intermittent and permanent faults. Spatial redundancy is typically
best suited for handling permanent faults. Temporal redundancy can cope well
with transient and intermittent faults. Information redundancy in the form of

56

2

2.5. Dependability

error-correcting codes (ECCs), such as hamming codes or turbo codes, can be used
to protect a transmission against all types of faults.

2.5.5. Physical Failure Mechanisms

CMOS-based circuits can suffer from malfunctions due to a variety of reasons,
rooted in the physics of devices and materials. They are affected by process varia-
tions and by dynamic variation of power consumption or temperature. According
to [210], the causes of failures and errors during production and lifetime can be
grouped into the following categories:

Radiation in the form of terrestrial cosmic neutrons and alpha particles that
originate from radioactive impurities in the device and packaging material are
the main source for soft errors. So-called single event upsets (SEU) can cause bit
flipping in SRAM and DRAM memory cells. When a particle shifts the voltage
level of a wire or a logic gate to an incorrect logic value, it is named single event
transient (SET). The probability of a SEU or SET event to happen depends on
the critical charge, necessary to flip a bit. When shrinking technology nodes, the
critical charge shrinks as well, hence the likelihood of an SEU or SET increases.
Additionally, the number of transistors grows as well for future technologies,
which results also in a higher soft error rate (SER). Taking both aspects into account,
a superlinear growth of the SER is expected for future technology nodes [229, 31].

Electromagnetic Interference mainly results from crosstalk between long par-
allel wires. In order to keep the delay and resistance of wires low, the height of
the wires is not shrinked for technology scaling. This leads to a growing coupling
capacitance and inductance between parallel wires. Consequently, signals of
neighboring wires influence each other, resulting in glitches and higher signal
delay. Self-interference increases with the frequency, due to skin effects, which
are a growing concern for smaller wires [54].

Electrostatic Discharge can be caused by a strong electric current. The current
is either induced by strong electric fields or by I/O pins. Technology scaling
complicates the analysis and control of the underlying phenomena, such as PN
junction, wiring or dielectric oxide breakdown. However, protection against these
phenomena is done at the pins of a device. Internal circuits and components are
typically not affected [88].

57

2

2. Fundamentals

Aging is a generic term for various physical effects that lead to degradation of
performance and function of a CMOS device over its lifetime. In the following,
the most relevant aging effects are explained briefly.

Electromigration is the most important mechanism that leads to increasing delay
and later on to malfunction of wires. It is a transport of metal atoms, induced by
electric current. Due to higher current density, electromigration thins out a wire
where it is already thinnest [47].

Negative bias temperature instability increases the threshold voltage of the PMOS
transistor over time. The reason is charge migration into the insulating gate oxide.
This effect is temperature-sensitive but is partially removed when the stress is
over. The corresponding but less important effect on the NMOS transistor is
termed positive bias temperature instability [278].

Hot carrier injection refers to an effect that changes the switching characteristic of a
transistor. It is caused by carriers, electrons or holes that penetrate the insulating
silicon oxide layer below the gate. Consequently, the threshold voltage increases,
which leads to slower reaction times and performance degradation [239].

Time dependent dielectric breakdown is caused by crystal defects and heavy metal
contamination in the dielectric material. This effect can be reduced by minimizing
the contamination and crystal defects of the silicon [131].

Process Variability affects the occurrence and severity of all the aforementioned
phenomena. Causes are variability of material impurities, doping concentrations
and the size and geometries of the structures. Thus, minimizing process variabil-
ity plays an important role when improving production quality and reliability.
Unfortunately, scaling leads to an increased relative process variability [217].

Dynamic Temperature Variation during operation and high temperatures play
an important role for aging effects. In addition, temperature impacts the power
consumption and performance. Due to an unbalanced temperature distribution
resulting from hotspots, the pace of wear out and faults is not distributed uni-
formly. Combined effects of static process variation and dynamic temperature
variations lead to fluctuations of power consumption of more than 50 % and
performance of up to 30 %, according to [31].

58

3
3. Context of Invasive Computing

The present work is intended to provide a general solution for communication
in future many-core architectures. However, it refers also to a novel paradigm,
named invasive computing, for designing and programming of future parallel
computing systems. The invasive computing paradigm is investigated in a tran-
sregional collaborative research center funded by the Deutsche Forschungsge-
meinschaft (DFG). This chapter will provide a brief introduction on the basic idea,
communication requirements, software aspects and the hardware architecture
addressed by the project.

3.1. Basic Principle of Invasive Computing

Invasive computing [243, 245] is motivated by the trend towards many-core archi-
tectures. As previously explained, it is visible and foreseeable that the number
of processing cores will increase in future architectures. However, programming
and management of such large architectures is still a huge challenge; addressed
by invasive computing. Its main idea and novelty is to introduce resource-aware
programming. A given program obtains the ability to explore and dynamically
spread its computations to neighboring processors, taking into account the status
of the underlying hardware. In [243], the principles of invasive programming are
defined as follows:

“Invasive Programming denotes the capability of a program running
on a parallel computer to request and temporarily claim processing,
communication and memory resources in the neighborhood of its
actual computing environment, to then execute in parallel using these
claimed resources, and to be capable to subsequently release these
resources again.”

Figure 3.1 shows the phases of an invasive program. An application requests for
additional resources in a phase named invade. During the invasion phase, the
run-time system, introduced in section 3.3.2, must search for resources that fit the
application requirements. These requirements are provided to the run-time system
in the form of constraints. These constraints describe the quantity, properties and
type of resources required by the application, as described in detail in section 3.1.1.

59

3

3. Context of Invasive Computing

During search phase, the OS takes the status of the underlying hardware into
account to find suitable resources. If appropriate resources are found, they are
provided to the application as a claim. A claim is a set of resources that are
reserved for an application. These resources can then be used by the application
to spread its computation. Therefore, a phase named infect is entered. During
infection, the program starts its execution using the newly claimed resources.
The actual application code is spread onto infected resources for subsequent
parallel execution. This code is referred to as i-let (standing for invaslet)1. Once
the program terminates or if the degree of parallelism decreases, the program
may enter a phase named retreat to release resources and resume execution with
reduced parallelism or even sequentially.

start invade infect retreat exit

Figure 3.1.: State chart of an invasive program [104]. The phases invade, infect and
retreat can be entered recursively or iteratively to adapt the degree of
parallelism of the invasive program.

An invasive program is written in a way that it can adapt its degree of parallelism
at run-time. This enables run-time optimization towards different objectives. An
invasive application can be optimized at run-time towards low power consump-
tion, high performance, low resource-utilization and other similar objectives. The
idea of self-optimization is reflected in all layers of the hardware and software
and it shall enable an efficient management of large many-core architectures.

The principles of invasive computing imply changes at the architecture, operating
system and language level. An overview on each of these aspects is provided in
the following sections.

3.1.1. Invasive Programming Language

For productive programming of parallel architectures, a programming language
is required that allow to express and exploit parallelism. X10 [44], developed
by IBM, allows to serve as a basis for invasive programming. It is designed
specifically for parallel architectures and uses the partitioned global address
space model, introduced in section 2.2.2.1. A computation is divided among a

1“This conception goes back to the notion of a servlet, which is a (Java) application program snippet
targeted for execution within a web server.” [104]

60

3

3.1. Basic Principle of Invasive Computing

set of places. Each place is a set of cache-coherent processing elements2. It holds
the required data and executes one or more activities that operate on those data.
Activities are lightweight threads that can run in parallel on different cores. X10
enables object-oriented programming, provides dependent types, transactional
memory, globally distributed array and uses a garbage collector for memory
management. These promising new features make X10 the optimal candidate for
invasive programming, compared to traditional languages, such as C++ or Java.

X10 was extended to implement the principles of invasive computing. The ex-
tended version of X10 is named InvadeX10 [282]. InvadeX10 supports the three
basic constructs for invasive programming (invade, infect and retreat).
It enables to specify the resource requirements for invasion by the use of the
constraints; which will be introduced in section 3.1.1.1.

Figure 3.2 shows a simple, invasive program. The i-let function defines an action
to perform in parallel on all allocated PEs. The invade function allocates resources
under specific constraints in competition with other applications and returns the
allocated resources as a claim object. Infect uses those resources by executing
the previously defined i-lets. Retreat frees allocated resources after execution is
completed.

1 val ilet = (id:IncarnationID) => {
2 do_something(id);
3 };
4 claim = Claim.invade(constraints)
5 claim.infect(ilet)
6 claim.retreat()

Figure 3.2.: Basic invasive program that defines an i-let, invades resources for
execution and releases them subsequently [HZZ+14].

3.1.1.1. Constraints

Constraints are one of the basic principles of invasive programming. They are
used to define the requirements of the application with respect to the resources
that are invaded. The hierarchical constraint system, implemented in InvadeX10,
is shown in figure 3.3 and further described in [282]. The most important con-
straint in practice is PEQuantity; which specifies the desired number of process-
ing elements. In general, three additional basic classes of constraints exist: The
first class of constraints are so-called predicate constraints; which specify a predicate

2The concept of places fits very well to the invasive architecture, where multiple CPUs are arranged
in a cache coherent tile as described in detail later.

61

3

3. Context of Invasive Computing

Figure 3.3.: Hierarchy of the invasive constraint system [282].

for processing elements. They place a constraint on the requested PEs, such as
the amount of available local memory; a floating-point unit (FPU) being available
or a certain bandwidth to the main memory. The second class of constraints are
order constraints. They provide an ordering of processing elements and can be
used to prioritize PEs selected for invasion with respect to their current load,
temperature or available memory. The third class of constraints are set constraints,
which includes the PEQuantity constraint. They specify conditions for a set of
processing elements, e.g. a certain physical layout of the PEs or a cache coherency
between the PEs (PlaceCoherence). Additionally, two operators AND and
OR can be used to combine constraints. Furthermore, nonbinding hints, such
as efficiency curves of parameters, are foreseen to handle complex information.
The information is used by the run-time system for optimization. In [38], it has
been shown that the InvadeX10 constraint system is applicable to create complex
applications.

Figure 3.4 gives an example for the definition of constraints in an invasive pro-
gram. The constraints request for invasion of one processing element of type RISC
core. In the example, this PE should have a minimum communication bandwidth
of 100 MB/s to the main memory.

62

3

3.1. Basic Principle of Invasive Computing

1 val claim = Claim.invade(
2 new PEQuantity(1) &&
3 new Type(PEType.RISC) &&
4 new ThroughputToMemory(100)
5)

Figure 3.4.: Constraining the required bandwidth or throughput to the main mem-
ory in X10 [HZZ+14].

Latency and throughput constraints As already indicated, a subset of the con-
straints is related to communication. These constraints have to be fulfilled by the
communication infrastructure, as described in detail later. Currently, six different
constraints can be used to specify the communication requirements within a team,
to the master or to the main memory. The team is the set of processing elements,
which were recently invaded and thus are in the claim. The master is the process-
ing element where the invade call is executed. These are the available constraints
for communication:

• ThroughputToMaster: A certain throughput is guaranteed between the
team and the master.

• ThroughputToMemory: A certain throughput is guaranteed between the
team and the main memory.

• ThroughputWithinTeam: A certain throughput is guaranteed within the
team and thus between the individual cores of a team.

• LatencyToMaster: A certain latency is guaranteed between the team and
the master.

• LatencyToMemory: A certain latency is guaranteed between the team and
the main memory.

• LatencyWithinTeam: A certain latency is guaranteed within the team.

These communication constraints are used to manage the QoS connections that
will be introduced in section 6.2. In addition to communication constraints, further
language extensions relating to communication, are described in the following
paragraph.

3.1.1.2. Block Prefetching

The InvasIC architecture uses distributed shared memory, as described in detail
in section 3.2. To pin or cache data to a tile local memory for fast access, X10
was extended to support explicit block prefetching. Block prefetching initiates

63

3

3. Context of Invasive Computing

copying of data between two memories. The data blocks are prefetched in parallel
to the execution. This is enabled by a DMA unit located in the network adapter,
as described in detail in section 3.2.2.1. This DMA unit pushes the requested data
over the NoC.

Figure 3.5 shows how block prefetching and DMA is used and controlled in
X10. First, the application must specify the amount of local memory. Although
memory in X10 is managed by a garbage collector, there are explicit alloc and
free methods for tile local memory to provide the application full freedom for
management. In the example, the future concept is used to model the background
activity of the DMA transfer. The force-call synchronizes and waits for the
transfer to be completed.

1 val loc = TileLocalMemory.alloc[int](cs);
2 val offset = id.ordinal * cs;
3 val future = data.fetch(offset, loc);
4 ... // do something else, while the data is copied into tile

local memory
5 val loc2 = future.force();
6 assert loc == loc2;
7 ... // use the tile local data in ‘loc‘

Figure 3.5.: Example for block prefetching of data from main to tile local memory
in X10 [HZZ+14].

3.2. InvasIC Hardware Architecture

An incarnation of a hardware architecture supporting invasive computing is re-
ferred to as InvasIC. It is a heterogeneous tile-based MPSoC architecture consisting
of different types of processing, memory and I/O tiles. The processing elements
include RISC processors, Tightly-Coupled Processor Arrays (TCPAs) and reconfig-
urable RISC cores (i-Cores). Details of the tiles are provided in section 3.2.1.

All tiles are connected by the invasive network on chip (i-NoC) in a 2D mesh topology.
The invasive network adapter (i-NA) is the interface between the tile local bus and
the i-NoC routers. Figure 3.6 gives an overview on the InvasIC architecture. A
detailed overview is provided in [HHB+12].

All aspects of the architecture, especially the i-NoC, are designed with focus
on scalability and decentralized resource management. This also applies to the
memory organization. The architecture is implemented as a distributed shared

64

3

3.2. InvasIC Hardware Architecture

CPU CPU

CPU CPU

TCPA

CPU CPU

CPU CPU

Memory

Memory

CPU CPU

i-Core CPU

CPU CPU

i-Core CPU

MemoryI/O

TCPA

CPU CPU

CPU CPU

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NoC
Router

i-NA
i-NA Memory

i-NA

i-NA Memory
i-NA

i-NA Memory
i-NA Memory

i-NA

i-NA

Figure 3.6.: Heterogeneous tiled InvasIC architecture with different computation
and I/O tiles connected by the invasive network on chip.

memory architecture (see section 2.2.4): The PEs of a tile have coherent3 L1 caches
and a shared tile local memory (TLM). However, there is no cache coherence be-
tween the tiles. The TLM of other tiles can be addressed from each tile directly.
Additionally, all tiles can access the common shared main memory via the i-NoC.

Heterogeneity is another attribute of the InvasIC architecture; inspired by mod-
ern HPC systems. In today’s HPC systems, FPGAs [68] and graphics processing
units (GPUs), such as NVIDIA Tesla [162], are recently used to improve perfor-
mance and energy efficiency. Such accelerators form heterogeneous systems in
combination with general-purpose CPUs. Along with this trend, the InvasIC
architecture is not only equipped with standard RISC cores but also i-Cores and
TCPAs.

3.2.1. Tiles

In the following, the basic concept and structure of all tile-types of the InvasIC
architecture are introduced.

3Cache coherency is carried out by bus snooping in the LEON3 system.

65

3

3. Context of Invasive Computing

3.2.1.1. RISC Core Tiles

The RISC core tiles currently consist of four4 LEON3 SPARC V8 cores [83, 84].
However, LEON3 SPARC V8 cores were only selected due to their low complexity
and open source availability as part of the GRLIB [85]5. Conceptually speaking,
other cores, such as ARM [82] or Intel cores [113] could also be employed. Another
benefit from using the GRLIB is the availability of an AMBA bus system (see
section 2.3.2) and numerous components, such as memory controllers or I/O
interfaces, as well as debug support.

i-NoC
Router

Core
0

L1

i-NA

Core
1

L1CiC

Core
3

L1Core
2

L1

L2-Cache
Tile Local
Memory

Figure 3.7.: Block diagram of a tile with four RISC core, caches and local memory.

Figure 3.7 shows the basic structure of a RISC core tile. Each of the four LEON
cores contains a separate L1 data cache and instruction cache. The L1 caches of
the CPUs are connected to the tile local front-side AMBA AHB bus. This bus is
also used to attach the tile local memory. It is an SRAM-based on-chip memory
with single cycle read and write latency, which is used to store frequently used
data or even binaries. Another component attached to the tile local front-side bus
is the L2 cache of the tile. It is shared between all cores and is used for holding
tile-external data. These data are fetched transparently by the invasive network
adapter in case of a cache miss. Therefore, the network adapter and the L2-cache
are connected by a second AMBA AHB back-side bus. The i-NA has an additional
interface to the front-side bus. It is used for message passing communication and
configuration purposes. A direct connection between the NA and the TLM is
planned. Another InvasIC-specific component in the RISC tile is the CiC.

4The LEON3 MP design provided with the GRLIB supports 1-16 CPUs. Four cores are a good choice
with respect to the bandwidth of the AMBA AHB bus.

5The LEON3 SPARC V8 architecture is provided with the GRLIB [85] under GNU general public
license.

66

3

3.2. InvasIC Hardware Architecture

The core ilet controllers (CiC) is a thread assignment unit that is implemented
in hardware [207]. It is responsible for the assignment of i-lets to the CPUs of
a tile. Incoming i-lets are filtered by the i-NA and forwarded directly to the
CiC. The CiC uses a reconfigurable rule-system and monitors for CPU load,
temperature or reliability in order to decide on which core an i-let should be
executed. Subsequently, it triggers an interrupt for the selected core and hands
over the i-let to the OS instance running on that core.

3.2.1.2. i-Core

The i-Core is a reconfigurable RISC core based on the LEON3 SPARC V8 archi-
tecture [83, 84]. It combines concepts for an adaptive microarchitecture [254] and
fine-grained reconfiguration to instantiate application-specific accelerators [106].
The i-Core is implemented in a RISC tile by replacing one of the RISC cores.

In order to build an adaptive microarchitecture, the LEON3 design was extended
to support reconfiguration of the processor pipeline [254], run-time configuration
of cache-parameters and the branch prediction unit. This enables to adapt the
microarchitecture to the requirements of the application using it.

The fine-grained reconfigurable accelerator of the i-Core relies on an FPGA fabric
that is loosely connected to the processor pipeline [106]. The reconfigurable fabric
has a dedicated high-bandwidth connection to a fast on-chip memory. In order
to use the fabric for an accelerator, it is configured using a partial configuration
bitstream from a library. This reconfiguration is triggered by an additional instruc-
tion implemented in the adapted LEON3 design. The accelerator is used after
configuration by executing special instructions on the LEON3 core. However, in
contrast to the adaptive microarchitecture, the reconfigurable fabric can only be
used if this is supported by the binary of the application.

Depending on the application, significant speedups can be achieved by using the
i-Core features, as described in [106]. The higher throughput of the application
results in higher communication bandwidth requirements, which have to be
fulfilled by the i-NoC. A specialized NoC router design will be introduced in
section 5.5.5 to address these higher bandwidth requirements.

3.2.1.3. TCPA Tile

A Tightly-Coupled Processor Array (TCPA) [138] is a coarse-grained reconfigurable
massively parallel architecture, consisting of an array of tightly-coupled process-
ing elements. Each PE contains a VLIW processor and an invasion controller
(iCtrl). This invasion controller enables hardware-supported decentralized inva-
sion of TCPA PEs, as described in [151]. Communication in the TCPA is enabled

67

3

3. Context of Invasive Computing

by point-to-point connections among PEs. Hierarchical power management is
used to improve the energy efficiency of the TCPA [150].

Figure 3.8 shows the structure of a TCPA tile. The PEs are fed with data by the
reconfigurable buffers. They are implemented as FIFOs, located at the borders
of the array. A LEON3 core is used as reconfiguration and communication processor.
It is responsible for controlling the execution of applications on the processor
array and for reconfiguration management. The LEON core is also used to control
the data flow to and from the buffers of the TCPA. Therefore, the TCPA has a
direct connection to the invasive network adapter. An AMBA AHB bus is used to
connect the TCPA, the network adapter and the LEON3 core.

TCPAs can process a huge amount of data in parallel. That implies that they have
high bandwidth requirements with respect to inter-tile or main memory commu-
nication. This bandwidth must be made available by the i-NoC, as described in
detail later. The high bandwidth router, introduced in section 5.5.5, can be used to
increase the bandwidth of a TCPA tile.

Reconfiguration
and

Communication
Processor

Network Adapter

to/from
 NoC

Configuration
Memory

Global
Controller

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

 PU

 iCtrl

R
ec

on
fig

ur
ab

le
 B

uf
fe

rs
/F

IF
O

s

Reconfigurable Buffers/FIFOs

Address & Status
Generation Logic

Reconfigurable Buffers/FIFOs

R
ec

on
fig

ur
ab

le
 B

uf
fe

rs
/F

IF
O

s

PU

iCtrl

Interconnection
Wrapper

Processing Element (PE)

Figure 3.8.: Block diagram of a TCPA tile with network adapter [150].

Currently, a dedicated compiler named LoopInvader is used to generate code for
the TCPA using a special programming language. However, the size of the array
that is invaded by the application might not be known at compile-time. Symbolic

68

3

3.2. InvasIC Hardware Architecture

parallelization and symbolic scheduling [246] are used to enable generation and
execution of the same code on different TCPA array sizes. In the long term, TCPAs
shall be programmed in InvadeX10 and a common compilation flow shall be used
for code generation; described in section 3.3.1.

3.2.1.4. Memory Tile

The main memory of the architecture is composed of multiple memory tiles.
Each memory tile contains a DDR controller to interface the external memory. A
network adapter is used to attach the memory tile to the i-NoC. Furthermore, a
LEON3 core is used for management and control purposes. All components of
the memory tiles, except the NA, are assembled from GRLIB IP cores. An AHB
bus is used to connect all components.

From the communication perspective, the memory node might have increased
bandwidth requirements, compared to other nodes. Multiple processing tiles
might access the main memory in parallel. This results in a huge accumulated
bandwidth at the memory tile. The heterogeneity of the architecture, in terms of
throughput, is addressed by the concept presented in section 5.5.5.

3.2.1.5. I/O

An I/O tile is used to attach peripherals to the NoC-based architecture. Such
peripherals include Ethernet6, USB7, I2C8, DVI9 and transactor interfaces (see
section 3.4.2). A LEON3 core is located in each I/O tile. It is used by the OS to
control the I/O components and the access to these components by other tiles.
Similar to the memory tile, all I/Os, the LEON core and the network adapter are
connected by an AHB bus.

3.2.2. Invasive Network on Chip

The invasive network on chip (i-NoC) [HZW+14], [HZZ+14] is one incarnation of the
NoC design; presented in this work. The details about the general NoC template
follow in the subsequent chapters. This section is limited to a very short overview
on the i-NoC design and its functionality.

6Ethernet is used as the main interface for data exchange between the InvasIC architecture and a
host system.

7USB is used in the InvasIC architecture to forward monitoring data to a host PC.
8I2C is used to visualize important system states by the use of LEDs.
9A DVI interface is used to feed a video stream to the architecture and to return a processed video

for visualization.

69

3

3. Context of Invasive Computing

The invasive network on chip is a wormhole packet switching network on chip
with virtual channels. It has a meshed topology with bidirectional links. All
aspects of the i-NoC are designed with focus on scalability and distributed man-
agement. Region-based management concepts, introduced in section 6.3, 6.4
and 7.3 are applied to enable distributed management of the communication
resources. The i-NoC provides QoS support to enable the invasion of communica-
tion resources, as described in chapter 6. It has a monitoring infrastructure that is
used to take proper invasion decisions at run-time [HZW+14]. The monitoring
infrastructure is described in detail in section 5.5.3. According to the principles
of invasive computing, hardware-based self-optimization features are used to
improve the performance and to reduce the software management overhead of the
large and scalable InvasIC many-core architecture. These features are described
in chapter 7.

3.2.2.1. Invasive Network Adapter

In contrast to the i-NoC, the invasive network adapter (i-NA) is not in the scope of
this work. However, it was developed in close collaboration with the invasive
network on chip to support its features and transmission schemes. Due to the
very close relation between invasive network on chip and the i-NA, the network
adapter is explained in more detail, in the following paragraph.

The invasive network adapter (i-NA) [ZHW+15], [HZW+14] provides the interface
between the tile local bus and the network routers. Currently, an AMBA AHB
bus is used in all tiles. Thus, each type of tile can use the same NA equipped
with AHB interfaces. In order to access data over the i-NoC, the network adapter
performs a protocol translation from bus to network packets.

The network adapter has multiple functions. It enables direct access to all mem-
ories available in the InvasIC architecture. The i-NA provides message passing
support including specialized OS messages. It has an interface to reserve commu-
nication resources and supports automatic QoS connection establishment and use
of them. Each NA contains a configurable DMA unit and provides access to the
status and configuration registers of the i-NoC routers. All of these aspects are
described in detail, in the following paragraphs.

Basic structure The basic structure of the i-NA is shown in figure 3.9. It has
a separate data path for outgoing and incoming packets. Each of these paths
has two interfaces with different address ranges, connected to the bus of a tile.
The shared memory interface is used for direct access of tile external memories.
Message-based communication is enabled by the message passing interface. The i-
NA has three functional pipeline stages named tile interface, protocol translation and
link interface. They are implemented as a modular design. This modular design

70

3

3.2. InvasIC Hardware Architecture

Ingress Classifier

Tile-Network
Translation

Tile Bus

Egress Scheduler

FIFO
VC

_N

Network-Tile
Translation

SMU
Transmit

MPU
Transmit

Shared Memory
Interface

Message Passing
Interface

SMU
Receive

MPU
Receive

Tile Out

NoC Out NoC In

Tile In

Tile
Inteface

Protocol
Translation

Link
Interface

FIFO
VC

_1

FI
FO

VC
_N

FI
FO

VC
_1

Shared Memory
Interface

Message Passing
Interface

Figure 3.9.: Block diagram of the invasive network adapter with shared memory
access and message passing support [ZHW+15].

enables transparent sharing of protocol translation and link interface services by
the shared memory and message passing interface. At the tile interface, the shared
memory unit (SMU) is used to process memory access requests and responses that
enter (transmit) or leave (receive) the NoC. The message passing unit (MPU) at the
transmit side is used to trigger the transmission of messages. Its counterpart at the
receive side provides access to incoming messages. The protocol translation layer
is used for packetization and depacketization. Packets are generated and stored
in the output VC FIFOs. The packets are subsequently forwarded to the NoC. The
link interface is used to inject data into the network (NoC out) and to receive data
coming from the NoC (NoC in); implementing the flow control protocol between
the routers and scheduling the transmission of the output VCs. On the receive
side, it assigns packets to the receive buffers. The packets are fetched from the
receive buffers for depacketization. The payload is forwarded to the SMU or MPU
depending on the message type.

Distributed shared memory support The InvasIC architecture is a distributed
shared memory architecture. This memory model is enabled by the shared mem-
ory interface of the invasive network adapter; shown in figure 3.9. It maps the
global shared memory and the distributed memory of the architecture to the
address space of each tile. Access to a tile external memory is received by the net-
work adapter through its shared memory interface. Inside the transmit SMU, an
address lockup is performed to determine the node where the respective memory
is located. The address lockup implements a part of the memory map, provided
in appendix A.3. Subsequently, a packet is generated and sent to the node where
the memory is located. The NA at this node receives the packet, processes it and

71

3

3. Context of Invasive Computing

performs an access to the memory using the receive SMU. In case of a read access,
the requested data are packetized again and returned to the node which initiated
the request. The unit initiating the request receives the requested data through
the tile local bus after depacketization at the initiating node. In the case of a write
access, no response packet is required.

More details about the address mapping of the InvasIC architecture are provided
in appendix A.3. The address map defines the exact address ranges for access of
remote TLMs and DDR main memory tiles.

Message passing The distributed shared memory support enables transparent
communication between different nodes using normal load and store opera-
tions. However, the i-NA also supports message-based communication by the
use of its message passing interface10. This interface is memory mapped and can
be used to generate and transmit different types of messages. A message is gener-
ated by writing to the respective registers of the network adapter. The data to be
sent are packetized and forwarded to the receiving node. After depacketization,
the messages are available at the receive MPU and can be accessed through the
message passing interface.

Currently, three different types of messages are supported by the network adapter:

• i-lets: i-lets or i-let messages are used to initialize code execution at a remote
tile during infect phase of an invasive program (see section 3.1.1). The CiC
at the destination tile is informed about the arrival of such i-let messages to
process them subsequently.

• System i-lets: These are special messages used for OS internal communi-
cation. They support a limited amount of payload. After transmission, the
payload is accessible via registers at the receive tile. In addition, an interrupt
is triggered at core 0 of the receive tile to inform the system software about
the arrival of a system i-let.

• Lock message: The remote lock message uses the test-and-set method to
acquire a lock at the destination tile. This special lock message can be used
to create a remote spinlock.

Reservation of communication resources In order to reserve or invade com-
munication resources, a memory mapped interface is provided by the invasive
network adapter. In figure 3.9, this interface is part of the message passing interface.
It is used to trigger the reservation of an end-to-end connection. The MPU is then
responsible for allocating a virtual channel for the connection and for injecting
10Message passing is basically a communication concept in computer science. In this work, it is

assumed that message passing in the communication hardware is based on one-sided “put and
get” method [113].

72

3

3.3. Software

a special flit for connection setup, as described in detail in section 6.2. If the
connection was established successfully, the NA, at the destination tile, sends
an acknowledgement to the initiating node. After receiving the setup acknowl-
edge message, the NA unblocks the allocated VC to make use of the established
connection. Subsequently, traffic between two nodes with an established end-
to-end connection is forwarded by the NA to the used VC. Thus, an end-to-end
connection is used transparently by the source NA for all communication to the
destination tile. Therefore, a VC reservation table is located in the transmission
path of the i-NA.

Direct memory access In order to increase the data transfer efficiency, hardware
support is provided by the i-NA. Therefore, a DMA unit is available in the network
adapter to copy data between different memories of the architecture. It can be
configured via memory mapped registers to perform linear DMA transfers. DMA
units are restricted to only push data from local memory of the tile to a remote
memory location. The restriction to push data and not pull from other tiles
reduces the communication cost of the data transfer because the requests for data
copying only utilize the local bus of the tile. A hardware pull DMA would cause
additional load on the NoC and is thus emulated by the OS; using push DMAs.

Router management and status interface The routers of the invasive network
on chip provide different capabilities for run-time configuration and status mon-
itoring, as detailed later. However, this information must be accessed by the
software running on the PEs of the tiles. Therefore, the i-NA provides an interface
to access the registers of the i-NoC routers. A detailed definition of this interface
is provided in appendix A.4. It is accomplished by mapping the registers into
the local address space of each tile. Read and write accesses to these registers
are forwarded by the NA to the router and vice versa. The i-NoC registers are
mapped to the address range, which is remotely accessible. Thus, enabling access
to registers of all routers from the architecture of each node. Details regarding the
functionality of the i-NoC registers are provided in the following chapters.

3.3. Software

Invasive computing not only necessitates changes at the language and hardware
level but also a compiler, which supports the InvadeX10 programming language.
In addition, an operating system is required, which makes use of the available
features of the InvasIC hardware. As such, the OS must be capable of executing
invasive programs. The software perspective of invasive computing is briefly
introduced in the following paragraphs.

73

3

3. Context of Invasive Computing

3.3.1. Compiler

The heterogeneous invasive architecture and InvadeX10 necessitate a compiler
that supports the new architecture and the programming language. An existing
X10 source-to-source compiler, outputting C++ [100] or Java [240] code, was used
as a basis. This compiler was extended to support the invasive principles and
the constraint system, described in section 3.1.1. In addition to these frontend
extensions, a backend was developed to support code generation for the invasive
architecture.

For the LEON3 cores of the invasive architecture, code for the SPARC V8 instruc-
tion set architecture (ISA) must be generated. Therefore, the extended X10 compiler
was equipped with a new backend [36]; targeting the graph-based intermediate
representation known as Firm. This intermediate representation in turn is used in
the libFirm compiler [102]. The libFirm infrastructure [36] comprises a collection
of frontends, optimizations and backends that all operate on the Firm interme-
diate representation. From libFirm’s point of view, the X10 compiler is just an
additional frontend. A SPARC backend for libFirm was developed and used to
generate code for the RISC cores11 of the InvasIC architecture.

Source code
Candidates

for loop
parallelisation

Extended
X10 compiler

AST

libFIRMLoopInvader

Machine code

Invasive
X10 runtime

SPARC . . . Other
backend

Tightly-coupled
processor array

Figure 3.10.: Structure of the compiler framework for invasive computing archi-
tectures [244].

Plugging the extended X10 compiler and the libFirm compiler together enables
continuous code generation from language to binary code. The flow of the
11i-Cores are specialized RISC cores, which also support the SPARC V8 ISA and can execute SPARC

code generated by libFirm. Modified binutils are required to use the special i-Core features.

74

3

3.3. Software

described compilation framework is illustrated in figure 3.10. During code gener-
ation in X10, the invasive program is linked against the Invasive X10 runtime. This
runtime provides the OS support for resource allocations and execution of inva-
sive X10 applications on the invasive architecture, as described in section 3.3.2.

Figure 3.10 also shows that it is planned to automatically select candidates of
code to be executed on a TCPA. These candidates will then be forwarded to the
LoopInvader to generate symbolic code for the TCPA architecture, as described
in [246]. This would enable code generation for the entire invasive architecture in
the same language, but remaining open for future work.

3.3.2. Operating System

The operating system for invasive computing is named invasive run-time support
system (iRTSS). It is a highly scalable native operating system implemented in a
distributed way. One instance of this OS is executed on each core of the architec-
ture. The single instances communicate with each other to form the distributed
operating system.

A central constitution of iRTSS12 is OctoPOS [188]. It is the link between higher-
level software (application programs, X10 run-time system and agent system) and
the invasive hardware (CiC and i-NoC).

Figure 3.11.: OctoPOS system software acts as a broker between the X10 runtime
system with its applications and the underlying hardware [244].

The role of OctoPOS is shown in figure 3.11. It provides an interface to the X10
run-time system. This interface includes all functions for memory management
12The iRTSS consists of the OctoPOS, the agent system and hardware abstraction layer. The hardware

abstraction layer is not further described in this work).

75

3

3. Context of Invasive Computing

(e.g. malloc and free), I/O support (e.g. printf or ethernet), i-let execution as well
as communication primitives. The invasion process is managed by a special com-
ponent of the iRTSS referred to as agent system. The agent system is responsible for
resource management on behalf of the application. Therefore, OctoPOS provides
another interface to the agent system. It is used by the agents to access status
information (e.g. hardware monitors) and to allocate resources for an application
during invasion phase. More details about the agent system are provided in
section 3.3.2.1.

As shown in figure 3.11, OctoPOS support different hardware platforms. It can be
used for the InvasIC SPARC architecture, an x86 architecture or as a user process
within a Linux system13. With respect to the InvasIC architecture, OctoPOS has
to support the special features of the hardware. Therefore, hardware drivers for
the CiC and the invasive network on chip are provided. These drivers are needed
in OctoPOS to make use of special hardware features, such as the invasion of
communication resources or the infection of other tiles by the use of the CiC.

3.3.2.1. Agent-based Resource Management System

The agent system [140] is a subsystem of the iRTSS. It is a resource management
system implemented in a distributed manner to enable scalability. The agent sys-
tem consists of multiple agents (instances); each is either responsible for a region
of the architecture and the respective resources or for an application and its hard-
ware resources, as shown in figure 3.12. Agents communicate with neighboring
or distant agents for bargaining resources.

The agent system plays a key role during invasion phase. An invasion request is
handed over from the invasive application to an instance of the agent system (cf.
figure 3.11). As described in section 3.1.1, this request also includes the constraints
for invasion. The instance of the agent is now responsible for searching and allo-
cating hardware resources that fit to the constraints. Therefore, it communicates
with other agent instances and takes the status of the underlying hardware into
account. The interfaces for communication and status information access are pro-
vided by the OctoPOS. When suitable resources are found, they are allocated on
behalf of the application using interfaces of OctoPOS. Finally, a claim is assembled
by the agent and returned to the application.

13The support of other platforms enables development and test of applications with the entire invasive
software stack without having the InvasIC architecture available.

76

3

3.4. Hardware Prototyping

B

D

A

C

E

Figure 3.12.: Distributed agent system with five agents, each with a separate claim
of resources [80].

3.4. Hardware Prototyping

On one hand, Prototypes are necessary for hardware testing. On the other hand,
they are needed for early software development, as described in [FHMB14] and
[FHB14]. Moreover, a prototype of the invasive architecture and the software stack
(OctoPOS, agent system and invasive applications) is necessary to demonstrate
the benefits of invasive computing. FPGAs are used for prototyping of the InvasIC
architecture.

3.4.1. Single-FPGA Prototyping

In the first step, small prototypes of single components have been created using
off-the-shelf FPGA boards, such as the Xilinx ML605 [272] equipped with a Virtex-
6 LX240T FPGA. They are capable of implementing prototypes of the InvasIC
architecture with up to four tiles. This is sufficient for hardware tests and initial
software testing. However, an InvasIC architecture on a single FPGA board is too
small to investigate concurrent applications, distributed management, scalability
and additional aspects.

3.4.2. CHIPit Prototyping System

A professional prototyping platform, the Synopsys CHIPit Platinum Edition, is
used for prototyping of the InvasIC architecture [BFH+12]. The platform mainly14

14Various other FPGAs are used for switching between the six main FPGAs and for maintenance.

77

3

3. Context of Invasive Computing

consists of six Virtex-5 LX330 FPGAs. Extension boards, such as DVI, Ethernet,
UART, DDR, SSRAM and others, can be plugged to the system and connected
to the FPGAs. The prototyping system can be operated in standalone mode or
connected to a host computer via the Universal Multi-Resource (UMR) bus. This bus
can be used for transactor-based communication between the hardware design
running on the CHIPit system and the software executed on the host computer15.
In addition to the UMR bus, a joint test action group (JTAG) connection to the host
computer is used for programming of the FPGAs.

The CHIPit system is used to setup a larger prototype. One limitation of the
system is the available memory. FPGA block RAMs are used to model caches
and small memories. The larger TLMs have to be created by FPGA-external
synchronous static random access memory (SSRAM). Thus, the number of available
SSRAMs limits the number of tiles that can be instantiated.

Figure 3.13 shows a block diagram of the architecture built on the CHIPit system
and its interfaces to the host computer. It is a 3x3 mesh architecture with six
RISC tiles, one TCPA tile, one i-Core tile and one memory & I/O tile16. For
this architecture three SSRAM, one Ethernet and one DDR extension board are
used. Ethernet is used to visualize the system state (e.g. application mapping)
and to transfer data, such as images or video streams. In addition, two UMR
transactors enable code execution and debugging of the InvasIC architecture as
well as hardware monitoring on the host computer. However, there are also other
incarnations of the InvasIC architecture available for the CHIPit platform. A
homogenous architecture with eight RISC tiles, one memory and I/O tile is also
frequently used.

With respect to the NoC, multi-FPGA prototyping includes some difficulties and
limitations. As shown in figure 3.13, the NoC links are used to bridge the gap
between the FPGAs. The network is thus partitioned between the FPGAs. Cur-
rently, each signal between two FPGAs uses a separate I/O pin at each FPGA. This
approach enables transparent partitioning from the design perspective, without
additional delay in terms of clock cycles and without signal multiplexing being
required. However, partitioning a design between multiple FPGAs presents two
drawbacks: (1) the number of signals between two FPGAs is strictly limited and
(2) there is an additional delay for the signals crossing the FPGA borders, which
limits the clock frequency. These constraints have to be taken into account during
design of the NoC.

15The UMR bus can also be used for co-simulation. In co-simulation mode, the prototype on the
CHIPit system is coupled with a model or test bench running on the host computer. This was done
in early phases of the network on chip development.

16DDR memory and I/O interfaces are connected to the same tile to have more resources available for
compute tiles.

78

3

3.5. Summary

Prototyping System
Extension
Boards

Host Computer

Ethernet

FPGA U2

FPGA U4 FPGA U5

CPU CPU

CPU CPU

Memory
i-NoC
Router

FPGA U6

CPU CPU

CPU CPU

Memory
i-NoC
Router

CPU CPU

CPU CPU

Memory
i-NoC
Router

FPGA U1

CPU CPU

CPU CPU

Memory
i-NoC
Router

128 bit

FPGA U3

Memory
&

I/O

CPU CPU

CPU CPU

Memory
i-NoC
Router

CPU CPU

i-Core CPU

i-NoC
Router

Memory

TCPA

i-NoC
Router

i-NoC
Router

CPU CPU

CPU CPU

Memory
i-NoC
Router

SSR
AM

D
DR

 M
em

ory

UMR + JTAG UMR + JTAG

U
M

R + JTAG

UMR + JTAGUMR + JTAG

Data Transfer
(Images)

System
State

Visualization

Ethernet

Binary Transfer
+

Debugging

Hardware
Monitoring

Visualization

UMR
bus

System
Configuration

(FPGA
Programming)

JTAG
chain

SSR
AM

SSR
AM

Figure 3.13.: Heterogeneous multi-FPGA prototype of the InvasIC architecture
with 3x3 tiles.

Inspired from the drawbacks and limitations of the CHIPit platform, an alternative
concept for prototyping of NoC-based architectures was investigated. It is briefly
discussed in appendix A.1.

3.5. Summary

Parts of the present work have arisen in the context of the invasive computing
research project. In this chapter, the basic principle of invasive computing and the
invasive paradigm were first introduced.

Subsequently, an overview on the heterogeneous InvasIC MPSoC hardware ar-
chitecture and its components was provided. The communication demands of

79

3

3. Context of Invasive Computing

the different types of computation and I/O tiles were discussed and are used as a
basis for the more detailed analysis; presented in section 4.1.4.

The software perspective and the distributed management concept, which is
designed with a focus on scalability, were discussed in section 3.3. The distributed
agent-based resource management system for the InvasIC architecture was intro-
duced in section 3.3.2.1. Its region-based management concept is adapted for the
NoC resource management schemes and the mechanisms presented in section 6.3,
6.4 and 7.3.

At the end of the chapter, multi-FPGA prototyping of the InvasIC hardware
architecture was discussed. The special role of the NoC, which is partitioned
between the different FPGAs of the prototype, was briefly explained.

The communication requirements of the InvasIC hardware architecture and the
requirements of the distributed management concept are taken into account
for the general concept of the proposed NoC design. This concept is generally
presented in chapter 4, more specific aspects are discussed in the subsequent
chapters.

80

4

4. Flexible NoC Architecture and
Design Flow Concept

The design and implementation of a network on chip depends on many dif-
ferent constraints. This chapter is intended to identify and analyze the basic
requirements on the communication infrastructure of a large, general-purpose,
many-core architecture. The impact of these requirements on design decisions is
discussed. In addition to these general requirements, the demands resulting from
invasive computing are analyzed to substantiate the identified requirements. Sub-
sequently, state of the art architectures are introduced and analyzed with respect
to their suitability. Afterwards, the basic concept of the proposed network on
chip1 design is derived from the previous requirement analysis and the identified
drawbacks of existing architectures. At the end of the chapter, the concept for a
semiautomatic NoC design flow is presented to enable a flexible and comfortable
usage of the proposed NoC design.

4.1. Communication Requirements and Constraints

There are various, different requirements for an on-chip communication infras-
tructure. They can be classified according to various criteria. One can distinguish
between functional and non-functional requirements. Some requirements are
design-specific or architecture-specific, others always apply. Some requirements
refer to usability and performance, others result from technological constraints.
Figure 4.1 gives an overview on general requirements for networks on chip.
A distinction is made between functional and non-functional properties.

1 In this and in the following chapters the term “network on chip” refers to a network of routers. The
NI or NA as well as the nodes itself are not meant.

81

4

4. Flexible NoC Architecture and Design Flow Concept

network
on chip

requirements
functionallatency

adaptivity

predictability

bandwidth

run-time
flexibility

performance

maintainability

observability

non-functional testability

design-time
flexibility

fault tolerance

energy
efficiency

scalability

area

quality of
service

dependability

Figure 4.1.: Diverse functional and non-functional requirements to networks on
chip.

4.1.1. General Communication Requirements

There are general communication requirements that apply to any communications
infrastructure. The most fundamental requirement to a communication system is
sufficient performance.

Definition. The bandwidth and the latency of a communication system are defined as a
measure of its performance.

However, bandwidth and latency are not independent of one another. The band-
width must be sufficient with respect to the demands of the connected compo-
nents. Otherwise, latency can increase heavily due to bandwidth limitations and
congestion. The correlation between bandwidth utilization and latency is shown
exemplarily in figure 4.2. Bandwidth and latency requirements must be analyzed
to scale the communication system properly. Especially for on-chip communica-
tion, a suitable dimensioning is essential for keeping the implementation cost in
sight, as described in detail later.

Another general requirement of a communication system is its usability. The
usability in turn depends on the purpose of the system. The supported communi-
cation modes, interfaces and protocols of the communications infrastructure play
an important role. The support of point-to-point communication can be consid-
ered as a fundamental requirement of a network. Depending on the application,
other communication modes, such as multicast or broadcast (see section 2.4.5.7),
can improve the usability and performance. The protocol, which can be consid-
ered as the interface of the communication system, must be carried out in a way

82

4

4.1. Communication Requirements and Constraints

SaturateHighLow

Bandwidth utilization

La
te

nc
y

Figure 4.2.: Correlation between bandwidth utilization and latency in a packet
switching network – Low utilization: very low latency, High utilization:
latency is very sensitive with respect to changing load conditions,
Saturation: very high latency due to congestion.

to balance between usability and flexibility. A flexible protocol may be more
complicated to use from the software perspective, compared to a static protocol.

Flexibility of a communication’s infrastructure can be identified as another ba-
sic requirement. A flexible communication system can be adapted at run-time,
according to the current application. Thus, a flexible network may handle situ-
ations that have not been considered at design-time. However, the additional
flexibility comes at a high price with regards to the implementation costs. The im-
plementation costs play an important role especially for on-chip communication,
as described in the following section. Adaptivity can be considered as a derivative
of flexibility. An adaptive communication system is capable of self-adaptation,
according to changing load conditions and other application-specific constraints.

Another requirement that applies to every system is the reliability or dependability.
The fulfilling of reliability demands mainly depends on whether errors can occur
during manufacturing or even at run-time. A design that can tolerate faults
typically comes along with a significant implementation overhead, e.g. due to the
necessity of redundancy. However, fault tolerance may be inevitable to ensure
dependable communication.

Predictability, also known as quality of service, is required for timing (real-time)
or safety critical applications but can also be used to improve the performance
of other applications. In automotive or avionic communication systems [251] for
instance, predictability is one of the most basic requirements. QoS requirements
are met mostly via guarantees for bandwidth and latency. However, predictability
is accompanied by an inefficient bandwidth utilization. The reason are pessimistic

83

4

4. Flexible NoC Architecture and Design Flow Concept

assumptions that must be made to provide worst case guarantees for bandwidth
and latency. Thus, efficiency aspects must be taken into account to limit the
overhead for predictable communication.

4.1.2. On-Chip Communication Requirements

On-chip communication includes additional requirements or puts minor require-
ments in the focus. These requirements can result from economical, but especially
from technological constraints that contain SoC design and silicon integration.

The limitation of the implementation costs is one requirement that becomes of
great importance with respect to silicon integration. For an ASIC integration,
the required area or the number of gates is used as a measure. The implemen-
tation costs are usually conditioned by the aforementioned requirements, such
as performance, flexibility or reliability. To keep the implementation costs low,
other requirements have to be limited and adjusted with respect to the application
of the communication system. The template design, described in detail in sec-
tion 4.3.5, facilitates balance between implementation costs and other demands.
The implementation costs mainly include power and area.

The power budget and power density is another constraint that must be taken
into account for on-chip communication. Today, the power budget of integrated
circuits is not only limited in mobile devices due to the use of batteries. In deep
submicron VLSI circuits, the power budget becomes more and more limited
by physical constraints2 as motivated in chapter 1. Compared to bus systems,
networks on chip have a higher share of the total power consumption of the
system due to their increased complexity. As such, low power consumption and
power saving techniques are a basic requirement to NoCs. Power consumption
is closely related to the complexity of a circuit or component. Thus, limiting or
reducing the complexity is one way to ensure low power consumption. Another
way is the use of power saving techniques, such as clock gating [271] or power
gating [133].

Reducing the complexity of a system is a good way to save silicon area and to
reduce the power consumption of a communication system. However, such a
reduction is naturally accompanied by decreased performance or functionality.
Thus, efficiency can be used as a measure. In order to estimate the efficiency of
a system in general, its costs are compared with its performance. Referring to a
network, the bandwidth BW can be taken as a good measure of the performance.

2Cooling of high power density devices is accompanied by ever-increasing challenges. In addition,
power consumption must be reduced or limited due to economical and ecological reasons.

84

4

4.1. Communication Requirements and Constraints

Using the bandwidth, the power efficiency (E f fPower) of a communication system
can be estimated as follows:

E f fPower =
BW
P

(4.1)

In equation 4.1, P is the power consumption of the system. Replacing the power
consumption by the resource requirements R, the resource efficiency can be
approximated as follows:

E f fResource =
BW
R

(4.2)

Resource and power efficiency are good assessment criteria for the compari-
son of different implementation alternatives. Efficiency can be used to analyze
dependent requirements in conjunction with one another.

Another technology and complexity dependent aspect referring to performance
and throughput is the clock frequency at which the communication system can
be operated. Generally speaking, the clock frequency is proportional to the
bandwidth of a NoC or on-chip communication system. Thus, keeping the critical
path in mind is important from the performance perspective.

In addition to these physical and technological requirements, architectural re-
quirements that are specific to on-chip communication also exist.3. The main
concern is the usage of the network on chip. – Is it only used to connect all cores
of the system to a common shared memory? Is it used for core-to-core communi-
cation? Is it used in a homogenous or heterogeneous architecture? How do the
communication requirements of the software running on the system look? What
is the behavior of the software with respect to communication? – In answering
these questions, precise architectural requirements could be derived.

Such architectural requirements impact the topology choice for the NoC and result
in performance, usability, flexibility and scalability requirements, as described
in section 4.1.3. Here are some examples for choices resulting from architectural
demands: In case of frequent core-to-core communication a regular topology
might be beneficial, whereas a tree topology might be used for communication
with a common shared memory. Heterogeneous architectures might require
an irregular topology. The software running on the system can have a huge
dynamic, which would necessitate a flexible or adaptive network. If the processing
cores have a high performance, this must be reflected by the communication
infrastructure. Consequently, design-time adaptivity of a network on chip is
desired to fulfill different architecture-specific requirements.

3Architectural requirements do not only exist for on-chip networks. The author decided to not refer
to more general architectural requirements, as this would be too circumlocutory.

85

4

4. Flexible NoC Architecture and Design Flow Concept

4.1.3. Communication Constraints of Scalable Architectures

All previously discussed requirements can be satisfied by conventional bus sys-
tems. However, in terms of scalability, NoCs are superior compared to bus-based
interconnects, as previously analyzed and discussed in chapter 1 and 2. In many-
core architectures, addressed in this work, scalability of the communication in-
frastructure is a fundamental requirement. To ensure scalability, different design
decisions must be carefully considered. For instance, the topology plays an im-
portant role. In section 2.4.2, the suitability of different topologies with respect to
scalability was already discussed. Thus, scalability limits the choice of a topology.
Regular topologies, such as mesh or torus, are characterized by the fact that the
complexity of a node is almost independent of the size of the overall architecture.
Regular topologies can be scaled better compared to irregular topologies (e.g. tree
or star). In addition to the topology, the implementation of the decision making
procedures in the NoC has a significant impact on scalability. Decentralization and
distribution of decision making is necessary to enable scalability. Consequently,
routing and communication resource allocation (e.g. virtual channel allocation)
must be carried out in a distributed way. Therefore, the necessity of scalability
impacts many other architectural aspects, such as QoS support. In conclusion,
scalability has an impact on basic design decisions of NoCs. A scalable NoC is ac-
complished by additional implementation cost due to the necessity of distributed
management.

4.1.4. Communication Requirements of Invasive Computing

The previous subsections summarized general requirements on communication
systems. However, some of these general requirements are contradictory. In order
to derive basic design decisions for the NoC implementation, the requirements
arising from invasive computing, detailed in chapter 3, are now analyzed.

The most basic idea of invasive computing is the invasion of resources by ap-
plications. Aside from memory and computation resources, the communication
resources shall be invadable as well. An invasion is an exclusive allocation of
resources by an application. However, due to the fact that a network on chip
is normally shared by all nodes, it cannot be split up into separate regions for
the application4. Thus, bandwidth allocation techniques must be used instead of
exclusive spatial invasion for communication resources, as detailed in section 6.2.

Another requirement, resulting from the InvasIC architecture, is the support for
memory communication. Since the main memory is connected to the processing
elements by the NoC, transparent memory communication must be supported

4In contrast, invasion of processing cores or memories can be implemented straightforward by
reserving regions of the address space or a set of processing cores exclusively.

86

4

4.1. Communication Requirements and Constraints

for data and instruction fetching. It must be possible to access the memory
from each node at any time. Connection-oriented communication cannot ensure
memory communication in any situation (e.g. at start up no connection may exist,
or the required connection cannot be established, due to resource limitations).
Thus, connectionless best-effort communication must be supported to ensure
memory communication in any situation. Best-effort communication can be used
as a fallback solution, if exclusive invasion of communication resources is not
possible.

Observability is another requirement of the NoC in the InvasIC architecture.
The current status of the NoC is taken into account by the system software to
determine the mapping of new application, as described in section 3.3.2.1. The
monitoring information shall not only be used by the software, but also by the
NoC hardware itself for self-optimization.

Self-optimization and self-organization shall be implemented in the InvasIC
architecture to reduce the burden of management. Communication monitoring
may be used to trigger and control self-optimization features. Load balancing, or
the optimization of the resource allocation in the NoC, could be triggered based
on monitoring. Self-optimization and self-organization should be carried out in
a distributed way to ensure scalability. For such a distributed implementation,
NoC internal communication may be required to orchestrate the self-optimization
among the components of the network.

Another aspect of the InvasIC architecture, which must be taken into account
for design of its communication system, is the heterogeneity of the architecture.
The architecture consists of different tiles with different communication demands.
Memory or TCPA tiles may be used by multiple RISC tiles in parallel, resulting in
a huge aggregated bandwidth. These increased bandwidth requirements must be
considered while dimensioning the NoC to avoid any bottlenecks resulting from
heterogeneity of the communication.

Invasive computing addresses future many-core architectures with dozens of
cores. Thus, scalability is an essential requirement to the invasive network on chip.
As discussed in section 4.1.3, scalability impacts the choice of the topology, routing
algorithm and resource allocation scheme. The demand for scalability must be
taken into account for the bandwidth allocation scheme used to facilitate invasion
of communication resources. Additionally, the aforementioned self-optimization
and self-organization strategies shall reduce the management overhead of the
architecture and improve its scalability.

Distributed management of the NoC is another requirements that is accompanied
by scalability. The distributed operating system (see section 3.3.2) necessitates
decentralized management of the hardware. This involves the allocation of com-
munication resources during invasion phase and other configuration capabilities
of the network. The requirement of distributed management must be taken into

87

4

4. Flexible NoC Architecture and Design Flow Concept

account during design of the NoC itself and the resource allocation scheme re-
quired to invade communication resources. All interfaces for configuration and
status information access must support the distrusted management scheme of the
OS.

4.1.5. Summary

The previous discussion presented a huge diversity between the various require-
ments. Some requirements can be readily reconciled with each other (e.g. low
power consumption and low implementation cost), while some are contradictory
(e.g. high bandwidth and low implementation cost). Some requirements apply
to any communication system (e.g. dependability), others are specific to the use
case (e.g. observability, predictability or distributed management). Due to the
diversity of the requirements, they must be analyzed for each new NoC design
in order to derive proper design decisions. This applies especially for the basic
characteristics of a network on chip, such as performance or implementation costs.
An overdimensioning of the bandwidth would result in excessive implementation
costs, whereas undersizing of the NoC bandwidth would result in communica-
tion bottlenecks, which could have a negative impact on the performance of the
entire system. However, it is evident to only fulfill necessary requirements which
limit power consumption and the complexity of a system. An evaluation of the
selected design parameters is consequently necessary to verify their suitability.
Such an evaluation can be very time consuming looking at the list of different
requirements and the possible design choices. Different design choices must be
compared against each other to find the optimal solution (e.g. with respect to
power or resource efficiency). The short time to market, required for today’s
integrated circuit designs, necessitate a fast way for requirement analysis and
design parameter evaluation. Once the design parameters are selected, the actual
implementation has to take place, based on the previous analysis. During this
design process, time plays an important role.

A framework would be desirable, enabling fast and easily evaluation and imple-
ment of architecture-specific networks on chip. The NoC design must be flexible
and extendable to adapt it according to design-specific requirements, such as the
extensions that may be required to fulfill the special requirements of invasive
computing. Newly developed extensions of the existing NoC could become a part
of the framework and used for future designs. The concept of a framework-based
design process, which uses a flexible design kit, will be pursued in section 4.4.
The framework shall reduce the time between an initial requirement analysis and
the final hardware design.

88

4

4.2. State of the Art NoC Architectures

4.2. State of the Art NoC Architectures

According to the previous section, a NoC design is desirable, which allows to fulfill
alternating requirements depending on the target MPSoC architecture and the
applications. Consequently, a flexible, adaptable and feature-rich NoC design is
required. As a result of these findings, the suitability of existing NoC architectures
as a basis for a holistic and flexible NoC design and evaluation framework are
analyzed in the following paragraph. Such a framework necessitates design-
time adaptivity and evaluation capabilities. The designs are also analyzed with
respect to basic requirements of future general-purpose many-core architectures,
such as scalability, distributed management, run-time flexibility and reliability.
Additionally, it is discussed whether existing NoCs are suitable for the InvasIC
architecture, as introduced in section 3.2.

4.2.1. SoCBUS

SoCBUS was originally introduced in 2000 as a circuit switching on-chip net-
work [266]. It was extended by a packet switching component that is used to
setup the circuit switching connections in a distributed way. Therefore, distributed
minimal routing is used, as described in detail in [267]. SoCBUS supports the
reservation of communication resources due to the use of circuit switching. In
general, it may be deemed scalable due to the use of distributed routing and
decentralized connection setup. The use of a 2D mesh topology enables scalability.
However, Wiklund and Liu have stated in [267] that their system is not suitable
for general-purpose computation platforms. As such, there is a high probability
of blocking while circuit switching connection setup, if no static scheduling of
the connections is used. If a static scheduling can be calculated at design-time,
SoCBUS can be used efficiently. However, such a static scheduling is not possible
in a highly dynamic system, addressed by this work. Consequently, SoCBUS is no
option for a base communication infrastructure of a general-purpose many-core
architecture.

4.2.2. Hermes

Hermes [180] is a wormhole packet switching mesh network on chip topology.
It uses distributed XY routing and can therefore be considered to be a scalable
communication system. An extension of the Hermes NoC is presented in [174].
Virtual channels are added to improve throughput and latency. Due to the use
of packet switching, it has a higher run-time flexibility compared to SoCBUS.
The Hermes NoC is used in the HeMPS architecture [39], which is an MPSoC

89

4

4. Flexible NoC Architecture and Design Flow Concept

architecture available as a SystemC model, thus making the Hermes NoC suitable
for evaluation purposes. The focus of the HeMPS framework is the evaluation of
parallel software, e.g. the evaluation of task mapping alternatives. However, the
customization capabilities of the Hermes model are very limited. It only provides
very essential parameters, such as link size or number of VCs to be changed at
design-time. The Hermes NoC uses a protocol that does not enable communi-
cation resource reservation5. Thus, Hermes cannot be used as a communication
system for the InvasIC architecture, due to the missing capabilities for reservation.

4.2.3. SoCIN

The SoCIN network on chip [277] has similarities to the Hermes architecture. It is
also a packet switched network with wormhole flow control. Due to the use of
source XY routing, its scalability is limited. SoCIN claims to be parameterisable
at design-time to build NoCs with different costs/performance ratios. Therefore,
it supports different dimensions of the architecture, different link/channel sizes
and buffer depths. SoCIN does not use virtual channels and therefore does not
support explicit resource reservation; necessary for the invasive architecture and
for QoS support. The limited scalability, due to the use of source routing, as well
as the missing support for communication resource reservation make SoCIN an
unsuitable candidate.

4.2.4. Æthereal

Æthereal [214, 87, 92, 93] is one of the most popular NoC architectures, designed
and investigated at Philips Research since the year 2000. Æthereal combines a
packet switching network with input buffers and a circuit switching network with
VCs. The VCs are scheduled by the use of TDM. Both meshed networks share the
same link. The circuit switching network enables connection-oriented guaranteed
service communication. The wormhole packet switching network is used for
best-effort communication [214]. Best-effort communication utilizes the link
bandwidth that is not used by GS connections. The sharing of the link between BE
and GS communication improves the link utilization. The pipelined TDM circuit
switching network uses contention-free routing [87, 92]. Due to the pipelining
of the circuit switching network, different time slots must be allocated for a
connection in different routers. However, to plan a good time slot allocation for all
circuit switching connections of a system that is using Æthereal global knowledge
is required. Only a centralized allocation scheme is capable of calculating an

5The protocol used in the Hermes NoC requires fixed packet lengths that are known ahead of
transmission.

90

4

4.2. State of the Art NoC Architectures

optimal assignment of all connections to time slots. This assignment is named
contention-free routing by the authors and can be completed at design-time or at
run-time [87, 92]. On one hand, design-time allocation provides no flexibility at
run-time. On the other hand, run-time assignment would necessitate a global view
of the system state and a centralized decision making and management, which
limits the scalability of the system. Consequently, Æthereal does not provide
the run-time flexibility and scalability required for a general-purpose many-core
architecture.

4.2.5. Nostrum NoC

The Nostrum network on chip [177, 178] uses packet switching and has a scalable
2D mesh topology. It supports best-effort and GS communication and uses hot-
potato routing6. So-called virtual circuits are used to establish an end-to-end
connection with guarantees. A virtual circuit is implemented by the use of TDM
scheduling. A fraction of the link bandwidth is allocated for each connection [178].
In [177], virtual circuits are used to enable two concepts named looped container
and temporally disjoint networks. The combination of these two concepts enables
hard guarantees for bandwidth. However, the virtual circuits are set-up semi-
statically, meaning that the route is calculated at design-time, but the bandwidth
is variable at run-time. This semi-static establishment of virtual connections
provides no run-time flexibility and limits the management capabilities. Thus, the
Nostrum concept is inappropriate for general-purpose many-core architectures
due to the missing flexibility and management capabilities.

Nostrum is available as an ASIC implementation. In addition, the Nostrum net-
work on chip simulation environment [167] provides a SystemC-based simulation
model of the Nostrum NoC. The simulation environment has a large set of pa-
rameters for topology, switching, routing algorithm and traffic generation. Thus
making it suitable for design space exploration.

4.2.6. QNoC

The QNoC architecture is presented in [29]. QNoC is a wormhole packet switch-
ing NoC supporting regular mesh and irregular grid topologies of heterogeneous
architectures. Routing is performed in a distributed way using minimal XY rout-
ing7. The novelty of QNoC is the support of different service levels (SLs) for data

6The packet transmission duration in hot-potato routing [73] is only one clock cycle, i.e. the length of
packets is one flit.

7It remains unclear in [29] how irregular topologies, as claimed by the author, can be supported
using XY routing.

91

4

4. Flexible NoC Architecture and Design Flow Concept

transmission. Therefore, a service level is assigned to each packet according to
its type. Four types of service levels are supported: signaling, real-time, read-
/write and block-transfer. A priority ranking is defined for the four service levels,
where signaling is given the highest priority and block-transfer the lowest. A
separate static buffer for each SL is located at the input port of each router. Data
transmission is scheduled according to the priorities, enabling low latency for the
packets with higher SLs. However, it does not enable communication resource
invasion or bandwidth guarantees. QNoC is only available as a simulation model
for OPNET [43]. A synthesizable hardware implementation is not available.

4.2.7. Xpipes

Xpipes is a parameterizable NoC template supporting regular and irregular topo-
logies [21, 57]. The XpipesCompiler tool is used to configure the template design.
According to [57], Xpipes has been implemented in SystemC, at the cycle-accurate
and signal-accurate level. Although the SystemC description is synthesizable,
the tool support for SystemC high-level synthesis (HLS) is currently very limited.
Consequently, the design can hardly be used for ASIC or FPGA realization. A
simulation environment for design space exploration is not reported.

The Xpipes NoC uses wormhole switching and look up table (LUT)-based source
routing; limiting its scalability. Due to the use of source routing, the run-time flex-
ibility of the network is also limited. It does not provide any run-time adaptation
capabilities. However, the network adapter design of Xpipes enables to manage
the architecture in a distributed way from the software perspective, enabling
distributed OS management schemes. Xpipes does not provide QoS support.
Consequently, it is not possible to reserve communication resources.

Xpipes is the only NoC that is reported to provide fault tolerance, utilizing error-
detection and correction scheme for transient errors. A sophisticated fault toler-
ance model and on-line testing procedure for Xpipes is presented in [126].

4.2.8. Kilo-NoC

Kilo-NoC [97, 96] is a scalable NoC architecture. It applies packet switching with
virtual channels. Kilo-NoC uses elastic buffers [176] to reduce the implementation
cost for buffering. Multidrop express channels [95], using point-to-multipoint
channels, are applied to provide full intra-dimension connectivity. The Kilo-
NoC concept assumes a heterogeneous architectures consisting of hundreds of
processing nodes. These nodes share a limited number of memory nodes. The
express channels are used in a topology-aware manner to reduce their number
and thus, the implementation costs. Express channels are only used to access the

92

4

4.2. State of the Art NoC Architectures

memory nodes from all other nodes with QoS. The architecture must be divided
at design-time into non-overlapping domains to achieve topology-aware QoS.
Therefore, the applications executed on the architecture must be known at design-
time, resulting in a very limited run-time flexibility. All QoS requirements must
be known at design-time, a run-time reservation of communication resources is
not supported. This is not sufficient for general-purpose architectures, where
communication patterns and QoS requirements are normally not known at design-
time. Another drawback of Kilo-NoC is its availability. According to [97] the
architecture is currently only available as a high-level simulation model. A cycle-
accurate simulation model or a HDL model for FPGA or ASIC synthesis is not
available. This reduced the evaluation capabilities of the design significantly.

4.2.9. Summary

The previous discussion of existing NoC architectures showed that relevant as-
pects for communication in future general-purpose many-core architectures are
addressed. According to section 4.1 the most important communication require-
ments of such architectures are8:

• Scalability: Capability of the NoC architecture to be used for an MPSoC
with a large number of nodes or cores.

• Reservation/QoS: Architecture supports allocation of communication re-
sources to enable predictable communication and invasion of communica-
tion resources.

• Run-time Flexibility: The network on chip is flexible at run-time with
respect to changing communication requirements of different applications.

• Management: Distributed management is supported from the software
perspective to reduce the management overhead within a large architecture.

• Reliability: The architecture supports fault tolerance to handle transient
and permanent faults, which are expected for future silicon technology
nodes.

• Design-time Flexibility: The NoC architecture provides the possibility to
be adapted with respect to the requirements of a specific incarnation of the
architecture.

• Availability: A simulation model of the architecture must be available for
an efficient evaluation of implementation alternatives. A synthesizable
hardware model must be available for ASIC or FPGA implementation.

8General communication requirements, such as bandwidth or latency are not considered here. They
can be fulfilled by each of the discussed architectures by adjusting basic parameters, such as link
or buffer size.

93

4

4. Flexible NoC Architecture and Design Flow Concept

Sc
al

ab
il

it
y

R
es

er
va

ti
on

/Q
oS

R
un

-t
im

e
Fl

ex
ib

il
it

y

D
is

tr
ib

.M
an

ag
em

en
t

R
el

ia
bi

li
ty

D
es

ig
n-

ti
m

e
Fl

ex
ib

il
it

y

A
va

il
ab

il
it

y
(S

im
ul

at
io

n)

A
va

il
ab

il
it

y
(H

ar
dw

ar
e)

SocBUS 3 3 © 3 5 5 3 5

Æthereal © 3 © 5 5 5 5 3

Hermes 3 5 3 3 5 © 3 3

Nostrum © 3 © 5 5 3 3 3

QNoC 3 © 3 3 5 5 3 5

SoCIN 5 5 © 3 5 © 5 3

Xpipes © 5 5 3 3 3 5 ©

Kilo-NoC 3 5 © 3 5 © 3 5

Table 4.1.: Comparison of existing NoC architectures with respect to different
fundamental requirements of future general-purpose many-core ar-
chitectures – Requirement fully satisfied (3), Requirement partially
satisfied (©), Requirement not satisfied (5).

Table 4.1 summarizes the fulfillment of the identified requirements by existing
NoC architectures. Utilizing the table, it is evident that none of the existing archi-
tectures can fulfill all requirements, as identified for a scalable general-purpose
many-core architecture. Most architectures lack in flexibility at design-time. How-
ever, design-time flexibility is necessary to adapt the NoC rapidly to specific
requirements of an architecture. Another aspect that is not supported by most of
the existing architectures is the run-time flexibility. In order to enable efficient
execution, it is required to adapt the communication at run-time according the
requirements of the applications, which are executed concurrently. With respect
to the communication sub-system of the InvasIC architecture, an exclusive reser-
vation of communication resources by application is required. However, the
run-time allocation of communication resources is also not supported by the
majority of existing NoC architectures. Table 4.1 shows that none of the existing
architectures can meet all of the identified requirements. Consequently, none of
the existing architectures can be used directly. Thus, different aspects of existing
architectures must be combined to create an architecture that fulfills all necessary
requirements. According to table 4.1, the Hermes NoC was identified to meet
most of the requirements. Hermes was analyzed in more detail as part of a student

94

4

4.3. Fundamental Architecture Concept

work [Ker13] to clarify whether it can be used as a basis for this work. However,
the detailed analysis showed that the basic concept and implementation of Her-
mes does not enable the necessary extensions. Especially the router architecture of
the Hermes NoC was not suitable because of its sequential packet processing. It
was therefore decided to not use an existing architecture. Instead, selected aspects
and concepts that have proven their efficiency in existing architectures will be
combined to create a new fundamental architecture concept.

4.3. Fundamental Architecture Concept

The fundamental concept and goal of this work is a flexible NoC-based communi-
cation infrastructure for future general-purpose many-core architectures. In order
to adapt and use a network on chip for different architectures under different
constraints, it must be flexible at design-time. The NoC can be either used for
FPGA prototyping or for an ASIC implementation. The NoC must be scalable
to use it for large architectures, which can be expected in the near future [33]. If
the NoC provides functionality, which must be configured or controlled by the
operating system at run-time, distributed management is required to ensure scala-
bility. Self-optimization features could reduce the burden for management by the
OS and applications. In contrast to application-specific systems, general-purpose
architectures must be flexible at run-time to deal with changing requirements of
different applications. This flexibility must be reflected by the communication
infrastructure. It must cope with changing load conditions and may need to adapt
itself to the current communication requirements. Some applications could profit
or necessitate guarantees for bandwidth and latency, which can be carried out by
exclusive allocation of communication resources. Such an allocation strategy is
also required to enable the invasion of communication resources, as discussed in
chapter 3. Despite all of these requirements, the efficiency must not be forgotten.
In particular, the energy efficiency plays an ever increasing role, especially in
mobile battery-powered system. Therefore, the system must not be oversized. In
order to meet these divergent requirements for different architectures, a flexible
base design is necessary. The design must support an easy design-time adaptation
and configuration. Evaluation capabilities are required to verify the fulfillment of
architecture-specific requirements for a designated configuration.

In the following subsections, the fundamental concept and design decisions of
such an architecture will be identified and discussed.

95

4

4. Flexible NoC Architecture and Design Flow Concept

4.3.1. Switching Scheme and Quality of Service

An on-chip network of a general-purpose many-core architecture must efficiently
support both pre-scheduled and dynamic traffic. For numerous applications, large
data flows are relatively static and demand high-bandwidth with low latency and
low jitter. For example, a flow of video data from a camera input to an MPEG
encoder is entirely static and requires high bandwidth with predictable delay.
However, dynamic communication, which is not known prior to its occurrence,
must be supported. Examples for such dynamic communication are: memory
communication resulting from cache misses or communication between OS in-
stances for resource management. Pre-scheduled communication can efficiently
be enabled by circuit switching networks, as explained in section 2.4.3.1. The con-
nections could be established prior to execution, using static information about the
communication of the application. However, managing circuit switching in a dis-
tributed way includes additional design challenges, as discussed in section 2.4.3.1.
The drawback of circuit switching is that a connection setup phase is required.
Connection setup must be successful before data transmission can take place.
This connection setup is associated with a high latency which leads to a poor
performance from dynamic communication. Communication can be completely
blocked if connection setup fails (e.g. due to over utilization). This can also result
in low performance or even lead to deadlocks. In order to prevent such deadlocks
and to avoid the overhead of connection setup for dynamic communication, best-
effort communication is required. Packet switching networks are predestined
for BE communication, which is to be expected in general-purpose architectures.
Thus, packet switching is preferable for dynamic communication. Consequently,
the flexibility of packet switching is inevitable for the desired communication
infrastructure. Packet switching is the means of choice for the network presented
in the following chapters.

In addition to best-effort packet switching communication, a concept is presented
in section 6.2, which enables quality of service and end-to-end connections with
adjustable bandwidth for packet switching networks. This strategy is also used to
allocate communication resources in the InvasIC architecture. In general, it can be
used to provide hard guarantees for safety, or timing critical applications by the
use of virtual channels [58]. In addition, virtual channels are an efficient way to
increase the maximum utilization of a network, as shown in section 5.4. This is
another aspect that justifies the use of VCs. However, it is worth noting that VCs
include a substantial implementation and power dissipation overhead. Therefore,
in section 7.4, a power saving mechanism for packet switching NoCs with virtual
channels is presented.

Due to the irresistible advantages of circuit switching, such as high energy ef-
ficiency [269], a circuit switching extension for the primary packet switching
network is introduced in section 5.5.2. This extension utilizes energy efficient

96

4

4.3. Fundamental Architecture Concept

circuit switching communication for pre-scheduled communication and packet
switching for dynamic traffic. In case of an over-utilization of the circuit switching
network, packet switching may be used as a fallback solution to avoid blocking
and deadlocks.

4.3.2. Scalability and Distributed Self-Optimization

Scalability is necessary from the hardware perspective to enable large archi-
tectures, addressed by this work. A simplistic design decision with respect to
scalability is the topology. As discussed in section 2.4.2, regular topologies, such
as meshes or tori, provide better scalability compared to irregular ones. Therefore,
the router design presented in the following is mainly designed to be used in a
regular topology. Nevertheless, it can be used with slight adjustments for other
topologies.

The topology is closely related to the routing strategy, which must be selected
according to the topology of the network. In fully connected regular topologies,
there might be multiple candidate paths between two nodes that could be used
for data transmission. Therefore, routing plays an important role with respect
to load balancing and performance. The implementation of the routing strategy
affects the scalability of the system. Centralized routing does not scale from
the software management perspective. Source routing does not scale from the
protocol perspective and also necessitates global knowledge hardly available in
large distributed architectures. In order to ensure scalability, the burden of routing
must be borne by the hardware in a distributed way. Local status information
can be consulted to take the routing decision in each router. The proposed
NoC design uses distributed FSM-based routing for packet and circuit switching
to enable scalability. Different minimal static and adaptive routing schemes
are implemented, as described in section 5.1.4. Hardware load monitors are
used to take proper decisions in case of adaptive routing, as described in detail
in section 5.1.4 and 5.5.3. These load monitors are also used to enable a self-
optimization strategy, named rerouting. It is used to relocate existing end-to-end
connections to balance the load of the NoC, as described in detail in section 7.1.

Self-optimization capabilities of the hardware, such as the aforementioned rerout-
ing strategy, is one basic idea of invasive computing. Therefore the general hard-
ware design shall enable self-optimization to reduce the software management
overhead for improving the scalability of an architecture. The aforementioned
monitoring infrastructure is one key concept for distributed self-optimization.
It enables decision making based on local up-to-date status information. In ad-
dition to a distributed monitoring infrastructure, NoC internal communication
is necessary to implement distributed self-optimization strategies, such as the
rerouting strategy introduced in section 7.1. Thus a light-weight NoC layer is

97

4

4. Flexible NoC Architecture and Design Flow Concept

used, as detailed in section 5.5.1. Self-optimization strategies for performance and
power optimization, which fit into the overall concept, are presented in chapter 7.

4.3.3. Region-based Distributed Management

In order to support a scalable software management concepts, such as the OS and
agent subsystem presented in section 3.3.2, the NoC must provide capabilities for
decentralized management. A scalable operating system management concept
necessitates a NoC hardware, which can be managed in a distributed way.

Access to status information of the NoC hardware is required by the software
in order to make appropriate decisions for resource allocation or task mapping.
The monitoring units, used by the hardware for self-optimization, shall be reused
for this purpose. Thus, each node can independently obtain all necessary state
information from the hardware monitors without involving other operating sys-
tem instances. For efficient access and collection of the required monitoring data,
hardware supported data collection is introduced in section 7.3. It is deemed
a region-based concept because it enables to divide the NoC architecture into
regions, which are used and managed independently of each other. This region-
based strategy is inspired and supports the agent-based software management
concept; used in invasive computing (see section 3.3.2.1). The virtual network (VN)
support, introduced in section 6.4, is another region-based management scheme
for networks on chip. It allocates a portion of the NoC bandwidth of a cohesive
region for the application, executed in this region. VNs enable an application in an
environment that provides bandwidth guarantees for the application in its entirety.
Virtual networks can be established at run-time according to the mapping and
shape of the application. This necessitates run-time management by the system
software. The management and configuration of virtual networks is carried out
in a distributed way in order to enable distributed run-time management.

The other quality of service capabilities of the presented architecture, introduced
in chapter 6, also must be managed and established at run-time. A distributed
management scheme for these quality of service features is necessary to support
the use of distributed system software. The concept of such schemes is detailed in
section 6.2.1.5, 6.3 and 6.4.1.1 for the supported QoS mechanisms.

The fault tolerance scheme, introduced in the following and described in detail in
chapter 8, necessitates a software controlled reconfiguration of the NoC hardware
in case of hardware defects. The reconfiguration interface enables to perform the
reconfiguration from each node without requiring a central control instance. Each
node of the architecture can be used for reconfiguration, in order to respond to
errors. A central authority is not needed.

98

4

4.3. Fundamental Architecture Concept

4.3.4. Fault Tolerance and Dependability

Taking the technological perspective into account, networks on chip must be fault
tolerant to handle transient and permanent faults, which are expected for future
technology nodes [203]. The applied strategies for fault tolerance are constrained
by power, area and performance limitations. A more detailed motivation and
overview on state of the art is provided in chapter 8.

In order to deal with transient faults, well-known retransmission schemes [9] can
be used independently of architectural details. In regards to permanent faults,
architecture-specific fault tolerance schemes are necessary. Thus, a strategy for
dealing with permanent faults in the proposed NoC architecture is discussed and
investigated in chapter 8. It includes a strategy for detection and localization of
permanent errors in the complex VC-based packet switching network with QoS
support. When faulty routers are localized, a configurable lightweight second
layer network is used to bypass these routers transparently and to substitute
their communication bandwidth. The second layer network shall substitute the
bandwidth, which is lost, when disabling the faulty router. Alternatively, the
proposed concept for deactivation of faulty routers can be used to disable parts
of the network in case of low utilization. This enables the usage of the reliability
concept for power saving, as described in section 8.3.1.2.

4.3.5. Design-time Flexibility and Adaptability

The proposed NoC design shall combine different aspects and mechanisms for
flexible communication, QoS support, self-optimization and reliable, fault toler-
ant communication. Not all of these mechanisms are required by each MPSoC
architecture where the network on chip is used. Regardless, different architectures
have different fundamental communication requirements, such as bandwidth
and latency. The power and area budget of the NoC also depends heavily on the
desired architecture. The proposed NoC architecture shall be suitable for a broad
range of multiprocessor systems on a chip. Therefore, it should be flexible enough
to use it for different architectures with different requirements. This necessitates
a NoC design that is flexible at design-time. Such a design could be adapted
according to the specific requirements of the architecture.

In order to enable the design-time flexibility that is necessary to adapt the design
to changing requirements, a template-based approach shall be used. The base
architecture, introduced in chapter 5, and the extensions, presented in chapter 6, 7
and 8, are designed in a modular and parameterizable way. This approach shall
enable and simplify the necessary design-time adaptations of the network on chip.
The base-router and the functionalities for QoS support, self-optimization, relia-
bility or the circuit switching extension are designed as separate modules. Each

99

4

4. Flexible NoC Architecture and Design Flow Concept

of these modules has multiple configuration options for design-time adaptation.
This modular approach, which is denoted as a design template, enables to omit
functionality, which is not required by the current implementation. Therefore,
the different modules are designed in a way that they can be easily combined to
fulfill the specific demands of the desired architecture. In addition, this modules
approach shall enable a simple extension of the architecture by new features. The
template-based design approach shall enable fast and easy creation of architecture-
specific incarnations of the NoC. It is intended to meet the requirements of a short
time to market for NoC-based MPSoC architectures.

The modular design template is available as a simulation model and as a synthesiz-
able hardware implementation. The simulation model, introduced in section 5.2,
enables a fast design space exploration to select a configuration, which fulfills
the stated functional requirements, such as latency and throughput. The synthe-
sizable HDL model, presented in 5.3, subsequently can be used to evaluate the
fulfillment of non-functional requirements, such as power and area consump-
tion but also to implement the NoC in the desired target technology. Both, the
HDL and the simulation model, are used in the semi-automated design flow,
introduced in section 4.4.

The design template concept enables fast creation of highly diverse networks on
chip. On the one hand, it can be used to build complex networks, such as the
i-NoC [HZW+14] presented in section 3.2.2. On the other hand, it can also be
used to implement very lightweight communication infrastructures, such as the
liteNoC. The liteNoC incarnation can beat other existing NoC implementations,
which claim to be resource efficient for FPGAs, in terms of performance and
resource requirements, as shown in [PQHW+13].

4.4. Semiautomatic NoC Design Flow

Bus systems, introduced in section 2.3.2, and standardized interfaces have proven
to enable efficiency realization of complex systems. They are used to connect
intellectual property (IP) blocks to form complex systems on a chip, as described in
section 2.1. This design methodology enables a short time to market, necessary
in the fast-paced semiconductor industry. For future systems, it is expected that
bus systems will be replaced by NoCs. Therefore, a NoC implementation flow
must also fulfill the requirement of a short time to market; staying competitive
in the industries fast pace. However, a network on chip is accompanied by an
increased complexity which in turn includes an increased design space. This
design space has to be evaluated to make optimal design decisions with respect to
the requirements of the architecture being built. An efficient way for evaluation
of different implementation alternatives is necessary to enable a short time to

100

4

4.4. Semiautomatic NoC Design Flow

market and to reduce the development costs of a new system. Therefore, a design
with flexibility at design-time and run-time is necessary to adapt it to different
requirements. In order to quickly analyze whether a particular configuration
meets the requirements of the architecture, a rapid evaluation method is required.

4.4.1. Evaluation and Implementation Flow

This work proposes a semiautomatic design flow, which enables fast and accurate
evaluation, followed by semi-automated generation of a synthesizable NoC archi-
tecture. It targets homogenous and heterogeneous general-purpose many-core
architectures. Such architectures come along with additional difficulties during
design phase; compared to specialized architectures, where the communication
behavior might be known at design-time. For a general-purpose architecture,
the communication behavior depends on the current application and can have a
huge variability at run-time. These unpredictable communication properties are
accompanied by additional challenges during the design process. Different corner
cases must be evaluated at design-time with respect to communication, ensuring
that the architecture can fulfill diverse requirements of different applications.

A simulation framework is used to enable a fast comparison of different imple-
mentation alternatives under different load situations and traffic scenarios. The
simulation environment is cycle-accurate to ensure accuracy of the simulation
results with respect to the hardware implementation. It uses different traffic
generation models to evaluate the NoC architecture under different corner cases,
which can appear at run-time. The simulation framework is described in detail in
section 5.2. It is mainly used to analyze the fulfillment of the functional communi-
cation requirements, summarized in section 4.1. Therefore, the NoC simulation
model is initially configured with a seed configuration that is expected to meet the
requirements. After simulation, the measurements of different traffic scenarios are
analyzed and verified as to the fulfillment of the functional requirements. If this
verification fails, the previous configuration is modified and the simulation-based
evaluation is restarted. This process is continued until a valid configuration is
found.

Once a valid configuration has been found, which fulfills the derived functional
requirements, the fulfillment of non-functional requirements (e.g. area and power
consumption) must be analyzed. Therefore, a model-based approach, such as
ORION [125], may be used. However, such a model-based approach naturally
lacks accuracy. Due to the fact that the proposed framework is capable of gener-
ating synthesizable HDL code, accurate target-technology-specific area, power
and clock frequency estimations are possible. The HDL model, introduced in
5.3, is used to evaluate the fulfillment of the non-functional requirements of the
current configuration. The HDL model is configured according to the final result

101

4

4. Flexible NoC Architecture and Design Flow Concept

of the preceding functional requirement analysis. The generated model is then
verified automatically for accuracy by the use of an HDL simulation. Afterwards,
the generated design is synthesized for the target ASIC or FPGA technology. The
synthesis process provides accurate values for the implementation cost of the
design. Post-synthesis simulation is used to verify the final netlist of the design
and to obtain accurate numbers for the power consumption of the design. The
outcome of the synthesis and the following netlist-simulation are then compared
against the non-functional requirements of the design. If the analysis of the
synthesis results show that the non-functional requirements are not met, other
parameters must be chosen and evaluated. If the requirements are satisfied, a
valid configuration is found and the generated HDL model can finally be used
as an outcome of the flow. The generated HDL model is suitable for FPGA and
ASIC implementation.

Figure 4.3 provides an overview of the semi-automated design flow, described
above. It is currently composed of automated and manual procedures. The deduc-
tion of configuration parameters, based on the requirements and the feedback of
previous iterations, must be performed manually. Additionally, the fulfillment of
functional and non-functional requirements is analyzed manually. All remaining
steps of the flow are fully automated.

4.4.2. Application of the Evaluation and Implementation Flow

The proposed evaluation and synthesis flow is used extensively hereafter. It is
suitable for fast and accurate design space exploration (DSE). As a proof of concept,
a case study is presented in section 5.4. It analyzes the impact of different basic
design parameters.

The framework and the associated HDL implementation are used for evaluation
of the concepts, which are presented in chapter 6, 7 and 8. It was also used to gen-
erate the i-NoC for the InvasIC architecture, described in section 3.2. In addition,
it was used to evaluate and generate appropriate communication infrastructures
for two other architectures. The first architecture is the MOLEN architecture [258].
For MOLEN, a lightweight NoC was required to extend the existing bus-based
communication infrastructures, as described in [PQHW+13]. A comparison to
other resource-saving NoC implementations showed the superiority of the NoC,
generated with the proposed implementation flow [PQHW+13]. The third archi-
tecture, which uses a NoC that was generated by the use of the proposed flow, is
the KAHRISMA architecture [141][KSHB11]. The extension of the KAHRISMA
architecture by a network on chip is described in [37].

102

4

4.5. Summary

Deduction of ConfigurationRequirements

Sim. Configuration

(Fast) Simulation

Functional require-
ments analysis

failed

HDL Code Generation

passed

HDL Simulation

Synthesis + (PAR)
Target

ASIC/FPGA
Library

Post-Synthesis Simulation

Non-Functional re-
quirements analysis

failed

Suitable NoC Netlist
+ HDL model

passed

Figure 4.3.: Semi-automated, iterative, requirement driven NoC evaluation and
implementation flow – Green node: fully automated step, Yellow
node: manual step, Dashed node: input/output of the framework.

4.5. Summary

In this chapter, general requirements for networks on chip were identified and
discussed. As elementary functional characteristics, the performance of the com-
munication system was identified. The most important non-functional properties
were identified to be the power and area consumption, but also the reliability of
the network. In addition, scalability, distributed management, self-optimization
and quality of service support are demands on the communication infrastruc-
ture of future MPSoCs. These demands apply also for the InvasIC architecture,
introduced in chapter 3.

Based on these findings, state of the art NoC architectures were discussed and
analyzed in section 4.2. The analysis, summarized in section 4.2.9, showed that
none of the existing architectures meet the sum of identified requirements. The
limited flexibility at design-time, which existing architectures have in common, is
taken as a motivation for the subsequently presented concept.

103

4

4. Flexible NoC Architecture and Design Flow Concept

The fundamental concept of this work, introduced in section 4.3, is motivated by
the limitations of existing NoC architectures. It shall meet the sum of requirements,
such as scalability, predictability, self-optimization, distributed management or
energy efficiency, which were identified to be relevant for the communication
infrastructure of future general-purpose MPSoC architectures. In the concept
section, elementary design decisions were discussed, which are necessary to
create an architecture that can meet the sum of requirements. However, a specific
architecture may only meet a subset of the requirements. Consequently, a flexible
design is desired and proposed, enabling to adapt the network on chip at design-
time according to the requirements of the architecture to be implemented.

In the final part of this chapter, a NoC design flow was introduced. It uses the
flexible and configurable future-rich NoC design, proposed previously, to enable
semi-automated generation of suitable NoC incarnations for specific MPSoC
architectures. The proposed design flow uses the simulation framework and the
HDL model of the NoC, described in detail in chapter 5. The design flow enables to
evaluate and generate a suitable network on chip with a low effort for the system
designer. This methodology shall meet the demands of a short time to marked,
which is an important factor of today’s and future MPSoC design processes.
The proposed methodology is used extensively for the evaluations presented in
the following chapters. In addition, it has already been applied successfully to
generate networks on chip for three different MPSoC architectures.

104

5

5. Basic Architecture Realization

This chapter describes the basic network on chip router architecture, its HDL
implementation and the simulation framework. A case study is presented, show-
ing the feasibility of the proposed evaluation and design flow by the use of the
HDL and the simulation model. In addition, basic extensions of the router are
discussed. The components and methods described in this chapter are the basis
for the concepts and extensions introduced in the following chapters.

5.1. Scalable Basic Router Design

The basic router design is inspired by state of the art networks, as discussed in
the previous section. It implements the basic design decision, as identified in sec-
tion 4.3.1. The resulting router architecture is nearly identical to the router design
used in the Single-chip Cloud Computer, which was described in section 2.2.5.2.
Thus, it can be said, that the basic router design represents the state of the art. Its
concept and implementation is described in detail below.

Switching The router design relies on packet switching to enable best-effort
communication. In general, packet switching includes high implementation
cost, which in turn are associated with high power consumption. There are
two reasons for the relatively high power consumption of a packet switching
network. First, the arbitration mechanisms, required within the router, consume
a noticeable share of resources and power. Second, the buffers used to store
data that cannot be forwarded immediately have high resource requirements and
power consumption. Therefore, arbitration and buffering must be investigated in
detail to limit their implementation costs. Optimized building blocks are used to
optimize buffer and arbitration resources efficiently, as described in section 5.3.
In addition, conceptual optimization is taken into account to improve router
costs. The choice of the switching scheme has a significant impact on the buffer
requirements, as described in section 2.4.3.2. Compared to the other switching
schemes, wormhole switching has the lowest buffer requirements. In order to
reduce the implementation overhead of packet switching, which is typically
dominated by the size of the buffers, wormhole switching is applied. Another

105

5

5. Basic Architecture Realization

benefit justifying the use of wormhole switching, is the facilitation of end-to-
end connection [27], utilized for the QoS concept introduced in section 6.2. The
utilization of wormhole switching affects the protocol of the network and impacts
its functioning, as described in section 5.1.2.

Buffering Packet switching requires buffering of packets which cannot be for-
warded directly, as detailed in section 2.4.3.2. The buffers can either be placed
at the input [130] or at the output port [25] of the router. However, placing the
buffers at the input port is beneficial from the implementation perspective. The
reason, which justifies the placement of the buffers at the input ports, is that the
buffer output ports are accessed more frequently by the router’s logic. The buffer
output port is not only accessed in case of data transmission, but also in case of
routing, reservation or arbitration decisions. When input buffers are used, no
inter-router communication is necessary to access the buffer output port. Thus,
buffers located at the input port may be used to reduce the amount of inter-router
communication. Additionally, input buffers make up the critical path of the router.
It starts normally at the output port of the buffer and continues into the arbitration
unit. Splitting this path between two routers would impact the maximum clock
frequency, due to increased wire lengths. A reduced clock frequency in turn
would increase the latency and reduce the bandwidth of the NoC. As previous
discussed, the buffers are placed at the router input ports, implemented as FIFOs.
In the proposed router design, there is not only one buffer per port, but multiple
buffers are used to develop virtual channels, as detailed in section 5.1.1.

Structure and Functioning Figure 5.1 gives a rough overview of the structure of
the basic router, briefly describing the functioning of the router. A more detailed
explanation of the functioning, as well as the implementation, is provided in
section 5.1.5. As discussed earlier, the separate buffers of the VCs are located
directly at the input ports of the router. The number N of router ports can
be changed at design-time to support different topologies, such as 2D mesh
or 3D torus. Once the flits of a packet arrive at a VC buffer of the input port,
the destination address is forwarded to the routing unit, described in detail in
section 5.1.4. The routing unit determines the output port to be used by the packet.
According to the determined output port, a reservation request is forwarded
to the reservation table of the respective port1. The reservation table selects a
free VC and reserves it for the corresponding input port and VC. If all virtual
channels are occupied, the reservation process is delayed until a VC becomes
available. All entries in the reservation table are taken into account for scheduling

1At this point, figure 5.1 is very inaccurate for simplification. Between the routing unit and the
reservation table, a transition from the input zone of the router to its output zone takes place. The
reason for this is that the routing unit corresponds to an input port and the reservation table to an
output port. Section 5.1.5 provides an accurate description of the implementation.

106

5

5.1. Scalable Basic Router Design

via transmission control unit. It controls the access to an output port by arbitrating
between the transmission requests of the VCs, which are currently assigned to
the respective output port. Therefore, the transmission control unit accesses the
reservation table and verifies if data is available in the buffers for transmission. A
round-robin scheduling scheme is used for transmission control, as described later
in section 5.1.1.1. According to the scheduling decision, the transmission control
unit switches the crossbar to forward the selected data from the input buffer to the
output port. The used unidirectional crossbar is classically implemented as a set
of multiplexers. The output port of each router is directly connected to the input
port of the neighboring router or a network adapter. Credit-based flow control is
used to ensure availability of buffer space in the neighboring router. As described
in section 2.4.4.1, credit-based flow control makes it possible to pipeline the links
between the routers without appreciable performance degradation2.

O
ut PortsIn

 P
or

ts

Port 1

Port N Port N

Port 1

Routing
Reservation

Table
Transmission

Control

BufferBufferBufferBuffer

BufferBufferBufferBuffer

Routing
Reservation

Table
Transmission

Control

Figure 5.1.: Simplified structure of the basic NoC router with virtual channels.

5.1.1. Virtual Channels

The concept of virtual channels (VCs) [58] improves the effective bandwidth of a
network, as described in detail in section 2.4.3.3. In conjunction with wormhole
switching, it enables end-to-end connections in packet switching networks. Thus,
virtual channels are necessary to enable the QoS concepts, as presented in chap-
ter 6. The implementation of VCs necessitates separate buffers. Thus, a separate
buffer must be available per virtual channel.

2The performance degradation resulting from pipelining depends on the buffer size. The larger the
buffer, the lower the performance degradation.

107

5

5. Basic Architecture Realization

In addition to the buffers, the use of VCs impacts the implementation of other
router components. The reservation table, which contains the assignment of a
virtual channel at the input port to a virtual channel at the output port, must
be extended compared to a router without VCs. This is necessary to manage
multiple packet transmissions in parallel, according to the VC concept. Therefore,
the reservation table of each output port must be equipped with one separate
entry per virtual channel. These entries are used to manage the data transmission
for each output port.

VC0
VC1

VC0, East
idle

VC0
VC1

idle
to South

Input Port Output Port

North (N)

VC0
VC1

idle
VC0, South

VC0
VC1

to North
to West

East (E)

VC0
VC1

VC0, West
VC1, North

VC0
VC1

to East
to West

South (S)

VC0
VC1

VC1, South
VC0, Local

VC0
VC1

to South
to Local

West (W)

VC0
VC1

VC1, West
idle

VC0
VC1

to West
idle

Local (L)

Legend: established pending assignment

Figure 5.2.: Example of a virtual channel assignment for a router incarnation with
two virtual channels and five ports.

Figure 5.2 shows an example of a virtual channel assignment for a five port router3

with two virtual channels. The left column in the figure shows the occupancy of
the input ports or buffers, respectively. For each VC buffer, the routing decision
is given as the ID of the output port, which will be used to forward the packet.
In the example, some of the VCs are idle, meaning that they do not contain data.
According to the routing decision, each occupied VC of the input port must be
assigned to a virtual channel at the output port, calculated by the routing unit.
The assignment is managed by the reservation table of the respective output port;
containing an entry for each virtual channel. These entries are shown in figure 5.2
on the right. The routing table stores the input port and an identifier for the VC
that is currently assigned. The information stored in the routing table is used by
the transmission control unit to manage the data transmission separately for each

3A five port router is typically used in meshed topologies. The four ports, connecting the router to
its neighboring routers are typically named by their cardinal directions. The fifth port is named
local port. It is connected to the NA to attach the node or tile.

108

5

5.1. Scalable Basic Router Design

output port. The input VC and port identifiers, selected for data transmission, are
forwarded by the transmission control unit to the crossbar to set the multiplexers
accordingly. This enables to forward the data from the input buffers to the output
port. In addition to the data, the identifier of the output VC is passed to the
neighboring router, or NA attached to the port. There it is used to store the
data in the respected buffer of the input port. Consequently, a virtual channel
for transmission is always determined by the output port of a router. Thus, the
transmitting router controls the input buffers for each VC located at the input
port of the neighboring router or network adapter. A VC allocation is negotiated
again in each router by the reservation table.

The example, provided in figure 5.2, contains established and pending assign-
ments. Established assignments represent successful reservations of a virtual
channel at the output port. Pending assignments couldn’t be utilized, due to an
occupancy of all VCs at the corresponding output port. In the example provided,
such a pending assignment exists for the packet located in the input buffer of
VC1 at the east input port. It waits for a reservation of a virtual channel at the
west output port. At the west output port all VCs are already reserved for other
transmissions. Thus, the transmission from the east port is delayed until one of the
VCs of the west output becomes available. Such a delay of a transmission is often
referred to as blocking. The higher the number of available virtual channels, the
lower the risk of blocking. However, due to the implementation overhead of VCs,
their number must be chosen with great care, as demonstrated in section 5.4.2.2.

5.1.1.1. Arbitration

The implementation of virtual channels necessitates an arbitration or scheduling
process for data transmission, which wouldn’t be required without VCs. This
arbitration is performed by the transmission control (TC) unit, shown in figure 5.1.
It decides which virtual channel is selected for transmission. Therefore, only
the virtual channels, which meet the conditions for transmission, are taken into
account. These conditions are:

• Reservation: A reservation must exist for the respective VC in the reserva-
tion table of the output port.

• Data available: Data must be available for transmission in the VC input
port buffer. This information is retrieved from the input buffer status signals.

• Credits available: Buffer space must be available in the downstream router
that will receive the data to be transmitted. This is tested by accessing the
credit counters available for each output VC.

These conditions are evaluated for each virtual channel by the transmission
control unit. If all conditions are met for more than one VCs of an output port, an

109

5

5. Basic Architecture Realization

arbitration must take place. To enable a fair access to the shared link by all VCs, a
round-robin arbitration is used. The evaluation of the constraints in advance to
the arbitration decision enables a most efficient link utilization.

The decision making process is implemented within the transmission control unit.
It evaluates the previously discussed conditions. The arbitration process implies a
noticeable implementation complexity. This complexity results in the emergence
of the critical path in the router design, limiting its clock frequency. Pipelining is
used to break up this path, as detailed in section 5.1.3. However, a high number of
supported virtual channels can limit the clock frequency of the router, as analyzed
in section 5.4. Additionally, VCs can improve the throughput of the system, which
will be investigated in section 5.4.

5.1.2. Network Layer Protocol

The router design utilizes wormhole-switching. Thus, packets are divided into
equal sized flits, as described in detail in section 2.4.3.2. The router is capable of
transmitting one flit per cycle. Consequently, a packet consisting of N flits, can be
transmitted within N cycles in best case4.

A typical packet consists of a head flit, several body flits and a tail flit, as shown
in figure 5.3. The usage of tail flits is necessary to enable “infinite” packet sizes
necessary for end-to-end connections.5 Each flit contains a control flag prefix that
indicates whether a flit must be interpreted by the router or not.

1 HEAD 0 BODY 0 BODY 1 TAIL

FlitPacket

Figure 5.3.: A typical packet consisting of a head, several body and a tail flit –
Each flit contains a ctrl. flag.

Figure 5.4 shows the general structure of a flit. If the control flag is set to 0, the flit
is a body flit that does not require interpretation by the router. The entire payload
of the flit can be used to transmit payload. The flit and payload size P depends
on the link width Wlink and can be configured at design-time according to the

4The best case is a situation where no arbitration between multiple VC is required. The pipeline
delay of the router is not taken into account.

5Another protocol concept, where the head flit contains the packet size, does not allow end-to-end
connections. Such a concept is implemented in the Hermes [180] NoC for example.

110

5

5.1. Scalable Basic Router Design

bandwidth requirements of the system. Taking the control flag into account, the
payload size of a body flit can be calculated as follows:

Pbody = Wlink − 1 (5.1)

However, a payload size is most efficient if it is a power of two, according to the
data word size of the architecture. Therefore, the link width Wlink is normally set to
2n + 1 with an arbitrary value of n, which suits the requirements of the architecture.
If the control flag is 1, the flit contains control information, consuming part of the
space of a flit.

0/1

Flit Payload (32/64/128 ... Bit)Ctrl. Flag

Figure 5.4.: General structure of a flit, which can either be a body flit (ctrl. flag=0)
or a control flit (ctrl. flag=1).

A control flag equal to 1 indicates the necessity of extracting information from
the flit in each router and processing it. The general structure of a control flit is
shown in figure 5.5. It can either be a head or a tail flit, but also indicates a special
short packet. A short packet consists of a single flit and therefore contains both,
the control information of a head and a tail flit. It enables to transmit very short
messages, which fit into the payload field of a single control flit. A short packet is
indicated by a head and a tail bit set to 1. For head and tail flits either the head or
the tail bit is set, respectively.

0/1 0/1

SRC AddressDST Address Service LevelTail Bit

Head Bit
Payload

BE/
GS1

Ctrl. Flag

Figure 5.5.: Structure of a control flit, which could be either a head or tail flit or a
short packet (consisting of only one flit).

A normal head flit is indicated by setting the head bit to 1 and the tail bit to 0.
The head bit then triggers the reservation process within the router. As shown
in figure 5.5, these two bits are followed by the destination address, which is
given as X and Y coordinates6 in the current implementation for mesh and torus

6For a 3D integration, the destination address field is extended to include Z- coordinates in addition
to X and Y.

111

5

5. Basic Architecture Realization

topologies. The destination address is forwarded within the router to the routing
unit to calculate the output port, which will be taken by the packet. This field is
mandatory, but may be followed by additional optional fields. These fields are
necessary for guaranteed service communication and are only required if QoS
support is enabled at design-time. In that case, the BE/GS bit of the service level
field is mandatory. It indicates whether the head flit is part of a conventional
BE packet or used to establish a GS connection. If this bit is set to 1, it denotes
a GS header and as such, further fields are necessary. The SL field contains
further information for bandwidth allocation, as described in detail in chapter 6.
Additionally, the address of the node initializing the GS connection is encoded in
the source address field of a GS header. The source address is necessary for end-
to-end flow control and for some adaptive routing schemes, such as odd-even
turn (see section 5.1.4.2). The remaining space of the head flit can be used for
payload. For a BE header of a NoC incarnation without QoS support, the payload
size can be calculated as follows:

Phead,BE = Wlink − dlog2(DIMx)e − dlog2(DIMy)e − 3 (5.2)

The dimensions of the network, DIMx and DIMy, determine the size of the
destination address field. Referring to equation 5.2, the size of the payload field
in the head flit depends on different constraints. For large link sizes or in case
of very small network diameters, noticeable space for payload is available in the
header. This space can be used to reduce the number of flits of a packet.

A tail flit triggers the deletion of the reservation table entry for the respective
packet within the router. For a tail flit, only the tail bit is required.7 The remaining
space in the flit can be used for payload. Thus, the payload size of a tail flit is as
follows:

Ptail = Wlink − 2 (5.3)

Equation 5.3 indicates the very low protocol overhead resulting from the use of
tail flits. The payload fields of a head and a tail flit provide noticeable space. The
space may be used for payload in order to reduce the number of required body
flits.

Table 5.1 summarizes the fields shown in figure 5.5. These fields represent the
protocol interpreted by the routers of the network.

7The head bit is not required, due to the fact that the state machine in the router is aware of an
ongoing transmission. So the flit with tail bit set to 1 could not be a short packet, which would
necessitate a head bit in addition.

112

5

5.1. Scalable Basic Router Design

Field Description Size [bit]
Ctrl. Flag Indicates a control flit (head or tail) if set to

1.
1

Tail Bit Triggers release of the resources reserved
for transmission.

1

Head Bit Indicates a head flit and triggers the reserva-
tion and resource allocation process within
each router.

1

DST Address Is used by the routing unit to calculate the
direction and output port of the packet.

dlog2(DIMx)e +
dlog2(DIMy)e

BE/GS bit Used in case of QoS support to specify the
type of header.

1

Service Level Provides information for bandwidth alloca-
tion (see section 6.2).

dlog2(SLmax)e

SRC Address Used to identify the source node of a trans-
mission (e.g. for end-to-end flow control).

dlog2(DIMx)e +
dlog2(DIMy)e

Payload Is used for the payload of the packet. variable

Table 5.1.: Fields of the network layer protocol encoded in head flits.

5.1.3. Pipeline Model

Pipelining is utilized in the router design to improve the timing and consequently,
the clock frequency. The number of pipeline stages is configurable at design-time
according the requirements of the architecture. Optional pipeline stages can be
omitted to reduce the processing latency in terms of clock cycles. However, this
might reduce the achievable clock frequency and must be traded off carefully.

The router design can have up to five pipeline stages that are summarized in
table 5.2. The first pipeline stage results from the input buffers, which have a delay
of one clock cycle. This pipeline stage is mandatory taken by all flits independent
of their type. The second and the third pipeline stage are only necessary during
reservation phase. Thus, they are only taken by head flits. The first of these two
pipeline stages is carried out by an arbitration unit, which is necessary to arbitrate
between concurrent reservation requests for the same output port. This unit was
not previously mentioned, but will be described in detail in section 5.1.5. The
pipeline registers within this arbitration unit are optional and can be disabled at
design-time to reduce the additional reservation latency in terms of cycles. The
third pipeline stage, which is the second in the reservation process, is located in
the reservation table. Adding a new entry to the reservation table, according to the
previous routing decision and arbitration decision, requires one cycle. Since the
reservation table must be implemented by the use of registers, this pipeline stage

113

5

5. Basic Architecture Realization

cannot be omitted. The last two pipeline stages of the router must be traversed by
all flit types. The fourth stage results from pipeline registers in the arbitration unit
of the transmission control unit. These registers are optional and can be omitted
on demand. The fifth and final pipeline stage is also optional and originates from
registers located at the output ports of the router. These registers are used to relax
the timing of the links connecting the routers. Table 5.2 summarizes the pipelining
of the router.

Stage Description Flit Type Optional
Input Buffer The input buffers have a natural latency

of one cycle.
all no

Routing The routing and arbitration process
ahead of the reservation table is
pipelined.

header yes

Reservation Adding an entry to the reservation table
takes one cycle.

header no

Scheduling The scheduling process, implemented
in the transmission control unit, can be
pipelined.

all yes

Output Pipeline registers can be enabled at the
output port to relax timing for the links
of the network on chip.

all yes

Table 5.2.: Mandatory and optional pipeline stages of the router. Two stages are
taken by head flits during the reservation process.

The five pipeline stages of the router result in a per hop latency of five clock cycles
for best-effort packet switching communication. If optional stages are omitted,
the latency is reduced accordingly. The pipelining is implemented in a way that
each router port can process a new flit every cycle. Thus, a throughput of one
flit per cycle and port is achievable. The processing latency of one router for a
single packet of size S, given as the number of flits, can therefore be calculated as
follows, for the best case8:

Lrouter,best_case = Ptotal + S− 1 (5.4)

Ptotal is the total number of pipeline stages of the router, which can vary between
2 and 5 for the current implementation. Due to the application of the wormhole
switching concept, the processing of packets is also pipelined between neighbor-

8The best case refers to a situation where the reservation process is successful immediately and
where no other VCs of the respective output port are used.

114

5

5.1. Scalable Basic Router Design

ing routers. Therefore, the latency of an entire transmission path of H hops can
be calculated as follows:

Lpath,best_case = (Ptotal · H) + S− 1 ≤
H−1

∑
i=0

Lrouter,best_case (5.5)

Equation 5.4 and 5.5 show that the best case transmission latency is dominated by
the pipeline delay for packets with short length and by the packet sizes S in case
of long packets. In addition to this best case latency analysis, worst case latency is
examined in section 5.1.6.

5.1.4. Modular Distributed Routing

The usage and implementation of a routing strategy can impact performance,
scalability and flexibility of a network, as described in section 2.4.5. Different
requirements may necessitate the choice of different routing algorithms. To
supporting various routing algorithms, the routing strategy is implemented mod-
ularly in the proposed router design. It is carried out as a separate module, which
can easily be replaced, to use different distributed routing algorithms.

In case of distributed routing, the routing module is responsible for determining
an output port to be taken by the respective packet, based on its destination
address. The packet is subsequently forwarded according to the routing decision
to the next router. In each router, the routing process is repeated accordingly until
the packet arrives at the destination node. At the destination node, the packet
leaves the NoC through the local port. The hardware implementation, described
in section 5.3, currently provides a routing module for static XY routing and
adaptive odd-even turn routing. However, the simulation framework, presented
in section 5.2, supports a wide range of adaptive routing algorithms.

The routing module is located at the output port of the input buffers of each port.
It is shared between the VCs of an input port by the use of an arbitration unit, as
described in section 5.1.5. The routing module uses the destination address of a
packet to calculate which output port shall be used. For routing, the destination
address is extracted from the head flit, located in the input buffer of the router,
and forwarded to the routing unit of this input port. In order to simplify the
implementation of the routing algorithm, the destination address is encoded in
the form of Cartesian coordinates in the packet header, as detailed in section 5.1.2.
The routing algorithm uses the destination address and the address of the router
itself. Optionally, status information can be considered to determine an output
port for a packet. The routing decision is then used to trigger the reservation of a
VC in the reservation table of the respective output. The implementation for XY
routing and odd-even turn routing is explained in the following paragraphs.

115

5

5. Basic Architecture Realization

5.1.4.1. XY Routing

XY routing [185] is a static routing algorithm for 2D mesh or torus topologies9,
which ensures deadlock-freedom and minimal paths. It can be implemented
with low overhead in a distributed way; ensuring scalability. Consequently, XY
routing is used in many existing NoC implementations. Its good scalability and
low cost of implementation make XY routing a suitable method for this router
design. Hence, a XY routing module was created for the router design, shown
in figure 5.1. It uses the XY coordinates of the destination node and the coordinates
of the current router10 as inputs. A combinational circuit is used to determine the
output port. First, with the highest priority, it is determined whether the packet
is at the destination node. If this is not the case, the X coordinates are taken into
account. If the X coordinate of the router matches the destination coordinate, the
Y coordinate is considered. The routing decision is emitted in the form of a port
ID. The ID is then used to forward the reservation request to the reservation table
of the respective output port.

5.1.4.2. Adaptive Odd-Even Turn Routing

Different adaptive routing algorithms have been evaluated as part of a supervised
student’s work [Bul12]11. As a result of this investigation, odd-even turn rout-
ing [46] emerged as the most suitable adaptive routing scheme with respect to
performance, implementation complexity and deadlock-freedom. Thus, it was im-
plemented as an HDL module for the proposed router design. In contrast to static
routing, odd-even turn may offer different valid paths between a pair of nodes.
With respect to the routing decision, taken by a single router, alternative paths
may result in multiple valid output ports for a single packet. Thus, at run-time it
must be decided which port is to be used. Therefore, a selection strategy must be
used within the router, as discussed in section 2.4.5. Such a selection strategy was
also implemented in [Bul12], as now described in detail.

The adaptive odd-even turn routing module has the the same interfaces as the XY
routing module aside from a few additional inputs. It also uses the destination
address of the packet and the coordinates of the router. In addition, the source
address of the packet is used to make a routing decision. In order to make the
routing decision, two rules must be observed according to [46]:

93D topologies can also be easily supported by extending the topology, protocol and routing strategy
by a third dimension. In the following 2D topologies are assumed for simplicity.

10The router has the same XY coordinates as the tile/node attached to its local port.
11In the following, aspects investigated and implemented as part of supervised student work, are

always marked accordingly.

116

5

5.1. Scalable Basic Router Design

• Rule 1: A packet is prohibited to take an east-north turn at any nodes
located in an even column, and it is not allowed to take a north-west turn at
any nodes located in an odd column.

• Rule 2: A packet is not allowed to take a south-west turn at any nodes
located in an odd column, and it is prohibited to take an east-south turn at
any nodes located in an even column.

In addition to these general rules, the source address is taken into account. This
enables the creation of a minimal odd-even turn routing. The routing decision is
taken by a six stage combinational circuit. The first stage, with the highest priority,
determines whether the packet is at the destination node. If this is the case the
local port is the only valid output port. Otherwise, the second routing stage is
entered. It verifies whether a packet is already in its destination column. If this
is not the case, it is decided in a third stage whether a packet is eastbound or
westbound with respect to its destination node. Westbound packets can always
be forwarded through the west output port, but might also use the north or south
port, if the current coordinates of the router are even. This is verified by stages
number four and five of the westbound branch and might result in two candidate
ports for a packet. The eastbound branch of the routing decision tree includes
not only two, but three stages. In the first sub-stage (stage four), it is analyzed
whether a packet already reached the destination row. If this is the case, it must be
forwarded eastwards. Otherwise it could take the north or south port in every odd
column of the NoC or if the packet is still in the source column. If the destination
column is odd or if the distance to the destination node is greater than one it also
must be forwarded eastwards.

The previous discussed minimal odd-even turn router algorithm calculates either
one or two valid output ports for each packet. If there are two valid output
ports for a single packet, it has to be decided, which of the two ports shall be
used. This decision is taken by a selection strategy implemented as a combination
circuit. It is attached to the output of the odd-even turn routing module. The
selection unit uses the two candidate ports as inputs. In addition, utilization
information, obtained from status information and hardware monitors, are used
to select the output port. For decision making, the current VC utilization and
the link utilization of the latest monitoring period is taken into account by the
selection unit. The used monitoring infrastructure is described in section 5.5.3.
The VC utilization is evaluated by the selection unit with the highest priority. The
candidate port with lower VC utilization is selected to balance the VC usage of
the ports. If both candidate ports have the same number of available VCs, the link
utilization is taken into account. Then, the port with the lower link utilization
within the current monitoring period is selected. In the unlikely event of an
identical load at both ports, the first port is used.

117

5

5. Basic Architecture Realization

Figure 5.6 shows the realization of odd-even turn routing with a monitoring-
based selection strategy. Odd-even turn routing can be easily replaced by another
routing unit. The monitoring infrastructure, introduced in section 5.5.3, is used
for port selection based on the current utilization of the router ports.

O
ut PortsIn

 P
or

ts

Port 1

Port N Port N

Port 1

Link
Monitoring

Odd-even
turn routing

Out port
selection

Candidate
Output Ports

Source +
Dest. Addr.

Selected
Output Port

V
irt

ua
l C

h.

U
ti

liz
at

io
n

Li
nk

M
on

it
or

in
g

Reservation
Table

Transmission
Control

BufferBufferBufferBuffer

BufferBufferBufferBuffer

Routing Reservation
Table

Transmission
Control

Routing

Figure 5.6.: Modular adaptive routing support for the router design – monitors
are used to select an output port.

The detailed investigation in [Bul12] shows that the proposed adaptive routing
can compete with existing routing schemes, such as DyAD [117], in terms of
performance. In contrast to DyAD, the proposed selection strategy takes virtual
channels into account. Aside from the cost of implementing the monitoring
infrastructure12, the overhead for employing the adaptive routing scheme is very
low, as investigated in [Bul12].

12Monitoring might be necessary anyhow for self-optimization or observability. Consequently, it
must not be counted as implementation costs for adaptive routing.

118

5

5.1. Scalable Basic Router Design

5.1.5. Implementation and Functioning

In the previous sections, the basic characteristic and the functioning of the router
have been described. Some details have been deliberately left out for simplicity.
These neglected aspects of router designs will now be explained. The structure
and functionality of the router, described in the following paragraphs, reflects the
corresponding hardware implementation precisely.

Figure 5.7 shows the detailed structure of the proposed NoC router design. It con-
sists of an input, crossing and output zone. The input and output zone are present
once per input and output port respectively, with the crossing zone existing once.
It is located between the input and output zones; connecting them flexibly. The
physical interface of each router input and output ports comprises four signals, as
described in section 5.1.5.1. At the input port, the req , data and vc signal are
used to sort the flits into the input buffers. The vc signal serves as a select signal
for the respective VC input buffer and controls the demultiplexer (DEMUX). The
request signal (req) is used as an enable signal, triggering the write access at the
input buffers. A separate first in - first out (FIFO) is used per virtual channel as
input buffer. The output of this FIFO always carries the oldest flit in the buffer.
When the buffer contains a new packet, the header is first visible at the output
port of the router. This is necessary to extract the destination address, service
level or the source address for routing and virtual channel reservation. Detection
and decoding of head flits is performed by the header decoding unit. It is available
once per VC to detect whether a header is available at the respective output. If
a header is present, without an existing reservation, the header decoding unit
raises a reservation request. The input reservation arbitration (IRA) unit arbitrates
between parallel reservation requests. It performs a round-robin arbitration13

between all the virtual channels of a port which requests a reservation. This
arbitration is necessary to enable sharing of one routing unit between all VCs of a
port. The motivation for sharing the routing unit between the virtual channels
of a port is the saving of resources. In general, this sharing should not impact
the performance of a router because only one header can arrive at maximum per
clock cycle and port. Since the routing unit is capable of processing one packet or
header per cycle, it should be capable of processing all routing requests directly.
However, if the following reservation request fails, the routing and reservation
requests must be repeated. This could lead to parallel reservation and routing
requests at one input port of the router. However, this should only happen if an
output port is overloaded. In such a situation, the additional reservation delay,
caused by arbitration, should not be noticeable.

According to the routing decision, taken by the routing unit, a reservation request
is forwarded to the output port reservation arbitration (OPRA) unit of the determined

13The arbitration decision is taken by combination logic. In case of a single request, this request is
forwarded immediately.

119

5

5. Basic Architecture Realization

Crossing Zone

Output Port
Reservation
Arbitration
(OPRA)

Request
Crossbar

Select
Crossbar

Credit
Counter
Credit

Counter

Credit
Counter
Credit

Counter

Credit
Counter

Output
Zone

da
ta ackre
q

vc

Tail
Decoding

Output
Data

Crossbar

Input
Zone

Input
FIFO

Input
FIFO

Input
FIFO

Routing
Unit

Input
Reservation

Arbitration (IRA)

Header
Decoding
Header

Decoding
Header

Decoding
Header

Decoding
Header

Decoding

DEMUX

data

vc

req ac
k

Input
FIFO

Input
Buffer
(FIFO)

Output Register

Transmission
Control Unit

(TC)

Legend: Control Signals Data Flow Signals

Reservation
Response CB

Output
Reservation Table

(ORT)

Figure 5.7.: Detailed structure of the NoC router with virtual channels.

output port. More specifically, the reservation request is always sent to all OPRA
units of all ports, but masked if the output port does not match the routing
decision. This method simplifies the implementation and reduces the cost. The
OPRA unit can be on the one hand interpreted as the crossing zone for reservation
requests. On the other hand each, OPRA unit is assigned to a specific output
port. This ambiguous association is illustrated in figure 5.7 accordingly. OPRA
first analysis the desired destination port. Subsequently, it performs a round-
robin arbitration between the requests from different input ports. Therefore,
the routing unit of each port is connected to the OPRA unit of all other output
ports14. In contrast to the arbitration logic within the IRA unit, which is purely
combinational, the arbiter of the OPRA unit can be configured to be sequential to
serve as a pipeline stage or purely combinational. The reservation request that

14An input and output port pair is not connected by the crossing zone components. Thus, it is not
feasible that a packet is returned to the router where it comes from. This restriction saves a lot of
resources in the crossing zone.

120

5

5.1. Scalable Basic Router Design

was granted by the arbitration process15 is forwarded to the output reservation
table.

The output reservation table (ORT) plays a central role. Each output port has a
separate ORT, simply named reservation table. It is responsible for processing the
reservation requests and for assigning the output VCs accordingly. In case of a
reservation request, the output reservation table verifies whether an output VC
is available. Therefore, status bits for the reservation of each VC are analyzed.
For each VC, there is a reservation status flag that indicates a valid reservation
if it is set to 1. If a VC is available, the reservation request is granted and the
actual reservation procedure takes place. The reservation process is granted by
setting the respective output signal to 1. This acknowledgment is returned to
the header decoding unit of the input port and VC that contains the header raising
the reservation request. In order to return the reservation acknowledgment to
the input port, the reservation response crossbar is used. It consists of a set of
demultiplexers, which are controlled by the ORT using the input port and VC
identifiers. The acknowledgment feedback is used to set a reservation flag in the
header decoding unit. It is used to prevent repetition of the reservation request
for the respective header16. The input port ID and the input VC ID are forwarded
to the output reservation table by the output port reservation arbitration unit.
The IDs are on the one hand used to control the reservation response crossbar.
On the other hand, they are necessary for the VC assignment. This assignment
process is performed by the ORT, as described in detail in section 5.1.1. According
to figure 5.2, it contains a table with one entry per virtual channel. Each entry is
used to store the ID of the input port and VC that are currently assigned to the
respective output VC. The reservation status flag indicates a valid entry. Another
combinational round-robin arbitration logic is used within the ORT to select
a free VC to be used for a new reservation request. The selected output VC
entry is then updated with the input port and VC ID coming from the output
port reservation arbitration unit. The reservation table is accomplish by a set of
registers. These registers represent an obligatory pipeline stage of the router’s
reservation process. By adding a new entry to the reservation table, the reservation
process is completed. The output reservation table also plays a key role during
release of an existing reservation, triggered by a tail flit. The release procedure is
described later in this section.

All entries of the output reservation table are transferred to the subsequent trans-
mission control (TC) unit. It is responsible for the scheduling of the virtual channels
of the respective output port. The transmission control unit takes all VCs into
account, which fulfill the conditions described in section 5.1.1.1. Therefore, it uses
the output reservation table entries to determine whether a reservation is valid
for the respective VC or not. If an entry is valid, the content of the entry (input
15In most cases only one single request exists at each OPRA unit, which is for sure granted directly.
16The feedback to the header decoding unit is necessary to avoid double reservations.

121

5

5. Basic Architecture Realization

port and VC ID) is used to control the request crossbar. The request crossbar is
used to forward transmission requests from the input buffers to the transmission
control unit. As soon as data are available in the input buffer, the corresponding
transmission request signal is set. It is derived from the fill-level status of the
FIFOs17. A valid reservation and transmission request represent two of the three
conditions to be met for scheduling. The third condition is the availability of
buffer resources at the input port of the following router. The credit counters of the
credit-based data-link layer flow control (see section 2.4.4.1) are used to evaluate
this condition. They represent the available credits for each virtual channel. If
the counter value is greater than 0, buffer slots are available for the respective
VC. The conjunction of all three conditions, each represented as a Boolean value,
is used as an input for the arbiter located in the transmission control unit. The
arbitration unit has a separate input for each VC that is set to 1, if all three con-
ditions are met for the respective VC. A round-robin arbitration is performed,
enabling a fair access to the physical link for all VCs. The arbitration unit of the
transmission control unit can either be configured to have registers within, or
as a combinational circuit. If the registers are enabled, the transmission control
unit represents a pipeline stage of the router. This pipeline stage can be used to
improve the timing of the design by relaxing the critical path. This path results
from the constraint evaluation and arbitration process that is located within the
transmission control unit. The output VC, which is selected by the arbiter for
transmission, is used to control the select crossbar and the output data crossbar. The
select crossbar is a demultiplexer network that is used to pop a flit from the input
FIFO of the VC, which was selected for transmission18. The pop signal of a FIFO is
also used as an ack signal. It is used to return flow control credits to the previous
router. The neighboring router uses this ack signal to update (increment) the
credit counters of the respective VC at its output port. The flit taken from the
input buffer then traverses the multiplexer network of the output data crossbar.
The crossbar forwards the flit to the appropriate output port. At the output port,
the flit is optionally stored in the output register, or transmitted directly to the
neighboring router, if the register is disabled. The corresponding req signal and
vc signals are set by the transmission control unit. Once a flit is transmitted, the
credit counters at the output port have to be updated. The corresponding counter
is decremented each time a flit is transmitted.

After the reservation process, triggered by a header, all flits are treated equally
during transmission process. However, the transmission of a tail flit is detected
by the tail decoding unit. It analyzes the ctrl. flag and the tail bit and triggers the
release of the VC assignment. Therefore, a release request, consisting of an enable

17As soon as the input FIFO is not empty, a transmission request is raised.
18Thanks to the separate transmission control for each output port, it may occur naturally that several

flits from a single input port (but different VCs) are transferred simultaneously to different outputs
ports.

122

5

5.1. Scalable Basic Router Design

signal and the ID of the output VC, is forwarded by the tail decoding unit to the
output reservation table. The VC ID is used in the output reservation table to
invalidate the entry of the assignment where the tail flit belongs. Subsequently,
the corresponding virtual channel is available for other transmissions.

5.1.5.1. Physical Router Interface

The physical interface of the router reflects the data-link layer protocol and the
flow-control mechanism of the router design. The interface consists of a symmetric
full-duplex link. It is used to connect two neighboring routers or to connect the
local port of a router to the network adapter.

Network Adapter / Router

Router

R
EQ

AC
K

n

1
VC

D
ATAR

EQ

AC
K

n

1

VC D
AT

A

OUTIN

d

INOUT

Packet Switching IF

Packet Switching IF

d

v

v

d: width of the link
n: number of VCs
v = ld[ceil(n)]

(a) Interface

Name Width [bit] Default
req 1 1 bit
vc v = 1, 2, 4, 8, ... 2 bit
data d = 8, 16, 32, ... 128 bit
ack n = 2v 4 bit

(b) Signals

Figure 5.8.: (a) Physical interface of the router with a full-duplex link. (b) Data-link
layer and flow-control signals that connect neighboring routers.

Figure 5.8(a) shows the physical interface of a router port with individual signals.
Four signals are used per direction, as described in figure 5.8(b). The req , vc and
data signal leave an output port while the corresponding ack signal enters the
output in the opposite direction. The request signal (req) is used to indicate a
transmission. Thus, it is set to 1 for a single clock cycle. Due to the use of credit-
based flow control, it is ensured that a transmission request is only raised if the
data can be stored in the input buffers. Thus, no direct feedback is necessary. The
vc signals indicate the used virtual channel. The data signals are used to transfer
the actual flit, according to the network layer protocol, defined in section 5.1.2.
A separate one-bit acknowledge signal (ack) is used for each virtual channel
to implement credit-based flow control. It is set to 1 for the corresponding VC

123

5

5. Basic Architecture Realization

for one clock cycle, if a buffer slot becomes available. Thus, a set vc signal thus
indicates the return of a credit for the corresponding VC. Separate ack signals
are necessary for the individual VCs because multiple credits may be returned for
different VCs, in the same clock cycle.

The link, connecting a router pair in the opposite direction, of course consists of
the same signals and works identically. However, the two directions are fully
independent of each other in order to establish a full-duplex link.

5.1.6. Latency and Bandwidth Analysis

The previously presented router design enables so-called best-effort communi-
cation. This means that all communication flows or packets obtain best-effort
service, meaning that they obtain unspecified variable data rates and latencies,
depending on the current load. The current load is usually unknown due to the
fact that it is hard to obtain in a distributed system. Therefore, bandwidth and
latency guarantees can barely be given for best-effort communication. Neverthe-
less, in this section worst case timing and throughput assessments for best-effort
communication will be made under certain boundary conditions. It is used as a
motivation for the QoS mechanisms, presented in chapter 6.

The necessary boundary conditions for an analysis are defined and justified as
follows:

Back pressure: Back pressure originates from an over-utilization of a link or
port in the network. If an overload situation exists for a long period of time,
the backlog continues to spread in the network. Transmission scenarios arise
from such a backlog, which can be barely analyzed even for a single router. For
this reason, it can hardly be predicted, from the perspective of a single router,
when a blockage elsewhere in the network will be dissolved. Consequently, it
is assumed that there are no blockages exist in the network. This in turn means
that the neighboring routers can process the data, with at least the same data
rate as the router to be analyzed19. Thus, from the router’s perspective, there are
always credits available for each output port and VC to be used. In practice, the
potential of back pressure is decreased by end-to-end flow control mechanisms,
as described in detail in section 2.4.4.2.

Starvation: If a blockage exists ahead of a router’s input, this could lead to star-
vation of the respective input port. If such a bottleneck occurs during the trans-
mission of a packet, it is impossible to estimate its latency, due to the additional
unknown latency resulting from the starvation. It must therefore be assumed

19In practice, this assumption is not tenable or given, because there can always be temporary overload
situations.

124

5

5.1. Scalable Basic Router Design

for the following analysis that the neighboring routers are always capable of
delivering outstanding flits of a packet.

Packet length: The time period for which a link or VC is blocked by a packet
depends on its length. In order to estimate how long a reservation will persist,
the packet length must be known. Consequently, a maximum packet size Smax is
assumed hereafter; although the protocol enables infinite packet lengths.

Buffering: Another aspect, which refers to the packet size S and to the buffer
size B is the number of packets per buffer. If the packet is smaller than the buffer
size, parts of subsequent packets may already be in the same buffer prior to the
transmission of the first packet. Such a situation may result in a huge latency
for the second packet, due to the dependence on the first packet. To prevent this
situation, the minimum packet size may be defined to be larger than the buffer
size (Smin > B) or multiple packets per buffer must be prohibited20. For the
following example, it is assumed that only parts of one packet are stored at the
same time in any virtual channel buffer.

Fair access: A fair access to each output port via each input virtual channel is
required. Otherwise, VCs with data could potentially block each other. This
could result in unpredictable behavior where single VCs stall others infinitely. In
such an implementation, the worst case latency for each VC would be infinite,
with the worst case bandwidth being zero. Thus, no meaningful estimations
for latency and throughput are feasible in such a design. The fair round-robin
arbitration for reservation and transmission scheduling of the proposed router
design enables a fair data processing. This fair scheduling and arbitration enables
balanced throughput and delay. In section 5.5.4, an extension of the basic router
design, enabling in-order processing, is introduced. In-order processing is also
assumed for the following analysis.

Based on the given boundary conditions, worst case estimations for the through-
put and latency of a single router are made.

5.1.6.1. Bandwidth Analysis

For a worst case bandwidth analysis of a router, it must be assumed that each
VC buffer of the router contains a packet. In the worst case, all these packets
must be forwarded through the same output port. Assuming that a packet always
leaves the router through a different port, as it has arrived, N − 1 competing
ports have to be considered in case of a router with N ports. Consequently, the
bandwidth of the respective output port is shared between N − 1 input ports.
A fair sharing for concurrent reservation requests is enabled by round-robin

20The router design provides an option that restricts routers to store parts of multiple packets in
parallel in the same virtual channel buffer.

125

5

5. Basic Architecture Realization

arbitration in the output port reservation arbitration unit. Thus, the worst case
bandwidth BWin_port,wc of an input port of the router is as follows:

BWin_port,wc =
BWlink
N − 1

(5.6)

BWlink is the bandwidth of one link or port, respectively. The bandwidth of each
input port is in turn fairly shared between the VCs of each port. The sharing is
managed by the input reservation arbitration unit, using a round-robin arbitration
scheme. Thus, the worst case bandwidth BWin_vc,wc of a single virtual channel,
which is equal to the bandwidth for the packet using this VC, can be estimated as
follows:

BWpacket,wc = BWin_vc,wc =
BWin_port,wc

#VC
=

BWlink
#VC · (N − 1)

(5.7)

According to equation 5.7, each packet of a five port router with four VCs would
have a worst case bandwidth of BWlink

16 . The quality of service scheme, presented
in section 6.2, provides much higher bandwidths.

5.1.6.2. Latency Analysis

The latency could be analyzed for a single flit or a complete packet. However,
virtual channel allocation and end-to-end flow control are performed on the
granularity of packets. Thus, packet transmission latency of a single router is
analyzed now.

Definition. The packet transmission latency of a router is defined as the number of cycles
elapsed between the arrival of the first flit of a packet in one router and the transmission of
the last flit of this packet by the same router.

The delay for packet transmission depends on two aspects, the reservation latency
Lres and the latency for data transmission Ltrans after successful reservation:

Ltotal = Lres + Ltrans (5.8)

The reservation latency in turn depends on the time Lres,vc_ f ree elapsed until one
VC is available for transmission and the time Lres,pipeline required to reserve this
VC subsequently. Thus, the reservation latency is composed as follows:

Lres = Lres,vc_ f ree + Lres,pipeline (5.9)

126

5

5.1. Scalable Basic Router Design

When estimating the worst case latency Lres,wc for reservation, the worst case
delay must be known. It is dictated by the latency until a virtual channel becomes
available. This delay in turn depends on the transmission latency of other packets,
which allocate the VCs of the output port to be used. Taking the boundary
conditions described above into account, the worst case situation, with respect to
the latency, is equal to the worst case scenario for the bandwidth. In that scenario,
VCs at all input ports have to use the same output port; receiving packets at the
same time21. Assuming there is no back pressure and starvation, the transmission
latency for M packets through the same port only depends on the bandwidth22 of
this port. The packet size S and the total number of pipeline stages Ptotal of the
router are:

Ltrans(M) = M · S + Ptotal (5.10)

In the worst case scenario, equation 5.10 may now be used to estimate the time
elapsed until a virtual channel becomes available for data transmission. For the
worst case, S can be assumed to be the maximum packet size Smax. Assuming a
fair access scheme, M must reflect the number of packets that can allocate the VCs
before the considered packet. The total number of packets to be transmitted via
the same port is (N − 1) · #VC. Due to the availability of #VC virtual channels at
the output port, the number of packets, which have to be transmitted completely
before the last reservation takes place, is (N − 2) · #VC. Therefore, the worst case
latency until a virtual channel becomes available for transmission is:

Lres,vc_ f ree,wc = Mwc · Smax + Ptotal = (N − 2) · #VC · Smax + Ptotal (5.11)

In order to estimate the worst case reservation delay, equation 5.9 and equa-
tion 5.11 may be used. However, Lres,pipeline,wc must be known es well. Due to the
pipelining of the router, there is no additional reservation delay after a virtual
channel becomes available. Thus, Lres,pipeline may be assumed to be 0 for the worst
case, where the pipeline is always busy. Using equation 5.11 and the constant
reservation delay, equation 5.9 can be noted as follows:

Lres,wc = Lres,vc_ f ree,wc = (N − 2) · #VC · Smax + Ptotal (5.12)

In order to estimate the overall latency for a packet, per hop or router, the worst
transmission latency must be determined. For the transmission latency, the
worst case exists, if all VCs of the reserved output port are occupied. Thus, the
bandwidth is equally shared between all VCs. Meaning that one flit per VC is
transmitted within an arbitration round of length #VC. Consequently, the worst

21Packet headers arrive consecutively at the input buffer of each VC until all VCs are occupied.
22In this section, the bandwidth is always assumed to be ’1’. This means 1 Flit/Cycle/Port.

127

5

5. Basic Architecture Realization

case transmission latency of a packet of size Smax and a router incarnation with
#VC virtual channels is23:

Ltrans,wc = Smax · #VC (5.13)

Finally, the total worst case latency for forwarding a single packet under the
given boundary conditions may be estimated by inserting equation 5.11 and
equation 5.13 into equation 5.8:

Ltotal,wc = Lres,wc + Ltrans,wc

= (N − 2) · #VC · Smax + Ptotal + Smax · #VC
= (N − 1) · #VC · Smax + Ptotal

(5.14)

According to equation 5.14, each packet of a five port router would have a worst
case latency of 261 cycles24. However, it must be taken into account that the
given number is only the latency for a single router. The worst case transmission
latency grows linear with the number of hops. Depending on the communication
patterns, back pressure or starvation may not always be prevented. Consequently,
the estimated values could even be exceeded. However, the quality of service
schemes, proposed in chapter 6, may be used to produce better bounds for worst
case throughput and especially latency.

5.2. Simulation Framework

A simulation framework is desired to investigate different implementation al-
ternatives and new features for the proposed router architecture. Compared to
an HDL implementation, the simulation framework shall reduce the time that is
necessary to investigate new features and compare different router configurations
with respect to suitability and performance. The simulation environment is used
as part of the semi-automated design and implementation flow, introduced in
section 4.4. It shall enable fast evaluation of different implementation alternatives
under different load conditions.

23In contrast to equation 5.10, which gives the transmission latency for multiple packets using the
same link, equation 5.13 provides the worst case latency for a single packet using one VC.

24A router with five pipeline stages and four VCs is assumed. Furthermore, a maximum packet size
Smax of 16 flits is assumed.

128

5

5.2. Simulation Framework

5.2.1. State of the Art NoC Simulators

Essentially, the question arose whether an existing, state of the art simulator
should be used or a new simulator should be developed. Thus, existing NoC
simulation environments are now analyzed.

The open-source On-Chip Communication Network (OCCN) [49] is a framework
for network on chip modeling and simulation based on an object-oriented C++
library built on top of SystemC. However, OCCN does not address detailed
communication analysis. It is meant to provide NoC models for efficient high-
level system simulation. Thus, OCCN is not suitable for accurate and detailed
investigation of router and NoC designs. Moreover, OCCN is not freely available.

The Nostrum NoC Simulation Environment (NNSE) [167] is a simulator for the Nos-
trum NoC architecture [178]. It is based on SystemC. However, NNSE offers very
little configuration capabilities of the topology, routing and switching. Its traffic
generation capabilities are limited to synthetic traffic. The limited configuration
capabilities of NNSE would necessitate substantial extension to fulfill the desired
requirements. Taking the training period into account, which would be necessary
to extent NNSE accordingly, a decision against the use of NNSE resulted.

The most common, existing NoC simulation environment, that is freely avail-
able, is named NIRGAM [121]. It is a SystemC-based cycle-accurate simulator
for packet switching NoCs. NIRGAM addresses the evaluation of NoC designs
in terms of routing algorithms and applications on various topologies. Thus,
NIRGAM appears to be well suited as a basis for the desired simulation frame-
work. However, on closer inspection, it seems that the simulator can indeed be
configure well, but is very difficult to extend. Thus, the necessary novel NoC
features, introduced by the work, can hardly be implemented in NIRGAM. Con-
sequently, the decision was made to build a simulator from scratch, which better
suites the identified requirements and can be efficiently extended.

An additional existing simulator is known as DARSIM [163]. DARSIM is a parallel,
configurable, cycle-level network on chip simulator that uses a wormhole router
architecture. It offers cycle accuracy as well as periodic synchronization to balance
between accuracy and simulation speed. However, DARSIM was published in
mid of 2010, after the development of this NoC simulator was almost finished.
Hence, DARSIM couldn’t been taken into consideration, but in general, DARSIM
is a promising simulation environment.

Noxim [71] is another SystemC-based simulator, providing a simple25 packet
switching router model with several parameters. In particular, the user can
customize the network size, buffer size and the routing algorithm. In addition,
the packet injection rate and the traffic distribution can be configured. Compared
25The router model of Noxim is denoted as “simple” due to the use of very simple REQ/ACK flow

control and the lack of virtual channel support.

129

5

5. Basic Architecture Realization

to the previously discussed simulators, Noxim configuration capabilities are
even more limited. An advantage of Noxim is its simple expandability. Although
Noxim is not suitable, due to its limited configurability, its flexible implementation
inspired the simulator design; presented in the following paragraphs.

After precise analysis of existing NoC simulators, none of them are suitable to
be used as a basis for the desired simulation framework. Most of the simulators
do not enable a simple way to model the proposed router design. Moreover,
it would be too complex to extend them to support the features, introduced
and investigated hereafter. Thus, it seems to be more efficient to implement a
novel simulation framework that reflects the desired router design. Flexibility
and expandability are elementary requirements of this novel simulator. This
simulation framework is introduced and described now.

5.2.2. Simulator Concept

The simulation framework shall be used to derive a specific configuration of
the NoC design. For a fast evaluation, different implementation alternatives
must be efficiently compared against each other. An accurate modeling of the
behavior of the NoC, which reflects the real hardware implementation, is one of
the basic requirements for a successful evaluation. For a meaningful comparison
of different implementation alternatives, realistic traffic generation is required.
Moreover, a good observability of the NoC’s behavior is desired to compare the
potential implementation alternatives.

However, the simulation framework is not only used to analyze the impact of
existing NoC features. It shall also be used to implement and evaluate new
features, such as self-optimization or quality of service support. Therefore, the
simulation framework and router model must easily extend. This requirement
of simple expandability must be taken into account, especially during the initial
implementation phase of the simulation framework.

All previously summarized requirements must be fulfilled by the simulation
framework. The NoC model must be accurate and flexible in terms of configura-
bility and expandability. It must be embedded into a simulation environment
that enables generic and application-specific traffic generation. Additionally,
the simulation framework must be capable of analyzing the NoC behavior and
performance for evaluation.

A modular design of the simulation framework enables to decouple simulator
control, traffic generation, the NoC model, statistic generation and analysis of
the simulation results. The simulation framework uses SystemC [160] for cycle-
accurate modeling of the NoC routers and network adapters. SystemC is a C++
library which provides an event-driven simulation interface in C++. It enables

130

5

5.2. Simulation Framework

accurate hardware simulation with relatively high simulation speed. However,
for further increase of the simulation speed, only the NoC itself is modeled cycle-
accurate using SystemC. The other components of the simulator, such as traffic
generation, control and analysis are implemented using conventional C++.

5.2.2.1. Structure of the Simulation Framework

Figure 5.9 gives an overview of the modular simulation framework and its most
important components. The simulation controller is the heart of the simulator.
On the one hand, it is used to configure all other components according to the
selected parameters. On the other hand, it controls the other components by
generating the clock signal and cycle counter. The clock signal is used by the
SystemC components. The cycle counter provides a notion of time for the other
components, built by the use of conventional C++. The data flow in the simulator
starts at the traffic generation module. It is responsible for traffic generation in the
form of abstract transmission requests. The traffic generation module consists
of different sub-modules, each realizing another traffic generation method. The
selection and configuration of the traffic generation module is controlled by the
simulation controller. It is described in section 5.2.3. The packetization layer is used
to decouple traffic generation from the used switching scheme and network layer
protocol. It converts the abstract transmission request, originating from the traffic
generation module, into packets. These packets are enqueued into the transmission
queue of the network adapter. The packetization layer enables conversion from BE
to GS communication and vice versa. This allows a fair comparison of GS and BE
communication, used for the evaluation of QoS mechanisms. With respect to QoS,
the packetization layer is also in charge of GS connection management. It triggers
setup and release of GS connections and can be configured to use BE communi-
cation as a fallback. The packetization layer also enables an easy replacement of
the packet switching NA and NoC router model by circuit switching components,
because the other modules of the framework can be reused without modification.
However, a circuit switching model is not yet implemented.

The network adapter fetches the packets from its transmission queue and converts
them into individual flits, according to the network layer protocol. These flits are
subsequently forwarded to the output queues of the network adapter. A separate
queue is instantiate for each virtual channel. The NA is also responsible for
reserving virtual channels for guaranteed service connections according to the
concept presented in section 6.2. The NA assigns GS communication to the
respective VC. The network adapter back end, described in section 2.4.1.1, dictates
the data transmission process. It schedules the transmission of flits from the
individual VCs and utilizes the hop-to-hop credit-based flow control as well as
end-to-end flow control for guaranteed service connections.

131

5

5. Basic Architecture Realization

Receive PathTransmission Path

NoC Model
(Routers + Topology)

Reservation/Release Request
Transmission Request

Flow Control
Feedback

GS Reservation/Release Flits
GS/BE - Packets

Flits Flits

Traffic Generation

Packetization Layer

Network Adapter Network Adapter

Sim
ulation

C
ontroller

Statistics
M

odule

Figure 5.9.: Overview on the NoC simulation framework for evaluation and de-
sign space exploration.

According to figure 5.9, the network adapter injects the flits into the NoC. The NoC
model is carried out in a hierarchical manner. On the highest hierarchical level, the
topology is defined. According to the topology, the routers are instantiated and
connected. The instantiated router model in turn consists of many subroutines.
These subroutines fulfill different functions of the router, such as routing, virtual
channel allocation and scheduling. The NoC model, including the router model,
is described in section 5.2.4. When the flits leave the network at their destination
address, they are passed to the respective network adapter, which has an input
queue for each virtual channel. The flits are then fetched from the input queues
and analyzed by the NA receive path. The traffic generation module is informed
of the packets’ arrival or about established or released connections on demand.

The statistics module is also informed about ejected flits. It stores accumulated
statistics for utilization of links, buffers, virtual channels and latency information.
In order to collect accurate data, not only the transmission and receive path of
the NA is connected to the statistics module, but also the routers. Depending on
their necessity, different statistics sub-modules may be disabled to improve the
performance of the simulator. At the end of the simulation, which is defined by
a command-line parameter, the statistics module prints a report. This report is
written to a text file for manual or automatic processing, as described later.

The simulation framework is built in a way to be easily extendable. Thus, the
simulator is dedicated to enable exploration of new features and fast performance
evaluation under various load conditions. Consequently, it is frequently used
for the investigations, presented in the following chapters. In addition, efficient

132

5

5.2. Simulation Framework

exploration of implementation alternatives is supported by a rich set of configura-
tion options for the existing modules of the simulator. A highlight with respect to
configurability of the simulator is surely the variety of traffic generation options.

5.2.3. Traffic Generation

The communication patterns used in simulation should correspond as closely
as possible to real traffic. However, the type of traffic occurring at run-time, is
often unknown and difficult to predict at design-time. Consequently, a NoC
for general-purpose many-core architectures must be evaluated at design-time
under various load conditions. In the simulation framework, traffic generation
is done by the traffic generation module. It supports various traffic generation
methodologies for testing a NoC design under different load conditions.

Traffic Gen-
eration

Synthetic
Traffic

Uniform

Transpose

Bit Reversal

Shuffle

Butterfly

Helix

Application
Models

Invasive
applications

Memory com-
munication

Streaming
models

Communication
Task Graphs

MPEG4

H.264 CAVLC

MMS

PIP

MWD

VOPD

TGFF files

Trace Files

Chain

HeMPS
MPSoC

Plasma cores,
RAM, DMA

User De-
fined Traffic

RE based
traffic

GS and
BE traffic

Figure 5.10.: Overview on the traffic generation capabilities of the NoC simula-
tion framework. Currently, six traffic generation classes (blue) with
different communication patterns (green) are supported.

Figure 5.10 provides an overview on the traffic generation methods, which are
currently supported. The six traffic generation classes (blue) are instantiated
within the traffic generation module. Each of the modules can be configured
to generate different communication patterns (green). Various traffic generation
methods are used for the following evaluations. The traffic generation models
will now be explained in detail. Their configuration parameters are summarized

133

5

5. Basic Architecture Realization

in table A.10 and A.11. Due to the modular structure of the simulator, new traffic
generation modules may simply be added.

5.2.3.1. Synthetic Traffic

Synthetic traffic is widely used for the performance evaluation of networks. The
most common synthetic traffic pattern is uniform random traffic. In case of uniform
random traffic, each node sends packets with the same rate to all other nodes of
the architecture. In contrast, non-uniform traffic is characterized by an uneven
load distribution [81]. Such an imbalanced load typically results in hot spots. The
use of hot spot scenarios is very important for investigating the limitations of a
network. Currently, five different non-uniform synthetic traffic patterns can be
generated by the simulation framework. They include transpose traffic, bit reversal,
shuffle, butterfly and helix. Thanks to the packetization layer, the data can either be
transferred using best-effort or guaranteed service communication.

Direction of further GS-Reservation Tiles using GS communication GS communication between Tiles

c)a) b)

Figure 5.11.: Different synthetic traffic types: (a) transpose, (b) helix and (c)
uniform.

Figure 5.11 shows how three of the synthetic traffic generators work in the case of
GS communication. In figure 5.11(a), the connection setup and communication
for transpose traffic is shown. New GS communication channels are established
in a meandering shape. The connections are established bi-directionally between
opposite cores. Helix traffic, as shown in figure 5.11(b), also connects opposite
cores bi-directionally. In contrast to transpose traffic, the direction of establishing
new connections gives a helix. Thus offering additional degrees of freedom
while routing and allowing to establish more connections, compared to transpose
traffic. Transpose and helix traffic both result in hot spots at the center of the
NoC, as shown in figure 5.11. Hot spots are necessary to demonstrate the gain
of routing algorithms in terms of hot spot avoidance. In contrast to these hot

134

5

5.2. Simulation Framework

spot scenarios, uniform random traffic is used to generate traffic with uniform
distribution; shown in figure 5.11(c).

5.2.3.2. Application Models

The application-model-based traffic generator is composed of an abstract synthetic
MPSoC-model and an application communication model. The MPSoC architec-
ture model connects different types of resource elements (REs) to the network on
chip. Currently, processing and memory resource elements are supported. The
tasks and processes of the application model are assigned to processing elements.
A shared memory architecture can be modeled by the use of memory nodes. Such
an architecture is shown in the figure 5.12(a). For shared memory access, the
processing elements communicate with the memory REs.

The application communication model is meant to be an abstract model, imitating
the communication of a distributed application. This synthetic model offers many
configuration options. The size of each application in terms of the number of
used PEs may be defined manually or chosen randomly. The same applies for the
number of applications and their mapping. A nearest neighbor heuristic [41] is
used to map communicating processes automatically to neighboring PEs. In order
to imitate the behavior of malleable invasive applications, invade and retreat
rates can be defined. This results in dynamic applications, which allocate and
release REs during simulation. The data rates and patterns for communication
between the single processes of the application can be defined, as well as the
communication type. Currently three types are supported:

1. Random communication between all processes of the same application and
communication with a shared memory node by all other nodes.

2. All processing elements, executing the same application, communicate with
each other in the form of a clique. Each of these PEs communicates with a
shared memory node.

3. All PEs communicate with a master (master-slave communication) and with
memory nodes.

Independent of the communication type, it can be chosen whether best-effort or
guaranteed service traffic is used. Burst communication patterns can be config-
ured separately for inter-PE and memory communication. Figure 5.12(b) illus-
trates examples of applications with communication type 1. The communication
between the processes is represented by the directed arrows. Figure 5.12(c) shows
the final mapping of the processes to the architecture model, when the nearest
neighbor heuristic is used for mapping.

Application-model-based traffic generation is very helpful for the investigation of
guaranteed service connections. The traffic model can be configured to behave

135

5

5. Basic Architecture Realization

App. 1
Process 3

App. 1
Process 2

App. 1
Process 1

App. 3
Process 1

App. 3
Process 2

App. 2
Process 1

Memory

Memory

NoC
Router

Processing
Tile

Processing
Tile Memory

NoC
Router

NoC
Router

NoC
Router

Processing
Tile

Processing
Tile

Processing
Tile

NoC
Router

NoC
Router

NoC
Router

Processing
Tile

Processing
Tile

Processing
Tile

Processing
Tile Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Processing
Tile

Processing
Tile

NoC
Router

Processing
Tile

Memory

NoC
Router

NoC
Router

Memory

NoC
Router

Processing
Tile

Processing
Tile Memory

NoC
Router

NoC
Router

NoC
Router

App. 2
Process 1

App. 3
Process 1

App. 3
Process 2

NoC
Router

NoC
Router

NoC
Router

Processing
Tile

Processing
Tile

App. 1
Process 2

App. 1
Process 3 Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

App. 1
Process 1

Processing
Tile

NoC
Router

Processing
Tile

Memory

NoC
Router

NoC
Router

NANANANA

NANANA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA NA NA NA

NA

NA

NA

NA

NA NA

NA NA

(a) (b) (c)

Figure 5.12.: Example of a synthetic application model which is mapped to a NoC
architecture with two types of resource element for memory and
processing nodes.

dynamically, representing the dynamic behavior expected for invasive computing.
This results in continuing reservation and release requests for GS connections.
Such a stressful scenario assists in evaluating adaptive QoS mechanisms.

5.2.3.3. Communication Task Graphs

The use of communication graphs or communication task graphs is a very effi-
cient way to generate communication; reflecting the behavior of real applications.
Communication graphs represent communicate between the individual tasks of a
distributed application. They are obtained by analyzing the communication of a
distributed applications. Such an analysis is provided in [252] for a distributed
MPEG4 decoding platform. The task graph obtained from this analysis is pro-
vided in figure 5.13. It is one of the task graphs used in this simulation framework.
The task graph of the MPEG4 decoder consists of 12 nodes of 4 different types26.
The nodes or tasks are connected with 13 edges, each of them representing bidi-
rectional communication27. The bandwidth requirements for each connection are
given as a weight of the respective edge in the task graph.

The simulator is capable of reading task graphs from files, using the widely
accepted task graphs for free (TGFF) format [62], which is also used by the NoC-
Tweak simulator [255]. Due to the use of TGFF, many task graphs are available
and can be added very easily. In addition to the task graph itself, a mapping for

26The four different types of nodes in the MPEG4 decoder can be taken into account by the simulator
while mapping.

27Within the task graph specification used in the following, each bidirectional connection is repre-
sented by two unidirectional connections.

136

5

5.2. Simulation Framework

VIO
AIO

RAST

MED
CPU

SDRAM

SRAM1

SRAM2

IDCT

RISC

BAB

UP
SAMPADSP

190 0.5
60

40

600

40

250

6709100.5

32 173

500

CPU Memory Accelerator/DSP I/O InterfaceC M A IO

Figure 5.13.: Communication task graph of an MPEG4 video decoder with 12 tasks
– Bandwidth requirements are provided in MB/s [22].

each graph can be defined, using a second input file. This file is naturally referred
to as a mapping file. For the following investigations, six task graphs of different
applications are used. They are summarized in table 5.3. The MPEG4, VOPD, PIP
and MWD task graphs are obtained from [22], H264 and MMS are provided with
NoCTweak simulator [255].

Abbr. Details Nodes Edges
MPEG4 MPEG4 video decoding 12 26
VOPD Video Object Plan Decoding 12 15
PIP Picture-In-Picture 8 8
MWD Multi-Windows Display 12 13
H264 H.264 CAVLC encoder 16 23
MMS Multimedia System 25 33

Table 5.3.: Task graphs of the applications used in the simulation framework.

5.2.3.4. Trace Files

In addition to communication task graphs, trace files are another way to generate
application-specific NoC load. In order to generate a trace file, each message, sent
by a distributed application, is logged in a trace file. Each entry of the trace file
specifies source, destination, size and time of occurrence of the respective message.

137

5

5. Basic Architecture Realization

More advanced trace files also capture the processing time of each core after
arrival of a message, enabling more precise generation of communication patterns.
Such an advanced trace file format, termed chain28 is supported by the proposed
simulator. The chain-format can trigger a computation task after the arrival of
messages. In addition, it supports triggering of multiple transmissions after a
computation task is finished. This enables modeling of complex computation and
communication dependency graphs.

However, obtaining such trace files is very challenging, as it requires detailed
observation of the execution and communication of an application. Therefore,
trace files are typically unavailable. It is envisaged to generate trace files for the
simulation framework by probing the FPGA prototype of the invasive architecture,
introduced in section 3.4.

5.2.3.5. HeMPS MPSoC

The HeMPS [39] is an MPSoC architecture, available as a SystemC model. It uses
Plasma CPUs, each of them equipped with a random-access memory (RAM) and
a DMA unit. The Plasma CPU is a small 32-bit RISC microprocessor, which is
available for free. The Plasma core and its peripherals are attached to a network
adapter that is used to connect the single-core tiles to a network on chip. In the
original HeMPS architecture, the Hermes [180] NoC is used. The HeMPS SystemC
model executes compiler generated binary code of real parallel applications on an
MPSoC architecture. Thus, real applications written in C++ or other programming
languages can be executed to generate NoC traffic.

As part of a bachelor’s thesis [Ker13], the Hermes [180] NoC was replaced by
the SystemC NoC model, created in the current work. This was achieved by
developing a new network adapter, which serves as a wrapper between the
Plasma compute tiles and the present SystemC NoC simulator. In order to use
the QoS features of the proposed NoC model, software interfaces were created
to establish GS connections. The implementation of these interfaces necessitated
changes in the micro-kernel of the processors, as described in detail in [Ker13].

The incorporation of the HeMPS MPSoC model into the proposed simulation
framework enables to investigate NoC architectures under realistic load, gener-
ated by the applications executed on the Plasma cores29. In [Ker13], a case study
with two applications was performed to show the capabilities of the coupling
between the present simulation framework and HeMPS. This study demonstrates
that the coupling enables to determine the impact of different NoC configurations

28The name “chain”, is derived from the fact that computation and communication logs of the trace
file constitute a chain of events.

29The coupling between the proposed NoC simulation framework and the HeMPS MPSoC model is
currently implemented in a separate development branch.

138

5

5.2. Simulation Framework

on the execution time of parallel applications. The analysis of a distributed MPEG
application shows the superior performance of the proposed NoC compared to
Hermes [180], as well as the benefit of the QoS scheme, presented in section 6.2.

5.2.3.6. User Defined Traffic

In addition to the plurality of pre-built traffic generation methods of the SystemC
simulation framework, it is possible to define specific traffic patterns for more
advanced investigations manually. Therefore, the simulation framework provides
a specific interface, enabling a comfortable definition of user specific traffic. De-
pending on the requirements, communication can be defined at the granularity of
packages or in a more abstract way.

Particularly in this abstract, coarse grained traffic generation enables efficient
definition of complex traffic scenarios. It utilizes the primitives of the application
model, presented in section 5.2.3.2, for point-to-point traffic generation. For each
generator instance, the source address and destination address, the communi-
cation type (BE or GS), the communication pattern (burst, streaming, random),
packet size and bandwidth must be defined by the user. Subsequently, the gen-
erators produce traffic during the entire simulation period according to these
definition.

5.2.4. NoC Model

The router design, introduced in section 5.1, is built as a cycle-accurate SystemC
model in the simulation framework. It is built modularly, enabling easy extension
by new features. Two SystemC processes are used to model the sequential behav-
ior of the NoC in a cycle-accurate way. One of these processes is responsible for
reception of incoming flits; referred to as the receive process. The other process is
in charge of managing the reservation and transmission. It is the most complex
process of the SystemC router model; referred to as transmission process. Various
C-functions are called by these two processes to perform routing, VC selection,
reservation or release of virtual channels. In order to clarify the functional princi-
ple of the SystemC router model, the receive process and the transmission process
are briefly discussed in the following sections.

The router model is implemented as a SystemC module. It is instantiated in the
form of a 2D array to create a mesh or torus topology. The routers are connected
via the SystemC signals to form the desired topology. The local port of each router
is connected to the instantiated network adapter model.

139

5

5. Basic Architecture Realization

5.2.4.1. Router Receive Process

The receive process of the router carries out the functionality that is required
to write the data to the respective input buffer of the router. For this purpose,
the control signals of the respective input port are processed first. The ID of
the VC, used by the received flit, is encoded in the control signals. It is used to
forward the flits to the respective queue of the buffer. The buffer is implemented
as a separate module, to simply replace the buffer implementation. The current
implementation supports different buffering schemes, where buffers are either
shared between the VCs or used exclusively. More details about the available
configuration options for the buffering schemes are provided in appendix A.5.
The buffers of the router link the receive process and the transmission process.

5.2.4.2. Router Transmission Process

The transmission process is the most complex process of the router implementa-
tion. It is responsible for routing, VC allocation and release, as well as scheduling
the VCs. Thus, the transmission process carries out all pipeline stages of the
router, except the input buffers. According to table 5.2, the number of pipeline
stages is configurable in the SystemC model.

In the first phase of the transmission process, the buffers are checked for flits
awaiting transmission. Subsequently, it verifies that one of the flits is a header.
If multiple headers are available, which have yet to be assigned to an output
port, an arbitration decision is made to determine which header is processed first.
Afterwards, the routing decision is taken for the respective flit to determine the
output port for the packet. Currently, four different routing schemes and two
selection strategies for adaptive routing are supported. Routing is implemented
in a modular way using a hierarchy of functions. This modular implementation
enables the simple replacement of single components (e.g. the selection strategy
of an adaptive routing scheme). Once the output port is determined, a VC of
the respective port is selected for reservation. According to the routing decision,
the VC selection and reservation is also built as separate functions to enable
expandability. The virtual channel selection and reservation functions represent
the functionality of the reservation table, shown in figure 5.7.

The second part of the transmission process implements the functioning of the
transmission control unit, the crossbar and flow control. It checks the buffers for
valid transmission requests using a round-robin arbitration scheme. It is also
built as a separate function with respect to modularity. The function verifies the
reservation status, the availability of data and the availability of flow control
credits. Only those VCs are taken into account for scheduling, which fulfill said
conditions. The flit, which is selected for transmission, is than fetched from the

140

5

5.2. Simulation Framework

respective input buffer. The output signals of the router port are set according
to the selected VC and the data fetched from the buffers. The last step of the
transmission process determines whether a tail flit is sent. If this is the case, the
release function is called to free the allocated virtual channel. 30

5.2.5. Analysis and Evaluation Capabilities

The simulation framework can be used by manually configuring the desired pa-
rameters and executing the simulation. Subsequently, the output generated by the
statistics module, can be validated and analyzed. However, such a manual analysis
can be very time consuming if many different parameters or implementation
alternatives must be compared. Hence, the simulation framework supports a
script-based mode, which configures, simulates and aggregates the simulation
results for different implementations. This enables an automated design space
exploration; used for the following evaluations. The automated simulation is also
used in the design flow, introduced in section 4.4.

The automated script based simulation mode utilizes Unix shell scripts. The first
script sets and modifies the desired parameters for simulation. A description
of the available parameters of the simulation framework, which are defined in
the parameter file, is provided in appendix A.5. After parameter configuration,
the script generates the simulator binary and begins execution. The script-based
simulation is capable of performing multiple simulations with equal or different
parameters, in parallel. This parallel simulation reduces the simulation time
drastically by utilizing multiple cores of the host computer used to execute the
simulation. At the end of the simulation phase, the simulation results are written
into a set of output files.

After simulation phase is complete, a second script is used to process the sim-
ulation results. It processes the output files containing the simulation results,
generated by the statistics module. This script can be configured to extract various
simulation results from the complex statistics. The desired values, such as latency,
bandwidth, buffer-utilization or link-utilization, are extracted. Subsequently,
the values are inserted into a comma-separated values (CSV) file, generated by the
script. The CSV file can subsequently be used to generate diagrams representing
the performance impact of the investigated parameters. It is also used for the
requirements analysis in the semi-automated design flow, described in section 4.4.

The script-based simulation enables a very fast design space exploration, which is
frequently used for the investigations, presented in the following chapters.

30The transmission process contains additional functionality, such as a recognition for partially
established GS connections, which are not discussed here in detail.

141

5

5. Basic Architecture Realization

5.3. HDL Model and Implementation

The previously presented simulation framework and SystemC model of the NoC
enables accurate performance measurements with respect to bandwidth, latency
or utilization. However, an HDL implementation is also necessary to enable in-
vestigation of the router design for a desired target technology31. A synthesizable
HDL implementation is required to obtain accurate numbers for resource require-
ments, power consumption and the achievable clock frequency. These numbers
required, in order to compare different implementation alternatives accurately
with respect to energy and resource efficiency, as explained in section 4.1.2. Such
a comparison of technology-specific design properties is used for the following
investigations, but also as part of the design flow, proposed in section 4.4. If
an appropriate implementation is found, which fits the given functional and
non-functional requirements, an HDL implementation enables an FPGA-based
prototype or an ASIC.

SystemVerilog [238, 236] was used for the HDL implementation of the proposed
router template design32. The HDL implementation of the router design corre-
sponds to the structure, described in section 5.1.5. The structure and the modules,
shown in figure 5.7, were almost identical implemented in the form of SystemVer-
ilog modules. According to the previously discussed SystemC implementation,
the modularity shall enable an easy extension of the basic router design. This was
required for the following investigations, where the basic router is extended, but
also to use the design as a template for future architectures. In order to achieve
the desired flexibility of the design, the HDL implementation is highly parameter-
izable. The available parameters of the HDL implementation are summarized in
appendix A.6. With the assistance of the parameters, the router can be configure
at design-time, according to the given requirements.

Building blocks33 are used for the HDL implementation to improve the perfor-
mance of the design. In the present work, the DesignWare library building blocks
from Synopsys are used. For each of the building blocks used, an alternative HDL
implementation is available to ensure portability of the design and to enable
synthesis without the availability of the DesignWare library. Prominent building
blocks, used in the design, are FIFOs for the buffers and a round-robin arbitration
unit, which is instantiated in various modules. A parameter is used at design-

31At the point in time where the HDL implementation of the router design was started, there were no
reliable tools for the synthesis of SystemC models available. However, in recent times HLS tools
have been introduced, which enable synthesis of SystemC models (e.g. Xilinx Vivado). At that
point in time, the development of the HDL models was already very far advanced. Consequently,
their suitability was not investigated.

32Compared to older HDLs, such as VHDL or Verilog, SystemVerilog offers additional design fea-
tures [238] and extensive verification capabilities [236]. These novel features have advantageously
been used for implementation and verification of the design.

33A building block is a prefabricated component provided by a third-party vendor.

142

5

5.3. HDL Model and Implementation

time to decide whether building blocks are instantiate or the alternative HDL
implementation of the respective components is used.

5.3.1. HDL Test Environment

The substantial verification capabilities of SystemVerilog are utilized to build a
complex simulation environment. This environment is used to test and verify
the HDL implementation using an HDL simulator34. Test and verification of
individual sub-components was carried out by module tests using SystemVerilog
test benches. For verification of a complete router, or an entire NoC, a flexible
SystemVerilog test environment was designed. The test environment provides
multiple functions for generation of best-effort or guaranteed service communica-
tion. For automated verification, multiple checks for flit loss, packet ordering or
deadlock detection are implemented. The test environment also provides capa-
bilities for performance measurements, generating statistics for throughput and
latency distribution. This sophisticated test environment allows efficient testing
of new features and enhancements of the HDL router implementation.

In addition to test and verification, the test environment is also used for accurate
power estimation of ASIC implementations. Therefore, a single router is synthe-
sized, as described in the following section. The resulting netlist, consisting of
ASIC standard cells, is instantiated in the test environment and stressed by the use
of its traffic generation capabilities. During simulation, the switching activities in
the netlist are captured and stored in a value change dump (VCD) file. The VCD
files are subsequently used to calculate the power consumption.

5.3.2. Synthesis

The main purpose of the HDL implementation is the synthesis of the design for the
desired target technology. The HDL template of the NoC is designed to support
different target technology. Therefore, it does not contain any technology-specific
components, such as FPGA block RAMs or ASIC memories. The aforementioned
building blocks can be disabled, if unavailable or unsupported, by the synthesis
tools. Thus, a technology independent HDL model is available, which can be
synthesized with any tool supporting the SystemVerilog standard. This also
applies to the extensions, presented in the following chapters.

In this work, two synthesis flows have been set up and utilized. An ASIC syn-
thesis flow is used to estimate the design properties for a silicon implementation.
However, an FPGA synthesis flow enables prototyping of the NoC design and

34Mentor Graphics ModelSim is used for simulation and functional verification.

143

5

5. Basic Architecture Realization

the InvasIC architecture, introduced in section 3.2. Both flows will be introduced
briefly now as a background for the evaluations presented later.

5.3.2.1. ASIC Synthesis

The main objective of the proposed NoC design is an ASIC implementation. Thus,
an ASIC synthesis is desired to obtain accurate numbers for area and power
consumption. Another important aspect, obtained from the synthesis results, is
the achievable clock frequency. The clock frequency determines the bandwidth
and consequently the performance of the implementation.

In order to enable the semi-automated design flow, the ASIC synthesis flow is
automated by the use of Unix shell scripts. In the first step of the flow, the
design parameters, provided in appendix A.6, are set. Subsequently, the design
is elaborated by the synthesis tool. Therefore, the Synopsys Design Compiler35 is
currently used. After the elaboration phase, the actual synthesis takes place. At
that point, the standard cell library for the desired target technology is required.
Any available library can be used. However, in the following, a TSMC 45 nm
library36 with worst-case operation conditions37, is used. The assumption of
worst-case conditions ensure that the synthesis results will not be too optimistic
with respect to actual implementation. In addition to the target library definition,
the design must be constraint for synthesis. Therefore, the clock frequency and
external delays for all input and output signals must be defined to obtain realistic
numbers38. Subsequently, the actual synthesis process takes place39. Retiming
and clock gating is enabled for synthesis to optimize clock frequency and power
consumption. The final netlist is verified after synthesis by performing a netlist
simulation, using the HDL test environment. During this step, switching activities
are captured for power estimation. In the last step, the Design Compiler is used
again to calculate the power consumption of the design. Therefore, the netlist,
the captured switching activities and the standard cell library are used. Finally,
power consumption, timing and area reports are generated. Optionally, multiple
synthesis runs with different input parameters can be performed automatically
by using the scripted flow.

35For the results presented in the following, Synopsys Design Compiler G-2012.06-SP4 was used.
36More recent technology nodes than the used TSMC 45 nm library were not available at that time.
37The exact name of the TSMC 45 nm library used in this work is tcbn45gsbwpwc.
38An external delay of 50 % of the clock period is pessimistically assumed for all I/O signals.
39The compile_ultra command is used for synthesis. It flattens the design to achieve optimal results.

144

5

5.4. Case Study

5.3.2.2. FPGA Synthesis and Prototyping

Field programmable gate arrays are a powerful means for prototyping of digital
integrated circuits. Thus, FPGA-based prototyping is also used to verify the
proposed network on chip and its features. The FPGA prototype used later
on, contains not only the NoC itself, but also other components of an MPSoC.
Therefore, components of the InvasIC architecture have been used. The invasive
network adapter, presented in section 3.2.2.1, and the RISC core tiles, introduced
in section 3.2.1.1, are used to complete the architecture. Details about the FPGA
prototype used later on for evaluation, are provided in appendix A.1.

Synopsys Synplify40 is currently the only FPGA synthesis tool with reliable Sys-
temVerilog support. Hence, it is used for synthesis of the networks on chip
components because they are designed in SystemVerilog.

In order to synthesize a complete architecture prototype, Xilinx PlanAhead41 had
to be used42. The netlists, resulting from the previous Synplify synthesis of the
NoC, are processed by PlanAhead together with the VHDL and Verilog source
files of the other components. Synthesis and place-and-route are triggered by
PlanAhead, which calls the respective Xilinx tools. Finally, a bitstream is generated,
which can be used to program the desired FPGA. Similar to the ASIC synthesis
flow, FPGA synthesis is completely automated via scripts.

5.4. Case Study

The semiautomatic design flow, introduced in section 4.4, enables fast generation
of a requirement-specific network on chip. The design flow utilizes the simula-
tion framework, introduced in section 5.2, and the previously introduced HDL
implementation. This enables fast evaluation of implementation alternatives with
respect to performance and implementation costs.

In this section, an exemplary case study will be presented. This study shall show
the possibilities of the proposed automated evaluation and implementation me-
thodology. In addition, it is used to determine appropriate settings for basic
parameters of the router design. In the following, the appropriate number of VCs
and buffer slots will be evaluated.

40Synopsys Synplify Premier version H-2013.03-1 is used in the work for FPGA synthesis.
41Version 14.4 of Xilinx ISE tools have been used exclusively in the context of this work.
42The DDR3 controller, which is part of the prototype, couldn’t been synthesized successfully using

Synopsys Synplify due to a bug in the tool.

145

5

5. Basic Architecture Realization

5.4.1. Performance

As a measure for the performance of a communication system, latency and band-
width are mainly used. Sufficient bandwidth is the most basic requirements,
which must be fulfilled to avoid communication bottlenecks. In case of over-
load, bandwidth limitations lead to high latencies, according to section 5.1.6.2.
However, even if the communication system is not overloaded, various design
decisions may impact the latency, as shown by the following investigations.

5.4.1.1. Buffer Size

The simulation framework, introduced in section 5.2.5, and the evaluation metho-
dology from section 5.2.5 are used for the following exploration of the design
space. In order to investigate the impact of the virtual channel buffer size, it is
varied between 2 and 10 slots in steps of 2 slots43. Multiple simulation runs are
performed for each setting44. Uniform random traffic, defined in section 5.2.3,
is injected with different rates45. This enables measuring the throughput for
different load situations, with the packet size set constantly to eight flits.

Figure 5.14(a) shows the throughput for different buffer sizes46 for an 8x8 mesh
NoC. The results show that before the network becomes saturated, all configura-
tions can satisfy the requested injection rate.

Definition. The saturation point of a network is the point where the network becomes
congested. At this point the packet latency increases rapidly and the throughput cannot
be further increased.

As shown in figure 5.14(a), the saturation point depends on the buffer size. The
larger the buffers, the more throughput can be achieved by the NoC. If the buffer
size is increased from 2 to 4 slots, the throughput increases by 8.4 %. The best
results, with respect to throughput, can be achieved for the largest buffer. With a
size of 10 slots, the throughput is 16.4 % higher than for the smallest buffer. Thus,
increasing the buffer size is in general beneficial from the throughput perspective.
However, an additional increase above a certain size is barely profitable from the
throughput perspective.

Figure 5.14(b) shows the latency measurements, obtained from the same simu-
lations used for the throughput measurements. Below the saturation point, the
43A slot is a single entry in the FIFO, capable of storing one flit.
44For each setting 10 independent simulation runs are performed and the results are averaged. Each

run simulations 106 cycles. This evaluation scheme is also used for all subsequent studies.
45The injection rate is defined as the number of flits which are injected per cycle and node. Thus, it

can naturally vary between 0 and 1, if each link has a capacity of 1 flit per cycle.
46For the analysis of the buffer size, the number of virtual channels is set to a constant value of 4.

146

5

5.4. Case Study

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Requested Injection Rate [Flits/Cycle/Node]

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
N

od
e]

Buf.Size-02
Buf.Size-04
Buf.Size-06
Buf.Size-08
Buf.Size-10

(a) Throughput

0 0.2 0.4 0.6 0.8 1

101.5

102

Requested Injection Rate [Flits/Cycle/Node]

La
te

nc
y

[C
yc

le
s]

Buf.Size-02
Buf.Size-04
Buf.Size-06
Buf.Size-08
Buf.Size-10

(b) Latency

Figure 5.14.: Impact of buffer size on throughput and latency of an 8x8 mesh NoC
for uniform random traffic.

latency is very low. Larger buffers assist in reducing the latency, if the NoC is
unsaturated. At the point of saturation, the latency increases sharply. Above
the saturation point, an increased buffer size has a negative impact on latency.
Thus, the highest latency is experienced for the configuration with the largest
buffers. The increased latency is reasoned by the higher number of flits, which
are simultaneously on the way through the NoC if the buffers are large. More
flits in the network result in a higher transmission latency for each flit due to the
sharing of the available bandwidth. The latency is increase by a factor of 2.38 for
high injection rates, if 10 buffer slots are available as opposed to 2.

Figure 5.15 also shows throughput and latency analysis for different buffer size
configurations of the NoC routers. In contrast to the results provided by fig-
ure 5.14, the communication task graph of the MPEG4 video decoder, introduced
in section 5.2.3.3, is investigated. The respective task graph is mapped in the
center of the 8x8 mesh. The other nodes, which are not used by the MPEG tasks,
generate uniform random traffic again. However, the random traffic is only used
to generate additional load. The obtained results only measure throughput and
latency of the MPEG4 application. Throughput and latency of uniform random
traffic is not measured.

Figure 5.15(a) shows the throughput of the MPEG4 application for different
uniform random traffic injection rates. Compared to the previous scenario, the
throughput is almost independent of the buffer size. Only around the saturation
point, larger buffers assist in slightly reducing the throughput. Once the network
becomes saturated by additional random traffic, the throughput of the MPEG4
decoder drops. A throughput reduction of 17 % is experienced at maximum.

147

5

5. Basic Architecture Realization

0 0.2 0.4 0.6 0.8 1

0.22

0.24

0.26

0.28

Requested Injection Rate [Flits/Cycle/Node]

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
N

od
e] Buf.Size-02

Buf.Size-04
Buf.Size-06
Buf.Size-08
Buf.Size-10

(a) Throughput

0 0.2 0.4 0.6 0.8 1

101.5

102

Requested Injection Rate [Flits/Cycle/Node]

La
te

nc
y

[C
yc

le
s]

Buf.Size-02 Buf.Size-04
Buf.Size-06 Buf.Size-08
Buf.Size-10

(b) Latency

Figure 5.15.: Impact of buffer size on throughput and latency of an MPEG4 video
decoding application, mapped to an 8x8 mesh NoC, burdened with
uniform random traffic with varying injection rates.

Figure 5.15(b) shows the latency measurements for the MPEG4 decoder commu-
nication. In contrast to the throughput, the latency of the application is impacted
by the buffer size of the NoC routers. The results again demonstrate, that an
increased buffer size has a negative impact on latency, if the network becomes
saturated. As previously mentioned, this results from the higher number of flits
traveling in parallel through the network and sharing its bandwidth.

5.4.1.2. Virtual Channels

Virtual channels are proposed in [58] to improve the performance of a packet
switching network. This statement will now be reviewed. Therefore, similar
analysis are performed, as previously for various buffer sizes47.

Figure 5.16(a) shows the throughput of NoC configurations with different num-
bers of VCs, with uniform random traffic being utilized. Compared to the buffer
size, the influence of the number of VCs on throughput is greater. The maximum
throughput in case of 10 VCs is 38.8 % higher than for the variant with only 2 VCs.
However, increasing the number of VCs from 2 to 4 has the highest impact, thus
further increasing the number of VCs results in a smaller performance gain.

The latency analysis for a NoC with different numbers of VCs under uniform
random traffic load is shown in figure 5.16(b). For very low injection rates, there
is nearly no impact on latency with respect to the number of VCs. In case of

47For analyzing the impact of different numbers of VCs, the buffer size is kept constant to 4.

148

5

5.4. Case Study

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Requested Injection Rate [Flits/Cycle/Node]

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
N

od
e]

No.VC-02
No.VC-04
No.VC-06
No.VC-08
No.VC-10

(a) Throughput

0 0.2 0.4 0.6 0.8 1

101.5

102

Requested Injection Rate [Flits/Cycle/Node]

La
te

nc
y

[C
yc

le
s]

No.VC-02
No.VC-04
No.VC-06
No.VC-08
No.VC-10

(b) Latency

Figure 5.16.: Impact of the number of virtual channels on throughput and latency
of an 8x8 mesh NoC for uniform random traffic.

high load, near to the saturation point, additional VCs have a negative impact
on latency. The reason is the increased buffer capacity, resulting from additional
VCs. It leads to a higher number of flits in the network, which in turn leads to a
higher latency. The correlation between the number of flits in the network and
the latency is confirmed by the theoretical analysis, presented in section 5.1.6.2.

Next, the impact of additional VCs is also investigated for the MPEG4 decoder,
previously used. Figure 5.17(a) shows the throughput analysis. In contrast to the
buffer size, the number of VCs has a noticeable influence on performance of the
MPEG application. Additional VCs have a positive impact on throughput for low
injection rates. In case of high load, close to the saturation point, the performance
is negatively impacted by additional VCs. However, operating a NoC close to
the saturation point is undesirable, due to the high latency. Thus, injection rate
control is proposed in [193] to limit the injection rate.

Figure 5.17 shows the latency analysis for the MPEG4 application, mapped to
the center of the 8x8 mesh. A low latency is experienced by the MPEG4 decoder
as long as the injection rate of the random traffic is below the saturation point.
However, the MPEG application cannot profit from additional VCs with respect to
latency. Once the NoC becomes congested by uniform random traffic, additional
virtual channels have a negative influence on the latency. The reason is again the
increased number of buffer slots and the resulting higher number of packets and
flits in the network. This high number results in an increased delay for each single
packet, due to bandwidth sharing.

149

5

5. Basic Architecture Realization

0 0.2 0.4 0.6 0.8 1

0.22

0.24

0.26

0.28

Requested Injection Rate [Flits/Cycle/Node]

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
N

od
e] No.VC-02

No.VC-04
No.VC-06
No.VC-08
No.VC-10

(a) Throughput

0 0.2 0.4 0.6 0.8 1

101.5

102

Requested Injection Rate [Flits/Cycle/Node]

La
te

nc
y

[C
yc

le
s]

No.VC-02 No.VC-04
No.VC-06 No.VC-08
No.VC-10

(b) Latency

Figure 5.17.: Impact of the number of virtual channels on throughput and latency
of an MPEG4 video decoding application, mapped to an 8x8 mesh
NoC, under uniform random traffic with varying injection rates.

5.4.2. Implementation Costs

The previous performance analysis, which investigated the impact of the buffer
size and number of VCs, clearly showed a benefit of additional VCs and buffer
slots for moderate load situations. However, raising these parameters necessitates
additional hardware resources. This may impact the achievable clock frequency
and the power consumption of the network on chip. In order to evaluate these
costs, the ASIC synthesis flow, introduced in section 5.3.2.1, is used in combination
with a 45 nm ASIC library. All settings of the router design are chosen according
to parameters used for simulation. This allows to match the performance anal-
ysis with the following cost analysis, according the evaluation flow, outlined in
section 4.4.

5.4.2.1. Buffer Size

Buffers are built by the use of FIFOs. In order to increase the buffer size in the
HDL model, the size of each FIFO is increased.

Figure 5.18(a) shows the impact of the buffer size on the area consumption of a
single five-port router with a link size of 32 bit. The buffer size is varied between
2 and 16 slots48. The results clearly exhibit the increased area consumption,
resulting from larger buffers. A linear dependence between the buffer size and
the area consumption of the router can be obtained from the synthesis results.
48For this analysis, the number of virtual channels is set again to a constant value of 4.

150

5

5.4. Case Study

Increasing the buffer size from four to eight slots, results in a raise of the area
consumption by 51.7 %.

Figure 5.18(b) provides the achievable clock frequency of a router with different
buffer sizes. The clock frequency for synthesis was constrained to be 1 GHz.
The synthesis results clearly indicate the observance of the defined frequency.
Thus, the clock frequency is not affected by an increase of the buffer size49. This
indicates that the size of the buffers does not impact the critical path of the NoC
router design.

In addition to clock frequency and area consumption, the power consumption
of an integrated circuit is another important aspect. The high power density
of current and future technology nodes necessitates a limitation of the power
consumption. Additionally, mobile devices have to deal with a limited power
budget. Consequently, power consumption is a crucial aspect of many systems.
Figure 5.18(c) shows the minimum and maximum power consumption50 of a
single router for different buffer sizes. The results exhibit that the minimum and
maximum power consumption increases linearly with the buffer size, according
to the area utilization. The gap between the minimum and the maximum power
nearly remains constant, independent of the buffer size. If the buffer size is in-
creased from 4 to 8 slots, the minimum power consumption grows by only 17.5 %.
Compared to the area consumption, the power consumption is less impacted
by larger buffers. Consequently, there is no proportional relation between area
requirements and power consumption.

5.4.2.2. Virtual Channels

The virtual channels are deeply embedded into the router design. According
to section 5.1.5, the implementation complexity of many components, such as
the input reservation arbitration, output reservation table, transmission control
and crossbars, are affected by the number of VCs. Consequently, increasing the
number of VCs raises the complexity of many router components. The impact of
additional VCs, with respect to implementation costs, will now be investigated.

Figure 5.18(d) shows the relation between the number of virtual channels and
the area, consumed by a five-port router. Compared to an increased buffer size,
additional VCs have a greater impact on the area consumption. Increasing the
number of VCs from 4 to 8, raises the area utilization by 117 %. This super-linear
increase results from the crossbar implementation. According to equation 2.3, its
complexity grows quadratic with the number of VCs. However, a router design
with 8 VCs and 4 slots per buffer consumes only 60659µm of area.

49It is expected that a further increase of the buffer size would affect the clock frequency.
50The minimum power consumption is the power consumption of an idle router. The maximum

power consumption results from a traffic scenario with very high load at all router ports.

151

5

5. Basic Architecture Realization

2 4 6 8 10 12 14
0

0.5

1

1.5
· 105

Number of buffer slots

A
re

a
[µ

m
2]

(a) Area, Buffer size

2 4 6 8 10 12 14
600

700

800

900

1,000

1,100

Number of buffer slots

C
lo

ck
Fr

eq
ue

nc
y

[M
H

z]

(b) Clock frequency, Buffer size

2 4 6 8 10 12 14
0

10

20

30

40

Number of buffer slots

To
ta

lp
ow

er
co

ns
um

pt
io

n
[m

W
] Power Min.

Power Max.

(c) Total power, Buffer size

2 4 6 8 10 12 14
0

0.5

1

1.5
· 105

Number of virtual channels

A
re

a
[µ

m
2]

(d) Area, No. of VCs

2 4 6 8 10 12 14
600

700

800

900

1,000

1,100

Number of virtual channels

C
lo

ck
Fr

eq
ue

nc
y

[M
H

z]

(e) Clock frequency, No. of VCs

2 4 6 8 10 12 14
0

10

20

30

40

Number of virtual channels

To
ta

lp
ow

er
co

ns
um

pt
io

n
[m

W
] Power Min.

Power Max.

(f) Total power, No. of VCs

Figure 5.18.: Impact of buffer size and number of virtual channels on area (a), (d),
clock frequency (b), (e) and power consumption (c) (f).

152

5

5.4. Case Study

Figure 5.18(e) shows the achievable clock frequency for different numbers of
virtual channels. It is clearly visible that a large number of VCs impacts the
desired frequency of 1 GHz. The reason is the critical path of the router, which
emerges in the transmission control unit for higher numbers of VCs. Therefore,
10 or more virtual channels reduce the desired clock frequency and thus the
performance of the NoC. Considering these results, the number of VCs should be
chosen carefully with respect to the desired clock frequency.

Figure 5.18(f)51 summarizes the minimum and maximum power consumption of
different router configurations with varying numbers of virtual channels. Com-
pared to additional buffer slots, more virtual channels have a greater impact on
the power consumption. The gap between the minimum and maximum power
consumption increases with a raising number of VCs. The main reason is the
transmission control unit, which has a high power consumption if all VCs are
occupied, as shown in the traffic scenario used to estimate the maximum power.
Increasing the number of VCs from 4 to 8, increases the minimum or idle power
consumption by 77 % and the maximum power consumption by 100 %.

5.4.3. Comparison to State of the Art NoC Implementations

In the previous sections, different variants of the NoC and router design have
been compared against each other. The intention of this paragraph is to compare
the router design against a selection of other existing designs. Unfortunately,
the number of publications, presenting detailed implementation results for com-
parison is incredibly limited. However, the proposed router design is compared
against other FPGA implementations and against an ASIC implementation.

5.4.3.1. Comparison to State of the Art FPGA NoCs

FPGAs are typically used for prototyping, systems produced in small quantities
or reconfigurable systems, which exploit the reconfiguration capabilities of the
FPGA. However, the implemented system must cope with the limited resources
of the FPGA, regardless of the reasons for using an FPGA. Thus, a lightweight
NoC is desired for FPGA implementation.

A resource-efficient, delay-optimized NoC configuration is required for FPGA
implementation. The HDL template design, introduced in section 5.3, can be
configured accordingly. The resulting, lightweight incarnation of the network,
is termed liteNoC. LiteNoC does not use virtual channels to reduce its resource

51The drop of the power consumption, when the number of VCs is increased from 10 to 12, results
presumably from the reduced clock frequency. However, this was not analyzed in detail.

153

5

5. Basic Architecture Realization

requirements. The router is optimized to decrease transmission delay. Therefore,
the number of pipeline stages is reduced to two, according to section 5.1.3.

The following investigations shall prove the efficiency of the lightweight incar-
nation of the proposed NoC template. Therefore, the performance and resource
utilization of a liteNoC router is compared with two other packet switching router
designs without VCs. Both reference designs, Hermes [180] and LiPaR [225],
claim to be lightweight for FPGA implementation. For a fair comparison, dif-
ferent versions of liteNoC have been synthesized, using the flow presented in
section 5.3.2.2. For synthesis, the FPGA devices and parameters of liteNoC are set
according to the results presented for Hermes and LiPaR in [180] and [225].

Parameter Hermes liteNoC liteNoC Freq.
Latency (1Flit,1Hop) 12 cycles 3 cycles (-75 %) 3 cycles (-75 %)
Latency (4Flit,2Hop) 28 cycles 8 cycles (-71 %) 8 cycles (-71 %)
Used FPGA Device Xilinx XC2V1000
Clock Freq. (MHz) 25 80 (+220 %) 135 (+440 %)
Throughput (Mbits/s) 500 3200 (+540 %) 5400 (+980 %)
Slices 278 275 (-1 %) 330 (+18 %)
LUTs 555 459 (-17 %) 547 (-1 %)
Flip Flops / BRAMs 172 / 0 134 (-22 %) / 0 197 (+15 %) / 0

Table 5.4.: Comparison of a liteNoC and a Hermes 5-port router implementation
on a Xilinx XC2V1000 FPGA.

Table 5.4 shows the comparison to the Hermes NoC. A 2x2 meshed NoC with
a link size of 8 bit and a buffer size of 8 slots was used. For a moderate clock
frequency of 80 MHz liteNoC outperforms Hermes in all aspects. Once the clock
frequency is tuned to 135 MHz, liteNoC resource utilization is slightly higher
compared to Hermes52.

LiPaR is another NoC optimized for an efficient FPGA implementation. In [225],
synthesis results of a standalone LiPaR router are presented. These results are
summarized in table 5.5 as well as the results of a liteNoC router with equal
parameters53, synthesized for the same Xilinx XC2VP30 device. For a standalone
router LiPaR outnumbers the liteNoC router resource utilization. However, lite-
NoC outperforms LiPaR regarding latency as well as clock frequency and thus
has a much better performance and throughput. Additional synthesis results pre-
sented in [225] show that liteNoC outnumbers LiPaR in terms of slice utilization
for a 2x2 NoC, where each router has only three ports.

52The reason are timing optimization during synthesis, such as register duplication and retiming.
These techniques result in additional area consumption.

53The LiPaR NoC uses a flit size of 8 bit and a buffer size of 16 slots.

154

5

5.4. Case Study

Parameter LiPaR liteNoC liteNoC Freq.
Latency (1Flit,1Hop) 10 cycles 3 cycles (-70 %) 3 cycles (-70 %)
Latency (4Flit,2Hop) 28 cycles 8 cycles (-71 %) 8 cycles (-71 %)
Used FPGA Device Xilinx XC2VP30
Clock Freq. (MHz) 33.33 65 (+95 %) 115 (+245 %)
Throughput (Mbits/s) 1333 2600 (+95 %) 4600 (+245 %)
Slices 352 583 (+66 %) 706 (+101 %)
LUTs 772 957 (+24 %) 1283 (+66 %)
Flip Flops / BRAMs 478 / 10 240 (-50 %) / 0 358 (-25 %) / 0

Table 5.5.: Comparison of a liteNoC and a LiPaR 5-port router implementation on
Xilinx XC2VP30.

The previous results show that the flexible NoC design template, proposed in this
work, is also very efficient for building lightweight communication infrastructures
for FPGAs. The instantiated liteNoC is superior to NoC implementations, such as
Hermes and LiPaR, which are dedicated for FPGAs. LiteNoC was used to extend
the Molen architecture [258], as described in detail in [PQHW+13].

5.4.3.2. Comparison to State of the Art ASIC implementations

Intel’s SCC architecture [113] is one of the most advanced many-core architectures,
as described in detail in section 2.2.5.2. The router design in the NoC of the SCC
also uses packet switching with virtual channels. Thus, it can be fairly compared
against the basic router design, introduced previously.

In [112], area and power consumption of the SCC router are presented for a
45 nm CMOS implementation. The router has a four-stage pipeline, uses 8 virtual
channels and has a link width of 16 byte. The HDL template of the router design,
proposed in this work, was configured accordingly to enable a fair comparison.
Subsequently, it was also synthesized using also a 45 nm CMOS library.

Table 5.6 summarizes the comparison of the two router implementations. The
largest advantage of the SCC router is its higher clock frequency, which is stated to
be 2 GHz54 in [112]. However, the proposed router design achieves only 1.15 GHz
clock frequency under worst case operation conditions. Thus, throughput of
the SCC router is almost twice as high as the presented design. This substantial
difference is justified by worst case assumptions and by the use of another ASIC
library. Comparing the area requirement of both routers, there is a significant
advantage for the router design of this work. It requires less than half of the area
needed to implement an SCC router with the same parameters. The lower area

54The NoC of the SCC prototype is only running stable at a much lower frequency of 800 MHz [265].

155

5

5. Basic Architecture Realization

requirements are also reflected in a significantly lower power consumption of
the proposed router. The much lower power consumption is on the one hand
explained by the lower clock frequency. On the other hand, the lower area
requirements also result in less power consumption compared to the router of the
Single-chip Cloud Computer.

Parameter SCC Router [112] Proposed Router
Frequency (MHz) 2000 1150 (-43 %)
Latency (cycles) 4 4
Link Width (Byte) 16 16
Throughput (GB/s) 64 36.8 (-43 %)
Area Requirements (mm2) 1.100 0.457 (-58 %)
Power Consumption (mW) 500 30.0 (-94 %) - 37.4 (-93 %)

Table 5.6.: Comparison of the proposed basic router implementation against a
router of Intel’s SCC architecture.

The comparison between the SCC router and the proposed router design shows
the advantages of both implementations. If a high clock frequency is desired,
the SCC router has clear advantages. However, if the NoC should not operate
at frequencies higher than 1.15 GHz, the proposed router is beneficial due to its
lower area and power consumption.

5.5. Extensions

Different extensions of the basic router are described in this section. Most of these
extensions are necessary to carry out the concepts presented in the following
chapters.

5.5.1. Control Network Layer

A so-called control network layer is used to enable NoC-internal communication.
NoC-internal communication includes NA-to-router, router-to-router, router-to-
NA or NA-to-NA communication. NA-to-NA communication is typically re-
quired for end-to-end flow control. However, in existing NoCs it is not envisaged
that a router transmits or receives packets. It is only responsible for forwarding
packets. In order to implement some of the self-optimization strategies, presented
in chapter 7, router-to-router and router-to-NA communication is required. To
enable packet injection by the router itself, an additional router port is required

156

5

5.5. Extensions

or one of the existing router ports must be shared. However, both of these so-
lutions have serious drawbacks: (1) adding an additional ports to each router
results in a super-linear increase of the area and power consumption, according to
equation 2.355. (2) Sharing an existing router port leads to a disadvantage of the
connected component due to increased latencies and reduced bandwidth. (3) Both
solutions lead to additional load of the main NoC. Because of these disadvantages,
it was decided to use a separate lightweight NoC for NoC-internal communica-
tion. Moreover, a separate NoC enables to completely decouple NoC-internal
communication from inter-tile communication56. This is one important aspect that
underlines the decision to use a separate NoC. The low implementation overhead
of the control network, investigated later in this section, is another benefit of a
separate NoC layer.

The liteNoC variant, introduced in section 5.4.3.1, is utilized as a lightweight
control network. Due to the overhead of virtual channels, previously analyzed, it
does not use VCs at all; resulting in reduced implementation costs. The reduction
of the complexity enables to merge pipeline stages to reduce the transmission
latency57. Depending on the bandwidth requirements of the control network, its
link width might be small to keep the additional area consumption low.

Figure 5.19 shows the embedding of the control network. The control layer is also
referred to as a control channel. If the respective feature of the NoC template is
enabled according to appendix A.6, one control router is instantiated in each router.
It is connected to the four adjacent routers and to the processing tile by using
separate control channel links. The sixth port of the control router is used to connect
a router’s internal components, which must communicate to other routers or
tiles. An example of such a component is one of the FSMs, used for the rerouting
implementation, as detailed in section 7.1. In figure 5.19, such components are
exemplary represented by the FSM module, attached to the router-internal port.

Figure 5.20 illustrates the head flit format, used in the control network. An
additional bit in the head flit is used to address a router instead of a tile58. Conse-
quently, a flit is forwarded to the router internal components, if the respective bit
is set. However, depending on the configuration of the design, multiple compo-
nents may exist in the router, which must use the control network. Another field,
named FSM ID, is used to identify the component or FSM, in this case. This ID is
then used to forward incoming packets to the appropriate component.

55The reason is the super-linear growth of the crossbar complexity with respect to the number of
input and output ports.

56Decoupling of communication can be used to prevent deadlocks. End-to-End flow control between
two NAs can e.g. be decoupled from other communication by using a separate network.

57Instead of 4-5 pipeline stages, used for the main network, only 2-3 pipeline stages are required in
liteNoC to achieve the same clock frequency.

58In order to address the sixth port of the router, the same address as for the tile/NA attached to the
router is used.

157

5

5. Basic Architecture Realization

RouterRouter

Processing
Tile

FSM FSM

Processing
Tile

Control
Router

Control
Router

 Data Channel Link: Control Channel Link:

Figure 5.19.: NoC with separate data and control channel. The control network
has an additional port for the router itself.

1 0

DST Address FSM ID
Head Bit

Tail Bit
Payload

0: Tile is DST
1: Router is DST

Figure 5.20.: Head flit with additional fields to address router-internal compo-
nents in the control network.

However, the control network does not only enable to receive data by the router of
the primary NoC, it also enables to generate messages in the router and transmit
them to other routers or network adapters. An arbitration unit is used within
the router to manage the transmission process in case of multiple components
with a capability to generate and transmit packets. The arbitration unit enables a
fair access to the control network by all components. Therefore, a round-robin
arbitration is utilized.

Thus, the implementation overhead of the control network will be quantified.
Therefore, a reference design with the same parameter setting as in section 5.4.3.2,
is used. A single router is synthesized with and without a control channel. The
control channel is configured to have a link width of 16 bit. The results show, that

158

5

5.5. Extensions

the control router does not impact the clock frequency of the design. The area
consumption increases by only 4.0 %, if a control network is used. The power
consumption of the idle router rises by 2.3 %, when adding a control channel.
These results show the small additional cost resulting from the implementation of
the control channel.

5.5.2. Circuit Switching Extension

Compared to packet switching, circuit switching typically has a lower power
and chip area consumption [269]. Moreover, its latency is typically much lower
than for packet switching. A detailed comparison of packet and circuit switching
is provided in section 2.4.3. However, a pure circuit switching NoC cannot be
built in a distributed way. The reason is the lack of best-effort support, which is
necessary to manage the circuit switching connection setup in a distributed way.
Consequently, a circuit switching network is typically combined with a packet
switching network to enable scalability. Prominent examples are the Æthereal
NoC [92] and the Tilera iMesh NoC [18]. Both architectures combine packet and
circuit switching to make use of the advantages of both concepts.

As part of a student’s work [Sch13], a circuit switching extension for the proposed
router design, was developed. It combines the packet switching router and
a circuit switching router to form a hybrid NoC. A schematic block diagram
is provided in figure 5.21. As shown, the packet switching router (white) is
coupled with the circuit switching extension (green). Currently, the liteNoC router,
introduced in section 5.5.1, is used as packet switching router59. Optionally, link
sharing can be enabled, which necessitates an input and output multiplexer, as
well as the link share control unit. Link sharing allows the same link to be used for
packet and circuit switching communication. For example, the optional sharing
of links can be used to reduce the number of TSVs, in case of 3D integration. If
the number of wires between neighboring routers plays a minor role, separate
links may be used for packet and circuit switching; improving the throughput.

The circuit switching router uses a TDM scheduling scheme, introduced in sec-
tion 2.4.3.4, in order to enable multiple parallel circuit switching connections
at each router port. If link sharing is activated, free TDM time slots are used
by the packet switching router to transmit flits. Link sharing improves the link
utilization, as shown in the following evaluation. The reason for the relatively
low link utilization of a circuit switching network is the restriction for the time
slot assignment due to the synchronous scheduling, as described in detail in

59The liteNoC router was used to keep the initial circuit switching design simple. However, it can be
replaced by the more complex router design with VCs, with minimal modification of the circuit
switching components.

159

5

5. Basic Architecture Realization

Hybrid Router

Packet Switching (PS)
Router

Circuit Switching (CS)
Router

Link Share Ctrl.

PS Link (out)

Shared Link (out)

PS Link (in)

Sh
ar

ed
 L

in
k

(in
)

CS Link (in) CS Link (out)

PS Link (internal, 6th port)

Link Share Control Interface

Figure 5.21.: Schematic structure of the hybrid router. The packet and circuit
switching sub-router share the same link optionally.

section 6.1.2. The search of a valid time slot assignment at each router, passed by
a new connection, is very challenging to implement in a distributed way.

Figure 5.22 shows a scenario where some time slots are currently in use. Assuming
that a new connection shall be established between node 0x0 and node 2x2, only
one valid path and time slot (TS) assignment exists60. This path begins at the local
port of router 0x0 with TS 3, uses TS 0 between router 0x0 and 0x1 and continues
between router 0x1 and 1x1 using TS 1. Subsequently, TS 2 is used between router
1x1 and 1x2, followed by TS 3 at the link to router 2x2. At the local port of router
2x2, TS 0 is again used.

The previous example should give an impression of the complexity of a circuit
switching connection setup, including time slot assignment. A depth-first-search
routing strategy is utilized to search for a valid path and TS assignment in a
distributed way. For connection management, the packet switching network
must be used. A request packet is sent from hop to hop towards the destination
node, containing a list of the valid time slots. If a TS is not available in one of
the routers, the respective entry in the request packet is set to 0. When the list
of valid time slots is empty before the packet reaches the destination node, the
path cannot be used. Then, a fail response packet is sent back on the same way.
Subsequently, an alternative route is taken by another request packet originating
from the source router. This process is continued until a valid route is found or all

60For the example, it is assumed that only those links are taken into account, where the time slot
utilization is given. Each router has a transmission delay of one cycle. All routers schedule the
same TS synchronously.

160

5

5.5. Extensions

Router
0x0

Router
0x1

Router
0x2

Router
1x0

Router
1x1

Router
1x2

Router
2x0

Router
2x2

Router
2x1

TS-3TS-2 TS-1 TS-0 Free-Timeslot Used-Timeslot

Figure 5.22.: Example of a 3x3 circuit switching NoC with free and used time
slots [Sch13].

possible alternative paths have failed. If a valid path and time slot assignment
is found, a set packet is used to activate the route and the pre-allocated time slots.
Release of an established circuit switching connection is again performed by the
use of BE packet switching communication. A release packet is sent from router to
router to close a connection hop by hop.

Within the circuit switching router component the circuit switching control unit,
shown in figure 5.23, enables distributed connection management. It is attached to
an additional port of the packet switching network, similar to the control network,
introduced in section 5.5.1. The circuit switching control unit consists of a four stage
pipeline. The first and the last stage may be occupied by a packet for multiple
cycles, depending on its size. The first stage is the input-FSM. It is used to extract
the data, such as the valid time slots from incoming packets. The packet selector
is used to select a packet for processing from the input-FSM or waiting-queue.
The waiting-queue is used to store requests, which cannot be processed directly.
Requests, selected by the packet selector for processing, are forwarded to the
execution unit. It is used to process, request, fail, set and release packets as well as
controlling the reservation table of the circuit switching network. The execution
unit is also used to trigger the generation of new packets by the output-FSM.

161

5

5. Basic Architecture Realization

According to the depth-first-search routing strategy, reservation request packets
are generated and injected into the packet switching network by the output-FSM.

IDLE

Re
ce

iv
in

g
H

ea
d

Receiving
Body

Re
ce

iv
in

g
Ta

il

Receiving
Body

Converting

Input-FSM

IDLE

Se
nd

in
g

H
ea

d

Sending
Body

Se
nd

in
g

Ta
il

Sending
Body

Receiving
Last Ack

Output-FSM

Setup-
Packet

Edit-Packet

Req Valid 1

Fi
fo

-f
ul

l

Fi
fo

-e
m

pt
y

Waiting-
Queue

Packet-
Selector

Execution
Unit

Next-Packet

Valid 2

Request-Register

N
or

th

Ea
st

So
ut

h

W
es

t

Lo
ca

l

Out-
Hold-
Buffer Send-

Packet

Req

Input-Flit
Input-Req

Input-Ack

Re
ad

W
rit

e

Ack

Output-Flit

Output-Req

Output-Ack

Set-Enable

Rel-Enable

Time-Slot-Select

Outport-Select

Inport-Select

Re
se

rv
at

io
n-

Ta
bl

e

1 cycle 1 cycleN+1 cycles N+1 cycles

N = Flits per Setup-Packet

Hold 2 Hold 1

Figure 5.23.: Structure of the circuit switching control unit. It enables distributed
setup and release of circuit switching connections [Sch13].

The reservation table of the circuit switching network performs the TDM schedul-
ing. It controls the crossbar of the circuit switching sub-router. Therefore, the
reservation table entry of the selected time slot is elaborated. When link sharing is
activated, the reservation table is also responsible for triggering packet switching
transmission.

A so-called pass-signals enables to reuse time slots, reserved for circuit switching,
for packet switching transmission. Therefore, the pass-signals is set at the start-
point of a connection as long as the connection is idle. An active pass-signals
is taken into account by the TDM scheduler of each router. The use of the pass-
signals can increase the link utilization, as shown by the following results.

More details about the functioning of the distributed circuit switching connection
management and the link sharing concept as well as implementation details are
provided in [Sch13]. However, circuit switching is only considered an optional
extension of the packet switching NoC, within the scope of this work.

5.5.2.1. Evaluation

The circuit switching extension is evaluated by comparing a pure packet switching
and a pure circuit switching network with two variants of the proposed hybrid
NoC design. A 4x4 mesh topology is used to evaluate the achievable throughput

162

5

5.5. Extensions

or bandwidth. The circuit switching NoC and the hybrid NoC design have 4
TDM time slots. NoC load is generated by setting up 20 random circuit switching
connections and best-effort packet switching traffic with uniform random distri-
bution. The results are shown in figure 5.24. The CS+PS variant represents the
hybrid router design with shared links; used for packet and circuit switching. The
pass value represents the amount of cycles where the pass-signal is active61. Only
PS is a packet switching NoC without virtual channels. Only CS in turn is a pure
circuit switching implementation. A hybrid router with separate links for packet
and circuit switching is represented by CS+PS, 2Links.

CS+
PS,P

as
s=

0

CS+
PS,P

as
s=

0.2
5

CS+
PS,P

as
s=

0.5

CS+
PS,P

as
s=

0.7
5

Only
PS

Only
CS

CS+
PS,

2L
in

ks0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
N

od
e] Circuit switching

Packet switching

Figure 5.24.: Achievable throughput for packet switching (PS), circuit switching
(CS) and for the proposed hybrid network (CS+PS) with shared (Pass)
and separate links (2Links) [Sch13].

The investigations, provided in figure 5.24, show that the hybrid router design
CS+PS achieves a higher throughput compared to a pure packet or circuit switch-
ing variant. If the workload of the circuit switching decreases, indicated by
active pass-signals, the total bandwidth utilization also decreases. However, the
bandwidth for packet switching communication increases due to the bandwidth
stealing mechanism. Thus presenting the benefit of the pass-signals. When the
packet and circuit switching router use separate links (CS+PS, 2Links), the band-
width is of course higher. However, the performance penalty resulting from link
sharing is only 18 % for the given scenario. Thus, link sharing may be used with
a small bandwidth penalty at positions in the NoC, with the number of wires
playing an important role. Other links can be built separately for packet and
circuit switching. A more detailed performance evaluation is provided in [Sch13].

61An active pass-signal reduces the bandwidth of circuit switching traffic but increases the bandwidth
for packet switching.

163

5

5. Basic Architecture Realization

The implementation costs for an ASIC realization of the proposed hybrid router
design are also analyzed in detail in [Sch13]. Compared to a packet switching
router with two virtual channels, it consumes 20 % less area, while achieving
approximately equal throughput.

To summarize, the hybrid router design offers promising results with regards to
performance and cost. It offers a lower latency and power consumption as well
as an improved link utilization compared to pure packet or circuit switching. In
future versions of the InvasIC architecture, the hybrid router design can be used
to offer packet and circuit switching communication on demand.

5.5.3. Monitoring Infrastructure

Monitoring is a key enabler for debugging, performance analysis and optimiza-
tion. With respect to communication, monitoring can be used to identify hotspots
and bottlenecks, subsequently react on them. In the context of invasive comput-
ing, monitoring is used to enable optimization at the software layers of the system.
Therefore, the monitoring information is taken into account while allocation of
resources and for task mapping, as described in detail in [HZW+14]. Furthermore,
monitoring is also used by the NoC hardware itself to enable self-optimization
based on the current utilization status of the network. Thus, monitoring is also
necessary to implement some of the self-optimization strategies, presented in chap-
ter 7. In addition, monitoring information is used by the adaptive routing scheme,
discussed in section 2.4.5.

A modular monitoring infrastructure is created in the NoC routers. The moni-
toring units can be configured at design-time and run-time to meet the system
requirements. Three different types of monitors are available:

• Link utilization (LU): Monitor the utilization of all outgoing links to neigh-
boring routers and to the network adapter at the local port. LU monitors
are used during resource allocation to obtain the available bandwidth.

• Virtual channel utilization (VCU): Providing information about the uti-
lization and availability of virtual channels. They are used to estimate if
additional GS connections, used for invasion of communication resources,
can be established. This scheme is described in detail in section 6.2.1.5.

• Buffer utilization (BU): These monitors capture the buffer fill level. They
can be used to detect back pressure and overload of existing GS connections.
The buffer utilization monitoring is only used for detailed analysis of the
NoC performance.

All monitors measure the respective utilization for a predefined period. Counters
are used to sample the respective signals in the NoC routers, as shown in fig-

164

5

5.5. Extensions

ure 5.25. A separate monitor is used for each port or VC respectively. The values,
captured by the monitors, provide the average utilization within the measure-
ment period P. The length of the period P can be defined at run-time between
1 and Pmax by using the memory mapped configuration registers of the router.
Details about the monitoring registers are provided in appendix A.4. The run-time
configuration enables the adjustment of the monitoring period according to the
application behavior. In addition to this average monitoring, the VCU and BU
monitors measure the peak utilization. This is the highest number of used VCs
or buffer slots being utilized at the same time. A history of the last N periods is
stored in the monitoring units. The history enables to obtain information about
the evolution of the utilization during the past periods. The size N of the history
can be defined at design-time by the use of the parameters, defined in table A.14.

O
ut PortsIn

 P
or

ts

Port 1

Port N Port N

Port 1

Buffer
Monitoring Lin

k
M

on
ito

rin
g

Virtual Ch.
Monitoring

Routing
Reservation

Table
Transmission

Control

BufferBufferBufferBuffer

BufferBufferBufferBuffer

Routing
Reservation

Table
Transmission

Control

Figure 5.25.: Packet switching router with monitoring extensions.

There are ways for accessing the monitoring information. The most common way
is the access of monitoring data by the use of memory mapped registers. This
approach is applied in the InvasIC architecture, where the monitoring information
are access via memory mapped registers, located inside the invasive network
adapter. These registers are explained in appendix A.4. Furthermore, a finite
state machine was built to enable access of the monitoring data through the
aforementioned control network. The FSM also supports periodic transmission of
monitoring data to distribute them automatically. More details about the FSM-
based monitoring data transmission are provided in [Kar12]. The aforementioned
methods are used to enable monitoring data access by the software or operating
system managing the hardware. A concept, describing the usage of monitoring
data by the OS, is presented in section 6.2.1.5. However, the monitors are also
used as a basis for self-optimization in the NoC. Therefore, the monitoring data

165

5

5. Basic Architecture Realization

is forwarded router-internally to the components making the decisions for self-
optimization. A detailed description is provided in chapter 7.

5.5.3.1. Overhead Analysis

The implementation overhead of the monitoring infrastructure is investigated
now. Therefore, two baseline versions of the NoC router are used: The Base32
variant has a link size of 32 bit. It is the router version used for the FPGA prototype,
presented in appendix A.1. LU and VCU monitoring is used in the prototype.
However, that link size and the resulting bandwidth would be too small for an
ASIC implementation. Thus, a second variant (Base256) with 256 bit link size is
used to estimate the overhead of a router. This variant adheres to the requirements
of an ASIC design, which contains a large number of cores. A link size of 256 bit
is reasonable for a large many-core architecture, considering Intel’s Single-chip
Cloud Computer [113], which has a link size of 144 bit to connect 24 tiles with
only 48 cores.

Router Version Frequ. Area Power (Min. - Max.)
(MHz) (µm2) (mW)

Base Router (32 bit) 1500 50039 7.9 - 12.7
Base32 + LU,VCU Mon. 1500 53777 (+7.5 %) 9.3 (+16.3 %) - 14.2 (+12.3 %)

Base Router (256 bit) 1500 250728 23.9 - 28.1
Base256 + LU,VCU Mon. 1500 255992 (+2.1 %) 25.2 (+5.1 %) - 29.3 (+4.3 %)
Base256 + LU,VCU,BU 1500 261376 (+4.2 %) 27.9 (+16.3 %) - 32.1 (+14.1 %)

Table 5.7.: Implementation overhead of the monitoring infrastructure for two
different router variants [HZW+14].

The synthesis results for a 45 nm ASIC implementation of a single 5-port router
with four virtual channels are provided in table 5.7. The results for the small
Base32 router show that link utilization and virtual channel utilization monitoring
increases the area consumption by 7.5 % and the power consumption between
12.3 % and 16.3 %. The critical path and thus the clock frequency is not affected by
the monitoring infrastructure. As such, the desired clock frequency of 1.5 GHz is
achieved for all router variants62.

For a real ASIC implementation of a large NoC-based architecture, the synthesize
results of the router with a link size of 256 bit are more meaningful. Such a link
size better reflects the bandwidth requirements of a large and scalable architecture.
The synthesis results in table 5.7 show that the Base256 ASIC implementation,
62A clock frequency of 1.5 GHz can be achieved with four virtual channels. If the number of virtual

channels is higher, the critical path in the transmission control unit limits the clock frequency. This
is the case in the variant used in section 5.4.3.2.

166

5

5.5. Extensions

equipped with link utilization and virtual channel utilization monitoring, has a
2.1 % higher area consumption compared to the baseline. Power consumption is
increased by 5.1 % at maximum. The achievable clock frequency of 1.5 GHz is not
affected.

Buffer utilization monitoring has a much higher implementation overhead com-
pared to LU and VCU monitoring. In contrast to LU and VCU monitoring, BU
monitors are not required to make decisions at run-time. Both the operating
system and the self-optimization mechanisms necessitate only LU and VCU mon-
itoring. Thus, BU monitors should only be included within a design if detailed
back-pressure analysis for individual applications is required.

In general, it can be summarized that link utilization and VCU monitoring have
an acceptable implementation overhead for a realistic ASIC implementation with
a 256 bit NoC. More details about the monitoring infrastructure and its use in the
context of invasive computing are provided in [HZW+14].

5.5.4. In-Order Packet Processing Support

In-order delivery or in-order arrival is an important requirement of a commu-
nications system. For instance, it is necessary to prevent race conditions during
memory access, which could result from data hazards63. In order to prevent such
race conditions, it must be ensured that packets, transmitted between two nodes,
are delivered in the order of transmission64.

In the case of adaptive routing, where packets from the same source to the same
destination can take different paths, the data may arrive in the wrong order. The
reason is different load situations and consequently varying delays on different
paths. Consequently, a reorder mechanism is necessary in the network adapter to
deliver the data in the original order for prevention of race conditions. Such an NA
implementation with reorder buffers, for in-order delivery, is presented in [67].
However, such reordering mechanisms typically include a huge implementation
overhead because of the large and complex reorder buffers. Alternatively, deter-
ministic routing may be used to ensure in-order arrival. When all packets with the
same source and destination node take the same route through the NoC, in-order
delivery can be ensured by in-order processing within each router. If no virtual
channels are used, in-order processing is typically done implicitly. However, the
proposed router design uses virtual channels. Thus, multiple packets may be

63There are three situations that can lead to a data hazard: read after write (RAW), a true dependency;
write after read (WAR), an anti-dependency; write after write (WAW), an output dependency.

64In-order delivery can only be ensured for one sending and one receiving node. If multiple nodes
are involved in a communication scenario, synchronization mechanisms must be used to prevent
race conditions.

167

5

5. Basic Architecture Realization

processed in parallel, which could lead to a situation where they pass each other.
Consequently, a special mechanism is required to ensure in-order processing.

In the proposed router, in-order processing is ensured by modifying the reserva-
tion process in the output reservation table. Therefore, the output reservation table
is extended to determine whether there is an existing reservation for a packet that
has the same destination address. If this is the case, the reservation request is
rejected to avoid parallel reservation of multiple VCs for packets with the same
destination address. This mechanism ensures that packets, which are transferred
between the same pair of nodes, are processed sequentially and thus in-order.

The implementation has been verified in simulation by examining the packet-
order in each router for multiple traffic scenarios. In order to investigate the
implementation overhead for in-order processing, a reference design with the
parameter setting from section 5.4.3.2 is used. Compared to reorder buffers in the
NA [67], the modification of the ORT is very lightweight; with the area consump-
tion only being increased by 1 %. As such, neither the idle power consumption
nor the clock frequency is affected.

With respect to performance, it could be expected that the restrictions, which are
necessary to ensure in-order processing, have a negative impact on delay and
throughput. Latency and throughput of an 8x8 mesh with in-order processing
support are compared against the reference implementation in order to investigate
the performance impact. The results show that latency is slightly reduced, by
an average of 1.1 % for random best-effort traffic, with different injection rates.
Astonishingly, throughput is increased by an average of 2.6 %, when in-order
processing is enabled in the router design. This increase results from the restriction
to only use one VC at each router for packets to an overloaded destination node.
This restriction reduces the probability that other packets experience head-of-line
blocking.

In summary, it can be stated that in-order delivery can be ensured by the proposed
extension of the routers with very low additional costs and with negligible impact
on latency and throughput.

5.5.5. High Bandwidth Router

The InvasIC architecture, introduced in section 3.2, is a heterogeneous architecture,
consisting of different types of tiles. In contrast to homogenous architectures,
where all tiles have typically the same bandwidth requirements, varying demands
may exist for different types of tiles. The TCPA or the memory tile of the InvasIC
architecture are tiles, which are expected to have higher bandwidth demands than
others, as described in detail in section 3.2.1.

168

5

5.5. Extensions

Figure 5.26 shows an example of a heterogeneous architecture with a memory
node being accessed by other nodes. The example illustrates memory communi-
cation arriving at different input ports of the router attaching the memory. All
communication must be forwarded through the local port to the memory. Vice
versa, the requested data is transferred through the local port, split up inside
the router and subsequently forwarded to the requesting processing nodes. As
shown in the example, the local port of the router connecting the memory can
become a bottleneck from the bandwidth perspective.

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

Figure 5.26.: Memory node surrounded by processing nodes. Memory communi-
cation meets at the local port.

A more specific scenario, which shows that the local port of the memory nodes
can become a hot spot, is provided in figure 5.27. The link utilization of each
router port in a 6x6 mesh with 4 memory tiles and 32 processing tiles is analyzed.
Each memory tile (M) is surrounded by 8 processing tiles (P). The measurements
are obtained from the simulation framework. The application model from sec-
tion 5.2.3.2 is utilized to model memory communication as well as core-to-core
message passing communication. It can be observed that the local ports, connect-
ing the memory tiles, have a utilization around 100 %, whereas other ports in the
NoC have a much lower utilization.

The previous examples showed that the local port of a normal 5-port router, as
shown in figure 5.28(a), can become a bottleneck for memory communication.
The reason is that aggregated bandwidth is required at the local port. The total
throughput TPout of an output port pout can be calculated as follows:

TPmax ≥ TPout(pout) =
N−1

∑
i=0

TPin(pout)(i) (5.15)

169

5

5. Basic Architecture Realization

0 47 0 50 0 62 0 54 0 60 0 56
0 P 47 33 P 40 48 P 52 27 P 47 38 P 32 39 P 0
0 19 1 48 2 42 6 31 7 57 8 34

27 61 21 99 33 57 38 61 40 98 41 53
0 P 47 30 M 46 21 P 47 27 P 31 37 M 33 36 P 0
9 25 10 39 11 38 15 56 16 47 17 43

44 57 46 58 29 57 44 63 59 63 48 57
0 P 42 41 P 21 29 P 25 46 P 35 29 P 28 32 P 0
18 47 19 36 20 30 24 45 25 34 26 55

58 54 25 64 31 51 33 59 41 53 48 57
0 P 28 27 P 36 37 P 45 31 P 35 30 P 21 36 P 0
54 57 55 56 56 20 60 26 61 58 62 51

43 54 33 99 43 61 40 50 36 98 52 60
0 P 31 32 M 41 29 P 41 24 P 33 37 M 32 35 P 0
63 44 64 38 65 35 69 36 70 41 71 36

27 62 54 66 55 60 32 55 46 55 37 53
0 P 48 30 P 52 49 P 50 66 P 45 45 P 38 40 P 0
72 0 73 0 74 0 78 0 79 0 80 0

Router: N L Utilization (%): 0 10 20 30 40 50 60 70 80 90 100

W P/M E
S P: Processing Tile M:Memory Tile

Figure 5.27.: Output port utilization of each router in a 6x6 mesh with 4 memory
tiles (M) and 32 processing tiles (P) [HBRB13].

In equation 5.15, TPmax is the achievable, maximum throughput per port. N is
the number of ports per router. TPin is the incoming throughput at input i, which
will be forwarded to pout. According to equation 5.15 the output of a 2D meshed
NoC could be over-utilized by a factor of four65. In other words, if all ports must
use the same output port with a quarter of TPmax, TPout is utilized to 100 %. This
is the case for the memory tiles in figure 5.27.

In order to avoid frequently used ports becoming a bottleneck, the general band-
width of the network may be increased by increasing the link size. However, this
would reduce the relative utilization of all ports in the network, but results in
huge implementation overhead, as later analyzed. Thus, it is more efficient to
increase the bandwidth only where it is required. Therefore, a router with a higher
bandwidth at the local port is desired and consequently designed. This router is
named high bandwidth (HBW) router. The HBW router shall forward packets from
the four cardinal-direction input-ports (N, E, S, W) with increased bandwidth to

65Assuming an equal bandwidth at all ports and data that do not leave the router through the same
port as they have entered it.

170

5

5.5. Extensions

the connected node and vice versa. The router is used to attach nodes with high
bandwidth demands66.

In general, two options exist for increasing the bandwidth of the local port,
assuming a constant clock frequency: (A) increasing the link capacity by increasing
the width of the link or (B) increasing the number of links. It was decided to use
multiple links from the router perspective, thus increasing the number of links.
This has two main advantages: (1) it enables a homogeneous router design with
equal capacity and size of all links67 and (2) the number of virtual channels, which
could be used by GS connections to the tile, increases if the number of local ports
is increased68.

Buffer

Buffer

Bu
ffe

r Buffer

RU

RU

RU

RU

TC

ORT

North

South

W
es
t

East

Router

(a) Normal 5-port router

Buffer

Buffer

Bu
ffe

r Buffer

RU

RU

RU

RU

TC

ORT

North

South

W
es
t

East

N N

Router

HBW-Router

(b) High bandwidth router

Figure 5.28.: Structure of a normal 5-port router (a) and a high bandwidth
router (b) with two internal local ports [HBRB13].

The high bandwidth router, resulting from the previous deliberations, is shown
in figure 5.28(b). Compared to a standard 5-port router, similar to the example
shown in figure 5.28(a), it has a second local port to double the bandwidth to the
tile. Typically, the two ports must be merged to form a single port with double

66In case of a memory tile, this implies that the attached memory and the memory controller support
this higher bandwidth. However, this is required anyhow if the memory shall not become a
bottleneck. The bandwidth of the memory controller and the memory itself is out of the scope of
this work and thus assumed to be sufficient.

67Increasing the capacity of one out of five ports would make the router implementation very complex,
due to the heterogeneity resulting from different link sizes of the ports.

68Additional VCs also increases the number of possible GS connections that can be used for predictable
memory communication. Thus, more nodes can profit from GS memory communication.

171

5

5. Basic Architecture Realization

capacity to connect it to a single tile. This is necessary to attach a single memory
or memory controller respectively. A module referred to as HBW port controller
is used to merge the two local ports, also shown in figure 5.28(b). The in-port
controller is used to distribute the communication flows from the tile to the two
local ports. Memory access requests, arriving at the memory node, are inserted
into the output buffer. The requests of the buffers are processed using a fair
round-robin scheduling.

Increasing the number of router ports from five to six results in an increase of
the crossbar complexity, as described in section 2.3.2.4. In order to reduce the
complexity and implementation overhead of the crossbar, each regular router
input (N, E, S, W) is assigned to one of the two local ports. This reduces the
number of inputs of the crossbar multiplexers, which are used for forwarding
data to one of the local ports, from 4 to 2. The routing unit (RU), shown in
figure 5.28(b), must be slightly adapted to select one of the two local ports for data
to be forwarded to the tile. In the current implementation, the north and the east
port share one output and the south and the west port share one. Consequently,
the two local ports are named Local_NE and Local_SW respectively. In order to
further optimize the crossbar, it is required to allocate packets entering the router
from the local ports, according to the used output port. This enables to reduce
the size of the multiplexers of the four cardinal directions from 5 to 4 inputs.
The in-port controller is used to ensure that incoming packets from the memory
node are injected into the correct local input port. Therefore, it contains separate
buffers for each of the two local input ports. They are used to keep both ports
busy. The in-port controller is a wrapper, which forms one single router port with
a doubled link width from the tile perspective. This enables a straight forward
implementation of the network adapter attached to the NoC. More details about
the implementation are provided in [HBRB13] and [Bis12].

5.5.5.1. Evaluation

Performance The performance improvement of a high bandwidth router is
investigated by analyzing the memory communication of different applications.
Therefore, it is assumed, that L2 cache misses result in memory communication
through the NoC, according to the InvasIC architecture. The independent execution
time (IET) is defined as the number of cycles between two L2 cache misses. The
analysis of different SPEC CPU2000 benchmarks [51], described in [HBRB13],
exhibits large differences between various applications. For example, a gcc kernel
has high communication demands. It has an IET of 59, which means that one
cache miss occurs every 59 cycles. In contrast, a gzip application requires minimal
main memory bandwidth with an IET of 2922 cycles. In order to generate the

172

5

5.5. Extensions

memory communication according to the given IET, a memory communication
model was built.

In the following paragraphs, two memory placement variants named border and
center are investigated. For border placement, the memory nodes are attached to
the left and right border of the mesh69. Center placement distributes the memory
in a way that reduces the average distance to the processing nodes.

Figure 5.29(a) shows the load at the memory node for different cache miss rates,
represented by the independent execution time. As expected, the average mem-
ory load increases if the independent execution time decreases. The reason is
that a higher L2 miss rate, which is inversely proportional to the independent
execution time, results in more packages in the NoC and thus in higher load. The
results show that the load characteristic of the normal 5-port router, referred to
as low bandwidth (LBW) router, is almost independent of its placement. Using
the proposed HBW routers to connect the memory improves the bandwidth to
the memory node by 15 % for border placement. Placing a memory node at the
center of the NoC increases the possible throughput even by 25 % compared to
the reference LBW router.

Figure 5.29(b) shows the impact on memory access latency. Placing the memory
nodes centric, reduces the latency compared to a placement at the borders. The
reason is the reduced average distance from the CPU to the memory nodes. At
higher load and consequently smaller independent execution time, the latency
increases for all configurations. Replacing a normal router with centering place-
ment with the proposed HBW router reduces the memory communication latency
by up to 26.7 %.

Next, the impact of the buffer size of the HBW port control module is investigated
for central placement. These buffers are required to supply data to both input
ports of the HBW router in parallel. Thus, the buffer size affects the performance.
The impact on latency is rather small when changing the buffer size. The results
for different buffer sizes do not differ significantly from the latency measurements
of the centric HBW router, shown in figure 5.29(b). As such, the respective results
are not presented here. Figure 5.29(c) shows the usable bandwidth for a normal
router and the HBW router with 4, 8 and 16 buffer slots70. When the IET is low,
the utilization of the memory tile is obviously high. A buffer size of 16 increases
the bandwidth by up to 26 % compared to a HBW router with only 4 buffer slots.
Compared to the LBW variant, the HBW router with 16 buffer slots has a 59 %
higher throughput in case of high L2 miss rates.

Further performance evaluations are provided in [HBRB13]. There, it is also
shown that a HBW router can be used to double the number of GS connections

69In Intel’s SCC architecture [113], the memory controllers are placed at the borders of the mesh.
70For the previous studies, shown in figure 5.29(a) and figure 5.29(b), HBW routers with 4 buffer slots

were used.

173

5

5. Basic Architecture Realization

0 50 100 150 200

40

60

80

Avg. Independent Execution Time (IET) [Cycles]

Ba
nd

w
id

th
[F

lit
s/

10
0C

yc
le

s]
LBW router - border
LBW router - center
HBW router - border
HBW router - center

(a) Usable NoC bandwidth to the memory
for different placements and routers

0 50 100 150 200

20

25

30

Avg. Independent Execution Time (IET) [Cycles]

La
te

nc
y

[C
yc

le
s]

LBW router - border
LBW router - center
HBW router - border
HBW router - center

(b) NoC latency for memory access for dif-
ferent placements and routers

0 50 100 150 200

40

60

80

100

120

Avg. Independent Execution Time (IET) [Cycles]

Ba
nd

w
id

th
[F

lit
s/

10
0C

yc
le

s]

LBW router
HBW router-4 buffer slots
HBW router-8 buffer slots

HBW router-16 buffer slots

(c) Usable NoC bandwidth to the memory
for various in-port control buffer sizes

Figure 5.29.: Performance evaluation for different routers, placements and HBW
in-port control buffer sizes [HBRB13].

to a memory node. This can be very beneficial when using the QoS scheme,
introduced in section 6.2, for memory communication.

Implementation costs The SystemVerilog implementation of the HBW router,
which is derived from the basic router architecture presented earlier in this chapter,
is used to investigate the implementation costs. Therefore, the synthesis flow for
the 45 nm ASIC implementation, presented in section 5.3.2.1, is used.

The synthesis results of a normal 5-port router (LBW) and a HBW router with
a link width of 32 bit are compared. The impact of the buffer size of the HBW
in-port controller is also investigated. The results, presented in [HBRB13] in detail,
show that the area utilization of the HBW router depends heavily on the size of
the buffers. For a small buffer size of 4 slots, the HBW router has an area overhead

174

5

5.6. Summary

of only 32 % compared to the LBW variant71. For a buffer size of 16, the area
overhead is around 60 %. However, it must be taken into account that only a small
number of routers in the NoC have to be replaced by HBW routers. In case of
4 memory nodes in a 64 tile architecture only 4 HBW routers are required. Thus,
the area consumption of the NoC grows by only 3.8 %, if HBW routers are used.
The router clock frequency is not impacted by the HBW implementation, since
the depth of the crossbar is not increased.

As an alternative to the proposed HBW router, the memory bandwidth could be
improved by increasing the general link size of the NoC. A normal router with
64 bit link size instead of 32 bit was synthesized to compare the implementation
overhead to the HBW router approach. The doubling of the link size would result
in an additional area consumption of 53.2 % for the entire NoC, which is huge com-
pared to the 3.8 % overhead of a NoC with 4 HBW routers. Consequently, HBW
routers are an efficient way to avoid communication bottlenecks in heterogeneous
tiled many-core architectures, such as the InvasIC architecture.

5.6. Summary

In this chapter, the design of the best-effort packet switching network on chip
was described. The implementation of the basic router design with virtual chan-
nels and its pipeline model were described. The use of VCs plays a key role
for the realization of the QoS concepts, presented in chapter 6. Subsequently,
the concept and implementation of the network layer protocol was presented.
Two different distributed routing schemes were introduced in order to ensure
scalability. A worst case analysis for the throughput and latency of best-effort
communication was presented in order to motivate the necessity of guaranteed
service communication, enabled by the concept presented in section 6.2.

A SystemC-based simulation framework for the proposed network on chip was
introduced in section 5.2. It is used for the following evaluations and as part of the
design flow, presented in chapter 4. The concept of this framework and a distinc-
tion from existing simulation environments was provided. Subsequently, different
traffic generation methodologies were described. They enable an analysis of a
specific NoC configuration under various traffic scenarios. This is very important
for the design of general-purpose communication infrastructures, where different
communication patterns are expected to occur at run-time. The realization of a
cycle-accurate simulation model of the NoC was then described. The evaluation

71When taking the crossbar complexity, provided by equation 2.3, a 6-port router has an overhead of
50 % (5 · 6

4 · 5) compared to a 5-port router. Taking into account that the HBW port controller comes
along with additional implementation costs, the implementation overhead is relatively low.

175

5

5. Basic Architecture Realization

and analysis capabilities of the simulation framework were described at the end
of the section.

The HDL model of the proposed NoC design was described in section 5.3, build-
ing the second part of the design and evaluation flow that was introduced in
section 4.4. The HDL model and the synthesis flow, presented in section 5.3.2, are
used in the design and evaluation flow and in the following chapters to estimate
clock frequency, power consumption and area requirements.

In section 5.4, a case study was presented in order to demonstrate the capabil-
ities of the semiautomatic design flow. The previously introduced simulation
framework and the HDL model are used to analyze the impact of the number
of VCs and buffer slots on performance, power and area consumption. The case
study is also used to find appropriate settings for the following investigations. In
section 5.4.3, a comparison to state of the art router designs is presented, showing
the resource and power efficiency of the proposed design as well as its increased
performance compared to existing NoC architectures.

At the end of the chapter, different extensions of the basic router design were
introduced. In particular, a control network layer, a circuit switching extension, a
monitoring infrastructure, in-order packet processing support and a high band-
width router extensions were proposed. The extensions are designed in a way
that they can be added to the base design on demand. They are used to enable the
additional concepts, presented in chapter 6, 7 and 8 and to fulfill the requirements
of specific architectures. For instance, the control network is used to enable the
self-optimization scheme, presented in section 7.1. The monitoring infrastruc-
ture is also necessary in order to implement the self-optimization scheme, which
will be introduced in chapter 7. The high bandwidth routers can be used to
fulfill the demands of a heterogeneous many-core architecture, just as the InvasIC
architecture.

The NoC design, the simulation framework and the HDL model, as well as the
extensions, presented in this chapter, are the basis for the concepts of chapter 6, 7
and 8.

176

6

6. Quality of Service

An important aspect of a communication infrastructure is quality of service (QoS).
In general, quality of service is the overall performance of a network, particularly
the performance seen by the users of the network. Different aspects, such as error
rates, availability, bandwidth, throughput or transmission latency, are considered
to quantify QoS capabilities of a communication system. However, in the context
of networks on chip, quality of service can be defines as follows:

Definition. Quality of service is the bandwidth or latency experienced by a component
using the network on chip.

QoS is often used in the context of certain guarantees for bandwidth or latency.
The reason is that quantitative assertions about latency or throughput are usually
only possible in case of guarantees. Such guarantees are typically named guar-
anteed QoS. In the context of networks on chip, guaranteed QoS is defined as
follows:

Definition. Guaranteed quality of service is the capability of a network on chip to provide
certain promises for throughput and/or latency. If only throughput is guaranteed, this is
referred to as guaranteed throughput (GT). If throughput and latency are guaranteed, this
is referred to as guaranteed service (GS).

Quality of service is particularly important for the transport of traffic with special
requirements. Typically, this is the case for traffic or communication that is part
of an application with real-time, safety or security demands. One example of
an application with soft real-time requirements, is the MPEG4 video decoder,
introduced in section 5.2.3.3. When this distributed realization of the decoder
is used as part of a video conference system or media player, a shortfall of the
required bandwidth between the individual tasks would lead to a juddering
picture. Another example for QoS demands are architectures, used as part of
a safety-critical or security-critical system in the embedded domain. A typical
example of such an embedded system is a flight management system of an aircraft
or an electronic control unit within a car.

In general, packet switching networks do not support quality of service. In case
of congestion, the bandwidth may not be sufficient for all best-effort packets.

177

6

6. Quality of Service

In order to avoid congestion in a best-effort network, the bandwidth may be
over-provisioned, so that the bandwidth is sufficient for the expected peak traffic
load. The resulting absence of network congestion eliminates the need for QoS
mechanisms. However, an over-provisioning typically has a strong negative
impact on the NoC’s implementation cost and power consumption. Thus, QoS
mechanisms are typically used to enable guaranteed service communication.
Essentially, exclusive resource reservation mechanisms or prioritization schemes
can be used to guarantee a certain level of performance to a data flow. Existing
QoS schemes, using resource reservation or prioritization, are discussed in this
chapter.

6.1. State of the Art

The implementation of QoS schemes essentially affects the scheduling and re-
source allocation mechanism of a network on chip. As a basis, different schemes
are discussed in section 6.1.1 and 6.1.2. The related work will be addressed after-
wards with focus on scheduling mechanisms and resource allocation strategies.

6.1.1. Scheduling Mechanisms

Providing quality of service in the NoC domain requires a predictable scheduling
of parallel data transmissions. Common QoS supporting scheduling mechanisms
for NoCs are: time division multiplexing (TDM), priority and round-robin (RR). These
QoS scheduling mechanisms are introduced and compared now, by the use of a
traffic scenario, in a router with four virtual channels.

In a TDM NoC1, the same VCn is scheduled synchronous (in the same cycle)
in all routers. This strategy is also known as circuit switching, as described in
section 2.4.3.1. Data, arriving in cycle n in one router, is forwarded in cycle n + 1.
The assignment of VCn to a connection requires VCn+1 in the following router.
Figure 6.1(a) compares the reservation phase for synchronous and asynchronous
scheduling schemes in VC routers. In the example for synchronous scheduling,
only VC2 at the input port can be used currently because VC1 would have to
use VC2 at the output port. However, VC2 is already occupied. This limitation
reduces the degrees of freedom during the reservation phase of a circuit switching
connection. The advantage, resulting from the synchronized scheduling, is the
low latency compared to other scheduling policies. Furthermore, synchronous
scheduled circuit switching avoids buffering within the routers; which reduces
their implementation cost, as already discussed in section 2.4.3.1. Figure 6.1(b)

1In the NoC domain, TDM is also known as synchronous TDM or time division multiple access (TDMA).

178

6

6.1. State of the Art

compares different scheduling policies for a given utilization scenario of a VC
router port shown at the lower left. Synchronous TDM must schedule all VCs,
even if they are idle. This can reduce the achievable throughput of the NoC. The
given bandwidth and latency guarantees are equal for all VCs.

Legend: Reservation Assignment – Valid: Invalid: Scheduling Cycle Length:

Ty
pe

Ba
nd

w
id

th
Sc

he
du

lin
g

Q
ue

ue

Sy
nc

hr
on

ou
s

Sc
he

du
lin

g
A

sy
nc

hr
on

ou
s

Sc
he

du
lin

g

VC0
VC1
VC2

3 Flits

idle
2 Flits

VC3 4 Flits

0
1
2
3

1
2

3
0

VC1
VC2
VC3
VC0

VC3

VC1
VC2

VC3
VC0

VC0
VC0

VC3
VC3
VC3
VC1

VC3

VC3
VC0
VC1

VC3

VC3
VC1
VC3
VC0

Synchronous
TDM

Priority Round-Robin
(Async. TDM)

Weighted
Round-Robin

VC0

VC3

VC1
VC2

VC0

VC3

VC0
VC3

VC3
VC0
VC0

VC1

VC3
VC0
VC1VC1

VC1
VC2
VC3

VC0

VC1
VC3

VC0

VC1
VC3

VC0

VC
 U

til
iz

at
io

n

Input Port Output Port

UtilizationVC Prio. Weight

a)

b)

VC0
VC1
VC2

USED

USED
idle

VC3 idle

VC0
VC1
VC2

USED

idle
idle

VC3 USED

VC0
VC1
VC2

USED

USED
idle

VC3 idle

VC0
VC1
VC2

USED

idle
idle

VC3 USED

VC1
VC3

VC3

VC1
VC2

VC0

VC3

VC1
VC2

VC0
VC0
VC0

VC3
VC0
VC3

VC3
VC0
VC0

uses Prio. uses
Weight

1 2

1 2

Figure 6.1.: (a) Degrees of freedom while VC assignment, (b) Scheduling policy
comparison.

In contrast to time division multiplexing, used in circuit switching networks on
chip, the following scheduling mechanisms are asynchronous.

Priority scheduling always selects the virtual channel with the highest priority
for data transmission. VCs with lower priority are preempted. This preemption
requires buffering in the NoC. Priority scheduling is an asynchronous scheduling
scheme. Compared to synchronous scheduling, it has a higher degree of freedom
during virtual channel assignment, as shown in figure 6.1(a). The assignment
of communication flows to VCs is independent of their scheduling as long as
priorities are not assigned statically to VCs. Static assignment of priorities to VCs
can simplify the implementation and avoid blocking of priorities, but it reduced
the flexibility of VCs assignment. Priority scheduling does not require resource
reservation in advance. Throughput and delay for a given flow depend on the
utilization of the used priority class and higher, due to preemption. In figure 6.1(b),
VC0 is blocked by VC1 and VC3 because of their higher priorities (given by 1©).

179

6

6. Quality of Service

Consequently, independence of different communication flows, also known as
isolation [99], cannot be guaranteed.

Round-robin (RR) is a widely used scheduling policy for asynchronous sched-
uled NoCs. It enables a fair bandwidth distribution between the virtual channels
carrying data. Idle VCs are not taken into account for scheduling. This increases
the bandwidth compared to synchronous TDM, as shown in the example in fig-
ure 6.1(b). VC2 that is idling, is not scheduled when using RR, thus the bandwidth
of the other VCs increases. After reservation of communication resources, RR pro-
vides isolation of independent communication flows. Just as other asynchronous
scheduled policies, buffering is required within routers. The advantage is addi-
tional degrees of freedom during the reservation phase, as shown by the example
in figure 6.1(a).

Weighted round-robin (WRR) scheduling is an extension of the previous de-
scribed round-robin scheduling. A weight is assigned to each flow or VC. VCs
can be scheduled more frequently according to their weights. In figure 6.1(b), a
weight 2© is defined for each VC. The weight represents the number of schedules
per scheduling cycle2. As shown in the example, VC3 with a high weight of three
experiences the highest bandwidth. Since it is scheduled more frequently, the
transmission delay is reduced. WRR provides different hard guarantees regarding
throughput and latency. It has the same drawback as other asynchronous schedul-
ing schemes: buffers are required in the router, increasing their implementation
cost, as well as the typical transmission delay.

6.1.2. Resource Allocation

The number of communication flows, with service guarantees per router port, is
normally limited to the number of available virtual channels or time slots (TSs). As
such, exclusive resource reservation is required (aside from priority scheduling).
Best-effort communication can be used as a fallback solution once this resource
limitation is reached or if guarantees are not required. Therefore, most of the
existing NoCs support GS and BE communication. They can be distinguished
according to their resource allocation policy:

Static Allocation: The resources for guaranteed service and best-effort data trans-
mission are separated. Dedicated resources, e.g. buffers, VCs and scheduling
policies, are used for GS and BE traffic or for different service levels of a GS
communication scheme. The run-time flexibility is limited.

Dynamic Allocation: The resources are assigned dynamically to GS and BE
communication flows during run-time according to their communication require-

2A scheduling cycle is defined as the number of clock cycles until the state machine is again in the
initial state.

180

6

6.1. State of the Art

ments. This scheme offers a higher flexibility but may have the drawback of
increased implementation cost.

The classifications for scheduling and resource allocation, introduced previously,
will be used for the following discussion of related work.

6.1.3. Related Work and Existing QoS Architectures

Providing quality of service guarantees for on-chip communication has been an
attractive topic for research in recent times. Many of the NoCs, introduced in
section 4.2, provide QoS mechanisms. The QoS schemes of these NoCs, as well as
other existing mechanisms will now be discussed.

Bjerregaard and Sparsø propose the MANGO NoC, which offers GS and BE sup-
port through two separately implemented routers [25]. The GS routers forward
data streams on statically programmed point-to-point connections. BE routers are
responsible for connectionless packet-based traffic. The allocation of resources
to GS and BE traffic is done statically. BiNoC [148] is a QoS-aware NoC that
prioritizes GS packets. It uses a special inter-router arbitration scheme to increase
the channel utilization for GS packets.

Millberg et al. present the TDM-based Nostrum NoC providing guaranteed ser-
vice support in addition to BE traffic delivery [178]. A concept named looped
containers is applied to provide QoS guarantees. The VCs that are used for the
looped containers are set up semi-statically, enabling limited run-time flexibility.
Therefore, it is barely applicable to general-purpose MPSoCs with varying band-
width and latency requirements of the executed applications. Lu and Jantsch [166]
also use a synchronous TDM strategy. They apply the looped containers concept
and introduce logical networks to fulfill QoS guarantees. The used VC configura-
tion algorithm is complex and requires an overview of the NoC status. Hence, it
has to be implemented in software, thus limiting the scalability.

Goossens et al. present the Æthereal NoC architecture, which offers both GS and
BE traffic support [92]. GS support requires resource reservation to provide worst
case bandwidth guarantees with bounded latency. BE traffic exploits the NoC
capacity that is not utilized by GS traffic.

Aside from other proposals, [166] [171] [262] Nostrum [178] and Æthereal [92] use
synchronous TDM-based circuit switching in order to provide QoS. None of the
discussed designs support different GS service levels for throughput and latency,
in contrast to the QoS scheme, which will be presented in section 6.2.

Multi-path routing has been proposed in [237] to increase the bandwidth by the
use of multiple parallel connections between source and destination. Each path
has an equal bandwidth. Hence, multi-path routing increases the throughput

181

6

6. Quality of Service

of a connection, but latency cannot be decreased. Multi-path routing has two
main drawbacks: (1) in-order arrival cannot be guaranteed, (2) each additional
path occupies VCs or TDM time slots. Although in-order arrival can be achieved
through re-ordering [146] or more advanced mechanisms [182], the drawback of
increased resource consumption remains. Moreover, multi-paths can only be used
to increase bandwidth, latency cannot be adjusted or reduced.

Bolotin et al. present QNoC providing QoS guarantees with four service levels (SLs)
of different priorities [29]. Communication resources (e.g. buffers) are assigned
statically to the SLs. Each priority level uses a separate queue at each router port.
Globally-synchronized frames [152] is another method which allows different SLs
regarding throughput and latency guarantees. It uses a global barrier network
to distribute and assign priorities to communication flows dynamically. The
complex task of prioritizing packets to provide guaranteed QoS is shifted to
the source node, requiring global knowledge in each node to take concurrent
communication into account. Preemptive virtual clock [99], applied in the Kilo-
NoC [98], is another scheme allowing different bandwidth guarantees per flow by
utilizing priority scheduling. Compared to globally-synchronized frames it has
a better bandwidth utilization and a lower area overhead due to reduced input
buffer sizes. QNoC, globally-synchronized frames and preemptive virtual clocks
all use priority scheduling. Traffic of higher priority preempts communication
flows with lower priority. Hence, isolation between independent flows cannot be
guaranteed. This can lead to negligence of lower priority traffic, as explained in
section 6.1.1.

Weighted round-robin scheduling has been proven to be an efficient scheduling
policy in ATM [128] and IP networks [260]. The authors of [209] compared
weighted round-robin to priority-based scheduling on a theoretical basis. They
proposed router service analysis models and automated delay bound calculations.
The outcome of their investigation shows that WRR scheduling is fairer and more
flexible compared to priority-based scheduling. An architecture concept of a WRR-
based NoC and for its use by system software was not available. Consequently, a
resource efficient decentralized weighted round-robin scheduling implementation
for on-chip networks is presented in section 6.2. To the author’s knowledge,
this is the first NoC router architecture giving different hard guarantees per
connection for bandwidth and latency. WRR is combined with a dynamic resource
allocation scheme. Resources for connectionless BE and connection-oriented GS
traffic of different SLs are assigned on demand at run-time to VCs, increasing the
utilization compared to QoS NoCs with static resource allocation. An algorithm
for GS connection weight assignment, based on application requirements, is also
introduced.

182

6

6.2. Run-time Adaptive End-to-End Connections

6.2. Run-time Adaptive End-to-End Connections

End-to-end connection or end-to-end QoS are the preferred means to provide GS
support for point-to-point communication. In the following sections, a concept is
presented, which provides different levels of throughput and latency guarantees
for point-to-point connections. The concept targets homogeneous and heteroge-
neous MPSoCs with varying workload and communication requirements. It was
published in [HKKB13] and [HKB12]3.

Existing QoS strategies, which support different SLs, use prioritization. Delay and
throughput for one service level depends on the number of packets of the same SL
and higher prioritized SLs, which are transmitted at the same time. Consequently,
no hard guarantees can be given. In contrast, the proposed concept enables
multiple levels of hard guarantees with respect to throughput and latency. Higher
SLs have greater weights with respect to scheduling, but do not preempt lower
ones as priority-based approaches. Therefore, weighted round-robin scheduling is
used. In addition to QoS supporting GS data transmission, the proposed scheme
offers connectionless best-effort communication. BE and GS data transmission
flexibly share the same resources depending on the current utilization by BE
and GS communication flows. The BE packet switching NoC, introduced in
chapter 5, is used as a basis. The virtual channels are used to enable efficient
resource sharing and exclusive resource allocation for GS connections. GS and
BE transmission flows are assigned to the VCs dynamically during run-time.
Multiple service levels allow to adjust the given guarantees according to the
application requirements, enabling a more efficient utilization.

6.2.1. QoS Communication Concept with Hard Guarantees

The proposed concept provides GS connections with different SLs enabling hard
guarantees. A higher service level results in higher bandwidth guarantees and
lower latency. Applications can select the used SL for communication, according
to their requirements. Established GS connections are isolated4 from other flows,
since they exclusively reserve communication resources. Hence, hard guarantees
regarding throughput and latency can be given. GS end-to-end connections from
one node to another are reserved as a chain of virtual channels. All flits of a
packet are injected contiguously for BE transmission, whereas a header flit is
injected solely to setup a GS end-to-end connection. On its way from source to

3Extracts from [HKKB13] and [HKB12], which are completely written by the author of the work in
hand, are used verbatim in this section without identification.

4The isolation refers to the hard guaranteed for throughput and latency. The used dynamic allocation
scheme, described in section 6.1.2, does not enable isolation with respect to security and side
channels.

183

6

6. Quality of Service

destination, the header flit performs the required reservations of resources (i.e.
virtual channels and buffers). This distributed reservation of resources ensures the
scalability of the proposed QoS concept. One of the distributed routing schemes,
introduced in section 5.1.4, is used to calculate the route hop by hop. Once the GS
header flit arrives at the destination, a flow control acknowledge message is sent
back to the source node. GS flow control is carried out by the network adapter,
introduced in section 3.2.2.1. After the source node has received the acknowledge
message, the connection can be used for data transmission. Body flits are used to
transfer data on an established GS connection. A reservation can fail if the VC
limit for GS communication is already reached, as described in detail in section 6.3.
In this case, the source node releases the partly established connection after a
timeout by injecting a tail flit. In the router, where the reservation failed, the
header and tail flit are deleted5. The application or operating system instance
requesting the reservation is informed about the failed reservation.

In order to allow different service levels, the routers’ VC scheduling policy is
extended by a weighted round-robin arbitration scheme, instead of a fair round-
robin arbitration. In the proposed concept, each VC can be assigned to multiple
time slots. The number of time slots a VC is assigned to represents its weight. This
number is equal to the service level requested for the connection. The round-robin
arbitration between concurrent data transmission at the output port is no longer
performed between the VCs but between the time slots the VCs are assigned
to. Once a VC is assigned to multiple TS, it is scheduled multiple times per
scheduling cycle, as shown in figure 6.1(b). Since it is an asynchronous scheduling
scheme, the assignments of the time slots for a connection within different routers
are fully independent of each other. Hence, a connection can use different VCs
and time slots in different routers. This enables flexible resource allocation on a
per hop basis. Since no global knowledge resp. synchronization is required, the
concept offers good scalability.

Figure 6.2 shows an example of a data transmissions scenario in a NoC with the
proposed GS support. The routers in the example have three VCs, which are
illustrated as parallel connections for clarity reasons. Due to the dynamic resource
allocation scheme, no dedicated BE or GS VCs exist. Each VC can be assigned
to BE or GS communication flows. This increases the flexibility during virtual
channel reservation compared to statically assigned virtual channels.

The connection C1 (red) shown in figure 6.2, is an established GS connection
with an SL of 3. The assignment of the connections to the VCs and time slots are
shown for each router output port. The time slots and VC used by C1 in different
routers are fully independent of each other, increasing the flexibility compared to
a synchronous TDM-based scheduling. C2 is a head flit transmission that initiates
a GS connection of SL 1. Once the GS header arrives at a router, the output port

5GS head and tail flits can be easily dropped or deleted because they do not contain any payload.

184

6

6.2. Run-time Adaptive End-to-End Connections

is determined by the decentralized routing algorithm, followed by a VC being
reserved at the output. According to the requested service level, the reserved
output VC is assigned to the appropriate number of TS. A connectionless BE
packet transmission, enabled by the router design from chapter 5, is represented
by C3. BE head flits are treated similar to GS headers. However, they are not
allowed to reserve multiple time slots. In contrast to GS communication, body
and tail flits are injected directly after the head flit, forming a complete packet.

Processing
Tile

Processing
Tile

Processing
Tile

essing
ile

NoC
Router

NoC
Router

NoC
Router

essing
ile

Processing
Tile

NoC
Router

VC 1
VC 2
VC 3

V
C

1
V

C
2

V
C

3

V
C

1
V

C
2

V
C

3

V
C

1
V

C
2

V
C

3

VC 1
VC 2
VC 3

NoC
Router

NoC
Router

H
T

C1: GS-Connection (SL 3)
C2: GS-Connection-Setup (SL 1)
C3: BE-Packet

: Head Flit
: Tail Flit

H

T

NA NA NA

NANA NA

Processing
Tile

Processing
Tile

Hr
T

Pr

er

cessing
Tile

rocer

TS 1 VC 1

C2

TS 2
TS 3
TS 4
TS 5
TS 6

VC 2

C1

VC 1

VC 1

C1

C1

E

Pr

rer
E

cessing
Tile

rocr

TS 1
VC 3TS 2

TS 3
TS 4
TS 5
TS 6

C1

VC 3
VC 3

C1
C1

VC 2 C3

P

N

S

essing
Tile

NA

Proces
T

NNA

P

N

TS 1 VC 3
TS 2
TS 3
TS 4
TS 5
TS 6

C1

VC 3
VC 3

C1
C1

NA

roc ssingces
Tile
c
TS 1
TS 2
TS 3
TS 4
TS 5
TS 6

E

VC 1 C2

C2VC 1

1 2

3

4

Figure 6.2.: Communication scenario illustrating the time slot allocation for guar-
anteed service connections and best-effort communication.

In order to avoid the blocking of BE packets by GS transmissions, a predefined
number of VCs and TSs is always reserved for BE transmissions, as described in
section 6.3. Thus, best-effort communication is always possible. It can be used as
a fallback solution when the GS reservation fails due to resource limitations.

6.2.1.1. Latency and Throughput Guarantees

Once a GS connection has been established, latency and throughput can be guaran-
teed and hard boundaries can be calculated. TSutil,max is defined as the maximum
time slot utilization on the GS connection path given as:

TSutil,max = max
{

TSutil,i, ∀i ∈ {0, 1, ..., k}
}

(6.1)

185

6

6. Quality of Service

In equation 6.1, TSutil,i, with i representing the ports 0 to k used by an established
GS connection, is the current port utilization during transmission. TSutil,max
is typically independent of the number of reserved time slots due to the used
arbitration scheme. Only VCs are taken into account, which are reserved and
carry data at the moment. Taking just the used time slots into account results in
increased throughput compared to synchronous TDM-based approaches, where
all time slots must be scheduled, independent from their reservation status or
data availability. Taking figure 6.2 as an example, TSutil,max for C1 and C2 is equal
5, since this is the maximum of reserved TS on their path in router port 2©.

The bandwidth for a given service level SL ∈ {0, 1, ..., SLmax} can be given as:

BWGS(SL) =
SL

TSutil,max
· BWlink (6.2)

where BWlink is the bandwidth of the physical link. The transmission latency LGS
6

per packet for an established GS connection of a particular SL is given as:

LGS(SL) = (TSutil,max − SL + 1) · (H · Lpipeline + Spkt − 1) (6.3)

H represents the number of hops, taken by a packet from source to destination.
Lpipeline is the flit processing delay per hop, which is reflected by the number of
pipeline stages taken by a body flit. Spkt is the packet size, given in flits. Strict
pipelining of the transmission, described in section 5.1.3, keeps the latency low.

In order to calculate the worst case bandwidth and latency that can be guaranteed,
TSutil,max must be replaced by the number of existing time slots TStotal , because
TSutil,max is usually not known and can change during run-time. All other param-
eters are known at design-time. Once the bandwidth and latency requirements of
a connection are known, the required service level for a specific guarantee can be
calculated at design time by using the equation 6.2 and 6.3.

Compared to the worst case latency and throughput for best-effort communica-
tion, estimated in section 5.1.6, the guarantees for GS connections are significantly
lower. For a best-effort communication, taking 8 hops in a NoC with 4 VCs, a
worst case bandwidth of BWlink

16 is estimated. In contrast, a throughput of BWlink
2

can be guaranteed for a GS connection using 4 out of 8 time slots. This is an
increase by a factor of 8 compared to BE. The worst case latency under the same
boundary conditions is 2088 cycles for BE communication, if the packet size is
assumed to be 16 flits. For the GS connection, a worst case latency of 195 cycles
can be guaranteed for the same transmission scenario.

6The transmission latency LGS and the pipeline delay per hop Lpipeline are given in clock cycles.

186

6

6.2. Run-time Adaptive End-to-End Connections

6.2.1.2. Time Slot Assignment

In the proposed concept, virtual channels can only be used if they can be assigned
to one or several time slots. Otherwise, the VC cannot be scheduled and used for
data transmission. Hence, at least one TS must be available per virtual channel.
This could be achieved by having one dedicated time slot per VC. Dedicated
time slots would have additional implementation overhead because the time slots
would no longer be uniform. Consequently, another strategy is used to ensure the
availability of one time slot per VC at any time. One time slot is available per VC
as long as the following equation is fulfilled:

TS f ree ≥ VC f ree (6.4)

TS f ree gives the number of free time slots and VC f ree the number of unused
virtual channels. Once a new reservation request arrives, it must be ensured that
the number of requested time slots will not lead to a violation of equation 6.4.
Therefore, the following equation is used:

TS f ree ≥ (VC f ree − 1) + TSreq (6.5)

Equation 6.5 takes TSreq into account. TSreq represents the number of time slot
of the current reservation request. For the provided equation, it is assumed that
VC f ree still includes the VC used for the current reservation process. If equation 6.5
is violated during the reservation process, the reservation request must be rejected.
This strategy ensures that all VCs can be used at any time. Rejection of reservation
requests is only possible for GS connections that use service levels higher than
one. By default, BE packets use only one time slot. Thus, equation 6.5 cannot be
violated for best-effort reservation requests and consequently BE communication
is never blocked due to unavailable time slots.

6.2.1.3. Protocol Extension

The proposed concept requires the extension of the packet protocol; presented in
section 5.1.2. Figure 5.5 shows the header format used in the packet switching
NoC. In contrast to BE packet headers, GS head flits contain additional infor-
mation tagged with cross lines in figure 5.5. This information is used for setup
of end-to-end connections. A GS header is indicated by setting the BE/GS bit
to 1. Compared to a BE header, a GS header contains additional fields for the
service level required for time slot reservation and the source address required for
end-to-end flow control7. Because the additional GS fields are only available in

7End-to-end flow control is currently only supported for GS connection setup.

187

6

6. Quality of Service

GS headers, the protocol overhead of BE packets is not increased by enabling
guaranteed service support. Body and tail flits are equal for BE and GS traffic.
However, in the case of GS communication, only body flits are used to constitute
a packet or message. A tail flit is used to release a GS connection.

6.2.1.4. End-to-End Guarantees

In many-core architectures, such as the InvasIC architecture described in sec-
tion 3.2, the processing cores normally use buses to connect the components
located within the tile. Figure 6.3(a) shows a single-core processing tile with two
levels of cache. In single-core tiles, the communication infrastructure within the
tile is not shared and thus controlled exclusively by one core. Therefore, it is not
required to provide guarantees for the communication infrastructure within the
tile, since bandwidth and latency are known and invariable. Thus, no additional
effort is necessary to provide end-to-end guarantees.

NoC
Router

NoC
Rout

Core

NI

L1-
Cache

L2-Cache

(a) Single-core tile

NoC
Router

No
Rou

Core
0

L1

Core
2

L1 Core
3

L1

Core
1

L1

L2-Cache

NA
Tile Local
Memory

(b) Multi-Core tile

Figure 6.3.: Tile internal communication between cores and caches.

Figure 6.3(b) shows a multi-core tile with four cores and two levels of cache,
similar to the RISC core tile, presented in section 3.2.1.1. The cores are connected
to a shared bus via their L1 caches. The L2 cache is also attached to this bus. The
back-end of the L2 cache is connected to the network adapter, enabling access
to the NoC. In such a multi-core tile, the bus must support different guarantees
for bandwidth and latency to enable end-to-end QoS with the proposed scheme.
The arbitration mechanism of the bus must support these guarantees. In [35], a
bus arbiter for hard real-time guarantees with respect to bandwidth and latency
is proposed. The use of such an arbiter is necessary in multi-core tiles to enable
end-to-end guarantees8.

8Since tile internal bus communication is not in the scope of this work, it is assumed and ensured for
the following that there is always sufficient bandwidth available at the tile-local bus. Consequently,
the bus communication is not affected by bandwidth limitations.

188

6

6.2. Run-time Adaptive End-to-End Connections

The network adapter also must support WRR scheduling to enable end-to-end
guarantees in case of multi-core tiles or multiple connections per single-core tile.
The implementation of WRR QoS support for an NA is discussed in [HKKB13].

6.2.1.5. Task Mapping

The proposed QoS concept necessitates an extension of the task mapping scheme.
Existing mapping algorithms and strategies for NoC-based architectures, such as
[218], [232] or [155], may be used as a basis. QoS requirements must be considered
during mapping, in order to establish GS connections successfully after mapping.
It must be decided whether GS connections are used for the communication.
When GS connections are used, service levels must be assigned, according to the
bandwidth and latency requirements.

NoC HardwareSequential Mapping Flow

Execution
Request

Resource Search

 OS call

NoC Monitoring

Request

Response

GS Connection
Setup

Success

Fa
ilu

re

NoC Resources

Utilization

Reservation
Request

Response

Execution

Resource Alloc. &
Mapping

Service Level
Assignment

Figure 6.4.: Phases of the extended mapping flow with service level assignment
and GS connection setup. Communication monitoring information is
taken into account during mapping and allocation phase.

Figure 6.4 shows an extended task mapping flow used to meet the requirements
of the proposed concept. An arising execution request necessitates a description
of the computation and communication requirements of the application:

• Computation Requirements: Number and type of processing elements

189

6

6. Quality of Service

• Communication Requirements: Communication partners, bandwidth and
latency requirements

These requirements may be described by the use of a communication graph, as
shown in figure 6.5(a). In the context of invasive computing, these requirements
are described at the language level by the use of constraints, as further explained
in section 3.1.1.1. According to the computation requirements, appropriate com-
putation resources must be explored. The utilization of the communication infras-
tructure, in the surrounding of the desired computation resources, must be taken
into account during the search phase. This is necessary to meet the communica-
tion requirements of the application. If the utilization is too high, it is very likely
that a GS connection setup will fail later on. Thus, monitoring information must
be taken into account while searching for appropriated resources, as shown in fig-
ure 6.4. Therefore, the monitoring infrastructure, introduced in section 5.5.3, can
be used. It can be accessed by the operating system that is typically responsible
for task mapping, resource management and reservation. Therefore, the memory
mapped registers, summarized in appendix A.4, are used.

a)

C
E

A
D

B

c) d)

50
200

500

700

1000
300

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

E D

C B A

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

C

D

B A

E

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

)
N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

N

R

C

D

B A

E

2

43

1

2 0

b)

Figure 6.5.: Four steps of the QoS mapping flow: (a) application with communica-
tion requirements, (b) mapping of the tasks, (c) service level assign-
ment and (d) establishment of GS connections between the mapped
tasks.

190

6

6.2. Run-time Adaptive End-to-End Connections

The mapping describes the process of assigning the tasks, shown in figure 6.5(a),
to processing elements. During this phase, the communication requirements must
once again be taken into account to minimize NoC utilization, power consumption
and transmission latency by optimizing the distance between communicating
nodes. The outcome of the allocation and mapping phase is shown in figure 6.5(b).
Each node is now assigned to a specific processing element. Pairs of nodes, with
high communication requirements, are mapped next to each other to minimize
the distance for communication and thus the communication resource utilization
and power consumption. Energy and performance aware mapping flows for
regular NoC-based architectures have been proposed in [115] and [261]. These
mapping algorithms may be used for the proposed mapping flow. Thus, they are
not discussed in detail here.

After the mapping phase, execution could be initiated in ordinary packet switch-
ing NoCs. The proposed QoS concept requires two additional steps before exe-
cution can take place. The third step, shown in figure 6.4, is named service level
assignment9. During this phase, service levels are assigned to each edge or connec-
tion of the task graph. The SLs are assigned according to the bandwidth or latency
requirements. The outcome of this phase is shown in figure 6.5(c). In the provided
example, the SLs are assigned according to the bandwidth requirements of the
task graph; presented in figure 6.5(a), whereas SL 0 represents BE communication.
It is used in the example for communication flows with very low bandwidth
requirements10. SLs from 1 to 4 represent GS connections using 1 to 4 time slots.
In section 6.2.2.2 an algorithm for service level assignment is presented.

Once the service levels for all communication flows are defined, the GS connec-
tions may be established accordingly. From the software perspective, this is done
by writing to memory mapped registers of the NAs in order to trigger the reserva-
tion process of GS connections. The respective source and destination addresses
for GS connection setup can be obtained from task mapping. The service level
for each connection results from the previous SL assignment phase. In figure 6.4,
it is indicated that the reservation of GS connections affects the NoC utilization
and thus the monitoring information; taking into account for future application
mappings. Figure 6.5(d) shows the architecture after mapping and GS connections
establishment. Once the setup of the GS connections is successfully completed,
the execution can be initiated.

However, each of the steps of the mapping flow, presented in figure 6.4, can fail
for various reasons. The resource search phase can fail due to the unavailability
of computation or communication resources. Resource allocation & mapping fails
if no valid mapping is found. The service level assignment phase may also fail;

9The phase of service level assignment could also take place before task mapping, because the phases
are independent of each other.

10If real-time or safety requirements exist, only GS must be used.

191

6

6. Quality of Service

described in detail in section 6.2.2.2. GS connection setup fails if one of the desired
GS connections cannot be successfully established. Such a failure will lead to
an abortion of the execution request. In managing such a situation, malleable
applications may be used and could continue processing with less resources. If
an application does not have any resources, execution must be delayed. Taking
the NoC monitoring information into account increases the chance of successful
mapping and execution.

More details on the usage of the proposed QoS scheme in the context of invasive
computing, including the presented mapping flow, are provided in [HZZ+14]
and [HZW+14].

6.2.2. Hardware and Software Implementation

The proposed concept for QoS is applicable to all asynchronous scheduled VC-
based routers and not limited to the one presented in chapter 5. It is independent
of the topology and dimension of the NoC and is applicable to exotic networks,
such as optical networks [279, 280] or 3D networks [273]. All distrusted routing
schemes can be used. In the following sections, the necessary extensions for the
best-effort packet switching router design, introduced in chapter 5, are discussed.
A more general and more detailed described is provided in [HKKB13].

6.2.2.1. Router

The block diagram of the router design with QoS support is shown in figure 6.6.
A detailed explanation of the general operation of the router is provided in
section 5.1.5. The components of the QoS router, which differ from the basic
router design, are the output reservation table and the transmission control unit, as
shown in figure 6.6. A detailed implementation of these units is given in figure 6.7
for a router with 4 virtual channels and 6 time slots. However, the router HDL
template and the simulation framework supports all values for the number of
VCs and TSs, as described in detail in appendix A.5 and A.6.

There is one output reservation table (ORT) per output port, as shown in figure 6.7
on the left side. It contains the reservation table that assigns a pair, consisting
of input port and input VC, to an output VC of the respective output port. This
part is equal to the basic router design from section 5.1.5. However, the ORT unit
contains a second reservation table with one entry per time slot. Each time slot
contains the ID of the output VC assigned to it. Reservation requests arrive at the
reservation control FSM. The requested number of TSs to be reserved is part of the
reservation request. This FSM validates the number of available time slots and
grants the reservation once the parameters, provided in the following paragraph,

192

6

6.2. Run-time Adaptive End-to-End Connections

Crossing Zone

Output Port
Reservation
Arbitration
(OPRA)

Request
Crossbar

Select
Crossbar

Credit
Counter
Credit

Counter

Credit
Counter
Credit

Counter

Credit
Counter

Output
Zone

da
ta ackre
q

vc

Tail
Decoding

Output
Data

Crossbar

Input
Zone

Input
FIFO

Input
FIFO

Input
FIFO

Routing
Unit

Input
Reservation

Arbitration (IRA)

Header
Decoding
Header

Decoding
Header

Decoding
Header

Decoding
Header

Decoding

DEMUX

data

vc

req ac
k

Input
FIFO

Input
Buffer
(FIFO)

Output Register

Transmission
Control Unit

(TC)

 Legend: Control Signals Data Flow Signals

Reservation
Response CB

Output
Reservation Table

(ORT)

WRR Support

Figure 6.6.: Basic router design with modifications for WRR support.

are fulfilled. Reservations of multiple TSs are done sequentially. The number of
cycles, required for reservation, corresponds to the requested service level. The
FSM limits the number of GS connections, ensuring the availability of VCs for
BE communication by using the policies; described in detail in section 6.3. The
reservation process for BE traffic is similar to GS connections requesting a single
time slot.

The request signals of the reserved time slots and the assigned output VCs are
forwarded to the transmission control unit, shown in figure 6.7 on the right. The
request signals are used for a fair round-robin arbitration between the time slots.
The weighting of weighted round-robin scheduling is carried out by assigning
one VC and its request signal to multiple time slots. Consequently, one VC can be
selected by the round-robin arbiter multiple times per scheduling cycle. For each
request signal it is verified whether data and credits are available for transmission,
as described in section 5.1.5. This is indicated by the valid request signal.

All input and output signals of the ORT and the TC unit are equal to the basic
router design from section 5.1. They are the only units that require modification,
in order to enable the proposed adaptive QoS scheme.

GS Reservation Management A set of policies must be adhered in order to
grant a reservation request within the output reservation table. These policies are

193

6

6. Quality of Service

Output Reservation Table (ORT)

in_port in_vc Req

In Port/VC in_port in_vc Req

in_port in_vc Req

in_port in_vc Req

out_vc Req

out_vc Req

out_vc Req

out_vc Req

out_vc Req

out_vc Req

Res.
Control

FSM

Arbitration

Arbitration

SL

Grant &

&

&

&

&

&

Traffic Control (TC)

A
rb

itr
at

io
n

In Port/VC Selected

Out VC Selected

Grant

Valid Request

D
E

M
U

X

D
E

M
U

X

M
U

X

MUX

Figure 6.7.: Extended output reservation table and transmission control unit for
weighted round-robin scheduling support.

implemented inside the reservation control FSM, shown in figure 6.7. The policies
are validated in the same cycle the reservation process is requested; independent
of the type (BE or GS). This allows to grant or reject a reservation request within
one cycle. Two counters inside the reservation control FSM are used to log the VC
utilization. One counter contains the number of free VCs (VC f ree). The second
counter contains the number of VCs currently utilized by GSs connections (VCGS).
As long as VCs are available, BE reservation requests are granted:

VC f ree > 0 (6.6)

For GS connection requests, two additional rules are required. The following
policy limits the number of virtual channels used for GS connections:

(VCtotal −VCGS > VCBE,excl) (6.7)

VCtotal gives the total number of VCs and VCBE,excl the number of VCs exclusively
reserved for BE packets. For VCBE,excl > 0 this policy ensures that VCs are always
available for BE transmissions. Hence, BE communication can never be blocked
by established GS connections. Another counter, within the reservation control
FSM, monitors the number of free time slots (TS f ree). This counter and the
VC f ree counter are used to evaluate equation 6.5, provided in section 6.2.1.2. GS
connections are acknowledged if equations 6.5, 6.6 and 6.7 are fulfilled.

The set of policies ensure that the discussed TS and VC limits are observed for BE
and GS traffic. Thus enabling the use of uniform time slots and virtual channels.

194

6

6.2. Run-time Adaptive End-to-End Connections

In section 6.3, a concept for run-time reconfiguration of these policies is presented.
It enables to adjust the number of VCs to be used for GS and BE communication
at run-time.

6.2.2.2. Service Level Assignment

In section 6.2.1.5, a QoS-aware task mapping flow was introduced. This flow
contains steps for service level assignment and GS connection reservation. In
order to calculate an optimal service level assignment for a given task graph, the
bandwidth and delay requirements of all communication flows must be taken
into account. According to the requirements of each communication flow, the
optimal service levels can be calculated by using equation 6.2 and 6.3.

Algorithm A.1, in appendix A.2, calculates the optimal service levels for all
connections using the specified communication requirements of a distributed
application. These requirements could either be specified by communication
constraints, as described in detail in section 3.1.1.1, or in the form of task graphs,
as shown in figure 5.13. Algorithm A.1 takes equation 6.2 into account to select
the service level according to the bandwidth requirements of each connection. In
order to take delay requirements into account, only minimal modifications are
required.

Detailed investigations exhibited that the number of used virtual channels and
time slots is typically highest at the local ports of the routers, if neighboring
mapping is used. This can also be seen in the example shown in figure 6.5(d). All
connections coming from different neighboring routers meet at the local port. The
algorithm, further described in appendix A.2, ensures that equation 6.4 and 6.5
are met for each local port of the nodes used by the application to be mapped.

The algorithm does not consider concurrent communication of other applications.
Hence, the reservation of the calculated GS connections can fail subsequently.
In order to reduce the probability that GS connection setup fails, the load of the
communication infrastructure must be taken into consideration during resource
allocation. This is done by taking the monitoring information into account during
resource allocation, as described in section 6.2.1.5.

The final task graph, generated by algorithm A.1, includes the type (BE or GS) for
each communication flow as well as the service level assignments for all GS flows.
This task graph can be used by the operating system to set up the GS connections
accordingly in order to optimize QoS on behalf of the application.

195

6

6. Quality of Service

6.2.3. Evaluation

In the following, the performance benefit, the compliance of the given guarantees,
the number of parallel connections and the implementation cost are investigated.
Therefore, simulation results are presented in section 6.2.3.1. The FPGA proto-
type, described in appendix A.1, is used for additional performance analysis.
Subsequently, ASIC synthesis results are presented in section 6.2.3.3.

6.2.3.1. Simulation

The proposed QoS support was implemented in the SystemC simulation frame-
work and introduced in section 5.2. It is used for the following investigations.
A meshed NoC of 10x10 routers with XY routing is instantiated11. The routers are
configured to have 4 virtual channels. The number of time slots (TStotal) is set to
8. The SL or weight respectively was varied between 1 and 4. BE traffic, used for
some scenarios, is generated as uniform random traffic. 12

Round-robin scheduling is dominant in existing packet switching NoCs. The NoC
presented in [129] applies round-robin scheduling and offers GS communication.
It is used as a reference. In the proposed scheme, GS connections with SL 1
have the same performance as in [129], when no connections with higher SLs are
established. Hence, GS connections with SL 1 are also named Ref.

Analysis of single GS connections The delay and throughput of GS connections
with different SLs are analyzed first. BE traffic, with different injection rates,
is used to emulate concurrent load on the NoC. Therefore, single short distant
(2 hops) and long distant connections (19 hops) were established.

Figure 6.8(a) shows the achievable throughput per connection for a short distant
connection with a hop distance13 of 2 nodes. If BE injection rate is low, a GS
throughput equal to 1 could be achieved for all SLs. A rising BE injection rate
reduces the GS throughput because the links are shared between BE and GS
communication flows. Once the saturation point of the NoC is reached, the
difference in throughput for the various service levels is highest. Compared

11For the following investigations, each router is configured to have a transmission delay of 2 cycles
and a reservation delay of 1 cycle.

12The size of BE and GS packets is chosen randomly between 2 and 8 flits with an average packet size
of 5 flits.

13The hop distance represents the number of routers to be taken by the packets for transmission.

196

6

6.2. Run-time Adaptive End-to-End Connections

to SL 1, which is equal to common RR, the throughput of SL 4 is increased by
123 %14.

Figure 6.8(b) summarizes the measured throughput of a long connection taking
19 hops. Due to the longer transmission distance, the probability that arbitration
decisions must be taken is higher. This influences the throughput and leads to an
earlier throughput saturation at a lower BE injection rate compared to figure 6.8(a).

Figure 6.8(c) shows the delay analysis for short connections. For low BE traffic
injection rates the GS packets with an average size of 5 flits were transmitted with
a delay of 8 cycles for all SLs. Once the NoC utilization rises, due to higher BE
injection rates, the delay differences between the SLs grows. At the saturation
point of the BE traffic (0.4 Flits/Cycle/Node), the delay of the different SLs is
significant. SL 4 has an average packet delay of only 10.2 cycles. This is a latency
reduction of 44 % compared to SL 1 with an average packet delay of 18.2 cycles.

Figure 6.8(d) shows the mean packet latency of the investigated SLs for a connec-
tion, making again 19 hops. The latency for low injection rates is again close to the
theoretical minimum of 42 cycles for all service level. At the saturation point of
the BE traffic, the delay for long distance GS transmissions is highest. The delay
difference between the different service levels reaches its maximum at this point.
The latency reduction of SL 4 compared to SL 1 is 25 %.

Maximum number of connections Since GS connections require exclusive reser-
vation of communication resources in the proposed scheme, their number is
limited. The maximal number of connections is determined by randomly estab-
lishing GS connections of different SLs and distance. Figure 6.8(e) shows the
maximum number of connections for different communication distances and
service levels, with VCBE,excl being set at 2. The results for SL 1, 2 and 3 are nearly
identical, because there are enough time slots available to occupy 2 VCs with GS
connections. SL 4 is affected by the limited number of TSs per link.

Figure 6.8(f) shows the maximum number of connections once VCBE,excl , the
number of VCs reserved for BE communication, is reduced from 2 to 1. SL 1 and 2
profit from the additional available GS VCs. For short distances, up to 65 % more
connections can be set up due to the additional available VC. SL 3 and 4 cannot
profit from additional VCs because the number of connections is limited by the
available TSs.

Idle GS connection analysis Due to the dynamic WRR scheduling, idle GS
connections do not occupy bandwidth. However, GS connections utilize router

14SL 1 uses 1
4 of the available bandwidth because 4 VCs are used (3 additional by BE), whereas each

VC is assigned to 1 TS. In contrast SL 4 uses 4
7 of the total bandwidth. 4 TSs are assigned to the GS

connection and 3 are used by the other 3 VCs carrying BE communication.

197

6

6. Quality of Service

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

BWWC(SL1)

BWWC(SL2)

BWWC(SL3)

BWWC(SL4)

BE Injection Rate [Flits/Cycle/Node]

G
S

T
hr

ou
gh

pu
t[

Fl
it

s/
C

yc
le

/C
on

.]
SL 1/Ref.

SL 2
SL 3
SL 4

(a) Throughput of short distant con.

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

BWWC(SL1)

BWWC(SL2)

BWWC(SL3)

BWWC(SL4)

BE Injection Rate [Flits/Cycle/Node]

G
S

T
hr

ou
gh

pu
t[

Fl
it

s/
C

yc
le

/C
on

.]

SL 1/Ref.
SL 2
SL 3
SL 4

(b) Throughput of long distant con.

0 0.1 0.2 0.3 0.4 0.5

8

10

12

14

16

18

20

BE Injection Rate [Flits/Cycle/Node]

G
S

Pa
ck

et
La

te
nc

y
[C

yc
le

s]

SL 1/Ref.
SL 2
SL 3
SL 4

(c) Average latency of short distant con.

0 0.1 0.2 0.3 0.4 0.5
40

50

60

70

BE Injection Rate [Flits/Cycle/Node]

G
S

Pa
ck

et
La

te
nc

y
[C

yc
le

s]

SL 1/Ref.
SL 2
SL 3
SL 4

(d) Average latency of long distant con.

5 10 15 20

0

50

100

150

Distance [Hops]

Es
ta

bl
is

he
d

C
on

ne
ct

io
ns

SL 1/Ref.
SL 2
SL 3
SL 4

(e) Number of parallel connections per
distance with VCBE,excl = 2

5 10 15 20

0

100

200

Distance [Hops]

Es
ta

bl
is

he
d

C
on

ne
ct

io
ns

SL 1/Ref.
SL 2
SL 3
SL 4

(f) Number of parallel connections per
distance with VCBE,excl = 1

Figure 6.8.: GS throughput for a (a) short distance and (b) long distance con-
nection. Average packet delay for a (c) short distance and (d) long
distance connection. Number of parallel connections related to dis-
tance and SL for (e) 2 VCs and (f) 3 VCs usable for GS connections.

198

6

6.2. Run-time Adaptive End-to-End Connections

resources (e.g. VCs and buffers) even if they are idle. Thus, the influence with
respect to BE throughput and latency, in case of idle GS connections, was ana-
lyzed in [HKKB13] and [HKB12]. The throughput and latency in case of idle GS
connections was compared against a reference scenario. The reference scenario
represents measurements of a purely BE packet switching NoC, where no virtual
channels are occupied by GS connections. The results show a low impact of idle
GS connections. The throughput reduction is at maximum 7.2 %, if a high number
of 50 connections of SL 4 and a distance of 4 hops are established.

Due to the fact that reserved VCs cannot be used for BE transmission, the number
of BE packets in the NoC is reduced when GS connections are established. This
leads to a throughput reduction, but also reduces the average packet delay for
BE traffic. Under heavy load, a delay reduction of 15.2 % could be obtained, if 50
connections with SL 4 and a distance of 4 hops are established. The same effect
was investigated in section 5.4.1.2 – a reduced number of available VCs led to a
delay degradation, but also reduced the achievable throughput.

Video processing applications Finally, the MPEG4, MWD, PIP and VOPD ap-
plications, introduced in section 5.2.3.3, are used for delay and throughput inves-
tigation. The communication graphs of the applications are mapped according to
the flow presented in section 6.2.1.5. The SL assignment for the connections was
performed according to the required bandwidths using the assignment strategy,
presented in section 6.2.2.2. Connections with very low bandwidth requirements
use BE communication if the number of available virtual channels or time slots is
exceeded. Throughput and latency are investigated under heavy load, generated
by random GS and BE communication. The given results are relative to an ideal
reference scenario without additional traffic on the NoC.

Figure 6.9(a) shows the throughput of the most communication intensive con-
nection, since they limit the performance of such streaming-like application. For
PIP, the throughput can be improved by 31 %, compared to the reference with
standard round-robin scheduled GS communication.

Figure 6.9(b) gives the average latency. Delay reductions from 13 % to 40 % could
be achieved compared to GS communication in a NoC using non-weighted round-
robin scheduling. Once SLs up to 4 are utilized, the throughput and delay for all
applications is close to the ideal scenario.

The previous results clearly show the benefit of adjustable GS connections by the
use of weighted round-robin scheduling. In contrast to existing QoS approaches,
the throughput and latency can be adapted at run-time by the use of different
service levels. More detailed investigations can be found in [HKKB13]. Among
other things, the service level assignment algorithm is investigated in detail.

199

6

6. Quality of Service

MPEG MWD PIP VOPD
0.7

0.8

0.9

1

Th
ro

ug
hp

ut
[

1
Id

ea
lT

hr
ou

gh
pu

t]

SL 1/Ref.
SL 2
SL 3
SL 4

(a) Application throughput

MPEG MWD PIP VOPD

1

1.2

1.4

1.6

1.8

2

La
te

nc
y

[
1

Id
ea

lL
at

en
cy

]

SL 1/Ref.
SL 2
SL 3
SL 4

(b) Application latency

Figure 6.9.: (a) Throughput and (b) latency of video processing applications rela-
tive to ideal communication.

6.2.3.2. FPGA Prototype

In addition to the simulation results, the FPGA-prototype of the InvasIC archi-
tecture, described in appendix A.1, is used to investigate the gain of GS commu-
nication. The architecture consists of four single-core tiles. A parallel version of
an integer matrix multiplication was built in C++ to investigate the impact of GS
communication on execution time, NoC-utilization and NoC power consumption.
The results are provided in figure 6.10. Four different variants of the matrix
multiplication were investigated: two versions use BE communication, the other
two versions use GS end-to-end connections. Each communication variant is
investigated as DDR, where the source matrices are located in the main memory
and PF, where the required parts of the source matrices are prefetched from the
DDR to the tile local memory. The BE variants are used as a reference.

However, it was not possible to investigate the impact of different service levels
due to the small size of the prototype. The architecture is too small to generate
concurrent load, which would be necessary to see the impact of different SLs.
Without additional load the performance of GS connections with different service
levels do not differ, as shown in the previous section.

Figure 6.10(a) compares the acceleration of the different variants; relative to a
single core variant. However, due to the unavailability of additional background
traffic, the impact of GS communication on performance is very small. A perfor-
mance improvement of 1.3 % is achieved for the DDR variant and a matrix size of
128x128, if GS communication is used instead of best-effort. Prefetching of data to
the tile local memory has a much greater impact on performance. At maximum,

200

6

6.2. Run-time Adaptive End-to-End Connections

26 % performance improves are experienced by the use of prefetching for a matrix
of 128x128 elements.

32x32 64x64 96x96 128x128

1

2

3

4

5

Matrix Size

Ex
ec

ut
io

n
Sp

ee
du

p
[se

qu
en

ti
al

x
]

BE_DDR GS_DDR
BE_PF GS_PF

(a) Application speedup

32x32 64x64 96x96 128x128

104

105

106

107

Matrix Size
N

oC
ut

ili
za

ti
on

[F
li

ts
(3

2
bi

t)
] BE_DDR GS_DDR

BE_PF GS_PF

(b) NoC utilization

32x32 64x64 96x96 128x128

0

0.05

0.1

0.15

0.2

0.25

Matrix Size

C
om

m
un

ic
at

io
n

Po
w

er
[P

da
ta

in
m

W
]

BE_DDR GS_DDR
BE_PF GS_PF

(c) NoC power consumption

Figure 6.10.: Two variants of a parallel matrix multiplication executed with and
without GS support on a 4 tile architecture prototype15.

Figure 6.10(b) shows the NoC utilization caused by executing the four variants of
the matrix multiplication. In order to obtain these numbers, the link utilization
monitors from section 5.5.3 have been used. As expected, the amount of com-
munication increases with the matrix size. For larger matrix sizes, the amount
of flits can be reduced by up to 26 % if GS communication is used instead of BE.

15The results show that prefetching has no benefit with respect to execution time for small matrix
sizes due to the fact that all data fit into the L2 cache.

201

6

6. Quality of Service

This significant reduction of the NoC utilization results from the reduced protocol
overhead of GS communication16.

Finally, the power consumption that is directly related to data transmissions is
analyzed for the ASIC implementation of the NoC, as described in section 5.3.2.1.
For accurate power estimation, the monitoring information from the FPGA pro-
totype was used for netlist simulation to derive accurate toggle rates for power
analysis. Figure 6.10(c) summarizes the results. The benefit of prefetching, with
respect to power consumption, increases with the size of the matrix. If prefetching
is not utilized, GS communication can assist in reducing the power consumption
for communication by up to 20 % depending on the matrix size.

6.2.3.3. Implementation Costs

The proposed QoS concept with WRR scheduling was implemented in the HDL
template of the router design, introduced in section 5.3. It was synthesized using
a 45 nm ASIC standard cell library, as described in section 5.3.2.1. Since the HDL
template is widely parameterizable, it is possible to investigate the impact of
various design parameters on area, timing and power consumption.

For the following design space exploration, the number of VCs and time slots is
varied. The investigated router has buffers with 8 slots. The link width is 128 bit
in order to provide a reasonable bandwidth for large many-core architectures.

Figure 6.11(a) shows the area consumption of a single 5-port router for various
VC and TS configuration. The number of time slots must be greater or equal to
the number of VCs, because at least one TS is required to use a VC. Doubling
the number of TSs from 4 to 8 increases the area consumption only by 3.1 %
for a router with 4 VCs. However, doubling the number of VCs and TSs from
4 to 8 increases the area consumption by 99 %. Compared to additional VCs,
which would be occupied in multi-path routing [237], the area consumption of
additional time slots is very low. The small area overhead is an essential benefit
of the proposed QoS concept, in comparison to existing approaches.

Figure 6.11(b) shows the impact of additional VCs and TSs with respect to the
achievable clock frequency. The router configurations are the same as previously
mentioned. Additional TSs and VCs reduce the clock frequency since the transmis-
sion control unit, which is part of the critical path, becomes more complex. This
is not specific to the proposed router design. The complexity of the scheduling
unit limits the clock frequency in many heavily pipelined packet switching NoCs

16A usage of the payload fields of head and body flits (see section 5.1.2) can reduce the protocol
overhead for best-effort communication. However, this is currently not supported by the invasive
network adapter.

202

6

6.2. Run-time Adaptive End-to-End Connections

2
4
6
8
10
12

0

100000

200000

300000

400000

2 3 4 5 6 7 8 9 10 11 12

Virtual
Channels

Ar
ea

(in
μm

²)

Time Slots

12
10
8
6
4
2

0

500

1000

1500

2 3 4 5 6 7 8 9 10 11 12

Virtual
Channels

Fr
eq

ue
nc
y
(in

M
H
z)

Time Slots

(a)

(b)

2
4
6
8
10
12

0

10

20

30

1 2 3 4 5 6 7 8 9 10 11

Virtual
Channels

Po
w
er

(in
m
W
)

Time Slots
(c)

Figure 6.11.: Implementation overhead of the QoS concept: (a) area consumption,
(b) achieved clock frequency and (c) power consumption for various
VCs and TSs settings.

using higher numbers of VCs. The impact on clock frequency can be reduced by
adding pipeline registers to the transmission control unit.

In figure 6.11(c), the impact of additional time slots and virtual channels on the
power consumption is shown. The sums of static and dynamic power consump-
tion of a single 5-port router are shown. The scenario used for dynamic power
estimation includes best-effort communication as well as GS connections crossing
the router. The results show that doubling the number of time slots from 4 to 8
increases the power consumption of the router by 18.7 %. In comparison, doubling

203

6

6. Quality of Service

the number of VCs17 from 4 to 8 increases the power consumption of the router
by 95.5 %.

The presented synthesis results show that increasing the number of time slots has
a much lower impact on area, frequency and power consumption than increasing
the number of virtual channels.

A router with 4 VCs and 8 TSs, as used for simulation, requires 139093.9 µm2

chip area and reaches a post synthesis clock frequency of 1150 MHz. It consumes
14.3 mW power on typical load conditions with BE and GS traffic.

6.3. Adaptive QoS Policy Management

In the previous section, a QoS concept was introduced that enables dynamic shar-
ing of communication resources between GS and BE communication flows. Static
policies are implemented in the reservation control FSM, ensuring the availability
of VCs for BE communication, as described in section 6.2.2.1. This ensures that
BE traffic is never completely blocked by GS communication, which would be
the case if all VCs are occupied by GS flows. In order to avoid this scenario, the
number of GS connections per router port must be limited as follows:

VCtotal > VCGS,max ≥ VCGS,cur (6.8)

VCtotal gives the number of virtual channels per router port. The maximum
number of VCs per router port, which can be occupied by GS connections, is
represented by VCGS,max. VCGS,cur provides the number of virtual channels
currently used by GS connection. By placing a limit on the number of VCs, which
are reservable for GS connections, blocking of BE traffic by GS connections can
be avoided, because a specific number of VCs is always available for BE traffic.
The number of VCs used by BE transmissions VCBE,cur must not be restricted.
However, a similar policy can be given for best-effort traffic:

VCtotal ≥ VCBE,max ≥ VCBE,cur (6.9)

The limit VCBE,max is normally equal to VCtotal . Thus, all VCs can be occupied by
BE traffic.

The resource allocation policies for GS and BE traffic are defined statically in
existing router designs. This also applies for the concept, presented in section 6.2,
where the policies for VC assignment are defined at design-time. These static
policies cannot be adapted to the application requirements. This in turn can

17Doubling the number of VCs requires to also double the number of TS to have one TS per VC.

204

6

6.3. Adaptive QoS Policy Management

lead to degradation of performance, as shown later. In the following paragraphs,
a concept for run-time configuration of the VC allocation policy for GS and
BE communication is presented. VCGS,max and VCBE,max can be adapted for
each router port according to the current communication requirements. This
concept can be used to pre-allocate resources for an application. The concept
also allows to control global communication18 by restricting the use of certain
regions. A detailed description of this concept is provided in [HZW+12]19. In the
following, a summary of this work is provided.

Figure 6.12 shows a 10x10 mesh NoC. The adaptive QoS policy management en-
ables reconfiguration of virtual channel allocation policies for individual routers,
in a distributed manner in order to ensure scalability. Such policies are referred
to as resource management policy (RMP). In the example, three different scenarios
for RMP reconfiguration are provided. Example (a) in figure 6.12 illustrates the
reconfiguration of the policy by modifying VCBE,max within the respective NoC
region. This benefits the GS communication within this region, as the resource
utilization by BE traffic is limited. The regions can be defined during run-time
through distributed policy adaptation according to the application requirements.

Example (b) in figure 6.12 shows a region where the number of GS connections
crossing the border is reduced. This is done by modifying the VCGS,max policy
at the borders of the region. However, the number of GS connections within
the region may still be higher because the policies for the routers within are
not modified. This increases the performance for GS communication within the
region and improves the probability of setting up connections successfully, if an
application is mapped into the region. The results, presented in section 6.3.3,
show how an application, which is mapped into such a region, can benefits from
region-based policy adaptation.

The task mappings of an application may lead to a region which is not square.
Example (c) in figure 6.12 shows the configuration of a non-square region. Com-
pared to example (a), where the policy for BE traffic is adapted for all routers of
the region, the modification of VCBE,max policy at the regions’ borders allows to
improve BE performance within the region. The strategy in example (c) can be
used to enhance the performance of the application by improving the BE com-
munication20. Adaptive routing schemes may be necessary in case of non-square
regions to avoid crossing of borders for intra-region communication.

The investigations, summarized in section 6.3.3, show that the applications within
the region benefit from such policy reconfiguration. However, the policies may
harm the communication crossing the regions. Adaptive routing, introduced in

18More details about global and local communication are provided in section 6.4.1.
19Parts of the publication [HZW+12] are used verbatim in this section without further identification.
20BE might be necessary if the number of communication partners within a distributed application

exceeds VCGS,max . In such a case GS communication cannot be used for all communication flows.

205

6

6. Quality of Service

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

N L N L N L N L N L N L N L N L N L N L
W E W E W E W E W E W E W E W E W E W E

S S S S S S S S S S

Router: N L Ports: N: North W: West GS policy modified
W E E: East L: Local BE policy modified

S S: South Policies remain unchanged

a)

c)b)

Figure 6.12.: Different policy configurations for routers in NoC regions: (a) BE-
policy reconfiguration within a region, (b) GS-policy and (c) BE-
policy reconfiguration at regions’ borders [HZW+12].

section 5.1.4.2, can be used to increase the performance outside the regions. It
allows certain BE packets or GS connections to bypass a region.

6.3.1. Run-Time Mapping and Policy Configuration

The concept for run-time policy configuration targets a distributed software
management, such as the agent system, introduced in section 3.3.2.1. The agent
system divides the architecture into disjoint regions. Each of these regions is
managed by an instance of the agent system. This concept of non-overlapping
regions is also reflected by the proposed policy configuration scheme.

Figure 6.13 illustrates how an application mapping flow works in conjunction
with the proposed concept. Figure 6.13(a) shows a part of an architecture where
two applications are already mapped. To optimize the communication for the

206

6

6.3. Adaptive QoS Policy Management

respective application, the RMPs have been reconfigured to fence the applications
in their respective regions. Figure 6.13(b) shows an application graph which is
now requested to be mapped to the architecture. The operating system typically
performs a decentralized search to find a suitable region for application execution,
as explained in section 6.2.1.5. Once a region is found, the policy is reconfigured to
fence the region as shown in figure 6.13(c). Figure 6.13(d) illustrates the mapping
of the application to the selected region.

a)
B1 B2

B3

A5

A1 A4A2

A3

b)

C3
C5

C1
C4

C2

Task graph of new application to be executed:

c)
B1 B2

B3

A5

A1 A4A2

A3

d)
B1 B2

B3

A5

A1 A4A2

A3

C5

C3

C4

C2 C1

Region Boarders: Task of an Application:

Figure 6.13.: Policy reconfiguration for application mapping: (a) two applications
are running, (b) new application needs to be mapped, (c) the region
for new application is prepared and (d) application is mapped into
new region and executed.

207

6

6. Quality of Service

The GS or BE virtual channel allocation policy can be configured for each router
port. This policy reconfiguration is triggered by the OS as mentioned previously.
In [HZW+12], three different mechanisms for policy reconfiguration are discussed.
Interestingly enough, memory mapped registers are the most efficient way to
enable run-time configuration. Consequently, memory mapped registers are used,
as defined in table A.6. They can be accessed directly from each node of the
architecture, enabling a configuration of an entire region by a single node or core.
Thus, a single instance of an operating system is able to configure a complete
region.

6.3.2. Hardware Implementation

The reservation control FSM manages the reservation process within the output
reservation table, as described in section 6.2.2.1. It is extended to support dynamic
policies for GS and BE traffic. Therefore, the reservation control FSM is extended
by a so-called resource management unit (RMU). The block diagram of the resource
management unit is shown in figure 6.14. It supports separate policies for GS and
BE traffic. The RMU is responsible for ensuring that the resource management
policies are not violated for the respective router port.

Once a reservation request arrives at the output reservation table, it is processed by
the reservation control FSM. During this reservation phase, the RMU is requested
to acknowledge the reservation. Therefore, the RMU contains separate interfaces
for GS and BE reservation requests. A reservation request is acknowledged in
the same cycle, if the existing policy is not violated. Once an RMU does not
acknowledge the reservation request, it is rejected. The counters of the RMU
contain the numbers of VCs occupied by GS and BE traffic, respectively. Whenever
a virtual channel is reserved or released, the corresponding signals are set and the
counters inside the RMU are incremented or decremented accordingly.

The RMU contains a separate interface, which is used to reconfigure the GS and
BE policies during run-time. The signal, named policy level, provides the rules in
terms of VCGS,max and VCBE,max parameters. The configuration is performed by
writing to memory mapped registers, as previously described.

6.3.3. Evaluation

A detailed investigation of the proposed concept for policy reconfiguration is pro-
vided in [HZW+12]. A summary of the most important results is now provided.

The SystemC simulation framework, introduced in section 5.2, is used for eval-
uation. A 10x10 NoC with mesh topology is instantiated. The MPEG4, MWD,
PIP and VOPD applications, introduced in section 5.2.3.3, are used for evaluation.

208

6

6.3. Adaptive QoS Policy Management

GS Res. Req.

In
cr

.

GS Rel.

Decr.

BE Res. Req.Incr.

BE Rel.

De
cr

.

BE Res. Ack.

Policy Level
BE Enable

GS Max. GS Counter>

&

BE Max.BE Counter <

&

greater greater

Value EnableEnable Value

GS Enable

GS Res. Ack.

Configuration Interface

G
S

Re
s.

/R
el

.
In

te
rf

ac
e

BE Res./Rel.
Interface

Figure 6.14.: Block diagram of resource management unit with separate resource
management policies for GS and BE traffic.

Each application is mapped separately to a region, located in the center of the
mesh. Uniform random BE communication and randomly established GS con-
nections are used to mimic global communication21 through the region of the
application. The VC assignment policies at the borders of the region are modified
according to the proposed concept. Subsequently, throughput and latency of the
application are measured. For comparison an ideal and a baseline scenario are used.
The ideal scenario represents a situation without any concurrent communication
on the NoC. In contrast, the baseline provides measurements with concurrent
communication but without application of the proposed concept. It can be seen
as a reference with respect to state of the art NoCs.

In the initial scenario, BE traffic is used as additional load in order to impact the
investigated applications. The BE policy (VCBE,max), at the borders of the region
is decreased incrementally, as shown in figure 6.12(c). By reducing the VCBE,max
to 1, the overall throughput for MPEG4 could be improved by 12 % compared
to the baseline. For PIP and VOPD the policy reconfiguration can improve the
throughput near the ideal scenario. Altering the BE resource management policy
has a much larger influence on packet delay; compared to throughput. PIP is the
application that profits the most from the modified RMP. Its delay can be reduced
by up to 53 %; compared to baseline scenario.

In the second scenario, random GS connections are setup between the tiles outside
the region. These connections may cross the region, where the investigated
application is mapped. The policy for GS communication, at the regions’ borders,
is modified by reconfiguring VCGS,max, as shown in figure 6.12(b). Compared
to the baseline, MPEG4 achieves a throughput increase of 17 %, if the policy for
VCGS,max is set to 1 at the borders. For PIP, a delay reduction of 36 % is experienced

21Global communication typically results from communication to chip-external memories or commu-
nication between operating system instances.

209

6

6. Quality of Service

by reconfiguring the VCGS,max from 3 to 1 at the regions’ borders. VOPD, MPEG
and MWD packet delay is reduced by 25 %, 23 % and 13 %, respectively.

As previously mentioned, reducing the VCGS,max at the regions’ borders reduces
the number of connections crossing this region. Hence, the proposed concept
can increase the probability of successfully establishing a GS connections within
an existing region. Limiting the number of GS connections through the region
improves the rate of established GS connections by up to 21 % for PIP. A VCGS,max
limit of 1 at the regions’ borders leads to a GS setup success rate of 98 % for all
investigated applications. Thus, the proposed concept can be used to ensure
successful mapping of applications with QoS requirements.

The implementation overhead of the proposed concept is investigated, in detail,
in [HZW+12] for a Xilinx Virtex-5 LX 330 FPGA. Instantiating one resource man-
agement unit per router port increases the LUT utilization of a router by 2.5 %.
Clock frequency is unaffected if memory mapped policy reconfiguration is used22.

6.4. Virtual Networks

Networks on chip enable the creation of large scalable on-chip architectures. In
such architectures, with hundreds of cores, centralized management of resources is
inefficient due to higher communication overhead. Distributed resource manage-
ment is proposed to reduce the management and communication overhead [140].
The architecture is logically divided into regions and the computational resources
of each region are administrated by an OS instance which is responsible for the
respective region. In addition, each instance is responsible for the application us-
ing the region. Such a decentralized management scheme is also used in invasive
computing, as described in section 3.3.2. The computational resources are divided
into disjoint regions.

Managing the underlying communication infrastructure according to the applica-
tion requirements is challenging. The partitioning of communication resources
into regions is complicated, compared to partitioning of computational resources.
The reason is the existence of local and global communication23. Typical lo-
cal communication is communication between tasks, which belong to the same
application and are thus mapped neighboring one another. However, global
communication may on the one hand be necessary to access specialized compo-
nents, such as off-chip memories or specialized tiles. On the other hand, global

22In [HZW+12], local reconfiguration is used. This necessitates additional I/O pins and decreases the
clock frequency by 7 % compared to the baseline router.

23Communication of an application that is internal to a region is referred to as “local”, while commu-
nication crossing regional borders is named “global”.

210

6

6.4. Virtual Networks

communication is necessary for OS-internal communication. As such, the com-
munication resources could be shared and used concurrently by both local and
global communication or partitioned between the two communication types. If
the resources are shared and used concurrently, the application’s local communi-
cation latency and throughput depends on the amount of global communication.
On the other hand, an exclusive partitioning of communication resources into
regions would prohibit global communication. Consequently, a more flexible
concept is necessary to fulfill the requirements of global and local communication
for large-scale many-core architecture.

As an extension of the policy management scheme, presented in section 6.3, a
distributed communication resource management strategy for packet switched
networks on chip with virtual channels, published in [HZW+13], is explained in
the following24. This strategy enables the establishment of so-called virtual net-
works (VNs) at run-time in arbitrary regions of the architecture. Virtual channels
can be assigned dynamically to a virtual network in a region. The application
executed within the region of the virtual network can exclusively use the as-
signed VCs. Whereas the remaining virtual channels are available for global
communication.

The following example shall motivate the necessity of virtual networks: Some
distributed applications can be organized in a way that the number of commu-
nication partners per node is low. Guaranteed service connections, introduced
in section 6.2, can then be used to decouple local communication of the appli-
cation from global communication. Other applications, such as the distributed
MPEG application, shown in figure 6.15, have nodes with high fan-out and fan-in.
These nodes (SDRAM and SRAM2) have too many communication partners to
use GS for all connections25. Consequently, the use of dedicated point-to-point
connections is not always applicable to enable QoS guarantees.

The concept of virtual networks enables run-time adaptation of the communi-
cation infrastructure, according to the requirements of the current application.
This enables QoS and can be used to improve communication performance of any
application. In contrast to GS point-to-point connections, where the number of
communication partners per node is limited, VNs can always be used. A virtual
network can be dynamically established for a region. A part of the physical
bandwidth of the communication infrastructure is assigned exclusively to a VN,
according to the requirements of the application. The bandwidth, which is not
allocated to virtual networks, is available for global communication. A VN can
be seen as an independent, exclusively used communication infrastructure from

24Parts of [HZW+13] (own work) are reused in this section without further identification.
25Assuming that four virtual channels exist and one is reserved for global best-effort communication,

only three VCs remain and this only allows to establish three connections per node at maximum.

211

6

6. Quality of Service

VIO
AIO

RAST

MED
CPU

SDRAM

SRAM1

SRAM2

IDCT

RISC

BAB

UP
SAMPADSP

190 0.5
60

40

600

40

250

6709100.5

32 173

500

High Fan-in/Fan-out Node

Figure 6.15.: MPEG video processing application with high fan-out and fan-in
nodes [22].

the perspective of the software using it. Thus, virtual networks are a step toward
visualization of MPSoC architectures using NoC-based interconnects.

6.4.1. Concept of Run-time Adaptive Virtual Networks

In a packet switching network with virtual channels, just as the NoC introduced
in section 5.1, each packet is assigned to a virtual channel on a per hop basis.
Thus, a packet can use an arbitrary VC at each router. This flexible VC assignment
maximizes the communication resource utilization and is a noticeable advantage
of packet switched networks. In order to enable virtual networks, the virtual chan-
nel assignment strategy must be controlled by the use of policies26. A separate
policy is defined per virtual network i:

VCutil(i) ≤ VCmax(i) ≤ VCtotal (6.10)

VCutil(i) gives the number of virtual channels, currently utilized by VN i. It is
compared to VCmax(i) each time a virtual channel assignment is required in the
router. VCmax(i) is the maximum number of VCs usable by VN i. VCmax(i) is
a policy and is configured at all routers of a region when establishing a virtual
network. VCtotal gives the total number of virtual channels in the network.

When all virtual channels are assigned to the same virtual network, as shown in
figure 6.16(a), and all packets use this network, the network behaves identically

26The assigment policies presented in this section are independent of the policy management, intro-
duced in section 6.3. It is possible to apply both concepts in common.

212

6

6.4. Virtual Networks

to a conventional network. This configuration may also be used as a default
setting of the network after reset. Figure 6.16(b) shows the simplest virtual
network with a static assignment. Two of the virtual channels are assigned
to VN0 and the other two to VN1. In order to assign each packet to a virtual
network, it contains the ID of the VN. With respect to the example presented
in figure 6.16(b), the policies must be set to VCmax(0) = 2 and VCmax(1) = 2
according to equation 6.10. Figure 6.16(c) shows a dynamic virtual network. VN1
has two exclusively used virtual channels but can also use the other two VCs,
thus two of the VCs are dynamically shared between VN0 and VN1. In order
to configure the assignment policies for the example provided, VCmax(0) is set
to 2 and VCmax(1) to 4. Partial dynamic virtual networks are established in the
example provided in figure 6.16(d). In partial dynamic VNs, some of the VCs are
exclusive to each VN and some are shared.

Conventional
Network

Static
Virtual Network

Dynamic
Virtual Network

Packet 1

 Legend: Possible Packet Assignment
Virtual Network 0 Virtual Network 1

a) b)

c) Partial Dynamic
Virtual Network

d)

Shared

VC A
VC B
VC C
VC D

Packet 1

Packet 2

VC A
VC B
VC C
VC D

Packet 1

Packet 2

VC A
VC B
VC C
VC D

Packet 2

VC A
VC B
VC C
VC D

Packet 1

Packet 2

Figure 6.16.: Assignment of packets to virtual channels for (a) conventional NoCs
as well as (b) static and (c,d) dynamic virtual networks.

A part of an architecture using virtual networks is presented in figure 6.17(a).
Most of the cores are assigned to one of the three regions A, B and C. Each region is
used by a separate application and has a separate virtual network. The configured
virtual networks are not required to be rectangular in shape, as shown by region C.
The VNs are disjoint for this example. In contrast, figure 6.17(b) shows an example
for overlapping virtual networks. Two cores are shared between region A and B.

Figure 6.17(c) shows the virtual channel assignment for one row of routers from
the example provided by figure 6.17(a). It can be seen that VCs of each router

213

6

6. Quality of Service

are assigned to two VNs, at most. The number of virtual networks, supported
per router, is limited by the number of hardware-modules managing the VC
assignment, as described later, in detail. Figure 6.17(d) shows the VC assignment
for the scenario provided by figure 6.17(b). In addition to the virtual networks,
used by the application and the one used for global communication, another
virtual network is established for external memory communication. The router in
the center must manage four different VNs. Consequently, the router hardware
must be support the management of four virtual networks in parallel.

B

A A A

A A A

A A A

CC

C C C

C C C

B

B

B

B

B

BA A A

A A A

Region A

B

B

B

B

B

B

Region B

CC

C C C

Region C

A A A

A A AB

A A

C C

C C

C C

B

B

B

B

B

B

B

Region C

Region B

AB

A A

A A

 Region A

B

B

B

B

B

B

B

B

Region B

AAAB

AAAB

C C

C C

Regggion C

VN
Region B

VN
Region C

VN
Global Communication

VN Region B
VN Region A

Global Communication
VN

VN Memory Access

a)

c)

b)

d)

To
p

Vi
ew

VC
 A

ss
ig

nm
en

t

VC0

VC1

VC2

VC3

Figure 6.17.: (a) Three applications A, B and C are mapped to different separated
regions. (b) Regions A and B are overlapping. The VC assignment
for a row of routers is shown by (c) and (d) respectively.

When a virtual network is established, hard guarantees for the overall throughput
within the sub-network can be given:

BWVN(i) =
VCexcl(i)
VCtotal

· BWtotal (6.11)

BWtotal is the total bandwidth of the network, VCtotal gives the total number of
virtual channels and VCexcl(i) is the number of VCs assigned exclusively to VN i.
VCexcl(i) can differ from VCmax(i) if VCs are shared between virtual networks, as
shown by figure 6.16(c) and (d). VCexcl(i) can be calculated as follows:

VCexcl(i) = min
{

VCmax(i), max
{

VCtotal −
N

∑
j=0,j 6=i

VCmax(j), 0
}}

(6.12)

214

6

6.4. Virtual Networks

N is the number of virtual networks supported by the architecture. VCexcl(i)
depends on the policies (VCmax(i)) of all VNs.

6.4.1.1. Software Management and Configuration

Software support is required to establish and use virtual networks according to
the requirements of the application. A request to execute a new application arises
from an ongoing execution at some node of the architecture and is forwarded
to an operating system instance. The OS searches for appropriate resources to
execute the application. Once sufficient resources are found, they are reserved for
the application. Figure 6.18 shows how an application mapping flow works when
using the proposed virtual network concept.

Figure 6.18(a) shows a part of an architecture in which two applications are
mapped. These applications use the same virtual network or no VN respectively.
A new application, represented by the task graph in figure 6.18(b), must be
execution. The new application C is assumed to be communication-bound27;
hence, a virtual network is requested. A virtual network setup request is passed
to the OS instance, managing the communication resources of the region; selected
for task mapping. Subsequently, the responsible OS instance reconfigures the
virtual channel management policies at the routers in the region, as highlighted
in figure 6.18(c). Therefore, a reconfiguration packet is sent to each router, which
must be configured. Memory mapped registers are the most efficient way to
enable run-time configuration. They can be accessed directly from each node of
the architecture, enabling a decentralized configuration of the entire region in
order to ensure scalability. After the virtual network is successfully established,
the application is mapped to the designated region of the VN, as shown in
figure 6.18(d). During execution of the application, the OS in collaboration with
the network adapter is responsible for assigning the correct VN ID to the packets
using the virtual network, as described in section 6.4.2.1.

6.4.2. Implementation

Virtual network support requires additional components inside the network rou-
ters and an extension of the network layer protocol of the NoC. From the protocol
perspective, a VN ID is required to assign each packet to the respective VCs of the
virtual network. It is processed at run-time in each router during virtual channel
assignment. The corresponding implementation is discussed now.

27The performance of a communication-bound application is limited by the performance of the com-
munication infrastructure and memory subsystem. In contrast, the performance of a computation
bound application is typically limited by the computation power of the cores.

215

6

6. Quality of Service

d)

a)

B1 B2

B3

A5

A1 A4A2

A3

b)

C3
C5

C1
C4

C2

Task graph of new application to be
executed:

c)

B1 B2

B3

A5

A1 A4A2

A3 B1 B2

B3

A5

A1 A4A2

A3

C5

C3

C4

C2 C1

Legend: Task of an Application: Operating System Instance:

OS

OS

NoC Router VC Policy Configuration: Virtual Network:

Figure 6.18.: Establishment of a virtual network while task mapping: (a) two ap-
plications are running, (b) new application requests for resources, (c)
virtual network for new application is established and (d) application
is mapped into the virtual network region and executed.

6.4.2.1. Flit Format Extension

The VN concept requires the assignment of each packet to a virtual network. Thus,
the index of the virtual network, the so-called VN ID, must be contained in each
packet. The VN ID is required during the reservation phase and is contained in
the head flit. Figure 6.19 shows the fields of a header supporting VNs.

The VN ID, is the additional field used as an index for VC assignment and must
be set by the network adapter. The VN ID is the only protocol extension required
to support VNs, compared to the basic protocol introduced in section 5.1.2. Thus,
the protocol overhead for VN support is very low. For an architecture supporting
two VNs per router, only one bit is required for the VN ID.

216

6

6.4. Virtual Networks

SRC AddressDST Address
Head Bit

Tail Bit
PayloadVN IN

1

Ctrl. Bit

Figure 6.19.: Head flit supporting virtual networks by VN ID field.

6.4.2.2. Virtual Network Management Unit

The virtual network management unit (VNMU) controls the VC assignment policies,
provided by equation 6.10. It is involved in the reservation and release process
of the virtual channels. Reservation and release of virtual channels is performed
by the reservation logic embedded in the reservation table, described in detail
in section 5.1. One VNMU is required per router output port, since the virtual
channel management is independent for each router port.

The structure of the virtual network management unit is shown in figure 6.20.
It contains a separate control unit for each virtual network. The number of
supported virtual networks is defined by the number of virtual network control
units (VNCUs). This number must be defined at design-time. The choice of the
number of virtual network control units and thus the number of supported virtual
networks depends on the requirements of the architecture. The number of VNCUs
limits the number of virtual networks, overlapping in the same router, but not
the overall number of VNs. The example shown in figure 6.17(d), would require
4 virtual network control units per router port, since the router in the middle
manages 4 different VNs. The number of VNs, used by a single application, is
independent of the application size. One VN is sufficient for a large application
to decouple its internal communication from other communication.

Manner of Functioning Once a head flit arrives at a router input port, the
routing unit calculates the output port. Subsequently, the reservation of an
output VC is performed by adding an entry to the reservation table of the output,
calculated by the routing unit. During this reservation phase, the VNMU is
requested to acknowledge the reservation. Therefore, the VN ID, shown in
figure 6.19, is forwarded to the VNMU. The responsible VNCU of the virtual
network management unit is selected according to the VN ID. The VC counter
within each control unit contains the number of VCs currently occupied by the
respective virtual network. The maximum number of VCs for each VN is defined
by the value stored in the VC max. register, representing VCmax(i) in equation 6.10.
A reservation request is acknowledged in the same cycle, if the defined policy is
not violated. The VC counter is incremented each time a reservation request is
acknowledged. Release requests, which are raised when a tail flit is transmitted,

217

6

6. Quality of Service

Reservation Req.

In
cr

.

Release

Decr.

Policy Value VN 0

VC Max. VC Counter>

&

greater

Configuration Enable

Acknowledge

Re
le

as
e

In
te

rf
ac

e

Virtual Network Control Unit 0

&
&

VN "0"

=

=

Re
se

rv
at

io
n

In
te

rf
ac

e
VN ID

Request

VN ID

Request

 1
>

Configuration
Interface

Figure 6.20.: Block diagram of the virtual network management unit.

are also forwarded to the virtual network management unit. Consequently, the
VC counter of the VN to which the tail flit corresponds is decremented. In
addition to the interface for request and release, the RMU contains a configuration
interface. The configuration interface is used to store a new value in the VC max.
register when the configuration port is enabled. This interface is connected to the
memory mapped configuration registers, used for virtual network configuration,
as described in section 6.4.1.1.

6.4.3. Evaluation

The evaluation section consists of two parts. The performance evaluation for dif-
ferent traffic scenarios, using the simulation framework introduced in section 5.2,
is discussed in section 6.4.3.1. Subsequently, section 6.4.3.2 provides ASIC syn-
thesis results, analyzing the implementation costs and power consumption for
virtual network support.

6.4.3.1. Simulation

An 8x8 mesh NoC with XY routing is used for the following investigations. The
routers are configured to have 4 virtual channels and a buffer depth of 4 flits. The
software mechanisms described in section 6.4.1.1 are implemented in C++ and
integrated into the simulation framework.

218

6

6.4. Virtual Networks

Different configurations of virtual networks are investigated in the following
paragraphs. The reference is a network without VN-support, as shown in fig-
ure 6.16(a). For this configuration, all communication flows share the VCs. It is
referred to as noVN hereafter. The noVN configuration is compared to configura-
tions where virtual networks with different bandwidths (1-4 VCs) are established.
Static virtual networks and dynamic virtual networks, as shown in figure 6.16(b)
and 6.16(c) respectively, are used for investigation.

Different communication scenarios are analyzed. The investigated communica-
tion flows represent applications that are mapped to a predefined region. In addi-
tion to these flows, synthetic traffic is used as global communication crossing the
regions used by the applications. Uniform random traffic (Rand.) and transpose
traffic (Transp.), introduced in section 5.2.3.1, are used for global communication.
Due to the characteristics of the synthetic traffic, its impact on region-internal
communication is maximized when the evaluated regions are centered. Thus,
all investigated flows and applications are mapped to the center of the NoC. If a
virtual network exists, it is configured according to the shape of the application.
The VN is used exclusively by the investigated communication flows.

Single Connection In the first scenario, a single data transmission across a
region of 4x4 nodes, located at the center of the architecture, is analyzed. The
injection rate of the synthetic global communication varies between rates of 0
and 1 Flits/Cycle/Node. In figure 6.21(a), the delay of a data transmission is
investigated. As shown by the results, the latency can be reduced if a virtual
network is established. Assigning all 4 VCs to the VN of the region, completely
blocks global communication through the region. This leads to a low packet delay
that is independent from global communication. Virtual networks may decrease
delay by up to 25 %.

Figure 6.21(b) shows the achievable throughput of a single data transmission.
Assigning only 1 VC to the virtual network results in reduced performance
compared to an architecture without VNs. The reason is the limited bandwidth
of a single VC. Assigning two or more VCs to the VN increases the throughput
compared to the reference architecture, named noVN. When 3 VCs are assigned to
the VN, the throughput is nearly doubled; compared to the reference. Dynamic
VNs are permitted to use the VCs of other virtual networks in addition to the
exclusively assigned VCs. This improves the throughput for low numbers of VCs,
as shown in figure 6.21(c).

Synthetic Region Traffic For the second test case, uniform random traffic is
used in a virtual network with a size of 4x4 nodes. The region is again located at
the center of the architecture. In contrast to the previous scenario, the injection
rate for global communication was set to 0.35 Flits/Cycle/Node. The injection

219

6

6. Quality of Service

0.2 0.4 0.6 0.8 1
20

22

24

26

28

30

32

Global Injection Rate (Flits/Node/Cycle)

Pa
ck

et
D

el
ay

(C
yc

le
s)

noVN 1VC 2VC
3VC 4VC

(a) Delay, Rand., Static

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Global Injection Rate (Flits/Node/Cycle)

Th
r o

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

)

noVN
1VC
2VC
3VC
4VC

(b) Throughput, Rand., Static

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Global Injection Rate (Flits/Node/Cycle)

Th
ro

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

)

noVN
1VC
2VC
3VC
4VC

(c) Throughput, Rand., Dynamic

Figure 6.21.: Delay and throughput of single data transmissions in VN regions
with global communication.

rate of the nodes within the region is varied between 0 and 1 Flits/Cycle/Node.
Using a static virtual network, at least 2 VCs must be assigned to the random
VN communication to obtain a performance similar to the reference architecture,
as presented in figure 6.22(a). A dynamic virtual network reduces the delay
compared to the static VN, as shown in figure 6.22(b). Delay can be improved by
more than 40 % for a traffic injection rate of 0.5 and a VN with 3 VCs, compared
to the reference architecture. For global communication in transpose manner,
shown in figure 6.22(c), at least 3 VCs must be allocated to the VN to improve the
performance for high injection rates, compared to the reference architecture.

Figure 6.22(d) shows the throughput analyzes for a static VN under random traffic.
3 VCs must be assigned to the virtual network to improve throughput compared
to the reference. Using a dynamic VN improves the performance, when 2 or more

220

6

6.4. Virtual Networks

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

VN Injection Rate (Flits/Node/Cycle)

Pa
ck

et
D

el
ay

(C
yc

le
s)

noVN 1VC 2VC
3VC 4VC

(a) Delay, Rand., Static

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

VN Injection Rate (Flits/Node/Cycle)

Pa
ck

et
D

el
ay

(C
yc

le
s)

noVN 1VC 2VC
3VC 4VC

(b) Delay, Rand., Dynamic

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

VN Injection Rate (Flits/Node/Cycle)

Pa
ck

et
D

el
ay

(C
yc

le
s)

noVN 1VC 2VC
3VC 4VC

(c) Delay, Transp., Static

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VN Injection Rate (Flits/Node/Cycle)

Th
ro

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

) noVN
1VC
2VC
3VC
4VC

(d) Throughput, Rand., Static

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VN Injection Rate (Flits/Node/Cycle)

T
hr

ou
gh

pu
t(

1/
Id

ea
lT

hr
ou

gh
pu

t) noVN
1VC
2VC
3VC
4VC

(e) Throughput, Rand., Dynamic

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

VN Injection Rate (Flits/Node/Cycle)

T
hr

ou
gh

pu
t(

1/
Id

ea
lT

hr
ou

gh
pu

t) noVN
1VC
2VC
3VC
4VC

(f) Throughput, Transp., Static

Figure 6.22.: Delay and throughput of uniform random traffic within the region
for different VN configuration.

221

6

6. Quality of Service

VCs are assigned to it, as shown in figure 6.22(e). A dynamic VN using 3 VCs can
improve throughput of random communication by up to 72 %, compared to the
reference architecture. Throughput measurements for transpose traffic used as
global traffic are similar, as shown in figure 6.22(f).

Multimedia Applications Communication task graphs are now used for latency
and throughput investigations. Details about the six video processing applica-
tions (VOPD, MPEG4, PIP, MWD, H.264 and MMS), which have been used, are
provided in section 5.2.3.3. Regions of 3x3 (PIP), 3x4 (VOPD), 4x4 (MPEG4, MWD
and H.264) and 5x5 (MMS) are configured according to the calculated mapping
and the number of nodes required by the respective application. Each application
is mapped separately to its respective region, located in the center of the mesh.
Transpose and uniform random traffic are used to simulate global communication
through the region of the applications. All results shown in figure 6.23 are relative
to an ideal scenario without global communication.

Figure 6.23(a) shows the latency for static virtual network with uniform random
global communication. Assigning two or more VCs to the VN improves delay
for all applications compared to the reference architecture without VN support.
A VN using 3 VCs can reduce the communication latency of PIP application by
up to 78 %. Once a dynamic virtual network is established, performance can
also be improved for VNs using small numbers of VCs exclusively, as shown
in figure 6.23(b). Transpose global communication has the greatest effect on the
delay of the applications, as shown in figure 6.23(c).

The throughput of MWD and VOPD is rather low, thus they exhibit adequate
performance for all VN configurations, as shown in figure 6.23(d). MPEG, H.264
and MMS require 3 VCs to reach the requested throughput under uniform random
background traffic. For MPEG and H.264, the throughput can be increased by
around 12 % relative to the reference, if using 3 VCs. Figure 6.23(f) summarizes
the results for transpose global traffic, which strongly affects the communication
within the region. If only 2 VCs are assigned to the virtual network, used by H.264
and the MMS, a significant increase in throughput of 42 % and 44 % respectively
is obtained compared to the reference where no VN is used.

6.4.3.2. Synthesis

The NoC router, introduced in section 5.1, is used as a basis in order to implement
virtual network support. A standalone router of an 8x8 mesh NoC is synthesized
using the flow, introduced in section 5.3.2.1, with a 45 nm TSMC standard cell
library. Two variants of the router were synthesized. The small router has the

222

6

6.4. Virtual Networks

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0

2

4

6

8

10

Pa
ck

et
D

el
ay

(1
/I

de
al

D
el

ay
)

noVN
1VC
2VC
3VC
4VC

(a) Delay, Rand., Static

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0

2

4

6

8

10

Pa
ck

et
D

el
ay

(1
/I

de
al

D
el

ay
)

noVN
1VC
2VC
3VC
4VC

(b) Delay, Rand., Dynamic

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0

5

10

15

Pa
ck

et
D

el
ay

(1
/I

de
al

D
el

ay
)

noVN
1VC
2VC
3VC
4VC

(c) Delay, Transp., Static

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0.6

0.7

0.8

0.9

1

Th
ro

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

)

noVN 1VC 2VC
3VC 4VC

(d) Throughput, Rand., Static

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0.6

0.7

0.8

0.9

1

Th
ro

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

)

noVN 1VC 2VC
3VC 4VC

(e) Throughput, Rand., Dynamic

M
PEG

M
W

D PIP

VOPD
H.26

4
M

M
S

0.6

0.7

0.8

0.9

1

Th
ro

ug
hp

ut
(1

/I
de

al
Th

ro
ug

hp
ut

)

noVN 1VC 2VC
3VC 4VC

(f) Throughput, Transp., Static

Figure 6.23.: Packet latency and throughput of video processing applications for
different VN configuration.

223

6

6. Quality of Service

same parameters28 as the SystemC model used for simulation in the previous
section. The parameters29 of the NoC of Intel’s Single-chip Cloud Computer [114]
are used for the large router version.

Table 6.1 shows the synthesis results for area, clock frequency and power con-
sumption30. Two versions of the small and the large router were synthesized. The
basic router serves as a reference because it does not contain any special features,
just as the router introduced in section 5.1. The second version includes one vir-
tual network management unit with two VNCUs per router port, supporting two
virtual networks per router. The presented results show the low implementation
overhead of the VNMU. Adding a VNMU to each router port increases the area
utilization by 5.2 % and 0.3 % for the small router and large router respectively.
The total power consumption increases by 2.1 % for the small and 1.4 % for the
large router once a VNMU is added to the design. The clock frequency is inde-
pendent from the use of a VNMU, since the critical path of the router is in the
transmission control unit. A detailed investigation showed that the size of the
VNMU grows linearly with respect to the number of supported virtual networks.

Router Version
Area Frequ. Power Dyn. Power Stat.
(µm2) (MHz) (mW) (µW)

small large small large small large small large

Basic (BR) 30,558 479,753 1500 1000 4.29 18.28 373 4520
BR + VNMU 32,139 481,157 1500 1000 4.37 18.56 391 4553

Table 6.1.: ASIC synthesis results of a 5-port router without (BR) and with virtual
network support (BR + VNMU).

The synthesis results show the small implementation overhead for virtual network
support. Thus, it is reasonable to enable VN support in a NoC, although it may
only be used in some situations.

6.5. Summary

In this chapter, three different QoS concepts were presented. The QoS schemes are
carried out in the form of modular extensions of the best-effort packet switching
NoC, introduced in chapter 5. At the beginning of the chapter, state of the art was
discussed in general and by reference to existing QoS schemes.

28Parameters used for the small router design: 4 VCs, 4 buffer slots, 32 bit link size.
29Parameters used for the large router variant: 8 VCs, 4 buffer slots, 256 bit link size.
30Power consumption was obtained from a traffic scenario with heavy load, which can be seen as a

worst case scenario.

224

6

6.5. Summary

In section 6.2, a concept enabling multiple hard guarantees for bandwidth and
latency of end-to-end connections in packet switching NoCs was presented. It
is the first scheme that enables to adapt throughput and latency guarantees at
run-time for each guaranteed service connection. Unlike previous concepts, the
proposed strategy has the advantage that higher service levels do not dominate
lower ones; due to the use of a fair scheduling strategies. Best-effort and guar-
anteed service communication flows dynamically share uniform NoC resources.
The concept comprises an extension of the basic router design as well as software
support. A task mapping and GS connection management scheme is introduced,
which takes the monitoring information into account that are provided by the
monitoring infrastructure from section 5.5.3. The presented results show that
GS connections clearly benefit from higher service levels regarding throughput
and latency and that the given guarantees can be observed for all investigated
scenarios. Communication performance of video applications could be improved
by up to 40 % in delay and 31 % in throughput compared to state of the art GS
connections using fair round-robin scheduling. An evaluation on a FPGA proto-
type with a matrix multiplication applications showed a reduction of the required
bandwidth by up to 26 %. The power consumption for communication is reduced
by up to 20 % when the proposed GS communication scheme is used, instead of
best-effort packet switching.

In section 6.3, a region-based communication resource management strategy for
the previously introduced guaranteed service communication concept was de-
scribed. Hardware support allows run-time adaptation of resource allocation
policies in different NoC regions with regards to a distributed OS management
concept. The results obtained from the simulation framework, introduced in
section 5.2, illustrate the gain in overall communication performance. The pro-
posed decentralized management of communication resources leads to a delay
reduction of up to 36 % and a throughput improvement of up to 17 % for GS
traffic. Synthesis results demonstrate that the proposed hardware extensions have
a small area footprint and a very low impact on the clock frequency.

Section 6.4 addressed a methodology that enables virtual networks in packet
switched networks with virtual channels, as the NoC introduced in section 5.1.
The virtual networks are defined according to the application requirements. The
bandwidth and size of a virtual network can be configured at run-time. The
proposed virtual network concept enables decoupling of the local communication
of applications from global communication, which is crossing the region to which
the application is mapped. Virtual networks can be used to isolate the commu-
nication of a specific application by offering an exclusive-used network. The
presented results of various scenarios, including state of the art multimedia appli-
cations, show that virtual networks can reduce the delay for data transmission
and improve the throughput of the applications. The delay may be reduced by up
to 78 % and the throughput could be increased by 72 % at maximum compared to

225

6

6. Quality of Service

a best-effort packet switching network on chip. ASIC synthesis results show that
the additional hardware modules for resource management have a small impact
on area utilization and power consumption.

226

7

7. Self-Optimization and
Self-Organization

When increasing the size of the architecture, the overhead for hardware resource
management grows [140]. Thus, it is necessary to limit the management demands
of the hardware; ensuring scalability. Self-optimization and self-organization
capabilities of the hardware can assist in reducing the management overhead for
the software executed on the architecture.

In this chapter, novel self-optimization strategies are presented. The proposed
mechanisms comprise strategies for improving guaranteed service connections,
data collection and power management. All of the presented mechanisms ad-
dress packet switching networks with virtual channels and are built as optional
extensions of the router design, presented in section 5.1.

For each of the proposed mechanisms, related work is first discussed and limita-
tions of existing work are analyzed. Subsequently, the proposed self-optimization
features are presented in detail with the aim of overcoming said limitations.

7.1. Distributed Rerouting

Routing is an important aspect of a network on chip with respect to performance,
power consumption and fault tolerance. Distributed routing schemes are neces-
sary to ensure scalability. A detailed description is provided in section 2.4.5.2.

Adaptive routing schemes can offer multiple degrees of freedom when routing
packets, enabling run-time optimization of communication flows. Thus, adaptive
routing schemes have been proposed for fault tolerance [281], load balancing [94]
and performance improvement [46] in NoC-based architectures. The selection
of a particular route, which fulfills the rules of the adaptive routing scheme, is
performed at run-time. A selection strategy [15] is used to determine the most
suitable route1. When adaptive routing is used to enable fault tolerance, for
example, the selection strategy could select a route according to the current fault

1The selection strategy can either be implemented in a decentralized manner [117] in case of dis-
tributed routing or as part of a source routing implementation [181].

227

7

7. Self-Optimization and Self-Organization

map of the architecture [76] or dependent on CRC error rates. Once adaptive
routing is used to improve communication performance, the selection strategy
selects the route with the lowest utilization [15, 117]. Adaptive routing, in combi-
nation with a selection strategy, is very well suited for best-effort packet switched
communication. As such, the routing decision is only made for a single packet
with limited size and short transmission period.

Guaranteed service end-to-end connections, introduced in section 6.2, typically
exist for long periods. Existing distributed routing schemes and selection strate-
gies can only be used to find an optimal path for that point in time, at which
the connection is established. However, the load or fault situation may change
drastically during the lifetime of a GS connection. In a dynamic system, existing
connections are released and new ones are established when applications finish
execution and new ones are mapped and executed. This may lead to situations
where a previous routing decision, based on a state-of-the-art selection strategy
([117, 15, 76]), which was optimal at the reservation time, is subpar at a later
point in time. Consequently, unbalanced load situations and GS connection setup
failures may result.

In the following sections, a distributed self-optimizing routing mechanism for
guaranteed service end-to-end connections is introduced in order to address the
QoS scheme; introduced in section 6.2. The proposed strategy enables rerouting of
existing GS connections to react on changing load conditions during run-time. In
contrast to existing routing schemes, the proposed method withdraws previously
made routing decisions for established connections, transparently. The distributed
implementation enables the optimization of the GS communication. The concept,
implementation and evaluation of the scalable rerouting scheme, are detailed
below.

Rerouting was implemented as part of a student work [Sin12] and published
in [HSK+13]2.

7.1.1. Concept of Self-Adaptive Rerouting

For connection-oriented GS communication, the routing decision is made for a
much longer period compared to best-effort transmissions. Typically, the lifetime
of guaranteed service connections is not limited. Hence, they can exist for very
long periods, e.g. for the complete run-time of an application. In a dynamic
system, new applications are mapped and executed, while others incessantly
finish execution. Thus, NoC load situations can change significantly over time.
This can lead to unbalanced load situations with respect to GS connections.

2Extracts from [HSK+13], which are completely written by the author of the work in hand, are used
verbatim in this section without further identification.

228

7

7.1. Distributed Rerouting

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

a) b)

d)c)

Existing Connection New Connection
Rerouted Connection Failed Connection

New ConnectionNew Connection

Failed Connection New Connection

Rerouted Connection

Figure 7.1.: Chronology of a situation where rerouting is required.

Figure 7.1 gives an example of such an unbalanced load situation for a 3x3
segment of a larger NoC. The network has two virtual channels and uses a fully
adaptive routing scheme, as proposed in [74]. In figure 7.1(a), one new connection
between two PEs, PE 1 and PE 6, is established. The taken route is optimal at
that point in time. The path with the lowest utilization of the links is taken. In
figure 7.1(b), another connection is established. Assuming minimal routing, this
connection does not have degrees of freedom while routing, because source and
destination node are in the same row. Later on, a connection between PE 2 and
PE 3 must be established. This is not possible since the required link and the
VCs are already occupied by two other connections, as shown in figure 7.1(c).
When rerouting is used, the connection between PE 1 and PE 6 can be rerouted to
successfully establish the new connection between PE 2 and PE 3, as presented
in figure 7.1(d). The example provided shows how rerouting of connections can
be used to increase the number of GS connections and to balance the load in the
NoC. Communication bottlenecks are detected by the NoC. Subsequently, existing

229

7

7. Self-Optimization and Self-Organization

guaranteed service connections are rerouted to balance the NoC load. The results,
presented in section 7.1.3, will show that rerouting can increase the success rate for
establishing new GS connections by intelligently reallocating existing connections.
The selection of the best rerouting candidate and the search of an alternative route
are described in section 7.1.2.

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

RouterRouter

Legend: Original Route: New Route:
Independent Route Parts: Other connections:

R2

R3

R1

PEOverutilized
Router Port

PE
Source

PEPE
New Route

PE
Original
Route PE

Destination

Figure 7.2.: Example of a rerouting procedure - one of the connections using the
over-utilized port is rerouted.

Figure 7.2 gives a more detailed example of a rerouting process. A rerouting
procedure involves three routers R1, R2 and R3 and is composed of three phases:

P1-Detection: Router R1 detects a potential over-utilization. Such an overload
situation can e.g. be the utilization of all VCs or a link utilization near 100 %.
Afterwards, the router selects one of the connections using the congested output
port by a selection algorithm, which will be described in detail in section 7.1.2.1.
The selected route is the candidate for rerouting. A rerouting request is sent to the
source router R2 of the selected connection. All routers are able to issue rerouting
request simultaneously.

230

7

7.1. Distributed Rerouting

P2-Search: The source router R2 receives the rerouting request message. If mul-
tiple rerouting requests arrive at the same time, at one router, they are processed
sequentially. Afterwards, router R2 initializes to setup a new, alternative route to
the connection destination. Initiating an alternative route from the source router
of the selected connection has two main advantages compared to an implementa-
tion where an arbitrary router of the original connection is used as a source for
an alternative connection: (1) implementation is simplified since the address of
router R2 is known to be the source address of the connection and (2) the length
of the new alternative route is longest, if the source router is used, resulting in the
most degrees of freedom for the new alternative route.

In order to set up an alternative route, R2 generates a new head flit for connection
reservation. The header is injected into an alternative output port to ensure a
different path. Fully adaptive routing [74] or adaptive odd-even turn routing,
described in section 5.1.4.2, can be used to ensure a minimal route through an
alternative output of router R2. In the example provided, the new port is the
south port, whereas the original port was the east port. The new head flit now
performs an implicit search by using adaptive routing in combination with a
selection strategy and is transmitted towards the destination and performs the
required reservations at each node. Router R3 at the destination node detects
the incoming rerouting head flit. It stops the reservation process for the new
alternative route, deletes the head flit and sends back an acknowledge message to
router R2.

P3-Switching: Router R2 is now responsible for switching between the old and
the new route, once it receives an acknowledge message from R2. After receiving
the control message, it redirects the data stream to the new route. A tail flit
is injected into the virtual channel, associated with the old route, in order to
release this connection. The old route is then released and data is forwarded
through the new connection. Router R3 must also perform a switching between
the old and new connection. It detects the tail flit, coming through the old
connection, and deletes it. Afterwards, it switches directly to the new route to
avoid additional delay and to preserve QoS latency guarantees while rerouting.
This switching strategy guarantees in-order arrival from the PE perspective, as
detailed in section 7.1.1.1. After the switching process, the rerouting procedure
is finished and the originally utilized resources are released. Subsequently, the
resources are available for other connections or best-effort data transmissions.

In addition to the performance improvements later investigated, the properties of
the proposed mechanism can be summarized as follows:

• It is transparent from the perspective of the processing element. Hence, no
software support is required, as described in detail in section 7.1.1.1.

231

7

7. Self-Optimization and Self-Organization

• QoS guarantees of GS connections are observed during rerouting, since
switching between the original and new route is performed after the new
route is successfully established.

• In-order arrival can be guaranteed by the proposed switching mechanism.
Thus, reordering is not required at the destination node, as described in
section 7.1.1.1.

• It is fully decentralized and distributed. Thus, it is independent from the
NoC size and hence scalable.

7.1.1.1. In-Order Arrival & Transparency

The concept of in-order arrival is illustrated in figure 7.3. It is required to ensure
that the communication is unaffected by the rerouting process. As illustrated in
the picture, the flits reach the destination router in the original order and without
interruption or additional delay. This is achieved by transmitting the flits through
the old route until the rerouting process is completed. At this moment, the new
route exists in parallel to the old route. Then, the communication is switched to
the new route and the old route is released. The destination router (R3) ensures
that the last flit, which has taken the old router, is forwarded before the first flit
from the new route is processed. Thus, preserving the original order.

The rerouting process is fully transparent from the processing elements per-
spective. All QoS guarantees are preserved during rerouting. An existing QoS
connection is only rerouted if an alternative route is found. Thus, performance
and guarantees of existing QoS connections are never affected by rerouting.

Figure 7.3.: Illustration of in-order arrival during rerouting procedure [Sin12].

232

7

7.1. Distributed Rerouting

7.1.1.2. Potential Miscues

In the previous paragraph, a successful rerouting procedure was explained. How-
ever, rerouting has the potential to fail for various reasons. Phase 1 fails if a
candidate for rerouting is not found. In such a case, rerouting is not triggered. If
no alternative route is found, phase 2 of the rerouting procedure fails. In this case,
the transmitted head flit does not reach the destination router, due to unavailable
communication resources. Failing of search phase (P2) is detected by the router,
initializing the search via timer. When a timeout has lapsed, the resources that
have been reserved for the new route are released. Therefore, a tail flit is gener-
ated and injected by router R2. Phase 3 will not fail because switching is always
successful once a new route is established.

In order to limit the communication overhead of phase 1 and phase 2, the number
of outstanding requests per phase is restricted to one request per router.

7.1.2. Hardware Implementation

Scalability is one of the main reasons for using NoCs for on-chip communication
and is also a main objective of the communication infrastructure presented in this
work. Consequently, rerouting functionality must be implemented in a distributed
way within the routers of the NoC to ensure scalability.

As shown in figure 7.2, three routers are involved in a rerouting process. They
fulfill three different tasks T1-T3: Task 1 detects the congestion in router R1. Task 2
triggers the reservation process for a new connection and later the switching
between the old and new connection at the source router R2. Task 3 detects
and responds to successful rerouting events and later switching between the
old and the new connection at the destination router R3. Finite state machine
implementations are used to trigger the sequence of actions that are required
for each task. Each router has equal functionality to fulfill each of the tasks T1-
T3. The three tasks are not to be confused with the phases P1-P3, introduced in
section 7.1.1 – P1 uses only T1, P2 uses the T2 FSM in router R2 and P3 is carried
out by an interaction between T2 and T3 FSM.

The implementation of the tasks T1-T3 is explained briefly in the following para-
graphs. A more detailed description is provided in [HSK+13].

7.1.2.1. Congestion Detection (T1)

In the proposed scheme, rerouting is triggered by a potential overload at a router
port. Overload situations are detected per link, hence per router port. Basic
metrics for overload detection are the link utilization, virtual channel utilization

233

7

7. Self-Optimization and Self-Organization

and buffer utilization. Depending on the used metric, different hardware moni-
tors are used to detect the utilization threshold, which is triggering a rerouting
procedure. The infrastructure introduced in section 5.5.3 is used for monitoring.
This work focuses on the VC utilization metric for overload detection, because
this is most reasonable with respect to the reservation of virtual channels by GS
connections. A potential overload is indicated once the number of VCs, occupied
by GS connections, reaches the limit VCGS,max at any router port, according to
equation 6.8. A detection of an overload triggers a rerouting procedure.

After a potential overload situation is detected by online hardware monitors, a
connection using the congested output port is selected for rerouting. Ideally, the
connection with the best chance to be rerouted successfully will be selected. In
general, this is the connection with the highest number of minimal alternative
paths through the NoC. Hence, the degrees of freedom while routing, i.e. the
number of different shortest paths between source and destination in a meshed
NoC, is used as metric. This number depends on the distance between source
and destination in X and Y coordinates, defined as δx and δy. For a fully adaptive
routing algorithm, where all possible minimal paths have the same Manhattan
distance, the number of alternative paths (#path) between source and destination
can be calculated as follows:

#path =

(
δx + δy

δx

)
=

(δx + δy)!
δx! · δy!

≈ δx · δy (7.1)

Calculating a factorial is rather complex for higher values of δx and δy. Con-
sequently, the approximation in equation 7.1 is used for an efficient hardware
implementation of rerouting. It uses the area spanned by δx and δy as an approx-
imation for connection selection. The metric is calculated per connection, then
the maximum is extracted and finally, the respective connection is selected. A
respective algorithm for rerouting candidate selection is presented in [HSK+13].

If a valid rerouting candidate is found, a rerouting request message is sent to
the source router of the selected connection. Therefore, the source addresses of
all connections are stored in each router. The rerouting request message and all
other communication between the rerouting FSMs could either utilize normal BE
packet switching or a dedicated control channel. However, the use of a dedicated
control channel has several advantages, as described in section 5.5.1. With regard
to rerouting, a dedicated control channel can isolate communication for self-
optimization from normal communication. Consequently, the control network
from section 5.5.1 is used.

In order to avoid a noticeable communication overhead by rerouting requests,
the number of rerouting requests must be limited. Therefore, a timeout between
two rerouting requests is used. After this delay, a new congestion can be detected

234

7

7.1. Distributed Rerouting

and rerouting can again be triggered. If the connection selection fails, a waiting
period is used to avoid frequent triggering of rerouting and thus communication
overhead.

7.1.2.2. Source Router (T2)

The source router of the connection, which was selected for rerouting, receives
the rerouting request message sent by the overloaded router. In order to find an
alternative route, the routing unit is requested to calculate an alternative output
port for the connection to be rerouted3. A VC for the new connection is reserved
at the alternative output port. If no VC is available at the selected output port,
rerouting fails. After the VC reservation, a header is transmitted through the new
output to search and establish the alternative route. The head flit is processed
in the following routers, like any other header. Distributed adaptive routing, in
combination with a utilization-aware port selection strategy, as introduced in
section 5.1.4.2, is used in the current rerouting implementation. Consequently, the
procedure of searching for an alternative route is equal to normal routing.

Once an alternative route is found and the new connection is established, the
destination router sends an acknowledge message to the source router. If the
acknowledge message does not arrive within a predetermined time frame, a
timeout occurs. Then it is assumed that the establishment of the new connection
was not successful in one of the other routers on the path to the destination node.
Hence, the timeout triggers the release of the partially established new route
by injecting a tail flit into the virtual channel, which was reserved for the new
connection. If the acknowledge message arrives at the source router before the
timeout occurs, the routing table is modified to forward incoming flits of the
rerouted connection, via the new route. Next, the original route can be released
by sending a tail flit through the appropriate output VC. This is the last step of a
rerouting procedure, from the perspective of the source router.

7.1.2.3. Destination Router (T3)

The original and the new route could end up separately in the destination tile.
However, without merging the old and the new connection, in-order arrival could
not be guaranteed, as described in section 7.1.1.1. In order to ensure compliance
of QoS guarantees and in-order arrival while rerouting, the FSM at the destination
router is used. Once a rerouting head flit arrives at the destination router, the FSM
blocks the head flit. An acknowledge message is sent to the source router to inform

3The use of fully adaptive routing [74] ensures that an alternative output port exists within the source
router for the connections selected for rerouting, since they are only selected if δx · δy > 0 is valid
for them.

235

7

7. Self-Optimization and Self-Organization

it of the successful rerouting. As described in section 7.1.2.2, the source router
then injects a tail flit to release the old route. The FSM in the destination router
waits for this tail flit. Upon its arrival, the routing table is modified to switch
between the old and the new connection. The head flit of the new connections
and the tail flit closing the original connection are erased at the destination router.
This step completes the rerouting procedure. The remaining body flit from the old
connection is forwarded by the router before the first flit from the new connection.
Thus, the original flit-order is maintained.

7.1.3. Evaluation

The benefits of rerouting, with respect to performance improvement as well as
the communication overhead, will be now investigated. Therefore, the simulation
framework, introduced in 5.2, was extended to support rerouting. In addition,
rerouting support was implemented for the HDL design in order to investigate
the implementation overhead for an ASIC.

7.1.3.1. Simulation

The simulation framework, developed as part of this work, was extended for
the following evaluation in order to support DyAD smart routing [117]. DyAD
is state of the art adaptive routing, combining adaptive odd-even turn routing
with a load dependent selection strategy. DyAD is used as a reference for the
following evaluation. The rerouting implementation uses odd-even turn routing,
as described in section 5.1.4.2, for a better comparison to DyAD. Additionally, fully
adaptive routing [74] was used to show that rerouting is suitable for different
adaptive routing schemes. A 10x10 mesh topology is used for the following
investigations. The routers are configured to have 4 virtual channels. According
to equation 6.8, VCGS,max is set to 3 to allow three GS connections per link.

Synthetic traffic and video processing applications, introduced in section 5.2.3.3,
are used for the following analysis. The synthetic traffic scenario generates
transpose GS connections4. Transpose traffic results in hot spots at the center of
the NoC and thus is suitable for investigating hot spot avoidance capabilities.

Number of Connections The main goal of the proposed rerouting concept is
to increase the number of GS connections which can be successfully established.
The number of connections represent the likelihood of successfully establishing
requested QoS data transmissions from the application perspective. The number

4Transpose connections are established bi-directional in meander shape [81].

236

7

7.1. Distributed Rerouting

of possible GS connections is investigated by setting up connections in transposing
manner. In figure 7.4(a), the number of established connections is given as a
function of the requested connections. Enabling rerouting improves the number
of established GS connections on average by 14 % for the given transpose scenario.
At maximum, 26 % more connections could be established, compared to a NoC
where rerouting is not supported.

0 10 20 30 40
0

10

20

30

Requested Con.

Es
ta

bl
is

he
d

C
on

.

Reference
Rerouting

(a) Established Transp. GS Connections

0

10

20

30

40

50

60

70

80

90

100

Sh
ar

e
of

re
ro

ut
in

g
ph

as
es

[%
]

0 10 20 30 40
Requested Con.

Req.+Est. (P1+P2+P3)
Req. only (P1 fails)
Req.+Fail (P2 fails)

Total Req.
0

50

100

150

200

250

300

350

400 Totalnum
ber

ofrerouting
requests

(b) Overhead Transp. GS Connections

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0.25

0.3

0.35

0.4

0.45

0.5

BE Injection Rate (Flits/Cycle/Node)

G
S

Th
ro

ug
hp

ut
(F

lit
s/

C
yc

le
/C

on
.) Reference

Rerouting

(c) Throughput of Transp. GS Connections

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

50

100

150

BE Injection Rate (Flits/Cycle/Node)

La
te

nc
y

(C
yc

le
s)

Reference
Rerouting

(d) Delay of Transp. GS Connections

Figure 7.4.: Simulation results for synthetic transpose GS connections.

Communication Overhead Analysis Rerouting induces communication over-
head, due to additional communication between the three routers, involved in the
rerouting procedure. Figure 7.4(b) analyzes the overhead, caused by rerouting,
for different numbers of transpose GS connections. For a low number of connec-
tions, there is nearly no rerouting required, as shown in figure 7.4(b)(right y-axis).
Between 14 and 26 bi-directional connections the success rate (Req.+Est) is near
100 %. This implies a very low overhead of only 4 flits per successful rerouting. If

237

7

7. Self-Optimization and Self-Organization

the entire NoC is over-utilized5, the number of failures during rerouting phases
P1 and P2 (Req.+Fail and Req.+Est.) increases, as expected. In practice, this general
over-utilization is irrelevant, because in that case the number of requested GS
connections is higher than supported, as investigated in the previous paragraph.
Taking the low overhead per rerouting procedure into account, the communica-
tion overhead is negligible during normal operation. This shows that rerouting
does not lead to a self-accelerating process of congestion, as could be expected.
Regardless, due to the use of the control network, rerouting communication is
decoupled.

Latency and throughput Increasing the number of GS connections for a given
scenario is the main objective of rerouting. In addition, rerouting’s impact on
throughput and latency is investigated. Therefore, a scenario with a high number
of 24 bi-directional GS connections in transpose manner is used. BE traffic with
random uniform distribution is used as background traffic and is varied. The
additional BE traffic leads to higher load and shifts GS communication latency
and throughput closer to the guaranteed limits6.

Figure 7.4(d) shows the latency of established GS connections for variable BE injec-
tion rates. For very low injection rates, there is no delay reduction when enabling
rerouting. For BE injection rates higher than 50 Flits/Cycle/Node, rerouting re-
sults in 6 % delay reduction on average and 9 % at maximum. The worst case
latency of 180 Cycles/Packet is never violated.

Figure 7.4(c) illustrates the average throughput for an established GS connection.
Independent of the applied BE injection rate, rerouting slightly improves the
throughput of the GS connections. On average, 2 % throughput improvement can
be observed for the given scenario, with the maximum improvement being 3 %.
The guaranteed throughput limit of 0.25 Flits/Cycle/Node is not violated. This
shows that rerouting does not harm the guarantees for throughput.

Better results for latency and throughput improvement are expected when a dif-
ferent, more sophisticated triggering mechanism for rerouting is used. Currently,
only hot spots are detected, but rerouting can be adapted to balance the load
before hot spots occur. However, this remains open for future work.

Application mapping In addition to the synthetic scenarios, the MWD, MPEG4,
VOPD and PIP task graphs from section 5.2.3.3 are used for evaluation. The
task graphs of the applications are mapped in a way that the distance between

5An over-utilization takes place if more than 26 bidirectional transpose GS connections are established
in the used 10x10 NoC. This was determined experimentally for the given NoC.

6For the used NoC and the investigated connections, the following guarantees can be given according
to section 6.2.1.1: Latencywc = 180 Cycles/Packet, Bandwidthwc = 0.25 Flits/Cycle/Connection.

238

7

7.1. Distributed Rerouting

communicating cores is minimized. GS connections, in random manner, are
initially established to generate a base load. Subsequently, the applications are
mapped and initiate the setup of their GS connections. How rerouting can assist
in successfully initiating the required connections, is investigated. Therefore,
the reservation success rate (RSR) is defined as the ratio between requested and
established connections.

0 10 20 30 40 50

0.6

0.8

1

Additional Rand. Connections

R
es

.S
uc

ce
ss

R
at

e
(E

st
./R

eq
.C

on
.)

Reference
Rerouting

(a) GS Connections - MWD App.

0 10 20 30 40 50

0.4

0.6

0.8

1

Additional Rand. Connections

R
es

.S
uc

ce
ss

R
at

e
(E

st
./R

eq
.C

on
.)

Reference
Rerouting

(b) GS Connections - MPEG App.

0 10 20 30 40 50
0.4

0.6

0.8

1

Additional Rand. Connections

R
es

.S
uc

ce
ss

R
at

e
(E

st
./R

eq
.C

on
.)

Reference
Rerouting

(c) GS Connections - VOPD App.

0 10 20 30 40 50

0.4

0.6

0.8

1

Additional Rand. Connections

R
es

.S
uc

ce
ss

R
at

e
(E

st
./R

eq
.C

on
.)

Reference
Rerouting

(d) GS Connections - PIP App.

Figure 7.5.: Rerouting evaluation with four video processing applications which
use GS connections.

Figure 7.5(a) shows the amount of GS connections of the MWD application, which
can be setup successfully, for different numbers of additional connections. In
total, MWD requests for 13 GS connections. If rerouting is disabled (reference),
only 10 additional connections are tolerated until the RSR drops. When utilizing
rerouting, 35 additional GS connections can be established and it is still possible to
embed the requested GS connections for MWD successfully. Figure 7.5(b) presents
the RSR for the MPEG application. The number of existing GS connections can be
three times higher, when establishing the new connections of the MPEG decoder
with rerouting being activated. Figure 7.5(c) and figure 7.5(d) show similar results

239

7

7. Self-Optimization and Self-Organization

for the mapping of VOPD and PIP application. In general, the results exhibit
that rerouting can significantly improve the likelihood to establish requested
connections successfully from an application perspective. The number of existing
GS connections, which are tolerated when establishing the connection of the
investigated applications, could be increased by a factor of 3.875 on average, by
the use of rerouting.

7.1.3.2. Synthesis

In order to investigate the implementation overhead of rerouting, it was carried
out for the HDL implementation of the router design, introduced in section 5.3.
A standalone router of an 8x8 mesh NoC7 is synthesized using the TSMC 45 nm
standard cell library. The investigated NoC has a link size of 256 bit. Two designs,
with 4 and 8 virtual channels respectively, were used to estimate the impact of
this parameter in terms of power and area.

Synthesis results are presented in table 7.1 for a reference and rerouting variant.
The rerouting version was built on the basis of the reference router by including
the rerouting-specific components. A clock frequency of 800 MHz was targeted
and achieved for all router configurations. Post-synthesis power and area con-
sumption were analyzed. The rerouting implementation has an area overhead of
8.8 % in case of 4 VCs and 8.2 % in case of 8 VCs; compared to the reference. With
a growing number of 8 VCs, the relative area overhead slightly decreases. The
additional power consumption of the rerouting components is 14.7 % in case of
4 VCs and 13.6 % in case of 8 VCs. In addition to clock gating, power-gating may
be used to significantly reduce the power overhead; due to the long idle periods
of rerouting components. However, power-gating implementation is complex
and left open for future work.

Router VC Frequency Area Power
version (MHz) (µm2) (mW)

Reference 4 800 245193.5 13.534
Rerouting 4 800 266696.2 (+8.8 %) 15.521 (+14.7 %)
Reference 8 800 476132.3 21.273
Rerouting 8 800 515194.5 (+8.2 %) 24.157 (+13.6 %)

Table 7.1.: ASIC synthesis results for a single router of an 8x8 mesh NoC in 45 nm.

In summary, it can be stated that rerouting increases the number of GS connections,
which can be successfully established, by up to 29 % for synthetic hot spot traffic.

7In contrast to the simulation, the dimensions of the NoC are reduced from 10x10 to 8x8 because
dimensions which are a power of two ensure an area-efficient hardware realization.

240

7

7.2. Auto-GS and Connection Replacement

Delay and throughput of the established GS connections can also be improved. It
was shown that the amount of tolerated GS connections could be increased by a
factor of 3.875 on average, when mapping the four investigated video processing
applications to a NoC with rerouting support. However, rerouting includes an
area overhead of 8.2 - 8.8 %.

7.2. Auto-GS and Connection Replacement

Guaranteed service connections, introduced in section 6.2, enable QoS by hard
guarantees for throughput and latency. Additionally, they typically improve
latency and NoC utilization and consequently the performance and power con-
sumption compared to best-effort communication. The reason for these positive
side effects are (1) the reduced number of router pipeline stages used during GS
data transmission8 and (2) the reduced protocol overhead for GS communication9.
Thus, it is desirable to increase the amount of GS communication in a network
on chip independent from QoS requirements. Two different concepts for usage
of GS communication, independent from QoS demands, have been investigated
in [ZHW+13] and [Lu13]. These self-optimization strategies map BE communica-
tion flows with high bandwidth requirements to GS connections to improve their
performance. The two concepts will be explained subsequently.

In the literature, there are existing approaches for hardware-controlled optimiza-
tion of communication flows. Prediction-based flow control for network on chip
traffic is presented in [193]. Models of traffic sources and router are used to predict
possible congestion. This information is used to control the injection rates at the
source nodes. However, global knowledge is required for this strategy, which
limits scalability.

A run-time adaptation scheme for buffer allocation in NoC-based architectures is
presented in [69] and [70]. Links are established at run-time between source and
destination nodes. The presented results show that the proposed buffer allocation
scheme leads to better buffer utilization in the NoC routers. However, the area
overhead, introduced by this adaptive scheme, is significant and the scalability
with respect to the number of QoS connections is limited.

Software-based approaches for dynamic management of NoC resource that take
QoS demands into account, are presented in [197] and [159]. However, these

8Due to the previous resource allocation, enabled by GS end-to-end connections, data transmission
is simplified because routing and virtual channel allocation are only performed once during
connection setup, as described in detail in section 5.1.3.

9Head flits, containing network layer protocol information, are only required for connection setup.
Subsequently, during data transmission there is no additional protocol overhead, as described in
section 5.1.2.

241

7

7. Self-Optimization and Self-Organization

approaches only address applications with QoS requirements. Improving the
communication of other applications with the use of QoS schemes is not ad-
dressed.

In [5], a concept is proposed which accelerates network communication by ex-
ploiting communication temporal locality. Therefore, the arbitration history is
captured within each router. For each flit, it is verified whether a pseudo-circuit
is used instead of the normal router pipeline. These pseudo-circuits can reduce
the processing latency for a limited number of virtual channels. However, a
pseudo-circuit only accelerates the communication at a single hop, improvement
in end-to-end communication flows is not considered. In addition, there is a
significant implementation overhead experienced by the proposed scheme.

In contrast to existing schemes, the concepts introduced in the following have
a low implementation overhead. They rely on the QoS scheme, introduced in
section 6.2, which allows to improve the communication of complete end-to-
end flows. The additional implementation costs only comprise monitoring and
decision making components.

7.2.1. Concept and Implementation

GS connections enable hard guarantees for throughput and latency. However, idle
resources, which are currently unoccupied by QoS communication flows may be
allocated for other communication flows to improve their performance. Therefore,
the communication hardware must take a decision, at run-time, regarding the
establishment of additional GS connections. In order to do so, an optimization
criteria is required, which can be used to decide where to establish an end-to-end
connections. For the following implementation, this criteria is chosen to be the
amount of communication between a pair of nodes. If two nodes communicate
frequently, a GS connection can be used to reduce the communication latency,
protocol overhead and thus the power consumption for communication.

However, guaranteed service connections that are established on behalf of soft-
ware with QoS demand, must be treated differently, compared to those connec-
tions established just for optimization. Connections with QoS demands cannot
be taken into account by the self-optimization strategies, presented now. A clear
differentiation is required to ensure preservation of GS connections with QoS
demands. Consequently, a protocol extension of a GS head flit is required for
differentiation. An additional 1-bit flag is added to each GS header, defined in
section 5.1.2, differentiating between GS connections which have QoS demands
and others which can be taken into account for self-optimization. The flag is
referred to as replaceable. It indicates that the respective connection has no QoS
demands and can thus be taken into account for self-optimization by the Auto-GS
or connection replacement hardware.

242

7

7.2. Auto-GS and Connection Replacement

7.2.1.1. Connection Replacement

The connection replacement strategy is an optimistic self-optimization strategy. The
network adapter initially tries to setup a GS connection for all communication
flows. GS connections, with low utilization, are subsequently replaced by best-
effort communication. The self-optimization strategy, which makes the decisions,
is implemented within the NoC routers.

Each router periodically verifies the utilization of virtual channels by GS connec-
tions. When the limit for VCGS,max is reached, according to equation 6.8, and a
new GS connection must be established, one existing GS connection is selected to
be replaced by best-effort packet switching communication. In order to make the
decision which connection should be replaced, the bandwidth utilization of each
existing connection is monitored inside the routers. A separate monitor must be
utilized for each virtual channel to capture the necessary monitoring data10. The
GS connection with the lowest bandwidth requirements, which is marked to be
replaceable (replaceable flag set to 1), is selected. Subsequently, a release process is
triggered for this connection and best-effort communication must be used. On
that point, the router, making the replacement decision, must communicate to
the source network adapter to initiate the release process. The control network,
introduced in section 5.5.1, can be used for communication. After the selected
GS connection is released, the number of VCs occupied by GS communication
flows, is again lower than VCGS,max. This ensures a new connection, with QoS
requirements, can be established successfully on demand.

A specific example for a replacement procedure in a NoC with two virtual chan-
nels is provided in figure 7.6. The example exhibits how a situation occurs when
a replacement takes place. In figure 7.6(a), a new connection is established be-
tween PE 1 and PE 6 and marked as replaceable. The replaceable GS connection
improves the performance of the communication flow between PE 1 and PE
6. This is transparent to the software. Figure 7.6(b) shows another connection,
which is requested to be established between PE 2 and PE 3. This reservation
request then triggers the replacement strategy inside the router connected to PE
2. The connection between PE 1 and PE 6 is selected to be replaced by BE packet
switching. Subsequently, a new connection can be established, as presented in
figure 7.6(c). Once the selected connection is released, as shown in figure 7.6(d),
the new GS connection between PE 2 and PE 3 can be established.

Additional details about the concept and implementation of the proposed connec-
tion replacement strategy are provided in [Lu13].

10The monitoring required for replacement decision making differs from the monitors introduced in
section 5.5.3.

243

7

7. Self-Optimization and Self-Organization

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

a) b)

d)c)

44

New
Connection
Established

PP

New
Connection

Reqeust

PE 4PE 4

Connection
Selected for

Replacement
PEPE

New
Connection
Established

Figure 7.6.: Replacement of GS connections without QoS requirements – (a) New
replaceable connection is established, (b) Another connection is re-
quested to be established, (c) Existing connection is selected for re-
placement, due to low bandwidth utilization, (d) New connection can
be established successfully due to replacement.

7.2.1.2. Auto-GS

Auto-GS is implemented in the network adapter, which was introduced in sec-
tion 3.2.2.1. Thus, it is transparent from the NoC router perspective. Because the
NA is not in the scope of this work, Auto-GS is briefly discussed. It is a collabora-
tive work that arose from the InvasIC project and was published in [ZHW+13]11.
Auto-GS necessitates GS connections, introduced in section 6.2.

In contrast to connection replacement, Auto-GS is a pessimistic self-optimization
strategy for best-effort communication. The network adapter monitors the com-

11In the work in hand, only those aspects of Auto-GS are discussed, which have been built and
evaluated by the author of this book. Essentially, this is the general concept of Auto-GS as well as
the evaluation by the use of the simulation framework, introduced in section 5.2.

244

7

7.2. Auto-GS and Connection Replacement

munication behavior of the connected tile in order to obtain temporal locality
of communication requests. If it detects frequent communication with a specific
node, a GS connection is automatically set up to this tile. Such a frequently
addressed tile is referred to as a hotspot from now on. BE communication to a
hotspot node is subsequently converted transparently into GS communication
by the NA at the source. Other communication partners, which are accessed less
frequently, are still served with BE communication. These nodes are referred to as
coldspots hereafter. A monitoring system is utilized within the NA to capture the
amount of data transferred to the most frequently addressed destination nodes.
These destination nodes are stored in a list termed communication history. After
each monitoring period12, the destination nodes with the lowest data volume
are replaced in the communication history. This replacement strategy enables to
use a limited number of history entries and monitors for observation of the most
frequently accessed nodes. The communication history is processed after each
monitoring cycle by the network adapter in order to update the connection list13.
The connection list contains the communication flows which use GS communica-
tion. These are the hotspot destination nodes. If this list changes, GS connections
to nodes, which are dropped from the connection list, are released. In addition,
new GS connection to novel nodes, which are added to the list, are established. A
parameter, named max_dist, can be used to limit the distance between nodes, con-
tained in the connection list. This prevents the establishment of long distant GS
connections, which would consume an abundance of communication resources.

A typical Auto-GS example is provided in figure 7.7. The network adapter at-
tached to the source router at PE 1 serves three communication flows to PE 5,
PE 6 and PE 7. Two of these communication flows have a high communication
volume, thus they are treated as hotspot nodes and stored in the connection list as
hotspot nodes. GS connections are established to these nodes to reduce the com-
munication latency, protocol overhead and consequently the power consumption
for communication. The third communication flow to PE 7 has a low throughput,
measured by the monitoring system within the source network adapter. Conse-
quently, it is not contained in the connection list and treated as a coldspot using
best-effort packet switching communication.

7.2.2. Evaluation

The connection replacement and Auto-GS concept have been evaluated using
the simulation framework, introduced in section 5.2. Therefore, the framework
was extended to support both self-optimization strategies. A 10x10 meshed NoC
with XY routing and four virtual channels is used for evaluation. VCGS,max was

12The length of the monitoring period can be configured at run-time according to the requirements.
13The connection list is typically smaller than the communication history.

245

7

7. Self-Optimization and Self-Organization

PE 7 PE 8 PE 9

PE 4 PE 5 PE 6

PE 1 PE 2 PE 3

HotspotHotspot

Coldspot

Source

Legend:
Hotspots: GS connection
Coldspot: BE packet switching

Figure 7.7.: Auto-GS is automatically setting up GS connections to frequently
addressed nodes (hotspots) [ZHW+13].

set to 3, according to equation 6.8, in order to limit the resources occupied by GS
connections. The most important results are summarized subsequently.

7.2.2.1. Connection Replacement

The connection replacement strategy shall replace GS connections with low band-
width requirements and no QoS demands (replaceable flag set) by BE communica-
tion. This strategy was investigated by establishing GS connections with variable
injection rates between arbitrary nodes. This is done to evaluate, whether the
strategy is capable of replacing the connections with low injection rates when the
available communication resources become scarce.

Figure 7.8 shows a comparison between a NoC with connection replacement
enabled (Repl.) and a reference NoC (Ref.) without the self-optimization strategy.
The number of established GS connections are measured for different numbers of
requested connections. The connections with high and low bandwidth demands
are measured separately14.

For a low number of requested connections, all high and low bandwidth con-
nections can be successfully established when adequate resources are available,
as shown in figure 7.8. Once the number of requested GS connections increases,

14Half of the established connections have a low injection rate, which is lower than
0.15 Flits/Cycle/Node, the rest of the connections has high bandwidth demands with an injection
rate greater than 0.15 Flits/Cycle/Node.

246

7

7.2. Auto-GS and Connection Replacement

0 100 200 300 400
0

20

40

60

80

100

No. of Requested GS connections [High + Low]

N
o.

of
Es

ta
bl

is
he

d
G

S
co

nn
ec

ti
on

s Ref.-High
Ref.-Low

Repl.-High
Repl.-Low

Figure 7.8.: Established GS connections with high and low bandwidth demands for
different numbers of requested GS connections. A NoC with connec-
tion replacement (Repl.) and a reference (Ref.) are compared [Lu13].

the replacement strategy ensures that the connections with high bandwidth re-
quirements can be established and remain established, whereas connections with
low bandwidth requirements are replaced by BE communication. In contrast,
the number of high and low bandwidth GS connections remains equal in the
reference NoC (Ref.) for an increasing number of requested connections. Thus, in
the reference NoC, more virtual channels are occupied by connections with low
bandwidth requirements. The results show that connection replacement assists
in improving the utilization of the VCs because they are allocated for frequently
used GS connections. This increases the amount of GS communication, which
has in turn a positive impact on communication latency and power consumption.
This positive impact is evaluated in more detailed for the Auto-GS concept, which
also aims to increase the amount of GS communication.

Additional performance evaluations for the replacement self-optimization strat-
egy are presented in [Lu13]. The synthesis results, presented in [Lu13], investigate
the area overhead and additional power consumption for the implementation
of the replacement strategy. The results were obtained for the widely used
TSMC 45 nm standard cell implementation. They show that the replacement
self-optimization strategy raises the area requirements of a 5-port router by 10.7 %
and the power consumption by 23.5 %, with clock frequency not being impacted.
The monitoring system of the replacement implementation is the main reason
for the increased area and power consumption. It must be optimized in order to
improve the efficiency of the strategy.

247

7

7. Self-Optimization and Self-Organization

7.2.2.2. Auto-GS

The evaluation of the Auto-GS concept was performed by the use of the simulation
framework, introduced in section 5.2. The number of entries in the communication
history table is set to 8 for the following evaluations. Three GS connections can be
established in parallel according to VCGS,max. Thus, the connection list has three
entries for the following investigations. The investigated scenarios assume pure
best-effort communication from the application perspective. All established GS
connections are set up transparently by the Auto-GS hardware and thus marked
as replaceable. A reference architecture without Auto-GS support is compared to
the Auto-GS implementation later on. A protocol overhead of 1 flit per packet
is assumed for BE packet switching communication15. GS connections have no
protocol overhead once the connection is established, but necessitate one flit for
connection setup and one for release.

Synthetic traffic is used in the first scenario. A predefined number of commu-
nication partners per node, with a maximum distance of 4 hops, is assumed for
the synthetic scenario16. From the software perspective, all communication flows
seem to use BE communication, with Auto-GS being transparent. Figure 7.9(a)
shows the number of BE flits in the network with respect to the total number of
flits. The number of communication partners per node varies. As predicted, the
Auto-GS design reduces the share of BE communication significantly, compared to
the reference, which only utilizes BE communication. With Auto-GS, the amount
of BE flits varies between 20 % and 60 %. When the number of communication
partners is increased, the amount of BE flits increases as well. This is due to the
limited number of connections that can be established per node.

The communication related energy (CRE) consumption is introduced for power
analysis. CRE is defined as the energy consumption that is directly related to data
transmission. For this analysis, the energy consumption of a NoC router ASIC
implementation is measured, as described in section 5.3.2.1. The CRE is calculated
by subtracting the energy consumption of an idle router and a router under load17.
Figure 7.9(b) shows the energy analysis results. Having only one communication
partner per node, Auto-GS can save up to 50 % of CRE. In case of 6 communication
partners per node, the Auto-GS implementation can reduce the CRE by 26 %. The
energy saving of the Auto-GS technique relies on the fact that the amount of
best-effort data transmissions is reduced. Best-effort communication consumes

15This is a valid assumption, since additional information, such as the destination network address
contained in the head flit, must be included in each packet.

16This assumption of a maximum distance refers to the mapping algorithms, which minimize the
distance between communicating nodes in order to reduce communication cost.

17Focusing on the CRE is reasonable because it represents the energy, which is affected by the Auto-GS
concept. Static energy consumption of the router, which is 7.5mW for the used one, is independent
from Auto-GS because no hardware modification is required in the NoC routers. In addition, static
energy consumption can be reduced by techniques, such as power-gating or voltage scaling.

248

7

7.2. Auto-GS and Connection Replacement

more power compared to GS data transmissions due to the protocol overhead
and the more complex processing inside the routers18.

1 2 3 4 5 6

0

20

40

60

80

100

120

Communication partners per node

A
m

ou
nt

of
BE

Fl
it

s
[%

]

Reference Auto-GS

(a) Synthetic scenario – ratio of BE flits

1 2 3 4 5 6
0

2

4

6

8

· 10−6

Communication partners per node

En
er

gy
co

ns
um

pt
io

n
(C

R
E)

[J
ou

le
] Reference Auto-GS

(b) Synthetic scenario – energy consumption

MPEG MWD PIP VOPD

10

20

30

40

Pa
ck

et
La

te
nc

y
[C

lo
ck

C
yc

le
s]

Reference Auto-GS

(c) Multimedia applications – latency

MPEG MWD PIP VOPD

0

0.2

0.4

0.6

0.8

1

· 10−6

En
er

gy
co

ns
um

pt
io

n
(C

R
E)

[J
ou

le
] Reference Auto-GS

(d) Multimedia applications – energy consump-
tion

Figure 7.9.: Simulation-based evaluation results for Auto-GS concept: (a) Amount
of BE flits for a synthetic scenario, (b) Communication related en-
ergy consumption for synthetic scenario (105 cycles), (c) Average
packet latency for video processing applications, (d) Communica-
tion related energy consumption for video processing applications (
105 cycles) [ZHW+13].

18For each BE packet, a routing and reservation process is required in each router. These pipeline
stages become obsolete for GS communication where only body flits are used after connection
setup, as described in detail in section 5.1.3.

249

7

7. Self-Optimization and Self-Organization

In addition to the synthetic traffic scenario, four video processing applications
(MPEG, MWD, PIP, VOPD) from section 5.2.3.3 are used for investigation. There-
fore, each application is mapped separately to the center of the mesh.

Figure 7.9(c) shows the average flit latency for the four applications. All appli-
cations profit from the Auto-GS self-optimization. The reason for the latency
reduction is the use of GS connections and the accompanied lower processing
latency within each router. VOPD reduces its latency by 25 % in Auto-GS configu-
ration, as compared to the reference. The latency of MPEG application could be
significantly reduced, because it operates near the saturation point of the NoC.

Figure 7.9(d) shows the energy perspective for the applications for a measurement
period of 105 cycles. If Auto-GS is used, all applications reduce their communi-
cation related energy consumption in the NoC by at least 50 %. Again, this is
because the reduced protocol overhead and the lower number of pipeline stages
for GS communication are lowering the switching activities and power usage.

A more detailed evaluation of the Auto-GS concept is presented in [ZHW+13].
No modification of the NoC routers is required for Auto-GS support, thus there
are no synthesis results presented now. However, the implementation within the
network adapter, as well as the overhead, are discussed in [ZHW+13].

The connection replacement and Auto-GS self-optimization strategies, presented and
evaluated in this section, show clear benefits from the communication perspective.
Increasing the number of GS connections by the use of hardware-based self-
optimization can assist in improving communication latency, NoC utilization
and power consumption. Applications without QoS demands can profit from GS
communication, if resources are available. Applications with QoS demands are
not affected by the self-optimization strategies19.

7.3. Adaptive Data Collection

Large scale many-core architectures, as the InvasIC architecture from section 3.2 or
the Thousand Core Chips discussed in [32], must be managed in a decentralized
way to ensure scalability. Distributed resource management schemes, as the
one discussed in section 3.3.2.1, enable decentralized management of hardware
resources. In such schemes, multiple operating system instances manage the
hardware resources of different regions of the architecture. The regions are defined
during run-time, depending on the resource requirements of the applications.
In order to allow each OS instance to make appropriate decisions, information
regarding the status of the system, within the respective region, is required [66].

19By the use of the replaceable flag it is ensured that GS connections of applications with QoS demands
are not affected by the optimizations in order to preserve hard guarantees.

250

7

7.3. Adaptive Data Collection

This status data is typically distributed among the region and must be collected
on demand, or at fixed time-intervals. Typical examples for operating system
mechanisms, which require status information of the system, are task mapping,
resource allocation or load balancing.

In [7], a distributed application mapping scheme for NoC-based architectures
is proposed. It collects communication and computation monitoring data, in
order to make proper application mapping decisions. Their results show that
0.1-500 MByte of data must be collected, in total to map an application with 10
to 500 tasks to an architecture with 64x64 nodes. Another example for collection
of status information is the game-theoretic approach for frequency adjusting
by Puschini et al. [208]. It is an energy optimization technique that requires
temperature-monitoring-data of all processing elements of a region, to reach an
equilibrium.

However, data collection is not only necessary for management of parallel archi-
tectures, parallel applications [16, 14, 186] also must collect data, e.g. computation
results. Consequently, efficient mechanisms are necessary in order to reduce the
communication overhead for data collection in NoC-based architectures.

Data collection can be implemented efficiently by the use of 1-to-M and M-to-1
communication, where M stands for many. The efficient support of communi-
cation patterns with a single sender and multiple receivers and vice versa, are
objects of ongoing research. Broadcasting and multicasting algorithms have been
proposed and investigated. Such algorithms are currently well established in
off-chip networks [45], [233] and have also become a research topic for on-chip
networks. Essentially, two different approaches for multicast communication in
networks exist – path-based and tree-based.

In path-based multicasting and broadcasting schemes, all destination nodes are
visited after each other. In [161], Lin et. al describe a heuristic for path-based
multicast algorithm named sorted multicast path. It is based on the Hamilton
cycle20, also known as Hamiltonian cycle. A Hamilton cycle is constructed for the
entire network and used for routing. In [8], the network nodes are labeled with
the position in the Hamilton path21. After the labeling, the network is divided into
two disjoint acyclic networks, guaranteeing the absence of cyclic dependencies as
well as deadlock-freedom. However, in both existing path-based algorithms every
node must be addressed. The Hamilton path, or cycle, is defined at design-time.
Run-time adaptation and multicast, as well as M-to-1 data collection, are not
supported.

20A Hamilton cycle describes a path which visits every node in a network or region exactly once and
ends up in the same node where it began.

21In contrast to a Hamilton cycle, a Hamilton path does not end in the source node and therefore does
not form a cycle.

251

7

7. Self-Optimization and Self-Organization

Other broadcast and multicast approaches have a tree-shape, where a message
is duplicated in certain nodes. In [119], two tree-based multicast algorithms
are presented, which attempt to minimize the number of occupied links or the
latency. In [123], a virtual circuit tree is created which connects all members
of the multicast. In these tree-based approaches, tables that identify multicast
connections are stored in each router, significantly increasing its implementation
costs. The ability to address a certain region for tree-based multicast includes
high protocol overhead. The tree must be constructed in the source node and the
address of every single node must be encoded in the packet header. In [143], an
architecture for 1-to-M and M-to-1 traffic is presented. However, the presented
concept focuses on the performance of cache coherence protocols.

Most of the existing work focuses on dedicated applications for broadcast and 1-to-
M communication. M-to-1 communication and data collection is only addressed
marginally. Existing mechanism are either adaptive at run-time or are not suitable
for on-chip networks, due to their complexity. Region-based resource manage-
ment, which is promising with respect to scalability, is not addressed. Hence,
flexible and adaptive data collection mechanisms for regions that are defined dur-
ing run-time, are introduced and investigated in [HWZ+13]22. An overview on
these mechanisms, as well as a discussion of their implementation and evaluation
is presented in the following sections. The proposed mechanisms also enable
run-time adaptive multicast communication, as described in section 7.3.2.1.

7.3.1. Concepts for Region-based Data Collection

A promising concept for management of large many-core architectures is to divide
them into regions that are managed separately. Such a management scheme is
also proposed for the InvasIC architecture, as described in section 3.3.2.1. The
number and shape of the regions is defined during run-time, depending on the
current requirements. The operating system instance, managing one region, must
collect status information from the associated cores. Depending on the algorithm,
the executed parallel applications may also be required to aggregate data. As
such, a run-time adaptive data collection mechanism will now be introduce. It
enables to define the shape23 and position of the region at run-time.

An example for such a region, where data must be collected, is provided in
figure 7.10. In this example, one core (C) must collect data from the other nodes
of the marked region. Henceforth, it is assume that data must be collected from
all the nodes of the region. Existing masking schemes, as [161], can be used when

22Extracts from [HWZ+13], which are my literary and intellectual property, are used verbatim in this
section without identification.

23Currently only foursquare regions in mesh-based NoCs are supported. However, the mechanisms
could be extended to support arbitrary shapes.

252

7

7.3. Adaptive Data Collection

a subset of the nodes in the region must be addressed by the request. A square
region is defined by four parameters, relative to the X and Y coordinate of the
node that is initiating the request: Size x and size y define the size of the region.
The size is equal for all cores of the same region24. Offset x and offset y provide the
offset of the requesting node relative to the region’s upper left border. The offset
represents the position of the requesting node within the defined region. Thus,
each core of the same region has a different offset.

App. App. App. PE

PE PE

PE App.

PE C

App. PE

App. App. App. PE

PE PE

PE App.

PE PE

App. PE

App. App.

PE PE

App. PE

PE PE

PE App. App. PE

App. App.

PE PE

App. PE

PE PE

PE App. App. PE

PE

App.

PE C

App. PE

PE PE

PE App.

PE

App.

App.

PE

App. PE

PE PE

App. App.

PE PE

App.

PE

Region

Offset X

Offset Y

Size Y

Size X

Figure 7.10.: Partial view of a NoC-based architecture: one core (red) requesting
for data collection in a run-time defined region.

Three different mechanisms for data collection in such regions, which are defined
at run-time, are proposed in [HWZ+13] and discussed now. A schematically
representation of these schemes is provided in figure 7.11. Each example shows a
region of a tile-based architecture.

Mechanism (a) in figure 7.11 represents a method to collect data using only point-
to-point communication with a separate request being transmitted to each node.
The nodes respond by sending the requested information. This mechanism is
named request-and-response (RaR) from now on. The RaR mechanism can be used
without additional hardware, in a meshed NoC, by implementing it in software.
Load operations can be used in non-uniform memory access architectures to
access the required data from the other nodes of the region. However, these load
operations are typically implemented in a blocking way. Thus, the requests are
processed one after another. The sequential processing of the requests results in

24For the mechanisms, using a Hamilton cycle (round-trip and mixed), at least one of the region’s
parameters size x (size.x) and size y (size.y) must be even and both must be greater than one in
order to establish a Hamilton cycle successfully [276].

253

7

7. Self-Optimization and Self-Organization

Request (Address) Requesting TileResponse (Data)

c)a) b)

Figure 7.11.: Three data collection types: (a) request-and-response, (b) round-trip,
(c) mixed.

a huge delay. Hence, a hardware implementation of the RaR mechanism is also
investigated. The hardware implementation transmits the requests continuously,
while greatly decreasing the delay. Existing routing algorithms, such as XY
routing or odd-even turn, can be used for request-and-response data collection.
The communication cost C for RaR and a region with dimensions size.x and size.y
can generally be calculated as follows:

CRaR =
size.x · size.y−1

∑
i=0

Srequest(i) +
size.x · size.y−1

∑
i=0

Sresponse(i) (7.2)

Srequest(i) and Sresponse(i) are the packet sizes for the request and response mes-
sages respectively. However, assuming a quadratic region25 where the requesting
node is located in the center of the regions and where Srequest and Sresponse are
equal for all cores, equation 7.2 can be approximated as follows:

CRaR,quad ≈ N2 ·
N
2

Srequest + N2 ·
N
2

Sresponse =
N3

2
(Srequest + Sresponse) (7.3)

The mechanism in figure 7.11(b) shows a technique named round-trip (RT) as from
now. A Hamilton cycle [276] is used to transfer the request message as well as
the requested data of the addressed nodes in the respective region. Each node
places the requested data at a predefined position in the round-trip packet (RTP).

25A quadratic region with a diameter of N is defined as follows: size.x = size.y = N.

254

7

7.3. Adaptive Data Collection

Figure 7.12 shows a typical RTP. The packet size SRTP of a round-trip packet can
be calculated as follows:

SRTP = d
Dsize(size.x · size.y) + Opacket

Wlink
e (7.4)

Dsize is the size of the data to be collected per node and Opacket is the protocol
overhead per RTP, which is later described in detail. Wlink is the width of a link,
or flit, respectively and is defined at design-time of the NoC. size.x and size.y
define the region’s size. Using equation 7.4, the communication cost CRT,Quad
for a round-trip data collection in a quadratic region with N×N cores can be
approximated as follows:

CRT,quad ≈ N2 · SRTP = N2d
Dsize · N2 + Opacket

Wlink
e (7.5)

RT Header Request Response 0 Response 1 Response 2 Response N-1 Tail

Flit

Figure 7.12.: Round-trip packet including a flit indicating the type of request and
one flit26per responding node.

In existing work [8], Hamilton paths are defined statically at design-time. The
proposed round-trip mechanism uses a novel routing algorithm, introduced in
section 7.3.2, to adapt the Hamilton cycle at run-time to any square region.

Mechanism (c) in figure 7.11 represents a combination of the previous two strate-
gies. Hence, it is referred to as mixed as from now. The request is transmitted
on a Hamilton cycle27 and the response is transferred directly from each node of
the region to the requesting node using unicast or point-to-point communication.
Compared to request-and-response, the mixed mechanism reduces the NoC uti-
lization by using one Hamilton path for the requests instead of multiple request
packets to each node. Compared to the round-trip mechanism, the response takes
a direct path to its destination. The communication cost Cmixed,quad for a quadratic
region with N×N cores, using mixed data collection, can be approximated as
follows:

Cmixed,quad ≈ N2 · Srequest +
N3

2
Sresponse (7.6)

26Depending on the data size Dsize to be collected, multiple flits are required per node or data from
multiple nodes fit into one flit. However, in figure 7.12 Dsize is equal to the size of a flit.

27A round-trip packet is used by the mixed mechanism to transmit the request message.

255

7

7. Self-Optimization and Self-Organization

7.3.1.1. Deadlocks

The proposed Hamilton path routing uses all possible turns in a meshed net-
work. As described in section 2.4.5.5, this could lead to deadlocks in wormhole
switched NoCs, if different Hamilton cycles overlap. Such a situation is shown in
figure 7.13(a). The two overlapping Hamilton routing packets A and B block each
other and can no longer be forwarded. This situation only occurs if opposed turns
are used by the two packets. Again, this depends on the position of the requesting
node, the size and the offset of the region. Packets using the same Hamilton cycle
cannot lead to deadlocks as long as the following constraints are satisfied by the
NoC design:

• The flits of one Hamilton packet fit completely into the buffer of one router.

• Each node using a Hamilton cycle restricts the number of outstanding
packets to 1.

Neither synchronization nor arbitration is required when using Hamilton routing,
if the previously stated rules are fulfilled.

In order to prevent deadlocks between Hamilton packets, overlapping of different
Hamilton cycles must be avoided. This can be done by dividing the architecture
into non-overlapping regions as previously proposed. In each region, a Hamilton
path can be used by all cores in parallel as long as the previous rules are fulfilled.
The regions can certainly be defined and changed at run-time. If overlapping
cannot be prevented, different dedicated virtual channels can be used to prevent
deadlocks. Thus, a pinning of packets to VCs would be required.

a) b)

XY-Routing Packet

Hamiltonian
Routing Packet A

Hamiltonian
Routing Packet B

Hamiltonian
Routing Packet

Figure 7.13.: Deadlock situations for Hamilton path routing: (a) deadlock between
overlapping Hamilton routing packets and (b) deadlock between a
XY and a Hamilton routing packet.

The mixed mechanism combines Hamilton path routing and point-to-point com-
munication using XY routing. XY routing only uses 4 of the 8 possible turns in a
meshed NoC to avoid deadlocks. Hence, it is deadlock-free by definition [185].

256

7

7.3. Adaptive Data Collection

However, in combination with Hamilton packets, deadlocks can occur, as shown
in figure 7.13(b).

In order to avoid deadlocks between Hamilton and XY routed packets, they must
be separated from each other. One possibility would be to use an independent
NoC for Hamilton routing. Because this leads to a huge implementation overhead,
another strategy is preferable: One or several virtual channels can be designated
for Hamilton packets, similar to the strategy used for deadlock prevention in fully
adaptive routing schemes [59]; described in section 2.4.5. Because the VCs are
independent of each other, Hamilton packets using a separate VC cannot interfere
with XY routed packets. This strategy is used for the concept, presented in the
following paragraphs. Therefore, the VC reservation process must be modified to
take this type of packet (XY or Hamilton) into account.

7.3.1.2. Node-internal Data Processing

For the discussed data collection mechanisms three steps of node-internal data
processing can be identified as part of a data collection phase:

1. Request message generation at the node initializing the request

2. Fetching the data inside the node receiving the request

3. Processing the incoming data inside the requesting node

These phases are nearly independent of the mechanism used for communication.
Hence, they are briefly discussed, for clarity reasons.

Initializing the data collection request for the request-and-response software im-
plementation is trivial. Load operations can be used to access the required data in
a distributed shared memory architecture, as introduced in section 3.2. In contrast
to the request-and-response software implementation, all other mechanisms use
hardware support. Memory mapped registers trigger the network adapter to
generate a round-trip packet or to trigger the generation of request packets in case
of a RaR hardware implementation.

The generated requests arrive at a destination node, typically in the form of
memory access requests. The read address of the memory access is part of the
request message payload. According to the request, the data are fetched from their
memory location, or from memory mapped register. Memory mapped registers
are e.g. used when collecting the monitoring information of the NoC, described
in section 5.5.3. Single cycle memory accesses are assumed for evaluation, but all
mechanism are also applicable in case of multi-cycle access latencies.

For round-trip and the mixed mechanism the requested data are returned to the
requesting node as separate packets. The RT mechanism inserts the data into the

257

7

7. Self-Optimization and Self-Organization

round-trip packet, shown in figure 7.12. Therefore, a special data insertion unit is
used, which will be introduced in section 7.3.2.

When the requested data arrives at the destination node, a message buffer or
dedicated registers can be used to store the incoming data and make it accessible.
As an alternative, pre-allocated memory could be used to store the incoming data.
For the RaR software implementation using load operations, processor registers
acquire the requested data.

7.3.2. Implementation

The request-and-response data collection mechanism relies on point-to-point
connections which are typically supported by every NoC, such as the one intro-
duced in chapter 5. Thus, no hardware extension is required in the routers to
support RaR. However, round-trip and mixed mechanism necessitate to transmit
packets on a Hamilton cycle. Therefore, the routing unit must be extended by
an appropriate routing algorithm, as described in detail in section 7.3.2.1. The
round-trip mechanism requires an additional component named insertion unit,
to insert the requested data at their corresponding position into the round-trip
packet. Figure 7.14 shows the router, introduced in section 5.1, with additional
components required for adaptive Hamilton routing (AHR) and data insertion into
round-trip packet. In order to select AHR for routing, the packet protocol must
be extended by the AHR enable flag, as described in section 7.3.2.1. It defines
which routing algorithm will be used within the routers. The same flag is used to
enable the insertion unit at the router’s output port. The reservation table must
be modified slightly to assign RT packets to a dedicated VC in order to avoid
deadlocks. The AHR enable flag is used to trigger reservation of the dedicated
VC in the reservation table.

7.3.2.1. Adaptive Hamilton Routing

An adaptive Hamilton routing (AHR) algorithm is used to enable run-time adap-
tive multicast, which is required for round-trip and mixed data collection. As
explained in section 7.3.1, the proposed concept assumes regions that are specified
by their size and their offset, relative to the position of the requesting node. This
information (size and offset) is transmitted in the head flit, shown in figure 7.1528.
The AHR enable flag is used to activate AHR and the Insertion Unit. The AHR

28GS support is not taken into account for the head flit shown in figure 7.15. A BE/GS bit is inserted in
front of the AHR enable flag in order to support QoS concept, introduced in section 6.2.

258

7

7.3. Adaptive Data Collection

Reservation
Table

Scheduling

BufferBufferBufferBuffer

BufferBufferBufferBuffer

O
ut PortsIn

 P
or

ts

Port 1

Port N Port N

Port 1

Hamilton
Routing

Routing

Insertion
Unit

Insertion
Unit

Figure 7.14.: Packet switching router from section 5.1 extended for round-trip data
collection by an adaptive Hamilton routing module and an insertion
unit (additional and modified components are highlighted).

algorithm then processes the fields, size and offset, which are only included if the
AHR enable flag is set29.

1 0

DST Address

Payload

Head Bit

Tail Bit

AHR Enable

AHR Size

AHR Offset

Figure 7.15.: Head flit with extended network layer protocol. Additional fields
are used for adaptive Hamilton routing (shaded).

The pseudo code of the adaptive Hamilton routing is provided as algorithm 7.1.
It is a distributed algorithm calculating the output port at each router, which will
be used by the AHR packet. The algorithm uses the destination address, the size
and the offset as input. These data are included in the AHR header. The given
algorithm uses this information to calculate the output port. The adaptivity is
enabled by the size and offset fields. They are used by the AHR algorithm to
calculate the relative coordinates. This adaptivity results in slightly increased
implementation costs, as investigated in section 7.3.3.2.

Algorithm 7.1 will only result in a Hamilton cycle if the following conditions are
fulfilled:

1. Dimensions of the regions (size.x and size.y) must be greater than one.

29As an implementation alternative, the size and offset could be stored in each router within the
respective region. This can reduce the protocol overhead in case of frequent AHR transmissions.

259

7

7. Self-Optimization and Self-Organization

2. One dimension must to be even (size.x for the given algorithm).

3. The requesting node must be within the region (⇒ o f f set < size).

If these conditions are fulfilled, a Hamilton cycle, as illustrated in figure 7.11(b), is
made by the packet. The adherence of the given conditions is carried out by the
node generating the packet. The pathway, resulting from the proposed algorithm,
depends on the position of the initiating node and the parameters size and o f f set.

Algorithm 7.1 Pseudo code of the adaptive Hamilton routing algorithm.
1: function adaptive_hamilton(req, size, o f f set)
2: reg.n← 0, reg.w← 0 {Def. region}
3: reg.e← size.x− 1, reg.s← size.y− 1
4: rel.x ← this.x + o f f set.x− req.x {Def. relative coords}
5: rel.y← this.y + o f f set.y− req.y
6: if (req.inp!=LOCAL)&&(this.id==req.id) then
7: return LOCAL
8: end if
9: if rel.x==reg.w then

10: if rel.y==reg.n then
11: return EAST
12: else
13: return NORTH
14: end if
15: else if rel.x==reg.e then
16: if (rel.y%2)==reg.n then
17: return SOUTH
18: else
19: return WEST
20: end if
21: else
22: if (rel.y%2)==reg.n then
23: return EAST
24: else
25: if (rel.x==(reg.w + 1))&&(rel.y!=reg.s) then
26: return SOUTH
27: else
28: return WEST
29: end if
30: end if
31: end if

32: end function

Run-time adaptive multicast Multicast communication can be used for various
purposes, such as cache-coherency or synchronization. A wide range of on-chip
communication scenarios that benefit from hardware multicast support, is pro-
vided in [123]. The adaptive Hamilton routing algorithm, introduced previously, is
used by the round-trip and mixed mechanisms to distribute the data collection
requests efficiently in the defined region. Thus, it enables multicast or 1-M com-
munication in the respective regions. It is the first adaptive multicast algorithm
using Hamilton cycles, which is suitable for a hardware implementation. Com-
pared to an existing tree-based multicast scheme for 1-M communication [143], it

260

7

7.3. Adaptive Data Collection

reduces the implementation complexity of the routers30. The application of the
AHR algorithm for multicast communication is straight forward. However, pure
multicast usage has not yet been investigated in detail.

7.3.2.2. Insertion Unit

The insertion unit is used to insert the requested data in a round-trip packet. It
is activated when an RTP header passes a router output port. Subsequently, it
calculates the flit number for data insertion into the round-trip packet, shown
in figure 7.12. First, the relative coordinates rel.x and rel.y are calculated by
equation 7.7 and 7.8. Therefore, the offset, which is encoded in the round-trip
packet header, is used. The parameter this represents the coordinates of the current
router and is defined at design-time. The variable req represents the coordinates
of the requesting node, which are provided in the form of a destination address
in the RTP header.

rel.x = this.x + o f f set.x− req.x (7.7)

rel.y = this.y + o f f set.y− req.y (7.8)

The relative coordinates are used to calculate the flit number using equation 7.9
and the size.x, which is also part of the RTP header. Dsize is the size of the data
to be collected from each node and Wlink is the size of a link or flit, known at
design-time.

Fnumber = b(rel.y · size.x + rel.x) ·
Dsize
Wlink

c (7.9)

The insertion unit counts the past flits of the packet. Once the flit with the
calculated number passes the router output port, the requested data are inserted.
After the tail flit of the round-trip packet has passed the router output port, the
insertion unit returns to an idle state and waits for the next RTP.

If the requested data cannot be accessed within one cycle, the transmission of the
response flits of RTP may be delayed according to the access latency. The number
of delay cycles in each node depends on the position for data insertion. If the flit
number Fnumber is greater than the access latency, no additional waiting time is

30Packet duplication, required for tree-based multicast, comes along with a noticeable implementation
overhead inside the NoC routers.

261

7

7. Self-Optimization and Self-Organization

required31. For the results presented in the following section, single cycle access
is assumed.

7.3.2.3. Request-and-Response Hardware Implementation

The request-and-response hardware mechanism requires a module that gener-
ates the request messages within the issuing node. In order to enable the same
flexibility as for the other mechanisms, the used module must be located in each
tile. It uses the same inputs (size and o f f set) as the adaptive Hamilton routing
algorithm. The destination addresses of all nodes, which are part of the region,
can be calculated using their own coordinates, as well as size and o f f set of the
region. After calculation of the destination addresses, the request messages can
be generated and continuously transmitted. The RaR hardware implementation
is not within the scope of this work, since the components are not located in the
NoC itself. Thus, it is not discussed in detail here.

7.3.3. Evaluation

The three data collection mechanisms are evaluated with respect to communica-
tion overhead and implementation costs in the following paragraphs.

7.3.3.1. Performance

The simulation framework, introduced in section 5.2, is employed for performance
and communication cost evaluation. A NoC with eight VCs and a link size of
128 bit was chosen, referring to the parameters of the NoC used in Intel’s Single-
chip Cloud Computer [113], described in detail in section 2.2.5.2.

For the following investigations, a NoC with 32x32 nodes was instantiated, having
nearly a thousand cores, as assumed in [33]. Square regions, of different sizes, are
defined for collecting data from all nodes within the region. The size of the data
to be collected per node is assumed to be 32 bit first, but also changed later.

Depending on the application, where the data collection mechanism is used, the
time until the data arrives at the requesting node may be an important factor.
Hence, the latency for collecting data within square regions of sizes from 4 to
144 nodes was analyzed. Figure 7.16(a) shows the analysis results for a scenario

31A trivial implementation of the round-trip mechanism for multi-cycle access latencies would insert
a corresponding number of empty flits between the request flit and the first response flit of the RTP
shown in figure 7.12.

262

7

7.3. Adaptive Data Collection

where the requesting node is located in the center of the region32. The presented
results are always relative to the RaR hardware implementation, which serves as
a baseline. For small region sizes, round-trip has the lowest delay. The reason is
that the local router port at the requesting node is a bottleneck. RT has the lower
link utilization, as investigated later and is thus least affected by said bottleneck.
The mixed mechanism has a worse delay than RT, but performs better than RaR
hardware implementation up to a region size of 16 nodes33. For region sizes of 36
or more cores, the request-and-response hardware implementation has the lowest
delay. The delay of the RaR software mechanism is orders of magnitude greater
than for other mechanisms, due to the sequential issuing of the requests via the
software.

The same scenarios used previously for the latency analysis, is now employed to
investigate the link utilization. The link utilization is defined as follows:

link_utilization = packet_size · link_cnt (7.10)

The packet_size is given in flits. The number of traversed links resp. hops is
denominated with link_cnt. The link utilization represents the accumulated
bandwidth which is required for a transmission.

In figure 7.16(b), the relative link utilization is provided for different regions. The
requesting node is located at the center of the region34. Round-trip has the lowest
link utilization for regions of up to 16 nodes. For a region size of 16 nodes, round-
trip reduces the link utilization by 54.8 %, compared to the request-and-response
mechanism35. The mixed mechanism is best for regions, larger than 36 nodes.
For a region of 12x12 nodes, request-and-response has a 74.8 % and round-trip a
132.8 % higher link utilization compared to the mixed mechanism.

For the previous investigations, the collected data had a size of 32 bit per node.
Depending on the application, the size of the data may be smaller (e.g. just a
view status bits) or very large (e.g. complex data structures or huge sets of data).
Hence, the impact of the data size is investigated for a region size of 4x4 nodes.
The requests are again initiated by one core, located in the center of the region.

32In [HWZ+13] additional results are provided for latency and bandwidth utilization of the investi-
gated mechanisms for a scenario where the requesting node is located at the upper left corner of
the region. Except round-trip mechanism, all mechanisms show better results if the requesting
node is located at the center of the region.

33This inflection point depends on the region size and the size of the collected data, as shown by
equation 7.3, 7.5 and 7.6.

34Additional results are provided in [HWZ+13] for a scenario, where the requesting node is located
in the upper left corner of the region. For request-and-response and mixed, the link utilization can
be reduced by 40.0 % resp. 36.3 % (region size 10x10), if the requesting node is located at the center
of the region.

35The link utilization is equal for the RaR hardware and the software implementation.

263

7

7. Self-Optimization and Self-Organization

4 16 36 64 100 144

50

100

150

Region Size [Nodes]

D
el

ay
(1

/R
aR

H
W

D
el

ay
)[

%
]

RaR (HW) RaR (SW)
Round-Trip Mixed

(a) Latency – Different region sizes

4 16 36 64 100 144

50

100

150

Region Size [Nodes]

Li
nk

U
ti

l.
(1

/R
aR

H
W

Li
nk

U
til

.)
[%

]

RaR (HW) RaR (SW)
Round-Trip Mixed

(b) Link utilization – Different region sizes

2 8 32 128 512 2048 8192

80

100

120

140

Data Size [Bit/Node]

D
el

ay
(1

/R
aR

H
W

D
el

ay
)[

%
]

RaR (HW)
RaR (SW)

Round-Trip
Mixed

(c) Latency – Different data sizes

2 8 32 128 512 2048 8192

0

50

100

150

200

Data Size [Bit/Node]

Li
nk

U
ti

l.
(1

/R
aR

H
W

Li
nk

U
til

.)
[%

]

RaR (HW)
RaR (SW)

Round-Trip
Mixed

(d) Link utilization – Different data sizes

Figure 7.16.: Latency and bandwidth utilization of the different data collection
strategies for different regions sizes (a), (b) and variable data sizes
per node (c), (d).

Figure 7.16(c) shows the latency for collecting data of different size with the inves-
tigated mechanisms. The link utilization, caused by data collection, is investigated
in figure 7.16(d). For small data sizes of 32 bit or less, round-trip provides the best
results because the collected data of several tiles can be transmitted in the same
flit when the payload per node is small. The dependency between payload size
and packet size of the RTP is provided by equation 7.4. In contrast, large data sets
in round-trip packets lead to heavy link utilization. The position of the peak for
round-trip data collection latency, shown in figure 7.16(c), depends on the region
size and the size of the collected data sets. The latency of the mixed mechanism
is similar to the request-and-response hardware implementation, as shown in

264

7

7.3. Adaptive Data Collection

figure 7.16(c). For larger data sets, link utilization of the mixed mechanism and
request-and-response36 converge, as presented in figure 7.16(d).

Summary The previous analysis showed that the choice of the appropriate data
collection mechanism strongly depends on the requirements. Table 7.2 gives an
overview on the data collection strategies, which are best in terms of latency and
link utilization under certain constraints. In the table, regions are denoted as
small for sizes up to 16 nodes, larger regions are referred to as big. This meets the
requirements of the applications, introduced in [22]. A data set is assumed to be
small if 32 bit or less must be collected per node. This suits for status information,
such as monitoring data, which are required by an OS for decision making.

Parameter Size Latency Link Util.

Region small RT RT
large RaR mixed

Data Set small RT RT
large mixed/RaR mixed/RaR

Table 7.2.: Summarizing comparison of the investigated mechanisms.

Table 7.2 summarizes the evaluation. It shows that round-trip provides the
best results with respect to latency and link utilization for small regions. For
large regions, request-and-response provides the lowest latency. The mixed data
collection achieves the lowest link utilization for large regions. If the data sets are
much larger than 32 bit, the mixed mechanism and RT offer the best performance.

For nearly all the investigated cases, either the mixed mechanism or round-trip
offer better performance compared to request-and-response hardware or software
implementation. If the adaptive Hamilton routing algorithm is supported by the
hardware, mixed and round-trip can be alternated. This enables a decision at
run-time which mechanism to use, according to region size and data size, in order
to combine the advantages of both strategies.

7.3.3.2. Synthesis

The router design, shown in figure 7.14, is based on the router, introduced in
section 5.1. Therefore, the basic router design was extended by the adaptive
Hamilton routing and the insertion unit. Subsequently, the implementation
overhead was investigated by using the ASIC synthesis flow from section 5.3.2.1
and a TSMC 45 nm standard cell library.

36The link utilization of the RaR hardware and the software implementation is again equal.

265

7

7. Self-Optimization and Self-Organization

The synthesis results of the ASIC implementation for a single 5-port router of
a 10x10 mesh with different configurations according to the investigated data
collection mechanisms are summarized in table 7.3. The router has 8 VCs per
port, a buffer size of 8 flits and a link size of 128 bit. The router configuration is
equal to the parameters of Intel’s Single-chip Cloud Computer [112], introduced
in section 2.2.5.2.

Router Area Clk. Freq. Power
Configuration [µm2] [MHz] [mW]
Basic 246295 1200 14.3914
Simple Hamilton 246770 (+0.2 %) 1200 14.51 (+0.8 %)
Simple Hamilton+Ins. 249524 (+1.3 %) 1200 14.92 (+3.7 %)
Adapt. Hamilton 248997 (+1.1 %) 1150 (-4.2 %) 14.96 (+4.0 %)
Adapt. Hamilton+Ins. 252138 (+2.4 %) 1150 (-4.2 %) 15.15 (+5.2 %)

Table 7.3.: ASIC implementation overhead of non-adaptive (simple) and adaptive
Hamilton routing for a single 5-port router.

The basic router in table 7.3 does not support Hamilton routing or data insertion
and as such, can only be used for the request-and-response mechanism. The simple
Hamilton routing unit does not support AHR and consequently no region-based
data collection. It can only be used to collect data from all nodes of an architecture
and only suffices for small architectures. The simple Hamilton implementation
was carried out in [Spi12] and serves as a reference to investigate the overhead
of the adaptivity, proposed by this work. Hamilton routing is required to sup-
port round-trip and mixed mechanism. Additionally, round-trip requires the
insertion unit. In order to support the proposed region-based data collection,
adaptive Hamilton routing was introduced. AHR has a more complex hardware
implementation and affects the critical path of the router by 4.2 %37. Compared
to the simple Hamilton routing, the area utilization of the router is increased
by only 0.9 % for the adaptive version. The router with AHR support and an
insertion unit has an area overhead of 2.4 % compared to the basic router and
consumes 5.2 % additional power. It supports the mixed mechanism as well as
the round-trip. This enables to select the used strategy at run-time depending
on the requirements. In general, the implementation overhead of the proposed
mechanisms is quite low for the ASIC implementation. Additional synthesis
results for an FPGA implementation are provided in [HWZ+13].

In summary, the previous evaluations showed that the proposed mechanisms
named round-trip and mixed outperform the straight forward implementation,
named request-and-response, in most cases. The presented synthesis results

37The clock frequency reduction could be avoided by pipelining the adaptive Hamilton routing unit
or by applying a route pre-computation technique [114].

266

7

7.4. Autonomous Power Management

exhibit the low implementation overhead. When adding support for round-trip
and mixed data collection, the area utilization of a router is increased at maximum
by 2.4 % and the power consumption by 5.2 % for an ASIC implementation.

7.4. Autonomous Power Management

Power efficiency and dark silicon are crucial in future many-core architectures
that contain hundreds or even thousands of cores [32]38. The network on chip of
such a parallel architecture can consume a substantial amount of the total power
budget [114]. Consequently, power saving techniques for NoCs have become an
important research aspect [147], in order to manage a limited power budget.

A low-power NoC is proposed by Lee et al. in [153]. The authors applied vari-
ous power saving techniques on the circuit level. Mainly, they focus on efficient
coding techniques for data transmission, such as low-swing signaling and serial
link coding. Energy-aware and performance-aware mapping and adaptive rout-
ing schemes for regular NoC topologies are discussed in [118]. The presented
mapping algorithm targets design-time mapping of IP cores in order to minimize
power consumption for communication. Centralized routing is applied to plan
the communication flows of a distributed application, taking power consumption
as well as performance into account. Another design-time power optimization
flow for NoC-based architectures is presented in [228]. The authors propose to
adapt the voltage level of each link at design-time to the communication require-
ments of the specific applications. The used algorithm takes task assignment,
tile mapping, routing path allocation, task scheduling and link speed assign-
ment into account. This work focuses on application-specific architectures where
power-optimization can be planned at design-time. The run-time flexibility, with
respect to changing communication requirements, is very limited in existing work.
So-called voltage-frequency islands (VFI) for regular NoC topologies are introduced
by Orgas et al. in [189, 190, 191]. The authors propose the division of a NoC at
design-time into different static regions. Voltage and frequency of each region can
be adapted dynamically, using dynamic voltage and frequency scaling. In [189], a
design methodology for partitioning a NoC architecture into multiple VFIs and
assigning supply and threshold voltage levels to each VFI is investigated. How-
ever, run-time adaptation is not taken into account. In contrast, run-time energy
management is proposed in [191] and [190]. On-the-fly workload monitoring is
used to control voltage in combination with frequency dynamically. In [173] a
fine-grained power-gating scheme is proposed. This scheme utilizes 30 micro
power domains per router to reduce the leakage power and energy overhead. In
order to hide the weak-up latency, look-ahead routing is used. Each router deter-

38The invasive computing paradigm, introduced in section 3.1, addresses such systems explicitly.

267

7

7. Self-Optimization and Self-Organization

mines the route of a packet, two hops in advance, enabling the early wake-up of
required components. However, the use of look-ahead routing limits the choice
of the routing algorithm. Thus, only static routing schemes can be used.

In the following sections, a scheme for fine-grained power gating of virtual
channel buffers will be presented and investigated. In contrast to [173], it is
not restricted to static routing schemes and also takes the requirements of QoS
communication into account. Therefore, it allows to switch buffers on and off,
via software, when they are allocated for GS connections. For BE communication,
hardware monitors are used to determine the number of virtual channels, which
is currently needed. The proposed scheme was implemented and evaluated as a
student work [Wie14b] and will be briefly introduced in the following paragraphs.

7.4.1. Run-time Power Management Concept

In packet switching NoCs, the buffers have a large share of the total power
consumption of the routers. When using virtual channels, even more buffer
resources are required and their power share increases. Figure 7.17 shows the
distribution of the average power consumption of the router design, introduced
in section 5.1. The buffers dissipate almost 80 % of the total power of the router39.

Figure 7.17.: Proportional share of different router components in power con-
sumption for a router with 4 VCs and 8 buffer slots [Wie14b].

The main idea of the proposed power management scheme is to identify idle vir-
tual channels and to apply fine-grained power-gating techniques to their buffers.
As each buffer is dedicated to a single VC, it may be powered off without influ-
encing the performance of any other channel. In order to determine the number
of virtual channels, which can be turned off, the monitoring infrastructure from
39This share of 80 % is consumed by the 20 VC buffers (four per port) of the router. Thus, each buffer

causes about 4 % of the router’s total power consumption.

268

7

7.4. Autonomous Power Management

section 5.5.3 is used. In particular, the virtual channel utilization monitors are
used to determine the VC utilization. These monitoring values are processed by
the power management unit (PMU), described in detail in section 7.4.2.

The power management scheme must identify and induce situations where a VC
is a viable candidate for shutdown. In order to shut down a buffer safely, it must
be ensured that the buffer is empty and that it will not be used during power-
gating. In the router design, introduced in section 5.1, the buffer management
and transmission control is located at the output port of each router, whereas
the buffers are located at the input port of the neighboring router. The fact that
the buffers and their management are spread over the output and the input of
two neighboring router necessitates a distributed implementation of the buffer’s
power management. The power management unit at an output port must decide
which VCs shall be disabled. Therefore, a selection policy is used, as detailed later.
In order to disable a buffer safely, the buffer management at the output port must
be modified in way that designated VCs can be excluded from the reservation
and transmission process. Once the VC or buffer is in a safe mode40, it can be
disabled. Therefore, the PMU at the output port sends a power-gating request
to the PMU at the input port of the neighboring router. This PMU then triggers
the actual power-gating and turns of the router. Once the PMU at an output port
decides to reactivate a virtual channel, it forwards a reactivation request to the
neighboring router and waits until the power is switched on. Subsequently, the
virtual channel can once again be used.

The power management unit at an output port decides which of its router’s
outbound channels should be power-gated. A selection policy is used to determine
the virtual channels that should currently be available and those, who can be
disabled. According to [Wie14b], a selection policy can be defined as follows:

Definition. A selection policy optimizes the number of active VCs. It is optimal if at
every point in time, only the minimal number of VCs is powered on, while ensuring that
a connection does not experience any additional delay due to power management on one
of its reserved channels.

A static policy cannot satisfy the demands of dynamically changing load conditions:
If the load is higher as assumed by the static policy, the active VCs are over-
utilized, resulting in performance degradation. However, a load situation with
little utilization would result in a waste of power due to idle VC buffers. In order
to cope with changing traffic scenarios and load distributions, a dynamic selection
policy is necessary. It should consider the current and the expected load situation
for the near future. According to [Wie14b], the following parameters are worth
consideration for this purpose:

40The buffer is in a safe mode for power-gating, if it is empty and shielded against new transmissions.

269

7

7. Self-Optimization and Self-Organization

• Amount of time required to turn on and off a VC and its buffer

• Number of VCs reserved currently, their utilization and life-time

• Traffic characteristic: e.g. overall traffic load, traffic patterns, hot spots or
life-time of connections

In [Wie14b], two dynamic policies are implemented. These policies consider the
VCU monitoring values of the most recent cycle to adjust the selection. One of the
two dynamic policies uses the peak and one uses the average monitoring values as
a basis. Both policies consider the monitoring data of the most recent monitoring
period as a prediction for future load. Pessimistically, it is assumed that the load
may increase, compared to the last period. Thus, one additional VC is kept active
in addition to the predicted values for peak and average utilization. This pessimistic
assumption reduces the performance penalty of power management.

7.4.1.1. GS Connection Power Management

The previously presented power management scheme only provides the pos-
sibility to switch off free (non reserved) virtual channels. This is sufficient for
best-effort packet switching, where a VC is only occupied for a single packet
and thus for a very short time. For GS end-to-end connections, introduced in
section 6.2, a reservation typically remains valid for an extended period of time.
However, an established GS connection might be idling for a given interval of
time. This idle time can also be used for power saving by switching off reserved
VCs when they are not being used.

In order to switch off a reserved buffer, forwarding of flits to the power-gated
buffer must be prevented. Consequently, the power-off state can only be entered
once the buffer is empty. Therefore, all flits must be forwarded to the next router
before power of the respective buffer is turned off. Subsequently, the PMU at the
egress end of the link may power down the virtual channel buffer.

A scheme named connection freezing is carried out in [Wie14b] to enable power-
gating of buffers, allocated for GS connections. By default, a GS connection is
always active to ensure QoS guarantees. However, the source node may know
that the connection is not needed in the near future. Consequently, it may choose
to freeze an established connection to save power in the system. Freezing indicates
that the source node allows every buffer and VC on the path of the connection to
be offlined. Freezing and subsequent unfreezing, of a GS connection, is indicated
by the source’s network adapter to the first router on the path. The command is
then propagated along the connection to each router’s PMU, which adjusts the
power state accordingly. Once an unfreeze command or freeze command has fully
propagated along the connection’s route, its virtual channels are either powered
on or powered off, respectively.

270

7

7.4. Autonomous Power Management

An example for such freezing and unfreezing is provided in figure 7.18. In this
example, the last routers on the path are not yet frozen, due to the propagation
delay of the freeze command. However, a part of the routers is currently frozen,
whereas the anterior routers on the path are already unfreezed again.

��������	
����

��

������������

��������	
����

��������	
����

�� ��

�� ��

���

���

��� ��� ���

��������	
����

��������	
����

������
�������

������

��		��

����

����������������		

��������������		

Figure 7.18.: Freezing and unfreezing (thawing) of a connection [Wie14b].

More details about the implementation of connection freezing are provided in the
following section and in [Wie14b].

7.4.2. Implementation

One power management unit is added to each router to control the power state of
the router’s buffer resources. It tracks the resource utilization by using the VCU
monitors. Then it determines the desired power state by using a dynamic selection
policy and advertises available buffer resources to its consumers. The current
PMU implementation, presented in [Wie14b], permits the management of virtual
channels and drives the power domains that contain the VC buffers. Figure 7.19
shows the integration of the power management unit into the router design,
introduced in section 5.1. The PMU is connected to the monitoring unit and to the

271

7

7. Self-Optimization and Self-Organization

reservation manager of the router; known as ORT. The outputs of the PMU control
the power domains of the VC buffers at the input of the neighboring router. PMUs
of neighboring routers are connected by two types of signals named advertise and
request. The request signal, which is driven by the upstream router, indicates
the VCs which shall be enabled or disabled respectively. The advertise signal is
controlled by the downstream router and provides the actual power-gating status
of each virtual channel buffer41.

VC1

VC2

VC3

VC4

vc_select

Input
Port

Output
Port

Data
Link

Monitoring
Data

Resource
Masking

advertise

Buffer
Control

Router

Router

request

Reservation
Manager

Reservation
&

Release
Events

Power Management
Unit

Input Buffer
VC4

Input Buffer
VC3

Input Buffer
VC2

Input Buffer
VC1

Power
Management

Unit

Power
Domains

Monitoring
Unit

Figure 7.19.: Integration of the power management unit into the existing router
design [Wie14b].

Controlling the power domain of a buffer requires a specific sequence of actions
when changing its state. A separate FSM is used for each VC to track the power
domain’s progression through power off and power on sequence. The power off
sequence ensures isolation of the power domain before its supply voltage is
turned off. The power on sequence is used to ensure that the buffers reach a
stable state. When reaching this state, the buffer is reset and the isolation cells are
disabled.

The power management for GS connections requires additional logic within the
PMU. A connection table is required to propagate freeze and unfreeze commands
and to ensure readiness of the virtual channels on the path.

A freeze command is accomplished by injecting a special control flit into an idle
GS connection. In this flit, neither the head nor the tail bit are set. The freeze flit is
not processed by the router’s control logic because neither the head nor the tail
bit are set, as described in section 5.1.2. However, the PMU triggers power-gating
of the associated VC after forwarding a freeze flit, as shown in figure 7.18.

A connection which is currently powered off cannot be used to transmit an
unfreeze command. Thus, unfreezing requires an alternate approach. The request
signal between the PMUs of neighboring routers is used to unfreeze a connection.
41The advertise signal is used by the upstream router to know when a reactivated VC is available

again and can be used for transmission.

272

7

7.4. Autonomous Power Management

As soon as a PMU receives a power-on request for a frozen GS connection, it
enables the respective buffers. The connection table is used to obtain the output
port and VC ID of the connection. Subsequently, the procedure is returned and
the power-on request is forwarded to the next hop of the connection. This specific
implementation enables the resume transmission as soon as the VC at the source
router is ready for transmission42. Hence, the proposed connection freezing
method guarantees a constant amount of time for unfreezing from the perspective
of the source node. This enables predictability and the fulfillment of quality of
service requirements.

7.4.3. Evaluation

For an accurate evaluation of the self-optimizing power management scheme, the
ASIC synthesis flow of the router was extended to support power-gating. The
ASIC flow from section 5.3.2.1 is used as a basis for a low power flow43; described
in detail in [Bis14].

In contrast to previous evaluations, where a 45 nm was typically used, a 65 nm
library from TSMC44 is used for the following investigations45.

The HDL model and the synthesized netlist of a 5x5 mesh are used for evaluation.
The routers are configured to have four virtual channels and a 32 bit wide data
link.

In addition to the reference design and the dynamic policies, introduced earlier,
three static policies are taken as a baseline for comparison. Thus, six different
configurations are compared in the following:

• Reference: The basic router design from section 5.1 is used as a reference. It
has no instrumentation for run-time power management.

• All: Power management with static selection policy. All VCs are enabled
statically.

• Half: Half of the virtual channels on each link are permanently selected for
power-gating.

42Since the unfreeze command is passed forward immediately when a router receives it, a data flit
experiences no further delay during transmission. By the time that it arrives at any router along
the connection, the required virtual channels are already powered on again [Wie14b].

43The low power flow uses the unified power format (UPF) to define the power domains of the design.
The Synopsys VCSMX simulator is used for accurate power measurements based on realistic
communication scenarios.

44The exact name of the TSMC 65 nm standard cell library is tcbn65lp.
45It was the only available library that provides the header, footer and isolation cells that are necessary

to implement power-gating.

273

7

7. Self-Optimization and Self-Organization

• One: Just on VC is available for data transmission, the other VCs are stati-
cally power-gated.

• Peak: The virtual channel utilization monitors from section 5.5.3 are used for
dynamic selection. The monitoring peak value of the most recent monitoring
period is used to determine the number of active VCs.

• Average: The number of active VCs is dynamically selected according to
the average VC utilization during the most recent monitoring cycle.

The achievable throughput of the network on chip is one of the most basic mea-
sures for its performance. Table 7.4 shows the achievable throughput for the six
investigated configurations. The numbers were empirically determined by con-
sciously increasing the packet injection rate in the HDL simulation environment.
Merely instrumenting the NoC for the proposed run-time power management
scheme does not impact its throughput (cf. all configuration). However, if other
policies are used, which disable a part of the virtual channels for power saving,
the throughput decreases, as expected. The best results could be achieved when
using the peak policy. Compared to the reference, the throughput is only reduced
by 11.7 %. The highest throughput degradation of 63.3 % results from the use
of the static policy with one active VC. However, this is also the configuration
with the lowest power consumption, as described later. This shows that the pro-
posed power management scheme can be used to trade-off between the power
consumption and the throughput of a NoC.

Configuration Max. Throughput [Flits/Cycle/Node]
absolute relative

Reference 0.60 ±0 %
All 0.60 ±0 %
Half 0.40 -33.33 %
One 0.22 -63.33 %
Peak 0.53 -11.67 %
Average 0.44 -26.67 %

Table 7.4.: Comparison of the power management configurations’ maximum
throughput [Wie14b].

In addition to throughput, the latency is another important performance aspect of
a network. For latency analysis, the injection rate for uniform random traffic is
increased stepwise from 0.0 to 0.6 Flits/Cycle/Node46. Figure 7.20(a) shows the
latency measurements of the six different NoC configurations. The reference and
all configuration provide the lowest packet delay. The peak policy also enables

46Not all configurations reach an injection rate of 0.6 Flits/Cycle/Node. The saturation point of each
configuration is provided in table 7.4.

274

7

7.4. Autonomous Power Management

very low latency, especially for low injection rates and can compete with reference
and all configuration. The average (avg) policy has a higher latency but compared
to the static policy one it still offers significantly lower latency.

0 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

200

Req. Injection Rate [Flits/Cycle/Node]

A
vg

.P
ac

ke
tD

el
ay

[C
yc

le
s]

reference all half
one peak avg

(a) Average packet latency

0 0.1 0.2 0.3 0.4 0.5 0.6

4

6

8

Req. Injection Rate [Flits/Cycle/Node]
A

vg
.P

ow
er

C
on

su
m

pt
io

n
[m

W
] reference all half

one peak avg

(b) Average power consumption

0.1 0.2 0.3 0.4 0.5 0.6

20

40

60

80

100

120

Req. Injection Rate [Flits/Cycle/Node]

Po
w

er
Ef

fic
ie

nc
y

[Fl
it

s/
C

yc
le

/
N

od
e

W
] reference all

half one
peak avg

(c) Power efficiency

Figure 7.20.: (a) Average packet transmission latency, (b) power consumption
and (c) power efficiency for a power managed router with different
static and dynamic selection policies.

Aside from performance, of course, power consumption is an important aspect.
Especially in the evaluation of a power saving mechanism, such as the one previ-
ously discussed. In order to obtain accurate power measurements, the router at
the center of the NoC was replaced in the simulation environment by a synthe-
sized netlist. The measurements results are illustrated in figure 7.20. The absolute
values for the power consumption of a single router are provided in figure 7.20(b)
for the same scenario as used for latency analysis. The reference design and the

275

7

7. Self-Optimization and Self-Organization

configurations with static policies (all, half and one) exhibit only a slight impact
on the power consumption when NoC load changes. The reason for this low
impact is that only dynamic power consumption is affected by the load of the
NoC. In contrast, average and peak policy adapt the static power consumption of
the router to the NoC load. Unused virtual channel buffers are power-gated if the
load is low, resulting in a very low power consumption. For an injection rate of
0.1 Flits/Cycle/Node, the total power consumption of a router could be reduced
by 31 % and 34 % using peak and average policy47.

In addition to the absolute power consumption, power efficiency, provides a
suitable measure for evaluating the proposed power management scheme. Power
efficiency is defined in section 4.1.2 as the ratio between the bandwidth and the
power consumption. This definition is used in figure 7.20(c)48. For very low
injection rates, the one configuration provides the best power efficiency. The
reference design, without any power-gating support, is predominant for very
high injection rates, which cannot be reached for other configurations. However,
the dynamic power-gating configurations (average and peak) exhibit good power
efficiency for the entire range of injection rates. They are the only schemes which
can adapt the bandwidth and power budget of the router at run-time by disabling
unused resources, dynamically.

In addition to performance and power consumption, the implementation over-
head of the proposed scheme was evaluated in [Wie14b] for the 65 nm standard
cell library49. A single router was synthesized to obtain the achievable clock fre-
quency and power consumption. The results for the investigated configurations
are summarized in table 7.5. By adding the power management unit and the
power management instrumentation to the router, its required area increases by
about 20 %. The achievable clock frequency of 350 MHz is not affected by the
power management implementation. The power management support for GS
connections, described in section 7.4.1.1, is responsible for approximately half of
the additional area. This is due to the connection table, which requires a signif-
icant amount of area. Consequently, the area overhead of the proposed power
management scheme could be noticeably reduced if GS support is not needed.

The previous studies of the proposed power management scheme showed that
the strategy can significantly reduce the power consumption of the NoC. The
peak policy achieves the best trade-off between power saving and performance

47The impact of the NoC utilization on power consumption is relatively small, due to the usage of a
zero wire-load model. It was used because of the unavailability of an accurate floor-planning for
the router.

48The achievable throughput of each configuration, provided in table 7.4, is taken into account for
power efficiency analysis.

49The synthesis results for the 65 nm standard cell library differ heavily from other results presented
in this work. The 45 nm which is typically used, is designed for performance, whereas the 65 nm
library is tuned for low power consumption. This is the reason for the much lower clock frequency
achieved with the 65 nm library.

276

7

7.5. Summary

Configuration Clk. Freq. Area [µm2]
[MHz] Absolute Relative

Reference (Basic) 350 105,550 ±0 %
All 350 127,751 +21.03 %
Half 350 123,651 +17.05 %
One 350 120,378 +14.05 %
Peak 350 128,981 +22.20 %
Average 350 129,199 +22.41 %

Table 7.5.: Achievable clock frequency and area required for different power man-
agement configurations.

degradation. It can save more than 30 % of the total power compared to the
reference, while reducing the maximum throughput by only 12 %. For moderate
injection rates, the latency is only increased by 12 %. Power management, with
peak policy, has an area overhead of 22 % compared to the reference.

A more detailed evaluation, which also investigates the impact of the buffer
reset delay50 is presented in [Wie14b]. Moreover, additional details about the
implementation are also provided.

7.5. Summary

In this chapter, four different self-optimization and -organization strategies were
introduced. Just as the QoS schemes, presented in the previous chapter, they are
designed in the form of modular extensions for the basic NoC architecture from
chapter 5. The proposed strategies shall on the one hand simplify the management
of the network on chip and reduces the management overhead. On the other hand
they shall improve the functional and non-functional properties of the network,
such as throughput, latency and power-consumption.

In section 7.1, a distributed, scalable, self-optimization strategy, named rerout-
ing, was introduced. The rerouting scheme detects communication hot spots
of guaranteed service connections by the use of the monitoring infrastructure.
Subsequently, GS connections are relocated in a distributed way. The evaluation
of the concept showed that rerouting can increase the number of GS connections,
which can be established successfully, by up to 29 % for synthetic traffic patterns.
Delay and throughput of established GS connections could also be improved by
up to 9 % and 3 % respectively. It was shown that the amount of tolerated existing

50The buffer reset delay is the time between the point where the buffer is switched on again and the
point where the power of the buffer is stable and the buffer can be used again.

277

7

7. Self-Optimization and Self-Organization

GS connections could be increased by a factor of 3.875 on average, when setting up
new connections of video applications with rerouting support. The area overhead
for rerouting support is 8.2-8.8 % for an ASIC implementation, depending on the
NoC parameters.

The concepts which were presented in section 7.2 also rely on GS end-to-end
connections, introduced in section 6.2. The two strategies, named Auto-GS and
connection replacement, shall optimize best-effort communication flows by trans-
forming them to guaranteed service connections. The monitoring infrastructure,
introduced in section 5.5.3, is used to identify candidates for transformation. Ap-
plications not supporting GS communication from the software perspective can
profit from their lower power consumption and reduced latency. Real world ap-
plications were used to illustrate the gain in overall communication performance.
When using the Auto-GS self-optimizing strategy, the communication related
power consumption could be reduced by up to 50 % and the latency could be
reduced by 25 % at maximum.

In section 7.3, adaptive data collection mechanisms were proposed and investi-
gated. The three mechanisms target region-based data collection in large, many-
core architectures and can be used to gather status information as a basis for
system state optimization. An adaptive Hamilton routing algorithm, which is
required by two of the investigated mechanisms, was proposed. The mechanisms
were investigated in terms of performance and implementation costs. The results
show that the choice of the strategy depends on different parameters such as
region size and data set size. The proposed mechanisms named round-trip and
mixed outperform the straight forward state of the art implementation for most
cases. Synthesis results exhibit that the implementation overhead is very low.
Data collection hardware increases the area utilization of a router at maximum by
2.4 % and the power consumption by 5.2 % for an ASIC implementation.

A power-optimization and management strategy was introduced section 7.4. It
uses communication monitoring to power gate idle virtual channels automatically.
This strategy reduces the energy overhead that is introduced with virtual channels.
The strategy supports software-controlled power management for GS connec-
tions. Different management policies are proposed to optimize performance or
power consumption. The results show that the power management scheme can
save more than 30 % of total NoC power compared to a reference design, while
reducing the maximum throughput by only 12 %. The overhead for an ASIC
implementation is 22 % at maximum.

278

8

8. Fault Tolerance and Reliability

Improvements in chip manufacturing technology have driven an astonishing
growth of the number of cores or IP blocks integrated as one system on a chip.
However, predicted limits which are mainly related to dependability issues must
be overcome to continue the observance of Moore’s law for future manufacturing
technologies [105]. A paradigm shift must be applied by “building dependable
systems with non-dependable components” [31] in order to vanquish the predicted
dependability issues.

The integration of a high number of cores, which will be enabled by future tech-
nology nodes, necessitated the research and development of NoCs, as explained
earlier. Consequently, network on chip architectures must address the paradigm
shift towards dependable and reliable systems to enable their implementation
with future chip manufacturing technology. Hence, methods for fault tolerance
in network on chip-based architectures have become an important field of re-
search [210].

In this chapter, a fault tolerance scheme for the proposed network on chip will
be introduced. The fundamentals and definitions for fault tolerance haven been
provided in section 2.5 as a basis. At the beginning of this chapter, existing fault
tolerant NoC concepts will be discussed. From the limitations of existing fault
tolerance mechanisms, the concepts for error detection and localization, as well
as error handling are derived. These concepts are described and evaluated in
section 8.2 and section 8.3.

8.1. State of the Art

Further technology shrinking will increase the risk of transient, intermittent and
permanent faults. Networks on chip are intended to be manufactured using said
advanced technology nodes. Consequently, fault tolerance became an important
aspect for research and development of NoCs.

A good overview of existing fault tolerance methods for networks on chip is
provided by Radetzki et al. [210]. However, the most relevant methods for the
fault tolerance scheme, presented in this work, are discussed in the following
paragraphs.

279

8

8. Fault Tolerance and Reliability

The most basic principle to achieve tolerance against transient and intermittent
faults is the use of temporal redundancy. A corrupted message is detected by the
receiver and requested to be transmitted again in the hope that it arrives undis-
torted after retransmission [184]. Another strategy, used to cope with transient
and intermittent faults, is the use of spatial redundancy. In [196] and [198] fault
tolerant routing is used to send a message over disjoint paths. In case of an error
on a transmission path, the error-free message transferred through an alternative
path can be used directly. Compared to a retransmission scheme, multi-path
routing [182] can reduce the latency in case of errors and consequently improve
the performance. Unfortunately, multi-path routing increases the utilization of
the NoC due to spatial redundancy. However, retransmissions schemes and multi-
path routing are well accepted means that manage transient and intermittent
faults.

The concept presented in the following sections addresses permanent errors
resulting from aging or manufacturing. Coping with transistor defects necessitates
architectural changes. In [48], naive triple modular redundancy (TMR) is compared
to domain-specific techniques such as end-to-end error detection, resource sparing,
automatic circuit decomposition, iterative diagnosis and reconfiguration. The
results show that designs are attainable that can tolerate a larger number of defects
with less overhead, as opposed to simple TMR. One basic assumption of existing
fault tolerance schemes is the defect of a complete router due to one, or multiple
permanent faults. Such a defective router can be detected and localized either
online [184, 227] or offline [52]. In [184], run-time error detection for end-to-end
flow control is investigated. An interleaved error-locality-aware code for end-
to-end error correction is presented in [227]. An online diagnosis of defective
wires, presented in the same work, can be used for the diagnosis of defective
routers and for locating intermittent faults. A diagnoses and localization scheme
for faulty links is presented in [212]. An offline built-in self-test (BIST) method
with a cost-effective test sequence for error detected and localized is introduced
in [52]. The above-mentioned strategies may only be used to detect and localize
link errors. In [126], a distributed approach for online testing is presented. The
strategy enables to detect up to 85 % of errors in the control paths including
routing logic, FIFO’s control path and the arbiter. The methodology is applied
to a basic packet switching NoCs without VCs and QoS support. In contrast, the
test and localization method presented later in the work in hand is applied to the
much more complex QoS supporting NoC, introduced in the previous chapters.

If a defective router is localized by one of the aforementioned schemes, it must
be bypassed to mask the erroneous router. One strategy to bypass faulty routers
is the modification of the routing strategy in the surrounding of the defective
router in order to route the packets along its borderline [210]. The authors of [28]
employ XY routing as the basic routing technique. An adaptive routing scheme
is only used to surround nodes or regions. Adaptivity is reached by allowing

280

8

8.2. Fault Detection and Localization

a packet to switch from Y back to the X direction upon reaching or leaving the
region boundary. However, the strategy is not proven to be deadlock-free for the
widely used wormhole switching NoCs. Schäfer et al. [220] use the adaptivity of
the odd-even turn model to bypass rectangular blocks. The strategy presented
in [270], allows multiple fault regions of complex shape. The odd-even turn model
is again used as the basis for deadlock-free routing. A look-ahead to faults farther
away, based on deflection routing, enables more complex, even concave fault
regions [75]. A list and a comparison of existing fault tolerant routing schemes
can be found in [210]. However, the existing methods all have limitations due
to the used routing scheme. Either the shape of a region or their number is
limited. Later-on a bypass method is proposed that can be applied independent
of the routing scheme. Another common drawback of existing schemes is that
the bandwidth-loss due to defective regions is not substituted. Consequently, the
routers in the surrounding of the defective region have the burden of additional
traffic. In contrast, the fault tolerance scheme presented later substitutes a part of
the lost bandwidth and bypasses a faulty region transparently with respect to the
surrounding routers.

8.2. Fault Detection and Localization

For error handling, it is necessary to distinguish between transient, or intermittent
and permanent faults. Transient and intermittent faults can be counteracted
by well-known techniques, such as retransmission, multi-path routing or error-
correcting codes [184]. In contrast, handling permanent faults is more challenging.
These permanent faults are expected to become more relevant with shrinking
technologies due to aging and other physical failure mechanisms. Thus, a concept
for detection and localization of permanent errors, in meshed NoCs, is presented
subsequently. The implementation and evaluation of the concept was carried out
in a student research work [Klö13].

8.2.1. Distributed Fault Localization Concept

The concept, introduced now, is mainly implemented in software. Minimal
hardware support is required to enable test pattern generation and analysis. This
hardware/software co-design approach enables minimization of the hardware
overhead for error localization.

The concept is based on systematic flooding of the NoC, or a region of it, by the
use of special test packets. These packets are analyzed after reception to determine
the location of the fault or error. By using an intelligent synchronized test pattern
generation, the pair of communicating nodes for error localization is known to

281

8

8. Fault Tolerance and Reliability

the test software. This simplifies error localization. All test packets that leave the
NoC are logged and analyzed for potential errors. Due to the knowledge about
the expected test data, erroneous sections of the NoC can be identified easily.
Only the network adapter has to support the transmission and reception of test
packets. A software interface is required to trigger test packet transmission and to
access test packets for analysis after arrival. The NA is not required to depacketize
received test packets. The raw test data are accessed by the diagnosis software to
analyze them.

The basic diagnosis flow is presented in figure 8.1. In order to test the network for
failures and to identify and localize the erroneous components, the entire NoC
or a region1 is flooded sequentially by test packets. Therefore, every router Rx,y
sends test packets to all other routers in the NoC or region. The results of each
tested path are stored in a status matrix, as described in detail later. The status
matrix contains information about the state of every transmission section.

Definition. A transmission section is defined as the set of components that is required to
transmit data in the network from hop to hop. For two neighboring routers of a NoC, this
path contains all components between the two crossbars of the routers. The crossbar that
defines the direction taken by the data flow, represents the start-point and the end-point of
a transmission section.

At the beginning of the diagnosis, the NoC is assumed to be faultless and the status
matrix is initialized accordingly. By sequential testing of all possible paths of the
NoC, the status matrix is successively updated with the test results. Consequently,
the status matrix contains the state of every transmission section after testing. It
shows whether the test data transmission between router Rx,y and Rx+i,y+j with
i, j ∈ {−1, 0, 1} was successful or not. The localization of a faulty transmission
section consists of two phases, a path analysis and a link analysis. The initial path
analysis is used for coarse localization. Subsequently, the link analysis limits
the location of a defect to a designated transmission section. For link analysis,
test packets are transferred between two directly neighboring routers. If an error
occurs the respective transmission section is known to be faulty for the direction
of analysis2. By systematically transferring test packets for path and link analysis
through all links of the NoC, all transmission sections and directions are tested.
This systematic analysis is used to create a status matrix for the entire NoC.

In [Klö13], two different test packet transmission schemes were built and studied.
The more trivial approach is named global flooding. For global flooding, each

1In [Klö13], two strategies for flooding are compared. Global flooding is used to test the whole
NoC sequentially. In contrast, linear flooding enables a parallel flooding of disjoint regions of the
architecture. Both schemes will be described later.

2Typically independent components are used in NoC for the incoming and outgoing port of a link.
Consequently, a fault is typically limited to one direction of a transmission path or link.

282

8

8.2. Fault Detection and Localization

Start
Mark all

routers as
untagged

Choose
untagged

router

Flood the NoC
using the

selected router

Log the results
of each path

Tag router
Untagged

Router
available?

Yes

End No

Figure 8.1.: Basic error detection and localization flow [Klö13].

router sends test packets to all other routers of the NoC. However, this strategy is
very time-consuming and energy-dissipating. The any-to-any test communication
results in redundant testing of links and routers. The time complexity for testing
grows quadratic (O(n2)) with the number of nodes n, because each node or tile
must communicate to all others. This limits the scalability of global flooding.
Minimizing redundant testing and reducing the time for testing is the goal of the
second strategy, named linear flooding. Compared to global flooding, it enables
to limit the number and the distance of test packets to be transmitted by each
node. The basic idea of linear flooding is illustrated in figure 8.2. A fixed number
of packets is transmitted by each node, reducing the time complexity to O(n).
Each router or node in the network assumes the role of the transmitter to cover
testing of the entire NoC. In contrast to global flooding, the transmitting node
does not send test packets to all other nodes of the architecture. It only sends
packets to all nodes which are two hops away. By using two hops, this method
not only validates parts of the routers, attached to the transmitter and receiver
nodes, but also the intervening router, which is forwarding the packets. However,
the test packet communication is spatially limited to a small region. This locality
enables to run tests in disjoint regions in parallel and independent of each other.
Parallel testing can be used to reduce the time for testing the entire architecture,
when using linear flooding. Thus, the time complexity can be reduced to O(1)
with respect to the number of nodes, when using scalable parallel linear flooding.
Moreover, linear flooding can also be used to limit testing to a specific region of a
NoC. In order to test the corners with the linear flooding procedure completely,
the scheme shown in figure 8.2 is slightly adapted. Further details can be found
in [Klö13].

The proposed diagnosis scheme enables to detect different types of errors:

1. Loss of one or several flits (also covers control-flow errors in the router)

2. Data corruption in the flits (due to stuck-at faults)

3. Wiring errors at the data channels

283

8

8. Fault Tolerance and Reliability

4. Faults in the routing and reservation unit

5. Loss of the correct flit sequence

6. Wiring and logic faults in the crossbar

Once the faulty router is identified, different methods can be used to ensure
operation of the architecture. Adaptation of the routing scheme can be used to
bypass a faulty router, as described in detail in section 8.1. However, the presented
diagnosis scheme is intended to be used in combination with the second layer
network, introduced in section 8.3.

Transmitter/
Flooding router

Receiver/
Distance 2 neighbors

Router under test/
Forwardering router

Figure 8.2.: Linear flooding limits the communication for diagnose to a small
region of neighboring routers [Klö13].

8.2.2. Software Implementation

In order to fully analyze and test the network, each router Rx,y must send multiple
test packets. For global flooding, each router sends test packets to all other routers
of the NoC. When linear flooding is used, the number of test packets that are
sent per node, is independent of the NoC size according to figure 8.2. The test
packet transmission is followed by an analysis phase at the receiving node. The
source router Rx,y waits for a feedback from the current destination node before
transmitting test packets to the next destination node. The sequential delivery
and the subsequent analysis simplify the packet classification and error analysis
and consequently the software implementation3. The analysis flow, which is

3The conditions for a parallel analysis are discussed in [Klö13].

284

8

8.2. Fault Detection and Localization

performed after each test packet, consists of the two phases named path analysis
and link analysis.

Figure 8.3 illustrates the entire analysis flow for a complete network on chip
in detail. A list L contains all the nodes that have not assumed the role as a
transmitter so far. After this list is initiated, one node or router r0 is selected from
the list L as source node. This is the beginning of the path analysis phase for the
current flooding router, which is r0 in figure 8.3. Subsequently, the list T of target
or destination nodes for r0 is set up. Next, one node or router rx is selected from
the list T to be used as a receiver. Afterwards, several4 test packets are generated
and transmitted from node r0 to node rx. The reception of each flit is recorded in
the node rx by writing into a shared data structure. More details about the packet
transmission and analysis process are provided in section 8.2.2.1. If no error is
detected, the path analysis is finished and the next path is tested. However, if an
error (e.g. loss of flits, changes of the flit order or data corruption) is detected, the
path analysis is interrupted and the detailed link analysis is started.

Set up list L
with all
routers

Error
detected?Start

Choose new
router r0 from

list L

Choose any
router

rx from T

No

Add all routers
 rx != r0
 to list T

Send test
packet

from r0 to rx

List T
empty?

No

Remove rx
from T

Remove
r0 from list L YesList L

empty?

No

End Yes

Yes

Yes

Calculate and
store all hops

between
r0 and rx
in list H

Send test
packet to the
first hop from

list H

Error
detected?

Remove hop
from list H

No

List H
empty?

No

Mark hop
as defect Yes

Path analyses

Link analyses

Figure 8.3.: Detailed flow of the path and link analysis and diagnosis [Klö13].

At the beginning of the link analysis, the routers on the path between node r0
and rx are ascertained. Deterministic routing is necessary to enable calculation
of the route and the hops. All these nodes are stores in a list H. Then, the first
node is selected from the list. The link of this node, which is also part of the
path between r0 and rx, is then tested. Therefore, the test packets and analysis
methods, described in detail in section 8.2.2.1, are used again. The link analysis
verifies the same characteristics (completeness, order and correctness) as the path
analysis. However, in contrast to the path analysis, the location of the fault can

4The exact number of test packets depends on the configuration of the NoC. Typically, one test packet
is transmitted per virtual channel. For a good test coverage, all packets transmitted between a pair
of nodes, are injected interleaved flit by flit.

285

8

8. Fault Tolerance and Reliability

be narrowed to a single transmission section. If no error is found at the actual
transmission section, the next pair of hops on the path is selected by removing
the first hop from the list H. This process is repeated until a defect is detected or
the list H is empty. If an error is recognized, the respective transmission section is
marked faulty in the status matrix.

8.2.2.1. Test Packet Transmission and Analysis

Figure 8.4 shows the time sequence for transmission of test packets between two
routers. When QoS support is enabled in the NoC, the path and link analysis starts
by setting up a maximum number of GS connections between the nodes r0 and rx.
Once the connection is established, body flits with a one-hot coding payload are
transferred. This coding scheme, which is further described in [Klö13], enables to
detect multiple faults in the router components and links. After transmitting the
final body flit, a tail flit is used to close the established connection.

Source
Router X

Destination
Router Y

Head 1

Head 4
Head 3

Head 2

Body 0..0
Body 0..0
Body 0..0
Body 0..0

Body 0..1

Body 0..1
Body 0..1

Body 0..1

Body 10..0
Body 10..0
Body 10..0
Body 10..0

Tail 4
Tail 3

Tail 2
Tail 1

connection clearing

connection setup

test data/pattern

Ti
m

e

test packet

Figure 8.4.: Test packet transmission for path analysis [Klö13].

The analysis of the test data is performed by the destination node rx. The one-hot
coding in each flit5, as well as the connection setup phase enable to detect various
faults. Loss of one or multiple flits is detected by the receiver. Therefore, it counts
the number of received flits preceding the tail flit. The one-hot coding scheme

5The one-hot coding scheme, used for the body flits, is as follows: Body0: 000...000, Body1: 000...001,
Body2: 000...010,

286

8

8.2. Fault Detection and Localization

can be used to determine the missing flit(s) exactly. Due to the known content of
the expected flits, data corruption and changes in the flit order can be detected
by logging the received flits. Improper wiring in the crossbar, buffers and links
also affects the content of the body flits and can be recognized in the same way.
Faults in the control path of the router (e.g. reservation or routing logic) can also
be detected. Such errors typically result from forwarding packets to the wrong
router or loss of flits. Both situations in turn lead to a discrepancy between the
expected and the received number of flits at the destination node. By using this
analysis strategy for path and link analysis, a defect can be narrowed down to
one transmission section. More details about the packet format and the packet
analysis can be found in [Klö13].

8.2.3. Evaluation

In order to evaluate the presented concept, defective routers must be present in
the network on chip. Consequently, faults must be injected into the model of the
NoC. Essentially, two models of the network could be used as a basis: (1) the
SystemC model introduced in section 5.2 and (2) the HDL model from section 5.3.
However, for precise fault modeling, the technology perspective must be taken
into account. Permanent faults, addressed by this work, typically occur at the
granularity of single transistors or wires. For accurate evaluation, the faults have
to be modeled precisely. Consequently, the HDL model of the NoC is used because
it is more accurate compared to the SystemC model. In order to further increase
the accuracy, a synthesized netlist is generated from the HDL model. The netlist
reflects the real hardware implementation for the chosen target technology6.

For fault modeling, the synthesized netlist is manipulated after synthesis, accord-
ing to the flow illustrated in figure 8.5. A parser, implemented in C++, is used
for fault injection. It reads the netlist and analysis it to determine the type and
distribution of the instantiated standard cells. According to the distribution, one
type of standard cell is selected to be manipulated. Subsequently, one entity of
the selected type is manipulated. This method enables a fair uniform random
distribution of the faults in the design. The current set of supported manipulations
comprises stack-at-0, stack-at-1 and inverting.

The manipulated gate-level netlist is subsequently used in the HDL simulation
environment, described in section 5.3.1. Therefore, the proposed concept for fault
detection and localization was implemented in the HDL simulation environment,
as described in detail in [Klö13]. A 4x4 and an 8x8 meshed NoC, with four virtual
channels and GS support, introduced in section 6.2, is used for the following
evaluation. In order to trade-off between accuracy and simulation speed [158]

6The ASIC synthesis flow, introduced in section 5.3.2.1, and the TSMC 45 nm standard cell library are
used for netlist generation.

287

8

8. Fault Tolerance and Reliability

Synthesiszed
netlist

Determine all
types of

standard cells
in design

Select type
randomly, consider

frequency

Determine
frequency of
occurrence

for each type

Determine
position of

elements of
selected type

Randomly
select a
position

Manipulate standard
cell of the selected type

and position

Type of fault: Invert,
Stack-at-1, Stack-at-0

Modified
 netlist with

defect(s)

Figure 8.5.: Schematic flow for netlist parsing and fault insertion [Klö13].

a mixed granularity simulation is used. For mixed granularity simulation, one
router in the NoC is selected to have a defect. The manipulated gate-level netlist is
then used for the entity of the selected router. The other routers and components in
the NoC are simulated by using the more abstract HDL representation. The mixed
granularity simulation enables to model the fault accurately, while maintaining
the simulation speed, by using more abstract HDL models elsewhere.

More than 1,000 iterations have been performed to obtain the fault recognition
rate and the run-time7 for error detection and localization. In each iteration, the
NoC is completely tested. Both, linear and global flooding are used. When linear
flooding is used, all nodes take on the role of the transmitter sequentially, as
shown in figure 8.2. Figure 8.6 provides the measurement results for global and
linear flooding. The three different types of faults are evaluated separately.

Figure 8.6(a) summarizes the fault recognition rates, which reflect the relative
number of detected faults. The analysis shows that both approaches, global and
linear flooding, provide comparable results. The highest recognition rate of 63-
65 % is measured for inverting faults. Stuck-at-1 faults can be detected with a
probability of 50-52 %. However, stuck-at-0 faults are detected in 36-37 % of the
cases. The significantly lower recognition rate for stuck-at-0 faults is justified
by transparency. Stuck-at-0 are very likely to be transparent faults, because 0 is
the reset value of most registers in the design. Averaging the recognition rate,
50-51 % of all faults can be detected. Additional analysis could show that 100 %
of the link errors can be detected and localized. Compared to the only existing
testing scheme [126], which addresses not only link but also control errors in the

7In this section, the run-time refers to the duration of time necessary for the transmission of the test
pattern. The computation overhead for analysis of the received test pattern could not be estimated
due to the modeling of the software analysis in the SystemVerilog test environment.

288

8

8.2. Fault Detection and Localization

Stuck-at-0 Stuck-at-1 Inverting Average

20

40

60

80

Fault type/fault model

D
et

ec
ti

on
R

at
e

[%
]

global local

(a) Fault recognition rate

Stuck-at-0 Stuck-at-1 Inverting Average

2

3

4

5

6

· 104

Fault type/fault model

R
un

-t
im

e
[c

yc
le

s]

global local

(b) Run-time for localization

Figure 8.6.: Evaluation of the fault detection and localization scheme - (a) recogni-
tion rate and (b) run-time [Klö13].

routers, the error recognition rates presented here are lower. The authors claim to
detect up to 85 % of all errors, however, the NoC used in [126] has a much lower
complexity due to the omission of VCs and GS support.

The run-time for fault localization by the proposed scheme was also measured
and is illustrated in figure 8.6(b). As expected, the results show that the run-time
is almost independent of the fault type. However, the results also exhibit the
huge advantage of the linear flooding compared to the more naive global flooding
approach. The run-time for test pattern transfer can be reduced by a factor of 3
when linear flooding is used in a 4x4 mesh. Additional evaluations, summarized
in table 8.1, show that the run-time improvement of linear flooding increases with
the NoC size. A factor of 15 is obtained when comparing the run-time of linear
and global flooding for an 8x8 mesh.

NoC dimensions Variant Run-time [cycles] Relative to Linear
4x4 linear 19120 -
4x4 global 60277 ∼ 3x
8x8 linear 134639 -
8x8 global 2057644 ∼ 15x

Table 8.1.: Run-time for fault detection and localization in a 4x4 and 8x8 mesh for
the linear and global flooding variant [Klö13].

289

8

8. Fault Tolerance and Reliability

8.3. Error Treatment

The previously presented method can be used to localize a faulty router. Following
the detection and localization of a fault, the resulting error must be treated in
order to ensure continuing operation of the network. In existing work, this is
typically done by adapting the routing scheme to bypass the faulty router, as
discussed in section 8.1. However, this strategy has several drawbacks:

• Non-minimal adaptive routing schemes are necessary, which could lead to
deadlocks and communication overhead

• The routers surrounding the faulty router or region have to carry additional
load

Motivated by these drawbacks, an alternative approach for error treatment in
regular NoCs is presented in this work. It has been implemented in the context of
two student works [Ste13] and [Dud14].

8.3.1. Second Layer Network Concept

A transparent bypass is used to circumvent faulty routers. This bypass shall
be activated on demand to form a ring around a defective router. In order to
establish a bypass at run-time, the necessary infrastructure must be provided at
design-time. Generally speaking, such an infrastructure consists of a unit that
injects and ejects data from, and to, the normal NoC. These units must be coupled
flexibly to form arbitrary bypass networks.

A second layer network (SLN) infrastructure enables transparent bypassing of faulty
routers. A 4x4 NoC with a second layer network is shown in figure 8.7. It consists
of two modules, named multiplexers and switches. The switches take on the task
of coupling the normal NoC and the second layer network. The multiplexers
connect the switches to form the required bypass on demand. However, if there
are no errors in the system, the second layer network can be disabled or used
for other purposes. A short discussion of alternative usage of the second layer
network is provided in section 8.3.1.2. Otherwise, power gating [133] can be used
to power off the SLN components when no defects are present. This would ensure
that no power is consumed by idle SLN components.

When a defective router has been identified, the second layer network must
be configured accordingly. However, it must be taken into account that the
faulty router should not be used during configuration. In order to enable a
flexible and distributed configuration of the second layer network, it may be
configured by columns and rows. The configuration scheme is described in
section 8.3.2.3. In order to completely bypass a faulty router, all adjacent switches
of the SLN must be enabled. The multiplexers in between are used to connect

290

8

8.3. Error Treatment

Memory

I/O

CPU iCore

iCore CPU

Memory
NoC

Router

NoC
Router

NoC
Router

TCPA

CPU iCore

iCore CPU

Memory
NoC

Router

NoC
Router

Memory

NoC
Router

Memory

I/O

CPU iCore

iCore CPU

Memory
NoC

Router

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NoC

Router

Memory

TCPA

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NoC

Router

CPU iCore

iCore CPU

Memory
NoC

Router

CPU iCore

iCore CPU

Memory
NoC

Router

CPU iCore

iCore CPU

Memory
NoC

Router

CCCCCCPPPPPPPPPPPPPPPPPPU CPPPPPPPCPPPCPPPPPPPCPPPPCPC U CCCCCPPPPPPPPPPPPPPPPPPPPPUUUUUUU CPCPPCPPPPCPPPPPPPCPU

mmmmmmmmmmmmmmmmmorryyyyyyyyyyyyyyyyyyyy mmmmmmmmmmmmmmmmorryyyyyyyyyyyyyyyyyy mmmmmmmmmmmmmmmoryyyyyyyyyyyyyyyyyyy mmmmmmmmmmmmmmmoryyyyyyyyyyyyyyyy

/////////////OOOO CCCCCPA ///////////////OOOOOOOOOO CCCCPA

CPPPPCPCPPPCPPCPPPPPPPCPU CPPPCPPCPPPCPPPPPCPPPPPPPC U CPCPCPPPPPPPPCPCPPPPPPPPPPPPPUUU CPCPPPPCPPPCPPPPPPCPU

Switch Multiplexer

Figure 8.7.: Example of a 1x1 ring bus configuration in a 4x4 NoC architecture
with a second layer network [Ste13].

the switches on demand. Such a configuration for bypassing a single router is
shown in figure 8.7. The router, colored red, is assumed to be faulty and the
green switches and multiplexers are activated and configured to bypass this
router. Activated switches and multiplexers of the SLN form a ring. This ring
operates as a ring bus (RB) [223] and is named accordingly hereafter. However,
the size and shape of a ring is not limited to the 1x1 configuration, as shown
in figure 8.7. Although it is most likely that a single router is faulty, the concept
also supports larger regions, such as 2x1, if two neighboring routers are faulty.
Bypassing of larger regions can also be used to save energy, as described in detail
in section 8.3.1.2.

An established ring bus works with so-called containers. In order to ensure a fair
bandwidth sharing, each router connected to the ring bus gets the same number
of containers assigned. The containers are passed around the ring with half of

291

8

8. Fault Tolerance and Reliability

the containers moving clockwise and the other half counterclockwise. Each VC
at an input port of the ring gets the same number of containers. Depending on
various run-time and design-time parameters, the number of containers defines
the bandwidth of the ring. The bandwidth per cycle at each input port of an
established ring can be calculated as follows:

BWrb,port = Wcont,SLN ·
2 · C

N
(8.1)

Wcont,SLN is the size of a container of the second layer network and the factor of
two results from the two directions of the ring. C defines the number of containers
per router and direction, while N represents the number of switches forming
the ring8. As can be seen from equation 8.1, the number of containers C can be
used at design-time to adjust the bandwidth of the second layer network. If the
number of containers per input port is chosen to be smaller than the number
of VCs, a fair TDM arbitration is used to equalize the bandwidth of each VC.
The control of the container assignment is carried out in a distributed way in
the switches of the second layer network. During configuration of a ring, each
switch is configured in order to adjust the arbitration scheme to the size of the
ring. A flit within a container on the ring bus is forwarded during each cycle to
the next switch. Once the container arrives at the position where the ring bus
crosses a link of the original router of the flit, the flit is taken from the ring bus.
This position is determined by the switch, by taking (1) the destination address
of the packet, (2) the position of the switch in the NoC and (3) the used routing
algorithm into account. The vacant container then returns empty to its associated
switch, where it can be filled again with a new flit. The control signals of the
router’s physical interface, described in section 5.1.5.1, are carried on the ring
in the same way as the flits. However, the acknowledge-signals that are used to
build the credit-based flow control scheme must also be transported on the ring
bus to enable flow control and to prevent buffer overflow. Figure 8.8 shows the
flow of data on the ring between two adjacent routers. The credits transferred
from the receiving router to the transmitting router take the opposite direction, as
illustrated in figure 8.8.

Ensured by the credit-base flow control scheme, body and tail flits on the ring are
always accepted by the router at the output of the ring. However, head flits on the
ring might not be accepted by the router at the output switch because the used
VC might be occupied by another packet. In such a case, the head flit remains in
the ring and is returned to the input switch. Depending on the load of the ring
and on the virtual channel multiplexing, the input switch either decides to leave
the flit in the container or to buffer it for a retransmission. More details about the
buffering scheme are provided in [Dud14].

8Four switches are required to build the smallest possible ring. Then one has N ≥ 4.

292

8

8.3. Error Treatment

Memory
NA

I/O
NA

NoC
Router

NoC
Router

TCPA

NA

NoC
Router

Memory
NA

NoC
Router

NA

NA

NoC
Router

NoC
Router

Memory
NA

NoC
Router

Memory
NA

NoC
Router

NA

NoC
Router

morym y morym y

/O/ CPAC

Data

Ack

Figure 8.8.: Data flow of flits and acknowledge flow of credits on an established
ring bus.

8.3.1.1. QoS Support

In section 6.2, a concept for QoS support is introduced. This concept provides hard
guarantees for throughput and latency of end-to-end connections. The second
layer network is designed to support this QoS transmission scheme9. Once a
GS connection is established by transmitting a header from the source to the
destination node, the bandwidth of the connection can be calculated according to
equation 8.1, when a ring bus is on the path. Due to the known round-trip time of
an established ring of size N, the worst case latency is also known.

It is obvious that the bandwidth of each connected component and each VC is
dependent on the size N of the ring. The same applies for the latency. Conse-
quently, the size of a ring bus is limited by the guarantees given for throughput
and latency. As long as the bandwidth of a ring bus port BWrb,port is greater
or equal to the bandwidth of a normal link BWlink, the guarantees of GS con-
nections will not be violated when using a ring bus. According to equation 8.1,
(Wcont,SLN · 2 · C) ≥ (N · BWlink) must be met in order to comply with the guaran-
tees of the primary NoC.

9Currently, only service level 1 is supported for guaranteed service communication through the
second layer network.

293

8

8. Fault Tolerance and Reliability

8.3.1.2. Alternative Usage

The original purpose of the second layer network is the replacement of faulty
routers. Therefore, the redundant components of the SLN are configured on
demand to bypass faulty routers. However, if no defects are present in the
architecture, the SLN is not required. Power gating techniques [133, 4] may be
used when components of the SLN are disabled. This would ensure that no
additional power is consumed during normal operation by idle SLN components.

However, as an alternative to just disable SLN components that are currently
not required for error treatment, they can also be used for other purposes. Two
approaches for alternative usage of the SLN components exist.

The first approach addresses power saving by using the slim second layer network,
instead of the primary NoC in regions where the processing elements are disabled.
A single router or groups of routers and the attached tiles can be power gated
in case of low workload or to optimize the heat distribution in the architecture.
A ring bus can be established around the disabled region to redirect the traffic
transparently, which would cross the region otherwise. An example of a disabled
region of 3x3 nodes is provided in figure 8.9. The routers within the primary
network do not need to be aware of disabled neighboring routers. The second
layer network will bypass them automatically. The decision making for disabling
routers of the primary network in addition to the cores attached to them is the
duty of the operating system. It can take the load situation of the primary NoC
into account for decision making by accessing the communication monitors,
introduced in section 5.5.3. If the load in a region is lower than the bandwidth
provided by a ring around the respective region, the primary routers can be
disabled. Equation 8.1 can be used to verify this. The power saving potential of
the second layer network is investigated in section 8.3.3.

The second approach for alternative usage of the second layer network addresses
an operation in parallel to the primary network. It is inspired by the express virtual
channel (EVC) concept, presented in [144]. EVCs enable to bypass the complex
pipeline of packet switching routers for packets that must take multiple hops in
the same direction. The presented results show significant improvement in power
consumption, network delay and throughput. The second layer network could be
extended and used to establish EVCs dynamically at run-time. Especially for data
transmission between distant nodes, the SLN can be used to reduce latency and
power consumption for data transmission. Moreover, express virtual channels,
using SLN components could increase the bandwidth of the communication
infrastructure on demand. Online monitoring can be used to dynamically decide
at run-time the length and position of EVCs according to the current load of the
primary network. This approach is currently examined in the context of a student
work [Wie14a], but is not further described now.

294

8

8.3. Error Treatment

Memory

I/O

CPU iCore

iCore CPU

Memory

Memory

NoC
Router

Memory

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NoC

Router

NoC
Router

TCPA

NoC
Router

NoC
Router

TCPA

CPU iCore

iCore CPU

Memory

Memory

NoC
Router

NoC
Router

NoC
Router

Memory

NoC
Router

Memory

I/O

CPU iCore

iCore CPU

Memory

Memory

NoC
Router

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NoC

Router

Memory

TCPA

NoC
Router

NoC
Router

Memory

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

Memory

I/O

CPU iCore

iCore CPU

Memory

Memory

NoC
Router

NoC
Router

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory

NoC
Router

Switch Multiplexer

Figure 8.9.: A large ring bus of 3x3 can be established to save energy by disabling
the routers enclosed by the ring [Ste13].

8.3.2. Hardware Implementation

The second layer network consists of two types of components, switches and
multiplexers. These components must be flexible in order to establish any shape of
ring on demand. Their implementation is described in section 8.3.2.1 and 8.3.2.2.
The distributed configuration scheme for the SLN is described in section 8.3.2.3,
providing a software interface for run-time configuration of the SLN.

8.3.2.1. Switch

The switch is responsible for injecting and ejecting the data into and out of an
established ring bus. The general structure of a second layer network switch
is shown in figure 8.10. New flits, which are forwarded by a router to an SLN
switch, are stored in the buffers first. A separate buffer is used for each virtual
channel. However, the size of the buffers can be kept very small to minimize
the implementation cost of the second layer network. Buffers are required for

295

8

8. Fault Tolerance and Reliability

two reasons: they are (1) used to keep the ring busy in case of load fluctuations
and (2) to gather head flits that are rejected by the router at the output of the
ring10. In order to enqueue headers, that have been rejected, the buffer must
support writing to both of its ports. Thus, the buffer operates as a FIFO for the
port attached to the router output and as a LIFO for the port attached to the SLN
or ring. The routers of the primary network must be extended by an enable signal
for each VC. The signal is needed to indicate whether space is available in the
buffers. If no space is available, the respective VC is not scheduled by the router.

SLN NW In

Router Port
NW In

Router Port
SE In

Router Port
SE Out

Router Port
NW Out

Credit
Counter

Credit
Counter

Container
Counter

VCC

BufferBufferBufferBuffer

BufferBufferBufferBuffer

SLN NW Out

SLN SE InSLN SE Out

Routing
Unit

Configuration
Unit

Figure 8.10.: Structure of the second layer network switch with input buffers,
routing unit and counters for containers and credits [Dud14].

Head flits are analyzed by the switch, in order to extract the destination address
and to store it in a look up table. The destination address is used by the routing
unit of the SLN switch to decide where to eject the flits. Therefore, the destination
address of the packet is taken from the LUT and added to the container, which is
used to transport the flits of the packet on the ring. Counters are used, in order to
manage the access to the containers of the SLN. These counters are configured
when a ring bus is established. The maximum counter value is set according
to the ring bus size. Separate counters are used for each virtual channel. These
counters indicate the point in time, where data of a respective VC can enter the
ring. Whenever the counter value is 0, a container is designated for the respective
VC. Then, the flit is taken from the VC buffer and inserted into the container.
The containers rotate cycle by cycle on the ring. At any point in time, where no

10Head flits might be rejected by the router at the output of the ring due to occupancy of the respective
VC by an other packet. Consequently, the head flit remains in the ring and is returned to the input
switch, if containers are shared between multiple VCs.

296

8

8.3. Error Treatment

counter value is equal to 0, containers from other switches pass by at the SLN
switches. A request flag in each container indicates whether the container is in use,
or empty.

In each cycle where a full container from another switch comes by, the destination
address of the container is processed by the routing unit, shown in figure 8.10.
The routing unit determines whether a flit shall be ejected from the ring at this
switch or left there to be forwarded to the next switch. The routing algorithm in
the routing unit is implemented as an FSM. It must reflect the routing, used in
the primary NoC. In the current implementation of the SLN, dimension ordered
XY routing is used. In addition to the destination address of the packet, the
routing algorithm takes the position of the switch in the current ring and the
dimensions of the ring into account. This additional information is obtained from
the configuration entity, which contains the current ring bus configuration data.
More details about the routing algorithm and its implementation are provided
in [Ste13].

In addition to the flits, the flow control credits must be transferred to the ring
bus and vice versa. The credits that are returned by the receiving router are
aggregated by the credit counters in the switch, which is attached to the router.
Once the appropriate container passes by, the credit counter values are stored
in the container and the credit counter is reset. A separate field is available for
each virtual channel in each container. At the designated switch, the credits
are extracted from the containers and are returned to the router attached to it.
Therefore, the acknowledge signal to the router is set by the switch accordingly. A
packet transfer is finished once the last credit is returned to the sending router. At
this point, the LUT entry for the packet is erased so that it can be used for further
transmissions.

8.3.2.2. Multiplexer

The multiplexers take over the task of connecting the switches flexibly to form
the desired ring bus. Each multiplexer has four ports that can be connected
arbitrarily11. This enables to establish any shape of a ring. The multiplexers only
consist of combinational logic. As the name of the module suggests, it is internally
built from a variety of multiplexer circuits that connect the inputs and outputs.
These multiplexers are controlled by the configuration vector, as described in
detail in section 8.3.2.3. Registers are only inserted between adjacent multiplexers
at the border of the architecture in order to break up the combinational path and
to avoid combinational loops.

11However, it is not intended that the data leave the multiplexer through the same port where they
have entered it.

297

8

8. Fault Tolerance and Reliability

8.3.2.3. Configuration

The second layer network must be configured at run-time according to the fault
scenario. The scheme from section 8.2 can be used to localize a faulty router.
Once the faulty router is identified, the bypass must be configured without
using the defective router for communication and configuration. Consequently, a
decentralized and flexible configuration scheme is required. The scheme must
tolerate faults in the primary network before they can be hidden by the bypass.

The second layer network is organized in so-called configuration entities. Such a
configuration entity is highlighted in figure 8.11. It consists of one router of the
primary network, two SLN switches and one multiplexer. All components that
form a configuration entity have the same address, which is given in X and Y
coordinates. The coordinates of the SLN components are used for configuration,
as later described, in detail. Configuration data are first written to the memory
mapped registers of the router, described in appendix A.4. The content of these
register is forwarded to the switches of the same configuration entity. The SLN
configuration registers are summarized in table A.7.

������
�	

��
�	

��
������

��	

�	

������
�	

��
������

��
������

��
������

��
����

��
�����

������ ������ �����

Figure 8.11.: Ring bus addressing scheme used for configuration. The components
colored in red represent one configuration entity [Ste13].

Once the configuration data have been forwarded to the second layer network
through a switch, they must be forwarded to the component that requires configu-
ration. This is not necessarily one component belonging to the same configuration
entity. To do so, the configuration data for the switches and multiplexers of the
second layer network can be transferred in a line or column. Configuration data
are forwarded cycle-wise from component to component. This configuration
scheme is shown in figure 8.12. The router, highlighted in green, can configure
each of the switches and multiplexers of the yellow colored row or the blue col-
ored column. Consequently, including a faulty router in a configuration process

298

8

8.3. Error Treatment

can be easily avoided because each node in the same row or column can be used
for configuration. In order to establish a complete ring, at least two different rows
and columns must be configured.

Memory
NA

I/O
NA

CPU iCore

iCore CPU

Memory
NA

NoC
Router

NoC
Router

NoC
Router

TCPA

NA

CPU iCore

iCore CPU

Memory
NA

NoC
Router

NoC
Router

Memory
NA

NoC
Router

Memory
NA

I/O
NA

CPU iCore

iCore CPU

Memory
NA

NoC
Router

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NA

NoC
Router

Memory
NA

TCPA

NA

NoC
Router

NoC
Router

CPU iCore

iCore CPU

Memory
NA

NoC
Router

CPU iCore

iCore CPU

Memory
NA

NoC
Router

CPU iCore

iCore CPU

Memory
NA

NoC
Router

CPU iCore

iCore CPU

Memory
NA

NoC
Router

CPCP CPCP CPCPU CPCPUP

morym y morym y morym y morym yy

/O/ CPAC /O/O CPAC

CPCP CPCP CPCPU CPCPUP

Figure 8.12.: Row and column wise configuration scheme of the second layer
network. The router highlighted in green is able to configure the
colored switches and multiplexers [Dud14].

The configuration data are broadcasted in a row or column. In order to identify the
component to be addressed, a destination address field with X and Y coordinates
is included in each configuration message. Each message has a size of 32 bit12. The
configuration unit in each multiplexer or switch compares the destination address
with its own address and processes the configuration data if both addresses
match. Different types of configuration messages are used to transfer a complete
configuration for a switch. The message type is defined by another field, which is
included in each configuration message. Four messages are required to configure

12The size of the configuration message can be defined at design-time. The value of 32 bit reflects the
current configuration that is also used for evaluation.

299

8

8. Fault Tolerance and Reliability

one switch. These messages include the ID of the corrupted router port, the
size and dimensions of the ring bus and the activation point. Configuration of a
multiplexer only necessitates a single configuration message. Additional details
about the structure and protocol of the configuration messages are provided
in [Dud14].

The individual components, forming a ring bus, are configured sequentially. How-
ever, the ring bus can only operate, if all components are properly configured.
Consequently, the activation of a ring must be synchronized. To do so, synchro-
nized counters are used. One of these counters is available in each configuration
entity. Due to the synchronized reset of the entire architecture, all counters run
synchronous during operation. During configuration of a ring, the current counter
value Tcurrent is accessed through memory mapped registers, described in detail
in table A.7. Based on the current count, the activation point Tactive is determined
as follows:

Tactive = Tcurrent + tcon f ,wc (8.2)

The configuration latency tcon f ,wc, must reflect the worst case delay for config-
uration of all components of a ring in order to ensure that all components are
configured successfully prior to activation. Once the activation point Tactive is
reached, all components are activated in the same cycle. Therefore, the activation
point Tactive is transferred via a configuration message for the SLN switches13.
In the switch, Tactive is compared with Tcurrent and the configuration is activated
when both values are equal.

The entire configuration process is managed by software. It determines the size
and position of the ring according to the detected fault, generates the configuration
messages accordingly, determines Tactive and writes the configuration registers
subsequently. The software implementation is described in [Dud14].

8.3.3. Evaluation

The components of the second layer network were implemented using System-
Verilog. The HDL model of the NoC (see section 5.3) was extended by an SLN.
The test environment for the HDL model of the NoC was extended to support the
configuration of the second layer network14.

13The multiplexers can be activated directly after configuration as long as the configuration of the
switches is synchronized.

14In addition, an FPGA prototype of a 2x2 mesh with SLN support was implemented as a proof of
concept. Therefore, the architecture, introduced in appendix A.1, was used.

300

8

8.3. Error Treatment

An 8x8 mesh NoC with a second layer network is used to evaluate the impact
on performance, when establishing a ring bus. The primary NoC and the second
layer network components have a link size of 32 bit. One container is available
per direction at each switch of the SLN. Consequently, each container is shared
between two of the four VCs that are present in the network. Uniform random
traffic is used for evaluation, because it is well suited to expose the heterogeneity
that is introduced by an established ring bus. Three different configurations are
compared. The reference (Ref) is a NoC where the SLN is completely disabled
and is compared with two fault scenarios. In the first scenario (1x1 RB), a single
router in the center of the architecture is assumed to be faulty. Consequently, a
bypass is configured by establishing a ring bus around the faulty router. A second
faulty scenario (2x2 RB) assumes four neighboring routers to be defect. These
routers are also located in the center of the architecture and a ring is established
accordingly. Figure 8.13 summarizes the results of the performance analysis of
the three configurations for different injection rates.

The centering location of the faulty router(s) results in a worst case scenario in
combination with uniform random traffic. Packets, which have to travel a longer
distance in the network, must bypass the faulty router with a high probability.
Consequently, the load on the ring bus is expected to be very high. The throughput
measurements for the three aforementioned configurations are provided in fig-
ure 8.13(a). For low injection rates, a 1x1 ring bus does not impact the throughput.
However, a centric ring bus with a single container per direction (1x1 RB) impacts
the achievable throughput for random traffic significantly when the injection rate
is high. This is due to the fact that an overloaded ring results in back pressure and
impacts the overall throughput for uniform random traffic. For the 1x1 RB con-
figuration, the achievable throughput is approximately halved, compared to the
reference, and fits the expectations. The achievable throughput can be calculated
by the use of equation 8.1 for the current configuration with C = 1 and N = 4.
If a 2x2 ring with one container per direction is established, the throughput is
reduced to one quarter of the original throughput. These measurements fit to
the calculated bandwidth, when using equation 8.1 with C = 1 and N = 8.
However, further investigations have shown that the impact on throughput is
much lower if the faulty router is located at the border of the architecture. A more
detailed investigation can be found in [Ste13]. Another way to avoid performance
reduction is to increase the number of containers at design-time, as previously
described. In order to demonstrate this principle, the estimated throughput15

for the 1x1 RB and 2x2 RB configuration, now with two containers per direction,
is also provided in figure 8.13(a). The results for the 1x1 RB(2C) configuration
show that it reaches the same bandwidth as the reference design. The bandwidth
of the 2x2 RB configuration could also be doubled, when using two containers
instead of one. Half of the throughput of the reference could be achieved for the
2x2 RB(2C) configuration, which fits to equation 8.1 with C = 2 and N = 8. This

301

8

8. Fault Tolerance and Reliability

is a doubling of the bandwidth compared to the 2x2 RB configuration, with only
one container per direction.

However, it must be mentioned, that other traffic scenarios with a communication-
aware mapping of tasks will reduce the amount of global communication through
a faulty region. This in turn reduces the amount of communication through the
ring and consequently the negative impact of its potentially lower bandwidth,
depending on the configuration.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

Injection Rate [Flits/Cycle/Node]

Th
ro

ug
hp

ut
[F

li
ts

/
C

yc
le

/
C

on
.] Reference 1x1 RB

2x2 RB 1x1 RB(2C)15

2x2 RB(2C)15

(a) Throughput of an 8x8 mesh

0 0.2 0.4 0.6 0.8

0

200

400

600

800

Injection Rate [Flits/Cycle/Node]

Pa
ck

et
La

te
nc

y
[C

yc
le

s]

Reference
1x1 RB
2x2 RB

(b) Average latency of an 8x8 mesh

Figure 8.13.: Throughput (a) and latency (a) of an 8x8 mesh NoC under uniform
random traffic. A reference is compared against a configuration where
a 1x1 ring bus (1x1 RB) and one where a 2x2 ring bus exists (2x2 RB).
Additional throughput estimations are provided for the same ring
bus configurations but with two containers (2C) per direction instead
of one.15

The latency was measured for the same scenario. The results are shown in
figure 8.13(b). A small ring bus for one faulty router does not impact the latency
for small injection rates. However, if the injection rate increases, the ring bus
configuration has an increased average latency; compared to the reference. The
higher latency mainly results from the bandwidth limitations of the ring. The
results for a 2x2 ring bus show that a bigger ring has a much higher impact on
latency, as opposed to the smaller one. However, it must again be mentioned that
the traffic scenario considered here is a negative corner case. A traffic scenario
with a higher amount of local communication is less impacted by a ring bus with
15The values for throughput of the 1x1 RB(2C) and 2x2 RB(2C) configurations with two containers per

direction have been estimated using the measurements for single containers and the bandwidth
calculations from equation 8.1. The reason for estimating these values instead of measuring
them, are limitations of the SystemVerilog implementation. It does currently not support multiple
containers per direction.

302

8

8.3. Error Treatment

respect to latency. Increasing the number of containers in the SLN at design-time
is one way to reduce the latency when a ring bus is established.

In addition to the performance evaluation, the implementation costs of the second
layer network are evaluated. Therefore, one configuration entity, presented in
figure 8.11, was synthesized using a 45 nm TSMC standard cell library. It is
compared against a single router of the primary network. A 32 bit and a 64 bit
variant of the router and SLN components are synthesized with different settings
for the number of virtual channels. One container is used per direction in the
SLN16. The synthesis results indicate that the critical path of the network is
not impacted by the SLN17. However, the SLN components surely impact the
area requirements, as shown in figure 8.14. 10 % additional area is required,
if a NoC with four VCs and a link size of 32 bit is equipped with a second
layer network. For a configuration with 8 VCs, the implementation overhead is
around 14 %. Adding an SLN to a NoC with 64 bit links and 4 VCs results in 15 %
area overhead. If eight virtual channels are used, 18 % additional area is consumed
when adding SLN components. The synthesis results show that the area overhead
of the SLN is very low compared to spatial redundancy techniques, introduced
in section 2.5.3. Spatial redundancy, which would duplicate or triplicate the
entire router, would increase the area overhead of each router by a factor of 2
or 3 respective. Consequently, the presented concept is an efficient way to hide
permanent errors and tolerate defective routers.

R32 R+SLN32 R64 R+SLN64

1

2

3

· 105

A
r e

a
co

ns
um

pt
io

n
[µ

m
2]

VC4
VC6
VC8

Figure 8.14.: Area consumption of a single router with 32 bit links (R32), a
64 bit router (R64), a 32 bit router with one SLN configuration en-
tity (R+SLN32) and a 64 bit router with SLN components (R+SLN64).

16The number of containers might be increased in order to raise the bandwidth of the SLN. The area
overhead of the SLN is approximately proportional to the number of containers.

17A clock frequency of 1.4 GHz was targeted and achieved for the 32 bit router with SLN.

303

8

8. Fault Tolerance and Reliability

The standard cell implementation of the router and SLN components is also used
to evaluate the power consumption and power saving potential of a ring bus.
Therefore, the power consumption of a single router of the primary network and
an SLN entity are obtained from a synthesized netlist. Two power measurements
are performed - the idle power consumption without any load and the active
power consumption for a realistic traffic scenario with high utilization. The
results are summarized in table 8.2. Compared to the primary network, the SLN
components have a lower power consumption. An idle SLN entity consumes only
2.08 mW. This exhibits the low energy footprint of an idle second layer network.
Regardless, power gating can be used to further reduce the power consumption
of idle switches and multiplexers.

Component Power (idle) Power (active) Power Saving18

[mW] [mW] [mW]
Primary router 7.39 12.45 -
SLN entity19 2.97 5.18 -
1x1 ring 5.9420 10.3720 2.08 (16.7 %)
2x2 ring 11.8820 20.7420 29.06 (58.4 %)
3x3 ring 17.8220 31.1020 80.93 (72.2 %)

Table 8.2.: Power consumption of second layer network components and ring bus
configurations. Power saving shows the total savings when disabling
parts of the primary NoC and using the SLN instead.

The low power consumption of the second layer network justifies its usage for
power saving, as introduced in section 8.3.1.2. If the utilization of the primary
network in a region is low and the cores are idle or power gated, the SLN could be
used to bypass the respective region. Thus, the primary network can be disabled
to save power. The throughput thresholds for disabling parts of the primary
network can be determined using equation 8.1.

In table 8.2, the power saving potential is investigated for three regions with
different dimensions. Disabling a single router can save 16.7 % of the power that
would have been consumed by the router. However, the power saving potential
increases if the region becomes bigger. When a 3x3 region of the primary network
is disabled and a ring bus is established to bypass the region, 72.2 % of the power
can be saved that would have been consumed by the 3x3 routers of the primary
network. These results justify the huge power saving potential of the second layer
network.
18Power saving when disabling routers in a region and bypassing them with an activated ring bus.
19The power values refer to one configuration entity, consisting of two switches and one multiplexer.
20This value is an estimation, based on the measurements of a single configuration entity, consisting

of two switches and one multiplexer.

304

8

8.4. Summary

8.4. Summary

This chapter addressed a fault tolerance concept for the proposed network on chip.
Existing work on fault tolerance was discussed and summarized in section 8.1.
Permanent errors were identified to be the most challenging. However, they will
become relevant for future technology nodes. Consequently, permanent errors
are in the scope of the concepts, presented in this chapter.

In section 8.2, the concept and implementation of a fault detection and localiza-
tion scheme was described in detail. The scheme addresses the complex router
design that was elaborated in the previous chapters. It uses test patterns that
are generated in software in order to localize permanent errors in the network
on the granularity of routers. The analysis of the received test patterns is also
implemented in software to reduce the hardware overhead for localization. A par-
allel approach is taken to minimize the run-time for localization and to ensure
scalability of the concept. A detailed evaluation of the proposed scheme was
presented, which uses fault injection on the granularity of standard cells in ASIC
netlists. The presented results showed that 51 % of all faults in a complex, QoS
supporting router design could be detected and localized. Additional analysis
exhibited that 100 % of the link errors could be detected and localized.

The localization of faulty routers is subsequently taken as a basis for the error
treatment scheme, introduced in section 8.3. It allows to disable one or multiple
routers completely that were identified to be faulty. A so-called second layer
network was introduced to bypass faulty routers transparently and to substitute
the lost bandwidth. A distributed configuration scheme was presented in order to
set up the second layer network according to the detected errors. Depending on
the design-time configuration of the second layer network, it can be used to bypass
a faulty router with a negligible impact on performance. The investigated second
layer network is accompanied by an area overhead of 10 % to 18 %. Thus, the
implementation overhead is very low compared to spatial redundancy techniques,
which duplicate or triplicate the functionality of the entire router.

The second layer network can alternatively be used to disable complete regions
of the primary network in case of low utilization, as discussed in section 8.3.1.2.
When using the second layer network to disable idle regions of the primary NoC
for power saving, up to 72.2 % of the power of the communication infrastructure
in a 3x3 region could be saved.

305

8

9

9. Conclusion & Future Work

9.1. Conclusion

The continuous increase in the integration density of semiconductors enables
ever-more-complex systems. This trend was previously used in order to improve
the performance of an architecture, by increasing the complexity of the micro-
architecture. Moreover, the increase of the integration density was accompanied
by an increase of the clock frequency of an architecture. The increased clock
frequency and architectural complexity were considered to be the state of the art
techniques for performance improvement. Interestingly enough, architectural
improvements could no longer be used to significantly raise the performance.
In addition, physical limitations prevent designers from further increasing the
clock frequency. Consequently, the performance of a single core can no longer be
significantly increased.

In order to increase the performance of a system, regardless of these limitations,
the number of components was increased. Systems on a chip that integrate multi-
ple components on a single chip resulted from this development. As a subgroup
of these systems, multi-core architectures can be considered. Such architectures
combine multiple processing cores on a single piece of silicon. Multi-core and
even many-core processors are considered today as the prevailing architecture in
all areas where a high computation power is required.

However, an ever increasing number of cores in an architecture includes various
challenges. From the software perspective, new concepts for programming and
management of such parallel architectures are required. Architecturally speak-
ing, the communication requirements increase with the number of components.
As such, shared buses can no longer fulfill these requirements. Consequently,
the parallelism with respect to the number of cores must be reflected by the
communication infrastructure.

Networks on chip have emerged as the method of choice to cope with the com-
munication demands of large many-core architectures. In contrast to bus systems,
they enable parallel and scalable communication. However, this new paradigm
for on-chip communication includes a variety of challenges and requirements:

307

9

9. Conclusion & Future Work

• The communication subsystem must be scalable in order to enable efficient
communication for a large number of cores or components.

• Quality of service comes to the focus when the communication infrastruc-
ture is used by a large number of components that may have different
communication demands.

• Power consumption and thermal issues must be addressed to cope with the
limitations of future VLSI technologies.

• Management of the communication system becomes more complex due to
the increasing complexity of networks on chip.

• Dependability aspects must be considered for future technology nodes,
addressed by the NoC paradigm.

All of these challenges must be considered when designing a NoC for future
many-core architectures.

In this context, the present work is an attempt to provide a holistic and versatile
approach for NoC-based on-chip communication. As a starting point, a NoC was
designed, which combines concepts and techniques that are considered as state
of the art for scalable on-chip communication. This NoC uses wormhole packet
switching with virtual channels, credit-based flow control and distributed routing.
This base architecture was implemented as a cycle-accurate SystemC simulation
model and as a synthesizable HDL model. Both models are designed to be easily
customizable and extendable. Numerous parameters enable an adaptation of
the developed network on chip at design-time. A semi-automated evaluation
and design flow is proposed in order to select an appropriate configuration of
the design template, with respect to a short time to market. The combination
of the SystemC and the HDL model enables fast and accurate evaluation of
performance and technology related aspects; such as throughput, latency, power
consumption, area requirements and clock frequency. The base architecture with
its wide-ranging evaluation capabilities is used as a starting point. It is extended
towards the goal of a holistic concept for scalable on-chip communication.

An essential contribution of this work is the development of a quality of service
scheme, which enables adjustable hard guarantees for point-to-point communica-
tion. The bandwidth and latency of an end-to-end connection between two nodes
can be specified at run-time according to the requirements of the application.
Different service levels and the sharing of communication resources between
best-effort traffic and guaranteed service connections assist in optimizing the
bandwidth utilization in the NoC. A QoS management scheme enables to define
policies, which regulate the amount of resources to be used by GS and BE traffic in
different regions of the architecture. A rerouting scheme for GS connections is pro-
posed and evaluated in order to fulfill the routing requirements of such durable
connections. The scheme detects overload situations by the use of online moni-

308

9

9.1. Conclusion

toring and balances the load by rerouting existing GS connections. However, the
QoS scheme for GS connections is limited by the number of connections per node.
In order to overcome these limitations, a second concept for QoS communication
is proposed. This concept can be used to establish so-called virtual networks in a
region of the architecture. A VN can then be used exclusively by an application
in such a way that the communication is not affected by other communication
crossing the respective region. This enables to execute a distributed application in
an environment with a quasi-exclusive network on chip.

In order to address the power limitations and the closely related thermal issues
of future VLSI technologies, different strategies for power optimization are intro-
duced and evaluated in the scope of this work. Two self-optimization schemes
are investigated, establishing end-to-end connections transparently, in order to
optimize performance and power consumption. A fine grained self-managed
power gating scheme for the buffers of the NoC routers is built and evaluated. It
uses run-time monitoring to decide about the number of buffers to be disabled.
In addition, a concept is proposed that enables to power off complete regions of
the network on chip. A deactivated region is bypassed transparently by the use
of an additional network layer.

The additional network layer is not only used for power saving, but also for the
dependability concept, introduced in this work. This concept focuses on detection,
localization and treatment of permanent faults. Such faults are expected to play
an increasing role for future technology nodes, due to the increased impact of
manufacturing process variations and aging of the device. A software-based
scheme was implemented, which uses special communication patterns for error
localization. A main challenge is the complexity of the network, making it difficult
to achieve a high fault coverage. However, the localization method allows to
identify a faulty router in the network for an extensive range of errors. The
localization is used as a basis for error treatment. A light-weight configurable
network layer is built to bypass a single or multiple faulty router transparently.
The scheme enables to tolerate multiple permanent errors in the architecture
without restrictions on their distribution.

The proposed concepts for quality of service, fault tolerance, power-optimization
and self-optimization are all founded on the same base architecture. In conjunc-
tion with one another, they meet the goal of a solution for future many-core
architectures. Using the proposed semi-automated evaluation and design flow,
an architecture-specific network on chip with a subset or a complete range of the
proposed functionality can be generated and analyzed efficiently. This enables
the use of the proposed architecture for fast building-block-based system design.

309

9

9. Conclusion & Future Work

9.2. Future Work

The proposed network on chip is a versatile and comprehensive basis for the
design of future many-core architectures. The semi-automated design and eval-
uation flow enables fast requirement analysis and easy generation of specific
NoC-incarnations. Thus, the presented communication infrastructure provides a
variety of opportunities for further work.

A discussion of possible extensions and improvements with respect to individual
aspects and mechanisms was previously provided in the respective chapters
and sections. In the following, more general and elementary extensions of the
proposed concept are discussed.

In order to meet the general requirement of a short time to market, the proposed
semi-automated design flow is a good basis. However, in order to further acceler-
ate the design process of NoC-based architectures, a full automation of the design
flow is desired. In order to achieve this goal, a fully automatic derivation of a valid
configuration of the NoC design template from abstract requirements is needed.
In addition, an automatic analysis of the fulfillment of defined requirements by
a specific configuration is necessary. With the aid of these extensions, a fully
automated search of the design space for the most suitable configuration of the
design parameters of the network could be implemented. Such a design flow
would enable to automatically create a suitable simulation model and a netlist by
defining the communication requirements of the desired system.

The architecture proposed in this work claims to be a holistic approach for on-chip
communication. However, the trend is not explicitly taken into account, in regards
to 3D integration. In fact, the proposed concepts for quality of service, power
saving, self-optimization and dependability can be easily extended to support a
3D integration and a 3D NoC topology. Nevertheless, support for 3D topologies is
left open for future work because it has minimal research aspects and essentially
can be considered as implementation work.

In addition to the packet switching communication, which is in the scope of
this work, circuit switching is promising for energy efficient communication.
Some of the concepts presented in this work, such as rerouting, Auto-GS or the
second layer network, can also be applied to a circuit switching network. The
circuit switching extension, introduced in section 5.5.2, can be used to adapt
and evaluate the aforementioned concepts in the context of circuit switching.
Moreover, the hybrid approach for a combination of packet and circuit switching
opens extensive research opportunities. The run-time mapping of communication
flows to packet and circuit switching communication is an interesting topic for
future research, especially with regards to their QoS requirements and energy
footprint. The architecture presented in this work provides an ideal starting point
for these studies.

310

9

9.2. Future Work

This work mainly focuses on the hardware perspective of networks on chip.
However, the software-based management of the presented concepts and features
by an operating system or application is providing adequate space for further
investigations. The proposed fault detection and localization scheme could be
embedded into a distributed operating system. As a reaction to localized errors,
the OS should support the configuration of the second layer network in order to
ensure continuous operation of the network. The proposed fault injection method
could be used to evaluate the dependability concept on an FPGA prototype with
a complete software stack comprising an OS and applications. Additionally, the
proposed second layer network concept enables the shutdown of routers, in the
primary network, to save energy. This mechanism provides great potential for
power optimization and thermal management in the context of dark silicon. In
combination with the proposed monitoring infrastructure, a power management
scheme can be carried out in the OS of the architecture.

An application driven power management of GS connection is enabled by the
connection freezing scheme, introduced in section 7.4.1.1. Power gating decisions
could be generated at compile-time in order to manage the power gating of buffers
at run-time. The compiler could generate power gating hints during the serial-
ization phase of the data, which occurs prior to a communication period. This
allows to shut down GS connections and reactivate them for data transmission
without violating the provided guarantees.

The communication monitoring infrastructure, proposed in this work, is currently
used for hardware-based self-optimization. However, it also enables software-
based optimization. The load of the communication infrastructure could be taken
into account by the operating system during allocation of computation resources
and mapping of tasks. If the communication behavior of the application is known
in advance (e.g. by the use of profiling), an optimized allocation and mapping
could be done. Balancing of the NoC load, reduction of the NoC power consump-
tion or latency reduction for a certain application may be possible optimization
criteria for task mapping when taking the current load situation of the NoC into
account by the use of monitors.

The proposed network on chip will be continuously used in the Transregional
Collaborative Research Center 89 “Invasive Computing” [244]. Most of the future
work, discussed in this section, will be addressed in the second phase of this
research project [80]. Thus, the presented NoC architecture forms the basis for
further research.

311

9

A

A. Appendix

A.1. FPGA-based Many-Core Architecture Prototype

An FPGA prototype is on the one hand desired for verification, on the other hand
it enables investigation of real applications. Thus, an FPGA-based prototyping of
an MPSoC was carried out on the Xilinx ML605 development board. This board
contains a Xilinx Virtex-6 LX240T FPGA.

NoC
Router

NoC
Router

Core
0

L1 Core
1

L1

L2-Cache

i-NA

TLM

Core
0

L1 Core
1

L1

L2-Cache

i-NA

TLM

NoC
Router

NoC
Router

Core
0

L1 Core
1

L1

L2-Cache

i-NA

TLM

Core
0

L1 Core
1

L1

L2-Cache

i-NA

TLM

DDR

Figure A.1.: FPGA-based architecture prototype carried out on the Xilinx ML605
development board.

The general structure of the MPSoC prototype is given in figure A.1. It consists of
an incarnation of the proposed NoC template design. Table A.1 summarizes the
most important parameter setting of the instantiated NoC. A description of the
parameters is provided in appendix A.6.

Each of the NoC routers connects one of the RISC core tiles, developed for the
InvasIC architecture (see section 3.2.1.1). One i-NA instance is used in each tile,

313

A

A. Appendix

Setting Value
G_FLIT_SIZE 32
G_VCS 4
G_TS 8
G_VC_BUFFER_DEPTH 4
G_CTRL_ENABLE 1
G_CTRL_FLIT_SIZE 16
G_CTRL_BUFFER_DEPTH 2

Table A.1.: Parameter settings of the NoC instance used for the FPGA prototype.

as described in detail in section 3.2.2.1. The tile with the highest ID1 is typically
carried out as a combination of RISC core and memory tile (see section 3.2.1.4)2.
The prototype uses the memory map, defined in appendix A.3, and contains the
NoC router registers, defined in appendix A.4.

Due to the complexity of the architecture, the realizable size is quite small due to
the limited resources of the FPGA. The number of LEON3 cores per tile is either set
to 1 or 2, depending on the current requirements on the prototype. The number
of tiles is varied between two and four. The main limiting factor, preventing
further extension, are the available block RAMs of the used FPGA. Thus, the size
of the caches and memories is very limited. For example, if the number of tiles
is increased from two to four, the size of the TLMs has to be halved. However, a
large TLMs is required to store the executable and to have some additional space
left for frequently accessed data. Thus, the sizes of the L1 and L2 caches had
to be strictly limited. This can be seen in table A.2. It gives an overview on the
important settings of the memories and caches of the prototype.

Setting Value
L1D Cache (Sets, Linesize, Lines) 2, 4, 4
L1I Cache (Sets, Linesize, Lines) 2, 8, 8
L2 Cache (Sets, Linesize, Lines) 2, 32, 8
Tile Local Memory 256 / 512 kB
DDR3 Memory Size 1024 MB

Table A.2.: Settings of the tile-internal components of the FPGA prototype.

1The tile IDs are assigned from left to write, row by row, downwards: TILE_ID = Xcoord +
Ycoord · Xsize.

2This tile is employed as a processing tile during evaluation due to the limited number of tiles
available on the prototype.

314

A

A.1. FPGA-based Many-Core Architecture Prototype

The clock frequency of the prototype is set to 50 MHz. This is not the maximum
achievable clock frequency, but the performance is not the main objective of the
prototype. A two-tile design with two cores per tile and 512 kB of TLM consumes
only 17 % of the slice registers available on the LX240T FPGA. 51 % of the FPGA
LUTs are required for the design. The limiting factor is the block RAM utilization,
which is 85 % for the two-tile prototype.

A.1.1. Scalable FPGA Prototype

Using a single FPGA board for prototyping has strong limitations with respect to
the size of the architecture. The prototyping system, introduced in section 3.4.2,
can be employed to build a larger architecture. However, it is also limited to a
fixed number of FPGAs and cannot be extended. A scalable prototyping concept
is required to enable prototyping and evaluation of large many-core architectures,
which are addressed by this work.

Such a concept was implemented and evaluated in [Hau14]. It uses multiple
cost-effective off-the-shelf FPGA boards. Each FPGA board is used to implement
one or multiple tiles, as shown in figure A.2. The NoC that is used to connect all
tiles, must be distributed among all the FPGAs. Consequently the FPGA boards
have to be connected to each other to spread the NoC. Unfortunately, standard
FPGA boards do not have many free general-purpose I/O pins, which can be
employed for inter-FPGA communication. However, modern FPGAs have high
speed serial transceivers [64] that are available directly on an FPGA board or by
the use of extension boards. These transceivers enable high data rates of up to
16.3 Gb/s per transceivers [64]. Large Virtex 7 FPGAs from Xilinx have up to 120
of these transceivers.

In [Hau14] the GTX transceivers of the Xilinx ML605 development board are used
to build the NoC links between different boards. The number of GTX transceivers
of the Xilinx ML605 development board is high enough to establish a mesh
topology between the FPGA boards. This enables a scalable prototyping which is
only limited by the number of available FPGA development boards. The general
principle of this prototyping approach is shown in figure A.2. The approach
is a cost-effective alternative to the use of expensive prototyping systems, such
as the CHPIit system introduced in section 3.4.2. Especially in the university
environment, where FPGA development boards are widely used, the concept can
be applied to build large prototypes.

To implement the proposed concept, all signals of the physical interface of the NoC
routers must be transmitted through the GTX connection. Therefore, a wrapper
was implemented in [Hau14]. In addition to the serialization and deserialization
of data, the wrapper enables fault detection and correction. This is necessary
because data might be corrupted while transmission. Consequently, a transparent

315

A

A. Appendix

FPGA 3 FPGA 4
TCPA

Memory

CPU iCore

iCore CPU

NoC
Router

NA Memory
NA

Memory

CPU iCore

iCore CPU

NoC
Router

NA Memory
NA

FPGA 1 FPGA 2

CPU iCore

iCore CPU

NoC
Router

NoC
Router

NA Memory

Memory

CPU iCore

iCore CPU

NA Memory
NA

GTX

GTX

GTX

NoC
Router

NoC
Router

GTX GTX

...

...

...
NA

NoC
Router

GTX

NoC
Router

Figure A.2.: Structure of a scalable multi-FPGA prototype of a NoC-based many-
core architecture.

fault detection and retransmission scheme was implemented to ensure an error-
free data transmission. The wrapper and its retransmission scheme as well
as the physical interface of the GTX transceivers come along with additional
delay. The implementation overhead and the additional latency for inter-FPGA
communication through the NoC is evaluated in [Hau14].

A.2. Service Level Assignment Algorithm

In section 6.2.1.5, a QoS-aware task mapping flow was introduced. This flow
contains steps for service level assignment and GS connection reservation. The al-
gorithm A.1 is utilized to calculate the optimal service levels for all GS connections
using the communication requirements, defined for a distributed application.

In the first phase of the algorithm, shown in algorithm A.1, initializations take
place. The connections of all nodes are added to a list. Subsequently, the con-
nection list is sorted by bandwidth requirements. In the next step, the sorted
list is employed to decide which communication flows are mapped to GS and

316

A

A.2. Service Level Assignment Algorithm

Algorithm A.1 Pseudo code of the service level assignment algorithm.
1: task_graph← mapping_result
2: for each node in task_graph do
3: node.gs_vc.in = gs_vc_max
4: node.gs_vc.out = gs_vc_max
5: connection_list.add(node.connection)
6: end for{Initialization}
7: connection_list← sort_by_bandwidth(connection_list) {Sorting}
8: for each connection in connection_list do
9: if (connection.src_node.gs_vc_in > 0)&

(connection.dst_node.gs_vc_out > 0) then
10: connection.set_type(gs)
11: connection.dst_node.gs_vc_out← connection.dst_node.gs_vc_out− 1
12: connection.src_node.gs_vc_in← connection.src_node.gs_vc_in− 1
13: else
14: connection.set_type(be)
15: end if
16: end for{GS connection mapping}
17: task_graph.update(connection_list) {Task graph update}
18: connection_list.erase_be_connections() {Erase BE connection}
19: for each connection in connection_list do
20: opt_sl ← rnd_up(connection.bandwidth/(bw_total/ts_total))
21: if opt_sl ≥ ts_max then
22: connection.set_sl(ts_max)
23: else
24: connection.sel_sl(opt_sl)
25: end if
26: end for{Service level calculation and assignment}
27: task_graph.update(connection_list) {Task graph update}
28: for each node in task_graph do
29: sum_in← 0
30: sum_out← 0
31: for each connection in node.connection do
32: sum_in← sum_in + connection.get_sl()− 1
33: end for
34: if sum_in > ts_total − vc_total then
35: for each dst_node in node.dst_list do
36: for each connection in dst_node.connection do
37: sum_out← sum_out + connection.get_sl()− 1
38: end for
39: if sum_out > ts_total − vc_total then
40: reduce_sl(connection)
41: sum_in−−
42: if sum_in <= ts_total − vc_total then
43: break
44: end if
45: end if
46: end for
47: if sum_in > ts_total − vc_total then
48: connection← search_connection(get_sl() > 1&

min(get_sl() · (bw_total/ts_total)− get_bw()))
49: reduce_sl(connection)
50: end if
51: end if
52: end for{Time slot policy verified and adjusted}

53: return task_graph

317

A

A. Appendix

BE traffic. The communication flows with the highest bandwidth requirements
use GS connections. For nodes where the number of connections exceeds the
limit gs_vc_max, the connections with the lowest bandwidth requirements must
use BE communication. If hard real-time guarantees are required, BE communi-
cation cannot be used. Consequently, the task graph has to be designed by the
application developer in a way that gs_vc_max is not exceeded for any node.

After determining the use of GS and BE communication, the task graph represent-
ing the application is updated. The communication flows mapped to BE traffic
are erased from the connection list. They must not be taken into account during
the following service level assignment phase. In the next step, the optimal service
level (opt_sl) is calculated for each connection. It is assigned to the connection
if ts_max, the limit of time slots per connection, is not exceeded. The last phase
of the algorithm verifies that the service levels of all connections do not exceed
the number of available time slots. If violations are encountered for a node, the
service level of the connection with the lowest penalty3 is reduced. This process
is repeated until ts_max is met for all nodes.

The final task graph includes the type (BE or GS) for each communication flow as
well as the service level assignments for all GS flows. This is the outcome of the
proposed service level assignment algorithm. It can be employed by the operating
system to setup the GS connections accordingly.

A.3. Memory Map

The address space of the InvasIC architecture is divided into a tile local (cache-
coherent) range and a global (non-coherent) address range. It is a 32 bit address
space due to the use of the 32bit LEON3 SPARC V8 cores [83, 84]. The local address
space (0x80000000 - 0xFFFFFFFF) is used to address the tile local components
such as the tile local memory or configuration registers. The global address
space (0x00000000 - 0x7FFFFFFF) allows to access the shared main memory of the
architecture and the distributed memory of the architecture, so the TLMs of all
tiles.

The current memory map of the InvasIC architecture is given in table A.3. The
range for the global shared memory contains the address space for main memory
access. It is followed by the global distributed memory address range that is
utilized to address the lower 16 MB of the tile local address range (0x80000000 -
0x80FFFFFF) of each tile. Consequently it is possible to address not only the TLM
of each tile from remote, but also monitoring, APB, i-NA and i-NoC registers.
Access to the global address range is carried out by the i-NA and the i-NoC (see

3The penalty is defined as the difference between the required and the guaranteed bandwidth.

318

A

A.3. Memory Map

Memory Access Domain Unit Start Address End Address

Global shared memory DDR0 0x00000000 0x1FFFFFFF
DDR1 0x20000000 0x3FFFFFFF

Global distributed mem.

Tile 0 0x40000000 0x40FFFFFF
Tile 1 0x41000000 0x41FFFFFF
Tile 2 0x42000000 0x42FFFFFF
Tile...

Tile local (remote access)

TLM 0x80000000 0x807FFFFF
reserved 0x80800000 0x809FFFFF
APB 0x80A00000 0x80BFFFFF
Monitoring 0x80C00000 0x80CFFFFF
reserved 0x80D00000 0x80DFFFFF
i-NA 0x80E00000 0x80EFFFFF
i-NoC 0x80F00000 0x80FFFFFF

Tile local (no remote access)

I/O 0x81000000 0x81FFFFFF
reserved 0x82000000 0x9FFFFFFF
CiC 0xA0000000 0xA00FFFFF
reserved 0xA0100000 0xEFFFFFFF
DSU 0xF0000000 0xF7FFFFFF
reserved 0xF8001000 0xFFFFEFFF
AHB P&P 0xFFFFF000 0xFFFFFFFF

Table A.3.: Memory map of the InvasIC architecture.

section 3.2.2.1). In contrast, access to the tile local address range is enabled by
the tile local AMBA bus. All registers of the components of a tile are mapped to
the tile local address range. As mentioned, the first 16 MB can also be addressed
from remote. The rest is employed by components that must not be access from
outside the tile, such as the debug support unit, CiC or AHB plug&play registers.
Table A.3 shows that parts of the address range are left free (reserved) for future
extensions.

319

A

A. Appendix

A.4. Control Registers of the NoC

The invasive network on chip, introduced in section 3.2.2, provides different
registers that are mapped to the local address range of each tile (see appendix A.3).
Access to these registers is provided by the invasive network adapter; described
in section 3.2.2.1. A dedicated connection between the i-NA and the connected
i-NoC router is employed to access these registers. They are used to access status
information and for configuration purposes.

Table A.4 provides the definitions for the monitoring registers of the i-NoC. They
are utilized to access the information generated by the monitoring units, as
detailed in section 5.5.3. Table A.5 shows the mapping of the debug registers of
the routers. They can be used to read the latest flits transmitted or received at any
port of the router. In table A.6 the registers for configuration of the virtual channel
policies are provided. Policy configuration is described in detail in section 6.3.
Other registers of the i-NoC provide counters for execution time measurements, a
router revision number and ID. These registers are summarized in table A.7.

The following definitions and settings are applied in the tables:
Monitoring interval length (MON_INT): = 224

Number of VCs (VC_CNT): = 4
Size of the VC input buffers (BUF_SIZE): = 8
Ports: north = 0, east = 1, south = 2, west = 3, local = 4
Abbreviations: port (P), virtual channel (V)

320

A

A.4. Control Registers of the NoC

Address Range Name Comment R/W
0x80F00000-0x80F00013 MON_LINK_AVG Link Utilization - AVG, Completed Sampling

Period, Value Range: 0 - MON_PERIOD-1,
(P0:0x80F00000, P1:0x80F00004 ...)

R

0x80F00020-0x80F00033 MON_VC_AVG Virtual Channel Utilization - AVG, Value
Range: 0 - MON_PERIOD*VC_CNT-1,
(P0:0x80F00020, P1:0x80F00024 ...)

R

0x80F00040-0x80F00053 MON_VC_MAX Virtual Channel Utilization - MAX, Value
Range: 0 - VC_CNT, (P0:0x80F00040,
P1:0x80F00044 ...)

R

0x80F00060-0x80F0007F MON_BFL_AVG Buffer Fill Level - AVG - P0, Value Range: 0 -
MON_PERIOD*BUF_SIZE-1, (V0:0x80F00060,
V1:0x80F00064 ...)

R

0x80F00080-0x80F0009F MON_BFL_AVG Buffer Fill Level - AVG - P1, ... R
0x80F000A0-0x80F000BF MON_BFL_AVG Buffer Fill Level - AVG - P2, ... R
0x80F000C0-0x80F000DF MON_BFL_AVG Buffer Fill Level - AVG - P3, ... R
0x80F000E0-0x80F000FF MON_BFL_AVG Buffer Fill Level - AVG - P4, ... R
0x80F00100-0x80F0011F MON_BFL_MAX Buffer Fill Level - MAX - P0, Value Range: 0 -

BUF_SIZE, (V0:0x80F00100, V1:0x80F00104 ...)
R

0x80F00120-0x80F0013F MON_BFL_MAX Buffer Fill Level - MAX - P1, ... R
0x80F00140-0x80F0015F MON_BFL_MAX Buffer Fill Level - MAX - P2, ... R
0x80F00160-0x80F0017F MON_BFL_MAX Buffer Fill Level - MAX - P3, ... R
0x80F00180-0x80F0019F MON_BFL_MAX Buffer Fill Level - MAX - P4, ... R
0x80F00200-0x80F0021F MON_LINK_CURR Link Utilization - AVG, Current Sampling

Period, Value Range: 0 - MON_PERIOD-1,
(P0:0x80F00200, P1:0x80F00204 ...)

R

0x80F00220-0x80F0023F MON_LINK_CNT Link Utilization - Current Length of Current
Sampling Period, Value Range: 0 - MON_-
PERIOD-1, (P0:0x80F00220, P1:0x80F00224 ...)

R

0x80F00240-0x80F0025F MON_VC_CURR Virtual Channel - AVG, Current Sampling Pe-
riod, Value Range: 0 - MON_PERIOD*VC_-
CNT-1, (P0:0x80F00240, P1:0x80F00244 ...)

R

0x80F00260-0x80F0027F MON_VC_CNT Virtual Channel - Current Length of Current
Sampling Period, Value Range: 0 - MON_-
PERIOD-1, (P0:0x80F00260, P1:0x80F00264 ...)

R

0x80F00280-0x80F003FF MON_BFL_CURR Buffer Fill Level - AVG, Current Sampling Pe-
riod, Value Range: 0 - MON_PERIOD*BUF_-
SIZE-1, (P0-V0:0x80F00280, P0-V1:0x80F00284
... P1-V0:0x80F00300, P1-V1:0x80F00304)...

R

0x80F00400-0x80F0057F MON_BFL_CNT Buffer Fill Level - Current Length of Cur-
rent Sampling Period, Value Range: 0
- MON_PERIOD-1, (P0-V0:0x80F00400, P0-
V1:0x80F00404 ... P1-V0:0x80F00420, P1-
V1:0x80F00424)...)

R

0x80F00580-0x80F00583 MON_PERIOD Number of cycles per monitoring period
(MON_PERIOD), Value Range: 0 - MON_INT

R+W

0x80F00584-0x80F00587 MON_RST A write access to this register (any value) re-
sets all monitors of the router

W

Table A.4.: Monitoring registers of the i-NoC.

321

A

A. Appendix

Address Range Name Comment R/W
0x80F01000-0x80F010FF DBG_INP_HIST_DATA Input Port History Data - P0, [31:0]:Flit Pay-

load [31:0], (Jungest: 0x80F01000, Older:
0x80F01004)

R

0x80F01100-0x80F011FF DBG_INP_HIST_DATA Input Port History Data - P1, ... R
0x80F01200-0x80F012FF DBG_INP_HIST_DATA Input Port History Data - P2, ... R
0x80F01300-0x80F013FF DBG_INP_HIST_DATA Input Port History Data - P3, ... R
0x80F01400-0x80F014FF DBG_INP_HIST_DATA Input Port History Data - P4, ... R
0x80F01500-0x80F015FF DBG_OP_HIST_DATA Output Port History Data - P4, ... R
0x80F01600-0x80F016FF DBG_INP_HIST_CTRL Input Port History Control - P0, [0]:Ctrl-

Bit, [2:4]:VC , (Jungest: 0x80F01600, Older:
0x80F01604)

R

0x80F01700-0x80F017FF DBG_INP_HIST_CTRL Input Port History Control - P1, ... R
0x80F01800-0x80F018FF DBG_INP_HIST_CTRL Input Port History Control - P2, ... R
0x80F01900-0x80F019FF DBG_INP_HIST_CTRL Input Port History Control - P3, ... R
0x80F01A00-0x80F01AFF DBG_INP_HIST_CTRL Input Port History Control - P4, ... R
0x80F01B00-0x80F01BFF DBG_OP_HIST_CTRL Output Port History Control - P4, ... R

Table A.5.: Debug registers of the i-NoC.

Address Range Name Comment R/W
0x80F03000-0x80F03003 POL_CFG_P0 Policy Configuration - Sets new VALUE+1

as BE/GS policy for P0, [31]0=BE/1=GS,
[30:0]VALUE

W

0x80F03004-0x80F03007 POL_CFG_P1 Policy Configuration - Sets new VALUE+1
as BE/GS policy for P1, [31]0=BE/1=GS,
[30:0]VALUE

W

0x80F03008-0x80F0300B POL_CFG_P2 Policy Configuration - Sets new VALUE+1
as BE/GS policy for P2, [31]0=BE/1=GS,
[30:0]VALUE

W

0x80F0300C-0x80F0300F POL_CFG_P3 Policy Configuration - Sets new VALUE+1
as BE/GS policy for P3, [31]0=BE/1=GS,
[30:0]VALUE

W

0x80F03020-0x80F03023 POL_STAT_BE_P0 Policy Status - BE - P0 R
0x80F03024-0x80F03027 POL_STAT_BE_P1 Policy Status - BE - P1 R
0x80F03028-0x80F0302B POL_STAT_BE_P2 Policy Status - BE - P2 R
0x80F0302C-0x80F0302F POL_STAT_BE_P3 Policy Status - BE - P3 R
0x80F03040-0x80F03043 POL_STAT_GS_P0 Policy Status - GS - P0 R
0x80F03044-0x80F03047 POL_STAT_GS_P1 Policy Status - GS - P1 R
0x80F03048-0x80F0304B POL_STAT_GS_P2 Policy Status - GS - P2 R
0x80F0304C-0x80F0304F POL_STAT_GS_P3 Policy Status - GS - P3 R

Table A.6.: Resource management policy registers of the i-NoC.

Address Range Name Comment R/W
0x80F02000-0x80F02003 CYC_CNT_MSB Cycle Counter MSBs [63:32] for performance

measurements
R

0x80F02004-0x80F02007 CYC_CNT_LSB Cycle Counter LSBs [31:0] for performance
measurements

R

0x80F02008-0x80F0200B ROUTER_ID 32Bit Integer Router ID R
0x80F0200C-0x80F0200F ROUTER_REV 32Bit Integer i-NoC-Router Revision Number

(a.b.c.d) - a[31:24], b[23:16], c[15:8], d[7:0]
R

0x80F02100-0x80F02103 SLN_CONFIG_EN Writing a “1” to this register activates the SLN
configuration

W

0x80F02104-0x80F02107 SLN_CONFIG_DATA Configuration data for the SLN configuration
(see [Dud14])

W

Table A.7.: Additional registers of the i-NoC.

322

A

A.5. Parameters of the Simulation Framework

A.5. Parameters of the Simulation Framework

The network on chip simulation framework, which was described in detail in
section 5.2, supports a large number of configuration options. These options or
parameters are defined in the parameter file of the simulator. They are processed at
design-time to improve the simulation speed. A selection of the most important
parameters of the simulation framework is provided by the following tables. The
parameters for the network adapter and the NoC model are summarized in table A.8
and A.9. Table A.10 and A.11 provide the parameters for the traffic generation
and the packetization layer. Table A.12 summarizes the parameters for the statistics
module of the simulation framework.

Name Explanation Def. Value
G_MESH_DIM_X X dimension of the network 10
G_MESH_DIM_Y Y dimension of the network 10
G_MAX_PORTS Number of ports per router including the local port (other num-

bers might be applied for other topologies, such as 3D).
5

G_ROUTER_DELAY Per hop/router delay for a general flit (header flits maight have
additional delay). Min. value = 1.

2

G_RESERVATION_DELAY Additional latency for VC reservation (processing of header
flits).

1

G_FLIT_SIZE Flit size or link width in bits (corresponds to the data width of
the physical connection between the routers).

32

G_VCS Number of virtual channels per router port. 4
G_MAX_GS_VCS Number of VCs which may be used simultaneously for GS com-

munication.
3

G_MAX_GS_VCS Number of VCs which may be used simultaneously for BE com-
munication.

4

G_ONE_BE_VC_FROM_RE Use only a single VC for packet injection at the local port (only
for BE traffic).

false

G_RESERVE_CTRL_C Reserve a virtual channel for NoC internal control purpose. false
G_SIMPLE_VN_EN This parameter enables a simple virtual network, where BE traf-

fic is used in one VN and GS traffic is used in the other virtual
network (G_MAX_GS_VCS and G_MAX_BE_VCS define the re-
sources assigned to each VN).

false

G_SIMPLE_VN_VCS Number of virtual channels reserved for the virtual network. 2
G_SIMPLE_VN_DYN The private network (VN) is allowed to use the VCs of the public

network.
false

Table A.8.: List of the parameters for the network adapter and the NoC model of the
simulation framework - Part I.

323

A

A. Appendix

Name Explanation Def. Value
G_TS Number of time slots (must be greater or equal to G_VCS). 4
G_TS_MAX Maximum number of time slots per GS connection (Connec-

tions with higher SL are automatic reduced).
1

G_SIMPLE_BUFFER Simple distributed separate input buffer for each VC (If dis-
abled, centralized buffers are employed).

true

G_SEPERATE_PORTS 0: All ports have totally separate central buffer (but in contrast
to the simple buffer not the VCs), 1: Central buffer is shared
between the ports, but each port has its own address-queue, 2:
Buffer and address-queue is shared between all ports.

0

G_RESERVE_ADDR Reserve buffer resources in the centralized buffer for one flit
per port and VC (to ensure independence of VCs).

true

G_MULT_PKG Allow multiple packets per buffer at the same time. true
G_BUFFER_SIZE Total size of the centralized buffer (in flits). 40
G_VC_QUEUE_DEPTH Size of the simple buffer separate per VC input queue. 4
G_EN_BUFF_RD_PORT... Emulates a single read port per input port buffer (shared by

all VCs), false: each VC has its own read port, no arbitration is
required.

false

G_USE_GS_IF_EXIST BE packets transparently employ GS connection if one exists
(feature implemented within the network adapter).

false

G_AUTO_GS_EN AutoGS enables automatic setup of GS connections for BE
packets to the most frequent utilized nodes (feature imple-
mented within the network adapter).

false

G_AUTO_GS_CYCLE Number of cycles between two AutoGS decisions. 1000
G_AUTO_GS_CON_MON Number of connections to be monitored for AutoGS decisions. 4
G_AUTO_GS_CON_GS GS connections per node established by AutoGS. 3
G_FC_ENABLE_GS_FC Enable GS end-to-end flow control. true
G_FC_DEL_GS_HT Delete GS head & tail flits in router, if header is directly fol-

lowed by tail flit (required G_FC_ENABLE_GS_FC = true).
true

G_FC_TIMEOUT_GS_FC Timeout in cycles for GS connection setup. 500
G_FC_ENABLE_DISCON Enable GS setup failed after timeout (disconnect after timeout)

(required G_FC_ENABLE_GS_FC = true).
true

G_REROUTING Enable rerouting self-optimization of GS connections. false
G_CYCLES_NEXT_REROU... Cycles between two rerouting requests. 100
G_ENABLE_ROUND_TRIP Enable round trip routing. false
G_ROUTING_TYPE 0: XY routing (selection impossible), 1: West First routing, 2:

Fully Adaptive routing (can lead to deadlocks), 3: Odd Even
routing, 4: Fully Adaptive routing (test), 5: special XY routing
for memory routers.

0

G_SELECTION_TYPE 0: Random VC selection, 1: VC selection according to the free
no. of VCs.

0

G_ADAPTIVE_ROUTE_VC... Restricted VC selection for fully adaptive routing - 0: disabled,
1: xy, 2: only x, 3: only y (enabling VC selection depending on
the routing decision).

0

G_MAX_TURN Max. number of turns for fully adaptive routing (test). 10

Table A.9.: List of the parameters for the network adapter and the NoC model of the
simulation framework - Part II.

324

A

A.5. Parameters of the Simulation Framework

Name Explanation Def. Value
G_ENABLE_TG Selection of the used traffic generator - 0: No traffic generation,

1: Simple synthetic traffic generation, 2: Trace code execution,
3: Application model (Traffic cluster) (random traffic generation
also possible), 5: User defined traffic.

1

G_BE_MIN_PKG_SIZE Minimum size of the generated BE packets. 4
G_BE_MAX_PKG_SIZE Maximum size of the generated BE packets. 8
G_BE_OVERHEAD_FLIT A protocol overhead of 1 flit is added to each BE packet (Not

supported with G_ENABLE_TG = 0)
false

G_BE_INJECTION_RATE Average package injection rate per 1000 cycles for BE communi-
cation (Is also used as initial traffic cluster setting).

100

G_SIMPLE_TG_TYPE Traffic type generated by the synthetic traffic generator - 0: Ran-
dom, 1: Transpose1, 2: Transpose2, 3: BitReversal, 4: Shuffle, 5:
Butterfly.

0

G_GS_MIN_PKG_SIZE Minimum size of the generated GS packets. 4
G_GS_MIN_PKG_SIZE Maximum size of the generated GS packets. 4
G_GS_MAX_PARALLEL... The number of GS connections can be limited by lowering this

number.
1000000

G_GS_INJECTION_RATE Average package injection rate per 1000 cycles for GS communi-
cation

0

G_GS_WAIT_FOR_SETUP Traffic generator waits until setup (header) flit was received, be-
fore transmitting other flits (except from tail flits).

true

G_TRACEFOLDER Location of the trace file. "/pip.tgff."
G_TX_CON_TYPE Define whether packets are converted between BE and GS by the

Packetization Layer - 0: Convert to BE, 1: Convert to GS, 2: mixed
(no conversion).

2

G_TRAFFIC_GEN_TYPE Define the type of generated packets (not supported by all traffic
generators) - 0: BE-only, 1: GS-only, 2: mixed.

2

G_CONV_GS Convert all GS traffic to BE. false
G_RANDOM_CLUSTER Application model (Traffic cluster) configuration - false: Neigh-

boring cluster, true: Random cluster.
false

G_CLUSTER_CON_TYPE Communication type selection for Application model - 0: Ran-
dom connection between PEs, all connected to a memory node,
1: All PEs connected (Clique), all connected to a memory node —
2: All PEs connected to seed (master), all connected to a memory
node.

1

G_PE_MEM_COM_RATE Amount of memory communication for application model pro-
portional to the total injection rate.

50

G_CL_MIN_SIZE Min. number of applications generated by the application model. 4
G_CL_MAX_SIZE Max. number of applications generated by the application

model.
8

G_INF_RET_RATE_CL Average cycles between invade/retreat phases for a complete ap-
plication in the application model - 0: disabled.

0

G_INF_RET_RATE_ND Average cycles between invade/retreat phases for a single
node/PE in the application model - 0: disabled.

0

G_INF_RET_RATE_CL Min. utilization (in %) of the REs or nodes. 10
G_INF_RET_RATE_ND Max. utilization (in %) of the REs or nodes. 90
G_TC_RET_NON_EST... Enable to release connections (and retreat nodes & cluster),

which are not yet established.
true

G_TC_ENABLE_PER_C... Injection (injection rate, packet size, service level, ...) is controlled
per connection (not per core).

true

Table A.10.: List of the parameters for the traffic generation and the packetization
layer of the simulation framework - Part I.

325

A

A. Appendix

Name Explanation Def. Value
G_BANDWIDTH Bandwidth in MByte (Might be employed as a scaling factor for

the task graph based traffic generation).
2048

G_GRAPH_USE_BE Use BE communication for all connections of the mapped task
graphs.

false

G_GRAPH_AUTO_SL Assign service levels automatically for GS connections. false
G_GRAPH_SEL_MPEG Map MPEG4 video decoding (12 cores), Offset to be centric (for

10x10 nodes): x = 3, y = 3, G_BANDWIDTH = 2048.
false

G_GRAPH_SEL_VOPD Map Video Object Plan Decoding (VOPD, 12 cores), Offset to
be centric (for 10x10 nodes): x = 3, y = -3, G_BANDWIDTH =
1024.

false

G_GRAPH_SEL_PIP Map Picture-In-Picture (PIP, 8 cores), Offset to be centric (for
10x10 nodes): x = 3, y = -1, G_BANDWIDTH = 256.

false

G_GRAPH_SEL_MWD Map Multi-Windows Display (MWD, 12 cores), Offset to be cen-
tric (for 10x10 nodes): x = 0, y = 0, G_BANDWIDTH = 256.

false

G_GRAPH_SEL_H264 Map H.264 CAVLC encoder (H.264, 16 cores), Offset to be cen-
tric (for 10x10 nodes): x = 3, y = 3, G_BANDWIDTH = 2048.

false

G_GRAPH_SEL_MMS Map Multimedia System (MMS, 25 cores), Offset to be centric
(for 10x10 nodes): x = 2, y = 2, G_BANDWIDTH = 196000.

false

G_GRAPH_MAPP_OFFS_X Task graph mapping offset X. 3
G_GRAPH_MAPP_OFFS_Y Task graph mapping offset Y. 3
G_ROUND_TRIP_TYPE Use special communication patterns for data collection/multi-

cast - 0: Request Response (parallel) / disabled, 1: Hamiltonian
Path, 2: Mixed Mode (Req: Hamiltonian Path, Resp: Normal),
3: Request Response (serial).

0

G_ROUND_TRIP_TILE... ID of the tile requesting for the round trip communication. 44
G_ROUND_TRIP_PL... Payload size per core (in Bit) for round trip packets. 32

Table A.11.: List of the parameters for the traffic generation and the packetization
layer of the simulation framework - Part II.

Name Explanation Def. Value
G_VERBOSE Print detailed debug information. false
G_TX_MSG Print message if a packet is transmitted (header and tail). false
G_RX_MSG Print message in case of packet arrival (header and tail). false
G_FLIT_RX_MSG Print massage if a flit is received by a router. false
G_HEAD_RX_MSG Print massage if a header flit is received by a router. false
G_VC_RES_FAILED_MSG Print massage if reservation of a virtual channel failed. false
G_GS_CON_MSGS Print information about GS connect and release. false
G_TC_MSG Print application model (traffic cluster) messages. false
G_SIM_SPEEDUP If enabled, the packets within the NoC aren’t logged for de-

bugging.
true

G_PRINT_BUF_STATS Print detailed buffer related statistics. false
G_WARMUP_TIME Exclude warmup time (in cycles) from statistics. 1000
G_EVENT_CYCLE_LENGTH Number of cycles between two short status messages (Print-

ing of accumulated injection rate).
1000

Table A.12.: List of the parameters for the statistics module and debugging of the
simulation framework.

326

A

A.6. Parameters of the HDL Template

A.6. Parameters of the HDL Template

The HDL template of the NoC and the router has a lot of configuration options,
which are defined at design-time. These options or parameters are defined in
the parameter file of the HDL template. They enable to adapt the router design
according to the requirements of the architecture, where the NoC is generated
for. These parameters can either be generated automatically, e.g. when using the
script-based synthesis flow. Automated parameter setting is also employed in the
semi-automated design flow, introduced in section 4.4.

Table A.13 provides an overview on the parameters of the basic router design,
described in section 5.1. The parameters for the monitoring infrastructure of the
NoC, discussed in section 5.5.3, are provided in table A.14. Further parameters
for various other features presented in this work, are summarized in table A.15.

Name Explanation Type
G_DIM_X X dimension of the network. uint
G_DIM_Y Y dimension of the network. uint
G_FLIT_SIZE Flit size or link width in bits (corresponds to the data width of

the physical connection between the routers).
uint

G_PORTS Number of ports per router including the local port (other num-
bers might be applied for other topologies, such as 3D mesh or
torus).

uint

G_VCS Number of virtual channels per router port. uint
G_VC_POL_ENABLE Enable VC policy management. The resource management unit

is instantiated to controls of VC reservation for GS and BE traffic.
logic

G_TS Number of time slots (must be greater or equal to G_VCS). uint
G_MAX_TS Limit for the number of time slot to be used by a single GS con-

nections.
uint

G_VC_BUFFER_DEPTH Depth of the FIFOs, which is used as input buffer for each VC. uint
G_FAST_RESERVATION New Header flits are forwarded from the input of the VC buffer

to the reservation unit (might reduce the clock frequency).
G_MULTI_PKG_PER_BUFFER Allow to store parts of different packets in one buffer at the same

time (not tested).
logic

G_OUTPUT_REG Enable output registers. logic
G_PIPELINE_RES Enable pipelining of the VC reservation process. logic
G_PIPELINE_SEL Enable pipelining of the flit selection process (part of the reserva-

tion process).
logic

G_USE_DW Enable instantiate of DesignWare building blocks. logic

Table A.13.: List of the configuration options of the HDL template of the basic
router and NoC design.

327

A

A. Appendix

Name Explanation Type
G_ENABLE_MON Enable monitoring data access via control channel. logic
G_REGISTER_SIZE Size of the memory mapped registers of the router (see ap-

pendix A.4).
logic

G_ENABLE_RVC_DET Enable monitoring of the virtual channel reservation. logic
G_ENABLE_BFL_DET Enable buffer fill level monitoring. logic
G_ENABLE_OPR_DET Enable link monitoring. logic
G_NO_OF_VALUES_RVC Number of values added to cache of virtual channel reservation

monitors (per monitoring cycle) => Represents the maximum
monitoring cycle length.

uint

G_NO_OF_VALUES_BFL Number of values added to cache of buffer fill level monitors (per
monitoring cycle) => Represents the maximum monitoring cycle
length.

uint

G_NO_OF_VALUES_OPR Number of values added to cache of link monitors (per monitor-
ing cycle) => Represents the maximum monitoring cycle length.

uint

G_HISTORY_PRECISION_RVC Width/precision (in bit) of the registers of the virtual channel
reservation monitoring history table.

uint

G_HISTORY_PRECISION_BFL Width/precision (in bit) of the registers of the buffer fill level
monitoring history table.

uint

G_HISTORY_PRECISION_OPR Width/precision (in bit) of the registers of the link monitoring
history table.

uint

G_HISTORY_LENGTH_RVC Number of old monitoring values stores in the virtual channel
reservation monitoring unit.

uint

G_HISTORY_LENGTH_BFL Number of old monitoring values stores in the buffer fill level
monitoring unit.

uint

G_HISTORY_LENGTH_RVC Number of old monitoring values stores in the link monitoring
unit.

uint

G_ENABLE_RVC_TX Enable automatic transmission of the virtual channel reservation
monitoring data (necessitates G_ENABLE_MON = 1).

logic

G_ENABLE_BFL_TX Enable automatic transmission of the fill level monitoring data
(necessitates G_ENABLE_MON = 1).

logic

G_ENABLE_OPR_TX Enable automatic transmission of the link monitoring data (ne-
cessitates G_ENABLE_MON = 1).

logic

G_TRIGGER_PERIOD Duration of a monitoring cycle (time between two automatic
monitoring data transmissions) in ns.

int

G_CLK_PERIOD Router clock cycle length in ns. int
G_TX_DATA_PRECISION Precision (int bit) of the monitoring data transmitted via the con-

trol channel.
int

G_NO_OF_VALUES_OPR number of values added to cache
G_TX_TO_LOCAL_ROUTER if set to “1”, the cyclic monitoring data are sent to the local router.

If set to “0”, they are sent to the coordinates defined by G_TX_-
TO_DST_X and G_TX_TO_DST_Y.

logic

G_TX_TO_DST_X Destination X address for cyclic monitoring data transmission. uint
G_TX_TO_DST_Y Destination Y address for cyclic monitoring data transmission. uint
G_ENABLE_DEBUGGING Enable the debugging unit, which captures the latest flits re-

ceived at each router port.
logic

Table A.14.: List of the monitoring and debugging configuration options of the
HDL template design.

328

A

A.6. Parameters of the HDL Template

Name Explanation Type
G_CTRL_ENABLE Enable control NoC/channel. logic
G_CTRL_FLIT_SIZE Flit size or link width of the control NoC in Bits (corresponds to

the data width of the physical connection between the routers).
uint

G_CTRL_BUFFER_DEPTH Depth of the FIFOs, which is used as input buffer for the control
NoC.

uint

G_SIMPLE_CTRL_ENABLE Simplistic implementation of a control output. logic
G_CTRL_ARB_SIZE Number of entities which use the control channel within the

router.
uint

G_REROUTING_ENABLE Enable rerouting self-optimization of GS connections. logic
G_OPS_COUNTERS Use fill level counters within Transmission Control unit to improve

timing - 0: disabled, 1: version with less stall cycles, 2: version
with higher clock frequency, but higher delay

uint

G_IN_ORDER Ensure processing of the reservation requests in the order of ar-
rival (necessary to ensure in-order arrival).

logic

G_VC_IN_LINE Restrict to reserve multiple VCs in parallel for transmissions to
the same destination node (necessary to ensure in-order arrival).

logic

G_USE_ERROR_DETECT Enable error detect at the router ports - 0: Off; 1: Parity; 2:
CRC8(ISDN Header); 3: CRC10.

uint

G_CTRL_ARB_ADDR Router internal address of the error detection unit at the router
internal port of the control channel.

uint

G_PARITY_EVEN_ODD Use odd or even parity bit - 0: even; 1: odd parity. logic
G_RING_CIRCLE_BUS Enable ring bus instantiation. logic
G_RING_CONFIGCH..._W... Width of the configuration channel of the ring bus. uint
G_RING_CONFIG_MAX_ADR Number of bits used for address encoding in the configuration

channel of the ring bus.
uint

G_RING_CONFIG_CNT_SIZE Size of the configuration counter (employed to synchronize the
activation of a ring bus configuration).

uint

G_RING_DIRECTIONS Directions (ports) of a ring bus multiplexer (is normally set to
G_PORTS-1).

uint

G_RING_BUFFER_DEPTH Buffer depth of the ring buffer switch input port. uint
G_LOCAL_SWITCH Instantiate a ring bus switch at the local router port. logic

Table A.15.: List of configuration options of the HDL template design for ad-
vanced features.

329

A

I

List of Figures

1.1. Transistor count evolution . 1
1.2. Pollack’s rule . 2
1.3. CMOS power density . 3
1.4. Amdahl’s law with communication constraints 6

2.1. From PCB to MPSoC . 14
2.2. Shared memory multiprocessor . 15
2.3. Distributed memory multiprocessor 16
2.4. TILE64 processor block diagram . 19
2.5. Intel SCC block diagram . 20
2.6. MPPA-256 block diagram . 22
2.7. MORPHEUS reconfigurable architecture 23
2.8. Bus system example . 24
2.9. Bus matrix types . 28
2.10. Block diagram of a network adapter 29
2.11. Basic router block diagram . 31
2.12. Different network topologies . 33
2.13. Basic switching techniques . 38
2.14. Virtual channels . 42
2.15. Arbitration schemes . 43
2.16. Routing algorithms . 51
2.17. Deadlock scenario . 53

3.1. Invasion procedure . 60
3.2. Basic invasive program . 61
3.3. Constraint system . 62
3.4. Communication constraints in X10 63
3.5. Block prefetching in X10 . 64
3.6. InvasIC architecture . 65

331

I

List of Figures

3.7. Block diagram of a RISC core tile . 66
3.8. Block diagram of a TCPA tile . 68
3.9. Invasive network adapter . 71
3.10. Structure of compiler framework . 74
3.11. Invasive run-time support system 75
3.12. Agent system . 77
3.13. InvasIC architecture prototype . 79

4.1. Requirements to NoCs . 82
4.2. Correlation between bandwidth utilization and latency 83
4.3. Semi-automated evaluation and design flow 103

5.1. Simplified structure of basic NoC router 107
5.2. Virtual channel assignment example 108
5.3. Structure of a typical packet . 110
5.4. General structure of a flit . 111
5.5. Structure of a control flit . 111
5.6. Modular adaptive routing support 118
5.7. Detailed router structure . 120
5.8. Physical interface of the router . 123
5.9. Overview on the NoC simulation framework 132
5.10. Overview on the traffic generation capabilities 133
5.11. Synthetic traffic types . 134
5.12. Synthetic application model . 136
5.13. MPEG4 video decoding task graph 137
5.14. Impact of buffer size on performance of uniform random traffic . . 147
5.15. Impact of buffer size on performance of an MPEG4 decoder 148
5.16. Impact of VCs on performance for uniform random traffic 149
5.17. Impact of VCs on performance of an MPEG4 decoder 150
5.18. Impact of buffers and VCs on area, frequency and power 152
5.19. Control network extension . 158
5.20. Head flit of control network . 158
5.21. Structure of hybrid router . 160
5.22. Circuit switching example . 161
5.23. Circuit switching control unit . 162
5.24. Throughput of hybrid NoC . 163

332

I

List of Figures

5.25. Monitoring extension . 165
5.26. Memory communication example 169
5.27. Port utilization example . 170
5.28. Structure of normal and HBW router 171
5.29. HBW router performance evaluation 174

6.1. Scheduling comparison . 179
6.2. GS communication scenario . 185
6.3. Single-core and multi-core tiles . 188
6.4. Extended mapping flow . 189
6.5. Mapping phases . 190
6.6. Router with WRR support . 193
6.7. Weighted round-robin scheduling extension 194
6.8. Performance analysis of single GS connections 198
6.9. Performance of video applications using different SLs 200
6.10. Parallel matrix multiplication with GS on FPGA prototype 201
6.11. Implementation overhead of the QoS concept 203
6.12. Policy configuration examples . 206
6.13. Policy reconfiguration and application mapping 207
6.14. Resource management unit . 209
6.15. MPEG application . 212
6.16. Virtual network packet assignment 213
6.17. Virtual network region example . 214
6.18. Virtual network management . 216
6.19. Header extension for VN support . 217
6.20. Virtual network management unit 218
6.21. Delay and throughput of single data transmission in VN 220
6.22. Delay and throughput of uniform random traffic in VN 221
6.23. Packet latency and throughput using virtual networks 223

7.1. Rerouting situation . 229
7.2. Rerouting procedure . 230
7.3. Rerouting in-order arrival . 232
7.4. Rerouting evaluation - transpose GS connections 237
7.5. Rerouting evaluation - video processing applications 239
7.6. General GS replacement concept . 244

333

I

List of Figures

7.7. Auto-GS concept . 246
7.8. Evaluation of connection replacement 247
7.9. Auto-GS concept evaluation results 249
7.10. Data collection region . 253
7.11. Data collection types . 254
7.12. Round-trip packet . 255
7.13. Deadlock situations for Hamilton path routing 256
7.14. Router with round-trip data collection support 259
7.15. Adaptive Hamilton Routing protocol extension 259
7.16. Latency and bandwidth utilization for data collection 264
7.17. Router power consumption . 268
7.18. GS connection freezing . 271
7.19. Power management unit integration 272
7.20. Power and delay analysis . 275

8.1. Error detection and localization flow 283
8.2. Linear flooding . 284
8.3. Detailed analysis flow . 285
8.4. Test packet transmission . 286
8.5. Netlist manipulation for fault insertion 288
8.6. Evaluation of error localization . 289
8.7. Second layer network . 291
8.8. Ring bus data flow . 293
8.9. Large ring bus for energy saving . 295
8.10. Second layer network switch . 296
8.11. Ring bus addressing scheme . 298
8.12. Configuration scheme of the second layer network 299
8.13. Network performance with established ring bus 302
8.14. Area overhead of the second layer network 303

A.1. FPGA-based architecture prototype 313
A.2. Scalable FPGA prototyping scheme 316

334

I

List of Tables

2.1. Classification of routing schemes. 49

4.1. Comparison of existing NoC architectures 94

5.1. Network layer protocol fields . 113
5.2. Pipeline stages of the router . 114
5.3. Application task graphs . 137
5.4. Comparison of liteNoC and Hermes router implementation 154
5.5. Comparison of liteNoC and LiPaR router implementation 155
5.6. Comparison of proposed router and Intel’s SCC router 156
5.7. Monitoring implementation overhead 166

6.1. Virtual network ASIC synthesis results 224

7.1. Rerouting implementation synthesis results 240
7.2. Data collection evaluation summary 265
7.3. Hamilton routing implementation overhead 266
7.4. Throughput of power management configurations 274
7.5. Power management synthesis . 277

8.1. Run-time for fault localization . 289
8.2. Power consumption of second layer network 304

A.1. NoC parameter settings of FPGA prototype 314
A.2. Settings of tile-internal components of FPGA prototype 314
A.3. Memory map of InvasIC architecture 319
A.4. List of monitoring registers . 321
A.5. List of debug registers . 322
A.6. List of resource management policy registers 322
A.7. List of additional registers . 322

335

I

List of Tables

A.8. Parameters of the NoC simulation model - Part I 323
A.9. Parameters of the NoC simulation model - Part II 324
A.10.Parameters of the simulation framework’s traffic generator - Part I . 325
A.11.Parameters of the simulation framework’s traffic generator - Part II 326
A.12.Parameters of the simulation framework’s statistics module - Part I 326
A.13.HDL template configuration options - basic router 327
A.14.HDL template configuration options - monitoring and debugging . 328
A.15.HDL template configuration options - other features 329

336

I

Abbreviations

AHB advanced high-performance bus

AHR adaptive Hamilton routing

AMBA advanced microcontroller bus architecture

APB advanced peripheral bus

ARM advanced RISC machines

ASB advanced system bus

ASIC application-specific integrated circuit

ASP advance peripheral bus

ATD asynchronous time division

BE best-effort

BIST built-in self-test

BU buffer utilization

CiC core ilet controllers

CISC complex instruction set computer

CMOS complementary metal oxide semiconductor

CMP chip multiprocessor

CPU central processing unit

CRE communication related energy

CS circuit switching

CSV comma-separated values

DDR double data rate

DEMUX demultiplexer

DFT discrete Fourier transform

DMA direct memory access

337

I

Abbreviations

DSE design space exploration

DSM distributed shared memory

DSU debug support unit

DVFS dynamic voltage and frequency scaling

DVI digital visual interface

ECC error-correcting code

EPIC explicitly parallel instruction computing

EVC express virtual channel

FEC forward error correction

FI frequency island

FIFO first in - first out

flit flow control digit

FPGA field programmable gate array

FPU floating-point unit

FSM finite state machine

GPU graphics processing unit

GS guaranteed service

GT guaranteed throughput

HDL hardware description language

HLS high-level synthesis

HPC high-performance computing

HRE heterogeneous reconfigurable engine

IET independent execution time

i-NA invasive network adapter

i-NoC invasive network on chip

I/O input/output

IDN input/output dynamic network

IP intellectual property

IRA input reservation arbitration

338

I

iRTSS invasive run-time support system

ISA instruction set architecture

ITRS International Technology Roadmap for Semiconductors

JTAG joint test action group

LAN local area network

LU link utilization

LUT look up table

MC memory controller

MDN memory dynamic network

MPB message passing buffer

MPI message passing interface

MPPA multi-purpose processor architecture

MPSoC multiprocessor system on a chip

MPU message passing unit

NA network adapter

NI network interface

NoC network on chip

NUMA non-uniform memory access

OPRA output port reservation arbitration

ORT output reservation table

OS operating system

PAR place and route

PCB printed circuit board

PCI peripheral component interconnect

PE processing element

PGAS partitioned global address space

PIO programmed input/output

PMU power management unit

339

I

Abbreviations

PS packet switching

QoS quality of service

RAM random-access memory

RaR request-and-response

RB ring bus

RE resource element

RGMII reduced gigabit media independent interface

RISC reduced instruction set computer

RMP resource management policy

RMU resource management unit

RR round-robin

RSR reservation success rate

RT round-trip

RTP round-trip packet

SAF store and forward

SCC Single-chip Cloud Computer

SDM spatial division multiplexing

SER soft error rate

SET single event transient

SEU single event upsets

SL service level

SLN second layer network

SMU shared memory unit

SoC system on a chip

SPMD single program, multiple data

SRAM static random-access memory

SSRAM synchronous static random access memory

STN static network

TC transmission control

340

I

TCPA Tightly-Coupled Processor Array

TDM time division multiplexing

TDMA time division multiple access

TDN tile dynamic network

TGFF task graphs for free

TLM tile local memory

TMR triple modular redundancy

TS time slot

TSV through-silicon via

UART universal asynchronous receiver transmitter

UDN user dynamic network

UMR Universal Multi-Resource

UPF unified power format

USB universal serial bus

VC virtual channel

VCD value change dump

VCI virtual component interface

VCT virtual cut through

VCU virtual channel utilization

VFI voltage-frequency islands

VI voltage island

VLIW very long instruction word

VLSI very-large-scale integration

VN virtual network

VNCU virtual network control unit

VNMU virtual network management unit

WC worst case

WRR weighted round-robin

XAUI 10 gigabit media independent interface

341

I

I

Bibliography

[1] ADRIAHANTENAINA, A., H. CHARLERY, A. GREINER, L. MORTIEZ and
C. ZEFERINO: SPIN: a scalable, packet switched, on-chip micro-network. In
Design, Automation and Test in Europe Conference and Exhibition, 2003, pp.
70–73 suppl., 2003.

[2] AGARWAL, A., S. AMARASINGHE, R. BARUA, M. FRANK, W. LEE,
V. SARKAR, D. SRIKRISHNA and M. TAYLOR: The RAW compiler project.
In Proceedings of the Second SUIF Compiler Workshop, pp. 21–23, 1997.

[3] AGARWAL, A., C. ISKANDER and R. SHANKAR: Survey of network on chip
(NoC) architectures & contributions. Journal of Engineering, Computing and
Architecture, 3(1):21–27, 2009.

[4] AGARWAL, K., K. NOWKA, H. DEOGUN and D. SYLVESTER: Power Gating
with Multiple Sleep Modes. In Proceedings of the 7th International Symposium
on Quality Electronic Design, ISQED ’06, pp. 633–637, Washington, DC, USA,
2006. IEEE Computer Society.

[5] AHN, M. and E. J. KIM: Pseudo-Circuit: Accelerating Communication for On-
Chip Interconnection Networks. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 399–408, 2010.

[6] AL-BABTAIN, B. M., F. J. AL-KANDERI, M. F. AL-FAHAD and I. AHMAD: A
SURVEY ON AMDAHL’S LAW EXTENSION IN MULTICORE ARCHITEC-
TURES. International Journal of New Computer Architectures and their
Applications (IJNCAA), 3(3):30–46, 2013.

[7] AL FARUQUE, M., R. KRIST and J. HENKEL: ADAM: Run-time agent-based
distributed application mapping for on-chip communication. In 45th ACM/IEEE
Design Automation Conference, 2008. DAC 2008, pp. 760–765, June 2008.

[8] ALCEU CARARA, E. and F. MORAES: Deadlock-Free Multicast Routing Algo-
rithm for Wormhole-Switched Mesh Networks-on-Chip. In Symposium on VLSI,
2008. ISVLSI ’08. IEEE Computer Society Annual, pp. 341–346, Apr. 2008.

[9] ALI, M., M. WELZL and S. HESSLER: A Fault tolerant mechanism for handling
Permanent and Transient Failures in a Network on Chip. In Fourth International
Conference on Information Technology, 2007. ITNG ’07, pp. 1027–1032, Apr.
2007.

343

I

Bibliography

[10] AMDAHL, G. M.: Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pp. 483–485, New York, NY,
USA, 1967. ACM.

[11] ANDERS, M., H. KAUL, M. HANSSON, R. KRISHNAMURTHY and
S. BORKAR: A 2.9Tb/s 8W 64-core circuit-switched network-on-chip in 45nm
CMOS. In Solid-State Circuits Conference, 2008. ESSCIRC 2008. 34th European,
pp. 182–185, 2008.

[12] ANJAN, K. V. and T. M. PINKSTON: An Efficient, Fully Adaptive Deadlock
Recovery Scheme: DISHA. In Proceedings of the 22Nd Annual International
Symposium on Computer Architecture, ISCA ’95, pp. 201–210, New York, NY,
USA, 1995. ACM.

[13] ARCHIBALD, J. and J.-L. BAER: Cache Coherence Protocols: Evaluation Using
a Multiprocessor Simulation Model. ACM Trans. Comput. Syst., 4(4):273–298,
Sept. 1986.

[14] ASANOVIC, K., R. BODIK, B. C. CATANZARO, J. J. GEBIS, P. HUS-
BANDS, K. KEUTZER, D. A. PATTERSON, W. L. PLISHKER, J. SHALF, S. W.
WILLIAMS et al.: The landscape of parallel computing research: A view from Berke-
ley. Techn. Rep., Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, 2006.

[15] ASCIA, G., V. CATANIA, M. PALESI and D. PATTI: Implementation and
Analysis of a New Selection Strategy for Adaptive Routing in Networks-on-Chip.
IEEE Transactions on Computers, 57(6):809–820, June 2008.

[16] BAILEY, D. H., E. BARSZCZ, J. T. BARTON, D. S. BROWNING, R. L. CARTER,
L. DAGUM, R. A. FATOOHI, P. O. FREDERICKSON, T. A. LASINSKI, R. S.
SCHREIBER, H. D. SIMON, V. VENKATAKRISHNAN and S. K. WEERATUNGA:
The Nas Parallel Benchmarks. International Journal of High Performance
Computing Applications, 5(3):63–73, Sept. 1991.

[17] BARNEY, B.: Introduction to parallel computing. https://computing.llnl.gov/
tutorials/parallel_comp/, 2014. Accessed: 2014-02-06.

[18] BELL, S., B. EDWARDS, J. AMANN, R. CONLIN, K. JOYCE, V. LEUNG,
J. MACKAY, M. REIF, L. BAO, J. BROWN, M. MATTINA, C.-C. MIAO,
C. RAMEY, D. WENTZLAFF, W. ANDERSON, E. BERGER, N. FAIRBANKS,
D. KHAN, F. MONTENEGRO, J. STICKNEY and J. ZOOK: TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect. In Solid-State Circuits Conference, 2008.
ISSCC 2008. Digest of Technical Papers. IEEE International, pp. 88–598, Feb.
2008.

[19] BENINI, L. and G. DE MICHELI: Networks on chips: a new SoC paradigm.
Computer, 35(1):70–78, Jan. 2002.

344

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

I

Bibliography

[20] BENINI, L. and G. DE MICHELI: Networks on chips: a new SoC paradigm.
Computer, 35(1):70–78, 2002.

[21] BERTOZZI, D. and L. BENINI: Xpipes: a network-on-chip architecture for gi-
gascale systems-on-chip. IEEE Circuits and Systems Magazine, 4(2):18–31,
2004.

[22] BERTOZZI, D., A. JALABERT, S. MURALI, R. TAMHANKAR, S. STERGIOU,
L. BENINI and G. DE MICHELI: NoC synthesis flow for customized domain
specific multiprocessor systems-on-chip. IEEE Transactions on Parallel and
Distributed Systems, 16(2):113–129, Feb. 2005.

[23] BJERREGAARD, T. and S. MAHADEVAN: A Survey of Research and Practices of
Network-on-chip. ACM Comput. Surv., 38(1), June 2006.

[24] BJERREGAARD, T. and J. SPARSO: Virtual channel designs for guaranteeing
bandwidth in asynchronous network-on-chip. In Norchip Conference, 2004. Pro-
ceedings, pp. 269–272, Nov. 2004.

[25] BJERREGAARD, T. and J. SPARSO: A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip. In Design, Au-
tomation and Test in Europe, 2005. Proceedings, pp. 1226–1231 Vol. 2, Mar.
2005.

[26] BJERREGAARD, T. and J. SPARSO: Implementation of guaranteed services in the
MANGO clockless network-on-chip. Computers and Digital Techniques, IEE
Proceedings -, 153(4):217–229, July 2006.

[27] BJERREGAARD, T. and J. SPARSOE: Scheduling discipline for latency and band-
width guarantees in asynchronous network-on-chip. In 11th IEEE International
Symposium on Asynchronous Circuits and Systems, 2005. ASYNC 2005. Proceed-
ings, pp. 34–43, Mar. 2005.

[28] BOBDA, C., A. AHMADINIA, M. MAJER, J. TEICH, S. FEKETE and J. VAN DER
VEEN: DyNoC: A dynamic infrastructure for communication in dynamically
reconfugurable devices. In International Conference on Field Programmable Logic
and Applications, 2005, pp. 153–158, Aug. 2005.

[29] BOLOTIN, E., I. CIDON, R. GINOSAR and A. KOLODNY: QNoC: QoS archi-
tecture and design process for network on chip. Journal of Systems Architecture,
50(2-3):105–128, Feb. 2004.

[30] BORKAR, S.: Design challenges of technology scaling. IEEE Micro, 19(4):23–29,
July 1999.

[31] BORKAR, S.: Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. IEEE Micro, 25(6):10–16, Nov.
2005.

[32] BORKAR, S.: Thousand Core Chips: A Technology Perspective. In Proceedings of

345

I

Bibliography

the 44th Annual Design Automation Conference, DAC ’07, pp. 746–749, New
York, NY, USA, 2007. ACM.

[33] BORKAR, S.: Thousand Core Chips: A Technology Perspective. In Proceedings of
the 44th Annual Design Automation Conference, DAC ’07, pp. 746–749, New
York, NY, USA, 2007. ACM.

[34] BOURA, Y. M. and C. DAS: Efficient fully adaptive wormhole routing in n-
dimensional meshes. In , Proceedings of the 14th International Conference on
Distributed Computing Systems, 1994, pp. 589–596, June 1994.

[35] BOURGADE, R., C. ROCHANGE, M. DE MICHIEL and P. SAINRAT: MBBA: A
Multi-Bandwidth Bus Arbiter for Hard Real-Time. In Embedded and Multimedia
Computing (EMC), 2010 5th International Conference on, pp. 1–7, 2010.

[36] BRAUN, M., S. BUCHWALD, M. MOHR and A. ZWINKAU: An X10 Compiler
for Invasive Architectures. Techn. Rep. 9, Karlsruhe Institute of Technology,
2012.

[37] BULL, C.: Erweiterung der Kahrisma Architektur um Network-on-Chip Kommu-
nikation mit architektur-spezifischen Optimierungen. Diploma thesis ID-1802,
Karlsruhe Institute for Technology, Institut für Technik der Informationsver-
arbeitung (ITIV), 2014.

[38] BUNGARTZ, H.-J., C. RIESINGER, M. SCHREIBER, G. SNELTING and
A. ZWINKAU: Invasive Computing in HPC with X10. In Proceedings of the
Third ACM SIGPLAN X10 Workshop, X10 ’13, pp. 12–19, New York, NY, USA,
2013. ACM.

[39] CARARA, E., R. DE OLIVEIRA, N. L. V. CALAZANS and F. MORAES: HeMPS -
a framework for NoC-based MPSoC generation. In IEEE International Symposium
on Circuits and Systems, 2009. ISCAS 2009, pp. 1345–1348, May 2009.

[40] CARROLL, A. and G. HEISER: An Analysis of Power Consumption in a Smart-
phone. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pp. 21–21, Berkeley, CA, USA, 2010.
USENIX Association.

[41] CARVALHO, E. and F. MORAES: Congestion-aware task mapping in heteroge-
neous MPSoCs. In International Symposium on System-on-Chip, 2008. SOC
2008, pp. 1–4, Nov. 2008.

[42] CHANDRAKASAN, A., S. SHENG and R. BRODERSEN: Low-power CMOS
digital design. IEEE Journal of Solid-State Circuits, 27(4):473–484, Apr. 1992.

[43] CHANG, X.: Network Simulations with OPNET. In Proceedings of the 31st
Conference on Winter Simulation: Simulation—a Bridge to the Future - Volume 1,
WSC ’99, pp. 307–314, New York, NY, USA, 1999. ACM.

[44] CHARLES, P., C. GROTHOFF, V. SARASWAT, C. DONAWA, A. KIELSTRA,

346

I

Bibliography

K. EBCIOGLU, C. VON PRAUN and V. SARKAR: X10: An Object-oriented
Approach to Non-uniform Cluster Computing. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’05, pp. 519–538, New York, NY, USA,
2005. ACM.

[45] CHIANG, C.-M. and L. M. NI: Multi-address Encoding for Multicast. In
Proceedings of the First International Workshop on Parallel Computer Routing and
Communication, PCRCW ’94, pp. 146–160, London, UK, UK, 1994. Springer-
Verlag.

[46] CHIU, G.-M.: The odd-even turn model for adaptive routing. Parallel and
Distributed Systems, IEEE Transactions on, 11(7):729–738, 2000.

[47] CONSTANTINESCU, C.: Trends and challenges in VLSI circuit reliability. IEEE
Micro, 23(4):14–19, July 2003.

[48] CONSTANTINIDES, K., S. PLAZA, J. BLOME, B. ZHANG, V. BERTACCO,
S. MAHLKE, T. AUSTIN and M. ORSHANSKY: BulletProof: a defect-tolerant
CMP switch architecture. In The Twelfth International Symposium on High-
Performance Computer Architecture, 2006, pp. 5–16, Feb. 2006.

[49] COPPOLA, M., S. CURABA, M. D. GRAMMATIKAKIS, G. MARUCCIA and
F. PAPARIELLO: OCCN: A Network-On-Chip Modeling and Simulation Frame-
work. In Proceedings of the Conference on Design, Automation and Test in Europe
- Volume 3, DATE ’04, pp. 174–179 Vol.3, Washington, DC, USA, 2004. IEEE
Computer Society.

[50] COPPOLA, M., R. LOCATELLI, G. MARUCCIA, L. PIERALISI and A. SCAN-
DURRA: Spidergon: a novel on-chip communication network. In 2004 Interna-
tional Symposium on System-on-Chip, 2004. Proceedings, Nov. 2004.

[51] CORPORATION, S. P. E.: SPEC CPU2000.

[52] COTA, E., F. KASTENSMIDT, M. CASSEL, M. HERVE, P. ALMEIDA,
P. MEIRELLES, A. AMORY and M. LUBASZEWSKI: A High-Fault-Coverage
Approach for the Test of Data, Control and Handshake Interconnects in Mesh
Networks-on-Chip. IEEE Transactions on Computers, 57(9):1202–1215, Sept.
2008.

[53] CRAMER, T., D. SCHMIDL, M. KLEMM and D. AN MEY: OpenMP Program-
ming on Intel R Xeon Phi TM Coprocessors: An Early Performance Comparison,
2012.

[54] CUVIELLO, M., S. DEY, X. BAI and Y. ZHAO: Fault Modeling and Simula-
tion for Crosstalk in System-on-chip Interconnects. In Proceedings of the 1999
IEEE/ACM International Conference on Computer-aided Design, ICCAD ’99, pp.
297–303, Piscataway, NJ, USA, 1999. IEEE Press.

[55] CYR, G., G. BOIS and M. ABOULHAMID: Generation of processor interface

347

I

Bibliography

for SoC using standard communication protocol. Computers and Digital Tech-
niques, IEE Proceedings -, 151(5):367–376, Sept. 2004.

[56] DAGUM, L. and R. MENON: OpenMP: an industry standard API for shared-
memory programming. Computational Science Engineering, IEEE, 5(1):46–55,
Jan 1998.

[57] DALL’OSSO, M., G. BICCARI, L. GIOVANNINI, D. BERTOZZI and L. BENINI:
Xpipes: A latency insensitive parameterized network-on-chip architecture for multi-
processor SoCs. In 2012 IEEE 30th International Conference on Computer Design
(ICCD), pp. 45–48, Sept. 2012.

[58] DALLY, W.: Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems, 3(2):194–205, Mar. 1992.

[59] DALLY, W. and H. AOKI: Deadlock-free adaptive routing in multicomputer
networks using virtual channels. IEEE Transactions on Parallel and Distributed
Systems, 4(4):466–475, Apr. 1993.

[60] DALLY, W. and C. SEITZ: Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Transactions on Computers, C-36(5):547–553,
May 1987.

[61] DALLY, W. and B. TOWLES: Route packets, not wires: on-chip interconnection
networks. In Design Automation Conference, 2001. Proceedings, pp. 684–689,
2001.

[62] DICK, R. P., D. L. RHODES and W. WOLF: TGFF: Task Graphs for Free. In
Proceedings of the 6th International Workshop on Hardware/Software Codesign,
CODES/CASHE ’98, pp. 97–101, Washington, DC, USA, 1998. IEEE Com-
puter Society.

[63] DINECHIN, B. D. D., P. G. D. MASSAS, G. LAGER, C. LEGER, B. ORGOGOZO,
J. REYBERT and T. STRUDEL: A Distributed Run-Time Environment for the
Kalray MPPAÂ®-256 Integrated Manycore Processor. Procedia Computer
Science, 18:1654–1663, 2013.

[64] DORSEY, P.: Xilinx stacked silicon interconnect technology delivers breakthrough
fpga capacity, bandwidth, and power efficiency. Xilinx White Paper: Virtex-7
FPGAs, pp. 1–10, 2010.

[65] DUATO, J.: A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Transactions on Parallel and Distributed Systems, 4(12):1320–1331,
Dec. 1993.

[66] EBI, T., M. FARUQUE and J. HENKEL: TAPE: Thermal-aware agent-based power
econom multi/many-core architectures. In IEEE/ACM International Conference
on Computer-Aided Design - Digest of Technical Papers, 2009. ICCAD 2009, pp.
302–309, Nov. 2009.

348

I

Bibliography

[67] EBRAHIMI, M., M. DANESHTALAB, P. LILJEBERG, J. PLOSILA and H. TEN-
HUNEN: A High-Performance Network Interface Architecture for NoCs Using
Reorder Buffer Sharing. In 2010 18th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), pp. 546–550, Feb.
2010.

[68] EL-GHAZAWI, T., E. EL-ARABY, M. HUANG, K. GAJ, V. KINDRATENKO
and D. BUELL: The promise of high-performance reconfigurable computing. IEEE
Computer, 41(2):69–76, 2008.

[69] FARUQUE, M. A. A., T. EBI and J. HENKEL: Run-time adaptive on-chip
communication scheme. In Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design, pp. 26–31, San Jose, California, 2007.
IEEE Press.

[70] FARUQUE, M. A. A., T. EBI and J. HENKEL: ROAdNoC: runtime observ-
ability for an adaptive network on chip architecture. In Proceedings of the 2008
IEEE/ACM International Conference on Computer-Aided Design, pp. 543–548,
San Jose, California, 2008. IEEE Press.

[71] FAZZINO, F., M. PALESI and D. PATTI: Noxim: Network-on-chip simulator.
URL: http://sourceforge. net/projects/noxim, 2008.

[72] FEERO, B. and P. PANDE: Networks-on-Chip in a Three-Dimensional Environ-
ment: A Performance Evaluation. IEEE Transactions on Computers, 58(1):32–
45, Jan. 2009.

[73] FEIGE, U. and P. RAGHAVAN: Exact analysis of hot-potato routing. In Founda-
tions of Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pp.
553–562, Oct 1992.

[74] FELPERIN, S. A., L. GRAVANO, G. D. PIFARRÉ and J. L. C. SANZ: Fully-
adaptive Routing: Packet Switching Performance and Wormhole Algorithms. In
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Supercom-
puting ’91, pp. 654–663, New York, NY, USA, 1991. ACM.

[75] FENG, C., Z. LU, A. JANTSCH, J. LI and M. ZHANG: A Reconfigurable
Fault-tolerant Deflection Routing Algorithm Based on Reinforcement Learning for
Network-on-chip. In Proceedings of the Third International Workshop on Network
on Chip Architectures, NoCArc ’10, pp. 11–16, New York, NY, USA, 2010.
ACM.

[76] FICK, D., A. DEORIO, G. CHEN, V. BERTACCO, D. SYLVESTER and
D. BLAAUW: A Highly Resilient Routing Algorithm for Fault-tolerant NoCs. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’09, pp. 21–26, 3001 Leuven, Belgium, Belgium, 2009. European Design and
Automation Association.

[77] FISHER, J. A.: Very Long Instruction Word Architectures and the ELI-512. In Pro-

349

I

Bibliography

ceedings of the 10th Annual International Symposium on Computer Architecture,
ISCA ’83, pp. 140–150, New York, NY, USA, 1983. ACM.

[78] FLEURY, E. and P. FRAIGNIAUD: A general theory for deadlock avoidance in
wormhole-routed networks. IEEE Transactions on Parallel and Distributed
Systems, 9(7):626–638, July 1998.

[79] FLYNN, D.: AMBA: enabling reusable on-chip designs. IEEE Micro, 17(4):20–27,
July 1997.

[80] FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG, KARL-
SRUHE INSTITUTE OF TECHNOLOGY and TECHNICAL UNIVERSITY MU-
NICH: Transregional Collaborative Research Centre 89 - Funding Proposal 2014/2-
2018/1, 2014.

[81] FULGHAM, M. L. and L. SNYDER: Performance of Chaos and Oblivious Routers
Under Non-uniform Traffic. Techn. Rep., University of Washington, 1993.

[82] FURBER, S. B.: ARM System-on-chip Architecture. Pearson Education, 2000.

[83] GAIESLER, J.: The LEON Processor User’s Manual, July 2001.

[84] GAISLER, J.: A portable and fault-tolerant microprocessor based on the SPARC v8
architecture. In International Conference on Dependable Systems and Networks,
2002. DSN 2002. Proceedings, pp. 409–415, 2002.

[85] GAISLER, J., E. CATOVIC, M. ISOMAKI, K. GLEMBO and S. HABINC: GRLIB
IP core user’s manual. Gaisler research, 2007.

[86] GANGULY, A., K. CHANG, S. DEB, P. PANDE, B. BELZER and C. TEUSCHER:
Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore Systems.
IEEE Transactions on Computers, 60(10):1485–1502, Oct. 2011.

[87] GANGWAL, O. P., A. RADULESCU, K. GOOSSENS, S. G. PESTANA and
E. RIJPKEMA: Building Predictable Systems on Chip: An Analysis of Guaranteed
Communication in the Aethereal Network on Chip. In STOK, P. V. D. (ed.):
Dynamic and Robust Streaming in and between Connected Consumer-Electronic
Devices, no. 3 in Philips Research, pp. 1–36. Springer Netherlands, Jan. 2005.

[88] GAO, X., J. J. LIOU, W. WONG and S. VISHWANATHAN: An improved
electrostatic discharge protection structure for reducing triggering voltage and
parasitic capacitance. Solid-State Electronics, 47(6):1105–1110, June 2003.

[89] GERLA, M. and L. KLEINROCK: Flow Control: A Comparative Survey. IEEE
Transactions on Communications, 28(4):553–574, Apr. 1980.

[90] GLASS, C. J. and L. M. NI: The Turn Model for Adaptive Routing. In Pro-
ceedings of the 19th Annual International Symposium on Computer Architecture,
ISCA ’92, pp. 278–287, New York, NY, USA, 1992. ACM.

[91] GOCHMAN, S., A. MENDELSON, A. NAVEH and E. ROTEM: Introduction to
Intel Core Duo Processor Architecture. Intel Technology Journal, 2006.

350

I

Bibliography

[92] GOOSSENS, K., J. DIELISSEN and A. RADULESCU: AEthereal network on chip:
concepts, architectures, and implementations. IEEE Design Test of Computers,
22(5):414–421, Sept. 2005.

[93] GOOSSENS, K. and A. HANSSON: The aethereal network on chip after ten
years: Goals, evolution, lessons, and future. In 2010 47th ACM/IEEE Design
Automation Conference (DAC), pp. 306–311, June 2010.

[94] GRATZ, P., B. GROT and S. KECKLER: Regional congestion awareness for load
balance in networks-on-chip. In IEEE 14th International Symposium on High
Performance Computer Architecture, 2008. HPCA 2008, pp. 203–214, Feb. 2008.

[95] GROT, B., J. HESTNESS, S. KECKLER and O. MUTLU: Express Cube Topologies
for on-Chip Interconnects. In IEEE 15th International Symposium on High
Performance Computer Architecture, 2009. HPCA 2009, pp. 163–174, Feb. 2009.

[96] GROT, B., J. HESTNESS, S. KECKLER and O. MUTLU: A QoS-Enabled On-Die
Interconnect Fabric for Kilo-Node Chips. IEEE Micro, 32(3):17–25, May 2012.

[97] GROT, B., J. HESTNESS, S. W. KECKLER and O. MUTLU: Kilo-NOC: A
Heterogeneous Network-on-chip Architecture for Scalability and Service Guaran-
tees. In Proceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, pp. 401–412, New York, NY, USA, 2011. ACM.

[98] GROT, B., J. HESTNESS, S. W. KECKLER and O. MUTLU: Kilo-NOC: a
heterogeneous network-on-chip architecture for scalability and service guarantees.
SIGARCH Comput. Archit. News, 39(3):401–412, June 2011.

[99] GROT, B., S. W. KECKLER and O. MUTLU: Preemptive virtual clock: a flexible,
efficient, and cost-effective QOS scheme for networks-on-chip. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, pp. 268–279, New York, NY, USA, 2009. ACM.

[100] GROVE, D., O. TARDIEU, D. CUNNINGHAM, B. HERTA, I. PESHANSKY and
V. SARASWAT: A Performance Model for X10 Applications: What’s Going on
Under the Hood?. In Proceedings of the 2011 ACM SIGPLAN X10 Workshop,
X10 ’11, pp. 1:1–1:8, New York, NY, USA, 2011. ACM.

[101] GUERRIER, P. and A. GREINER: A Generic Architecture for On-chip Packet-
switched Interconnections. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE ’00, pp. 250–256, New York, NY, USA, 2000.
ACM.

[102] HACK, S., D. GRUND and G. GOOS: Register Allocation for Programs in
SSA-Form. In MYCROFT, A. and A. ZELLER (eds.): Compiler Construction,
no. 3923 in Lecture Notes in Computer Science, pp. 247–262. Springer Berlin
Heidelberg, Jan. 2006.

[103] HANDY, J.: The Cache Memory Book. Morgan Kaufmann, Jan. 1998.

351

I

Bibliography

[104] HANNIG, F., S. ROLOFF, G. SNELTING, J. TEICH and A. ZWINKAU: Resource-
aware Programming and Simulation of MPSoC Architectures Through Extension
of X10. In Proceedings of the 14th International Workshop on Software and
Compilers for Embedded Systems, SCOPES ’11, pp. 48–55, New York, NY, USA,
2011. ACM.

[105] HENKEL, J., L. BAUER, J. BECKER, O. BRINGMANN, U. BRINKSCHULTE,
S. CHAKRABORTY, M. ENGEL, R. ERNST, H. HARTIG, L. HEDRICH,
A. HERKERSDORF, R. KAPITZA, D. LOHMANN, P. MARWEDEL,
M. PLATZNER, W. ROSENSTIEL, U. SCHLICHTMANN, O. SPINCZYK,
M. TAHOORI, J. TEICH, N. WHEN and H. WUNDERLICH: Design and ar-
chitectures for dependable embedded systems. In 2011 Proceedings of the 9th
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 69–78, 2011.

[106] HENKEL, J., L. BAUER, M. HÜBNER and A. GRUDNITSKY: i-Core: A run-
time adaptive processor for embedded multi-core systems. Proceedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA), 2011.

[107] HENKEL, J., W. WOLF and S. CHAKRADHAR: On-chip networks: a scalable,
communication-centric embedded system design paradigm. In 17th International
Conference on VLSI Design, 2004. Proceedings, pp. 845–851, 2004.

[108] HENNESSY, J. L., D. A. PATTERSON and K. ASANOVIC: Computer architec-
ture: a quantitative approach. Elsevier ; Morgan Kaufmann, Amsterdam [etc.];
Waltham (MA), Fourth edition ed., 2007.

[109] HILL, M. and M. MARTY: Amdahl’s Law in the Multicore Era. Computer,
41(7):33–38, July 2008.

[110] HO, A., S. SMITH and S. HAND: On deadlock, livelock, and forward progress.
Technical Report, University of Cambridge, Computer Laboratory (May
2005), 2005.

[111] HO, R., K. W. MAI, S. MEMBER and M. A. HOROWITZ: The Future of Wires.
In Proceedings of the IEEE, pp. 490–504, 2001.

[112] HOWARD, J., S. DIGHE, Y. HOSKOTE, S. VANGAL, D. FINAN, G. RUHL,
D. JENKINS, H. WILSON, N. BORKAR, G. SCHROM, F. PAILET, S. JAIN,
T. JACOB, S. YADA, S. MARELLA, P. SALIHUNDAM, V. ERRAGUNTLA,
M. KONOW, M. RIEPEN, G. DROEGE, J. LINDEMANN, M. GRIES, T. APEL,
K. HENRISS, T. LUND-LARSEN, S. STEIBL, S. BORKAR, V. DE, R. VAN DER
WIJNGAART and T. MATTSON: A 48-Core IA-32 message-passing processor with
DVFS in 45nm CMOS. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pp. 108–109, 2010.

[113] HOWARD, J., S. DIGHE, S. VANGAL, G. RUHL, N. BORKAR, S. JAIN, V. ER-

352

I

Bibliography

RAGUNTLA, M. KONOW, M. RIEPEN, M. GRIES, G. DROEGE, T. LUND-
LARSEN, S. STEIBL, S. BORKAR, V. DE and R. VAN DER WIJNGAART: A
48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and
DVFS for Performance and Power Scaling. IEEE Journal of Solid-State Circuits,
46(1):173–183, Jan. 2011.

[114] HOWARD, J., S. DIGHE, S. VANGAL, G. RUHL, N. BORKAR, S. JAIN, V. ER-
RAGUNTLA, M. KONOW, M. RIEPEN, M. GRIES, G. DROEGE, T. LUND-
LARSEN, S. STEIBL, S. BORKAR, V. DE and R. VAN DER WIJNGAART: A
48-Core IA-32 Processor in 45 nm CMOS Using On-Die Message-Passing and
DVFS for Performance and Power Scaling. IEEE Journal of Solid-State Circuits,
46(1):173–183, 2011.

[115] HU, J. and R. MARCULESCU: Energy-aware mapping for tile-based NoC archi-
tectures under performance constraints. In Design Automation Conference, 2003.
Proceedings of the ASP-DAC 2003. Asia and South Pacific, pp. 233–239, Jan.
2003.

[116] HU, J. and R. MARCULESCU: Exploiting the routing flexibility for energy/per-
formance aware mapping of regular NoC architectures. In Design, Automation
and Test in Europe Conference and Exhibition, 2003, pp. 688–693, 2003.

[117] HU, J. and R. MARCULESCU: DyAD: Smart Routing for Networks-on-chip. In
Proceedings of the 41st Annual Design Automation Conference, DAC ’04, pp.
260–263, New York, NY, USA, 2004. ACM.

[118] HU, J. and R. MARCULESCU: Energy- and performance-aware mapping for
regular NoC architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(4):551–562, Apr. 2005.

[119] HU, W., Z. LU, A. JANTSCH and H. LIU: Power-efficient tree-based multicast
support for Networks-on-Chip. In Design Automation Conference (ASP-DAC),
2011 16th Asia and South Pacific, pp. 363–368, Jan. 2011.

[120] ITRS: International Technology Roadmap for Semiconductors 2012 Update
Overview. http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf,
2012. Accessed: 2014-01-16.

[121] JAIN, L.: NIRGAM: A Simulator for NoC Interconnect Routing and Application
Modeling Version 1.1, 2007.

[122] JANTSCH, A. and H. TENHUNEN: Networks on chip. Springer, 2003.

[123] JERGER, N., L.-S. PEH and M. LIPASTI: Virtual Circuit Tree Multicasting: A
Case for On-Chip Hardware Multicast Support. In 35th International Symposium
on Computer Architecture, 2008. ISCA ’08, pp. 229–240, June 2008.

[124] JIAO, J., Y. FU, T. LIU, H. WANG, X. HAN and J. WANG: Performance analysis
and optimization for homogenous multi-core system based on 3D Torus Network
on Chip. In NEWCAS Conference (NEWCAS), 8th IEEE International, 2010.

353

http://www.itrs.net/Links/2012ITRS/2012Chapters/2012Overview.pdf

I

Bibliography

[125] KAHNG, A. B., B. LI, L.-S. PEH and K. SAMADI: ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-stage Design Space Exploration. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’09, pp. 423–428, 3001 Leuven, Belgium, Belgium, 2009. European Design
and Automation Association.

[126] KAKOEE, M. R., V. BERTACCO and L. BENINI: A Distributed and Topology-
agnostic Approach for On-line NoC Testing. In Proceedings of the Fifth ACM/IEEE
International Symposium on Networks-on-Chip, NOCS ’11, pp. 113–120, New
York, NY, USA, 2011. ACM.

[127] KALRAY: MPPA MANYCORE: a multicore processors family - Many-core pro-
cessors - KALRAY - Agile Performance, 2014.

[128] KATEVENIS, M., S. SIDIROPOULOS and C. COURCOUBETIS: Weighted round-
robin cell multiplexing in a general-purpose ATM switch chip. Selected Areas in
Communications, IEEE Journal on, 9(8):1265–1279, 1991.

[129] KAVALDJIEV, N., G. SMIT, P. JANSEN and P. WOLKOTTE: A virtual channel
network-on-chip for GT and BE traffic. In Emerging VLSI Technologies and
Architectures, 2006. IEEE Computer Society Annual Symposium on, p. 6, March
2006.

[130] KAVALDJIEV, N., G. J. M. SMIT and P. G. JANSEN: A virtual channel router
for on-chip networks. In Proceedings of IEEE International SOC Conference, pp.
289–293. Society Press, 2004.

[131] KEANE, J. and C. KIM: An odomoeter for CPUs. IEEE Spectrum, 48(5):28–33,
2011.

[132] KEATING, M. and P. BRICAUD: Reuse Methodology Manual for System-on-a-
Chip Designs: For System-on-a-chip Designs. Springer, Jan. 2002.

[133] KEATING, M., D. FLYNN, R. AITKEN, A. GIBBONS and K. SHI: Low Power
Methodology Manual: For System-on-Chip Design. Springer Publishing Com-
pany, Incorporated, 2007.

[134] KIM, J.: System on chip processor for multimedia devices, 2007. US Patent
7,171,050.

[135] KIM, J., C. NICOPOULOS, D. PARK, R. DAS, Y. XIE, V. NARAYANAN, M. S.
YOUSIF and C. R. DAS: A Novel Dimensionally-decomposed Router for On-
chip Communication in 3D Architectures. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, pp. 138–149,
New York, NY, USA, 2007. ACM.

[136] KIM, J. H., Z. LIU and A. A. CHIEN: Compressionless Routing: A Framework
for Adaptive and Fault-tolerant Routing. In Proceedings of the 21st Annual
International Symposium on Computer Architecture, ISCA ’94, pp. 289–300, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

354

I

Bibliography

[137] KIM, Y. B. and Y.-B. KIM: Fault Tolerant Source Routing for Network-on-chip.
In 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT ’07, pp. 12–20, Sept. 2007.

[138] KISSLER, D., F. HANNIG, A. KUPRIYANOV and J. TEICH: A highly parame-
terizable parallel processor array architecture. In IEEE International Conference
on Field Programmable Technology, 2006. FPT 2006, pp. 105–112, Dec. 2006.

[139] KNICKERBOCKER, J., P. ANDRY, B. DANG, R. R. HORTON, M. J. INTER-
RANTE, C. S. PATEL, R. POLASTRE, K. SAKUMA, R. SIRDESHMUKH, E. SPRO-
GIS, S. SRI-JAYANTHA, A. M. STEPHENS, A. TOPOL, C. K. TSANG, B. WEBB
and S. WRIGHT: Three-dimensional silicon integration. IBM Journal of Re-
search and Development, 52(6):553–569, Nov. 2008.

[140] KOBBE, S., L. BAUER, D. LOHMANN, W. SCHRÖDER-PREIKSCHAT and
J. HENKEL: DistRM: Distributed Resource Management for On-chip Many-core
Systems. In Proceedings of the Seventh IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, CODES+ISSS ’11, pp.
119–128, New York, NY, USA, 2011. ACM.

[141] KOENIG, R., L. BAUER, T. STRIPF, M. SHAFIQUE, W. AHMED, J. BECKER
and J. HENKEL: KAHRISMA: A Novel Hypermorphic Reconfigurable-
Instruction-Set Multi-grained-Array Architecture. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2010, pp. 819–824, Mar. 2010.

[142] KONGETIRA, P., K. AINGARAN and K. OLUKOTUN: Niagara: a 32-way
multithreaded Sparc processor. IEEE Micro, 25(2):21–29, Mar. 2005.

[143] KRISHNA, T., L.-S. PEH, B. M. BECKMANN and S. K. REINHARDT: To-
wards the Ideal On-chip Fabric for 1-to-many and Many-to-1 Communication. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-44, pp. 71–82, New York, NY, USA, 2011. ACM.

[144] KUMAR, A., L.-S. PEH, P. KUNDU and N. K. JHA: Express Virtual Channels:
Towards the Ideal Interconnection Fabric. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, pp. 150–161,
New York, NY, USA, 2007. ACM.

[145] KUMAR, S., A. JANTSCH, J.-P. SOININEN, M. FORSELL, M. MILLBERG,
J. OBERG, K. TIENSYRJA and A. HEMANI: A network on chip architecture and
design methodology. In IEEE Computer Society Annual Symposium on VLSI,
2002. Proceedings, pp. 105–112, 2002.

[146] KWON, W.-C., S. YOO, J. UM and S.-W. JEONG: In-network reorder buffer to
improve overall NoC performance while resolving the in-order requirement problem.
In Design, Automation Test in Europe Conference Exhibition, DATE ’09., 2009.

[147] LAJOLO, M., G. PALERMO and C. SILVANO: Low Power Networks-on-Chip.
Springer, 2011.

355

I

Bibliography

[148] LAN, Y.-C., H.-A. LIN, S.-H. LO, Y. H. HU and S.-J. CHEN: A Bidirec-
tional NoC (BiNoC) Architecture With Dynamic Self-Reconfigurable Channel.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-
tions on, 30(3):427–440, 2011.

[149] LANKES, A., T. WILD, S. WALLENTOWITZ and A. HERKERSDORF: Benefits
of Selective Packet Discard in Networks-on-chip. ACM Trans. Archit. Code
Optim., 9(2):12:1–12:21, June 2012.

[150] LARI, V., S. MUDDASANI, S. BOPPU, F. HANNIG, M. SCHMID and J. TEICH:
Hierarchical Power Management for Adaptive Tightly-coupled Processor Arrays.
ACM Trans. Des. Autom. Electron. Syst., 18(1):2:1–2:25, Jan. 2013.

[151] LARI, V., A. NAROVLYANSKYY, F. HANNIG and J. TEICH: Decentralized
dynamic resource management support for massively parallel processor arrays. In
2011 IEEE International Conference on Application-Specific Systems, Architec-
tures and Processors (ASAP), pp. 87–94, Sept. 2011.

[152] LEE, J. W., M. C. NG and K. ASANOVIC: Globally-Synchronized Frames
for Guaranteed Quality-of-Service in On-Chip Networks. SIGARCH Comput.
Archit. News, 36:89–100, June 2008.

[153] LEE, K., S.-J. LEE and H.-J. YOO: Low-power network-on-chip for high-
performance SoC design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(2):148–160, Feb. 2006.

[154] LEE, W. R. and R. A. BERGAMASCHI: Designing Systems-on-Chip using Cores.
In Design Automation Conference, vol. 0, pp. 420–425, Los Alamitos, CA, USA,
2000. IEEE Computer Society.

[155] LEI, T. and S. KUMAR: A two-step genetic algorithm for mapping task graphs
to a network on chip architecture. In Euromicro Symposium on Digital System
Design, 2003. Proceedings, pp. 180–187, Sept. 2003.

[156] LEISERSON, C.: Fat-trees: Universal networks for hardware-efficient supercom-
puting. IEEE Transactions on Computers, C-34(10):892–901, Oct. 1985.

[157] LEROY, A., P. MARCHAL, A. SHICKOVA, F. CATTHOOR, F. ROBERT and
D. VERKEST: Spatial Division Multiplexing: A Novel Approach for Guaranteed
Throughput on NoCs. In Proceedings of the 3rd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’05, pp. 81–86, New York, NY, USA, 2005. ACM.

[158] LEVEUGLE, R. and K. HADJIAT: Multi-Level Fault Injections in VHDL Descrip-
tions: Alternative Approaches and Experiments. J. Electron. Test., 19(5):559–575,
Oct. 2003.

[159] LI, B., L. ZHAO, R. IYER, L.-S. PEH, M. LEDDIGE, M. ESPIG, S. E. LEE and
D. NEWELL: CoQoS: Coordinating QoS-aware Shared Resources in NoC-based
SoCs. J. Parallel Distrib. Comput., 71(5):700–713, 2011.

356

I

Bibliography

[160] LIAO, T. G. S., G. MARTIN, S. SWAN and T. GRÖTKER: System design with
SystemC. Springer, 2002.

[161] LIN, X. and L. NI: Multicast communication in multicomputer networks. IEEE
Transactions on Parallel and Distributed Systems, 4(10):1105–1117, 1993.

[162] LINDHOLM, E., J. NICKOLLS, S. OBERMAN and J. MONTRYM: NVIDIA
Tesla: A unified graphics and computing architecture. IEEE micro, 28(2):39–55,
2008.

[163] LIS, M., K. S. SHIM, M. H. CHO, P. REN, O. KHAN and S. DEVADAS:
Darsim: A Parallel Cycle-Level NoC Simulator. MIT web domain, 2010.

[164] LIU, C., L. ZHANG, Y. HAN and X. LI: Vertical Interconnects Squeezing in
Symmetric 3D Mesh Network-on-chip. In Proceedings of the 16th Asia and South
Pacific Design Automation Conference, ASPDAC ’11, pp. 357–362, Piscataway,
NJ, USA, 2011. IEEE Press.

[165] LOI, I., S. MITRA, T. H. LEE, S. FUJITA and L. BENINI: A Low-overhead Fault
Tolerance Scheme for TSV-based 3D Network on Chip Links. In Proceedings of the
2008 IEEE/ACM International Conference on Computer-Aided Design, ICCAD
’08, pp. 598–602, Piscataway, NJ, USA, 2008. IEEE Press.

[166] LU, Z. and A. JANTSCH: TDM Virtual-Circuit Configuration for Network-on-
Chip. VLSI, 2008.

[167] LU, Z., R. THID, M. MILLBERG and A. JANTSCH: Nnse: Nostrum network-
on-chip simulation environment. In In Proc. of SSoCC, 2005.

[168] LU, Z., B. YIN and A. JANTSCH: Connection-oriented multicasting in wormhole-
switched networks on chip. In IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures, 2006, vol. 00, pp. 6 pp.–, Mar.
2006.

[169] MANFERDELLI, J., N. GOVINDARAJU and C. CRALL: Challenges and Oppor-
tunities in Many-Core Computing. Proceedings of the IEEE, 96(5):808–815,
2008.

[170] MARCULESCU, R., U. OGRAS, L.-S. PEH, N. JERGER and Y. HOSKOTE:
Outstanding Research Problems in NoC Design: System, Microarchitecture, and
Circuit Perspectives. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 28(1):3–21, Jan. 2009.

[171] MARESCAUX, T., B. BRICKE, P. DEBACKER, V. NOLLET and H. CORPORAAL:
Dynamic time-slot allocation for QoS enabled networks on chip. In Embedded
Systems for Real-Time Multimedia, 2005. 3rd Workshop on, pp. 47–52, 2005.

[172] MARTINEZ, J.-M., P. LOPEZ, J. DUATO and T. PINKSTON: Software-based
deadlock recovery technique for true fully adaptive routing in wormhole networks.
In , Proceedings of the 1997 International Conference on Parallel Processing, 1997.

357

I

Bibliography

[173] MATSUTANI, H., M. KOIBUCHI, D. IKEBUCHI, K. USAMI, H. NAKAMURA
and H. AMANO: Performance, Area, and Power Evaluations of Ultrafine-Grained
Run-Time Power-Gating Routers for CMPs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 30(4):520–533, Apr. 2011.

[174] MELLO, A., L. TEDESCO, N. CALAZANS and F. MORAES: Virtual Channels
in Networks on Chip: Implementation and Evaluation on Hermes NoC. In Proceed-
ings of the 18th Annual Symposium on Integrated Circuits and System Design,
SBCCI ’05, pp. 178–183, New York, NY, USA, 2005. ACM.

[175] MICHELI, G. D. and L. BENINI: Networks on Chips: Technology and Tools.
Academic Press, Aug. 2006.

[176] MICHELOGIANNAKIS, G., J. BALFOUR and W. DALLY: Elastic-buffer flow
control for on-chip networks. In IEEE 15th International Symposium on High
Performance Computer Architecture, 2009. HPCA 2009, pp. 151–162, Feb. 2009.

[177] MILLBERG, M., E. NILSSON, R. THID and A. JANTSCH: Guaranteed band-
width using looped containers in temporally disjoint networks within the nostrum
network on chip. In Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, vol. 2, pp. 890–895 Vol.2, 2004.

[178] MILLBERG, M., E. NILSSON, R. THID, S. KUMAR and A. JANTSCH: The
Nostrum backbone-a communication protocol stack for Networks on Chip. In 17th
International Conference on VLSI Design, 2004. Proceedings, pp. 693–696, 2004.

[179] MOORE, G. E. et al.: Cramming more components onto integrated circuits.
Electronics Magazine, 38(8), 1965.

[180] MORAES, F., N. CALAZANS, A. MELLO, L. MÖLLER and L. OST: HER-
MES: an infrastructure for low area overhead packet-switching networks on chip.
Integration, the VLSI Journal, 38(1):69–93, Oct. 2004.

[181] MUBEEN, S. and S. KUMAR: Designing Efficient Source Routing for Mesh
Topology Network on Chip Platforms. In Proceedings of the 2010 13th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, DSD
’10, pp. 181–188, Washington, DC, USA, 2010. IEEE Computer Society.

[182] MURALI, S., D. ATIENZA, L. BENINI and G. DE MICHEL: A multi-path
routing strategy with guaranteed in-order packet delivery and fault-tolerance
for networks on chip. In Proceedings of the 43rd annual Design Automation
Conference, DAC ’06, pp. 845–848, New York, NY, USA, 2006. ACM.

[183] MURALI, S., P. MELONI, F. ANGIOLINI, D. ATIENZA, S. CARTA, L. BENINI,
G. DE MICHELI and L. RAFFO: Designing Application-specific Networks on
Chips with Floorplan Information. In Proceedings of the 2006 IEEE/ACM Inter-
national Conference on Computer-aided Design, ICCAD ’06, pp. 355–362, New
York, NY, USA, 2006. ACM.

[184] MURALI, S., T. THEOCHARIDES, N. VIJAYKRISHNAN, M. IRWIN, L. BENINI

358

I

Bibliography

and G. DE MICHELI: Analysis of error recovery schemes for networks on chips.
IEEE Design Test of Computers, 22(5):434–442, Sept. 2005.

[185] NI, L. and P. MCKINLEY: A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62–76, Feb. 1993.

[186] NICKOLLS, J., I. BUCK, M. GARLAND and K. SKADRON: Scalable Parallel
Programming with CUDA. Queue, 6(2):40–53, 2008.

[187] NUMRICH, R. W. and J. REID: Co-array Fortran for Parallel Programming.
SIGPLAN Fortran Forum, 17(2):1–31, Aug. 1998.

[188] OECHSLEIN, B., J. SCHEDEL, J. KLEINÖDER, L. BAUER, J. HENKEL,
D. LOHMANN and W. SCHRÖDER-PREIKSCHAT: OctoPOS: A parallel op-
erating system for invasive computing. Sventek, J.(Hrsg.), 2011.

[189] OGRAS, U., R. MARCULESCU, P. CHOUDHARY and D. MARCULESCU:
Voltage-Frequency Island Partitioning for GALS-based Networks-on-Chip. In 44th
ACM/IEEE Design Automation Conference, DAC ’07, pp. 110–115, June 2007.

[190] OGRAS, U., R. MARCULESCU and D. MARCULESCU: Variation-adaptive feed-
back control for networks-on-chip with multiple clock domains. In 45th ACM/IEEE
Design Automation Conference, 2008. DAC 2008, pp. 614–619, June 2008.

[191] OGRAS, U., R. MARCULESCU, D. MARCULESCU and E.-G. JUNG: Design
and Management of Voltage-Frequency Island Partitioned Networks-on-Chip.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 17(3):330–
341, Mar. 2009.

[192] OGRAS, U. Y., J. HU and R. MARCULESCU: Key Research Problems in NoC
Design: A Holistic Perspective. In Proceedings of the 3rd IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’05, pp. 69–74, New York, NY, USA, 2005. ACM.

[193] OGRAS, U. Y. and R. MARCULESCU: Prediction-based flow control for network-
on-chip traffic. In Proceedings of the 43rd annual Design Automation Conference,
pp. 839–844, San Francisco, CA, USA, 2006. ACM.

[194] PALMA, J. C. S., L. S. INDRUSIAK, F. G. MORAES, A. G. ORTIZ,
M. GLESNER and R. A. L. REIS: Adaptive Coding in Networks-on-Chip: Tran-
sition Activity Reduction Versus Power Overhead of the Codec Circuitry. In
VOUNCKX, J., N. AZEMARD and P. MAURINE (eds.): Integrated Circuit
and System Design. Power and Timing Modeling, Optimization and Simulation,
no. 4148 in Lecture Notes in Computer Science, pp. 603–613. Springer Berlin
Heidelberg, Jan. 2006.

[195] PASRICHA, S., N. DUTT and M. BEN-ROMDHANE: Constraint-driven Bus
Matrix Synthesis for MPSoC. In Proceedings of the Asia and South Pacific Design
Automation Conference, ASP-DAC ’06, pp. 30–35. IEEE Press, 2006.

359

I

Bibliography

[196] PASRICHA, S., Y. ZOU, D. CONNORS and H. SIEGEL: OE+IOE: A novel
turn model based fault tolerant routing scheme for networks-on-chip. In 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pp. 85–93, 2010.

[197] PASTRNAK, M., P. DE WITH and J. VAN MEERBERGEN: Realization of QoS
management using negotiation algorithms for multiprocessor NoC. In 2006
IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006.
Proceedings, pp. 4 pp.–, 2006.

[198] PATOOGHY, A. and S. MIREMADI: XYX: A Power & Performance Efficient
Fault-Tolerant Routing Algorithm for Network on Chip. In 2009 17th Euromicro
International Conference on Parallel, Distributed and Network-based Processing,
pp. 245–251, Feb. 2009.

[199] PATTERSON, D. A.: Reduced Instruction Set Computers. Commun. ACM,
28(1):8–21, Jan. 1985.

[200] PATTERSON, D. A. and D. R. DITZEL: The Case for the Reduced Instruction
Set Computer. SIGARCH Comput. Archit. News, 8(6):25–33, 1980.

[201] PHAM, D., S. ASANO, M. BOLLIGER, M. DAY, H. HOFSTEE, C. JOHNS,
J. KAHLE, A. KAMEYAMA, J. KEATY, Y. MASUBUCHI, M. RILEY, D. SHIPPY,
D. STASIAK, M. SUZUOKI, M. WANG, J. WARNOCK, S. WEITZEL, D. WEN-
DEL, T. YAMAZAKI and K. YAZAWA: The design and implementation of a
first-generation CELL processor. In Solid-State Circuits Conference, Digest of
Technical Papers. ISSCC. 2005 IEEE International, pp. 184–592 Vol. 1, Feb. 2005.

[202] PINKSTON, T.: Flexible and efficient routing based on progressive deadlock recov-
ery. IEEE Transactions on Computers, 48(7):649–669, July 1999.

[203] PIRRETTI, M., G. LINK, R. BROOKS, N. VIJAYKRISHNAN, M. KANDEMIR
and M. IRWIN: Fault tolerant algorithms for network-on-chip interconnect. In
IEEE Computer society Annual Symposium on VLSI, 2004. Proceedings, pp.
46–51, Feb. 2004.

[204] PLAS, G. VAN DER, P. LIMAYE, I. LOI, A. MERCHA, H. OPRINS, C. TORRE-
GIANI, S. THIJS, D. LINTEN, M. STUCCHI, G. KATTI, D. VELENIS, V. CHER-
MAN, B. VANDEVELDE, V. SIMONS, I. DE WOLF, R. LABIE, D. PERRY,
S. BRONCKERS, N. MINAS, M. CUPAC, W. RUYTHOOREN, J. VAN OL-
MEN, A. PHOMMAHAXAY, M. DE POTTER DE TEN BROECK, A. OPDEBEECK,
M. RAKOWSKI, B. DE WACHTER, M. DEHAN, M. NELIS, R. AGARWAL,
A. PULLINI, F. ANGIOLINI, L. BENINI, W. DEHAENE, Y. TRAVALY, E. BEYNE
and P. MARCHAL: Design Issues and Considerations for Low-Cost 3-D TSV IC
Technology. IEEE Journal of Solid-State Circuits, 46(1):293–307, Jan. 2011.

[205] POP, E.: Energy dissipation and transport in nanoscale devices. Nano Research,
3(3):147–169, Mar. 2010.

360

I

Bibliography

[206] PROTIC, J., M. TOMASEVIC and V. MILUTINOVIC: Distributed Shared Mem-
ory: Concepts and Systems. John Wiley & Sons, 1998.

[207] PUJARI, R., T. WILD, A. HERKERSDORF, B. VOGEL and J. HENKEL: Hard-
ware assisted thread assignment for RISC based MPSoCs in invasive computing.
In 2011 13th International Symposium on Integrated Circuits (ISIC), pp. 106–109,
Dec. 2011.

[208] PUSCHINI, D., F. CLERMIDY, P. BENOIT, G. SASSATELLI and L. TORRES:
Temperature-Aware Distributed Run-Time Optimization on MP-SoC Using Game
Theory. In Symposium on VLSI, 2008. ISVLSI ’08. IEEE Computer Society
Annual, pp. 375–380, Apr. 2008.

[209] QIAN, Y., Z. LU and Q. DOU: QoS scheduling for NoCs: Strict Priority
Queueing versus Weighted Round Robin. In Computer Design (ICCD), 2010
IEEE International Conference on, pp. 52–59, 2010.

[210] RADETZKI, M., C. FENG, X. ZHAO and A. JANTSCH: Methods for Fault
Tolerance in Networks-on-chip. ACM Comput. Surv., 46(1):8:1–8:38, July 2013.

[211] RAGHUNATHAN, V., M. B. SRIVASTAVA and R. K. GUPTA: A Survey of
Techniques for Energy Efficient On-chip Communication. In Proceedings of the
40th Annual Design Automation Conference, DAC ’03, pp. 900–905, New York,
NY, USA, 2003. ACM.

[212] RAIK, J., R. UBAR and V. GOVIND: Test Configurations for Diagnosing Faulty
Links in NoC Switches. In Test Symposium, 2007. ETS ’07. 12th IEEE European,
pp. 29–34, 2007.

[213] RAMEY, C.: Tile-gx100 manycore processor: Acceleration interfaces and architec-
ture. Hot Chips 23, 2011.

[214] RIJPKEMA, E., K. GOOSSENS, A. RĂDULESCU, J. DIELISSEN, J. VAN MEER-
BERGEN, P. WIELAGE and E. WATERLANDER: Trade-offs in the design of a
router with both guaranteed and best-effort services for networks on chip. IEE
Proceedings-Computers and Digital Techniques, 150(5):294–302, 2003.

[215] RONEN, R., A. MENDELSON, K. LAI, S.-L. LU, F. POLLACK and J. P. SHEN:
Coming challenges in microarchitecture and architecture. In Proceedings of the
IEEE, pp. 325–340, 2001.

[216] ROUSE, M.: Multi-core processor. http://searchdatacenter.techtarget.com/
definition/multi-core-processor, 2014. Accessed: 2014-02-05.

[217] SAHA, S.: Modeling Process Variability in Scaled CMOS Technology. IEEE
Design Test of Computers, 27(2):8–16, Mar. 2010.

[218] SAHU, P. K. and S. CHATTOPADHYAY: A survey on application mapping strate-
gies for Network-on-Chip design. Journal of Systems Architecture, 59(1):60–76,
Jan. 2013.

361

http://searchdatacenter.techtarget.com/definition/multi-core-processor
http://searchdatacenter.techtarget.com/definition/multi-core-processor

I

Bibliography

[219] SAMMAN, F. A., T. HOLLSTEIN and M. GLESNER: Multicast Parallel Pipeline
Router Architecture for Network-on-chip. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’08, pp. 1396–1401, New York,
NY, USA, 2008. ACM.

[220] SCHAFER, M., T. HOLLSTEIN, H. ZIMMER and M. GLESNER: Deadlock-free
routing and component placement for irregular mesh-based networks-on-chip. In
IEEE/ACM International Conference on Computer-Aided Design, 2005. ICCAD-
2005, pp. 238–245, Nov. 2005.

[221] SCHLANSKER, M. and B. RAU: EPIC: Explicitly Parallel Instruction Computing.
Computer, 33(2):37–45, Feb. 2000.

[222] SCHONWALD, T., J. ZIMMERMANN, O. BRINGMANN and W. ROSENSTIEL:
Fully Adaptive Fault-Tolerant Routing Algorithm for Network-on-Chip Architec-
tures. In 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools, 2007. DSD 2007, pp. 527–534, Aug. 2007.

[223] SCHWARZ, S.: Ring network for communication between one chip processors,
July 26 1988. US Patent 4,760,571.

[224] SEILER, L., D. CARMEAN, E. SPRANGLE, T. FORSYTH, M. ABRASH,
P. DUBEY, S. JUNKINS, A. LAKE, J. SUGERMAN, R. CAVIN, R. ESPASA,
E. GROCHOWSKI, T. JUAN and P. HANRAHAN: Larrabee: A Many-core x86
Architecture for Visual Computing. In ACM SIGGRAPH 2008 Papers, SIG-
GRAPH ’08, pp. 18:1–18:15, New York, NY, USA, 2008. ACM.

[225] SETHURAMAN, B., P. BHATTACHARYA, J. KHAN and R. VEMURI: LiPaR: A
Light-weight Parallel Router for FPGA-based Networks-on-chip. In Proceedings
of the 15th ACM Great Lakes Symposium on VLSI, GLSVLSI ’05, pp. 452–457,
New York, NY, USA, 2005. ACM.

[226] SHACHAM, A., K. BERGMAN and L. P. CARLONI: On the Design of a Pho-
tonic Network-on-Chip. In Proceedings of the First International Symposium on
Networks-on-Chip, NOCS ’07, pp. 53–64, Washington, DC, USA, 2007. IEEE
Computer Society.

[227] SHAMSHIRI, S., A.-A. GHOFRANI and K.-T. CHENG: End-to-end error correc-
tion and online diagnosis for on-chip networks. In Test Conference (ITC), 2011
IEEE International, pp. 1–10, Sept. 2011.

[228] SHIN, D. and J. KIM: Power-aware Communication Optimization for Networks-
on-chips with Voltage Scalable Links. In Proceedings of the 2Nd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’04, pp. 170–175, New York, NY, USA, 2004. ACM.

[229] SHIVAKUMAR, P., M. KISTLER, S. KECKLER, D. BURGER and L. ALVISI:
Modeling the effect of technology trends on the soft error rate of combinational
logic. In International Conference on Dependable Systems and Networks, 2002.

362

I

Bibliography

DSN 2002. Proceedings, pp. 389–398, 2002.

[230] SIGUENZA-TORTOSA, D. and J. NURMI: Proteo: a new approach to network-
on-chip. In Proceedings of IASTED International Conference on Communication
Systems and Network, Malaga, Spain, 2002.

[231] SINGH, A., W. J. DALLY, A. K. GUPTA and B. TOWLES: GOAL: A Load-
balanced Adaptive Routing Algorithm for Torus Networks. In Proceedings of the
30th Annual International Symposium on Computer Architecture, ISCA ’03, pp.
194–205, New York, NY, USA, 2003. ACM.

[232] SINGH, A. K., T. SRIKANTHAN, A. KUMAR and W. JIGANG: Communication-
aware Heuristics for Run-time Task Mapping on NoC-based MPSoC Platforms. J.
Syst. Archit., 56(7):242–255, July 2010.

[233] SIVARAM, R., D. PANDA and C. STUNKEL: Efficient broadcast and multi-
cast on multistage interconnection networks using multiport encoding. IEEE
Transactions on Parallel and Distributed Systems, 9(10):1004–1028, 1998.

[234] SNIR, M., S. W. OTTO, D. W. WALKER, J. DONGARRA and S. HUSS-
LEDERMAN: MPI: The Complete Reference. MIT Press, Cambridge, MA,
USA, 1995.

[235] SNIR, M., S. W. OTTO, D. W. WALKER, J. DONGARRA and S. HUSS-
LEDERMAN: MPI: The Complete Reference. MIT Press, Cambridge, MA,
USA, 1995.

[236] SPEAR, CHRIS: SystemVerilog for Verification. Springer, 2006.

[237] STEFAN, R. and K. GOOSSENS: A TDM slot allocation flow based on multipath
routing in NoCs. Microprocessors and Microsystems, 35(2):130 – 138, 2011.
Special issue on Network-on-Chip Architectures and Design Methodolo-
gies.

[238] SUTHERLAND, S., P. MOORBY, S. DAVIDMANN and P. FLAKE: SystemVerilog
for Design Second Edition: A Guide to Using SystemVerilog for Hardware Design
and Modeling. Springer, Sept. 2006.

[239] TAKEDA, E., C. Y.-W. YANG and A. MIURA-HAMADA: Hot-carrier Effects in
MOS Devices. Academic Press, 1995.

[240] TAKEUCHI, M., Y. MAKINO, K. KAWACHIYA, H. HORII, T. SUZUMURA,
T. SUGANUMA and T. ONODERA: Compiling X10 to Java. In Proceedings of
the 2011 ACM SIGPLAN X10 Workshop, X10 ’11, pp. 3:1–3:10, New York, NY,
USA, 2011. ACM.

[241] TAMHANKAR, R., S. MURALI, S. STERGIOU, A. PULLINI, F. ANGIOLINI,
L. BENINI and G. DE MICHELI: Timing-Error-Tolerant Network-on-Chip De-
sign Methodology. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 26(7):1297–1310, July 2007.

363

I

Bibliography

[242] TAYLOR, M., J. KIM, J. MILLER, D. WENTZLAFF, F. GHODRAT, B. GREEN-
WALD, H. HOFFMAN, P. JOHNSON, J.-W. LEE, W. LEE, A. MA, A. SARAF,
M. SENESKI, N. SHNIDMAN, V. STRUMPEN, M. FRANK, S. AMARASINGHE
and A. AGARWAL: The Raw microprocessor: a computational fabric for software
circuits and general-purpose programs. IEEE Micro, 22(2):25–35, 2002.

[243] TEICH, J.: Invasive Algorithms and Architectures. it - Information Technology,
2008.

[244] TEICH, J.: Transregional Collaborative Research Centre 89 - Invasive Computing -
Homepage, 2014.

[245] TEICH, J., J. HENKEL, A. HERKERSDORF, D. SCHMITT-LANDSIEDEL,
W. SCHRÖDER-PREIKSCHAT and G. SNELTING: Invasive Computing: An
Overview. In HÜBNER, M. and J. BECKER (eds.): Multiprocessor System-on-
Chip, pp. 241–268. Springer New York, Jan. 2011.

[246] TEICH, J., A. TANASE and F. HANNIG: Symbolic parallelization of loop pro-
grams for massively parallel processor arrays. In 2013 IEEE 24th International
Conference on Application-Specific Systems, Architectures and Processors (ASAP),
pp. 1–9, June 2013.

[247] THOMA, F., M. KUHNLE, P. BONNOT, E. PANAINTE, K. BERTELS,
S. GOLLER, A. SCHNEIDER, S. GUYETANT, E. SCHULER, K. M"ULLER-
GLASER and J. BECKER: MORPHEUS: Heterogeneous Reconfigurable Comput-
ing. In International Conference on Field Programmable Logic and Applications,
2007. FPL 2007, pp. 409–414, Aug. 2007.

[248] THOMPSON, C. D.: Area-time Complexity for VLSI. In Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, pp.
81–88, New York, NY, USA, 1979. ACM.

[249] THOMPSON, C. D. and H. T. KUNG: Sorting on a Mesh-connected Parallel
Computer. Commun. ACM, 20(4):263–271, Apr. 1977.

[250] TILERA: TILE64 Processor Product Brief . http://www.tilera.com/sites/default/
files/productbriefs/PB010_TILE64_Processor_A_v4.pdf, 2008. Accessed: 2014-
02-06.

[251] TINDELL, K., H. HANSSON and A. J. WELLINGS: Analysing real-time com-
munications: controller area network (CAN). In Real-Time Systems Symposium,
1994., Proceedings., pp. 259–263, Dec 1994.

[252] TOL, E. B. V. D. and E. G. T. JASPERS: Mapping of MPEG-4 decoding on a
flexible architecture platform. In Media Processors 2002, pp. 1–13, 2002.

[253] TORRES, L., P. BENOIT, G. SASSATELLI, M. ROBERT, F. CLERMIDY and
D. PUSCHINI: An Introduction to Multi-Core System on Chip - Trends and
Challenges. In HÜBNER, M. and J. BECKER (eds.): Multiprocessor System-on-
Chip, pp. 1–21. Springer New York, Jan. 2011.

364

http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf

I

Bibliography

[254] TRADOWSKY, C., F. THOMA, M. HUBNER and J. BECKER: On Dynamic Run-
time Processor Pipeline Reconfiguration. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International,
pp. 419–424, May 2012.

[255] TRAN, A. T. and B. BAAS: NoCTweak: a Highly Parameterizable Simulator for
Early Exploration of Performance and Energy of Networks On-Chip. Techn. Rep.,
VCL, University of California, 2012.

[256] UNION, I. T.: ITU-T Recommendation database - Information technology - Open
Systems Interconnection - Basic Reference Model: The basic model.

[257] VANGAL, S., J. HOWARD, G. RUHL, S. DIGHE, H. WILSON, J. TSCHANZ,
D. FINAN, P. IYER, A. SINGH, T. JACOB, S. JAIN, S. VENKATARAMAN,
Y. HOSKOTE and N. BORKAR: An 80-Tile 1.28TFLOPS Network-on-Chip in
65nm CMOS. In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of
Technical Papers. IEEE International, pp. 98–589, Feb. 2007.

[258] VASSILIADIS, S., S. WONG, G. GAYDADJIEV, K. BERTELS, G. KUZMANOV
and E. PANAINTE: The MOLEN polymorphic processor. IEEE Transactions on
Computers, 53(11):1363–1375, Nov. 2004.

[259] VOROS, N. S., M. H"UBNER, J. BECKER, M. K"UHNLE, F. THOMAITIV,
A. GRASSET, P. BRELET, P. BONNOT, F. CAMPI, E. SCH"ULER,
H. SAHLBACH, S. WHITTY, R. ERNST, E. BILLICH, C. TISCHENDORF,
U. HEINKEL, F. IEROMNIMON, D. KRITHARIDIS, A. SCHNEIDER, J. KNAE-
BLEIN and W. PUTZKE-R"OMING: MORPHEUS: A Heterogeneous Dynami-
cally Reconfigurable Platform for Designing Highly Complex Embedded Systems.
ACM Trans. Embed. Comput. Syst., 12(3):70:1–70:33, Apr. 2013.

[260] WANG, J. and Y. LEVY: Managing performance using weighted round-robin.
In Computers and Communications, 2000. Proceedings. ISCC 2000. Fifth IEEE
Symposium on, pp. 785–792, 2000.

[261] WANG, X., M. YANG, Y. JIANG and P. LIU: Power-Aware Mapping for
Network-on-Chip Architectures under Bandwidth and Latency Constraints. In
4th International Conference on Embedded and Multimedia Computing, 2009.
EM-Com 2009, pp. 1–6, 2009.

[262] WANG, Y., K. ZHOU, Z. LU and H. YANG: Dynamic TDM virtual circuit
implementation for NoC. In Circuits and Systems, 2008. APCCAS 2008. IEEE
Asia Pacific Conference on, pp. 1533–1536, 2008.

[263] WENTZLAFF, D., P. GRIFFIN, H. HOFFMANN, L. BAO, B. EDWARDS,
C. RAMEY, M. MATTINA, C.-C. MIAO, J. F. BROWN III and A. AGAR-
WAL: On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro,
27(5):15–31, Sept. 2007.

[264] WGSIMON: Transistor Count and Moore’s Law - 2011. http://en.wikipedia.org/

365

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

I

Bibliography

wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg, 2014. Accessed:
2014-01-16.

[265] WIJNGAART, R. F. VAN DER, T. G. MATTSON and W. HAAS: Light-weight
Communications on Intel’s Single-chip Cloud Computer Processor. SIGOPS Oper.
Syst. Rev., 45(1):73–83, Feb. 2011.

[266] WIKLUND, D. and D. LIU: Switched interconnect for system-on-a-chip design.
In Proceedings of the IP2000 Europe Conference, pp. 185–192, 2000.

[267] WIKLUND, D. and D. LIU: SoCBUS: Switched Network on Chip for Hard Real
Time Embedded Systems. In Proceedings of the 17th International Symposium
on Parallel and Distributed Processing, IPDPS ’03, p. 8 pp., Washington, DC,
USA, 2003. IEEE Computer Society.

[268] WOLF, W., A. JERRAYA and G. MARTIN: Multiprocessor System-on-Chip
(MPSoC) Technology. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(10):1701–1713, Oct. 2008.

[269] WOLKOTTE, P., G. J. M. SMIT, G. RAUWERDA and L. SMIT: An Energy-
Efficient Reconfigurable Circuit-Switched Network-on-Chip. In Parallel and Dis-
tributed Processing Symposium, 2005. Proceedings. 19th IEEE International, pp.
155a–155a, Apr. 2005.

[270] WU, J. and D. WANG: Fault-tolerant and deadlock-free routing in 2-D meshes
using rectilinear-monotone polygonal fault blocks. In International Conference on
Parallel Processing, 2002. Proceedings, pp. 247–254, 2002.

[271] WU, Q., M. PEDRAM and X. WU: Clock-gating and its application to low power
design of sequential circuits. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 47(3):415–420, Mar. 2000.

[272] XILINX: Xilinx UG534 ML605 Hardware User Guide (v1.8), 2012.

[273] XU, T. C., A. W. YIN, P. LILJEBERG and H. TENHUNEN: A study of 3D
Network-on-Chip design for data parallel H.264 coding. Microprocessors and
Microsystems, 35(7):603–612, 2011.

[274] YANG, X., Z. QING-LI, F. FANG-FA, Y. MING-YAN and L. CHENG: NISAR:
An AXI compliant on-chip NI architecture offering transaction reordering process-
ing. In 7th International Conference on ASIC, 2007. ASICON ’07, pp. 890–893,
Oct. 2007.

[275] YEAP, G.: Practical Low Power Digital VLSI Design. Springer US, Boston, MA,
1998.

[276] ZAMFIRESCU, C. and T. ZAMFIRESCU: Hamiltonian Properties of Grid Graphs.
SIAM Journal on Discrete Mathematics, 5(4):564–570, Nov. 1992.

[277] ZEFERINO, C. and A. SUSIN: SoCIN: a parametric and scalable network-on-chip.
In 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI

366

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg

I

Bibliography

2003. Proceedings, pp. 169–174, Sept. 2003.

[278] ZHANG, B. and M. ORSHANSKY: Modeling of NBTI-Induced PMOS Degra-
dation under Arbitrary Dynamic Temperature Variation. In 9th International
Symposium on Quality Electronic Design, 2008. ISQED 2008, pp. 774–779, Mar.
2008.

[279] ZHANG, L., E. E. REGENTOVA and X. TAN: Packet switching optical network-
on-chip architectures. Computers & Electrical Engineering, 39(2):697–714,
2013.

[280] ZHANG, L., M. YANG, Y. JIANG and E. REGENTOVA: Architectures and rout-
ing schemes for optical network-on-chips. Computers & Electrical Engineering,
35(6):856–877, Nov. 2009.

[281] ZHANG, Z., A. GREINER and S. TAKTAK: A reconfigurable routing algorithm
for a fault-tolerant 2D-Mesh Network-on-Chip. In 45th ACM/IEEE Design
Automation Conference, 2008. DAC 2008, pp. 441–446, June 2008.

[282] ZWINKAU, A., S. BUCHWALD and G. SNELTING: InvadeX10 Documentation
v0.5. Techn. Rep. 7, Karlsruhe Institute of Technology, 2013.

367

I

I

Supervised Student Research

[Bis12] BISCHOF, SIMON: Realisierung eines NoC-Routers für Knoten mit hohem
Bandbreitenbedarf. Bachelor thesis ID-1645, Karlsruhe Institute for Tech-
nology, Institut für Technik der Informationsverarbeitung (ITIV), 2012.

[Bis14] BISCHOF, SIMON: Anleitung für den Synopsis Low power Flow, 2014.

[Bou11] BOUHZAM, YOUNES: Entwurf und Implementierung eines Network-on-
Chip Routers mit dynamischer Buffer-Allokation. Studienarbeit IL-936,
Karlsruhe Institute for Technology, Institut für Technik der Informa-
tionsverarbeitung (ITIV), 2011.

[Bul12] BULL, CHRISTIAN: Evaluation und Implementierung von Adaptivem Rout-
ing für das invasive Network-on-Chip. Studienarbeit IL-1007, Karlsruhe
Institute for Technology, Institut für Technik der Informationsverar-
beitung (ITIV), 2012.

[Dei12] DEININGER, TOBIAS: Prototyping und Evaluation einer iNoC-basierten
Multicore-Architektur. Diploma thesis ID-1571, Karlsruhe Institute for
Technology, Institut für Technik der Informationsverarbeitung (ITIV),
2012.

[Dud13] DUDEN, MARCO: Fehlertoleranz bei Networks on Chips. Seminararbeit,
Karlsruhe Institute for Technology, Institut für Technik der Informa-
tionsverarbeitung (ITIV), 2013.

[Dud14] DUDEN, MARCO: Behandlung permanenter Fehler im invasiven Network
on Chip (Engl.: Facing Permanent Errors in the Invasive Network on Chip).
Bachelor thesis ID-1834, Karlsruhe Institute for Technology, Institut für
Technik der Informationsverarbeitung (ITIV), 2014.

[Ese13] ESER, YILMAZ: Lastabhängige Adaption der Paketgröße für On-Chip Net-
zwerke. Diploma thesis ID-1720, Karlsruhe Institute for Technology,
Institut für Technik der Informationsverarbeitung (ITIV), 2013.

[Hau14] HAUSSECKER, MANUEL: Multi-FPGA NoC - Design & Prototyping. Bach-
elor thesis ID-1809, Karlsruhe Institute for Technology, Institut für Tech-
nik der Informationsverarbeitung (ITIV), 2014.

[Imr12] IMRANI, MOHAMMED ALI ZERBOUH: Evaluation und Realisierung einer
neuartigen Network-on-Chip-Topologie. Studienarbeit IL-962, Karlsruhe

369

I

Supervised Student Research

Institute for Technology, Institut für Technik der Informationsverar-
beitung (ITIV), 2012.

[Kar12] KARLE, MARTIN: Monitoring Funktionalitäten für Networks-on-Chip
(Engl.: Monitoring Functionalities for Networks-on-Chip). Bachelor thesis
ID-1650, Karlsruhe Institute for Technology, Institut für Technik der
Informationsverarbeitung (ITIV), 2012.

[Ker13] KERN, MATTHIAS: Entwicklung eines Many-Core Prozessormodells auf
Basis eines Network-on-Chip mit QoS Unterstützung (Engl.: Development of
a many-core processor model based on a network-on-chip with QoS support).
Bachelor thesis ID-1691, Karlsruhe Institute for Technology, Institut für
Technik der Informationsverarbeitung (ITIV), 2013.

[Klö13] KLÖPFER, ROMAN: Erkennung und Lokalisation fehlerhafter NoC-Router.
Diploma thesis ID-1734, Karlsruhe Institute for Technology, Institut für
Technik der Informationsverarbeitung (ITIV), 2013.

[Kön13] KÖNIG, STEFAN: Entwicklung von Methoden zur haptischen Unterstützung
des Chirurgen bei Verwendung telemanipulierter Leichtbauroboter (Engl.:
Development of Methods for haptic assistance during telemanipulated surgical
tasks using a light-weight robot). Bachelor thesis ID-1765, Karlsruhe Insti-
tute for Technology, Institut für Technik der Informationsverarbeitung
(ITIV) & Institut für Prozessrechentechnik, Automation und Robotik
(IPR), 2013.

[Kri14] KRIMM, MICHAEL: Parallele Anwendungen für die InvasIC Architektur
(Engl.: Parallel Applications for the InvasIC Architecture). Bachelor thesis
ID-1811, Karlsruhe Institute for Technology, Institut für Technik der
Informationsverarbeitung (ITIV), 2014.

[Kro13] KROLACSEK, EDUARD: iNoC Firmware Entwicklung (Engl.: iNoC
Firmware Development). Bachelor thesis ID-1750, Karlsruhe Institute for
Technology, Institut für Technik der Informationsverarbeitung (ITIV),
2013.

[Lu13] LU, QIAN: Optimierung des Datendurchsatzes reservierter End-zu-End-
Verbindungen in Networks-on-Chip. Diploma thesis ID-1636, Karlsruhe
Institute for Technology, Institut für Technik der Informationsverar-
beitung (ITIV), 2013.

[Mat12] MATEEV, LAZAR: Prototyping und Test einer InvasIC Many-Core-
Architektur (Engl.: Prototyping and Test of an InvasIC Many-Core-
Architecture). Bachelor thesis ID-1646, Karlsruhe Institute for Tech-
nology, Institut für Technik der Informationsverarbeitung (ITIV), 2012.

[Pas14] PASHKOVSKIY, ILYA: Hardwarebeschleunigung paralleler Anwendungen auf
der InvasIC Architektur (Engl.: Hardware acceleration of parallel applications

370

I

Supervised Student Research

on the InvasIC architecture). Diploma thesis ID-1827, Karlsruhe Insti-
tute for Technology, Institut für Technik der Informationsverarbeitung
(ITIV), 2014.

[Ric13] RICKELHOFF, TOBIAS: Entwicklung und Test einer Debug-Schnittstelle für
die InvasIC-Architektur. Diploma thesis ID-1717, Karlsruhe Institute for
Technology, Institut für Technik der Informationsverarbeitung (ITIV),
2013.

[Sch13] SCHATZ, STEFAN: Entwurf und Implementierung eines hybriden Network-
on-Chip. Diploma thesis ID-1649, Karlsruhe Institute for Technology,
Institut für Technik der Informationsverarbeitung (ITIV), 2013.

[Sin12] SINGH, MAXIMILIAN: Implementierung einer verteilten Selbstopti-
mierungsstrategie für Network-on-Chip (Engl.: Implementation of a dis-
tributed self-optimization strategy for Networks-on-Chip). Bachelor thesis
ID-1623, Karlsruhe Institute for Technology, Institut für Technik der
Informationsverarbeitung (ITIV), 2012.

[Spi12] SPIRIC, MARCO: Konzeption und Implementierung von Monitoring Funk-
tionalitäten für Networks-on-Chip. Bachelor thesis ID-1571, Karlsruhe
Institute for Technology, Institut für Technik der Informationsverar-
beitung (ITIV), 2012.

[Ste13] STEIN, CARSTEN: Fehlererkennung und -behandlung für reguläre Networks-
on-Chip. Diploma thesis ID-1718, Karlsruhe Institute for Technology,
Institut für Technik der Informationsverarbeitung (ITIV), 2013.

[Wie14a] WIEDMANN, JULIAN: Dynamische Expressverbindungen für Networks on
Chip (Engl.: Dynamic express channels for networks on chip). Diploma
thesis ID-1894, Karlsruhe Institute for Technology, Institut für Technik
der Informationsverarbeitung (ITIV), 2014.

[Wie14b] WIEDMANN, JULIAN: Intelligentes energieoptimierendes Virtual Channel
Management. Studienarbeit IL-1787, Karlsruhe Institute for Technology,
Institut für Technik der Informationsverarbeitung (ITIV), 2014.

The supervised student research work can be inspected at the Karlsruhe Institute of Technology, In-
stitute for Information Processing Technologies (Institut für Technik der Informationsverarbeitung – ITIV),
Engesserstr. 5, 76131 Karlsruhe, Germany or are available there in electronic form.

371

I

I

Own publications

Journals

[HKKB13] HEISSWOLF, JAN, RALF KÖNIG, MARTIN KUPPER and JÜRGEN
BECKER: Providing multiple hard latency and throughput guarantees for
packet switching networks on chip. Computers & Electrical Engineering,
39(8):2603–2622, November 2013.

[HZW+13] HEISSWOLF, JAN, AURANG ZAIB, ANDREAS WEICHSLGARTNER,
RALF KÖNIG, THOMAS WILD, JÜRGEN TEICH, ANDREAS HERK-
ERSDORF and JÜRGEN BECKER: Virtual Networks – Distributed Commu-
nication Resource Management. ACM Trans. Reconfigurable Technol.
Syst., 6(2):8:1–8:14, August 2013.

Conferences / Symposia

[BFH+12] BECKER, J., S. FRIEDERICH, J. HEISSWOLF, R. KOENIG and D. MAY:
Hardware prototyping of novel invasive multicore architectures. In Design
Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific,
pages 201–206, January 2012.

[FHB14] FRIEDERICH, STEPHANIE, JAN HEISSWOLF and JÜRGEN BECKER:
Hardware/Software Debugging of Large Scale Many-core Architectures.
In Proceedings of the 27th Symposium on Integrated Circuits and Systems
Design, SBCCI ’14, pages 45:1–45:7, New York, NY, USA, 2014. ACM.

[FHMB14] FRIEDERICH, S., J. HEISSWOLF, D. MAY and J. BECKER: Hardware
prototyping and software debugging of multi-core architectures. In Pro-
ceedings of the Synopsys Users Group Conference (SNUG), May 2014.

373

I

Conferences / Symposia

[HBRB13] HEISSWOLF, J., S. BISCHOF, M. RUCKAUER and J. BECKER: Efficient
memory access in 2D Mesh NoC architectures using high bandwidth
routers. In 2013 26th Symposium on Integrated Circuits and Systems
Design (SBCCI), pages 1–6, September 2013.

[HHB+12] HENKEL, J., A. HERKERSDORF, L. BAUER, T. WILD, M. HUBNER,
R.K. PUJARI, A. GRUDNITSKY, J. HEISSWOLF, A. ZAIB, B. VOGEL,
V. LARI and S. KOBBE: Invasive manycore architectures. In Design
Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific,
pages 193–200, January 2012.

[HKB12] HEISSWOLF, J., R. KÖNIG and J. BECKER: A Scalable NoC Router
Design Providing QoS Support Using Weighted Round Robin Scheduling.
In 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pages 625–632, July 2012.

[HSK+13] HEISSWOLF, J., M. SINGH, M. KUPPER, R. KONIG and J. BECKER:
Rerouting: Scalable NoC self-optimization by distributed hardware-based
connection reallocation. In 2013 International Conference on Reconfig-
urable Computing and FPGAs (ReConFig), pages 1–8, 2013.

[HZZ+14] HEISSWOLF, JAN, AURANG ZAIB, ANDREAS ZWINKAU, SEBAS-
TIAN KOBBE, ANDREAS WEICHSLGARTNER, JÜRGEN TEICH, JÖRG
HENKEL, GREGOR SNELTING, ANDREAS HERKERSDORF and JÜR-
GEN BECKER: CAP: Communication Aware Programming. In Proceed-
ings of the The 51st Annual Design Automation Conference on Design
Automation Conference (DAC), DAC ’14, pages 105:1–105:6, New
York, NY, USA, 2014. ACM. HiPEAC Paper Award.

[KSHB11] KOENIG, R., T. STRIPF, J. HEISSWOLF and J. BECKER: Architecture de-
sign space exploration of run-time scalable issue-width processors. In 2011
International Conference on Embedded Computer Systems (SAMOS),
pages 77–84, July 2011.

[PQHW+13] PHAM-QUOC, CUONG, JAN HEISSWOLF, STEPHAN WERNER, ZAID
AL-ARS, JURGEN BECKER and KOEN BERTELS: Hybrid interconnect
design for heterogeneous hardware accelerators. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, pages 843–846,
March 2013.

[ZHW+13] ZAIB, A., J. HEISSWOLF, A. WEICHSLGARTNER, T. WILD, J. TEICH,
J. BECKER and A. HERKERSDORF: AUTO-GS: Self-Optimization of
NoC Traffic through Hardware Managed Virtual Connections. In 2013
Euromicro Conference on Digital System Design (DSD), pages 761–768,
September 2013.

[ZHW+15] ZAIB, AURANG, JAN HEISSWOLF, ANDREAS WEICHSLGARTNER,
THOMAS WILD, JÜRGEN TEICH, JÜRGEN BECKER and ANDREAS

374

I

Workshops

HERKERSDORF: Network Interface with Task Spawning Support for
NoC-based DSM Architectures. In 28th GI/ITG International Conference
on Architecture of Computing Systems (ARCS). Springer Lecture Notes
on Computer Science (LNCS), 2015. To appear.

Workshops

[HWZ+13] HEISSWOLF, J., A. WEICHSLGARTNER, A. ZAIB, R. KONIG, T. WILD,
A. HERKERSDORF, J. TEICH and J. BECKER: Hardware Supported Adap-
tive Data Collection for Networks on Chip. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 153–162, 2013.

[HZW+12] HEISSWOLF, J., A. ZAIB, A. WEICHSLGARTNER, R. KONIG, T. WILD,
J. TEICH, A. HERKERSDORF and J. BECKER: Hardware-assisted Decen-
tralized Resource Management for Networks on Chip with QoS. In Parallel
and Distributed Processing Symposium Workshops PhD Forum (IPDPSW),
2012 IEEE 26th International, pages 234–241, 2012.

[HZW+14] HEISSWOLF, JAN, AURANG ZAIB, ANDREAS WEICHSLGARTNER,
MARTIN KARLE, MAXIMILIAN SINGH, THOMAS WILD, JUERGEN
TEICH, ANDREAS HERKERSDORF and JUERGEN BECKER: The Inva-
sive Network on Chip - A Multi-Objective Many-Core Communication
Infrastructure. In 2014 27th International Conference on Architecture of
Computing Systems (ARCS), Workshop Proceedings, pages 1–8, February
2014.

[KSHB11] KOENIG, R., T. STRIPF, J. HEISSWOLF and J. BECKER: A Scalable Mi-
croarchitecture Design that Enables Dynamic Code Execution for Variable-
Issue Clustered Processors. In 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
pages 150–157, 2011.

[RWH+13] ROLOFF, SASCHA, ANDREAS WEICHSLGARTNER, JAN HEISSWOLF,
FRANK HANNIG and JÜRGEN TEICH: NoC Simulation in Heterogeneous
Architectures for PGAS Programming Model. In Proceedings of the 16th
International Workshop on Software and Compilers for Embedded Systems
(SCOPES), M-SCOPES ’13, pages 77–85, New York, NY, USA, 2013.
ACM.

[WHZ+15] WEICHSLGARTNER, ANDREAS, JAN HEISSWOLF, AURANG ZAIB,
THOMAS WILD, ANDREAS HERKERSDORF, JÜRGEN BECKER and JÜR-
GEN TEICH: Position Paper: Towards Hardware-Assisted Decentralized
Mapping of Applications for Heterogeneous NoC Architectures. In Proceed-

375

I

Workshops

ings of the second International Workshop on Multi-Objective Many-Core
Design (MOMAC) in conjunction with International Conference on Ar-
chitecture of Computing Systems (ARCS), pages 1–4. IEEE, 2015. To
appear.

376

	Introduction
	Prologue
	Amdahl's Law from the Communication Perspective

	Motivation
	Contribution
	Outline

	Fundamentals
	System on a Chip
	Multi-Core and Many-Core Architectures
	Shared Memory Architecture
	Distributed Memory Architecture
	Hybrid Distributed Shared Memory Architecture
	Distributed Shared Memory Architecture
	Existing Many-Core Architectures

	Rudimentary On-Chip Communication
	Direct Connections
	Bus Systems

	Networks on Chip
	Components
	Topology
	Switching Schemes
	Flow Control
	Routing

	Dependability
	Terminology
	Hierarchical Fault Modeling
	Redundancy
	Fault Classes
	Physical Failure Mechanisms

	Context of Invasive Computing
	Basic Principle of Invasive Computing
	Invasive Programming Language

	InvasIC Hardware Architecture
	Tiles
	Invasive Network on Chip

	Software
	Compiler
	Operating System

	Hardware Prototyping
	Single-FPGA Prototyping
	CHIPit Prototyping System

	Summary

	Flexible NoC Architecture and Design Flow Concept
	Communication Requirements and Constraints
	General Communication Requirements
	On-Chip Communication Requirements
	Communication Constraints of Scalable Architectures
	Communication Requirements of Invasive Computing
	Summary

	State of the Art NoC Architectures
	SoCBUS
	Hermes
	SoCIN
	Æthereal
	Nostrum NoC
	QNoC
	Xpipes
	Kilo-NoC
	Summary

	Fundamental Architecture Concept
	Switching Scheme and Quality of Service
	Scalability and Distributed Self-Optimization
	Region-based Distributed Management
	Fault Tolerance and Dependability
	Design-time Flexibility and Adaptability

	Semiautomatic NoC Design Flow
	Evaluation and Implementation Flow
	Application of the Evaluation and Implementation Flow

	Summary

	Basic Architecture Realization
	Scalable Basic Router Design
	Virtual Channels
	Network Layer Protocol
	Pipeline Model
	Modular Distributed Routing
	Implementation and Functioning
	Latency and Bandwidth Analysis

	Simulation Framework
	State of the Art NoC Simulators
	Simulator Concept
	Traffic Generation
	NoC Model
	Analysis and Evaluation Capabilities

	HDL Model and Implementation
	HDL Test Environment
	Synthesis

	Case Study
	Performance
	Implementation Costs
	Comparison to State of the Art NoC Implementations

	Extensions
	Control Network Layer
	Circuit Switching Extension
	Monitoring Infrastructure
	In-Order Packet Processing Support
	High Bandwidth Router

	Summary

	Quality of Service
	State of the Art
	Scheduling Mechanisms
	Resource Allocation
	Related Work and Existing QoS Architectures

	Run-time Adaptive End-to-End Connections
	QoS Communication Concept with Hard Guarantees
	Hardware and Software Implementation
	Evaluation

	Adaptive QoS Policy Management
	Run-Time Mapping and Policy Configuration
	Hardware Implementation
	Evaluation

	Virtual Networks
	Concept of Run-time Adaptive Virtual Networks
	Implementation
	Evaluation

	Summary

	Self-Optimization and Self-Organization
	Distributed Rerouting
	Concept of Self-Adaptive Rerouting
	Hardware Implementation
	Evaluation

	Auto-GS and Connection Replacement
	Concept and Implementation
	Evaluation

	Adaptive Data Collection
	Concepts for Region-based Data Collection
	Implementation
	Evaluation

	Autonomous Power Management
	Run-time Power Management Concept
	Implementation
	Evaluation

	Summary

	Fault Tolerance and Reliability
	State of the Art
	Fault Detection and Localization
	Distributed Fault Localization Concept
	Software Implementation
	Evaluation

	Error Treatment
	Second Layer Network Concept
	Hardware Implementation
	Evaluation

	Summary

	Conclusion & Future Work
	Conclusion
	Future Work

	Appendix
	FPGA-based Many-Core Architecture Prototype
	Scalable FPGA Prototype

	Service Level Assignment Algorithm
	Memory Map
	Control Registers of the NoC
	Parameters of the Simulation Framework
	Parameters of the HDL Template

	Indexes
	Figures
	Tables

	Abbreviations
	Bibliography
	Supervised Student Research
	Own Publications

