12,651 research outputs found

    Thermodynamic analysis of snowball Earth hysteresis experiment: Efficiency, entropy production and irreversibility

    Get PDF
    We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Societ

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 1: Workshop objectives and summary

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    Direct measurements of DOCO isomers in the kinetics of OD+CO

    Get PDF
    Quantitative and mechanistically-detailed kinetics of the reaction of hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal of contemporary chemical kinetics. This fundamental prototype reaction plays an important role in atmospheric and combustion chemistry, motivating studies for accurate determination of the reaction rate coefficient and its pressure and temperature dependence at thermal reaction conditions. This intricate dependence can be traced directly to details of the underlying dynamics (formation, isomerization, and dissociation) involving the reactive intermediates cis- and trans-HOCO, which can only be observed transiently. Using time-resolved frequency comb spectroscopy, comprehensive mechanistic elucidation of the kinetics of the isotopic analogue deuteroxyl radical (OD) with CO has been realized. By monitoring the concentrations of reactants, intermediates, and products in real-time, the branching and isomerization kinetics and absolute yields of all species in the OD+CO reaction are quantified as a function of pressure and collision partner.Comment: 19 pages, 4 figure

    A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry

    Get PDF
    A semi-implicit preconditioned iterative method is proposed for the time-integration of the stiff chemistry in simulations of unsteady reacting flows, such as turbulent flames, using detailed chemical kinetic mechanisms. Emphasis is placed on the simultaneous treatment of convection, diffusion, and chemistry, without using operator splitting techniques. The preconditioner corresponds to an approximation of the diagonal of the chemical Jacobian. Upon convergence of the sub-iterations, the fully-implicit, second-order time-accurate, Crank–Nicolson formulation is recovered. Performance of the proposed method is tested theoretically and numerically on one-dimensional laminar and three-dimensional high Karlovitz turbulent premixed n-heptane/air flames. The species lifetimes contained in the diagonal preconditioner are found to capture all critical small chemical timescales, such that the largest stable time step size for the simulation of the turbulent flame with the proposed method is limited by the convective CFL, rather than chemistry. The theoretical and numerical stability limits are in good agreement and are independent of the number of sub-iterations. The results indicate that the overall procedure is second-order accurate in time, free of lagging errors, and the cost per iteration is similar to that of an explicit time integration. The theoretical analysis is extended to a wide range of flames (premixed and non-premixed), unburnt conditions, fuels, and chemical mechanisms. In all cases, the proposed method is found (theoretically) to be stable and to provide good convergence rate for the sub-iterations up to a time step size larger than 1 μs. This makes the proposed method ideal for the simulation of turbulent flames

    Thermal conductivity measurement of liquids in a microfluidic device

    Get PDF
    A new microfluidic-based approach to measuring liquid thermal conductivity is developed to address the requirement in many practical applications for measurements using small (microlitre) sample size and integration into a compact device. The approach also gives the possibility of high-throughput testing. A resistance heater and temperature sensor are incorporated into a glass microfluidic chip to allow transmission and detection of a planar thermal wave crossing a thin layer of the sample. The device is designed so that heat transfer is locally one-dimensional during a short initial time period. This allows the detected temperature transient to be separated into two distinct components: a short-time, purely one-dimensional part from which sample thermal conductivity can be determined and a remaining long-time part containing the effects of three-dimensionality and of the finite size of surrounding thermal reservoirs. Identification of the one-dimensional component yields a steady temperature difference from which sample thermal conductivity can be determined. Calibration is required to give correct representation of changing heater resistance, system layer thicknesses and solid material thermal conductivities with temperature. In this preliminary study, methanol/water mixtures are measured at atmospheric pressure over the temperature range 30–50°C. The results show that the device has produced a measurement accuracy of within 2.5% over the range of thermal conductivity and temperature of the tests. A relation between measurement uncertainty and the geometric and thermal properties of the system is derived and this is used to identify ways that error could be further reduced

    Explicit Integration of Extremely-Stiff Reaction Networks: Quasi-Steady-State Methods

    Full text link
    A preceding paper demonstrated that explicit asymptotic methods generally work much better for extremely stiff reaction networks than has previously been shown in the literature. There we showed that for systems well removed from equilibrium explicit asymptotic methods can rival standard implicit codes in speed and accuracy for solving extremely stiff differential equations. In this paper we continue the investigation of systems well removed from equilibrium by examining quasi-steady-state (QSS) methods as an alternative to asymptotic methods. We show that for systems well removed from equilibrium, QSS methods also can compete with, or even exceed, standard implicit methods in speed, even for extremely stiff networks, and in many cases give somewhat better integration speed than for asymptotic methods. As for asymptotic methods, we will find that QSS methods give correct results, but with non-competitive integration speed as equilibrium is approached. Thus, we shall find that both asymptotic and QSS methods must be supplemented with partial equilibrium methods as equilibrium is approached to remain competitive with implicit methods.Comment: Updated reference
    corecore