Quantitative and mechanistically-detailed kinetics of the reaction of
hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal
of contemporary chemical kinetics. This fundamental prototype reaction plays an
important role in atmospheric and combustion chemistry, motivating studies for
accurate determination of the reaction rate coefficient and its pressure and
temperature dependence at thermal reaction conditions. This intricate
dependence can be traced directly to details of the underlying dynamics
(formation, isomerization, and dissociation) involving the reactive
intermediates cis- and trans-HOCO, which can only be observed transiently.
Using time-resolved frequency comb spectroscopy, comprehensive mechanistic
elucidation of the kinetics of the isotopic analogue deuteroxyl radical (OD)
with CO has been realized. By monitoring the concentrations of reactants,
intermediates, and products in real-time, the branching and isomerization
kinetics and absolute yields of all species in the OD+CO reaction are
quantified as a function of pressure and collision partner.Comment: 19 pages, 4 figure